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ABSTRACT. The classical Banach space Li(Lp) consists of measurable
scalar functions f on the unit square for which

1= [ ([ 1rra)” e <o

We show that Li(Lp) (1 < p < 00) is primary, meaning that, whenever
Li(Lp) = E® F then either E or F is isomorphic to L1(L,). More gen-
erally we show that Lq(X) is primary, for a large class of rearrangement
invariant Banach function spaces.
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1. INTRODUCTION

The decomposition of normed linear spaces into direct sums and the anal-
ysis of the associated projection operators is central to important chapters
in the theory of modern and classical Banach spaces. In a seminal paper J.
Lindenstrauss [19] set forth an influential research program, aiming at de-
tailed investigations of complemented subspaces and operators on Banach
spaces.

The main question adressed by J. Lindenstrauss was this: Which are the
spaces X that cannot be further decomposed into two “essentially different,
infinite dimensional subspaces? That is to say, which are the Banach spaces
X that are not isomorphic to the direct sum of two infinite dimensional
spaces Y and Z, where neither, Y nor Z, are isomorphic to X? This condi-
tion would be satisfied if X were indecomposable, i.e., for any decomposition
of X into two spaces, one of them has to be finite dimensional. Separately,
such a space could be primary, meaning that for any decomposition of X
into two spaces, one of them has to be isomorphic to X. The first example
of an indecomposable Banach spaces was constructed by T. Gowers and B.
Maurey [14] who also showed that their space Xgn is not primary— indeed,
the infinite dimensional component of Xgy ~ X @ Y is not isomorphic to
the whole space.

While indecomposable spaces play a tremendous role ([3, 14, 23]) in the
present day study of non classical Banach spaces, a wide variety of Ba-
nach function spaces may usually be decomposed, for instance by restric-
tion to subsets, or by taking conditional expectations etc. This provides the
background for the program set forth by J. Lindenstrauss to determine the
“classical” spaces that are primary.

1.1. Background and History. The term classical Banach space—while
not formally defined—applies certainly to the space C[0, 1] and to scalar and
vector valued Lebesgue spaces. The space of continuous functions was shown
to be primary by J. Lindenstrauss and A. Pelczynski [20], who posed the
corresponding problem for scalar valued L, spaces. Its elegant solution, by
P. Enflo via B. Maurey [22], introduced a groundbreaking method of proof
which applies equally well to each of the L, spaces, (1 < p < 00). Later
alternative proofs were given by D. Alspach P. Enflo E. Odell [1] for L, in
the reflexive range 1 < p < oo and by P. Enflo and T. Starbird [13] for L;.

Exceptionally deep results on the decomposition of Bochner-Lebesgue
spaces L,(X) are due to M. Capon [9, 8 who obtained that those spaces
are is primary in the following cases.

- X is a Banach space with a symmetric basis, and 1 < p < oco.
- X =Lgwherel <g<ooand1<p<oo.

This leaves the spaces Lq(L,) and L,(L;) among the most prominent exam-
ples of classical Banach spaces for which primariness is open.
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The purpose of the present paper is to prove that L;(L,) is primary. Our
proof works equally well for real and complex valued functions. Before we
turn to describing our work, we review in some detail the development of
methods pertaining to the spaces L,, and more broadly to rearrangement
invariant spaces.

Projections on those spaces are studied effectively alongside the Haar
system and the reproducing properties of its block bases. The methods
developed for proving that a particular Lebesgue space L,, is primary may
be divided into two basic classes, depending on whether the Haar system is
an unconditional Schauder basis, or not.

In case of unconditionality, the most flexible method goes back to the
work of D. Alspach, P. Enflo, and E. Odell [1]. For a linear operator 7' on
L, it yields a block basis of the Haar system h; and a bounded sequence of
scalars ay forming an approximate eigensystem of 1" such that

(1) T7L1 = aﬁu 4 a small error

and El spans a complemented copy of the space L,. Thus, when restricted

to spanﬁj, the operator T acts as a bounded Haar multiplier. Since the
Haar basis is unconditional, the Haar multiplier is invertible if |a7| > § for
some § > 0.

D. Alspach, P. Enflo, and E. Odell [1] arrive at (1) by ensuring that, for
er,; > 0 sufficiently small, the following linearly ordered set of constraints
holds true,

(2) (Thr,hy)| + |(hr, T*hy)| < ey for I<J,

where the relation < refers to the lexicographic order on the collection of

dyadic intervals. Utilizing that the independent {—1, +1}-valued Rademacher
system {r,} is a weak null sequence in L,, (1 < p < o0), D. Alspach, P.

Enflo, and E. Odell [1] obtain, by induction along <, the block basis hr

satisfying (2).

The Alspach-Enflo-Odell method provides the basic model for the study
of operators on function spaces in which the Haar system is unconditional;
this applies in particular to rearrangement invariant spaces in the work of
W. Johnson, B. Maurey, G. Schechtman, and L. Tzafriri [16], and D. Dosev,
W. Johnson, and G. Schechtman [12].

In L; the Haar system is a Schauder basis but fails to be unconditional.
The basic methods for proving that Lq is primary are due to P. Enflo via B.
Maurey [22] on the one hand side and P. Enflo and T. Starbird [13] on the
other hand side. For operators T' on Ly the Enflo-Maurey method yields a
block basis of the Haar basis h; and a bounded measurable function g, such
that

(3) (Tf)(t)=g(t)f(t) + a small error,

for f € span{ﬁ 1}, and hi spans a copy of L. Thus the restricted operator
T acts as a bounded multiplication operator and is invertible if |g| > ¢ for
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some & > 0. The full strength of the proof by Enflo-Maurey is applied to
show that the representation (3) holds true.

Enflo-Maurey [22], exhibit in their proof of (3) a sequence of bounded
scalars aj such that

(4) TE] = aITL[ + a very small error

Since the Rademacher system {r,} is a weakly null sequence in Li, (4) may
be obtained directly by choosing a block basis for which the constraints (2)
and

(5) (Thy,hy)| <2y for I+#J,

hold true. Remarkably, until very recently [18], eigensystem representations
such as (4) were not exploited in the context of L!, where the Haar system
is not unconditional.

The powerful precision of Li-constructions with dyadic martingales and
block basis of the Haar system is in full display in [15] and [30]. W. John-
son, B. Maurey and G. Schechtman determined in [15] a normalized weakly
null sequence in Ly such that each of its infinite subsequences contains
in its span a block basis of the Haar system hj, spanning a copy of L.
Thus L, fails to satisfy the unconditional subsequence property, a problem
posed by B. Maurey and H. Rosenthal [24]. By contrast M. Talagrand [30]
constructed a dyadic martingale difference sequence g, ; such that neither
X =span’1{g,} nor L1/X contain a copy of L;.

The investigation of complemented subspaces in Bochner Lebesgue spaces
was initiated by M. Capon [9, 8] who pushed hard to further the development
of the scalar methods, and proved that L,(X) (1 < p < c0) is primary when
X is a Banach space with a symmetric basis, say (xy). Specifically, M. Capon
[9] showed, that for an operator T on L,(X), there exists a block basis of the
Haar basis 7L1, a subsequence of the symmetric basis (zy,) and a bounded
measurable g such that

(T(f ® xp,))(t) = g(t) f(t) ® xk, + a small error,

for f € span{h;}. Thus on span{h;} ® span{zy, } the operator T acts like
M, ® Id where M, is the multiplication operator induced by g. Simulta-
neously, M. Capon shows that the tensor products form an approximate
eigensystem,

T(h; ® xy,) = arh; ® x1, + a small error

where ay is a bounded sequence of scalars and h 1 spans a copy of L.

In the mixed norm space L,(Lg) where 1 < ¢ < oo and 1 < p < o0
the bi-parameter Haar system forms an unconditional basis. Displaying
extraordinary combinatorial strength, M. Capon [8] exhibited a so called
local product block basis krx s, spanning a complemented copy of Ly(Lg),
such that

Tkixj = arxjkrxy + a small error.
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1.2. The present paper. Now we turn to describing the main ideas in the
approach of the present paper.

Introducing a transitive relation between operators S,T on a Banach
space X, we say that T' is a projectional factor of S if there exist trans-
fer operators A, B: X — X such that

(6) S=ATB and BA=Idx.

If merely S = AT B, without the additional constraint BA = Idx, we say
that T is a factor of S, or equivalently that .S factors through 7.

Clearly, if T is a projectional factor of S and S one of R then T is a pro-
jectional factor of R, i.e., being a projectional factor is a transitive relation.
Given any operator 1" : Li(Ly,) — Lq1(Lp) the goal is to show that either T'
or Id — T is a factor of the identity Id : L1(Lp) — L1(Lp). In section 2.1
we expand on the quantitative aspects of the transitive relation (6) and the
role it plays in providing a step-by-step reduction of the problem, allowing
for the replacement of a given operator with a simpler one, that is easier to
work with.

Let T : Li(Ly) — L1(Ly) be a bounded linear operator. It is represented
by a matrix T = (T/) of operators T!+/ : L; — L, indexed by pairs of
dyadic intervals (I, .J), that is, on f € Li(L,) with Haar expansion

(7) F=Y ashg /|01, wye Ly,
the operator T' acts by

(8) Tf=Y O T anh/ 1P
1 J

Theorem 6.1, the main result of this paper, asserts that there exists a
bounded operator T° : L1 — L such that

T is a projectional factor of T° ® Idg, ,

meaning that there exist bounded transfer operators A,B : Li(L,) —
Lyi(Lp) such that BA = Idy, (1, and

Ll(Lp) ~1 Ly (Lp)

9) Tl iT()@Id
Li(Ly) 5 Lyi(Lyp)

The ideas involved in the proof of Theorem 6.1, are based on the interplay
of topological, geometric, and probabilistic principles. Specifically we build
on compact families of Li-operators, extracted from Spcm{TI o }, and large
deviation estimates for empirical processes:

(a) (Compactness.) We utilize the Semenov-Uksusov characterization [29]
of Haar multipliers on L; and uncover compactness properties of the
operators T1/ : L1 — Ly. See Theorem 3.2 and Theorem 3.4.
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(b) (Stabilization.) Large deviation estimates for the empirical distribu-
tion method gave rise to a novel connection between factorization prob-
lems on L;(L,) and the concentration of measure phenomenon. See
Lemma 5.3 and Lemma 5.4. .

Step 1. We say that T is a diagonal operator if 77/ = 0 for I # J, in

which case we put 7Y = TEL. The first step provides the reduction to

diagonal operators. Specifically, Theorem 4.1 asserts, that for any operator

T = (T!”) there exists a diagonal operator Tiag = (T") such that

(10) T is a projectional factor of Tyiag = (T'%).

The reduction (10) results from compactness properties for the family of L;
operators T/ established in Theorem 3.2 and Theorem 3.4. Specifically, if
f € L1 then the set

(11) {T"/f:I,J €D} C L is weakly relatively compact;
if, moreover, T/ satisfies uniform off-diagonal estimates

(12) sup (TH'hp, har)| < epar, for L # M.
I,J
then, for n > 0, there exists a stopping time collection of dyadic intervals A
satisfying | limsup A| > 1 — n such that the set of operators

(13) {117 Py: I,J € D} C L(L1) is relatively norm-compact.

Recall that A C D is a stopping time collection if for K, L € A and J € D
the assumption K C J C L implies that J € A. By Theorem 2.6, the
orthogonal projection

PA(f) =Y _(f-ha)br/|1),

IeA

is bounded on L; when A is a stopping time collection of dyadic intervals.
Step 2. Next we show that it suffices to prove the factorization (9) for
diagonal operators satisfying uniform off-diagonal estimates. We say that
T = (R") is a reduced diagonal operator if the R" : L; — L1 satisfy

(14) Sup|<RLh1,hJ>’ <erg, for I#J.
L

Proposition 5.6 asserts that, there exists a reduced diagonal operator Téffg =
(R") satisfying (14), such that

(15) Taiag = (T*) is a projectional factor of Téffg = (RY).

To prove (15) we utilize the compactness properties of Tyiag = (T') together
with measure concentration estimates [6, 28] associated to the empirical
distribution method. See Lemma 5.3 and Lemma 5.4.

Step 3. Next we show that we may replace reduced diagonal operators by

stable diagonal operators. We say that Tdsf;fgl = (8) is a stable diagonal
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operator if
(16) 5% = SM|| < e,

for dyadic intervals M, L satisfying L. C M. We obtain in Proposition 5.2,
that for any reduced diagonal operator Tdrfgg there exists a stable diagonal

operator T5P! such that

diag
(17) Téffg = (R%) is a projectional factor of Tjg’é = (Sh).

We verify (17) exploiting again the compactness properties of Téf,fg = (RY)
in tandem with the probabilistic estimates of Lemma 5.3 and Lemma 5.4.

Step 4. Proposition 6.2 provides the final step of the argument. It asserts
that for any stable diagonal operator T5P! = (S%) there exists a bounded

diag —
operator T° : L; — L; such that,

(18) Tjitsgl is a projectional factor of T9 ® Idy.

To prove (18) we set up a telescoping chain of operators connecting any
of the S¥ to SI% and invoke the stability estimates (16) available for the
operators ST when L c I € [0,1]. Thus we may finally take 70 = S[0:1,
Step 5. Retracing our steps, taking into account that the notion of projec-
tional factors forms a transitive relation, yields (9).

2. PRELIMINARIES

2.1. Factors and Projectional Factors up to Approximation. A com-
mon strategy in proving primariness of spaces such as L, is to study the be-
havior of a bounded linear operator on a o-subalgebra on a subset of [0,1)
of positive measure. This process may have to be repeated several times.
We introduce some language that will make this process notationally easier.

Definition 2.1. Let X be a Banach space, T, S : X — X be bounded linear
operators and let C' > 1, ¢ > 0.

(a) We say that T is a C-factor of S with error € if there exist A, B : X — X
with |[BT'A — S|| < ¢ and ||A]|||B|| < C. We may also say that S C-
factors through T with error €.

(b) We say that T is a C-projectional factor of S with error ¢ if there exists a
complemented subspace Y of X that is isomorphic to X with associated
projection and isomorphism P, A: X — Y (i.e., A7'PA is the identity
on X), so that [|[A"'PTA— S| < ¢ and |Al||A1P|| < C. We may also
say that S C-projectionally factors through T with error €.

When the error is ¢ = 0 we will simply say that T is a C-factor or C-
projectional factor of S.

Remark 2.2. If T is a C-projectional factor of S with error ¢ then I — T
is a C-projectional factor of I — S with error €. Indeed, if P and A witness
Definition (b), then PA = A and therefore A~'P(I — T)A=1— A"'PTA,
ie, |[AT'P(I-T)A— (I -8)|| <e.
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In a certain sense, being an approximate factor or projectional factor is a
transitive property.

Proposition 2.3. Let X be a Banach space and R,S,T : X — X be
bounded linear operators.

(a) If T is a C-factor of S with error € and S is a D-factor of R with error
0 then T is a C'D-factor of R with error De + 6.

(b) If T is a C-projectional factor of S with error € and S is a D-projectional
factor of R with error § then T is a C'D-projectional factor or R with
error De + 4.

Proof. The first statement is straightforward and thus we only provide a
proof of the second one. Let Y and Z be complemented subspaces of X which
are isomorphic to X. Let P: X — Y and QQ : X — Z, be the associated
projections, and A : X — Y and B : X — Z the associated isomorphisms
satisfying ||A||||[A™'P|| < C, |B|||B~'Q| < D. ||[A7'PT — S|| < ¢ and
|B~1QSB — R| < 4.

~ We define P = AQA™'P and A = AB. Then, P is a projection onto
A[X] and ||P|||A=*P|| < CD. We obtain

|B'Q(A™'PTA)B — B'QSB| < |B~'Q||B|l|A~"PTA - S| < D=
and thus |B~'QA"'PTAB — R|| < De + 6. Finally, observe that
A'P =B 'A7'AQAT'P = BIQATP
and thus |A~'PTA — R|| < De + 4. 0

The following explains the relation between primariness and approximate
projectional factors.

Proposition 2.4. Let X be a Banach space that satisfies Pelczynsky’s ac-
cordion property, i.e., for some 1 < p < oo we have that X ~ £,(X). Assume
that there exist C' > 1 and 0 < € < 1/2 so that every bounded linear oper-
ator T': X — X is a C-projectional factor with error € of a scalar operator,
i.e., a scalar multiple of the identity. Then, for every bounded linear opera-
tor T': X — X the identity 2C'/(1 — 2¢) factors through either 7" or I — T.
In particular, X is primary.

Proof. Let Y be a subspace of X that is isomorphic to X and complemented
in X, with associated projection and isomorphism P, A : X — Y, so that
|A~1P||||A|| € C and so that there exits a scalar A with ||[(A~*P)TA—\I|| <
e. If |\| > 1/2 then
|AATIPTA—I|| <2 < 1
=:B

and thus B~! exists with |B~!|| < 1/(1 — 2¢). We obtain that if S =
B7IA\"'A7LP then STA = I and ||S||||A|| < 2C/(1 — 2¢). If, on the other
hand || < 1/2 then, because ||[A~1P(I — T)A — (1 — \)I| < ¢, we achieve
the same conclusion for I — T instead of T'.
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IfX=Y®Zand Q: X — Y is a projection then we deduce that either
Y or Z contains a complemented subspace isomorphic to X. To see that we
can assume that for some scalar A\, with |A| > 1/2, @ is a C-projectional
factor with error ¢ € (0,1/2) of AI. Otherwise we replace @ by I — Q. From
what we proved so far we deduce that there are operators S; A : X — X so
that SQA = I. Then W = QA(X) is a subspace of Y that is isomorphic
to X. It is also complemented via the projection R = (S|y)~19: X — W.
So we obtain that Y is a complemented subspace of X and X is isomorphic
to complemented subspace of Y. Since in addition X satisfies the accordion
property it follows from Pelczynsky’s famous classical argument from [25]
that X ~ Y. Similarly, if (I — Q) is a factor of the identity we deduce
X~Z. O

2.2. The Haar system in L;. We denote by L; the space of all (equiv-
alence classes of) integrable scalar functions f with domain [0, 1) endowed
with the norm ||f]|; = fol |f(s)|ds. We will denote the Lebesgue measure of
a measurable subset A of [0,1) by |A].

We denote by D the collection of all dyadic intervals in [0, 1), namely

D:{[Z;—]l%) :jeNU{O},lgngj}.

We define the bijective function ¢ : D — {2,3,...} by
Lo Y
{ 27 ’23‘) 2
The function ¢ defines a linear order on D. We recall the definition of the
Haar system (hr)rep. For I = [(i —1)/27,i/27) € D we define I'",I~ € D
as follows: It = [(i —1)/27,(2i —1)/27tY), I~ =[(2i — 1)/27+1,i/27), and

hr = Xxr+ — Xx1--

We additionally define hy = x[p,1) and Dt = DU {0P}. We also define
t(0) = 1. Then, (hr);ep+ is a monotone Schauder basis of L, with the
linear order induced by ¢. Henceforth, whenever we write ) ;. we will

always mean that the sum is taken with this linear order «.
For each n € NU {0} we define

D,={1€D:|I|=2""} and D" = {0} U (U}_,Dy).

An important realization, that will be used multiple times in the sequel
is the following. Let I € D. Then there exists a unique kg € N and a unique
decreasing sequence of intervals () in (D), so that Iy = 0, I; = [0,1),
and Iy, = I, and for k =1,2,... ko1, Ix41 = I,j, or Ixy1 = I;. In other
words (1 k)’;zozl consists of all elements of D™ which contain I, decreasingly
ordered. For k = 1,2,...,kg — 1 put 6 = 1, if 4y = I," and 6y = —1 if
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Iy 41 = I, . We then have the following formula, already discovered by Haar,

ko—1
(19) 117 xr = o |~ X1y = 1t + ), Okl Tkl b
k=1
Note that in the above representation, if we define Iy, = I, then I, = I,
or I}, =1 ,j_l for kK = 2,...,ky. To simplify notation, we will henceforth
make the convention 6y = 1 and |Io|~! = || ~! = 1 to be able to write
ko—1
(20) kol ™ X1y = Y Okl Lkl .
k=0

This representation will be used multiple times in this paper.

A relevant definition is that of [D], the collection of all sequences (I1)72,
in Dt so that Iy = @, I = [0,1), and for each k € N, I;4; = I, or
Iy1 = I;. Note that for (Ix)72, € [DT] and k € N, I € Dy_y. Each
(Ix)72, defines a sequence ()32, as described in the paragraph above.
This yields a bijection between [D*] and {—1,1}. This fact will be used
more than once. On {—1,1}N we will consider the product of the uniform
distribution on {—1,1}, which via this bijection generates a probability on
[D], which we will also denote by | - |. Also, we consider on [D*] the
image topology of the product of the discrete topology on {—1,1} via that
bijection.

2.3. Haar multipliers on L. A Haar multiplier is a linear map D, defined
on the linear span of the Haar system, for which every Haar vector hy is
an eigenvector with eigenvalue ay. We denote the space of bounded Haar
multipliers D : Ly — L1 by Lgar(L1). In this subsection we recall a formula
for the norm of a Haar multiplier that was observed by Semenov and Uksusov
in [29]. We then use Haar multipliers to sketch a proof of the fact that every
bounded linear operator on L is an approximate 1-projectional factor of a
scalar operator.

Proposition 2.5. Let (1), € [DT] associated to (6)3, € {—1,1}. For
k € N define By, = Ij, \ Iy41 and let (ax);_, be a sequence of scalars.
Then we have

n
> apbpl Il b,
k=0

n
(21) gZ\ak—ak,1\+\anl.

Ly k=1

and for any 1 <m < n

(St )l

k=0

n

1
> 3 Z lag — ap—1].

Ly k=m+1

Proof. Note that the sequence (By)32, is a partition of [0,1) and for k € N
By, is the set in [0,1] of measure 2%, on which Orhr, takes the value —1.

(22)
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Let f = aohg + Y p_q Okax|Ix| 'hy,. For k € N put by = ay, if k < n and
b, = 0 otherwise. For each k € N the function f is constant on Bj and in
fact for s € Bj, we have

k—1 k-1
F(s)=bo+ > L7 b — |l "o = bo+ Y 2771b; — 2671y =1 .
j=1 j=1

Therefore, for any m=1,2,...n

@) |ru s, =§Xk|and |z, 5,

o
L= D IXkl
k=m

where for each k£ € N,

20~ 1
X = 2k = ok bo + Z
Putting Xy = 0, a calculation yields that for all k € N
(24) X *Xk 1+ = (bk 1— bk)

Applying the triangle inequality to (23) and (24) we conclude

oo o

1z =D Xkl = D 20X0] — [ X5
k=1 k=1
[ee]

o0
2Xp — Xe1l = > [bp — be]
k=1 k=1

which yields (21). In order to obtain (22), we deduce from (24)

n

PR S oo b lr—erXk\

k=m-+1 k m—+1

and therefore

n n

3 1 1
3 > [ Xkl + 51Xl 2 5 > bk — bial
k=m+1 k=m+1

which yields

n n n

1 1
Il = 31X 2 D 1Xel 51Xl 25 Y fe— e

k=m k=m+1 k=m+1

and proves (22). O
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Theorem 2.6 (Semenov-Uksusov, [29]). Let (ar);ep+ be a collection of
scalars, and D be the associated Haar multiplier. Define

o0
(25) DI = sup (3 far, — an,_,| + lim|az,|)

k=1
where the supremum is taken over all (I;)32, € [DT]. Then, D is bounded
(and thus extends to a bounded linear operator on L;(X)) if and only if
[ID|| < co. More precisely,

(26) DI <D < 3] DI

Proof. By (19), D is always well defined on the linear span of the set X =
{/I|7Yxs : T € D}. In fact, the closed convex symmetric hull of X is the unit
ball of L;. We deduce that || D| = sup{||Df]| : f € X}, under the convention
that ||D| = oo if and only if D is unbounded. Fix f = |I|71x; € X. Use
(19) to write

ko—1 ko—1
f = ‘Ik0|_1X[k0 = Z 9k|-[k|_1hlkv 1.€., Df = Z ak9k|Ik|_1hlk-
k=0 k=0

Extend (Ik)',zozo to a branch (I})72,. By (21) we have
= ko—1
(27) g( Z |a1k_a1k—1‘+|alk0—1|) <[Dflle, < Z |a1k_alk71|+‘alk071"
k=1 k=1
By the triangle inequality, |Df|r, <> req lar, —ar,_,| +1limg |ar,| < || D]|.
The lower bound is achieved by taking in (27) all f € X. O

The following special type of Haar multiplier will appear in the sequel.

Example 2.7. Let &/ C [D"] be a non-empty set and define the set A =
Upe_o{Ik, = (Ik)72y € &/} C D*. Let Py denote the Haar multiplier that
has entries a; = 1 for I € A and a;j = 0 otherwise. Then, by Theorem 2.6,
|Py|| < [|Ps|| = 1 and therefore P, defines a norm-one projection onto

Yo ={hr:1ecA}).
The following elementary remark will be useful eventually.

Remark 2.8. Let &/ be a non-empty closed subset of [D'] and A =
Une—o ke + (Ik)32g € &} Let D be a Haar multiplier with entries that are
zero outside A. Then, ||D|| = sup(lk)ﬁoeﬂ(zzozl lar, — ag—1| +limg |ag, |).

Haar multipliers provide a short path to a proof of the fact that every
operator on L is an approximate 1-projectional factor of a scalar operator,
which in turn yields Enflo’s theorem [22] that L; is primary.

Theorem 2.9. The following are true in the space L.

(i) Let D : Ly — L; be a bounded Haar multiplier. For every ¢ > 0, D is
a l-projectional factor with error € of a scalar operator.
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(ii) Let T : Ly — Ly be a bounded linear operator. For every ¢ > 0,
T is a 1-projectional factor with error £ of a bounded Haar multiplier
D: L1 — Ll.

In particular, for every € > 0, every bounded linear operator T': L1 — L1 is

a l-projectional factor with error € of a scalar operator.

We wish to provide a sketch of the proof of the above. Firstly, we will use
it at the end of the paper and secondly it provides an introduction to the
basis of the methods used in the paper. Now, and numerous times in the
sequel, we require the following notation and definition.

Notation. For every disjoint collection A of D and 0 € {—1,1}* we
denote heA = jealbshy. 05 =1 for all J € A we write ha = ZjeAh,J.
For a finite disjoint collection A of D we denote A* = U{I : I € A}.

Definition 2.10. A faithful Haar system is a collectlon (h1)jep+ so that

for each I € DT the function h; is of the form h; = RO Ay for some finite
disjoint collection A of D, and so that

(i) Ay = 01) = [0,1) and for each I € D we have |Af| = |I|,

(ii) for every I € D we have that A}, = [hph; = 1] and AT = [hghs = —1].

Remark 2.11. It is immediate that (hghr)ep+ is distributionally equiva-
lent to (hr);ep+. Therefore, (hr)ep+ is isometrically equivalent to (hr);ep+,
both in L; and in L. In particular,

Pf="Y " (hr, O 0

1eD+

defines a norm-one projection onto a subspace Z of L that is isometrically
isomorphic to L;. Note that, unless hy = 1, P is not a conditional expec-
tation as PX[() 1y = 0. Instead, it is of the form Pf = hoE(hgf|%), where
Y = o(hghr)rep+. Since hg is not Y-measurable it cannot be eliminated.
The advantage of the notion of a faithful Haar system is that one can be
constructed in every tail of the Haar system. The drawback is that it causes
a slight notational burden when having to adjust for the initial function hy
in several situations.

We will several times recursively construct faithful Haar systems (h I)IeD+s
which means that we first choose h@, secondly h[o 1), and then hI, I €D,

assuming that h; was chosen for all J € Dt with «(J) < ¢(I).

Proof of Theorem 2.9. Let us sketch the proof of the first statement. Let
(ar);ep+ be the entries of D. For every I € D denote by @ the Haar
multiplier that has entries 1 for all J C [ and zero all others. Then,
[|Qs]l = 1. First note that, for every e > 0, there exits Iy € D so that
II1DQr1, — ar, Q1| < e. Otherwise, we could easily deduce || D|| = co. Con-
struct a dilated and renormalized faithful Haar system (hj) ep+ with closed
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linear span Z in the range of @7, and let P : Ly — Z be the correspond-
ing norm-one projection and A : L; — Z be an onto isometry. Then,
|A=1PDA — aj I|| < e.

For the second part we will use that the Rademacher sequence (ry,), (i.e.,
Tn = ) _rep, hr, for n € N) ) is weakly null in L; and w*-null in (L1)* = Leo.
Using this fact, we inductively construct a faithful Haar system (iL I)IeD+ SO
that for each I # J we have

[(hr, T(1T17 )| < ey
where (g(7,7))(1,7)ep+ is a pre-chosen collection of positive real numbers with

Y&,y < & This is done as follows. If we have chosen hr for o(I) =
1,...,k—1. Let I € D" with «(I) = k and let Iy be the predecessor of I,
i.e., either I = IS‘ or I = Iy. Let us assume [ = Iar. We then choose the
next function iy among the terms of a Rademacher sequence with support
[hghz, = 1]. Denote by Z the closed linear span of (h;);ep+ and take the
canonical projection P : Ly — Z as well as the onto isometry A : L1 — Z
given by Ah; = h;. Consider the operator S = A"*PTA : L, — L, and note
that for all I # J we have |(hy, S(|J|7 hy))| = [(hr, T(|T| " hy))| < er)-
It follows that the entries a; = (h;, S(|I|"'hs)) define a bounded Haar
multiplier D and ||S — D| <, i.e., T is a 1-projectional factor with error &
of D. O

2.4. Haar system spaces. We define Haar system spaces. These are Ba-
nach spaces of scalar function generated by the Haar system in which two
functions with the same distribution have the same norm. This abstraction
does not impose any notational burden to the proof of the main result. The
only difference to the case X = L, is the normalization of the Haar basis.
Properties such as unconditionality of the Haar system or reflexivity of L,
are never deployed.

Definition 2.12. A Haar system space X is the completion of Z = ({hy, :
L € D}) = {{xs: I € D}) under a norm || - || that satisfies the following
properties.

(i) If f, g are in Z and |f|, |g| have the same distribution then || f|| = ||g||.
(ii) HX[O,l)H = 1.
We denote the class of Haar system spaces by H.

Obviously, property (ii) may be achieved by scaling the norm of a space
that satisfies (i). We include it anyway for notational convenience.

An important class of spaces which satisfy Definition 2.12, according
to [21, Proposition 2.c.1], are separable rearrangement invariant function
spaces on [0,1]. Recall that a (non-zero) Banach space Y of measurable
scalar functions on [0, 1) is called rearrangement invariant (or as in [26] sym-
metric) if the following conditions hold true: First, whenever f € Y and g is
a measurable function with |g| < |f| a.e. then g € Y and ||g|ly < ||f|ly. Sec-
ond, if u,v are in Y and they have the same distribution then ||ully = ||v||y.
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The following properties of a Haar system space X follow from elementary
arguments. For completeness, we provide the proofs.

Proposition 2.13. Let X be a Haar system space.

(a) For every f € Z = ({x1 : I € D}) we have ||f|lz, < [If]] < [[fllL-
Therefore, X can be naturally identified with a space of measurable
scalar functions on [0, 1) and 7« x ¢ Ly.

(b) Z = ({xr : I € D}) naturally coincides with a subspace of X* and its
closure Z in X* is also a Haar system space.

(¢) The Haar system, in the usual linear order, is a monotone Schauder
basis of X.

(d) For a finite union A of elements of D we put pa = |[xalx and va =
Ixallxs- Then, pava = |A|7'. In particular, (vphr, urhr)pept is a
biorthogonal system in X* x X.

(e) A faithful Haar system (h7) Lep+ s isometrically equivalent to (hz)rep+-
In particular, Pf = ZLGD+<VLhL7 f>uLhL defines a norm-one projec-
tion onto a subspace of X that is isometrically isomorphic to X.

Proof. By the first condition in Definition 2.12, we have

1€D,, I1€D,,
for all n € N, all permutations m on D,,, and all scalar families (ay : I € D,,).
To show the first inequality in (a) let n € N, f =37, arxs € Z and
let 7w : D,, — Dy, be cyclic (i.e., {n"(I):r=1,2...,2"} =D, for I € D,).
Then

11 =171l QHHZ > larlr ]| = 5

r=11€D,

The second inequality in (a) follows from the observatlon that for each n € N
the family (x7 : I € D,,) is 1-unconditional.
We identify each g € Z with the bounded functional zj, defined by

zy(f) = fo fg, and we denote the dual norm by || - ||.. From thls representa-
tion it is clear that || - ||« also satisfies the first condition in Definition 2.12.
Since ||1j1yl| = 1 and since for all f € Z, [ f < [fll1 < [If]l, we deduce
that the second condition in Definition 2.12 holds true for the norm || - ||..

Let (hy) be the Haar basis linearly ordered in the usual way, meaning that
if m < n, then either supp(hy,) C supp(hy,) or supp(hy,) N supp(hy,) = 0.
The claim of condition (c) follows from the fact that if f =377, a;h; € Z,
then for any scalar a,41 the absolute values of the functions f + an41hnt1
and f — an41hne1 have the same distribution and their average is f.

Let neN and I € D,, using for k> n cyclic permutations on {J € Dy, J C I}
we deduce that sup ey s<i1 [ f is attained for f = x;/|xr|| and thus
lIxzll-llxzl|l« = 27™. Since secondly, for each n, (x : I € D,,) is an orthogonal
family, we deduce (d).
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Since faithful Haar systems have the same joint distribution we deduce
the first part of (e). Since by (b), this is also true with respect to the dual
norm we deduce the second part of (e). O

In different parts of proof we will require additional properties of Haar
system spaces. The following class of Haar system spaces is the one for
which we prove our main theorem.

Definition 2.14. H* is the class of all Banach spaces X in H satisfying

(%) the Rademacher sequence (r,,), is not equivalent to the ¢1-unit vector
basis.

H** is the class of all Banach spaces X in H satisfying

(x%) no subsequence of the X-normalized Haar system (urhr)pecp+ is equiv-
alent to the #1-unit vector basis.

Remark 2.15. Examples of Haar system spaces which satisfy (x) and (xx)
are separable reflexive r.i. spaces.

We note and will use several times that (x) for Haar system spaces, is
equivalent with the condition that the Rademacher sequence (ry,) is weakly
null. To see this, first note that for any (a,) € coo, any o = (0y,) C {£1}, and
permutation 7 on N the distribution of ) anOnTr(n), does not depend
on o on m. It follows that (r,) is a symmetric basic sequence in X. This
implies that either r, is equivalent to the £; unit vector basis or it is weakly
null in X. Indeed, if it is not equivalent to the unit vector basis of ¢1, and by
symmetry no subsequence, is equivalent to the ¢; unit vector basis, it must
by Rosenthal’s £1 Theorem have weakly Cauchy subsequence and thus for
some subsequence (n) C N the sequence (ry,, — Tn,,_, : k € N) is weakly
null. But then also the sequence (7y,, + Tn,,_, : k¥ € N) is weakly null, and
thus 7,,, is weakly null and by symmetry (r,) is weakly null.

2.5. Complemented subspaces of L;(X) isomorphic to L;(X). Let
E, I be Banach spaces. The projective tensor product of E and F' is the
completion of the algebraic tensor product £ ® F' under the norm

N N
(28) = inf {3 ewlllfall 0 =3 €n® fu}-
n=1

n=1
It is well known and follows from the definition of Bochner-Lebesque spaces
that for any Banach space X, L; ®; X = Li(X) via the identification
(f ®x)(s) = f(s)x. Then, Lo (X™*) canonically embeds into (L1 (X))* via
the identification (u,v) = fol (u(s),v(s))ds. Recall that by the definition of
tensor norms the projective tensor norm satisfies the following property we
will use.

(o) For any pair of bounded linear operators T': £ — E and S : FF — F
there exists a unique bounded linear operator T® S : EQ, F — EQ; F
with (T'® S)(e® f) = (Te) ® (Sf) and | T @ S|| = ||T||||S-
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The next standard statement explains one of the main features of the
projective tensor product. For the sake of completeness, and because it is
essential in this paper, we include the proof.

Proposition 2.16. Let Z be a subspace of L that is isometrically isomor-
phic to Ly via A : L1 — Z and 1-complemented in L; via P: L1 — Z. Let
X be a Banach space and let W be a subspace of X that is isometrically
isomorphic to X via B : X — W and 1-complemented in X via @ : X — W.

Then the space Z(W) = Z ® W) coincides with Z @7 W and is isomet-
rically isomorphic to L1 (X) via A®B : L1(X) — Z(W) and 1-complemented
in L1(X)vian P Q: Li(X)— Z(W).

Proof. It is immediate that P ® @ is a norm-one projection onto Z (W) and
that A® B is a norm-one map with dense image. It also follows that A® B
is 1-1 on L1 ® X. One way to see this is to identify L; ® X and Z @ W
with spaces of bilinear forms on (L1)* x X* and Z* x W* respectively. To
conclude that A ® B is an isometry and that Z(W) = Z @, W take u in
L1 ® X. Note that v := (A® B)(u) isin Z®@ W C L1 ® X and write
v=>",fi®x;, where fi,...,fn € L1 and z1,...,2, € X. We will see
that Y. || fillllzi|l > [Ju|l, which will imply the conclusion, by the definition
of [[v]|. Indeed, v =(P® Q)(v) =Y i (Pfi) ® (Qz;) and

loll = Y IPfillllQaill =Y A P£illI1B~ Quill

i=1 i=1
> || Z TPfi) @ (BT Qui) ||
=y
It is immediate that (A ® B)(y) = v and thus y = u. O

The following standard example will be used often to define projectional
factors of an operator T : L1(X) — L1 (X).

Example 2.17. Let (EI)I€D+, (EL)L€D+ be a faithful Haar systems and let
X be a Haar system space. Take

= (h;: 1 €D+)C Ly and W = (h; : I € Dt) C X.
Then the map P : L1(X) — L1(X) given by

Pu = Z Z <E1®VL71L,U>|]‘717LI®,UJLﬁL
IeD+t LeD+

(recall that puy = HXI”;(l and vy, = ”XLH;(i) is a norm-one projection onto
Z(X) = <7LI ®@h:1,Le D+) and the map

A: Ll(X) — Ll(X) given by A(h[ X hL) :%1 ®7LL



18 R. LECHNER, P. MOTAKIS, P.F.X. MULLER, AND TH. SCHLUMPRECHT

is a linear isometry onto Z(X). Then, any bounded linear operator T :
L1(X) — Li(X) is a 1-projectional factor of S = A7'PTA : L1(X) —
L1(X), so that for all I, J, L, M € Dt we have

(hy @y, S(hy @ har)) = (hy @ by, T(hy @ hag)).

Proposition 2.18. Let &/ C [D"] be a subset that has positive measure.
Denote by A = UR°_o{Ix, : (It)7Z € ¢} and Yy = ({hs : I € A}). Then,
there exits a subspace Z of Y., which is isometrically isomorphic to L; and
1-complemented in Lj.

Proof. By approximating &/ in measure by closed sets from the inside, we
can assume that <7 is closed. For k € N let Ay = U{l : I € AN Dy}, and
o ={(I,) € [DF] : I € Dy, I;; C A}. Then it follows that & =, @ and
letting A = N A, we deduce that

Al = lim |Ag] = lim || = | .
k—o0 k—o0

But also, for any J ¢ A, we have J N A = (. It follows that for any f € L,
with flae = 0 and J ¢ A we have (hy, f) = 0 and thus f € Y. In
particular, the restriction operator R4 : Ly — L is a 1-projection onto a
subspace that is isometrically isomorphic to L;. O

The above proposition leads to the following example, which will be useful
in the sequel.

Example 2.19. Let &/ C [D] be a subset that has positive measure and
let X be a Banach space. Then, there exists a subspace Z of Y, that is
isometrically isomorphic to L1 via A : L1 — Z and l-complemented in L4
via P: L1 — Z. In particular, for any Banach space X the space

Z(X)=Z® X C L(X)

is isometrically isomorphic to Li(X) via A® I : L1(X) — Z(X) and 1-
complemented in L;(X) via P® I.

2.6. Decompositions of operators on L;(X). We begin by listing fur-

ther standard facts about projective tensor products. We then use these

facts to associate to each bounded linear operator 7' : Li(X) — L1(X) a

family of bounded linear operators on Li. In the next section we will study

compactness properties of this family. In later sections we use these prop-

erties to extract information about projectional factors of the operator T'.
Let E, F' be Banach spaces.

(a) For every e} € E* and fj € F* we may define the bounded linear maps
ez : E®r F — F and ¢/0) . E@,F — E given by e (e® f) = egle) f
and ¢'/0) (e ® f) = f5(f)e. Then, |lqeyll = llegll and [q¥8) ] = | f5]-

(b) For every eg € E and fo € F' we may define the maps ji¢,) : F' = E®7 F
and j©) . F - E ®, F given by Jeo)S = €0 ® [ and je = e® fo.
Then, [[j(eo)ll = lleoll and |59 = | fo]|-
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(c) For every bounded linear operator T': E®, F' — E®, F, f; € F*, and
fo € F the map TUd-fo) .= ¢(6)T(fo) . E — E is the unique bounded
linear map so that for all e* € E* and e € E we have (e*, T fo)e) =
(e* @ f5,T(e® fo)).

(d) For every bounded linear operator T': £ ®, F — E ®, F, e}, € E*, and
eo € E the map Tiex ey = q(ez)TJ(eg) + I' — F' is the unique bounded
linear map so that for all f* € F* and f € I we have (f*,T(e&eo)f) =
(5 ® f*,T(e0 ® f))-

Notation. Let X be a Haar system space. For L € D" we denote

(i) ¢* = qehe) . L1(X) — Ly,

(ii) jL = jeho) . L — L1(X), and

(iii) PL = jlq¢l: L1(X) — Li(X).

Note that, for any k € N, |22/, 1)<k} PE|| = 1. This is because this

operator coincides with I @ PI<Kl where PI<K . X — X is the basis

projection onto (prhr),(r)<i (this is easy to verify on vectors of the form

u = hy ® hr, whose linear span is dense in L;(X)). We may therefore state

the following.

Remark 2.20. Let X be a Haar system space.
(i) For each L € D*, P% is a projection with image

Yi={f® (urhr): f € L1}

that is isometrically isomorphic to Lj.
(i) (Y*) ep+ forms a monotone Schauder decomposition of Li(X). In
particular, for every u € L (X)

u= Z Phy = Z (¢"u) @ (pphr).

LeD+ LeD+
Thus, u admits a unique representation v =) ; p+ fL ® (urhr).

2.7. Operators on L; associated to an operator on L;(X). For a Haar
system space X, we represent every bounded linear operator T : Li(X) —
L1(X) as a matrix of operators (T(L’M))(L,M)em, each of which is defined
on Ll.

Notation. Let X be a Haar system space and let 7" : L1 (X) — L1(X) be a
bounded linear operator. For L, M € Dt we denote T\LM) = T(vLhi.parhar)
(recall from Proposition 2.13 that scalars pps and vy, positive, and chosen
so that parhas is normalized in X* and vphy is normalized in X), so that
for every u € L1(X) we have

Tu= Y PIT( Y PMu)= 3 3 R0

LeD+ MeD+ LeD+ MeD+

- Z Z (T(L’M)(un)>®(uLhL).

LeDt MeD+

(29)
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For L € Dt we denote TY = T(L:L),

The following type of operator is essential as it is easier to work with. A
big part of the paper is to show that, within the constraints of the problem
under consideration, every operator T : L1(X) — Li(X) is a 1-projectional
factor with error € of an X-diagonal operator.

Definition 2.21. Let X be a Haar system space. A bounded linear operator
T: Li(X) — Li(X) is called X -diagonal if for all L # M € D+, T(l:M) — 0,
We then call (TF) cp+ the entries of T.

Note that T is X-diagonal if and only if for all f € L; and L € Dt we
have T(f ® (urhr)) = (T*f) ® (urhy) if and only if for all L € D* the
space Y! is T-invariant.

Remark 2.22. If X is a Haar system space and T : L1(X) — Li(X) is a
bounded linear operator so that 3, |TEM)|| = e < oo, then (29) yields
that there exists an X-diagonal operator T : L1(X) — L1(X) with entries
(TT)pep+ so that |T —T|| < e.

3. COMPACTNESS PROPERTIES OF FAMILIES OF OPERATORS

In this section we extract compactness properties of families of operators
associated toa T : L1(X) — Lq(X). These results will be eventually applied
to families that resemble ones of the form (T(L’M))(LyM)EW-. The achieved
compactness will later be used in a regularization process that will allow us
to extract “nicer” operators that projectionally factor through 7. We have
chosen to present this section in a more abstract setting that permits more
elegant statements and proofs.

3.1. WOT-sequentially compact families. Taking WOT-limits of cer-
tain sequences of operators of the form 7*"*) is an important component
of the proof. This element was already present in the approach of Capon
8, 9].

This essential Lemma due to Rosenthal is necessary in this subsection
as well as the next one. A proof can be given, e.g., by induction on j for

e =2"7sup, [l
Lemma 3.1. ([27, Lemma 1.1]) Let (&,), be a bounded sequence of elements

of /1 and € > 0. Then, there exits an infinite set N = {n; : j € N} € [N]*®
so that for every jo € N we have >_. . |&n; ()] <e.

Here, WOT stands for the weak operator topology in Lq(X).

Theorem 3.2. Let X be a Banach space, T': L1(X) — L1(X) be a bounded
linear operator, and A, B be bounded subsets of X* and X, respectively.
Assume that B contains no sequence that is equivalent to the unit vector
basis of ¢1. Then, for every f € L the set

{T(x*’m)f : (z*,2) € A x B}
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is a uniformly integrable (and thus weakly relatively compact) subset of L.
In particular, every sequence in {T"®) : (z* x) € A x B} has a WOT-
convergent subsequence.

Proof. The “in particular” part follows from the separability of L; and the
fact that the set in question if bounded by [|7'|| sup g« zyeax s l2*|l[lz].-

Fix a sequence (z¥,,) € A x B. Assume that (T(*2%) f),, is not uni-
formly integrable. Then, after passing to a subsequence, there exist § > 0
and a sequence of disjoint measurable subsets (4;), of [0,1) so that for all
n € N we have

5<’/ xn,xn ( )dS’:KXAn’T(IZ’In)f)‘:‘<XAR®$:,T(f®a?n)>‘_

For every n € N define the scalar sequence &, = (£,(m)), given by &,(m) =
(xa,, @z}, T(f ®xy)). Then for every mo € N we have that for appropriate
scalars (Gn)N_, of modulus one

(30) S leu(m r—\<2>m ® G T(f @ w0)|

m=1

<[} 35 st © G| I
m=1

=max; <m<mg 125l

<ITHAE sup |l

z*,x)EAXDB

By Rosenthal’s Lemma 3.1, there exists an infinite subset N = {n; : j € N}
of N so that for all ip € N we have >, [{n, ()| < 6/2. After relabelling,
for all ngp € N we have

Y no(m)] < 6/2.

m#n

We now show that (z,,), is equivalent to the unit vector basis of ¢;. Fix

scalars aq,...,ay. For appropriate scalars 61,...,60yx of modulus 1 we have
N

(31) Zan (Xa, @25, T(f @3n)) 20 |an].
n=1

Put

_‘<ZXA @ (O, Zf@anxn )
I G| | I >t
m=1 o—

=maxi<m<n |25, |l

<]
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< 1T 1LAI
r*€A

Also,
—‘Zan XA ®xnaT(f®=Tn +Zanze XA ®$m, (f®$n)>
n=1 m#n
> 5Z|an| - Z|an| > len(m)| > 5/2Z|an|

m#n

Thus, || Znly antnll = 32514 lan|, where ¢ = §/2||T[||f]| supgeca llz*])-
O

3.2. Compactness in operator norm. We discuss families that are uni-
formly eventually close to multipliers and how to obtain compact sets from
them. This is particularly important in the sequel because compactness
will be essential in achieving strong stabilization properties of operators

Notation. For n € N we denote by P« : L1 — L1 the norm-one canonical
basis projection onto ({h; : I € D"}). We also denote P,y = I — Pi<y).

Definition 3.3. A set 7 of bounded linear operators on Ly is called uni-
formly eventually close to Haar multipliers if there exists a collection (D7 )re o
in £HM(L1) so that

tim sup (I[(T = D)oyl + | Py (T = Dr)|) = 0.
" TeT
The main result of this subsection is the first one in the paper that requires
a certain amount of legwork.

Theorem 3.4 (Fundamental Lemma). Let X be a Banach space, A, B

be bounded subsets of X* and X, respectively, and C C A x B. Let T :

Li1(X) — Li(X) be a bounded linear operator and assume the following.

(i) The set B contains no sequence that is equivalent to the unit vector
basis of /7.

(ii) The set {T@"*) : (z* z) € C} is uniformly eventually close to Haar
multipliers.

Then, for every n > 0, there exits a closed subset & of [DV] with |«/| > 1—n

so that the set {T(*"#) P, : (z*, ) € C} is relatively compact in the operator

norm topology.

Remark 3.5. It is not hard to see that the unit ball of Ly (L1) is a
compact set in the strong operator topology of Li. In fact, this is the w*-
topology inherited by a predual of L/ (L1), namely Rosenthal’s Stopping
Time space studied by Bang and Odell in [4, 5], by Dew in [11], and by
Apatsidis in [2]. The Fundamental Lemma (Theorem 3.4) states is that
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under the right conditions, strong operator convergence yields convergence
in operator norm on a big subspace of Li. Therefore, this is a type of Egorov
Theorem. We point out that some restriction to the family of operators is
necessary for the conclusion to hold. If one takes for example D), = P<y)
then this converges to I in the strong operator topology. Yet, for no non-
empty set of branches &7 the set {D,, Py : n € N} is relatively compact in
the operator norm topology.

Lemma 3.6. Let r > 0, ()32, € [D"] associated to (6;)32, € {—1,1}",
and (a})(xn)e{oyun)xy be a collection of scalars. Assume that there exist
k1 <1 < kg < ¥y < --- so that for each n € N we have

In

Z lag —ag_q1| >

k=kn+1

For every ¢,n € N define f! = Zizo a?Ok|Ix|~'hy,. Then, there exists a
strictly increasing sequence of disjoint measurable subsets (Ay)y, of [0,1) so
that for all n € N and ¢ > ¢,, we have

fi(s) = ft(s) on A, and / | [ (s)|ds > r/3.
An

Proof. Let (By) be the partition of [0, 1), defined by By = Iy, \ I11, k € N.
We conclude from the inequality (22) in Proposition 2.5 that:

(i) for every k < ¢, < ¢ € N and s € By we have f!(s) = fi(s) and
(ii) for every m < ¢, € N we have

In

1
[ 1redszg Y ja- ol
U™ By _
k=m k=m+1
Put A, = UflknBi- The conclusion follows directly from (i) and (ii). O

Proof of Theorem 3.4. Put T = {T"%) : (z*,2) € A x B}. Take a family
(Dr)r that witnesses Definition 3.3. For each T' € .7 we have

(32) H(T - DT)P(>k)|| < Sgg (H(S — DS)P(>;€)H) = €k.
1P T P<iyll < || Pk DrPik|| +||Por (T — Dr) Py |
=0
(33) < ||Pow (T — Dr)|
< ;gg (HP(>k)(S - Ds)H) = .

Both (gx)x and (d)x tend to zero. For each T' € 7 denote by (a?);ely the
entries of Dyp.

Claim: Fix o = (I)72, € [DT] and r > 0. Then, there exists kg € N so
that for all T € 7 we have > 7, |a£ - a£71| <r.
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We will assume that the claim is true and proceed with the rest of the
proof. For every N, kg, € N let

oo
ANk = {a = (Ix)72, € [DT] : sup Z |a£ - a£71| < 2*N},
Te‘gk:ko

which is a closed subset of [D*] and by the claim we have Uy, oy k, = [D7],
for all N € N. We may therefore pick a strictly increasing sequence of
natural numbers (ky) so that for each N we have [y x| > 1 —n/2N. We
put &/ = Nnay , and we demonstrate that this is the desired set.

To show that {T'P, : T € 7} is relatively compact with respect to
the operator norm we fix ¢ > 0 and (7},), in 7. For each n € N denote
D, = Dr,. We will find M € [N]* so that for all n,m € M we have
| TP — TrnPoy|| < 11e. Fix N € N so that 27V < ¢, g;, <e¢, and 8, <e.
For each n € N write

Tn = DnPopy) + (Tn — D”)P(>kN) Piokn)TnB(<iy) T Pl<kn) TnP<ky) -

/

=:Ap =:Bj =:Cp,

Then we have ||A,| < ey < € and ||By|| < 0y < €. By passing to a

subsequence of (7,) we may assume that for all n,m € N we have (letting
at =a;")
(34) > lap—af|<e
IeD+
{|I|21/2kN+1}

Since the C), are bounded elements of a finite dimensional space, we can also
assume that ||Cy, — Cy,|| < e, for m,n € N. Therefore, for n,m € N we have

| TPy — TinPos|| < | DnPsin)Por — DinPsiy) Por || +5e.

=:A

Luckily, the remaining quantity A is the norm of a Haar multiplier on L4
and we know how to compute this. If for o = (I;,)7°, € &/ we put

x
A, = Z |(a}, —af}) — (af,_, —af )|+ \a}‘kN — a?;N| + h}gn la}, — af}
k=kn—+1
o
<2 Z |(a}, —af;)— (af,_, —ap )| +2 |a}‘kN — aTkN| < 6Be.
k=ky+1 —_——

<e

<2/2N<2¢

Then, by Remark 2.8, A = sup,c, Ay and thus |1, Py — 1), Py < 1le.
We now provide the owed proof of the claim. We fix o = ()32, with

associated signs (0;)7,- Let us assume that the conclusion fails. Then, we

may find (T},), = (T*n*)),, in .7, each T}, is associated with a D,, (each
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D,, has entries (a});ep+), and ki < 1 < ky < {3 < --- so that for alln € N
ln

Yo et —af =7

k=kn+1

Pick ko € N so that e, < r/12. For k,n € N define b} = 0 if k¥ < ky and
by = a?k if k > kg. If we additionally assume that k; > kg then for alln € N
we have

ln
(35) SOz
k=k,+1
For each n, ¢ € N put
4
frl; = szakukrlhlk = DnP(>kO)(|Ig+1|_1X[£+1).
k=0 N———/

=y
By Lemma 3.6 we may find a sequence of (A,), of disjoint measurable sets
so that for each n € N the sequence (f%(s))¢>g, is constant for all s € A,
and ||f|a, |lL, > /3. For each n € N fix g, in the unit sphere of L., with
support in A, so that for all £ > ¢,

r/3 < Hff;”AnHLl = ‘(gmfﬁw = \(ngnP(>ko)(W)>|
< [{gns TaPioko) (o)) | + /12 = [{gn @ a7, T( (Pskoyte) @n))| +7/12.
—_———
ol
Note that for all £ € N, ||¢¢||r, < 2. Then, for all n € N and ¢ > ¢,

[{gn © 27, T(60 © 20))| = /4.
Pick an L € [N]* so that for each m,n € N the limit
&n(m) := %grg(gm ® ), T(1e ® xy)) exists.

Because the sequence (g, )nm is disjointly supported, an identical calculation
as in (30) yields that for all n € N we have

o la(m) <27 sup [|lz*|[l].

™ (z*,z)eC
Thus, by Rosenthal’s Lemma 3.1 we may pass to a subsequence and relabel
so that for all ng € N we have ., |&no(m)| < /8.

We will show that (z;,), must be equivalent to the unit vector basis of ¢1,
which would contradict our assumption and thus finish the proof. Fix scalars
ai,...,any and for ¢ € L with ¢ > / pick appropriate scalars Cf, e ,Q{, of
modulus one so that we have

r X
3 Janl 30490 @ (G, T (60 @ (anwn)
n=1 n=1
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and put
N N N
=D gn® (Chan), > T(de® (O anwn)))
m=1 n=1 n=1
N
< (2 IS aneal|
I sup [l2"]) g Zl|
But also,
%lenll, A= hm ‘ Z In ® n n (¢Z ® (anxn))>
+ZG"ZCW gm T(¢€®$n)>‘
m#n
. .
EZ an|_Z|an| Z |€n(m Z§Z|an|'
n=1 = m;én n=1
Therefore, || 320, ananl| > r/(16]|T[|sup,c 4 |2*[|) Sy lan]- O

4. PROJECTIONAL FACTORS OF X-DIAGONAL OPERATORS

The main purpose of the section is to prove the following first step towards
the final result. The Fundamental Lemma (Theorem 3.4) is a necessary part
of the proof.

Theorem 4.1. Let X be in H* and let T': L1(X) — Li(X) be a bounded
linear operator. Then, for every ¢ > 0, T is a 1-projectional factor with
error € of an X-diagonal operator S : L1(X) — L1(X).

The strategy is to first pass to an operator S with the family (S(=M)) LM
uniformly eventually close to Haar multipliers (in reality, S satisfies some-
thing slightly stronger). We will then use the Fundamental Lemma to elimi-
nate these entries altogether. The following result states how uniform even-
tual proximity to Haar multipliers is achieved in practice.

Lemma 4.2. Let .7 be a subset of £(L1) and (g(7,7))(1,5yeptxD+ be a
summable collection of positive real numbers. If for every I # J € DT and
T € . we have |(hy, T(|J|" hy))| < g(1,7) then 7 is uniformly eventually
close to Haar multipliers.

Proof. For fixed T € 7 put a; = (hy, T(|I"'|h;)). This collection defines
a bounded Haar multiplier Dy because for all f in the unit ball of L,

T = DI < Yrepr S sepraren | T hy))] < oo. Also, for all

n €N,
Z Z £(1,7) =t €n and

IeDt JeD+\D»

|7Pny = DrPsy
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HP(>n)T—P<>n)DTH DD
IeD+\D» jeD+

Both (ey,), and (dy,), tend to zero. O
The next lemma. is the basic tool used to achieve the first step.

Lemma 4.3. Let X be in H* and .7 C £L(X), G C X*, and F C X be
finite sets. Then, for any € > 0, there exists ig € N so that for any disjoint
collection A of D with min¢(A) > ig and any § € {—1,1}* we have

gelél%)é (g, T T(h% ))| < e and emaux ‘<hA, M <e

(recall that hY, was introduced before Definition 2.10).

Proof. The result is an immediate consequence of the following fact: let (Ag)
be a sequence of finite disjoint collections of DT with limy mint(Ag) = oo
and for every k € N let 0 € {—1,1}4*.

(a) The sequence (hi’“k) & is weakly null.

(b) The sequence (hi’“k) k is a bounded block sequence in X* and thus it is
w*-null.

There is nothing further to say about statement (b). We now explain how
statement (a) is achieved. Note that any sequence of independent {—1,1}-
valued random variables of mean 0 is distributionally equivalent to (ry,),
and thus weakly null. Any sequence as in statement (a) has a subsequence
which is of the form (%), where (r,) and (r],) are both sequences of
independent {—1, 1}-valued random variables of mean 0. Thus, it is weakly

null as well. ([l
We carry out the first step towards the proof of Theorem 4.1

Proposition 4.4. Let X be in H* and denote by C the set of all pairs (g, f)
in Bx» X Bx so that g and f have finite and disjoint supports with respect to
the Haar system. Then, every bounded linear operator T : Li(X) — L1 (X)
is a 1-projectional factor of a bounded linear operator S : L(X) — Li(X)
so that the family {S9) : (f,g) € C} is uniformly eventually close to Haar
multipliers.

Proof. We will inductively construct faithful Haar systems (h]) 7ep+ and
(hL) rLep+- In each step k of the induction we will define h1 and then hL
with k = «(I) = «(L) (i.e., I = L but we separate the notation for clarity).
These vectors are of the form hI = ZJGA hy and hL = ZMeF hyr. The
inductive assumption is the following.

For every J, J', M, M’ € DT with «(J') # «(J) < k and (M) # (M) <k

we have

(36) [(hy @ varhar, (17| hyr @ paprhag ) )| < 27 (FUI)HLM)+M),
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We may start by picking E@ = /f;@ = hy. We now carry out the k’th
inductive step. Let I = L € DT with «(I) = «(L) = k. We will apply
Lemma 4.3 twice, once for L; and once for X. First, define the following
finite sets.

T = {T(VMEM»MM’EM/) . L(M),L(M,) <k} CL(L)
G ={hy:u(J) <k} C (L1)* and Fy = {|J|hy: u(J) < k} C Ly.
Use Lemma 4.3 to pick ?LI so that

7 —4k 7 —4k
e (g, T(h1))| <27 and o max [(hr, T(f))| < [H127%.

Next, we take the finite sets
Ty = {T(EJv‘J/|_1%J’) (), u(J) <k} C L(X)
Gy = {varha  o(M) < k} C (L1)* and Fy = {pashas : o(M) < k} C X,
Use Lemma 4.3 to pick ﬁM so that

e g T(e))| < pp'27 and max (e, ()| < v t27

The inductive step is complete and it is straightforward to check that the
inductive hypothesis is preserved.

Take the operator S given in Example 2.17. We will show that it has
the desired property. Fix g € Bx«, f € Bx with g = Y ,;cpbyuvarhay and
[ =2 ameramparhys so that F,G are finite and disjoint. Then,

S§9:.f) — Z Z basayy SM)
MEE M/€F
and for I # J € DV we have

[y, SOD QI RN < S0 N [y, SMMO (1717 hy))

MeFE M'eF
=33 [ @ (warhan), S((1T17 ha) @ (uarhar)))|
MeE M'eF
=3 > b @ (warhar), (117 hg) @ (parhar)))|
MeE M'eF
< 30T 2 WNRIHADFUMD) < 9= (DR —; gy
MeE M'eF

By Lemma 4.2, the family under consideration is uniformly eventually close
to Haar multipliers. O

Remark 4.5. Proposition 4.4 can be achieved if we merely assume that X
is a Haar system space as condition (%) of Definition 2.14 can be replaced
with a probabilistic argument. We presented the slightly simpler proof that
assumes (*).
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We now eliminate the off-diagonal entries to obtain an X-diagonal oper-
ator that projectionally factors through T'.

Proof of Theorem 4.1. By Proposition 4.4, T is a 1-projectional factor of an
S : Li1(X) — L1(X) that satisfies condition (ii) of Theorem 3.4.

For a finite pairwise disjoint collection I' C Dt we define I'(n) = {D €
D,, : D C T'*}. Note that I'(n) is a partition of I'* for large enough n. Also
note that from our condition (x) it follows that for two finite subsets I',T”
of D, with T* N (I)* = 0, the set

C(F’F/) = {(V(I")* hp/(n),,up* hp) n e N} U {(Vr*hp, M(F’)*hl"’(n)) n e N}

satisfies condition (i) of Theorem 3.4. The following claim will be the main

step towards recursively defining an appropriate faithful Haar system (iL L)
Claim. There are o/ C [D], with |&/| > 1 —n, and Z € [N]*>, so that
lim SU) e p o — 0 and lim SUrirEen e p, o =g
new new

with respect to the operator norm, for all T, TV C D, with T'* N (I')* = (.

In order to show the claim we choose for each pair (I',I”), with I', TV C D
being finite, 7y > 0. with Zn(npz) < 7. Then, using Theorem 3.4,
we choose a closed set @ vy in [DF] with |[&/p | > 1 — 5 vy, so that
{S(g’f)P@,/(F’F,) - (g, f) € CTI} is relatively compact in the operator norm
topology. Put &/ = N/ vy and note that |/| > 1 —n and that for each
(T, I") we still have that {S@) P, : (g, f) € CTT)} is relatively compact.

Via a Cantor diagonalization find % € [N]* so that for every pair (I',I")
both limits

/ /
ST = qim §@anhrryrreht) pand §8T):= Jim S@rehran« b)) p,
new new

exist with respect to the operator norm. As we will now see right away,
SF"F) = Sér,r) = 0. Indeed, for any g € L, and f € L; we have

<g7 Sér’rl)ﬁ <g7 S(l/r*hrvu(r/)*hr/(n)) (P%f))>
(g ® (vr-hr), S((Per f) @ (e b)) ) = 0

because (hr(n))n is weakly null in X, by Lemma 4.3. With the same com-
putation, SéF’F/) = 0 because (hr/(n))n is w*-null in X*. This finishes the
proof of the claim. N

We now choose inductively a faithful Haar system (hz)rep+ so that for
every L # M € DT we have

(37) |SCERe R P | < e2m (D HOD),

= lim
new

= lim
new

Assume M € D and fNLL = hr,, has been chosen for all L € Dt with
(L) < (M), (hg = hg and h(y 1y = hjg1) by definition). Without loss of
generality we can assume that M = K™ for some K € D with «(K) < «(M).
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Thus we will choose I'js so that I, = [hxg = 1]. For large enough ng € N

it follows that [hx = 1] = (I')* for some IV C D,,,. Then we can use our
claim that for large enough n > 0, we let I'y; = I''(n) we deduce (37) for all
L € D, with «(L) < (M)

Apply Proposition 2.18 to find a subspace Z of Y, (i.e., in the image
of Py) that is 1-complemented in L; via P : Ly — Z and isometrically
isomorphic to L; via A: L — Z. Let also W be the closed linear span
of (hy)rep+ in X, let Q : X — W be the canonical 1-projection, and
B : X — W be the canonical onto isometry.

By Proposition 2.16 the operator R = ((A7'P) ® (B7!'Q))S(A® B) is a
1-projectional factor of S, and thus also of T. It remains to see that R is
e-close to an X-diagonal operator. Fix L # M. To compute the norm of
RM) we also fix g € By and f € Br,.

(g, REMD ) = [(g @ (vihe), R(f @ parhar))|
= (P A 9@ Q"B "vrhy), S(Af @ Buarha))|
—_— —/ T =~ N

=vEB :ZUEBYW

=vrhy, =parha

- |<U7S(VLTLLJMV[}NLM)(PJJU)M < e (L))

By Remark 2.22, R is e-close to an X-diagonal operator. ([l

5. STABILIZING ENTRIES OF X-DIAGONAL OPERATORS

Once we have an X-diagonal operator at hand we can pass to another
X-diagonal operator whose entries are stable in an extremely strong sense.

Theorem 5.1. Let X be in H** and let T': L1(X) — L1(X) be a bounded
X-diagonal operator. Then, for any collection of positive real numbers
(er)rep+, T is a 1-projectional factor of an operator S : L1(X) — Li(X)
with the following properties:

(a) S is X-diagonal with entries (S*);cp+ and
(b) for every L, M € DT with L C M we have ||S* — SM|| < e

Th above theorem is proved in two steps. The first one is to pass, from an
arbitrary X-diagonal operator, to another one whose entries are uniformly
eventually close to Haar multipliers. This is perhaps the most challeng-
ing part of the entire process. For presentation purposes we momentarily
skip this. Instead, we describe the step that follows it, which is the strong
stabilization of the entries, given the uniform eventual proximity to Haar
multipliers. This is based on the Fundamental Lemma (Theorem 3.4) and a
simple concentration inequality. This proof also serves as an icebreaker for
the proof of the first step which is presented afterwards in this section.

Proposition 5.2. Let X be in H** and let T : L1(X) — Li1(X) be a
bounded X-diagonal operator. Assume that the set of entries {77 : L €
DT} of T is uniformly eventually close to Haar multipliers. Then, for any
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collection of positive real numbers (¢1)rcp+, T is a 1-projectional factor of
an X-diagonal operator S : L1(X) — L1(X) so that for every L, M € D"
with L € M we have ||S* — SM| < ep.

We start with the probabilistic component required in the proof.

Lemma 5.3. Let N € N, M > 0, 2 be a uniform probability space with 2/N
elements, and let Q = UN_ {w-! wl} be a partition of  into doubletons.

For a function G : Q — [~ M, M] define ® : {—1,1}" — [~ M, M] given by

1 N
(38) Oe) =+ > Glwin).
n=1

Then, E(®) = E(G) and Var(®) < M?/N, where on {—1,1}V we also
consider the uniform probability measure. In particular, for any n > 0,

2

— > < —.
(39) P(‘@ E(G)‘ > n) < o
Proof. For 1 < n < N let ®, : {-1,1}" — [-M, M] given by ®,(c) =
G(wSr). This is an independent sequence of random variables and for each
n € N we have

1

E(@n) = 5 (Gwy") +Glwp)) and Var(®,) = 2 (Glwy ') = Glwn))”
Then, E(®) = (1/N) Egzl E(®,,) = E(G). By independence we obtain

N
1 3 1 4M?*  M?
n=1

O

Lemma 5.4. Let K be a relatively compact subset of a Banach space.
Then, for every £ > 0 and 7 > 0 there exists N(K,e,n) € N so that for every
N > N(K,e,n) the following holds. For every uniform probability space 2
with 2N elements and partition Q = UY_ {w, 1 wl} into doubletons, for
any function G : Q — K, if we define ® : {—1,1}"V — conv(K) given by

1 N
°6) = 7 2 Gl
then E(®) = E(G) and )
(40) IP’(H(I)—IE(G)H zn) <e.

Proof. The statement E(®) = E(G) is proved exactly as in the scalar val-

ued scenario and it is in fact independent of the choice of N(K,¢,n). For

the second part fix e,n7 > 0, and take a finite 7/3-net (kz)fff") of the

set conv(K U (—K)). Fix norm-one functionals ( fi)?ikl’") so that for each

1 <i<d(K,n) we have f;(k;) = ||ki||. In particular, for any ki, ke € co(K)
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with ||k1 —ke|| > 7 there exists 1 < i < d(K,n) so that | f;(k1)— fi(k2)| > n/3.
Also set M = supyc ||k]|-

If we now fix N, X, G, and ® as in the statement. For 1 < i < d(K,n)
put G; = f; oG and ®; = f; o ® then

{wilo@) ~E@)>nyc | {w:l®iw) ~EG)| = n/3}
1<i<d(K,n)

and thus by Lemma 5.3 we have

9>
P(|® - E <d(K,n)—.
(19~ E(G)| > 1) < d(m) o
Picking any N (K,e,n) > 9d(K,n)M?/(en?) completes the proof. O

Remark 5.5. Let X be and Haar system space, T': L1(X) — L1(X) be an
X-diagonal operator, and I" be a disjoint collection of D*. Then, for every
g€ Lo, f € Ly, and 6 in {—1,1}" we have

(g, T MEmmehE) ) — (g @ v b, T(f @ prehih))
=T > 0m00(g @ har, T(f @ hi))

Mel' Lel’

=730 0mbilg @ ha, (THf) @ hr)
Mel Lel’

=T >0 0m00(g, TR £) (ks b
MeTl Lel’

= > (ILI/[T*)) (g, T" £).

LeT

In particular, the above expression does not depend on the choice of signs
0, i.e., we may write

7T . prhfour=hf) _ Z (|||t TE.
LeT

Proof of Proposition 5.2. Since X is in H**, the conditions of the Fundamen-
tal Lemma (Theorem 3.4) are satisfied for B = {uphz : L € D*}. Fix some
€ (0,1). We apply the Fundamental Lemma to find a closed subset o/ of
[D*F] with |«/| > 1 —n and so that {T*P,, : L € DT} is relatively compact.
By Proposition 2.18 there exists a subspace Z of Py/(L1) that is isometrically
isomorphic to Ly via A : L1 — Z and 1-complemented in Ly via P : L1 — Z.
The operator T is a 1-projectional factor of S = ((A~'P)®@ I)T(A®I). and
in fact for every L € Dt we have SL' = A"'PTYA = A'PT'P,A. In
particular, for every set {S* : L € Dt} is relatively compact. Let K be the
closed convex hull of {S¥ : L € DT}, with respect to the operator norm.
As in the proof of Theorem 4.1, for every finite disjoint collection I" of D
and n €N define I'(n) = {L € D,, : L C I'*}. For finitely many n € N, I'(n)
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may be empty however eventually I'* = I'(n)*. Note that for n sufficiently
large so that I'* = I'(n)* we have

(41) SL = gt Z st e K.

# LGF
By the relative compactness of K pass to an mﬁnlte subset % of N so that
for each disjoint collection T' the limit S, = lim,cq S, exists. We point
out for later that for any partition I' =1'y U - - - U 'y, we have
(42) Sto = (ITTI/IT[) S5 + -+ (ITkI/IT*[) S2&-

Pick (61)ep+ so that for all M € DT we have >, -1, 0r < en/3. We
will recursively define a faithful Haar system (hz)pcp+ so that each hy =
ZMEFL Cvhar with Ty, € Dy, , with np, € . We will require that addi-
tional conditions are satisfied.

For each L put T} = {M € Dy, 41 : M C [hghy = 1]} and T = {M ¢
Dp,+1: M C [hghy = —1]}. In the case L = () the set ', is empty and
we don’t consider it, which is consistent with the fact that there is only one
immediate successor of () in DT. For each L we define a disjoint collection
E;, of Dt with E7 =T'7. This auxiliary collection Ey, will be chosen in the
inductive step before I'; and in fact it will be used to choose the latter. If
L =0put B = {[0,1)},if L = [0,1) put B, =Ty, if L = L§ put B, =T} ,
and it L = Ly put Ef = I'; . Below are the additional requirements for
each L € DT.

(i) The set I'z, is of the form Ef(nr).
(i) 5B — SEr|| < .
(iii) |SE: — SLE || < 6y, and [|SE: — SLE| < 6.
If we have achieved this construction we define
Q: Li(X) = Li(X), by Q(f) = D (hy@vah, NI hy@parha,
J,MeD+
B:Li(X)— Li(X), by B(h; ® hy) = h; @ hy.

Put R = B~'QSB. It follows that R is X-diagonal and, by Remark 5.5,

for each L € Dt we have RF = SEL Then, for each L we have

+ rt
IR — R™"|| = ||Spr — nL+ cl< HS — SpEE |+ |SEE — S
rt
(43) < |1Sad — nL+ S+ 26 (by (11) & (iii))
+
< (S5 — SoE || 4 || SaE T — Sk + 26
(i) +
< ||SaE = S|+ 6y + 26, = 26, + 6p+

because, by definition, I'} = Ep+. Similarly, we deduce ||RF — RE™| <
201, + 67-. Also, using ST0 = ST we deduce |R? — RIV| < 26y. By
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iterating this process, we may deduce that for every L C M we have that
IRY — RM|| <33 nca On < em

It remains to explain how we ensure that conditions (i), (ii), and (iii) are
upheld. We start by putting Ey = {[0,1)}, by picking ny sufficiently large
so that HS%@ — S0 < 5y, and by taking ¢y = 1 for M € Ep(ng) = Tp.
Assume that we have carried out the construction up to a certain point and
the time has come to pick hy. Let Ly be the immediate predecessor of L.
We will assume L = L. Similar arguments work if L = Ly or if L = [0,1).
Put B = FJLFO and pick n;, € Z so that
(44) 1S — S|l < O and #Er(n1) > N(K,1/2,6r),
where N(K,1/2,0r) is given by Lemma 5.4 to the compact set K, defined in
beginning of this proof. We now apply that Lemma to G : Er(np +1) = K
with G(M) = S I we endow G with the uniform probability measure,
by (42), E(G) = SELLF) - Because Er(ng + 1)* = E}, we may instead
write E(G) = SEL. We partition Ey(ny + 1) into doubletons by writing
Er(np+1) = Uyep, ) {M*, M~ }. For M € E(n) =T define M' and
M~ as follows.
Al [ MM C [hg = 1]

M~ if M C [hy = —1]
Take @ : {—1,1}''2 — conv(K) given by
1 1 (M)
O(Q) = o >, GOy = o > s
#l'r Mery, #L'L Mery,
By the choice of ny, so that #Er(nr) > N(K,1/2,0.), there exists a choice
¢ € {-1,1}'% so that
19(¢) — E(G)l| = [ @(¢) — S| < 6.

By (42) and the definition of ® we deduce that (1/2)(®(¢) + ®(—¢)) = Sk
and therefore we also have that

IG(¢) = S2F|| < o
To finish the proof, it remains to observe that if we take hy, = > mrery, S(M)ha

we have that STZ = ®(¢) and STt = ®&(—¢). Indeed, taking a long and hard
look at the definition of M! and M~! we eventually observe that for each
M € T'p, we have (hgC(M)hnr)|pcony = 1 and (hgC(M)har)|p—con = —1.
This can be seen, e.g., by examining all four possible combinations of values
of hg|ar and ((M). Therefore, it is now evident that

Tf = {M € By(ng +1): M C [hghy = 1]} = U{MS®) : M e T}

ond -t = d M if M C [hg = 1]
M* if M C [hy = 1]

+
l_‘L

and therefore Sod = (#I'n) ™" Y y/er, S 2 ®(¢). Finally, by using

L5 1 5 ) = s = 52 = L (a(0) + 2(-0))
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we see that Sod = O(—().
O

Now that we are warmed up by the proof of Proposition 5.2 we are ready to
proceed to the slightly more challenging proof of the following. We point out
at this point that Theorem 5.1 is an immediate consequence of Proposition
5.2 and the following Proposition 5.6

Proposition 5.6. Let X be in H** and T : L1(X) — Li(X) be an X-
diagonal operator and let (8( I, J))( 1,7)e(p+)2 be a collection of positive real
numbers. Then, T is a 1-projectional factor of an X-diagonal operator S
with entries (S1)pcp+ and the property that for every L € Dt and I # J €
DT we have

(45) [(hr, S (117 )| < e

In particular, the entries of S are uniformly eventually close to Haar multi-
pliers.

Proof. The “in particular” part follows from Lemma 4.2 we therefore focus
on achieving (45).

For each finite disjoint collection I of AT we define T'(n), T', and T! as
in the proof of Proposition 5.2. Because X € H**, by Theorem 3.2, applied
to the set B = {uphy : L € D}, for every f € Ly the set {T*f: L € Dt}
is relatively compact and thus so is its convex hull. In particular, for every
finite disjoint collection I', {T f : n € N} is relatively compact by (41). By a
Cantor diagonalization, we may find % € [N]> so that WOT-lim,,cq T\ =
TL exists for every finite disjoint collection T.

We will define inductively two faithful Haar systems (hy)jep+, (ﬁ L)LeD+-
In each step of the induction we will build a single vector hr but we will
build an entire level of vectors hy. For example, in each of the first four
steps of the inductive process we will define respectively the collections of
vectors

{hg: hg}, {ﬁ[0,1)§ﬁ[0,1)}a {ﬁ[0,1/2);71[0,1/2)@[1/2,1)}, and
{hiy2,1)i Poa /), hiayai2)s Prije,s e, /e t-

This asymmetric choice is necessary because whenever we pick a new vector
h; we have to stabilize its interaction with allﬁL that will be deﬁnAed in
the future. For each I,L € D" we will have h; = ZJEA[ hy and hy =
ZMGFL Carhas, for some family ((py : M € T') C {£1}.
Let us set up the stage that will allow us to state the somewhat lengthy
inductive hypothesis. For each I € DT let
6/1' = min 8((]7‘]/)

/ +.
Lihein?
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and fix (01)ep+ so that for all M € D we have

Z 5L < €§\4/6

LCcM
Here, D_; = {0} and Dy = {[0,1)}. For each k € N and for every L € Dj_»
we have for some n;, € %, I'r, is a finite disjoint collection of D,,, and
|7 | = |L|. Additionally, if ¢(I) = k the following hold.
(a) Forsome ay € N, Ay is a disjoint collection of D\ D1 and |Af| = |I|.

If K > 1, then ag > a_1 and we put D = ().

(b) For every J € DT with «(J) < k and every M € D*~2 we have

[(hy, T (|17 )| < €7/2 and [(hy, T"™ (JI) 7 hy))| < 7/2.

We will impose additional conditions. As in the proof of Proposition 5.2
weput '] = {M € Dy, 41: M C [hghy, =1]} and T = {M € Dy, 41 : M C
[hghr = —1]}, for each L. If L = 0 put E;, = {[0,1)}, if L = [0,1) put B, =
Ly, it L = LS‘ put Ep = Fz'o, and if L = Ly put Ef = I';,- Furthermore,
for each o« € N let P, : L1 — L1 denote the canonical projection onto
({h1: I € D*}). We require the following for each L € Dy_.

(i) The set I'z, is of the form Er(np).
(i1) [[Pay (T — T ) Py || < 01

... rt Iy
(ifl) || Py (TLE — Tod ) Pay || < 0p and || Poy (TLE — Tod ) Pay || < 0L

One might jump to the conclusion that the weaker property that, for each
k € N, lim,cq PkTE Py, exists is sufficient to yield the same result. This is
in fact false. We would not know that Tgo : L1 — Ly is well defined as the
Haar system is not boundedly complete. In the inductive step, the operators
TEr I € Dy_y are used in the choice of hy, «(I) = k. Therefore the fact
that for each I', WOT-lim, ¢y T = TL is necessary.

We assume that we have completed the construction to finish the proof.
Take the isometry A given by A(h; ® hy) = hr ® hr and the norm-one
projection P onto the image of A given by

Pw)= Y (hy®|LI™ %y, u)|I| 7 hy @ |L| /PRy
I,LeD+

The operator T is a l-projectional factor of S = A™'PTA and S is X-
diagonal with entries (S%);cp+ so that for each L, I,J € Dt we have

(h1, S (hy)) = (hy, T  hy).

We fix I # J € DY with «(J) < «(I) =k and L € D*. If L € D¥~2 then by
(b) we have

[(he, S5 (117 )

1) (b, SE (1 h))
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Assume then that L € Dy_o with ¥/ > k. Let Ly, ..., Ly_1,Liy = L be
a sequence with L; € D;.F_Q and each term is a direct successor of the one
before it. Repeat the argument from (43) to deduce that for k£ < j < &/

| Pa (T" 55— THE5+1) Py, || < || Poy (T = T Hi41) Py || < 201, + 01

j+10 1€

|| Poyo (T = TP )Py, | <3 ) 0 < €7, /2 < €7/2 (because o(T) < o(Ly)).
MCLy

Therefore,

[(hrs SH (1717 )|

[(hr, T (1717 hg))| = [(hr, P T oy (1717 R )|
< [(hr, P, V0% Po, (1] 7Y 0y) )| + 7/2
[(hp, T2 (17| hy) )| + €7 /2

(46)
= ‘<hI;SLk(|J‘_1hJ)>‘ +eh/2 < e j2+€7/2 < E(1,7)-

Repeating the argument yields |(hy, ST(|I|7'hr))| < g(s,)- To complete the
proof we still need to cary out the inductive construction. In the first step
we may take hy = hy (i.e., Ay = {0}) and thus we may take, e.g., a1 = 1.

Next, we pick ng € % sufficiently large so that we have HPl(T%O’l)} —

TP < 6p. We put by = Y ysegsy g i (e, Ty = Ey(ng) with
Ey = {[0,1)} and ¢y = 1 for M € T'y). The only non-trivial condition
to check is (iii), which follows from the fact that Ej = (Far)* and thus

-+
TO%” =T, . We do not consider the set ry.

We now present the k’th step for k > 2. Let I € DV with «(I) = k and
denote by Ij its immediate predecessor. We will assume that I = Iar . For
each L € D;_o we denote its immediate predecessor by Lg. Recall that
for each such L the set Ej has been defined based on whether L = L(')F or
L = L, . Consider the following finite sets.

T ={T"":Le D" *}U{TE" : L € Dy_»} C L(Ly),
G ={hs: 1K) <k} CLeand F={|J hy:u(J) <k}.

By Lemma 4.3, there exists i9 € N so that for any finite disjoint collection
A C Dt with min«(A) > ig and any § € {—1,1}® we have that for all
TeZ,geG, and feF

(47) (g, T(RX))| < |T]e7/3 and |[(h4, T(f))] < €7/3.
We pick A; with min¢(A) > 4o and so that (a ) is satisfied. The integer
oy, is simply chosen so that P, hi = hy. It is immediate that condition (b)
is satisfied for all M € D*~3. Later we will show that (b) also holds for
M € D2,

In the next step, for each L € Dj_s we need to pick ny that defined I'y,

and (7, € {—1,1}''2. The choice of ny, so that (i) and (ii) are satisfied is
easy. However, we wish to ensure that we can additionally achieve condition
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(iii) and for this we need Lemma 5.4. Consider the relatively compact set
K = {P,, TL P,, : T is a finite disjoint collection of D*} C £(L1) and take
N(K,27% ¢"/6) given by Lemma 5.4. For each L € D*~2 pick n;, € % so
that (ii) is satisfied as well as #E(nz) > N(K,27% ¢,/6). The objective
is to pick, for each L € Dj_o, signs ¢, € {—1,1}' so that (iii) is satisfied.
Repeating, word for word, the argument from the last few paragraphs of the
proof of Proposition 5.2 we can do exactly that.

The final touch that is required to complete the proof is to observe that
(b) is now also satisfied for all L € Dy_5. Indeed, for J € D+ with «(J) < k

we have
[, T (171 ) )| = [(Pa s T Py (1717 Ra) )|
= |(hr, Po, TEL Py, (1] g)) ]

Qr—-ny,
(i)

< (s Poy, T Poy (1717 1) )| + 61

Q=00
(47) / / / /
S 51/3+6L§51/3+81/6:51/2.
The same argument yields |(hy, TVE (|| hp))| < &) /2. O

6. PROJECTIONAL FACTORS OF SCALAR OPERATORS
In this section we put the finishing touches to prove our main result.

Theorem 6.1. Let X be in H* and H** and let T': L1(X) — Li1(X) be a
bounded linear operator. Then, for every € > 0, 7' is a 1-projectional factor
with error € of a scalar operator. In particular, L (X) is primary.

We first need to prove a perturbation result that will allow us to pass
from Theorem 5.1 to the conclusion.

Proposition 6.2. Let X be a Haar system space and T": L1(X) — L1(X)
be an X-diagonal operator with entries (T7);cp+ and let ¢ > 0. Assume
that for all L, M € D with L C M we have | TY — TM|| < ¢|M|?. Then,
1T -T® 1| < Te.

Remark 6.3. Let ng € N and for each L € Dy, let (8%)}%, be the signs
given by (20). Then, for scalars (ar)rep,, We may write

no
> altl e = (Cah+Y. ¥ (X tkas) M h
L€EDn, L€EDn, k=1 MEDy_1 {LEDy,:
LcM
We now take an RI space X and translate this into the X setting. For
k=0,...,n9 put ux = pr and vy = vy, for L € Dy. Multiply both sides by
1

Vpo! 80 that for L € Dy, we have |L| ™1, = pup.

(48) Z aLpLXL =

LEDy,
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no
v (Do an)ho +vad Dover Do (30 Bar)mihar
LEDy, k=1  MeD;_, {LEDnO:}
LCM

Scalar multiplication may be replaced with tensor multiplication to obtain
the same formula (i.e., consider ay, ® x1, where ay, is, e.g., in Lj).

Let us additionally observe that for any 1 < k < ng and M € Di_1 we
have

(49) o lawl=( > lerlprxe, Y wvixz)

cart {cart i)
< > daclwexclll Y. vixelxe
{55 Uicir)
< Z aL,uLXLHVnoHXMHX*
LEDy,

::VhOV;}J‘ EE: aLﬂLXLH~
LEDy,
Proof of Proposition 6.2. For n = 0,1,... consider the auxiliary operator
S = ZLGD” T @ RE, where RY : X — X denotes the restriction onto L,
ie., REf = xrf. We observe that

[Sn = Sneal =[] 3 TH@ (R +RE) = 3 (T @ RM + T @ RY)|
LeDn LeD,
< 3 (1T = TE Ry | + T = T RE )
LeD,
<2 Y |LP=e27mF
LeD,

In particular, for all n € N we have
(50) IT% @ I = Sull = 1150 — Sall < 4e.

By (28), to estimate ||T—T?®1|| it is sufficient to consider vectors of the form
f®g,with f € Br,, 9 =3 rep,, erioxs, and [| X opep, arprxel =1. By
(48)

(51)  f@g=vp (D ar)f®hy

LEDTLO

no
+V;0121/k,1 Z ( Z Hl%aL)f®,U«MhM~

k=1  MeDy_; {LLG?Z,\?;}

no

From (50) it follows that
(T =Ty @ I)(f @ g)ll < 4e +[[(T" = 5")(f @ 9)|.
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We next evaluate T and S, on f ® g. Since T"is X-diagonal we have
(51) _
T(f@9) = Vpy (D ar)(Tf) @ hy

LeDn,

Vﬁolzvkq Z ( Z 915%) (TM f) ® parhar.

k=1  MeDy_; {LLe?],\?:}

For the other valuation note that for L € D, we have S,,(f ® prxr) =
(TLf) ® prxr. Therefore,

Suo(f ©9) E vl (3 an(Thf)) ® hy

LeDnO

Zl/k: > ( > .QI%GL(TLf)> ® punrha.

MEDy_y {LEDy,

LcM
Therefore,
(T = Sno)(f @ 9)|
no
< Vpg jar | T =T+t Y e Do > far] [T =T
LEDwy, k=L MEDi (LEDny) T
(49)
< v le H Z aLHLXLH Un, Val
" LED,, O:’l"
=1
no
61/;012%—1 Z |M P Z artrXo||[Vnovy
k=1 MEDy_; LEDn,
no
LMD INITEITE o= is
k=1 M€ED;_,
In conclusion, |[(T —T? @ I)(f ® g)|| < 4¢ + 3¢. O

We give the proof of the main result.

Proof of Theorem 6.1. Recall that, by virtue of Proposition 2.3, being an
approximate 1-projectional factor is a transitive property, during which the
compounded errors are under control. We successively apply Theorem 4.1,
Theorem 5.1 and Proposition 6.2 to find a bounded linear operator S : L; —
L; so that T'is a 1-projectional factor with error € of S®1I : L1(X) — L1(X).
By Theorem 2.9, S is a 1-projectional factor with error ¢ of a scalar operator
A : Ly — L; and therefore S ® I : L1(X) — Li(X) is a 1-projectional
factor with error € of A\I : L1(X) — Li(X). Finally, T is a 1-projectional
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factor with error 2 of Al : L1(X) — Li(X). Thus, our claim follows from
Proposition 2.4. [l

7. FINAL DISCUSSION

Characterizing the complemented subspaces of L; and those of C(K)
remain the most prominent problems in the study of decompositions of clas-
sical Banach spaces. This motivates in particular the study of biparameter
spaces, especially those with an L; or C(K) component. The proof, e.g.,
of primariness for each such type of space presents a different challenge and
therefore an opportunity to extract new information on the structure of Iy
or C(K) and their operators. Here is a list of classical biparameter spaces,
for which primariness remains unresolved.

a) Ly(Ly) for 1 < p < oo.

Ly(Lso) ~ Lp(lso) for 1 < p < oo.

£,(C(K)) for a compact metric space K and 1 < p < oo.
L,(C(K)) for a compact metric space K and 1 < p < oo.
(e) C(K,£p) for a compact metric space K and 1 < p < oo.
(f) C(K,Ly) for a compact metric space K and 1 < p < oc.

Noteworthily, all the other biparameter Lebesgue spaces €,,(¢,)[10], £, (Lq)[7],
Ly(Lq) [8], Lp(£g)]9], and £ (Lg)[31] (1 < p,q < 00) are known to be pri-
mary. The space L1(C[0,1]) resists the approach of this paper but perhaps
some of the tools developed here could be of some use. If this were to
be resolved, it is conceivable, that techniques from [17] may be useful in
transcending the separability barrier to show that L;(Le) is primary. Such
methods may also be useful in the investigation of whether for non-separable
RI space X # Lo, L1(X) is primary. In more generality, one may ask for
what types of Banach spaces X, the spaces Li(X), L,(X), Hi(X) and
H,(X) are primary.

For any two rearrangement invariant Banach function spaces X and Y
on [0,1] one can define the biparameter space X(Y) as the space of all
functions f : [0,1]2 — C, for which, f(s,:) € Y for all s € [0,1], and
g=g95:[0,1] = R, s+ ||f(s,-)|ly is in X. The norm of f in X(Y’) would
then be ||fllxy) = llgsllx. It would be interesting to formulate general
conditions on X and Y, which imply that X(Y) is primary, or has the
factorization property (formulated below) with respect to some basis.

The above list may be expanded to the tri-parameter spaces, in which
setting there has been little progress.

It is natural to study general conditions under which an operator T on a
Banach space is a factor of the identity. A bounded linear operator T on a
Banach space X with a Schauder basis (e, ), is said to have large diagonal if
inf,, |e} (Te,)| > 0. If every operator on X with large diagonal is a factor of
the identity then we say that X has the factorization property. The study of
the factorization property and that of primariness are closely related. Our
proof does not directly show that the spaces under investigation have the
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factorization property. We may therefore ask: for what Haar system spaces
X and Y does the biparameter Haar system (h; ® hr) (1 1)ep+xp+ have the
factorization property in X (Y')?

(1]
2l
3]

(4]

5]
(6]

[11]
[12]

(13]
(14]
(15]
[16]
(17]
18]
(19]
20]

21]

22]

(23]
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