Downloaded via UNIV OF CALIFORNIA SANTA CRUZ on May 2, 2022 at 12:52:54 (UTC).
See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.

Inorganic Chemistry

pubs.acs.org/IC

Encapsulation of Pb-Free CsSnCl; Perovskite Nanocrystals with Bone

Gelatin: Enhanced Stability and Application in Fe3* Sensing
Dangge Gao,™ Ying Zhang, Bin Lyu, Xu Guo, Yelin Hou, Jianzhong Ma,* Bingzhe Yu,

and Shaowei Chen*
I: I Read Online

Cite This: Inorg. Chem. 2022, 61, 6547-6554

ACCESS |

Ll  Metrics & More | Article Recommendations | @ Supporting Information

ABSTRACT: The toxicity of the Pb element limits the large-scale application
of inorganic cesium—lead halide (CsPbX;, with X = Cl, Br, and I) perovskite
nanocrystals (NCs). Pb-free cesium—tin halide (CsSnX;) NCs have emerged as
a viable alternative because of its excellent photoelectric conversion efficiency.
However, the applications are hampered by its poor stability and low
photoluminescence quantum yield (PLQY). In this study, extraordinarily stable
CsSnCl; NCs were prepared by exploiting bone gelatin as surface capping
agents, which retain 95% of the photoluminescence intensity in water for SS h.
Additionally, after bone gelatin encapsulation, the PLQY of CsSnCl; NCs was
found to increase from 2.17% to 3.13% for the uncapped counterparts because
of an improved radiative recombination rate. With such remarkable optical
properties of the bone gelatin—CsSnCl; NCs, metal ions like Fe’* in aqueous
solutions can be readily detected and monitored, signifying the potential
application of such stable bone gelatin—CsSnCl; NCs in the development of
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fluorescence sensors and detectors.

1. INTRODUCTION

Perovskite nanocrystals (NCs) are a new kind of functional
nanomaterial with a typical chemical formula of ABX;, where A
and B represent different metal cations and X refers to anions
such as halogen.' Inorganic NCs have been widely used in the
field of photoelectrics’ because of their unique optical
properties.” Current research of NCs is mainly focused on
inorganic cesium—lead halide (CsPbXj, with X = Cl, Br, and I)
NCs because of their high photoluminescence quantum yield
(PLQY)," narrow peak width,”> and ready manipulation of
photoluminescence (PL) emission in the entire visible range.6
However, the Pb element in CsPbX; NCs may be leached in
the form of water-soluble compounds into the environment,
posing a threat to the environment and human health.”
Therefore, it is necessary to develop environmentally benign
Pb-free NCs.

Among these, CsSnX; NCs are of particular interest thanks
to their narrow band gap and low exciton binding energy,” with
a photoelectric conversion efficiency of up to 14.81%,” which is
the highest ever reported for Pb-free perovskite solar cells thus
far. Therefore, CsSnX; NCs have been attracting extensive
attention as viable alternatives to CsPbX; NCs in the field of
optoelectronics.'” However, compared with CsPbX; NCs,
CsSnX; NCs generally exhibit only poor stability, in which
Sn** can be easily converted into Sn*".'' Consequently,
antioxidants, such as triphenylphosphine'” and triphenyl
oxalate,"” have been used to impede the oxidation of Sn’*.
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In addition, strong electron-withdrawing groups with large
steric hindrance can strongly interact with Sn** and prevent the
destruction of CsSnX; NCs by water and oxygen. For example,
Wang et al.'* treated CsSnBr; films with perfluorooctanoic
acid (PFOA), and the absorption strength of the films
remained unchanged after being placed in air for 16 h.
However, materials like PFOA often contain a pungent odor
and may have a negative impact on the environment and
human health."® Furthermore, the materials used to coat NCs
are often hydrophobic organics, such as superhydrophobic
porous organic polymer frameworks'® and paraffin,'” which
can reduce the water solubility of NCs and thus limit its
application. Therefore, it remains a major challenge to develop
new environmentally friendly capping agents that can improve
the stability and water solubility of CsSnX; NCs.

Bone gelatin is a water-soluble polymeric material obtained
by the hydrolysis of collagen from animal bones and behaves as
a kind of bidentate capping ligand, where the carboxyl and
amino groups can strongly chelate to CsSnX; NCs and
effectively improve the stability.'® In an early study,'' we
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Scheme 1. Schematic Illustration of the Encapsulation of CsSnCl; NCs by Bone Gelatin
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encapsulated CsSnCl; NCs with gelatin made from waste skin
collagen. The obtained material retained 77.46% of the PL
intensity after 3 days in water. Both bone gelatin and skin
gelatin are natural polymers containing carboxyl, amino, and
long molecular chains. The utilization of bone gelatin can
enrich the source of capping reagents for NCs stabilization,
rendering it possible to further explore their applications, such
as fluorescence sensing of transition-metal ions like Fe®*.

Fe®" is an essential trace element in organisms.19 However,
when the content of Fe3* in water exceeds the standard, it will
affect the color and smell of water and could enter the human
body through the food chain, causing harm to human health
and the earth’s natural ecological environment.”’ Hence, it is of
critical significance to develop effective technologies for the
sensitive detection of Fe>" in water. PL-based methods have
been attracting immense attention because of their high
sensitivity, simplicity, and rapid response. In the past, optical
approaches based on organic dyes, such as Rhodamine B, have
often been used for Fe3* detection, but their disadvantages are
apparent, such as cumbersome functional group modification,
low selectivity, and toxicity.” In comparison to these
conventional organic dyes, NCs possess outstanding proper-
ties, in particular, facile sample preparation and adjustable
absorption across the optical spectrum, which make NCs an
outstanding candidate for the fluorescence detection of Fe®'.
Nevertheless, NCs exhibit only poor stability in aqueous media
and thus have been mainly used for the detection of
nonaqueous substances, such as edible oil”> and hydrogen
sulfide.”® Thus, it is of both fundamental and technological
significance to develop water-soluble NCs such that the
detection of Fe®* in water is possible.

In the present study, we describe a facile and low-cost
procedure for the effective encapsulation of CsSnCl; NCs with
bone gelatin, where the oxidation of Sn** to Sn** was markedly
impeded during the growth of NCs. The results showed that
the PLQY of bone gelatin—CsSnCl; NCs was 3.13%, markedly
higher than that of the uncapped counterparts (2.17%).
Because of the rich hydrophilic carboxyl and amino groups in
bone gelatin, the capped CsSnCl; NCs exhibited good water
solubility and, remarkably, also high sensitivity and selectivity
in the detection of Fe®* in water based on PL emission.

2. RESULTS AND DISCUSSION

2.1. Synthesis and Morphological Characterization of
CsSnCl; NCs. As depicted in Scheme 1, bone gelatin was
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Figure 1. (a—c) TEM images of bone gelatin—CsSnCl; NCs and the
corresponding EDS-based elemental maps: (d) Cl; (e) Cs; (f) Sn; (g)
Mg. The scale bars are (a) 100, (b) 20, and (c—g) 200 nm.

prepared by freeze-drying of animal bone powders treated with
acid and alkali, and CsSnCl; NCs were synthesized separately
via a thermal procedure with Cs,COj; and SnCl, in a nitrogen
atmosphere.'" Bone gelatin—CsSnCl; NCs were obtained by
mixing bone gelatin and CsSnCl; NCs in glycerol at ambient
temperature (details are given in the Supporting Information).
From the Fourier transform infrared (FTIR) spectrum in
Figure S1, the obtained bone gelatin can be seen to display
several major vibrational bands at 1650, 1550, and 1230 cm™},
which are characteristic of amides I (C=0 stretch), Il (N—H
bending), and III (C—O stretching), respectively, indicating
the formation of a special triple-helix conformation.”* The
morphology of bone gelatin was then characterized by
scanning electron microscopy (SEM) measurements. Figure
S2a depicts a representative SEM image of bone gelatin, which
exhibited a lamellar structure and a somewhat rough surface.
Gel permeation chromatography (GPC) measurements
(Figure S2b) showed a rather narrow relative molecular weight
distribution, suggesting high purity and a relatively mono-
disperse composition. As shown in Table S1, the number-
average (M,) and weight-average (M,,) molecular weights of
the obtained bone gelatin were 37675 and 138 808 Da,
respectively.

The dimensions and morphology of the CsSnCl; NCs and
bone gelatin—CsSnCl; NCs were first examined and compared
by transmission electron microscopy (TEM) measurements. In
Figure S3, we can see that the CsSnCl; NCs exhibited a cubic
shape with an average size of 25 + 5 nm. After bone gelatin
coating, the average size of the CsSnCl; NCs reached 38 + 3
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Figure 2. (a) UV—vis absorption (dash-dotted) and PL emission (solid) curves of bone gelatin, CsSnCl; NCs, and bone gelatin—CsSnCl; NCs.
The PL emission curves were acquired upon excitation at 349 nm. (b) Time-resolved PL intensity of uncapped and bone gelatin—CsSnCl; NCs in
air and under UV radiation. (c) Time-resolved PL decays of uncapped and bone gelatin—capped CsSnCl; NCs. (d) Histograms of the radiative and
nonradiative recombination rates for uncapped and bone gelatin—CsSnCl; NCs.

Table 1. 7,, and PLQY Values of Bone Gelatin- CsSnCl,
NCs and Relevant Pb-Free Perovskites

sample 7,y (ns) PLQY (%) ref
bone gelatin—CsSnCl; NCs 7.11 3.13 this work
skin gelatin—CsSnCl; NCs 8.84 11
CsSnCl; NCs 2.14 0.17 13
CsSnBr; nanowires 11 26
CsSnBr; cubic nanocages 6.52 2.1 14
AgBil, quantum dots 4.6 4 27

nm. From the high-resolution TEM image in Figure 1b, well-
defined lattice fringes can be seen with an interplanar spacing
of 0327 nm, corresponding to the (111) surfaces of the
CsSnCly NCs in Figure S3b (JCPDS 74-2058). Additionally,
energy-dispersive spectroscopy (EDS)-based elemental map-
ping analysis (Figure 1c—g) showed that the elements of Cl,
Cs, and Sn were enriched within the dark regions of the bright-
field TEM image, whereas the element Mg in bone gelatin was
distributed rather evenly across the sample. Among them, the
Mg element came from bone gelatin and the Cl, Cs, and Sn
elements came from the CsSnCl; NCs, suggesting uniform
encapsulation of the CsSnCl; NCs within bone gelatin.

2.2. Optical Properties and Stability Characterization.
Encapsulation of CsSnCl; NCs with bone gelatin led to a
marked variation of the optical properties. The PL emission
and absorption spectra of bone gelatin, as-prepared CsSnCl,
NCs, and bone gelatin—CsSnCl; NCs are shown in Figure 2a.
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Figure 3. { potential of bone gelatin—CsSnCl; NCs and bone gelatin.

The as-prepared CsSnCl; NCs dispersed in cyclohexane
exhibited a characteristic absorption peak at 349 nm and an
emission maximum (4,,) at 436 nm. Such absorption and
emission characteristics were retained after bone gelatin
coating, indicating that bone gelatin did not introduce
distortion in the band energy of the CsSnCl; NCs. However,
the (normalized) emission intensity of bone gelatin—CsSnCl,
NCs was markedly higher than the sum of bone gelatin and
CsSnCl;y NCs. This is likely because the long molecular chains
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Figure 4. N 1s XPS spectra of (a) bone gelatin and (b) bone gelatin—CsSnCl; NCs. (c) Sn 3d;,, XPS spectra of bone gelatin—CsSnCl; NCs and

CsSnCl; NCs.

of bone gelatin facilitate the effective encapsulation of CsSnCl,
NCs and reduce the surface defects, thus enhancing the
fluorescence emission of CsSnCl; NCs.

It is well-known that the Sn** of CsSnCl; NCs can be easily
oxidized to Sn* under ambient conditions, which compro-
mises the material structural stability. Therefore, we compared
the stability of CsSnCl; NCs with and without bone gelatin
encapsulation in water and under photoirradiation. Figure 2b
shows the variation of the PL emission intensity of CsSnCl;
NCs with and without bone gelatin capping dispersed in water
for up to 60 h. It can be seen that only 35% of the initial PL
intensity was retained with the uncapped CsSnCl; NCs in
water after only 7 h. By sharp contrast, the bone gelatin—
CsSnCl; NCs remained at 95% of the PL intensity after being
dispersed in water for 55 h (Figure 2b). Note that the latter is
also markedly higher than that of skin gelatin—CsSnCl; NCs
reported previously (80% retention after 48 h),"" most likely
because of the high carboxyl content in bone gelatin compared
to that in skin gelatin (Table S2), considerin% that the carboxyl
moiety is the point of anchor on the NCs.™

Figure 2c shows the normalized PL emission decay profiles
of CsSnCl; NCs with and without bone gelatin encapsulation.
After bone gelatin modification, the PLQY of CsSnCl; NCs
was found to increase from 2.17% to 3.13% and the average
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fluorescent lifetime (7,,) increased from 5.56 to 7.11 ns. As can
be seen from Table 1, 7,, and PLQY of the bone gelatin—
CsSnCl; NCs were even higher than those of other Pb-free
NCs reported in the literature. This suggests a reduced content
of structural defects (trap states) within the NCs after surface
functionalization with bone gelatin.

Figure 2d shows the radiative (I',4) and nonradiative
(Thonrea) Trecombination rates for CsSnCl, NCs with and
without bone gelatin encapsulation, which are estimated by the
following equations: '’

PLQY
Frad = T—Q (1)
_1-PLQY
nonrad — ~—
Ty )

Obviously, after bone gelatin coating, the nonradiation
recombination rate of CsSnCl; NCs decreased from 175.95
to 136.25 us™!, whereas the radiation recombination rate
increased from 3.90 to 4.46 us™'. This suggests that bone
gelatin effectively stabilized the excited state by suppressing the
formation of nonradiative recombination pathways.
{-potential analysis (Figure 3) shows that the isoelectric
point (pI) of bone gelatin was 5.37, which decreased somewhat
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Figure 6. (a) PL emission spectrum of bone gelatin—CsSnCl; NCs and absorption spectra with the addition of different ions (0.2 mM) in aqueous
solution. (b) Diagram of the detection mechanism of bone gelatin—CsSnCl; NCs for Fe**ions.

to 4.75 with bone gelatin- CsSnCl; NCs. Note that bone O 1s, Cs 3s, Sn 3d, and Cl 2p can be clearly resolved. It can be
gelatin is an amphoteric electrolyte, where the pl is related to seen from the fitting peaks of N 1s in Figure 4b that, in
the ratio of the —COOH to —NH, moieties.”’ In the bone addition to the N—H peak at 399.6 eV and the N—C peak at
gelatin—CsSnCl; NCs, it is likely that the —COO™ groups bind 400.8 eV in bone gelatin (Figure 4a), there was also a Sn—N

to Sn**, which promoted the ionization of —COOH and led to peak at 399.9 eV.'' This suggests that encapsulation of the
a decreased pl. CsSnCl; NCs was due to coordination of the —NH, of bone
X-ray photoelectron spectroscopy (XPS) measurements gelatin to the Sn** centers in the NCs. The content of Sn*" in
were then carried out to analyze the surface chemical CsSnCl; NCs and bone gelatin—CsSnCl; NCs was determined
composition and valence states of the samples. Figure S4a by deconvolution of the XPS spectra of Sn 3ds/,.”" Both
shows the peaks of C 1s, N 1s, and O 1s in bone gelatin. From CsSnCl; NCs and bone gelatin—CsSnCl; NCs were
the survey spectrum in Figure S4b, the elements of C 1s, N 1s, determined after 2 days of exposure to oxygen. As shown in
6551 https://doi.org/10.1021/acs.inorgchem.2c00354
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Figure 4c, the Sn*" content was considerably lower in bone
gelatin—CsSnCl; NCs, indicating greatly suppressed Sn**
oxidation. This is because the protective eftect of bone gelatin
increases the antioxidant capacity of CsSnCl; NCs.

2.3. Fe?* lon Sensing. With their good water stability and
antioxidant capacity, bone gelatin- CsSnCl; NCs displayed
great potential as a PL sensor for metal ions in aqueous media.
From Figure 5a, we can see that the PL emission intensity at
349 nm of bone gelatin—CsSnCl; NCs in water diminished
somewhat upon the addition of a range of metal cations and
anions at a concentration of 0.2 mM, such as CI~, SO,
HCO;~, NO,~, OH", Zn*, AP**, Ca**, Mg*', and Co?*, and
was almost completely quenched by Fe®*. This suggests that
bone gelatin- CsSnCl; NCs may serve as a unique sensing
platform for Fe*.

As shown in Figure Sb, with an increase of the Fe*
concentrations, the PL intensity of bone gelatin- CsSnCl,
NCs decreased accordingly, which can be fitted by the
Stern—Volmer equation™

E/F =1+ K[C] 3)

where F; and F represent the PL emission intensities of the
bone gelatin—CsSnCl; NCs in the absence and presence of a
Fe®" ion, respectively, [C] is the concentration of Fe**, and K,
is a Stern—Volmer constant. Linear regression yields the
relationship Fy/F = 0.735 + 4.609[C], with a correlation
coefficient (R*) of 0.97022 and a quenching constant (K,,) of
4.6 X 10* M™". The calibration curve shows the linear ranges
from 0 to 2000 uM, and the limit of detection was calculated
to be 8 uM (S/N = 3).

The PL spectrum of bone gelatin- CsSnCl; NCs and the
absorption spectra upon the addition of different ions (0.2
mM) in aqueous solution are shown in Figure 6a. Compared
with other ions, only the absorption spectrum of Fe®*
overlapped significantly with the emission profile of the
bone-gelatin-capped CsSnCl; NCs, suggesting that quenching
of the PL emission was due to fluorescence resonance energy
transfer (FRET).”> A mechanism of action between bone-
gelatin- CsSnCly NCs and Fe** was proposed and is shown in
Figure 6b, where bone gelatin—CsSnCl; NCs and Fe®* serve as
the energy donor and acceptor, respectively. In the absence of
Fe*', bone gelatin—CsSnCl; NCs will fluoresce once the
electrons in the NCs are excited and radiation transition
occurs. In the presence of sufficient Fe’", the energy of bone
gelatin—CsSnCly NCs is transferred to Fe®*, which inhibits its
radiation transition and causes fluorescence quenching of the
NCs.

3. CONCLUSIONS

In summary, highly stable bone gelatin—CsSnCl; NCs were
prepared by the simple mixing of bone gelatin and CsSnCly
NCs. This is most likely due to the —COOH and —NH,
moieties in bone gelatin that effectively passivate the surface
defects of CsSnCl; NCs. The long molecular chains of bone
gelatin helped to facilitate the encapsulation of CsSnCl; NCs
within the polymer matrix and inhibit the degradation and
oxidation of CsSnCl; NCs in water or under photoirradiation.
Notably, with bone gelatin encapsulation, the CsSnCl; NCs
showed a higher PLQY and longer 7,, than the uncapped
counterparts. The excellent water stability and PL emissive
properties of the bone gelatin-passivated NCs could be
exploited as fluorescence probes to monitor Fe** in aqueous
solution, likely because of FRET.
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