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Uncertainty Quantification in Graphon Estimation
using Generalized Fiducial Inference
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Abstract—Network data can be modeled as an exchangeable
graph model (ExGM), and graphon is a two-dimensional function
that generates an ExGM. The problem of graphon estimation
has been popular in recent years, and several consistent estima-
tion methods have been proposed. However, statistical inference
on graphon has not been intensively studied. In this paper,
we propose applying the generalized fiducial inference (GFI)
methodology to the framework of graphon and perform the
uncertainty quantification task. GFI is a branch of inference
methods that utilizes the “switching principle” of the parameter
and the data, and it seeks for a distribution estimator of the
parameters without the need of a prior. We propose an easy-to-
implement algorithm to generate fiducial samples of a graphon,
which are then used to construct confidence sets. We establish
theoretical guarantees of the GFI confidence intervals, and use
synthetic graphons to demonstrate its empirical performance for
finite sample size. When the labels are unknown, we extend our
algorithm and discuss its asymptotic properties. We also apply
the proposed method to Facebook social network data and unveil
some interesting patterns.

Index Terms—confidence intervals, exchangeable graph model,
generalized fiducial inference, network analysis, statistical infer-
ence.

I. INTRODUCTION

RELATIONAL datasets have become popular and more
available. The exchangeable graph model (ExGM) is a

tool for analyzing network data when the nodes are exchange-
able [1, 2, 3, 4, 5, 6]. Behind the ExGM is a two dimensional
symmetric function termed graphon, which defines the proba-
bility of connection between two nodes given their latent labels
(can be understood as positions in the graph). Graphon is a
generative model and can be viewed as a limit of finite-size
graphs as the number of nodes grows to infinity [5, 7], and
it can also be considered as the population object that any
observed graphs are sampled from.

In general, graphon offers a long-sought and unified frame-
work for network modeling. For example, a parametric
piecewise-constant model of graphon is commonly used to
approximate the community structures in social networks. In
addition, graphon opens up the flexibility of nonparametric
modeling, which is often instrumental in discovering interest-
ing patterns in the corresponding network generation process
[e.g., 8, 9, 10]. Applications of graphons include epidemics,
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graph neural networks, quantum physics, signal processing
[e.g., 11, 12, 13, 14, 15, 16].

Therefore, given an observed network, which is usually
realized as an adjacency matrix, it is important to estimate
and make inference on the underlying graphon. Consequently,
there has been a surge of interest in graphon estimation, and
many of these methods can provide consistent estimators.
There are mainly two categories of estimation methods. One
is to use a histogram-like function with diminishing bin-size
to approximate the graphon [8, 9, 17, 18, 19, 20, 21, 22, 23,
24, 25, e.g.,]. The other major category is based on variational
Bayesian models and expectation maximization for SBM [e.g.,
26, 27, 28, 29, 30, 31, 32].

To a much lesser extent, random graphs and graphons have
also been used as tools to answer some uncertainty questions
in the observed networks. For example, several bootstrapping
methods were proposed to quantify the uncertainty in network
summaries such as degree distributions, count features [e.g.,
33, 34, 35, 36]. [37] proposed to first estimate the underlying
graphon, then use the estimated graphon to re-generate graph
samples in order to simulate the sampling distribution of motif
densities (a normalized count of the occurrences of certain
subgraphs). [38] proposed “multi-graphon” to incorporate the
dynamics in a series of networks and construct confidence
intervals for network summary statistics (e.g., average path
length) with multiple observed networks. Another work [39]
proposed a hypothesis test for testing if the estimated graphon
is equal to a target graphon. This testing statistic is based on
the L2 distance in function space, and the rejection region
is obtained by a Monte Carlo simulation. However, these
works do not quantify the uncertainty (e.g., build confidence
intervals) for the graphon itself.

In this work, we adopt the idea of generalized fiducial
inference (GFI) [40] to construct block-wise confidence in-
tervals for a graphon. GFI is a generalization of Fisher’s
fiducial argument [41, 42, 43], and it seeks for a “distribution
estimator” of the parameter. The fiducial distribution of a
parameter is similar to a Bayesian posterior distribution while
it does not require a prior. The idea behind GFI is similar to
that for the celebrated likelihood function — switching the
roles of data and the parameter. By properly inverting the
so-called data generating equation, one can generate fiducial
samples from the parameter space. Analytical solutions to
simple models (e.g., Gaussian distribution, linear regression)
are available [40, 44]. For more complex problems, like in the
graphon framework, the fiducial samples can be generated via
Markov Chain Monte Carlo (MCMC). We will introduce GFI
in a more detailed manner in Section III. To the best of our



2

knowledge, the proposed work is the first that performs the
uncertainty quantification task for graphons.

The rest of this paper is organized as follow. In Sections II
and III, we provide necessary background for graphon and
GFI. We formalize the graphon problem using GFI in Section
3, and derive the procedure of generating fiducial samples for
graphon. In Section 4, we provide theoretical guarantees of
the proposed method, followed by an illustration of its finite-
sample performance when labels are known in Section VI. We
also present its empirical performance with unknown labels
and analyze these results from a theoretical aspect. Finally,
we apply our method to Facebook social network data in
Section VII. Technical details are deferred to Section IX.

II. A REVIEW ON GRAPHON

Let A ∈ {0, 1}n×n be the adjacency matrix of a undirected
simple graph with n nodes (n can be infinity). Then, according
to Aldous-Hoover Theorem [45, 46], every undirected ExGM
can be represented by a graphon — a symmetric measurable
function g : [0, 1]

2 → [0, 1]. Thereby, a network of size n can
be generated by the following two-step sampling scheme:

wi
iid∼ Uniform(0, 1), i = 1, . . . , n;

Aij |wi, wj
ind∼ Bernoulli(g(wi, wj)), i < j.

Since the nodes are exchangeable and so are the latent labels
wi, it is well-known that graphon is not identifiable. A widely
used condition that guarantees a unique representation is the
strict monotonicity of degree condition, and the unique repre-
sentation is called the canonical graphon [39, 47]. Moreover,
[48] proved that while not all graphons have a cannonical
form, any strictly increasing graphon is unique.

Definition 1. (Canonical graphon) A graphon g is said to has
a canonical form gcan, if there exists a measure preserving
transformation φ, and gcan(u, v) := g(φ(u), φ(v)) satisfies
the strict monotonicity of degree condition — the degree
function d(·) =

∫ 1

0
gcan(·, v)dv is strictly increasing.

In the graphon estimation literature, there are two cate-
gories of methods that focus on different layers of estimation.
Some research groups are only interested in estimating the
linkage probabilities, i.e. ĝ(wi, wj). Therefore, they can skip
the estimation of labels to bypass the identifiability issue.
Related works include [8, 17, 23, 25, 49]. Based on some
smoothness assumptions, they define a proxy distance based
on the observed adjacency matrix to group nodes with similar
labels together, and average over their neighbors to estimate
the probability of connection. The other category of methods
attempts to recover the complete graphon function, which
usually relies on the strict monotonicity of degree assumption
to ensure the graphon to estimate is identifiable [e.g., 19, 39].
They first sort the adjacency matrix according to the empirical
node degrees, then apply a histogram estimator. [39] also
discussed a hypothesis testing method based on the estimated
graphon.

Since the main goal of this paper is to construct confidence
intervals for graphon, we will focus on canonical graphons per
Definition 1.

III. GENERALIZED FIDUCIAL INFERENCE

A. Fiducial inference

The origin of fiducial inference can be traced back to 1930’s
when R. A. Fisher first proposed this idea in an attempt to
overcome what he saw as a drawback of Bayesian inference
— the use of a subjective prior distribution [41, 42, 43]. The
main goal of fiducial inference is to construct a distribution
for parameters of interest. The fiducial distribution can then
be used for statistical inferences, for instance, confidence sets.
Like Bayesian posterior distribution, the fiducial distribution
is data-dependent, but the key distinction is that the fiducial
approach does not demand a priori of the parameter.

Fisher showed that in simple settings, especially for one-
parameter families of distributions, fiducial intervals coincide
with classical confidence intervals. In multiple-parameter fam-
ilies of distributions, the fiducial distribution provides confi-
dence sets whose coverage was close to the target confidence
levels. However, controversies had rose because in multi-
parameter settings, fiducial inference often led to procedures
that were not exact in the frequentist sense. Also, there is
often no unique way to define a fiducial distribution. Interested
readers can find a detailed discussion on the controversies
regarding fiducial inference in [50].

Because of the non-exactness and non-uniqueness of the
fiducial distributions, Fisher’s fiducial argument was not
widely accepted among mainstream statisticians until a recent
resurgence of interest that facilitated a bunch of modern
modifications of the original proposal after the year 2000 [e.g.,
51, 52, 53, 54, 55].

B. From FI to GFI

Generalized fiducial inference (GFI) [40, 44, 56] has been
at the front line of these efforts. The development of gen-
eralized fiducial inference is essentially inspired by authors’
understanding of Fisher’s fiducial argument. GFI starts with
describing the relationship between the data Y and the param-
eter θ using a structural equation called the data generating
equation (DGE):

Y = G(θ,U). (1)

Here G is a deterministic function, θ is the parameter, and
U is the random component whose distribution is completely
known. For example, for a univariate normal distribution
N (µ, σ2), one can write Y = µ + σU with U ∼ N (0, 1),
and θ = (µ, σ2). The key idea behind GFI is the “switching
principle” between Y and θ. Given observed data y, we define
the following “inverse” of DGE:

Qy(U) = {θ : G(θ,U) = y} . (2)

We will discuss this inverting procedure in detail in Section IV.
The big picture is that, once given a realization u of U ,
Qy(u) is a set of θ’s in the parameter space such that G(θ,u)
happens to equal the observed data y. If the above inverse
mapping exists, one can generate a fiducial sample of θ by
first generating a series of independent {Ui}mi=1 from U ’s
distribution and letting {θ1 : y = G(θ1,U1)}, . . . , {θm : y =
G(θm,Um)}.
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We need to point out that neither the existence nor the
uniqueness of Qy(U) can be guaranteed for all y and u.
If Qy(u) contains more than one θ’s, one can simply select
one of the several solutions using a possibly random rule —
denoted as V (·), for instance, taking a random vertex of the
polyhedron. Some guidance of such selection can be found
in [56]. In fact, the uncertainty due to multiple solutions
will only introduce a second-order effect on the statistical
inference in many parametric problems [44]. Thus, the fiducial
distribution is not sensitive to the choice of V as n grows. For
the existence, one can condition on those u that does not make
Qy(u) an empty set. The rationale is that if the DGE is correct,
i.e., y = G(θ0,u0) for some θ0 and u0, the values of u that
result in no solution cannot be the true u0. Therefore, the
generalized fiducial distribution (GFD) of θ is the conditional
distribution

V (Qy(U
∗))|{Qy(U

∗) ̸= ∅},

where U∗ is an independent copy of U in the DGE (1).
The above conditional distribution is ill-defined for absolutely
continuous random variables because P (Qy(U

∗) ̸= ∅) = 0.
Since this is out of the scope of this paper, interested readers
can read [40, 44] for a detailed solution and theoretical results.

The theoretical properties of GFI have been better under-
stood and the asymptotics were established in [40, 56, 57]. GFI
has been applied to various applications and showed promising
results, such as wavelet curve estimation [58] and ultrahigh-
dimensional regression [59], amongst others. In this paper, we
further extend GFI’s applications to the framework of graphon.

IV. METHODOLOGY

We formally derive the GFI formulation for graphon infer-
ence problem, and develop the algorithm of simulating the
fiducial distribution and constructing block-wise confidence
intervals for a graphon.

A. Setup

Let A ∈ {0, 1}n×n be the adjacency matrix, Akl|wk, wl
ind∼

Bernoulli(gkl) with gkl := g(wk, wl) (k > l), and Akl = Alk.
In this section, all the derivation is conditional on the latent
labels {wi}.

We start with the assumptions on the underlying graphon
g. To ensure its identifiability (up to a measure preserving
mapping), we assume that g is a canonical graphon that
satisfies the strict monotonicity degree constraint. We also
need some smoothness assumption on it — g is Lipschitz
continuous with constant L; see Definition 2. In fact, this
assumption can be relaxed to piecewise Lipschitz as long as
these pieces do not vanish too fast.

Definition 2. (Piecewise Lipschitz continuous graphon) A
graphon g is piecewise Lipschitz continuous with constant
L > 0 if there exist partitions I : [0, x1], [x1, x2], . . . , [xk−1, 1]
and J : [0, y1], [y1, y2], . . . , [yk−1, 1] such that for any w =
(w1, w2), w′ = (w′

1, w
′
2) ∈ [xi, xi+1] ∩ [yi, yi+1],

|g(w)− g(w′)| ≤ L ∥w −w′∥ .

Second, we cut the unit square [0, 1]2 into K × K blocks
— b1 = [0, 1

K ], bk = (k−1
K , k

K ] for k = 2, . . . ,K , and
Bij := bi × bj . Using block models to approximate a
graphon has been a commonly used strategy for graphon
estimation because one cannot make inference on a single
observation, unless multiple graph realizations were observed
[e.g., 1, 8, 19, 20, 60, 61, 62]. We assume that within each
block, g is approximately constant. Thereby, {Akl}k>l are
independent and almost identically distributed in each block,
with a common parameter

pij :=

∫
Bij

g(u, v)dudv∫
Bij

1dudv
,

which represents the average of graphon in block Bij . This
assumption is reasonable when the number of blocks K grows
with n, and we will justify this in Section V.

For i, j = 1, . . . ,K . Let

Xij =
∑

(wk,wl)∈Bij

Akl and nij = |{(wk, wl) : (wk, wl) ∈ Bij}|.

Notice that Xij = Xji. When i = j, due to the symmetry of
A, we replace Xii and nii with Xii/2 and (nii −

√
nii)/2.

Then Xij follows an approximate Binomial(nij , pij).

B. Inverse mapping derivation

Let us first consider estimation on each block separately.
Let Fnij ,pij

(xij) be the CDF of Binomial(nij , pij) and denote
F−1
n,p(u) := inf{x : Fn,p(x) ≥ u}. Then we can write

Xij = F−1
nij ,pij

(Uij), 1 ≤ i ≤ j ≤ K, (3)

where pij is the parameter of interest, and Uij are
i.i.d. Uniform(0, 1). We will take (3) as our data generating
equation (DGE). In the sequel, we put nij and pij in the
subscript just to specify which Binomial CDF we use.

Next, we need to properly invert the DGE. First, since Xij

is discrete, (3) is equivalent to

Fnij ,pij
(Xij − 1) < Uij ≤ Fnij ,pij

(Xij). (4)

Making use of the fact that u = Fn,p(x) is decreasing in p,
we have

pLij := Qnij ,Xij−1(Uij) < pij ≤ Qnij ,Xij
(Uij) =: pUij , (5)

where the inverse Qn,x(u) = {p : Fn,p(x) = u} is computed
with respect to p with x being fixed. Note that Qn,x(u), as a
function of u is strictly decreasing. When Xij = 0, the left
hand side of (4) and (5) becomes 0. Further when nij = Xij =
0, the right hand side of (4) and (5) is set to 1.

Thus, we have reversed the roles of data Xij and the
parameter pij , and we are able to generate a fiducial sam-
ple pL∗

ij of pLij given the observed Xij and a plugging in
a new realization U∗

ij of the random component Uij into
Qnij ,Xij−1(U

∗
ij). Similarly pU∗

ij = Qnij ,Xij (U
∗
ij). We will call

the distribution of pL∗
ij the lower fiducial distribution and pU∗

ij

the upper fiducial distribution. Any distribution stochastically
larger than the distribution of pL∗

ij and stochastically smaller
than the distribution of pU∗

ij can be called GFD.
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C. Linking blocks

Clearly, (5) only provides a range for pij . According to
[40, 44], the selection of a specific value only brings in a
second-order effect on the statistical inference. Therefore, any
value of p∗ij between pLij and pUij will not affect the asymptotic
properties of this method.

A solution (5) is feasible for the graphon if it satisfies the
strict monotonicity of degree assumption. Let P = (pij) ∈
[0, 1]K×K , then the parameter space for P is

{P ∈ [0, 1]K×K :

symmetric, and
K∑

k=1

pik −
K∑

k=1

pi−1,k > 0 for i = 2, . . . ,K}.

(6)
Therefore, we need to generate U∗

ij , 1 ≤ i ≤ j ≤ K
independent Uniform(0, 1) random variables such that there
exists at least one p∗ij , 1 ≤ i ≤ j ≤ K satisfying both (5) and
(6). In other words, we need to generate U∗ from the uniform
distribution on the set

U = {Uij ∈ (0, 1), 1 ≤ i ≤ j ≤ K :

both (5) and (6) are satisfied for some P }.

While the joint distribution of U∗
ij , 1 ≤ i ≤ j ≤ K can

be complicated, the conditional distribution of a single U∗
ij

given all the others is relatively straightforward; a uniform
distribution on an interval described below in Section IV-D2.

D. Algorithm

Next we describe the MCMC algorithm for simulating
samples from the uniform distribution on U .

1) Initialization: We find starting values for MCMC in 3
steps.

A) First, we do an initial graphon estimation P ∗ by solving

min
P ∗

∑
i,j

(
p∗ij −

Xij + 1/2

nij + 1

)2

(7)

subject to the constraint (6).
B) We compute plausible U∗

ij as

U∗
ij =

F (nij , p
∗
ij , Xij − 1) + F (nij , p

∗
ij , Xij)

2

for i, j = 1, . . . ,K .
C) Initialize pLij , pUij by

pLij = Q(nij , Xij − 1, U∗
ij), pUij = Q(nij , Xij , U

∗
ij)

for i, j = 1, . . . ,K .
2) Gibbs sampler: We do a random scan Gibbs sampler.

That means that every scan traverses all the (i, j)’s in a random
order (different each time). For each fixed (i, j), we update U∗

ij

via the following 3 steps:
A) Find temporary qLij and qUij by solving

qLij = min
P ∗

p∗ij , qUij = max
P ∗

p∗ij

subject to constraint (6) and pLi′j′ ≤ p∗i′j′ ≤ pUi′j′ , ∀(i′, j′) ̸=
(i, j).

B) Generate new U∗
ij by sampling from the uniform distri-

bution

U∗
ij ∼ Uniform

(
F (nij , q

U
ij , Xij − 1), F (nij , q

L
ij , Xij)

)
.

C) Update

pLij = Q(nij , Xij − 1, U∗
ij), pUij = Q(nij , Xij , U

∗
ij).

3) GFI sample generation: Once the Gibbs scan is com-
pleted, we generate a sample graphon P ∗ to be saved for later
(e.g., computing confidence intervals). Recall, that any P ∗ is
valid as long as it satisfies constraint (6) and is between pL

and pU . Here we propose to select P ∗ using a randomization
procedure to generate more diverse samples.

This is done by:
A) Flip a coin (0 or 1) with 50:50 probability, i.e. C is

Bernoulli(1/2).
B) Generate P̃ from P̃ij ∼ Beta(Xij+C, nij+1−Xij−C),

1 ≤ i ≤ j ≤ K.
C) Sample P ∗ by solving (7) with P̃ij replacing Xij+1/2

nij+1 ,
subject to constraint (6) and pLij ≤ p∗ij ≤ pUij , 1 ≤ i ≤ j ≤ K.
Other objective functions such as min

∑
ij p

∗
ij could also be

used.
Once we have P ∗’s, the empirical GFD of P , we can con-

struct (1−α)% block-wise confidence intervals for pij by their
(α/2)100% and (1−α/2)100% quantiles (p∗ij,α/2, p

∗
ij,1−α/2),

i, j = 1, . . . ,K .

V. THEORETICAL RESULTS

In this section, we discuss the theoretical guarantees of our
fiducial confidence interval. In the following theorems, we
presume that g is Lipschitz continuous per Definition 2. The
complete proofs can be found in Section IX. These theorems
can also be extended to Hölder continuity, which requires a
slightly different requirement of the relation between K and
n. Please see Section IX-D for a remark.

Lemma 1. Under the Binomial assumption of Xij ,

pUij |Xij ∼ Beta(Xij + 1, nij −Xij),

pLij |Xij ∼ Beta(Xij , nij −Xij + 1).

The proof of this lemma follows a verification of the CDF of
Beta distribution.

Theorem 1. Assume that there exists some constant η > 0
such that

1

K

K∑
j=1

pij −
1

K

K∑
j=1

pi−1,j ≥ η

√
K

n
, i = 2, . . . ,K. (8)

Define

Ri =

 1

K

K∑
j=1

pUij <
1

K

K∑
j=1

pLi−1,j

 ,

and
K⋃
i=2

Ri is the event that we reject the fiducial sample as

not compliant with the constraint. Then,

P

(
K⋃
i=2

Ri

)
→ 0 (9)
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as n → ∞, K → ∞, n/K → ∞.

The assumption (8) essentially says that there is no “flat
part” in graphon g. It is equivalent to that the derivative of
the degree function d(·) (see Definition 1 is bounded away
from zero. Theorem 1 proves that, the constraint

∑K
k=1 pik −∑K

k=1 pi−1,k > 0 for i = 2, . . . ,K does not affect the fiducial
procedure in an asymptotic sense, as long as both K and the
average number of nodes in each block grow with n.

Theorem 2. Assume graphon g is Lipschitz continuous (Def-
inition 2). For ∀(u0, v0) ∈ (0, 1)2 and g0 = g(u0, v0), let Bij

be the block that contains (u0, v0). As n → ∞, K → ∞,
n/K → ∞, n/K2 → 0, we have

(i)
Xij

nij
→ g0 a.s. (almost surely),

and √
nij

(
Xij

nij
− g0

)
√
g0(1− g0)

D−→ N (0, 1);

(ii) Conditional on Xij ,
√
nij

(
pUij −

Xij+1
nij+1

)
√
g0(1− g0)

D−→ N (0, 1), a.s. in Xij ,

and
√
nij

(
pLij −

Xij

nij+1

)
√
g0(1− g0)

D−→ N (0, 1), a.s. in Xij .

The first part of Theorem 2 implies that the the center of
the GFD, which is coincidentally the usual point estimator, is
asymptotically normal centered on the true value g0, where
randomness is the usual sample to sample variability. The
second part of Theorem 2 shows that conditionally on the
observed data both the upper and lower fiducial distribution
are asymptotically normal with the same variance but centered
on the point estimator. This means that the fiducial distribution
is a good estimator of the sampling variability of the data. Con-
sequently these theorems indicate that the GFI procedure will
produce asymptotically correct confidence intervals, despite
the fact that the Binomial assumption used in the derivation
of the fiducial distribution is not strictly speaking correct.

VI. NUMERICAL EXPERIMENTS

In this section, we provide simulation results of the proposed
GFI confidence intervals. We study both the bias of the GFD
and the coverage of the GFI confidence intervals. We also
compare the width of the GFI intervals with the “oracle”
width 2zα/2

√
pij(1−pij)

nij
, which is based on the asymptotic

variance. With known labels, we explain how the simulation
results support our theories in Section V. With unknown labels,
we propose a Metropolis-Hastings-within-Gibbs sampler to
take into account the randomness of latent labels. Experiments
results are satisfying while exhibiting some boundary effects.
We will explain these interesting patterns and discuss the
theoretical reason behind. We use the following 4 canonical
graphons in Table I, and their visualizations and degree
functions are presented in Figure 1 and Figure 2 respectively.

TABLE I: Four canonical graphons (per Definition 1) used in
the experiments.

g1 g(u, v) = u+v
2

g2 g(u, v) = log(1 + 0.5max{u, v})
g3 g(u, v) = 1

1+exp(−10(u2+v2)) − 0.2

g4 g(u, v) = 1− exp
(
−0.5(min{u, v}+ u1/2 + v1/2)

)

Fig. 1: Four canonical graphons used in the experiments.

A. Finite sample study with known labels

For each graphon, we randomly generate 200 graphs (i.e.,
realizations) with n nodes, with the same set of fixed labels.
For each of these 200 replications, we use the proposed
Gibbs sampler to generate an MCMC chain to obtain fiducial
samples of P . Then, the confidence interval for each pij ,
i, j = 1, . . . ,K , is constructed by the quantiles of the
empirical fiducial distribution.

We present the results for n = 100, 400, 900, and we set
K =

√
n, i.e., 10, 20, 30. To evaluate their performance, we

report the average coverage of the GFI confidence intervals
(CIs) across the K ×K blocks, and compare with the target
confidence level. We also look at the ratio of the average
widths of the GFI CIs and the oracle ones. A ratio less
than 1 means that the GFI CIs are narrower. The results are
summarized in Table II.

We can see that the results for all 4 graphons are consistently
good. When n and K are small, the coverage of the GFI
confidence intervals is slightly lower than the target value,
and the GFI CIs are also narrower. As n and K increase, the
coverage moves closer to the target level, and the width of
the GFI CI also tends to the oracle width. This observation
is consistent with our theories in Section V, as they possess
the same asymptotic variance. In practice, one still needs the
constraint (6) to make the algorithm work properly, and it will
result in more conservative intervals.

In addition, we also investigate how consistent the proposed
GFI method performs over the blocks. For each position (i, j),
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TABLE II: Coverage of 95% fiducial confidence intervals for finite sample sizes (K =
√
n).

Metric Graphon n = 100 n = 400 n = 900
GFI CI coverage g1 93.14% 94.52% 94.53%

g2 93.06% 94.67% 94.58%
g3 93.19% 94.39% 94.53%
g4 93.35% 94.63% 94.69%

Width ratio (GFI:oracle) g1 0.9237 0.9978 0.9981
g2 0.9033 0.9831 0.9905
g3 0.9006 0.9795 0.9856
g4 0.9191 0.9895 0.9930

Fig. 2: The degree functions d(u) =
∫ 1

0
g(u, v)dv of g1 to g4.

TABLE III: Coverage of GFI confidence intervals and the
ratio of average width of GFI CIs and the oracle width
(n = 400,K = 20).

Graphon 90% 95% Width ratio (GFI:oracle)
g1 98.04% 99.43% 1.45
g2 94.24% 97.04% 1.30
g3 94.16% 97.48% 1.34
g4 98.34% 99.60% 1.33

we compute the bias of the fiducial distribution of pij , and the
coverage of the GFI CI. The block-wise results are visualized
in Figure 3. We can see that both the bias and the coverage
of GFI CI perform uniformly well across all blocks.

B. Empirical performance with unknown labels

1) Metropolis-Hastings sampler: When the true labels are
unknown, we need to treat the labels as part of the random
component as both X and N depend on them. We need
to generate {w1, . . . , wn} conditional on U such that there
are feasible solutions for G. Therefore, we should use a
Metropolis-Hastings-within-Gibbs strategy. In each iteration,

we perform the following Metropolis-Hastings sampling be-
fore Gibbs sampler in Section IV-D2.

A) Generate w∗
i

i.i.d∼ Uniform(0, 1), i = 1, . . . , n, and sort
them according to the empirical node degrees of the adjacency
matrix A. Let σ denote such permutation, then the proposed
labels are w∗ = {w∗

σ(1), . . . , w
∗
σ(n)}.

B) Obtain temporary X∗ and N∗ based on the proposed
labels.

C) Conditional on the current U∗, compute temporary

p̃Lij = Q(n∗
ij , X

∗
ij − 1, U∗

ij), p̃Uij = Q(n∗
ij , X

∗
ij , U

∗
ij)

for i, j = 1, . . . ,K .
D) If there exists feasible P ∗ subject to constraint (6) and

p̃Lij ≤ p∗ij ≤ p̃Uij , ∀i, j, accept w∗ and update X∗, N∗;
otherwise, reject w∗, X∗ and N∗.

2) Results: Here we present the results with n = 400 and
K = 20. Although the average coverage of 95% GFI CI is
over 97%, we observe a boundary effect as shown in Figure 4.
Take g2 for an example, from the coverage plot on the bottom
we can see that the coverage on the boundary blocks is much
lower than the target level, while the coverage in the middle
part is somewhat higher than the target. The main cause for
this phenomenon is the sorting labels step, which results in (i)
an unavoidable bias on the boundary, (ii) wider GFI CIs.

From the plot of biases (left column in Figure 4) we can
see that the top and left margins pf g2 show large biases. For
instance, let us consider the first segment [0, b1]. When we
sort nodes according to their empirical degrees, it will make
Xij/nij’s in those blocks near the top/left boundary smaller
than they should be due to more zeros, which creates a negative
bias in part (ii) of Theorem 2. Since our fiducial intervals
are conditional on Xij/nij , the biases are carried over to our
fiducial samples. In addition, since the degree function of g2
at w ≈ 0 is much flatter (see Figure 1), the coverage is most
worsened near the top left margins. Likewise, we observe big
positive biases around the bottom right corner of g3.

On the other hand, the GFI intervals become much wider
compared to the known label case. In Table II we saw that
the width of the GFI CIs is less than the oracle width when
the labels were known. However, with unknown labels and the
sorting step in MH sampling, the GFI intervals are on average
1.3 times wider than the oracle. From a theoretical perspective,
sorting nodes according to their empirical degrees will pull
observations from different distributions together and create a
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mixture of Binomials in each block. Therefore, the variance
of Xij becomes higher and transfers to that of the generalized
fiducial distribution (corresponding to Theorem 2). As a result,
with relatively small bias, the coverage in the middle part is
higher, i.e., P

(
p∗ij,α/2 ≤ g0 ≤ p∗ij,1−α/2

)
> 1 − α. For the

boundary, on the other hand, the lower coverage is mainly
caused by the bias. By comparison, these patterns of bias and
coverage are not present when labels are known.

Fig. 3: Bias and coverage plots for g1 to g4 with known labels
(n = 400,K = 20). Left: block-wise bias of fiducial samples.
Right: block-wise GFI CI coverage.

C. Stochastic block model
In order to investigate behavior of the proposed method on

a graphon that does not satisfy our assumptions, we also did
an experiment with a stochastic block model (SBM) with 5
blocks.

When the labels are known (Figure 5) the performance is
very good. In particular, when K = 5 matches the number

Fig. 4: Bias and coverage plots for g1 to g4 with unknown
labels (n = 400,K = 20). Left: block-wise bias of fiducial
samples. Right: block-wise GFI CI coverage.

of blocks the performance of GFD is perfect as expected.
When K = 20 the performance deteriorates slightly which
is expected because the graphon has flat sections while the
GFI enforces strict monotonicity.

When labels and true blocks are both unknown (Figure 6),
the performance of the fiducial sample varies in different
areas of the graphon. This is expected behavior since SBM
violates our assumption on the true graphon. In particular the
SBM graphon is both discontinuous and does not have strictly
increasing degree distribution. Therefore we would expect
poor performance near the edges of each block where the
SBM graphon is discontinuous. However, the performance of
the GFI confidence intervals still performs better than a Wald’s
confidence interval on each block. The average coverage of the
GFI 95% confidence intervals is 73%, while that for Wald’s
is only 57%.
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Fig. 5: Bias and coverage plots of fiducial distribution with
known labels for SBM with 5 communities. Gibbs sampling
is used to generate GFI samples.

Fig. 6: Bias and coverage plots of fiducial distribution with
K = 20 and unknown labels for SBM with 5 communities.
Metropolis-Hastings-within-Gibbs sampling is used to gener-
ate GFI samples.

D. Graphon point estimation comparison

While the main contribution of this paper is to propose a
new uncertainty quantification method for graphons, one can
use the GFD to also find point estimators. In this section we
compare the GFD estimator with several other graphon estima-
tion methods. The competitors include sorting-and-smoothing
(SAS) [19], neighborhood smoothing (NBS) [25], stochastic
blockmodel approximation (SBA) [8], and universal singular
value thresholding (USVT) [63]. The results are summarized
in Table IV.

Among these methods, SAS algorithm requires the same
strict monotonicity of degree assumption as the proposed
method, while NBS, SBA and USVT do not rely on this
assumption. To ensure the comparison is fair for all methods,
the four graphons in Table I are used. For other methods, we
average their point estimate over the K×K blocks, and com-
pare the averaged performance based on the average graphon
value on each block. The RMSE of these K × K blocks
obtained from 200 replications is reported. It is worth noting
that all other methods only estimate the link probabilities, i.e.,
P̂ij , without knowing the order of the nodes and value of the
labels. Therefore, when aggregating competing methods into
blocks, we are assuming their labels are known, which makes
these errors over-optimistic.

VII. REAL DATA APPLICATION

In this section, we apply the proposed method to a Facebook
social network [64]. The network consists of n = 796

Facebook users with a density of 0.0564. We report both a
GFI point estimate and block-wise confidence intervals for
the underlying graphon. We apply the proposed MH-within-
Gibbs algorithm to generate 200 fiducial samples for P . The
GFI point estimate is the average of them, and the confidence
intervals are constructed using the quantiles of the empirical
GFD. Furthermore, we apply the proposed method to another
dataset and demonstrate their different patterns.

A. Choice of K

The practical choice of K can be guided by the above
theoretical results. That is, K has to be at least of order√
n (28 for this dataset). It is in fact a bias-variance trade-

off — smaller K gives larger bias but smaller variance, and
bigger K reduces bias at the cost of higher variance. We tried
K = 30, 50, 80, and found that they all reveal similar patterns,
although K = 30 shows slightly less informative structures
compare to K = 50 and K = 80. Therefore, we set K = 50.

B. GFI estimate and confidence intervals

We visualize the estimated graphon in a 3-D plot in Figure 7.
We can see that the surface is climbing due to the strict
monotonicity of degree constraint. The nodes near (1, 1)
correspond to the people who have the most connections. We
notice that there is a bump near the intersection of 0.4-0.5
and 1. This reveals an interesting phenomenon that although
the nodes near 0.4-0.5 do not have high degrees, they are
particularly highly connected to those “celebrities” in the
network. In addition, there are some potential clusters in the
flat area on the left although the estimated graphon is nearly
zero. If there were more attributes on these nodes available,
one could better understand their connection behaviors.

The GFI point-wise 95% confidence intervals are added
to the graphon estimate in the bottom plot in Figure 7. We
observe that the intervals also capture the bump and become
wider as label increases due to the higher variance. On the
diagonal, there are some ridges because of the fact that we
only have half observations on those blocks.

C. Comparison with another network

We consider another network formed by a different group of
Facebook users (n = 962). The GFI graphon estimate and the
point-wise 95% confidence intervals are plotted in Figure 8.
A substantial difference is that the second graphon decreases
much faster than the first one. Also, the bump in the first
network is not present in the second network.

With the proposed uncertainty quantification method, we
are able to quantitatively evaluate the difference in these two
graphons by a non-parametric block-wise two-sample test,
using their empirical generalized fiducial distributions. For
each block Bij , let p(1)ij and p

(2)
ij denote the average graphon

value for the two networks respectively. We carry out a non-
parametric permutation test for H0: p

(1)
ij − p

(2)
ij = 0 vs Ha:

p
(1)
ij − p

(2)
ij ̸= 0. We choose the significance level to be

α = 0.01. The results are plotted in Figure 9. We can see
that the results also support our finding that the first graphon



9

TABLE IV: Graphon estimation method comparison of the 5 methods on g1 to g4 with n = 400 and K = 20. All values are
RMSE based on 200 replications.

Proposed GFI
Graphon (unknown labels) SAS NBS SBA USVT

g1 0.0234 0.0142 0.0140 0.0788 0.0686
g2 0.0222 0.0232 0.0170 0.0758 0.2366
g3 0.0214 0.0192 0.0154 0.0765 0.0335
g4 0.0244 0.0150 0.0142 0.0819 0.0715

Fig. 7: GFI graphon point estimate and block-wise confidence
intervals for Facebook data.

is significantly higher than the second one except for the area
where the connections are near zero.

In addition, with the fiducial samples of P , we can also
construct block-wise confidence intervals for the degree dis-
tribution. We visualize the confidence bands for these two
networks in Figure 10. The results also indicate that the first
graphon has an overall larger degree function. However, the
degree distribution does not capture the bump pattern in the

Fig. 8: GFI graphon point estimate and block-wise confidence
intervals for the second Facebook network.

first network.

VIII. CONCLUDING REMARKS

We have adapted the generalized fiducial inference in
the framework of graphon, and developed an algorithm to
simulate from the generalized fiducial distribution and carry
out uncertainty quantification for a graphon. We proved that
the block approximation and the fiducial procedure provide
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Fig. 9: Block-wise two-sample test results. The value is 0 if
the test is not statistically significant at α = 0.01. When the
test is significant, the value is set to 1 if p(1)ij > p

(2)
ij , and −1

if p(1)ij < p
(2)
ij .

Fig. 10: Confidence bands for degree distribution. Node de-
grees are normalized to [0, 1]. Solid lines: network 1; dashed
lines: network 2.

asymptotically true confidence intervals and used numerical
experiments to demonstrate it. Although the circumstance of
unknown labels remains an open challenge, the empirical
performance of the GFI is promising despite some edge
effects. It is naturally our next step to extend our methodology
to mitigate the boundary issues by better estimating the latent
labels. We applied the proposed method to two Facebook
networks and reveal some interesting patterns. In particular,
we not only visualized their differences, but also carried out
a block-wise two-sample test. This work opens up the door
to more extensive studies of statistical inference problems for
network modeling such as simultaneous confidence intervals.

IX. TECHNICAL DETAILS

A. Proof of Lemma 1

First of all, if Xij = 0, pLij ≡ 0; if Xij = nij , pUij ≡ 1.
Otherwise, recall that pLij = {p : F (nij , p,Xij−1) = Uij} and

pUij = {p : F (nij , p,Xij) = Uij} where Uij ∼ Uniform(0, 1).
The rest of the proof follows [40].

We need to prove that for fixed n and k, if F (n, p, k) is the
CDF of Binomial(n, p) and U ∼ Uniform(0, 1), then

p = {p : F (n, p, k) = U} ∼ Beta(k + 1, n− k).

The CDF of p is Fp(u) = P(p ≤ u) = P(U ≥
F (n, u, k)) = 1− F (n, u, k) =

∑n
j=k+1

(
n
j

)
uj(1− u)n−j .

Consider the order statistics U(1), . . . U(n) of Uniform(0, 1).
Since U(k+1) ∼ Beta(k + 1, n− k), its CDF is

F(k+1)(u) =
n∑

j=k+1

(
n

j

)
uj(1− u)n−j

which equals to Fp(u). Therefore, p = {p : F (n, p, k) = U}
∼ Beta(k + 1, n− k). Thus,

pUij |Xij ∼ Beta(Xij + 1, nij −Xij)

and similarly

pLij |Xij ∼ Beta(Xij , nij −Xij + 1).

■

B. Proof of Theorem 1
Denote h = n/K, and ni = |{wk ∈ bi}|. Then

ni ∼ Binomial(n, 1/K) and ni/h → 1, a.s. (almost surely).
Similarly, let nij = |{(wk, wl) ∈ Bij with k < l}|, then
nij/h

2 → 1, a.s. for i ̸= j, and nii/h
2 → 1/2, a.s.

To simplify our presentation, we write ni = h, and nij = h2

for i ̸= j; h(h − 1)/2 when i = j. This approximation only
brings in smaller order effects when n → ∞, n/K → ∞ and
n/K2 → 0.

Recall that

Ri =

 1

K

K∑
j=1

(
pUij − pLi−1,j

)
≤ 0

 ,

and it suffices to show that

P

 min
i=2,...,K

1

K

K∑
j=1

(
pUij − pLi−1,j

)
≤ 0

→ 0.

We start with writing the sum in Ri as the following 5
summations.

1

K

K∑
j=1

(
pUij − pLi−1,j

)
=

1

K

K∑
j=1

(
pUij −

Xij + 1

nij + 1

)

+
1

K

K∑
j=1

(
Xij + 1

nij + 1
− pij

)

+
1

K

K∑
j=1

(pij − pi−1,j)

+
1

K

K∑
j=1

(
pi−1,j −

Xi−1,j

ni−1,j + 1

)

+
1

K

K∑
j=1

(
Xi−1,j

ni−1,j + 1
− pLi−1,j

)
= S1 + S2 + S3 + S4 + S5.
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(i) First, S3 ≥ η
√
K
n for all i by assumption.

(ii) For S2 and S4, we have

|S2| =
1

K

∣∣∣∣∣∣
K∑
j=1

(
Xij + 1

nij + 1
− pij

)∣∣∣∣∣∣
≤ 2

h2
+

1

K

∣∣∣∣∣∣
K∑
j=1

(
Xij

nij
− pij

)∣∣∣∣∣∣
≤ 2

h2
+

2

Kh2

∣∣∣∣∣∣
K∑
j=1

∑
(wk,wl)∈Bij

(Akl − pij)

∣∣∣∣∣∣
where Akl

ind.∼ Bernoulli(gkl). By Hoeffding’s inequality,

P

 1

Kh2

∣∣∣∣∣∣
∑
j,k,l

(Akl − pij)

∣∣∣∣∣∣ > ε/2

 ≤ 2 exp
{
−Kh2ε2/2

}
.

Taking a union bound over i = 2, . . . ,K , and setting ε =√
2 logKh2

Kh2 , we have

P

 max
i=2,...,K

1

Kh2

∣∣∣∣∣∣
∑
j,k,l

(Akl − pij)

∣∣∣∣∣∣ > ε/2


≤ 2K exp

{
−Kh2ε2/2

}
=

2

h2
→ 0

as h = n/K → ∞.
Thus,

P

(
max

i=2,...,K
|S2| >

√
logKh2

2Kh2

)
→ 0 as n/K → ∞.

Same statement holds for S4.
(iii) For S1 and S5, recall that pUij |Xij ∼ Beta(Xij +

1, nij −Xij) and E(pUij |Xij) =
Xij+1
nij+1 .

According to [65], Beta distribution pUij is sub-Gaussian
with parameter σ2 ≤ 1

4(nij+2) . Therefore, by Hoeffding’s
inequality,

P

 1

K

∣∣∣∣∣∣
K∑
j=1

(
pUij −

Xij + 1

nij + 1

)∣∣∣∣∣∣ > ε

∣∣∣∣Xij


≤ 2 exp

{
− (Kε)2

2
∑K

j=1
1

4(nij+2)

}
≤ 2 exp

{
−Kh2ε2

}
.

Taking a union bound over i = 2, . . . ,K and letting ε =√
logKh2

Kh2 , we have

P

 max
i=2,...,K

1

K

∣∣∣∣∣∣
K∑
j=1

(
pUij −

Xij + 1

nij + 1

)∣∣∣∣∣∣ > ε


≤ 2K exp

{
−Kh2ε2

}
=

2

h2
→ 0

as h = n/K → ∞.
Same statement holds for S5.

To sum up, for S1, S2, S4, S5, the union bound ε∗ =

o
(√

1/Kh2
)

= o
(
K1/2/n

)
, while S3 ≥ η

√
K
n for all i.

Therefore, we have

P

(
K⋃
i=2

Ri

)
≤ P

(
min

i

1

K

K∑
j=1

(
pUij − pLi−1,j

)
≤ 0

)
≤ P

(
min

i
S3 ≤ max

i
|S1|+ |S2|+ |S4|+ |S5|

)
→ 0

as n/K → ∞. ■

C. Proof of Theorem 2

For any (u0, v0) ∈ (0, 1)2 and g0 = g(u0, v0), let Bij be
the block that contains (u0, v0). Define

gBij :=
1

nij

∑
(wk,wl)∈Bij

gkl.

As in the proof of Theorem 1, ni ∼ h = n/K and nij ∼ h2

for i ̸= j and h2/2 for i = j.
(i)

Xij

nij
= 1

nij

∑
(wk,wl)∈Bij

Akl with Akl
ind.∼

Bernoulli(gkl). By Kolmogorov’s strong law of large numbers,

1

nij

∑
(wk,wl)∈Bij

Akl
a.s.→ gBij as h = n/K → ∞.

Also, by the Lipschitz property of g (with Lipschitz constant
L), we have

∣∣gBij − g0
∣∣ =

∣∣∣∣∣∣ 1

nij

∑
(wk,wl)∈Bij

(gkl − g0)

∣∣∣∣∣∣ ≤ 2L

K
→ 0

as K → ∞.
Therefore, by continuity,

Xij

nij

a.s.→ g0 as K → ∞, n/K → ∞.

Moreover, by Lindeberg central limit theorem,

Xij −
∑

(wk,wl)∈Bij
gkl√∑

(wk,wl)∈Bij
gkl(1− gkl)

=

√
nij

(
Xij

nij
− gBij

)
√

1
nij

∑
(wk,wl)∈Bij

gkl(1− gkl)

D−→ N (0, 1)

as h = n/K → ∞. By continuity of g, the denominator
1

nij

∑
(wk,wl)∈Bij

gkl(1− gkl) → g0(1− g0) as K → ∞.
Note that

√
nij

(
Xij

nij
− g0

)
=

√
nij

(
Xij

nij
− gBij

)
+
√
nij

(
gBij

− g0
)
,

and that
√
nij

∣∣gBij
− g0

∣∣≲2hL

K
= 2L · n

K2
→ 0 as

n

K2
→ 0.

Thus, by Slutsky’s lemma,
√
nij

(
Xij

nij
− g0

)
√

g0(1− g0)

D−→ N (0, 1)

as K → ∞, n/K → ∞, n/K2 → 0.
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(ii) It suffices to prove that for bij |Xij ∼ Beta(Xij , nij −
Xij),

√
nij

(
bij − Xij

nij

)
√

g0(1− g0)

D−→ N (0, 1) a.s. in Xij .

Since E(bij |Xij) =
Xij

nij
, and Var(bij |Xij) =

Xij

nij

(
1− Xij

nij

)
1

nij+1 . Therefore, provided nij is large
and 0 < a < Xij/nij < b < 1, the standardized bij is
approximately normal [66]. In particular, conditional on Xij ,√

nij + 1
(
bij − Xij

nij

)
√

Xij

nij

(
1− Xij

nij

) D−→ N (0, 1) a.s.,

as nij → ∞ and Xij

nij

a.s.→ g0 ∈ (0, 1). Since
√

nij

nij+1 → 1, by
Slutsky’s lemma,

√
nij

(
bij − Xij

nij

)
√
g0(1− g0)

D−→ N (0, 1) a.s. in Xij

as K → ∞, n/K → ∞. ■

D. Remark

These Theorems can be generalized to a more general
class of graphons that are (piecewise) Hölder-continuous with
constant L and α:

|g(w)− g(w′)| ≤ L ∥w −w′∥α .

The result in Theorem 1 is not affected. In Theorem 2, we
will need 2L

Kα → 0 and 2L · n
K(1+α) → 0.

Thus, we need to assume K → ∞ to grow at least at the
speed of n1/(1+α) with α ∈ (0, 1]. When α = 1, it reduces
to the case of Lipschitz continuity. Recall that the relation
between n and K under Lipschitz condition was n/K →
∞, n/K2 → 0. With Hölder condition, the lower bound of
K becomes n/K(1+α) → 0, and the upper bound remains
n/K → ∞.
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