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We consider a large family of problems in which an ordering (or, more precisely, a chain of subsets) of

a finite set must be chosen to minimize some weighted sum of costs. This family includes variations of

Min Sum Set Cover (MSSC), several scheduling and search problems, and problems in Boolean function

evaluation. We define a new problem, called the Min Sum Ordering Problem (MSOP) which generalizes all

these problems using a cost and a weight function defined on subsets of a finite set. Assuming a polynomial

time α-approximation algorithm for the problem of finding a subset whose ratio of weight to cost is maximal,

we show that under very minimal assumptions, there is a polynomial time 4α-approximation algorithm for

MSOP. This approximation result generalizes a proof technique used for several distinct problems in the

literature. We apply this to obtain a number of new approximation results.

Key words : scheduling, search theory, Boolean function evaluation, Min Sum Set Cover, approximation
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1. Introduction
Many optimization problems require finding a minimum cost (feasible) subset of the ele-

ments of a finite set, according to some cost function. For example, in the Set Cover

Problem, the given finite set is a collection of subsets of a finite set of “ground” elements

X, and the objective is to choose a sub-collection of minimum cardinality whose union

in X. In the Minimum Spanning Tree Problem, for a given graph with edge lengths, the
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objective is to find a subtree of minimum total length that contains all the vertices of the

graph.

This work is concerned with ordering problems in which the objective is not to find a

subset of minimum total cost, as in the examples described above, but is instead to find a

sequence that minimizes an incremental sum of costs, or equivalently, a weighted average

of costs. For example, in many scheduling problems, the objective is to minimize some

weighted sum of completion times of a set of jobs. The order in which the jobs are processed

may be constrained by some form of precedence constraints. In search problems, one might

wish to minimize the expected time or cost incurred in searching for a target or targets that

are hidden according to a known probability distribution, and the set of feasible searches

may be restricted by some network structure. These problems arise in search and rescue

as well as military search operations and can be interpreted as “min sum” versions of such

problems as the spanning tree problem. A “min sum” version of Set Cover called  Min Sum

Set Cover was introduced by Feige et al. (2002, 2004). Sequential testing problems also

come under this framework: a set of tests (for example, medical tests, database queries or

quality tests of computer chip components) must be performed in some order to minimize

an expected cost (of forming a diagnosis, of determining whether the query is satisfied or

of checking whether the component meets certain quality standards).

We unify problems of this type by introducing a new, very general problem formulation,

which we call the Min Sum Ordering Problem or MSOP. Let V be a finite set of cardinality

n and let f, g : F → R be a cost function and a weight function, respectively,defined on

some family of subsets F ⊆ 2V that contains ∅ and V (where we use the symbol ⊆ to

denote “is a subset of or equal to” and ⊂ to denote strict inclusion). Further, f and g are

non-decreasing with respect to set inclusion and f (∅) = g(∅) = 0.In our applications, the

set F is typically implicitly defined by the problem setting rather than being part of the

input. We assume that f and g are given by value oracles. We define an F -chain to be a

sequence of subsets S = (Sj )k
j=0 for some k such that ∅ = S0  ⊂ S1  ⊂ . . .  S⊂ k = V and S j  ∈ F

for each j. When there is no ambiguity, we will simply refer to an F -chain as a chain.

Then the MSOP is to minimize

Cf,g (S) ≡
kX

j=1

f (Sj )(g(S j ) − g(Sj−1 )), (1)

over all chains S = {Sj } k
j=0 .
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If S minimizes Cf,g (S), we say it is optimal and if Cf,g (S) is at most a factor α ≥ 1 times

the optimal value of the objective, we say S is an α-approximation.

If F contains all subsets of V , then the problem is equivalent to minimizing over all

permutations of V (see Lemma 1). Here the subsets in a chain correspond to the elements

picked “so far” by the permutation. By setting the problem up in the more general way,

in terms of maximizing over chains rather than permutations, we ensure that the model is

general enough to incorporate the intricacies of precedence constraints or restrictions due

to a network structure, for example.

The applications we are interested in include problems of minimizing over a given  subset

of the set of all permutations of V . To be more precise, let σ : V → V be a permutation of V ,

and for j = 1, . . . , n, let Sσj be the union of the first j elements of V under the permutation

σ. Then for a set Σ of permutations of V and given functions f and g, we wish to solve

min
σ∈Σ

nX

j=1

f (Sσ
j )(g(S σ

j ) − g(Sσ
j−1 )). (2)

We refer to this problem as the Min Sum Permutation Problem or MSPP. Neither one of

MSOP nor MSPP can be reduced to the other, but we will show in Section 2 that as long

as Σ satisfies some technical condition, MSPP can be regarded as a special case of MSOP.

Indeed, let F Σ consist of all initial sets of all σ ∈ Σ (that is, S  F∈ Σ if and only if S = S σ
j

for some j and some permutation σ ∈ Σ). Suppose we have an α-approximate solution S to

MSOP with F = F Σ . Then any permutation σ such that every subset in S is some initial

set of σ will be an α-approximate solution to MSPP. This observation is easily verified and

we postpone its justification until Section 2.

We choose to write this paper in terms of MSOP rather than MSPP for two main reasons.

Firstly, the setting allows us to prove the strongest form of our main results. Secondly,

working with chains rather than permutations allows the greedy algorithm we will analyze

to consider the “bigger picture” by recursively adding subsets of elements rather than

adding elements one by one.

The idea of minimizing over chains is novel, but MSPP has been studied previously in

some other special cases. In particular, Pisaruk (1992) considered the problem in the case

that f is submodular and g is supermodular, giving a 2-approximation algorithm. (The

function f is submodular if and only if f (S  T∪  ) + f (S ∩ T ) ≤ f (S) + f (T ) for all S, T ; the
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function g is supermodular if f (S  T∪  ) + f (S ∩ T ) ≥ f (S) + f (T ) for all S, T .) This special

case was also considered more recently in Fokkink et al. (2019), where the problem was

introduced as the submodular search problem, and previous to that, Fokkink et al. (2017)

considered the case of f submodular and g modular.

If g is the cardinality function g(S) = |S| and the sets Sj increase by one element in each

step, then the sum in (1) reduces to
P k

j=1 f (Sj ). This special case of MSPP was considered

in Iwata et al. (2012), for various classes of functions f . In particular, a 4-approximation

algorithm was obtained in the case that f is supermodular. We discuss this in more detail in

Subsection 3.2, in particular in reference to MSSC and its generalizations. A more general

4-approximation had already been proved by Streeter and Golovin (2008) in the case of  f

supermodular and g modular.

MSOP is more general than the problems of Iwata et al. (2012) and Pisaruk (1992) in

two ways. Firstly, we make weaker assumptions about the form of the cost and weight

functions and our main result requires only that the cost function is subadditive. A cost

function f is subadditive if and only if f (S  T∪  ) ≤ f (S) + f (T ) for all disjoint sets S, T  F∈  .1

Subadditivity is a more general concept than submodularity. Secondly, the aforementioned

works take the approach of minimizing over all permutations of V , in contrast to our

approach of minimizing over chains.

Since MSOP generalizes several NP-hard problems, MSOP is NP-hard itself, so we con-

sider approximation algorithms for the problem. An important concept in our analysis is

that of the density ρ(S) of a subset S of V , defined by ρ(S) = g(S)/f (S) (for f (S) 6= 0).

We will define a simple greedy algorithm for MSOP, which we now briefly describe (see

Section 2 for a more precise description). The algorithm constructs a chain by recursively

choosing the (j + 1)th subset Sj+1 in the chain in such a way as to maximize the marginal

density (g(Sj+1 ) − g(Sj ))/(f (S j+1 ) − f (Sj )). We refer to this maximization problem as the

maximum density problem. If the maximum density problem cannot be solved in polyno-

mial time, but we can approximate it in polynomial time within a factor α ≥ 1 then we call

a chain produced by such an approximation an α-greedy chain. We will prove the following

in Section 2.

1 Some definitions of subadditive set functions in the literature require that f (S  T∪  ) ≤ f (S) + f (T ) for non-disjoint
S and T as well. When f is non-decreasing with respect to set inclusion, as it is in our case, this is an equivalent
definition.
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Theorem 1. Suppose f is subadditive and F is closed under union. Then for any α ≥ 1,

an α-greedy chain is a 4α-approximation for an optimal chain for MSOP.

Later, in Section 6, we will derive an analogous result to Theorem 1 for a “backward”

greedy algorithm, using the concept of the dualproblem.

The proof of Theorem 1 is inspired by the elegant proof in Feige et al. (2004) of the 4-

approximation algorithm for the problem Min Sum Set Cover (MSSC). This is the problem

of ordering a ground set V to minimize the sum of “covering times” of a given collection of

subsets of V , where the covering time of a subset is the earliest position in the ordering of

any element of that subset. The proof uses the idea of representing the cost of the ordering

produced by the greedy algorithm and that of an optimal ordering by two histograms, and

showing that when the first histogram is shrunk by a factor of two in the horizontal and

vertical directions, it fits in the second histogram. The proof idea is generalized in Streeter

and Golovin (2008), who proved a 4-approximation result for a class of problems that

includes some special cases of MSOP, including MSSC. A different generalization of MSSC

is given in Iwata et al. (2012) to prove the 4-approximation for one case of the  Minimum

Linear Ordering Problem. More recently, a similar proof was used in Hermans et al. (2019)

to establish an 8-approximation for the expanding search problem, and in Happach and

Schulz (2020a) to obtain a 4-approximation for bipartite OR-scheduling.

While the last three works cited all use a similar proof method, the proof is somewhat

different in each case and none of these results directly implies another. The similarity of

the proofs strongly suggests that some deeper result is behind all of these problems.We

confirm here that this is indeed the case by showing that MSOP generalizes each of them

and Theorem 1 generalizes their respective approximation results.

In Section 2 we prove Theorem 1, using a variation of the proof originally devised by

Feige et al. (2004). The main difference from the original proof stems from the fact that

our algorithm does not greedily pick elements of V one by one, but rather greedily picks

subsets in the chain. Also, we do not optimize over permutations but over chains.

In Section 3, we will show that Theorem 1 can be used to recover a number of known

results relating to search theory and variants of MSSC. We go on to apply our results to new

problems. In particular, we consider scheduling problems with OR-precedence constraints

in Section 4, where the set of jobs to be processed is represented by the vertices of a

directed acyclic graph (DAG), and a job can only be processed after at least one of its
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predecessors in the DAG has been processed.We use Theorem 1 to show that there is a

polynomial time 4-approximation algorithm for the problem of minimizing the sum of the

weighted completion times of a set of jobs that must be scheduled so as to respect some

OR-precedence constraints given by a DAG that is in the form of an inforest or, more

generally, a multitree (where inforests and multitrees will be defined in Section 4). We also

give a 4-approximation algorithm for a version of MSSC with OR-precedence constraints

in the form of an inforest. Finally, in Section 5 we give an 8-approximation algorithm for

minimizing the expected cost of non-adaptively evaluating a Boolean read-once formula

(AND/OR tree), assuming independent tests. In Section 6 we introduce the dual problem,

which leads to further approximation results, and in Section 7 we indicate directions for

future work.

2. Approximating MSOP
In this section, we first prove our main result in Subsection 2.1. In Subsection 2.2 we then

justify the observation made in the introduction that MSPP is really a special case of

MSOP.

2.1. Proof of Main Result

For a set A  F∈ , we write f A for the function on F given by f A (S) = f (S) − f (A), and

similarly for gA . For f A (S) 6= 0, let ρA (S) = gA (S)/f A (S) be the marginal density of S (with

respect to A); if f A (S) = 0 we set ρA (S) = ∞. If A = ∅, we drop the subscript from ρ and

simply refer to ρ(S) as the density of S.

We consider a greedy algorithm for MSOP. For α ≥ 1, we call an F-chain S = (Sj )k
j=0 an

α-greedy chain if

ρSj (Sj+1 ) ≥
1
α max

{T F∈ :S j ⊆T }
ρSj (T ),

for all j = 0, . . . , k − 1. If α = 1, an α-greedy chain is simply one for which Sj+1 has maximum

marginal density with respect to S j for each j = 0, . . . , k − 1.

We now prove Theorem 1, which generalizes both the result and the proof in Feige et al.

(2004).
Proof of Theorem 1. Let T = (T j )`

j=0 be an optimal chain and let S = (S i )k
i=0 be an α-

greedy chain. We first construct a histogram with ` columns, the area under which is equal

to C f,g (T ). The base of the jth column of the histogram is the interval from g(T j−1 ) to
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g(Tj ) and its height is f (T j ). Thus, the total area under the histogram is equal to Cf,g (T ).

The histogram is depicted in the top left of Figure 1(a).

Next, we construct a second histogram with k columns, the area under which is equal

to C f,g (S). Let ρ i = ρSi−1 (Si ) and let ϕ i = ρ−1
i (g(V ) − g(Si−1 )) (if ρ i = ∞, set ρ −1

i = 0). The

base of the ith column of this histogram is the interval from g(Si−1 ) to g(S i ) and its height

is ϕ i . Thus the total area A under this histogram is

A =
kX

i=1

ϕ i (g(Si ) − g(Si−1 ))

=
kX

i=1

(g(V ) − g(Si−1 ))(f (S i ) − f (S i−1 )) (3)

= g(V )
kX

i=1

(f (S i ) − f (S i−1 )) −
kX

i=1

g(Si−1 )(f (S i ) − f (S i−1 ))

The first sum on the right-hand side above is telescopic and equal to  f (V ) − f (∅) = f (V ).

Rearranging the second sum, we obtain

A = g(V )f (V ) − g(Sk−1 )f (V ) +
k−1X

i=1

f (Si )(g(S i ) − g(Si−1 ))

=
kX

i=1

f (Si )(g(S i ) − g(Si−1 ))

= C f,g (S).

The second histogram is depicted in the top right of Figure 1(a). Note that the heights

of the columns in the first histogram, from left to right, are non-decreasing.

Now shrink the second histogram by a factor of 2α in the vertical direction, and a factor

of 2 in the horizontal direction, and move it to the right so it is flush with the right end

g(V ), as depicted in Figure 1(b). This results in point (x, y) being mapped to ( g(V )+x
2

, y
2α ).

The distance of this latter point from the right end is (g(V ) − x)/2.

We now show that the shrunken (and shifted) histogram is contained in the first his-

togram, from which it follows that Cf,g (S) ≤ 4αC f,g (T ), proving the theorem. To show that

the shrunken histogram is contained in the first histogram, it is sufficient to show that if

(a, b) is the top left point of some column i in the shrunken histogram, and (c, d) is the

top right point of some column j in the first histogram, then d < b implies that c < a. Here

(a, b) = g(V )+g(S i−1 )
2

, ϕ i

2α and (c, d) = (g(Tj ), f (Tj )).
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(b)
Figure 1 (a) Two histograms with totalarea Cf,g (T ) (left) and Cf,g (S) (right); (b) the shrunken version of the

second histogram in the first histogram.

So assume d < b, or equivalently

f (T j ) <
ρ−1

i (g(V ) − g(Si−1 ))
2α

. (4)

Let a0 be the distance of (a, b) from the right boundary, that is, a 0= (g(V ) − g(Si−1 ))/2

and let c0 be the distance of (c, d) from the right boundary, that is, c 0= g(V ) − g(Tj ). We

want to show that d < b implies c < a, or equivalently that a0< c0. So we want to show that

g(V ) − g(Si−1 )
2

< g(V ) − g(Tj ). (5)

Since F is closed under union, Si−1  ∪ T j  ∈ F. We will use the fact that, because S is

α-greedy,

ρi = ρSi−1 (Si ) ≥
1
α

ρSi−1 (Si−1  ∪ Tj ) =
g(Si−1  ∪ Tj ) − g(Si−1 )

α(f (S i−1  ∪ Tj ) − f (S i−1 ))
. (6)

Because f is subadditive and non-decreasing,

f (Si−1  ∪ Tj ) − f (S i−1 ) ≤ f (S i−1  ∪ Tj ) − f (S i−1 \ T j ) ≤ f (T j ).
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Combining that fact with (6) yields

αf (T j ) ≥ ρ−1
i (g(Si−1  ∪ Tj ) − g(Si−1 ))

= ρ−1
i ((g(V ) − g(Si−1 )) − (g(V ) − g(Si−1  ∪ Tj )))

Using our assumption in (4), we thus get

ρ−1
i (g(V ) − g(Si−1 ))

2
> ρ−1

i ((g(V ) − g(Si−1 )) − (g(V ) − g(Si−1  ∪ Tj )))

≥ ρ−1
i ((g(V ) − g(Si−1 )) − (g(V ) − g(Tj ))),

where the second inequality follows from the fact g is non-decreasing. Rearranging gives (5).

Observe that if F = 2 V and f is supermodular and g is submodular, then for S j  ⊆ T ,

ρSj (T ) ≤
P

v T \S∈ j
g(Sj  ∪ {v}) − g(S j )

P
v T \S∈ j

f (Sj  ∪ {v}) − f (S j )
≤ max

v T \S∈ j

ρSj (Sj  ∪ {v}).

Hence, a 1-greedy chain can be obtained in polynomial time by adding singletons one-by-

one. Suppose f is not just supermodular but also modular. Then f is also subadditive so,

by Theorem 1, there is a polynomial time 4-approximation algorithm. We summarize this

observation below.

Corollary 1. SupposeF = 2 V . If f is modular and g is submodular then a 1-

greedy chain can be constructed in polynomial time and there exists a polynomial time

4-approximation algorithm for MSOP.

As discussed in Subsection 3.2,the problem MSSC and, more generally, pipelined set

cover, are special cases of MSOP where g is submodular and f is modular, so the 4-

approximation algorithms for these problems follow from Corollary 1.

2.2. Minimizing Over Permutations

We now turn to the problem MSPP, given in (2), where we wish to minimize a weighted

sum over a set of permutations Σ. We will show that provided Σ satisfies a certain technical

condition, solving MSPP for Σ is equivalent to solving the corresponding MSOP problem

(with the same f and g) for F = F Σ .

Suppose F is some family of subsets of V , and suppose S ≡ (Sj )k
j=0 is an F -chain. Then

if 0 = j 0 ≤ j 1 ≤ . . . ≤ j ` = k, we say S0≡ (S j i )`
i=0 is a subchain of S.
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Lemma 1. Suppose S ≡ (Sj i )`
i=0 is a subchain of the F -chain S0≡ (S j )k

j=0 . Then

(i) C f,g (S) ≥ C f,g (S0) and

(ii) if S approximates MSOP by a factor of α ≥ 1 then so does S 0.

Proof. We perform the following calculation.

Cf,g (S) ≡
`X

i=1

f (Sj i )(g(S j i ) − g(Sj i−1 ))

=
`X

i=1

f (Sj i )
j iX

j=j i−1 +1

(g(Sj ) − g(Sj−1 ))

≥
`X

i=1

j iX

j=j i−1 +1

f (Sj )(g(S j ) − g(Sj−1 ))

=
kX

j=1

f (Sj )(g(S j ) − g(Sj−1 )) ≡ C f,g (S0),

where the inequality above follows from the monotonicity of f and g. Part (ii) of the lemma

follows immediately.

Suppose now that Σ is a set of permutations of V . Recall that FΣ consists of all subsets

of V that are initial sets of some permutation σ ∈ Σ. If S is an F Σ -chain and σ ∈ Σ is a

permutation, such that each element of S is an initial set of σ, then we say σ is consistent

with S. If every F Σ -chain is consistent with some permutation in Σ then we say Σ is

well-founded.

Lemma 2. Suppose Σ is a set of permutations of V and that Σ is well-founded. If there

exists a polynomial time α-approximation algorithm for MSOP with F = F Σ for some

α ≥ 1 then there exists a polynomial time α-approximation algorithm for MSPP with Σ.

Proof. This follows immediately from Lemma 1, part (ii). Indeed, first note that every
F Σ -chain is consistent with a permutation whose objective value is no greater and every

permutation is consistent with an F Σ -chain with the same objective value. It follows that

the objective value of any optimal solution to MSOP is equal to the objective value of any

optimal solution to MSPP.

Now suppose that S is an α-approximate FΣ -chain and that σ is consistent with S. Let
S0 be the chain consisting of all the initial sets of σ. Then S is a subchain of S 0, so S0 is

an α-approximation for MSOP. Equivalently, σ is an α-approximation for MSPP.
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Note that Lemma 2 trivially holds in the opposite direction. Indeed, if there exists a

polynomial time α-approximation for MSPP, then this also provides a polynomial time

α-approximation for MSOP with F = F Σ , since every permutation σ defines a feasible
F Σ -chain with the same objective function value.

It is easy to think of examples of Σ that are not well-founded. For example, if V =

{1, 2, 3} and Σ contains only the permutations (1, 2, 3) and (3, 1, 2), then the F Σ -chain

{{1}, {1, 3}, {1, 2, 3}} is not consistent with either of the two permutations, so Σ is not

well-founded.

However, for all the examples we consider in this paper, the set of permutations is

well-founded. This is easy to check by using the following sufficient condition.

For two permutations σ and τ of V , let πj (σ, τ ) be the permutation that follows σ for

the first j elements then chooses the remaining elements of V in the order specified by τ ,

for each 1 ≤ j ≤ n. For example, if V = {1, 2, 3, 4, 5}, and σ and τ are given by (3, 1, 5, 2, 4)

and (4, 5, 1, 2, 3), respectively then π2(σ, τ ) is given by (3, 1, 4, 5, 2) and π3(σ, τ ) is given by

(3, 1, 5, 4, 2).

If Σ is a set of permutations for which π j (σ, τ ) ∈ Σ for any σ, τ ∈ Σ and 1 ≤ j ≤ n, then

we say Σ is closed.

Lemma 3. Let Σ be a set of permutations of V . If Σ is closed then it is well-founded

and F Σ is closed under union.

Proof. Suppose Σ is closed. Let S = (S j )k
j=1 be a F Σ -chain. We will show that there

is some permutation contained in Σ that is consistent with S. Let σ j be a permutation

in Σ that is consistent with S j for j = 1, . . . , k.We set τ1 = σ 1 and for j = 2, 3, . . . , k,we

recursively define τj = π|Sj−1 |(τ j−1 , σj ), which is contained in Σ, by induction on j and since

Σ is closed. Also, S1 is an initial set of τ1, and, by definition of π|Sj−1 |(τ j−1 , σj ) and by

induction on j, each of S 1, . . . , Sj are initial sets of τ j for j ≥ 2. Therefore, τ k is consistent

with S, so Σ is well-founded.

To see that F Σ is closed under union, let S and T be elements of F Σ . Then they are

initial sets of some permutations σ and τ in Σ, so S  T∪  is an initial set of π|S| (σ, τ ), which

lies in Σ, since Σ is closed. Therefore S  T  F∪ ∈ Σ .

We observe that for the expanding search problem, if we take Σ to be the set of expanding

searches, then it is easy to check that Σ is closed and therefore well-founded, by Lemma 3.
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Furthermore, F Σ is closed under union. Similarly, for both AND-precedence constraints

and OR-precedence constraints,the set of feasible orderings is closed and therefore well

founded. If Σ consists of all permutations of V , as in Boolean function evaluation, then

Σ is trivially well-founded. It follows from Lemma 2 that for these problems, if we can

find a solution (or approximate solution) S to MSOP with F = F Σ , then we can recover

a solution (or approximate solution) to the original problem by taking any permutation

that is consistent with S. Since in each case FΣ is closed under union, we only need f to

be subadditive to apply Theorem 1.

3. Special cases of MSOP
In this section we describe some special cases of MSOP, including those for which our results

imply the existence of approximation algorithms that are already known in the literature.

We will begin in Subsection 3.1 by discussing problems in search theory and scheduling,

including the recent 8-approximation result of Hermans et al. (2019) for expanding search.

Then, in Subsection 3.2, we will describe how a number of approximation results for Min

Sum Set Cover and its generalizations follow from our results.

3.1. Search Theory and AND-Scheduling

The expanding search problem was introduced in Alpern and Lidbetter (2013), and inde-

pendently in Averbakh and Pereira (2012) under different nomenclature. A connected

graph G = (V, E) is given, and each edge e  E∈  has a cost ce. A target is hidden on one

of the vertices of the graph according to a known probability distribution, so that the

probability it is on vertex v  V∈  is p v. An expanding search, starting at some distinguished

root r, is a sequence of edges e1, . . . , e|E| chosen so that r is incident to e1 and every edge
ei (i > 1) is incident to some previously chosen edge. For a given expanding search, the

expected search cost of the target is the expected value of the sum of the costs of allthe

edges chosen up to and including the first edge that contains the target. The problem is

to find an expanding search with minimal expected search cost.The problem was shown

to be NP-hard in Averbakh and Pereira (2012), and Hermans et al. (2019) recently gave

an 8-approximation algorithm.

To express the problem in the form of MSOP, let Σ be the set of expanding searches

and take F = F Σ . Then F is closed under union, since its elements consist of connected

subgraphs of G containing r. For S  F∈ , let f (S) =
P

e S∈
ce and let g(S) be the sum of
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pv over all vertices v contained in some edge of S. Then f is modular, and Theorem 1

along with the results of Subsection 2.2 on MSPP imply that the greedy algorithm is

4α-approximate, where α is the approximation ratio of the maximum density problem,

generalizing the analogous Theorem 2 of Hermans et al. (2019).

Alpern and Lidbetter (2013) gave a solution to the expanding search problem in the case

that the graph is a tree. In this case, the problem is equivalent to a special case of the single

machine, precedence constrained scheduling problem,usually denoted 1|prec|
P

wj Cj , of

minimizing the sum of the weighted completion times of a set of jobs. A partial order is

given on the jobs, and a job becomes available for processing only after all of its predeces-

sors have been processed. We refer to this type of precedence constraints and precedence

constrained scheduling as AND-precedence constraints and AND-scheduling. The jobs have

weights wj and processing times pj , and for a given ordering, the completion time Cj of a

job j is the sum of its processing time and all the processing times of the jobs preceding

it. The problem is to find a feasible ordering that minimizes the weighted sum
P

wj Cj of

the completion times. Comparing the weights and the processing times to the probabilities

and the edge costs in the expanding search problem, it is easy to see that if the partial

order has a tree-like structure, then the scheduling problem and the search problem are

equivalent, as pointed out in Fokkink et al. (2019).

A polynomial time algorithm for the scheduling problem 1|prec|
P

wj Cj on trees was

given by Horn (1972). Sidney (1975) proved that any optimal schedule (for general prece-

dence constraints) must respect what is now known as a Sidney decomposition,obtained

by recursively taking subsets of jobs of maximum density. Lawler (1978) gave a poly-

nomial time algorithm for the problem on series-parallel graphs, which was generalized

to two-dimensional partial orders in a series of papers of Correa and Schulz (2005)

and Amb ühl and Mastrolilli (2009). Chekuri and Motwani (1999) and Margot et al.

(2003) independently showed that any schedule consistent with a Sidney decomposition

is a 2-approximation. Earlier 2-approximation algorithms were derived by Schulz (1996)

and Chudak and Hochbaum (1999). Correa and Schulz (2005) showed that all known

2-approximations are consistent with a Sidney decomposition. Sidney’s decomposition the-

orem and the resulting 2-approximation algorithm was generalized to the case of MSPP

with f submodular and g supermodular in Fokkink et al. (2019), where further applications

to scheduling and search problems were given.
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3.2. Min Sum Set Cover and its Generalizations

Min Sum Set Cover was first introduced by Feige et al. (2002). An instance of MSSC

consists of a finite ground set V and a collection of subsets (or hyperedges) E of V . For a

given linear ordering (or permutation) π : V → [n] := {1, . . . , n} of the elements of V , the

covering time of set e  E∈  is the first point in time that an element contained in e appears in

the linear ordering, i.e., π(e) := min{π(v) | v  e}∈ . The objective is to find a linear ordering

that minimizes the total sum of covering times,
P

e E∈ π(e).2

Iwata et al. (2012) introduced a generalization of MSSC called the Minimum Linear

Ordering Problem, which can be regarded as the special case of MSPP where g is the

cardinality function. (In fact, Iwata et al. (2012) perform the summation in the opposite

order from (1), but of course the objective is the same.) We give here a slightly different

reduction of MSSC to MSPP. Taking F to be 2V , for a subset S  F∈  , we define g(S) to be

the number of hyperedges that contain some element of S and f (S) to be the cardinality

of S. Then the total sum of covering times is given by (1). The dual of this problem (see

Section 6) corresponds to the reduction of Iwata et al. (2012).

MSSC is closely related to Minimum Color Sum (MCS), which was introduced

by Kubicka and Schwenk (1989), and can be shown to be a special case of MSSC (though

the reduction is not of polynomial size – see Feige et al. (2002)). MSSC and MCS are

min sum variants of the well-known Set Cover and Graph Coloring problems, respectively.

Kubicka and Schwenk (1989) observed that MCS can be solved in linear time for trees,

and Bar-Noy and Kortsarz (1998) proved that it is APX-hard already for bipartite graphs.

For general graphs, Bar-Noy et al. (1998) showed that a greedy algorithm is 4-approximate

for MCS. Feige et al. (2002) observed that the greedy algorithm of Bar-Noy et al. (1998)

applied to MSSC, which is to choose the element that is contained in the most uncovered

sets next, yields a 4-approximation algorithm for MSSC. They simplified the proof by ana-

lyzing the performance ratio via a time-indexed linear program instead of comparing the

greedy solution directly to the optimum. In the journal version of their paper, Feige et al.

(2004) further simplified the proof to an elegant histogram framework, which inspired the

results of this paper. They additionally proved that one cannot approximate MSSC strictly

better than 4, unless P = NP.

2 We note that this definition of Min Sum Set Cover, given in Feige et al. (2002), uses a “hitting set” formulation of
the problem, in which vertices cover (hit) hyperedges, rather than vice versa.
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Munagala et al. (2005) generalized MSSC by introducing non-negative costs cv on the

elements of V and non-negative weights we on the sets in E . The task is to find a linear

ordering π of V that minimizes the sum of weighted covering costs of the sets,
P

e E∈
weC(e).

The covering cost of e  E∈  is defined as C(e) := min{
P

u V∈  :π(u)≤π(v)
cu | v  e  E}∈ ∈  (that is,

the sum of all the costs of all the elements of V chosen up to and including the element that

covers e). This problem is known as pipelined set cover. A natural extension of the greedy

algorithm is to pick the element v that maximizes the ratio of the sum of the weights of

the sets covered by v and the cost of v. In fact, Munagala et al. (2005) showed that this

greedy algorithm is 4-approximate for pipelined set cover.

Pipelined set cover can be expressed in the form of MSOP by taking f (S) =
P

v S∈
cv for

a subset S  V⊆  and g(S) to be the sum of the weights of all the subsets in E that contain

at least one element of S. In this case, g is submodular and f is modular, and the fact

that the greedy algorithm is 4-approximate follows from Theorem 1 of this paper (or more

specifically, from Corollary 1).

Yet another generalization of MSSC is precedence-constrained MSSC.Here, the sets

are subject to AND-precedence constraints and the task is to find a linear extension of

the partial order on the sets. This problem was studied by McClintock et al. (2017), who

proposed a 4
√

n-approximation algorithm for precedence-constrained MSSC using a similar

approach to ours: first, apply a
√

n-approximation for finding a subset of V of maximum

density, and then use a histogram-type argument, which yields an additional factor of 4.

This result also follows from Theorem 1 of this paper (assuming the approximation result

for the maximum density problem).

4. OR-precedence constraints
We now show how our results can be applied to give new approximation algorithms

for problems involving OR-precedence constraints. In Subsection 4.1 we will define OR-

scheduling and provide 4-approximation algorithms for OR-scheduling on inforests and,

more generally, on multitrees. We then consider a new OR-precedence constrained version

of MSSC in Subsection 4.2 and show that there is also a 4-approximation algorithm for

this.

4.1. OR-Scheduling

One can interpret pipelined set cover (described in Subsection 3.2) as a single-machine

scheduling problem in the following way. There is a job j v for every element v  V∈  with
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processing time pj v = cv and weight wj v = 0, and a job j e for every e  E∈  with processing

time p j e = 0 and weight w j e = w e. Further, there are OR-precedence constraints between

job j v and all jobs j e with v  e∈ . That is, job j e becomes available for processing after at

least one of its predecessors in {jv | v  e  E}∈ ∈  is completed. Then, finding a linear ordering

of V that minimizes the sum of weighted covering costs is equivalent to finding a feasible

single-machine schedule that minimizes the sum of weighted completion times.

Formally, OR-scheduling is defined as follows:Let N be a set of jobs that are subject

to precedence constraints given by a DAG G = (N, E). An arc (i, j)  E∈  indicates that job

i is an OR-predecessor of j. Any job j with {i  N |∈  (i, j)  E} 6∈ = ∅ requires that at least

one of its predecessors is completed before it can start. A job without predecessors may

be scheduled at any point in time. The task is to find a feasible schedule, i.e., each job is

processed non-preemptively for pj units of time, and at each point in time at most one job

is processed, that minimizes the sum of weighted completion times.

To see that OR-scheduling is indeed a special case of MSOP, let Σ be the set of feasible

schedules,and let F = F Σ . In other words, S  F∈  if and only if for any job in S with

predecessors, at least one of its predecessors is contained in S as well. Clearly, F is closed

under union. Further, we set f (S) =
P

j S∈
pj and g(S) =

P
j S∈

wj for every set of jobs

S  N⊆ . With these modular functions, it is not hard to see that the sum of weighted

completion times of a schedule is equal to (2).

Note that, for the above reduction from pipelined set cover, the set of jobs can be par-

titioned into N = A ∪̇B such that all arcs in the precedence graph go from A to B. We

call such a precedence graph bipartite. In a recent paper, Happach and Schulz (2020a)

presented a 4-approximation algorithm for scheduling with bipartite OR-precedence con-

straints using an approach similar to ours. For bipartite OR-scheduling, the maximum

density sets can be computed in polynomial time, so a histogram argument yields a 4-

approximation algorithm.

Scheduling with OR-precedence constraints was previously considered in the context

of AND/OR-networks, see,e.g., Gillies and Liu (1995), Erlebach et al. (2003). In this

case, Erlebach et al. (2003) presented the best-known approximation factor, which is lin-

ear in the number of jobs, and showed that obtaining a polynomial time constant-factor

approximation algorithm is NP-hard. For the case where the AND/OR-constraints are of

a similar bipartite structure as above, and no AND-constraints are within B × A, Happach
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and Schulz (2020b) obtained a 2∆-approximation algorithm with ∆ being the maximum

number of OR-predecessors ofany job in B. Johannes (2005) proved that minimizing

the sum of weighted completion times with OR-constraints is already NP-hard for unit-

processing time jobs. Happach and Schulz (2020a) strengthened this result and showed

that the problem remains NP-hard even for bipartite OR-precedence constraints with unit

processing times and 0/1 weights, or 0/1 processing times and unit weights.

We now consider a special case of MSOP that can be stated in terms of MSPP. Suppose

the elements of V are vertices of a DAG G = (V, E) which represents some OR-precedence

constraints. That is, a permutation σ of V is feasible if each element v with a non-empty

set of predecessors appears in σ later than at least one of its direct predecessors P(v)

(where P(v) is the set of all u such that (u, v)  E∈ ). Recall that a DAG G = (V, E) is an

intree if every vertex has at most one successor. A DAG whose connected components are

intrees is an inforest.

Theorem 2. Consider an instance of MSPP for which the set of feasible permutations

is derived from some OR-precedence constraints given by an inforest. Then if f is modular

and g is submodular, there is a polynomial time 4-approximation algorithm for the problem.

Proof. Note f is modular and hence subadditive. Also, as pointed out in Subsection 2.2,

the set of feasible permutations Σ is closed and therefore, by Lemma 3, the set Σ is well-

founded and FΣ is closed under union. Hence, by Theorem 1 and Lemma 2, it suffices to

construct in polynomial time a 1-greedy F Σ -chain.

We characterize inclusion-minimal sets of maximum density, using the concept of a  stem.

We define a stem in G to be a sequence of vertices v1, . . . , vk in V such that v 1 has no

predecessors and vi  ∈ P(v i+1 ) for all i = 1, . . . , k − 1. We show that any inclusion-minimal

subset Sj+1 of V that maximizes the density ρSj (Sj+1 ) is a stem and that we can enumerate

all stems in polynomial time. Observe that, if we remove a stem Sj from the instance along

with all edges incident to vertices in the stem, the graph decomposes into intrees again;

also fSj is modular and gSj is submodular. So it suffices to consider only Sj = ∅.

Since G is an inforest, the number of paths starting at any vertex is bounded by the total

number of vertices. Therefore, the total number of stems is O(n2). So we can enumerate

all stems S that start at a job without a predecessor, and pick the one of maximum

density ρ(S) = g(S)/f (S). It remains to show that a stem of maximum density is indeed

an OR-initial set of maximum density.
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Figure 2 Paths starting at v and u to the root, and their intersection point `.

Let S  F∈  be an inclusion-minimal set of maximum density and suppose that S is not a
stem. Since G is an inforest, S must induce an inforest that contains at least two vertices

without a predecessor. Since every vertex has at most one successor, any vertex without a

predecessor induces a unique stem to the root of its connected component in  S (the root of
a component being the unique vertex contained in that component that has no successors).

For two such vertices, v and u, let ` be the vertex where the unique stems starting at v

and u meet, see Figure 2. (Note that ` does not exist if v and u are in different connected
components.) Now, let T v := {v, v 1, . . . , vk} be the set of vertices on the stem from v to `

such that vk  ∈ P(`). If ` does not exist, then let T v be the stem starting at v to its root in

S. Clearly, Tv  ∈ F, and also T := S \ T v is an OR-initial set.
By the submodularity of g and modularity of f , the density ρ(S) satisfies

ρ(S) ≤
g(Tv) + g(T )
f (Tv) + f (T )

= θρ(Tv) + (1 − θ)ρ(T ), (7)

where θ = f (Tv)/(f (T v) + f (T )) ∈ [0, 1]. Hence, by the maximality of ρ(S), both T v and

T must have maximum density, contradicting the assumption that S was an inclusion-

minimal subset of maximum density.
Consider the OR-scheduling problem on a DAG G in the case that G is an inforest.

Since the cost function and the weight function are both modular, the next theorem follows

immediately from Theorem 2.

Theorem 3. There is a polynomial time 4-approximation algorithm for OR-scheduling

of inforests.

In fact, we derive a more generalresult for OR-scheduling of multitrees, introduced in

Furnas and Zacks (1994). A DAG is called a multitree if, for every vertex, its successors form

an outtree (where an outtree is a DAG such that each vertex has at most one predecessor).
Equivalently, there is at most one directed path between any two vertices. Inforests are

examples of multitrees.
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Theorem 4. There is a polynomial time 4-approximation algorithm for OR-scheduling

of multitrees.

Proof. By Theorem 1 and Lemma 2, it is sufficient to find a 1-greedy F-chain, where

F = F Σ and Σ is the set of feasible schedules.

We will show that the inclusion-minimal sets of maximum density are outtrees. This

means that we can find a maximum density subset of F by considering each vertex v with

no predecessors and finding a maximum density subtree Tv  ∈ F of the outtree formed by v

and its successors. This can be done in polynomial time using the dynamic programming

algorithm of Horn (1972), for example. We then choose a subtree Tv with maximum density

over all vertices v with no predecessors.

The proof that the inclusion-minimal sets of maximum density are outtrees is similar

to the proof that the inclusion-minimal subsets of Theorem 2 were stems, so we do not

go into detail. It can be shown that if S is an inclusion-minimal set of maximum density

that is not an outtree, then it can be expressed as the disjoint union of an outtree  T and

another set in F . By an identical calculation as in (7), the set T must have maximum

density, contradicting S being inclusion-minimal. This completes the proof.

It is worth pointing out that approximating the problem of minimizing the sum of

weighted completion times for OR-scheduling appears to be harder than the analogous

problem for AND-scheduling in the following sense. As discussed in Subsection 3.1, for

AND-scheduling there is a polynomial time algorithm for series-parallel DAGs and polyno-

mial time 2-approximation algorithms for arbitrary DAGs, whereas for OR-scheduling, we

have given polynomial time 4-approximation algorithms for inforests and, more generally,

multitrees. It is not possible that better approximations exist for OR-scheduling on multi-

trees (or even for bipartite graphs) unless P = NP, since the same is true of MSSC (Feige

et al. 2004), which is a special case of OR-scheduling on bipartite graphs. Of course, for

outtrees, OR-scheduling and AND-scheduling are equivalent, but there are no polynomial

time algorithms known for OR-scheduling on any other classes of DAGS.

4.2. OR-Precedence Constrained MSSC and Pipelined Set Cover

Consider a variation of MSSC in which the order that the elements of V are chosen must

be consistent with some OR-precedence constraints given by a DAG G. As in pipelined set

cover, we additionally assume that there is a non-negative cost cv for each vertex v and
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a non-negative weight we for each hyperedge e  E∈ ,and the objective is to minimize the

weighted sum of covering times of the edges.As for OR-scheduling, we take F to be the

collection of OR-initial sets of G and as for pipelined set cover, we take f (S) =
P

v S∈
cv

and g(S) to be the sum of the weights of all hyperedges in E that contain at least one

element of S, for S  F∈  . Then f is modular and g is submodular, so we can again apply

Theorem 2.

Theorem 5. There is a polynomial time 4-approximation algorithm for pipelined set

cover with OR-precedence constraints that take the form of an inforest.

To see that Theorem 5 is a generalization of Theorem 3, simply observe that if the

set of hyperedges E consists of all the singletons of V , then pipelined set cover with OR-

precedence constraints is equivalent to OR-scheduling.

5. Evaluation of Read-Once Formulas
In this section we give an 8-approximation algorithm for a non-adaptive version of a

Boolean function evaluation problem, involving the evaluation of a read-once formula on

an initially unknown input in a stochastic setting. We call this the na-ROF evaluation

problem.

A read-once formula, also called an AND/OR tree, is a rooted tree with the following

properties. Each internal node of the tree is labeled either OR or AND (corresponding to

OR or AND gates). The leaves of the tree are labeled with Boolean variables x1, . . . , xn ,

where n is the number of leaves, with each xi appearing in exactly one leaf. Given a Boolean

assignment to the variables in the leaves, the value of the formula on that assignment is

defined recursively in the usual way: the value of a leaf labeled xi is the assignment to
x i , and the value of a tree whose root is labeled OR (respectively, AND) is the Boolean

OR (respectively, AND) of the values of the subtrees of that root. Read-once formulas are

equivalent to series-parallel systems (cf.̈Unlüyurt (2004)).

An example read-once formula, corresponding to the expression φ(x1, x2, x3, x4, x5) =
x1  ∧ x2 ∧ ((x 3  ∧ x4)  x∨ 5), is shown in Figure 3.

In the na-ROF evaluation problem, we are given a read-once formula φ(x1, . . . , xn ) that

must be evaluated on an initially unknown random assignment to its input variables. For

each of the n Boolean variables xi , we are given a probability p i , where 0 < pi < 1, and a

positive integer cost ci , The random assignment on which we must evaluate φ is assumed
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Figure 3 Read-once formula.

to be drawn from the product distribution defined by the pi ’s, that is, the joint distribution

in which p i = P [x i = 1] and the x i are independent. The value of an x i in the random

assignment can only be ascertained by performing a test, which we call test i. Performing

test i incurs cost c i , and its outcome is the value of x i . Tests are performed sequentially

until there is enough information to determine the value of φ. The problem is to develop

a linear ordering (permutation) of the tests, such that performing the tests in that order,

until the function value is determined, minimizes the expected cost incurred in testing.

For example, consider evaluating the formula in Figure 3 in the order given by the

permutation (3, 4, 5, 2, 1). Suppose the first test reveals that x3 = 0, the second that x4 = 1,

and the third that x 5 = 0. Then testing will stop after that third test, when it can be

determined that the value of f is 0. The probability of this happening is (1 − p 3)p4(1 −

p5), and the incurred cost in this case is c 3 + c 4 + c 5. More generally, for each prefix

R of (3, 4, 5, 2, 1),let P R denote the probability that testing stops at the end of that

prefix. Using qi to denote 1 − pi , we have e.g.,P(3) = P (3,4) = 0, P(3,4,5) = (1 − p 3p4)q5 and
P(3,4,5,2) = (1 − P (3,4,5) )q2. The expected cost of evaluating the formula according to the

permutation (3, 4, 5, 2, 1) is c3 + c4 + c5 + c2(1 − P(3,4,5) ) + c1(1 − P(3,4,5,2) ). More generally,

the expected cost associated with an arbitrary permutation of the five tests is equal to
P 5

j=1 f (Sj )(g(S j ) − g(S j−1 )), where Sj is the set consisting of the first j elements of the

permutation (3, 4, 5, 2, 1), f (Sj ) =
P

i S∈ j
ci , and g(Sj ) is the probability that the value of φ

can be determined by performing just the tests in S j . Thus g(Sj ) − g(Sj−1 ) = PR j , where
R j denotes the prefix consisting of the first j elements of the permutation.

The na-ROF evaluation problem corresponds to the MSOP with F = 2 V , where V =

{1, . . . , n} is the set of tests, f (S) =
P

i S∈
ci , and g(S) is equal to the probability that

the value of φ can be determined from the outcomes of the tests in S. (We note that

the same correspondence holds for analogous evaluation problems involving other types of
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formulas and functions. Gkenosis et al. (2018) studied the analogous evaluation problem

for symmetric Boolean functions.)

In Section 5 we show that there is an 8-approximation algorithm for the na-ROF eval-

uation problem that runs in pseudo-polynomial time for general costs, and polynomial

time for unit costs. We do this by giving a dynamic programming algorithm producing a

2-approximate solution for the associated maximum density problem.

To our knowledge, the na-ROF evaluation problem has not been previously studied.

However, an “adaptive” version of this evaluation problem has been studied since the

1970’s, under a variety of names, including “satisficing strategies for AND/OR trees”

(Greiner et al. (2006)), “sequential testing of series-parallelsystems”(Ünlüyurt (2004)),

and “the Stochastic Boolean Function Evaluation (SBFE) problem for read-once formulas”

(Deshpande et al. (2016)). This version seeks an optimal adaptive strategy for ordering the

tests used to evaluate the read-once formula. In an adaptive strategy, the choice of the

next test can depend on the outcomes of the previous tests, and thus the testing order

corresponds to a decision tree,rather than to a permutation. It is still an open question

whether the adaptive version of the problem is NP-hard, or whether it can be solved

by a polynomial-time algorithm, even in the unit-cost case. It is also unknown, even in

the unit-cost case, whether it can be solved by a polynomial-time algorithm achieving a

sublinear approximation factor. In contrast, we establish here that there is a polynomial-

time constant-factor approximation algorithm for the na-ROF evaluation problem in the

unit-cost case. However, as with the adaptive version of the problem, it remains open

whether the na-ROF evaluation problem is, in fact, NP-hard.

An easy case of the na-ROF evaluation problem is where φ is the Boolean OR function,

φ(x1, . . . , xn) = x 1  ∨ . . .  x∨ n . In this case, the optimal solution is to perform the tests in

decreasing order of the ratio pi /c i until the value of f can be determined (which occurs as

soon as an xi = 1 is found, or after all xi have been found to equal 0). This optimal solution

has been rediscovered many times (cf.̈Unlüyurt (2004)). It is also optimal for the adaptive

version of the problem. However, in contrast to the case of the OR function, an optimal

linear order for evaluating a read-once formula will generally incur higher expected cost

than an optimal adaptive strategy. This is because,for example, learning that a variable
x i = 0 when its parent node is labeled AND allows us to “prune” all other subtrees of that
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AND node, making it unnecessary to perform tests on any of the variables that were in
the pruned subtrees.

Boros and Ünlüyurt (2000) and I¸sık and Ünlüyurt (2013) considered what might be
called a “partially-adaptive” version of the na-ROF evaluation problem, where the strategy
is specified by a permutation, but tests in the permutation are skipped if the results of
previous tests have rendered them irrelevant.They presented results on evaluating read-
once formulas of small depth. There does not appear to be a way to express this partially-
adaptive version of the na-ROF evaluation problem in MSOP form.

Charikar et al. (2000) studied the evaluation problem for read-once formulas in the
worst-case online (non-stochastic) setting, where the goal is to minimize the so-called “com-
petitive ratio”. They gave an interesting exact algorithm for minimizing the competitive
ratio, with pseudo-polynomial running time. It is not applicable to our problem, where the
goal is to minimize expected cost.

5.1. Preliminaries

Recall the inputs to the na-ROF evaluation problem: (1) a read-once formula  φ(x1, . . . , xn ),
(2) for each xi , the value pi := P [xi = 1] where 0 < pi < 1, and (3) for each xi , the associated
integer test cost ci , which is greater than 0. We may assume without loss of generality that
each AND and OR gate of φ has exactly two inputs (since, e.g., x1 ∧x 2 ∧x 3 = (x 1 ∧x 2) x∧ 3).
We consider each input xi in φ to also be a gate (an input gate) of φ. The set of tests is
V = {1, . . . , n}.

We use partial assignments to represent the outcomes of a subset of the tests. In a partial
assignment b  {∈ 0, 1, }∗

n , bi = ∗ means that test i has not been performed and the value
of x i is unknown, otherwise bi is the outcome of test i. For a (full) assignment a  {∈ 0, 1} n

and S a subset of V = {1, . . . , n}, a|S is the partial assignment b  {∈ 0, 1, }∗
n where bi = a i

for i  S∈ , and bi = ∗ otherwise. Given partial assignment b  {∈ 0, 1, }∗
n , an extension of b is

a (full) assignment a  {∈ 0, 1}n where ai = bi for all i such that b i 6= ∗. If for all extensions
a of b, φ(a) has the same value `, the value of φ is determined by b and we write φ(b) = `.
Otherwise, we write φ(b) = ∗. Intuitively, for S  V⊂  and a  {∈ 0, 1} n , φ(a|S) = ∗ means that
the outcomes of the tests in S, as specified by a, are not sufficient to determine the value
of φ.

Let A 1, . . . , An be independent Bernoulli random variables, where P [Ai = 1] = p i . Thus
A = [A 1, . . . , An ] is a random variable which takes on a value a  {∈ 0, 1}n , corresponding to
the outcome of the n tests.
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In the MSOP formulation of the na-ROF evaluation problem, given above,we defined
g(S) to be equal to the probability that the value of φ can be determined from the outcomes
of the tests in S. Thus, g(S) = P [φ(A| S) 6= ∗].

We will obtain an 8-approximate solution to the problem by constructing a 2-greedy
chain. In particular, we will give a (pseudo) polynomial time 2-approximation algorithm
solving the associated density problem.

5.2. Background for the Dynamic Programming Algorithm

The dynamic programming algorithm relies on the following definitions and observations.
For S  T  V⊂ ⊆  , let

ρS(T ) =
P [φ(A|T ) 6= ∗] − P [φ(A|S) 6= ∗]P

i T \S∈
ci

. (8)

For S  V⊂  and α > 0, call R  V \S⊆  an α-approximate max-density supplement for S if

ρS(S  R∪ ) ≥
1
α max

{T V⊆  :S T }⊂

ρS(T ).

Our dynamic programming algorithm computes a 2-approximate max-density supple-
ment for an input subset S. It does so in a bottom-up fashion, calculating values at each
of the gates G of φ. For gate G of φ, define tests(G) to be the set of i  V∈  such that x i is
a descendant of G in the tree φ. We consider a gate to be its own descendant,so if G is
an input gate x i , then i  tests∈ (G).

Each gate G of φ is the root of a subtree of φ. Define φG to be the subformula corre-
sponding to the subtree of φ that is rooted at G. Thus φG is a read-once formula over the
variable set {x i | i  tests∈ (G)}. We treat φ G as computing a function over {0, 1} n , whose
output depends only on the values of the variables in {xi | i  tests∈ (G)}. For b  {∈ 0, 1, }∗

n ,
we refer to φG(b) as the output of gate G on partial assignment b, which may be either 0,
1, or ∗.

We note that given a subset S  V⊆  , and `  {∈ 0, 1}, the value of P [φG(A| S) = `] for each
gate G of φ can be computed in time linear in n by processing the gates of φ in bottom-up
order. Consider the case where ` = 1 and let p G = P [φG(A| S) = 1]. If G is an input gate
x i , then pG = p i if x i  ∈ S, otherwise pG = 0. If G is an AND gate with children G 0 and G00,
then because φ is read-once and the Ai are independent, pG = pG0 · pG00. If G is an OR gate,
then pG = pG0 + pG00− pG0 · pG00.

Dually, consider the case where ` = 0 and let qG = P [φG(A S) = 0]. If G is an input gate
x i , then qG = 1 − p i if x i  ∈ S, otherwise qG = 0. If G is an OR gate with children G 0 and
G00, then qG = qG0qG00. If G is an AND gate, then q G = qG0 + qG00− qG0qG00.
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5.3. The na-ROF Evaluation Algorithm

Our algorithm for na-ROF evaluation relies on the dynamic programming algorithm pre-

sented in the proof of the following lemma.

Lemma 4. Given S  V , a 2-approximate max-density supplement R for S can be com-⊂

puted in time polynomial in n and
P n

i=1
ci .

Proof. We prove the lemma for the case of unit costs, where all the ci ’s are equal to 1.

We then explain how to extend the proof to handle arbitrary costs.

Assume the ci ’s are all equal to 1. We describe an algorithm that we call FindSupp that

finds a max-density subset R for a given input subset S.

Fix S. For R  V \S⊆ , let σ(R) = ρ S(S  R∪ ). Since we assumed the ci ’s are equal to 1,

σ(R) =
P [φ(A|S R∪ ) 6= ∗] − P [φ(A|S) 6= ∗]

|R|
.

Clearly, P [φ(A|S) 6= ∗] = P [φ(A|S) = 1] + P [φ(A|S) = 0] and similarly for A| S R∪ .

For `  {∈ 0, 1}, define

σ` (R) =
P [φ(A|S R∪ ) = `] − P [φ(A|S) = `]

|R|
.

Thus

σ(R) = σ 1(R) + σ0(R) (9)

The idea behind FindSupp is to compute two subsets R1 and R0, maximizing σ1 and σ0

respectively. By (9), the R` with the larger value of σ` (R ` ) is a 2-approximate max-density

supplement for S.

For gate G of φ, let T (G) = tests(G)\S. For t  {∈ 0, . . . , |T (G)|}, and `  {∈ 0, 1}, let R G,t,`

be a subset R that maximizes the value of P [φG(A| S R∪ ) = `] subject to the constraints that

R  T⊆  (G) and |R| = t.

Let p G,t,` be the value of P [φG(A| S R∪ ) = `] for R = R G,t,` . Let G̃ denote the root gate

of φ. Thus for t  {∈ 1, . . . , |V \S|} and `  {∈ 0, 1}, setting R = R G̃,t,` maximizes the value of
σ` (R), over all R  V \S⊆  of size t.
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Algorithm FindSupp:
FindSupp first runs a procedure ComputeRp that computes RG̃,t,` and pG̃,t,` for all t ∈

{1, . . . , |V \S|} and `  {∈ 0, 1}. We describe the details of ComputeRp below.After running

ComputeRp, FindSupp uses it to obtain the two subsets, R1 and R0, maximizing σ1 and σ0

respectively. It does this as follows. First, using the linear-time procedure described above,

it computes the value of P [φ(A|S) = `], for `  {∈ 0, 1}.

Then, for each t  {∈ 1, . . . , |V \S|}, for `  {∈ 0, 1}, FindSupp computes the value of

σ` (R G̃,t,` ) =
pG̃,t,` − P [φ(A|S) = `]

t

For each `  {∈ 0, 1}, the algorithm then finds the value of t which yielded the highest

value for σ` (R G̃,t,` ). Let t ` denote that value. Let R ` be the value of RG̃,t,` for t = t ` .

Because R̃G,t,` maximizes σ̀ among candidate subsets of size t, setting R = R` maximizes
σ` (R) among candidate subsets of all possible sizes. The algorithm returns R0 if σ0(R0) >
σ1(R1), and returns R 1 otherwise.

Procedure ComputeRp:
For all gates G of φ, ComputeRp computes the values ofpG,t,` and R G,t,` for all t ∈

{0, . . . , |T (G)|}, and `  {∈ 0, 1}. It processes the gates G of φ in bottom-up order, from the

leaves to the root.

We begin by describing how ComputeRp computes pG,t,` and RG,t,` when G is an AND

gate, t  {∈ 0, . . . , |T (G)|}, and ` = 1. Suppose that G 0 and G 00 are the children of AND

gate G, and that R G0,t 0,1, pG0,t 0,1, RG00,t 00,1, and pG00,t 00,1 have already been computed, for

all t0  ∈ {0, . . . , |T (G0)|} and t 00  ∈ {0, . . . , |T (G00)|}. ComputeRp first computes the product
pG0,j,1 · pG00,t−j,1 for all j such that j  {∈ 0, . . . , |T (G 0)|} and t − j  {∈ 0, . . . , |T (G00)|}. It then

sets j∗ to be the value of j maximizing that product, and sets R G,t,1 = R G0,j ∗ ,1  ∪ RG00,t−j ∗ ,1

and pG,t,1 = pG0,j ∗ ,1 · pG00,t−j ∗ ,1.

The correctness of these settings follows from the fact that that RG,t,1 must consist of a

subset R0 of T (G0) of some size j∗, and a subset R00of T (G00) of size t − j∗. RG,t,1 maximizes

the probability that G outputs 1 (among subsets of T (G) of size t, when added to S). Since

φ is a read-once formula, tests(G0) and tests(G00) are disjoint. R0 and R00are thus sets that

maximize the probability that G 0 and G00output 1 (when added to S, among subsets of

T (G0) and T (G00) of sizes j ∗ and t − j ∗ respectively). Thus, given j ∗, RG,t,1 can be set to
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R0  ∪ R00where R0= R G0,j ∗ ,1, R00= R G00,t−j ∗ ,1, and pG,t,1 can be set to pG0,j ∗ ,1 · pG00,t−j ∗ ,1. Since

ComputeRp is not given the value of j∗, it must try all possible j.

Similarly, suppose G is an AND gate, t  {∈ 0, . . . , |T (G)|}, and ` = 0. In this case,

ComputeRp computes pG0,j,0 + pG00,t−j,0 − pG0,j,0 · pG00.t−j,0 for all possible j, and then sets j ∗

to be the value that maximized the expression. It then sets RG,t,0 = R G0,j ∗ ,0 ∪R G00,t−j ∗ ,0 and
pG,t,0 = pG0,j ∗ ,0 + pG00,t−j ∗ ,0 − pG0,j ∗ ,0 · pG00,t−j ∗ ,0. The correctness in this case follows from the

fact that the output of G is 0 if either of its child gates outputs 0. Thus to maximize the

probability that AND gate G outputs 0, one needs to maximize the probability that each

of its child gates outputs 0.

The case where G is an OR gate is dual and we omit the details.

The remaining case is where G is an input gate x i , t  {∈ 0, . . . , T (G)},and `  {∈ 0, 1}.

Note that since G is an input gate, if i  S∈ , then |T (G)| = 0. If i 6  S∈ ,then |T (G)| = 1.

If t = 0, then for `  {∈ 0, 1}, ComputeRp sets RG,t,` = ∅. Then, if i  S∈  it sets p G,t,1 = p i

and pG,t,0 = 1 − p i . If i 6  S∈  it sets both p G,t,0 = 0 and p G,t,1 = 0. If t = 1 (and therefore

i 6  S∈ ), it sets RG,t,` = x i , pG,t,1 = p i and pG,t,0 = 1 − pi . The correctness of these settings is

straightforward.

To compute the running time of ComputeRp, note that because φ is a read-once formula

with n input variables, it has O(n) gates. For each gate G, |T (G)| is O(n), and thus there

are O(n2) values computed by ComputeRp. For each G, t, ` where G is an AND or OR gate,

ComputeRp spends time linear in |T (G)|to find j ∗, which yields the values for pG,t,` and
RG,t,` . Thus the running time of ComputeRp is O(n3).

Generalization to arbitrary costs:
The algorithm FindSupp can easily be modified to handle arbitrary non-negative integer

costs. The main difference is that t is used to represent the total cost of a set R of tests,

rather than just the size of the set.

Consider a gate G of φ. If there is at least one subset R  T⊆  (G) such that t =
P

i R∈
ci ,

call t a feasible value for G.

For t a feasible value for G, let RG,t,` be the subset maximizing ρR(S) (whose denominator

is now
P

i R∈
ci ) subject to the constraints that R  T⊆  (G) and

P
i R∈

ci = t. Because of

our assumption that the costs c i are integers, the feasible values of t are all in the set

{1, . . . ,
P

i V∈
ci }.
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ComputeRp computes RG,t,` for all feasible values t for G, as follows. Suppose G is an

AND or OR gate. Let G 0 and G00be its children. ComputeRp identifies the feasible values

t for G, which are the values t = t 0+ t 00such that t 0 is feasible for G 0 and t 00 is feasible

for G00. To compute RG,t,` for a feasible value t for G, ComputeRp tries all j such that j is

feasible for G0 and t − j is feasible for G 00. The other modifications in the algorithm are

straightforward.

Because there are at most
P

i V∈
ci feasible values t for gates G, the running time of

FindSupp is O(n(
P

i V∈
ci )2).

The algorithm described in Lemma 4 can be used to form a 2-greedy chain  S 0  ⊂ S1 ⊂

. . .  S⊂ k , where each Sj+1 is generated from Sj by running FindSupp with S = Sj to produce

R, and then setting S j+1 = S j  ∪ R.

The theorem now follows immediately from Lemma 4 and Theorem 1.

Theorem 6. There is a pseudo-polynomialtime 8-approximation algorithm solving the

na-ROF evaluation problem. The algorithm runs in polynomial time in the unit cost case.

6. Backward Greedy Algorithms
The greedy algorithm we presented for MSOP works by starting with the empty set of

elements, and greedily adding subsets in each greedy step. An alternative greedy approach

starts with the set V , and greedily removes subsets from V in each greedy step. A backward

greedy approach was used by Iwata et al. (2012) in their work on some special cases of

MSPP.

In this section, we describe a backward analog to our greedy algorithm for MSOP and its

relationship to a dual MSOP problem, analogous to the dual problem introduced in Fokkink

et al. (2019).

We call an F-chain S = (S j )k
j=0 a backward α-greedy chain if

ρSj (Sj−1 ) ≤ α min
{T F∈ :T S⊆ j }

ρSj (T ),

for all j = 1, . . . , k.

A backward α-greedy chain can be seen to be equivalent to an α-greedy chain for the

dual problem. To describe the dual problem, we write the cost function C(f, g) in another,

equivalent way. Fixing F ⊆ 2 V , we first define F # as the family of complements of sets

in F . That is, F # = {S  V⊆  : V \ S  F}∈ . Note that F is closed under intersection if
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and only if F # is closed under union. There is a one-to-one correspondence between F -
chains and F # -chains, obtained by mapping an element S of an F-chain to V \ S and
reversing the order. We refer to the corresponding F # -chain of a F -chain S as its dual

chain, which we denote by S # . We also denote the dual function of f by f # : F # → R,
given by f # (S) = f (V ) − f (V \ S), and similarly for g. Note that a set function is the dual
of its dual, as is an F -chain, and that f# and g# are non-decreasing. Also, f is submodular
if and only if f # is supermodular.

Given an MSOP with inputs f , g and F, the dual problem is an MSOP with inputs g # ,
f # and F # . In other words, the dual problem is to minimize

Cg# ,f # (T ) =
kX

j=1

g# (Tj )(f # (Tj ) − f # (Tj−1 )),

over all F # -chains T = (T j )k
j=0 . Observe that an MSOP is the dual of its dual.

It is now easy to see that an F -chain S = (S j )n
j=0 is a backward α-greedy chain if and

only if its dual chain is an α-greedy F # -chain for the dual problem.
The following is immediate and generalizes a similar observation from Fokkink et al.

(2019).

Lemma 5. If S is an F -chain, then C f,g (S) = C g# ,f # (S# ) and S is an α-approximation

for an instance of MSOP if and only if S # is an α-approximation for its dual.

Proof. To prove the first statement, we point out that the area A under the second
histogram in the proof of Theorem 1, given by the sum in (3), is equal to Cg# ,f # (S# ). This
area is also shown to be equal to Cf,g (S) later in the same proof. The second statement in
the lemma follows directly from the first.

Applying Theorem 1 to the dual problem, we obtain the following theorem as a corollary.

Theorem 7. Suppose g# is subadditive and F is closed under intersection. Then for

any α ≥ 1, a backward α-greedy chain is a 4α-approximation for an optimal chain for

MSOP.

Note that if g is supermodular, then g # is submodular and hence subadditive, and
therefore satisfies the hypothesis of Theorem 7.

We may also apply Corollary 1 to the dual problem to obtain an additional corollary.

Corollary 2. Suppose F = 2V . If f is supermodular and g is modular then a backward

1-greedy chain can be found in polynomial time and there exists a polynomial time 4-

approximation algorithm for MSOP.
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7. Future Work
We have created a general framework for min-sum ordering problems, and while Theorem 1

relies on very modest assumptions, it is only useful if the maximum density problem can

be efficiently approximated. More work is needed in this area in order to further exploit

our approximation result.

Particular problems of interest include Generalized Min Sum Set Cover (GMSSC), intro-

duced in Azar et al. (2009). Unlike MSSC, where a hyperedge is “covered” the first time

any of its vertices are chosen, in GMSSC, each hyperedge has its own “covering require-

ment”, which specifies how many of its vertices must be chosen before it is “covered”.

The objective is to minimize the sum of covering times, as in MSSC. If the associated

maximum density problem could be approximated within a factor of α, this would yield a

4α-approximation algorithm for GMSSC. The best approximation factor obtained to date

for GMSSC is 4.642, due to Bansal et al. (2020). Their algorithm solves an LP relaxation

and then applies a kernel transformation and randomized rounding. By adding costs to

vertices and weights to hyperedges, one could further generalize GMSSC, giving rise to a

more general maximum density problem of interest.

Another problem that comes under our framework is the Unreliable Job Scheduling

Problem (UJP), introduced in Agnetis et al. (2009). In the basic setting, a set of jobs

with given rewards must be scheduled by a single machine to maximize the total expected

reward. There is a probability of failure associated with each job when it is scheduled, and

if failure occurs the machine cannot schedule any further jobs. The problem has a neat

“index” solution. Natural generalizations of the problem would consider the possibility

of AND- or OR-precedence constraints, and therefore their associated maximum density

problems.
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