
A Taxonomy of Forcing Functions for Addressing Human
Errors in Human-machine Interaction*

Pengyuan Wan1 and Matthew L. Bolton1

Abstract— A forcing function is an intervention for con-
straining human behavior. However, the literature describing
forcing functions provides little guidance for when and how
to apply forcing functions or their associated trade-offs. In
this paper, we address these shortcomings by introducing a
novel taxonomy of forcing functions. This taxonomy extends
the previous methods in four ways. First, it identifies two levels
of forcing function solidity: hard forcing functions, which ex-
plicitly enforce constraints through the system, and soft forcing
functions, which convey or communicate constraints. Second,
each solidity level is decomposed into specific types. Third, the
taxonomy hierarchically ranks forcing function solidities and
types based on trade-offs of constraint and resilience. Fourth,
for hard forcing functions, our taxonomy offers formal guidance
for identifying the minimally constraining intervention that
will prevent a specific error from occurring. We validated the
ability of our method to identify effective error interventions
by applying it to systems with known errors from the literature.
We then compared the solutions offered by our method to
known, effective interventions. We discuss our results and offer
suggestions for further developments in future research.

I. INTRODUCTION

One method for preventing human errors from causing

problems is to use forcing functions. Forcing functions are

constraints enforced on human inputs to a system that prevent

errors from occurring [1]. For example, to ensure that a driver

does not drive away from a fuel pump with the nozzle still

in the car, some modern cars will not allow the engine to

start unless the gas cap is in place.

While forcing functions are effective, they need to be used

with caution. This is because, in limiting what behaviors

humans can perform, system resiliency may be sacrificed

[2]: the human ability to creatively respond to situations

unanticipated by designers may be restricted. Additionally,

forcing functions are loosely defined in the literature. This

makes it difficult for engineers to identify what forcing

function they should employ to address a given error and any

associated effectiveness and resilience trade-offs.

Advances in human error taxonomies [3] have given

engineers an unprecedented ability to formally understand

how, why, and where (in a task model) erroneous behaviors

occur [4]. In this work, we attempted to build off of this

contribution by introducing a taxonomy of forcing functions

that will allow analysts to use insights that can be gained from

*This material is based upon work supported by the National Science
Foundation under Grant Nos. 1918314.

1Pengyuan Wan and Matthew L. Bolton are both with the Department
of Industrial and Systems Engineering at the University at Buffalo, the
State University of New York, 342 Bell Hall, Buffalo, NY 14260, USA
mbolton@buffalo.edu

this modern taxonomy to select forcing function interventions

with full knowledge of resilience trade-offs.

II. BACKGROUND

Below we cover background on forcing functions and

related barrier concepts. We also describe the task-based

taxonomy of human error.

A. Forcing functions and Barriers

According to Norman [1], [5], forcing functions are

physical constraints that can be implemented using: interlocks,

lockins, and lockouts. An interlock forces operations to

occur in a proper sequence. A lockin keeps an operation

active, preventing someone from prematurely stopping it.

A lockout prevents someone from entering a place that is

dangerous or prevents a specific error from occurring. Beyond

forcing functions, Norman also describes additional categories

of constraints on human behavior: cultural, semantic, and

logical. Cultural constraints use social situations and norms

to limit behavior. Semantic constraints use human situational

knowledge to regulate behavior (e.g., making computer file

constructs and operations similar to those of real files).

Logical constraints use logical relationships between behavior

and the system to limit human error (e.g., having a part left

over during equipment assembly indicates an error).

Barriers [6] also provide guidance for addressing human

errors. Barriers are functions that protect against the uncon-

trolled transportation of mass, energy, or information. When

applied to human-machine interaction, a barrier is used to

prevent user operations. There are generally four types of

barriers: physical or material barriers, functional barriers,

symbolic barriers, and incorporeal barriers. Physical barriers

physically prevent an error from occurring. Functional barriers

create a precondition for an action, where the precondition

must be met before the user can perform the action. Symbolic

barriers provide information to users so that they know what

actions they should or should not perform. Finally, incorporeal

barriers rely on human knowledge for direct enforcement (e.g.,

training, rules, regulations, and laws).

There are tradeoffs between barrier types [6]. In general,

physical and functional barriers are more restrictive than

symbolic or incorporeal ones, which can often make them

more effective, robust, and reliable. However, this often

comes with the disadvantage of implementation being more

expensive and time consuming.

Multiple barriers and redundancy can improve effectiveness

[7], [6]. Physical or functional barriers can back up symbolic

or incorporeal barrier systems. Alternatively, symbolic or

2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC)
17-20 October, 2021. Melbourne, Australia

978-1-6654-4207-7/21/$31.00 ©2021 IEEE 3134

20
21

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 S

ys
te

m
s,

M
an

, a
nd

 C
yb

er
ne

tic
s (

SM
C

) |
 9

78
-1

-6
65

4-
42

07
-7

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

SM
C

52
42

3.
20

21
.9

65
87

21

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on July 31,2022 at 16:49:44 UTC from IEEE Xplore. Restrictions apply.

incorporeal forcing functions can be used to discourage

users from employing workarounds for functional or physical

barriers [6].

There were three main limitations of these approaches.

First, none provide clear guidance for how their concepts

can be used to fix specific human errors. Forcing functions

[1] do not describe how each forcing function constraint

should be applied to most effectively address specific errors.

The barrier literature does provide guidance for how to

implement the different constraint concepts. However, these

recommendations are very general and not specific to human

error. Second, neither method provides a sense of trade-off

in terms of solutions’ impact on resilience: the ability of a

system to maintain or regain stable operation after or during

a failure [8]. This is important because the ability of humans

to deploy creative solutions to problems during unexpected or

unusual circumstances is often a source of system resilience.

Thus, strict constraints on human behavior can negatively

affect resilience. Third, forcing functions and barriers contain

similar concepts, but both contain information that is not in

the other. This can make it difficult for analysts to know what

concept is appropriate in a given situation.

B. The Task-Based Taxonomy of Human Error

In practice, engineers will likely want to understand both

the phenotype [9] and genotype [10] of an error. They will also

want specific information about the human’s goals and what

they were (or were not) attending to when the error occurred.

This synthesis was the basis for the task-based taxonomy

of human human error [3]: a formal system that unifies the

genomenological and phenomenological by classifying errors

based on where in a hierarchical task model the divergent

behavior occurred. Specifically, by knowing exactly where

in a task a human’s behavior diverged, an analyst will know

how the erroneous behavior manifested (its phenotype), what

information (task or strategic knowledge contained in the

structure) the human had to incorrectly attend to to perform

the error (its genotype), and the context of the error (what

goals the human was trying to achieve) based on the location

of the error in the task hierarchy.

The specifics of the task-based taxonomy are formulated

using the Enhanced Operator Function Model (EOFM) [11],

[12]. This is because EOFM uses standard hierarchical task

model concepts while also having a formal semantics (a

mathematical description of the behavior encompassed by

the task model). The formal semantics are useful in error

classification because any divergence from the normative

task will inherently violate the semantics. The nature of

the violation specifically indicates what information was

improperly attended to (which can include information about

task execution itself, in the person’s memory, or perceived

from the environment). The semantics are also useful because

knowing where an error occurs enables an analyst to to

determine what set of behaviors will follow the violation.

For example, if a person skips an activity that is in a

sequence, then the following activity in that sequence will

occur immediately after the error.

While there are multiple levels of error classification in

the task-based taxonomy, this research will only focus on the

error mode level. Specifically an activity can execute when it

should not (an intrusion), transition to done when it should

not (an omission), restart when it should not (a restart), and

not transition when it should (a delay). The taxonomy further

decomposes all of these concepts to understand why and

how these errors occur based on which semantic information

(strategic or task knowledge) was violated.

III. OBJECTIVE

Given the disparate concepts and lack of guidance for how

to apply barrier and forcing functions to address human errors,

engineers could find it difficult to determine how to best

improve system safety without compromising resilience. In

this research, we sought to address these issue. To accomplish

this, we created a unified taxonomy of forcing functions

that combines the two concepts [1], [6]. Additionally, we

addressed the major limitation of both by using the formalism

offered by the task-based taxonomy of human error to reason

about the behaviors associated with a given, unwanted error.

We then use this to determine how to minimally constrain

human behavior to prevent the error and thus minimally

impact resilience. In what follows, we describe our taxonomy

and show how interventions can be identified using it.

IV. A TAXONOMY OF FORCING FUNCTION

Figure 1 shows our forcing function taxonomy. The

taxonomy is hierarchical in that it classifies interventions

based on how restrictive they are (and thus how many potential

errors/actions they prevent). This has an inversely proportional

relationship with resilience, here grossly indicated by the

number of behaviors/actions allowed. The taxonomy first

breaks forcing functions down based on their “solidity,” where

forcing functions can be “hard” or “soft”.

Hard forcing functions prevent an error by having the

human-machine interface specifically prevent the associated

erroneous actions from occurring. They are thus compatible

with Norman’s [1] original concept of the the forcing function

as well as Hollnagel’s physical and function barriers [6].

Hard Forcing Function
Prevent an error by having the
human-machine interface
specifically prevent actions
associated with a given error

Soft Forcing Function
Reduce the likelihood of a given
error via design improvements
to organizational, physiological,
and environmental elements

Interlock
Only allows actions to be performed
in a correct order
Lockin
Only allows actions for the correct
task, all other actions are not allowed
Lockout
Locks out actions associated with the
error, all other actions are allowed
Symbolic Forcing Function
Changes the design of the interface or
environment to constrain user behavior
Incorporeal Forcing Function
Changes the way the human thinks
about his/her task through training,
regulations, laws, and enforcement

Solidity Type Tradeoffs

Re
str

ict
ion

 / F
ew

er
 O

pti
on

s f
or

 E
rro

r

Re
sil

ien
ce

 / M
or

e H
um

an
 A

uto
no

my

Fig. 1. The taxonomy of forcing functions.

3135

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on July 31,2022 at 16:49:44 UTC from IEEE Xplore. Restrictions apply.

Forcing functions with soft solidity are those that do not

explicitly restrict human actions. Rather, they attempt to

prevent errors by removing the organizational, psychological,

and environmental conditions that cause the error. This

makes them compatible with symbolic and incorporeal barrier

systems [6] as well as Norman’s extended discussion on

cultural, semantic, and logical constraints.

The solidity levels are further broken down into specific

forcing function types, each of which also falls along the

restrictive/resilience continuum (see Fig. 1).

Compatible with Norman’s categories of forcing functions,

hard forcing functions have three levels: interlock, lockin,

and lockout. An interlock is a forcing function where the

human-machine interface only allows actions to be performed

in a specific or set of specific correct orders (presumably

as dictated by the operator’s normative task). It is the most

restrictive of the hard forcing functions. A lockin is a forcing

function where the human-machine interface only allows

actions associated with the correct task that is being performed.

It is thus less restrictive than an interlock because it does

not enforce an action order. Finally, a lockout is a forcing

function that locks out or prevents the performance of all

actions associated with an erroneous behavior. Given that it

only restricts behavior associated with a given error, a lockout

is the least restrictive of the hard forcing functions.

Soft forcing functions are broken down into two types: sym-

bolic and incorporeal. Symbolic forcing functions prevent an

error by changing the design of the interface or environment

so that the human will be able to more readily identify correct

behaviors. These are consistent with symbolic barriers [6] or

logical constraints [1]. There can be many different types of

symbolic forcing functions which could include things like

improved information displays, warning signs, and decision

support systems. Incorporeal forcing functions prevent an

error by changing the way the human thinks about the task.

These are consistent with incorporeal barriers [6] and semantic

and cultural constraints [1]. These forcing functions are meant

to encompass things like training, regulations, laws, cultural

norms, and enforcement. Generally, incorporeal functions

are less restrictive than symbolic ones because they strictly

rely on changing information in a human’s mind rather than

something in the physical world.

Hard forcing function types are mutually exclusive solu-

tions: more restrictive forcing functions inherently encompass

the behavior of less restrictive ones. However, no such

restriction exists for soft forcing functions. In fact, multiple

symbolic functions, incorporeal functions, or combinations

of them could be used to address a given error. Additionally,

although potentially redundant, these can be used alongside

any selected hard forcing function. For example, you could

provide a user with (symbolic) information that makes it clear

why a hard forcing function is being enforced.

V. HARD FORCING FUNCTION SELECTION

Based on the hierarchical arrangement of forcing function

concepts from above (see Fig. 1), we know what the tradeoffs

are between interlocks, lockins, and lockouts. However, this

representation does not give us specific guidance about which

actions need to be locked out, locked in, or interlocked. In

what follows, we describe how we can use an EOFM’s formal

interpretation of task behavior and its task-based human

erroneous behavior taxonomy to reason about what and how

errors occur. We then use this information to identify how

to minimally constrain a human’s task with lockout, lockin,

and interlock interventions to prevent specific errors from

occurring. Below we breakdown how hard forcing function

interventions can be identified for each of the three error

modes from the task-based taxonomy.

A. Intrusion

In the following discussion, let A be the set of actions

associated with performing an activity normatively and let B
be the set of actions associated with an erroneous, intruding

activity. If the intruding actions are a subset of the normative

actions, or they are equal, (B ⊆ A), then interlock is the

only option. This is because there are no actions in B that

distinguish it from A, thus execution order and context is

the only way to distinguish the execution of B from A. This

relationship is illustrated in Fig. 2(a).

If the actions of A are a subset of B’s (A ⊂ B; Fig. 2(b)) or

neither are subsets of each other but have overlap (A∩B �=
/0∧A � B∧B � A; Fig. 2(c)), then there are actions in B
that are different from A. In this situation, all three hard

forcing functions are options. Thus, only a lockout of B is

strictly required to prevent the error. In this case, analysts

will need to select the solution that best suits their desired

tradeoffs between resilience, options for error, and ease of

A
B

A
B

A
B

A
B

B
A

B
A

B
A

B
A

BA BA A B BA

BA BAA BA BA

Interlock Lockin Lockout

(a)

 B ⊆ A

(b)

 A ⊂ B

(c)

 A ∩ B ≠ ∅
 ∧ A ⊈ B
 ∧ B ⊈ A

(d)

 A ∩ B = ∅

l Condition l

Fig. 2. The left column shows the possible set relationships between
normative activity actions A (green) and those associated with the erroneous
activity B (red). The three additional columns show how actions are
constrained for each of the hard forcing function options for the associated
set relationships. In these, aqua areas show which actions are constrained
by the associated forcing function. Aqua areas with diagonal lines indicate
interlock constraints. Red Xs show when a function is not effective.

3136

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on July 31,2022 at 16:49:44 UTC from IEEE Xplore. Restrictions apply.

implementation. Given the overlap between A and B, it may

be conceptually simpler to lockin to A instead of selectively

locking out the actions of B that are not in A or interlocking.

If A and B have no shared actions (A∩B = /0; Fig. 2(d)),

all three hard forcing functions are also an option and thus a

lockout is sufficient to completely prevent the error. Because

there is no overlap between A and B, a lockout should be

no harder to implement than an interlock or lockin. Thus,

a lockout should generally be preferred because it is less

restrictive / more resilient than the other options.

B. Omission

The forcing functions for addressing omission error modes

use the formulation for intrusions. Specifically, the omission

of any activity or action will ultimately be followed by the

performance of some activity or action that would have

come after the omitted behaviors (which should be easily

determined from accident reports, examination of task models,

or formal analysis of said task models [11], [12]). Thus,

omission errors can be treated as intrusion errors, where A
is the activity that you are attempting to prevent from being

omitted and B is the activity (or activities) that could occur

following A’s omission. With this formulation, the guidance

provided for intrusions will address omission errors.

Note that the only exception to the above procedure occurs

when a human omits the last set of actions in a task without

there being any additional behaviors following it. Such a

situation could arise due to a postcompletion error (when

primary goals are satisfied before actions for performing

subsidiary goals can occur [13]). In this situation, the task

would need to be reordered to ensure that the task only

completes with the satisfaction of its primary goal (see

[14] for a formal description of this intervention approach).

Alternatively, soft forcing functions (such as alarms, additional

information displays, or training) may be required to ensure

humans are properly attending to task completion.

C. Restart

The forcing functions for restarts are handled almost

identically to omission errors. For errors that occur with

the restart error mode, A is the activity at which an erroneous

restart was initiated and B is the activity that initiates the

restart. Using this formulation, an analyst would then follow

the guidance for intrusions.

VI. APPLYING THE TAXONOMY

When using the taxonomy to address human errors with

hard forcing functions, we assume that the analyst has

identified the normative activity within a task that was

disrupted. He or she should also also identify the intruding

erroneous activity. As the discussion above makes clear, these

designations manifest for intrusion, omission, and restart

error modes. Then, based on the parameters outlined under

intrusions, the analyst should be able to determine if an

interlock, lockin, or lockout is a viable solution, and the

minimal restrictions for implementing them. At this point,

it is at the analysts discretion which intervention to use.

ord

Pickup Screw Screw In Screw

Screw
Installed

Part
Arrives

Install Screw

Screw Not Installed

Fig. 3. Screw install task model rendered in the visual notation of
EOFM ([11], [12]). Activities are rounded rectangles, actions are pointed
ones. Preconditions (yellow triangles), completions conditions (magenta
triangles), and repeated conditions (recursive arrows) are attached to
activities and labeled with condition information. Arrows below activities
point to decompositions that define sub-activities or actions. Operators on
decomposition arrows indicate execution of subtasks in order from left to
right (ord) or that one or more can execute in any order (or par).

While it is true that there could be mitigating, contextual,

or implementation circumstances that might suggest analysts

choose a more restrictive solution (such as an interlock), the

taxonomy makes it clear that doing so will come at a potential

loss of resilience. Thus, it is our general recommendation

that analysts choose the effective intervention that puts the

least restriction on human actions. Given the non-mutual-

exclusivity of soft forcing functions, any number of these

could be applied with or without hard forcing function

interventions. In the next section we provide examples that

demonstrate how our taxonomy could be used to identify

effective interventions.

VII. ILLUSTRATIVE EXAMPLES AND VALIDATION

In this section, we present two illustrative examples to

show how our forcing function taxonomy can be effectively

used when attempting to eliminate a human error in a

system. These examples were specifically drawn from the

literature on poka-yoke [15] (a Japanese design philosophy

which means “mistake-proofing”). This allowed us to provide

some validation of our approach by comparing the solutions

produced by our method to ones that have been successful

in the field.

A. Example 1: A Screw Installation Task

Consider a system where a sequence of devices are

delivered to the human on a conveyor belt. It is the human’s

job to perform an assembly task where a screw is installed

that holds each device together.

Figure 3 shows the associated task model (rendered with

EOFM [11], [12]). When the device arrives to the human on

a conveyor, he or she will install a screw by first picking up

a screw out of a box and then screwing it into the device.

In this system, workers will sometimes fail to attach a

screw to the device by missing a device on the conveyor.

This is an omission, where the entire normative task (Fig. 3;

A) is the omitted activity. Thus, the intruding activity is the

3137

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on July 31,2022 at 16:49:44 UTC from IEEE Xplore. Restrictions apply.

performance of that same task on the next device on the

conveyor (Fig. 3; B). This constitutes a situation where A = B
and thus, according to our approach (Fig. 2(a)), only an

interlock will be effective. This implies that steps must be

taken to ensure that no device can be allowed to pass by on

the conveyor without the screw being installed.

If we look at the poka-yoke solution to this problem [15],

mechanisms were installed to ensure that the convey system

can detect whether the worker has picked up a screw for a

device as it is being conveyed past. If the worker fails to

pick up a screw, then the conveyor is stopped. Thus, the

neglected device is the one immediately available to the

worker, ensuring that it is not skipped.

Thus, our approach dictated an interlock solution to address

the omission error and this is consistent with the presented

poka-yoke solution, which specifically forces an order of

actions on human workers to avoid an omission.

B. Example 2: A Part Collection Task

For the the second example, consider a situation where a

worker first reads model identifiers off of a specification chart

and then goes to a shelf of boxes and selects the parts with

the given identifiers out of the appropriate boxes (one box

per identifier). The worker would then install the parts into a

larger system. For this procedure, it was observed that workers

occasionally installed the wrong parts. A deeper analysis

revealed that this error occurred during when selecting parts

from the shelf (not during chart consultation).

The model for performing this task is shown in Fig. 4. The

error of a worker selecting the wrong part would constitute an

intrusion. In this situation, the correct activity A is the activity

for picking up a part from a correct box. The intruding activity

B is the activity for picking up a part from any incorrect

box. In this situation, there should be no overlap between

the correct and incorrect activities (the condition described

in Fig. 2(d)), thus a lockout will provide the minimally

constraining solution. For the example, this means that the

system must prevent the worker from picking up parts from

boxes other than the ones indicated on the chart.

In the poka-yoke solution to the problem [15], all of the part

boxes are given automated lids which unlock and open when

a new specification chart is loaded that requires the given

part. The lids would automatically close and lock when a

different, incompatible chart was loaded. Thus, the poke-yoke

solution to the incorrect part selection problem is compatible

with the lockout solution identified by our approach.

VIII. DISCUSSION AND CONCLUSION

We have made a number of significant contributions in this

research. (1) We presented a new forcing function hierarchy

that describes the tradeoffs between the restriction and

resilience offered by different forcing function concepts. This

explicitly extended concepts from the larger forcing function

and barrier literature. (2) Our taxonomy classifies forcing

functions into two broad categories: hard forcing functions

(those that prevent certain actions from occurring) and soft

forcing functions (those that discourage actions without hard

...

Get Parts
for Model Y

Read Part List
from Chart

aRetreive
Outputs

or_par

Need parts for
Model Y

Have parts for
Model Y

Need parts for
Model Y

ord

Pickup
Part 1

Have
Part 1

Need
Part 1 Obtain Part

from Box 1

ord

Pickup
Part N

Have
Part N

Need
Part N Obtain Part

from Box N...

Have
parts for
Model Y

ord

...

Fig. 4. The original task for selecting parts for a given system model. The
worker first reads the part specification from a chart and them picks up parts
from the appropriate boxes in the shelf.

constraints). (3) The taxonomy identified tradeoffs between

resilience and constraint effectiveness between hard and

soft forcing functions, as well as sub-categories of forcing

functions within each designation. (4) For hard forcing

functions, we presented a novel formal approach based on

set theory (enabled by formal interpretations of task models

and the task-based error taxonomy) that provides guidance

for choosing the most appropriate hard forcing function.

(5) Through examples, we showed how method application

could be used to identify specific interventions based on the

activities (and associated actions) that need to be constrained.

These applications also provided evidence of face validity by

showing that our method recommends interventions that are

consistent with known solutions.

Below we further discuss our results based on the method

limitations, other potential applications, and future research.

A. Limitations

One limitation of our method is the generality of produced

hard forcing functions solutions. The taxonomy and formal

method do not recommend specific design implementations

of the recommended forcing function behavior. This means

that designers will still need to develop a detailed approach

3138

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on July 31,2022 at 16:49:44 UTC from IEEE Xplore. Restrictions apply.

that prevents the identified erroneous actions and/or activities

from executing. Future research should investigate methods

for making recommendations more application specific.

Another limitation arises because of the assumptions of the

hard forcing function identification process. First, the analysts

must have an accurate system hierarchical task model. Second,

the analysts must know the exact erroneous behaviors they

are eliminating. Practically, this may not be common. Thus,

future work should investigate how standard task analytic

methods can be better integrated into industrial practice.

Finally, the current formulation of our taxonomy and

method does not provide recommendations for deploying

soft forcing functions. Future work should investigate how

information contained in hierarchical task models can be

used to recommend soft function interventions as additions

or alternatives to hard forcing function options. In particular,

hard forcing function implementation must be done carefully.

This is because the ability of users to understand what actions

are being constrained (and why that constraint is occurring) is

critical to system safety. Specifically, this helps avoid mode

confusion, automation surprise, and associated additional

human errors [16]. Soft forcing functions have the potential

to offer alternatives to hard functions without such concerns,

or could be used with hard forcing functions to help humans

understand their operational context. Such uses of soft forcing

functions should be the subject of future research.

B. Future Works

1) Automatic Interface Repair: This research is part of a

larger project to improve the reliability of human-machine

interaction through automatic, formal methods for assessing

reliability and repairing human-machine interfaces. The

formal method for identifying forcing function interventions

should serve as the basis for identifying automatic repairs

for errors that reliability analysis [17], [18] will identify.

Future work should investigate how forcing functions could

be automatically applied to a human-machine interface design

in automated repair, similar to the way that interlock designs

could be generated by transforming task models [19].

2) Human Behavior Tracking and Error Detection: There

are different ways to implement all of the hard forcing

function concepts from our hierarchy. In a situation with

available computational resources, all hard forcing functions

could be generically implemented through the use of task

behavior tracking. In such a situation, the machine/interface

would be able to follow what task (and activities and

actions within the task) the person is performing based on

environmental or system conditions and what human actions

have been performed. Such a system could allow or disallow

human actions based on what task is being performed and

the hard forcing function concept designers wish to enforce.

EOFM, as a task behavior formalism, should be capable of

being used in such a system. The OFM (operator function

model; EOFM’s predecessor), was used for tracking human

behavior in intelligent tutoring systems [20]. Thus, such

a system should be possible with EOFM and should be

investigated in future efforts.

It is conceivable that soft forcing functions could also

benefit from task tracking. For example, tracking could

be used to enhance or change display concepts based on

operational context; make the endogenous task information

(task information that should presumably exist in the person’s

mind) exogenous (explicitly represented in the interface) in

specific situations; provide humans with feedback when they

appear to go off task either during actual system operations

or during training; or help suggest error recovery actions.

REFERENCES

[1] D. Norman, The design of everyday things: Revised and expanded
edition. Basic books, 2013.

[2] R. Amalberti, “Optimum system safety and optimum system resilience:
Agonistic or antagonistic concepts?” in Relience Engineering, E. Holl-
nagel, D. D. Woods, and N. Leveson, Eds. Farnham: Ashgate
Publishing, Ltd., 2006, ch. 16, pp. 253–271.

[3] M. L. Bolton, “A task-based taxonomy of erroneous human behavior,”
International Journal of Human-Computer Studies, vol. 108, pp. 105–
121, 2017.

[4] M. L. Bolton, K. A. Molinaro, and A. M. Houser, “A formal method
for assessing the impact of task-based erroneous human behavior on
system safety,” Reliability Engineering & System Safety, vol. 188, pp.
168–180, 2019.

[5] C. Lewis and D. A. Norman, “Designing for error,” in Readings in
Human–Computer Interaction. Elsevier, 1995, pp. 686–697.

[6] E. Hollnagel, “Risk+ barriers= safety?” Safety science, vol. 46, no. 2,
pp. 221–229, 2008.

[7] F. Vanderhaegen, “Human-error-based design of barriers and analysis of
their uses,” Cognition, Technology & Work, vol. 12, no. 2, pp. 133–142,
2010.

[8] E. Hollnagel, “Resilience – the challenge of the unstable,” in Resilience
engineering: Concepts and precepts, E. Hollnagel, D. D. Woods, and
N. Leveson, Eds. Farnham: Ashgate Publishing, Ltd., 2006, ch. 1,
pp. 9–19.

[9] ——, “The phenotype of erroneous actions,” International Journal of
Man-Machine Studies, vol. 39, no. 1, pp. 1–32, 1993.

[10] J. Reason, Human error. Cambridge university press, 1990.
[11] M. L. Bolton, R. I. Siminiceanu, and E. J. Bass, “A systematic approach

to model checking human-automation interaction using task-analytic
models,” IEEE Transactions on Systems, Man, and Cybernetics, Part
A, vol. 41, no. 5, pp. 961–976, 2011.

[12] M. L. Bolton and E. J. Bass, “Enhanced operator function model
(EOFM): A task analytic modeling formalism for including human
behavior in the verification of complex systems,” in The Handbook of
Formal Methods in Human-Computer Interaction, B. Weyers, J. Bowen,
A. Dix, and P. Palanque, Eds. Cham: Springer, 2017, pp. 343–377.

[13] M. D. Byrne and S. Bovair, “A working memory model of a common
procedural error,” Cognitive Science, vol. 21, no. 1, pp. 31–61, 1997.

[14] P. Curzon and A. Blandford, “Using a verification system to reason
about post-completion errors,” in Design, Specification and Verification
of Interactive Systems, 2000.

[15] S. Shingo, Zero quality control: source inspection and the poka-yoke
system. CRC Press, 1986.

[16] A. Degani and M. Heymann, “Formal verification of human-automation
interaction,” Human Factors, vol. 44, no. 1, pp. 28–43, 2002.

[17] X. Zheng, M. L. Bolton, and C. Daly, “Extended SAFPH� (systems
analysis for formal pharmaceutical human reliability): Two approaches
based on extended cream and a comparative analysis,” Safety Science,
vol. 132, 2020.

[18] M. L. Bolton, X. Zheng, and E. Kang, “A formal method for including
the probabilityof erroneous human task behavior in system analyses,”
Reliability Engineering and System Safety, 2021, in Press.

[19] M. Li, J. Wei, X. Zheng, and M. L. Bolton, “A formal machine–learning
approach to generating human–machine interfaces from task models,”
IEEE Transactions on Human-Machine Systems, vol. 47, no. 6, pp.
822–833, 2017.

[20] R. W. Chu, C. M. Mitchell, and P. M. Jones, “Using the operator
function model and ofmspert as the basis for an intelligent tutoring
system: Towards a tutor/aid paradigm for operators of supervisory
control systems,” IEEE Transactions on Systems, Man, and Cybernetics,
vol. 25, no. 7, pp. 1054–1075, 1995.

3139

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on July 31,2022 at 16:49:44 UTC from IEEE Xplore. Restrictions apply.

