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Abstract—The modeling and analysis of real-time applications
focus on the worst-case scenario because of their strict timing
requirements. However, many real-time embedded systems in-
clude critical applications requiring not only timing constraints
but also other system limitations, such as energy consumption.
In this paper, we study the energy-aware real-time scheduling of
Directed Acyclic Graph (DAG) tasks. We integrate the Dynamic
Power Management (DPM) policy to reduce the Worst-Case
Energy Consumption (WCEC), which is an essential requirement
for energy-constrained systems. Besides, we extend our analysis
with tasks’ probabilistic information to improve the Average-
Case Energy Consumption (ACEC), which is, instead, a common
non-functional requirement of embedded systems. To verify the
benefits of our approach in terms of reduced energy consumption,
we finally conduct an extensive simulation, followed by an
experimental study on an Odroid-H2 board. Compared to the
state-of-the-art solution, our approach is able to reduce the power
consumption up to 32.1%.

Index Terms—Parallel Real-Time Tasks, Energy Minimization,
Dynamic Power Management, Probabilistic Execution Time.

I. INTRODUCTION

The current trend of embedded systems is to move to-

wards high-performance multi-core architectures, including

multiprocessor System-on-Chip. Many emerging computation-

intensive real-time applications, such as self-driving cars, rely

on parallel processing, i.e., they can simultaneously execute on

multiple processors. The real-time community has studied the

scheduling strategies for different parallel workload models,

such as the Directed Acyclic Graph (DAG) task model [1]–[3],

gang task model [4]–[6], and synchronous task model [7]. The

parallel task model’s fundamental characteristic, i.e., running

simultaneously on multiple processors, is essential to exploit

the computational power of modern multi-core platforms,

including heterogeneous processors. The evolution and per-

vasiveness of Internet-of-Things (IoT) applications increase

this need of powerful embedded systems, but often clash with

energy consumption constraints.

The energy constraints. Many real-time embedded systems

include critical applications requiring not only a predictable

timing behavior, but also to satisfy other system constraints.

Energy consumption is one of them, which might be a non-

functional or functional requirement. In the former case, the
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design objective is to reduce as much as possible the energy

consumption to avoid the cascade effect on the design of the

overall system. Typical metrics used to evaluate such a require-

ment are the average power consumption and the Average-
Case Energy Consumption (ACEC). The second case, instead,

is the case of energy-constrained systems, typically when the

electrical source is an unstable energy harvester coupled with

an energy-storage device, e.g., a battery. The possibility to

perform battery re-charging during the operation is usually

limited and dependent on external factors. Examples include

satellites, devices located in remote regions, and medical

equipment (e.g., pacemakers). Hence, along with the real-time

performance requirements, such a platform must survive for a

given time frame even in the absence of a stable power source.

The energy-efficient design evolves from a nice-to-have feature

to another critical requirement. In this case, the metric to be

considered is the Worst-Case Energy Consumption (WCEC)
[8]. The main component affecting ACEC and the WCEC is

the processor’s power consumption, which mainly comes from

two sources, i.e., the switching activity and the leakage current.

The former contributes to dynamic power consumption, and

the latter is known as static power consumption. Depending on

the platform, one source may dominate the other, as described

in the next paragraph.

Energy management. There are two approaches for energy

management, i.e., Dynamic Voltage Frequency Scaling (DVFS)
and Dynamic Power Management (DPM). They are commonly

applied to reduce dynamic and static power consumption.

DVFS adjusts the voltage and frequency of a processor during

run-time in order to reduce the switching component of the

power consumption. In the last decade, the dynamic power

consumption was the dominant factor, and hence DVFS has

been emphasized in research [9]. However, there is an ex-

ponential increase in the static power consumption with the

transistor technology shift toward the sub-micron domains. In

such a platform, static power becomes equal to dynamic power

(e.g., in 90 nm high-end processor technology, leakage power

consumes nearly half of the total power dissipation [10]).

With the shift towards more dense manufacturing technologies,

static power could be even more significant than dynamic

power. Hence, the interest on DPM approaches is increasing, in

order to exploit the idle interval and perform processor mode-
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switching to reduce leakage power consumption.

Challenges. Applying DPM is a non-trivial problem, espe-

cially in hard real-time context: the transitioning between

different power modes has additional overheads in terms of

energy consumption and latency. Therefore, triggering the low

power mode switch when the processor is idle is beneficial

(for power saving) only if the idle slot is longer than a certain

threshold, known as the break-even time [11]. Therefore, for

DPM to be beneficial, it is critical to efficiently decide whether

or not performing power mode transitioning. This challenge

is amplified when dealing with heterogeneous processors and

parallel DAG tasks. The power mode switch decision can be

taken at run-time, depending on the actual system condition,

while an offline analysis is required to verify the ACEC and/or

WCEC requirements. To perform such analysis we have to rely

on either the probabilistic information of the task execution

time (for ACEC requirements) or the Worst-Case Execution
Time (WCET) information (for WCEC requirements).

Contribution. Considering the parallel DAG task model, we

study how to integrate the DPM approach to reduce CPU1

energy consumption. We calculate the break-even points for

heterogeneous processors and model the idle intervals to find

the best possible task allocation. Our approach also guarantees

hard real-time requirements by taking into account the DPM

overheads, given a statically computed WCET of the tasks,

even in the ACEC optimization case. Specifically, the key

contributions are:

1) We propose a resource management strategy to allocate

the DAG nodes to a set of heterogeneous processors

equipped with DPM and, in particular, with the C-States

mechanism (subsequently explained in Section III-B),

that satisfies the timing requirements.

2) We perform an analysis to find the break-even points

that maximize the benefit of the DPM technique. Such

values are then exploited both online to optimize the

energy at run-time, and offline to compute the WCEC

of the tasks for verifying system requirements.

3) We present a probabilistic analysis to calculate and

optimize the ACEC and verify the common-case energy

requirements, while still guaranteeing the hard timing

constraints.

4) Finally, the proposed techniques are applied in a sim-

ulation environment to test different platform/task set

configurations, followed by a small-scale experimental

evaluation on a real platform, which will strengthen the

results’ confidence.

As later presented in Section II, this work advances the

state-of-the-art by providing comprehensive models and DPM

policies able to exploit modern system properties (heteroge-

neous architectures, multi-level DPM) and different require-

1There are other components (e.g., I/O devices, cache, system bus) that
contribute to the overall energy consumption. However, in this work, we
focus on CPU, because it is one of the major contributors to the overall
system energy consumption and the more challenging with respect to timing
requirements.

ments (optimization of ACEC or WCEC), while guarantee the

strict hard real-time requirements of parallel DAG tasks.

Paper organization. The rest of the paper is organized as

follows. We present the related work in Section II. Section III

describes all the considered models and the problem, and it

provides to the reader the necessary background. Section IV

presents the computation of the break-even points, which

are used in the subsequent Section V to derive the best

allocation and the WCEC value. This analysis is extended with

probabilistic information to obtain the ACEC in Section VI,

and the simulation and experimental results are respectively

presented in Section VII and Section VIII. We conclude the

paper in Section IX with some future research directions.

II. RELATED WORK

To date, many previous works have studied the en-

ergy/power optimization for sequential (no intra-task paral-

lelism) tasks in both single-core and multi-core platforms

(refer to [12] for a comprehensive survey). However, the

sequential task model does not allow a single task to execute

at multiple cores simultaneously. Optimizing the energy in a

parallel context differs significantly from the sequential tasks’

approaches. Although there is much work proposed on the

RT community that studied the real-time scheduling analysis

of the parallel task model [13]–[19], none of them have

considered the energy-awareness.

To our knowledge, a limited number of works studied

the energy-aware scheduling strategy of the real-time parallel

tasks, especially of the DAG model. Zhu et al. [20], [21] pro-

posed an energy-aware scheduling policy that utilizes slacks

between the inter-dependent sequential tasks. Both the work by

Bhuiyan et al. [22] and Guo et al. [3] considered a simplified

model (e.g., the number of cores are unlimited, the entire

schedule until the hyper-period available a priori) to propose

the energy-aware real-time scheduling of DAG tasks. Based

on the DAG task model, some recent works have studied the

energy-aware scheduling in a homogeneous and heterogeneous

clustered platforms [23]–[25]. The work by Saifullah et al. [26]

studied the CPU energy optimization of the DAG task consid-

ering the federated scheduling policy. Considering the gang

task model in a homogeneous platform, Paolillo et al. [27]

studied the energy-aware scheduling malleable gang jobs. All

these work as above-mentioned restricted their attention to the

DVFS policy to reduce energy consumption and do not take

into account the DPM policy.

Gerards et al. [28] studied the energy-aware scheduling of

the frame-based real-time tasks considering both the DPM

and DVFS approach. However, they did not consider the

time overhead of the DPM policy while switching processor

execution mode. Besides, they have restricted their attention

to a single-core platform. Esmaili et al. [29] proposed an

approach for modeling idle intervals in MPSoC platforms.

Huang et al. [30] proposed a DPM policy optimizing the

energy consumption and by using time-triggered scheduling,

but limited the discussion to ACEC and homogeneous proces-

sors. Compared to the previous works, this paper advances the
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energy-aware intra-task scheduling by proposing a multi-level

DPM policy in a heterogeneous context, analyzing both the

ACEC and WCEC cases, while guaranteeing hard real-time

requirements.

III. SYSTEM MODEL, PROBLEM STATEMENT AND

BACKGROUND

A. Workload Model

In this work, we consider a set of sporadic parallel DAG

tasks denoted by τ = {τ1, τ2, · · · , τn}. For each task τi ∈ τ
(1 ≤ i ≤ n) , the minimum inter-arrival time, relative deadline,

and WCET2 are respectively denoted by Ti, Di, and Ci. We

assume that each task is an implicit deadline task, i.e., Di =
Ti. A task τi consists of total of Ni nodes, each denoted by

N l
i (1 ≤ l ≤ Ni). Each node N l

i has its worst-case execution

requirement Cl
i . If the nodes are executed on a single unit-

speed processor, then
∑Ni

l=1 C
l
i = Ci. There exist precedence

constraints among the nodes in a DAG, which is represented

by a directed edge among the nodes. For example, in Figure

1(a), N 2
i → N 3

i implies that N 3
i can not start execution if

N 2
i is still executing. In this case, N 2

i is called the parent of

N 3
i , while N 3

i is a child of N 2
i . A node may have multiple

parents or children, e.g., N 4
i has two parents (N 1

i ,N 2
i ), and

N 1
i has two children (N 4

i ,N 5
i ). If a node has multiple parents,

it can start the execution only when all of its parents finish

their execution. The maximum degree of parallelism of task

τi is denoted by Mi, which is the maximum number of nodes

that execute in parallel, at any time.

A critical path in a DAG task is a directed path that has

the maximum total execution requirements. The length of

the critical path, Li, is the sum of all the nodes’ execution

requirements on a critical path. For instance, in Figure 1(a),

N 1
i → N 4

i → N 6
i and N 1

i → N 5
i → N 6

i are the critical paths,

and the critical path length is 10. Note that, Li is the minimum

execution time of task τi even when the task gets exclusive

access in an infinite number of cores. Hence, to ensure that τi
is schedulable, the condition Ti ≥ Li must hold.

B. Platform and Energy Model

We consider a set of heterogeneous processors

{p1, p2, ..., pm} (including processors with an homogeneous

architecture but configured with different frequency scaling).

To each processor and workload we statically assign a

coefficient called execution speed Sl
i,j =

Cl
i

Cl
i,j

, where Cl
i,j

represents the amount of time required to execute the node

N l
i on the processor pj . The value Cl

i,j depends on the

processor’s architecture and DVFS configuration. The nodes

are assumed to be profiled on each processor and the Cl
i,j

computed offline. If, for any reason, a node of a task cannot

be executed on a particular processor, then the time is set

to Cx
i,y = ∞. The processors are capable of performing the

DPM. Different DPM strategies have been implemented in

the last decades, and the most common is to select between

2The WCET of the tasks is assumed as computed statically by considering
a single unit-speed processor.

TABLE I
AN EXAMPLE OF C-STATES TYPICAL OF THE INTEL PROCESSORS FROM

THE 2010S ONWARDS. [31].

C-State Θ0 Θ1 Θ2 Θ3

Core voltage ON ON ON OFF
Core clock ON OFF OFF OFF
Core PLL ON ON OFF OFF

L1/L2 caches Keep Keep Flush Flush
Wake-up time - LOW MEDIUM HIGH

Wake-up energy - LOW MEDIUM HIGH
Idle power MAX MEDIUM LOW VERY LOW

running and sleeping state. However, modern processors are

capable to perform multi-level DPM, i.e., they can switch

to different levels of power saving. We generalize them

with the concept of C-States. Each processor, at a given

instant, can be in one of the following power saving states:

{Θ0,Θ1, ...,Θr}. The state Θ0 represents the condition when

the processor is active and running the tasks. The states

Θ1, ...,Θr represent, instead, the power-saving states, i.e.,

when the processor is (partially) shut down and not running

the workload. The larger the index of the C-State, the more

aggressive the power saving technique is and, consequently,

the larger the overhead to switch back to Θ0. An example for

Intel processors is shown in Table I. To each processor pk is

mapped the power consumption Cj,k and the overhead T j,k
sw of

the j-th C-State. The value of Cj,k depends on many external

factors (such as temperature) but it is usually provided by

the manufacturer (in worst- and/or common-case scenario) or

experimentally measured under different execution conditions.

The overhead T j,k
sw is the amount of time required to wake-up

the pk processor from the C-State Θj to the C-State Θ0.

During this wake-up process, the system consumes an energy

overhead identified by Ej,k
sw . The values T 0,k

sw and E0,k
sw have

no meaning, but for the sake of the following notation we

consider them to be T 0,k
sw = E0,k

sw = 0. If such information

are available, then we do not need to specify a power model

to use the approach proposed in this article.

Remark 1. The heterogeneity is visible in the platform de-
scription: each processor has a different speed (for a partic-
ular workload), different power consumption in each C-State,
and timing and energy overheads. We do not target a specific
“heterogeneity”, provided that the previous values are known
or can be measured.

C. Real-Time DAG Task Decomposition

Task decomposition is a well-known technique proposed by

Saifullah et al. [13] that transforms the nodes of a parallel DAG

task τi into a set of sequences of nodes, each one possible to

run in parallel (refer to Figure 1). Initially assuming that at

least Mi cores are available for each task, for every node N l
i ,

a vertical line is drawn at every time instant where N l
i starts

or ends. These vertical lines partition the DAG into several

segments t1i , t
2
i , ... . In this manner, while respecting the node

dependencies (i.e., edges in the DAG), task decomposition

converts each node N l
i ∈ τi into an individual sub-task, and
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(b)

Ni
3

Fig. 1. A task represented with (a) the DAG model, and (b) an example of its decomposed structure (after applying task decomposition).

also defines a scheduling window (for each node N l
i ), which

denotes the time slot from the release offset of N l
i to its

deadline, measured in segments.

Example 1. Consider the decomposed DAG task τi in Figure
1(b). Task decomposition converts each node N l

i to an individ-
ual sub-task with a start time and a deadline. In this example,
the scheduling windows for the nodes, i.e., N 1

i ,N 2
i , ...N 6

i , are
[1, 2], [1, 1], [2, 4], [3, 3], [3, 3], [4, 4], respectively. This
means that N 1

i executes from the beginning of the 1st segment
to the end of the 2nd segment, while N 2

i executes throughout
the 1st segment. The DAG task τi of Figure 1 has a maximum
degree of parallelism of Mi = 3 in segment t3i , where the
nodes N 3

i ,N 4
i , and N 5

i execute in parallel.

Intra-Task Processor Merging. Once a DAG task τi is

decomposed and allocated to multiple processors, likely, some

of these processors are lightly loaded. This situation may

not be optimal, from both the resource utilization and en-

ergy consumption standpoints. Even worse, the number of

processors m may be lower than the number of levels, making

the allocation unfeasible. To get rid of this problem, Guo et

al. [3] proposed the intra-task merging technique that merges

those lightly loaded processors, while guaranteeing the timing

constraints’ satisfaction. Intra-task processor merging reduces

the number of required cores and, consequently, decreases the

leakage power consumption, resulting in overall energy and

resource efficiency.

The schedulability goal of this paper is to ensure that no

sub-tasks exceed the scheduling window time frames output

of the task decomposition. In fact, provided that the task

decomposition is correctly performed, if all the sub-tasks

meet their deadlines at the end of each scheduling window

– maintaining constant in this way the task WCET –, the

schedulability of the whole task set depends only on the

scheduling algorithm applied at the task-level. Our approach

focuses on analyzing the DAG of the single task without

restricting the choice of the scheduling algorithm among the

tasks. In particular, we ensure the intra-task timing constraints,

i.e. the DAG nodes, while an external scheduling algorithm is

in charge of the inter-task scheduling. We summarized the key

notations presented in this section in Table II.

D. The Optimization Problem

This work focuses on minimizing the total energy consump-

tion at the task-level, including the energy consumption when

TABLE II
SUMMARY OF KEY MODEL NOTATIONS.

Symbol Description

W
o
rk

lo
ad

τi The i-th task
Ti, Ci, Di Period, WCET, and relative deadline of the task τi
N l

i , Ni The l-th node and the total number of nodes of τi
Mi the maximum level of parallelism for task τi
cli The WCET of the node N l

i
bli, d

l
i Start time and duration of node N l

i
Li Length of the critical path for task τi
tzi Length of the z-th segment of task τi

P
la

tf
o
rm

pi The i-th processor

Sl
i,j The execution speed for processor pj and workload

N l
i

Θi The i-th C-state

Cj,k Power consumption of the processor pk in Θj

T j,k
sw , Ej,k

sw Time and Energy overhead to switch from Θj to Θ0

in pk

the processor is idle. The energy optimization strategy must

also meet the strict timing requirements under all circum-

stances. The minimization operates on the processor allocation

of each node and on the decision if switching or not the

processor to a higher C-State during idle times. The choice

of a DPM-only approach instead of DVFS is motivated by

[3, Theorem 2], which asserted that selecting a fixed speed is

beneficial with respect to energy assumptions, over a dynamic

approach, for real-time DAG tasks.

The offline analysis allows us to perform the same opti-

mization with two different goals: the WCEC or the ACEC

minimization. The former involves the use of the WCET of

the nodes to carry out the best optimization in the worst-case

scenario, while the latter exploits probabilistic information

on the node execution time to compute (and minimize) the

average-case energy consumption. While the former targets

the specific case of energy-constrained devices as described in

Section I, the latter is oriented to a wider class of embedded

systems in which the energy consumption reduction is a non-

functional requirement but a desired feature.

IV. MODELING IDLE INTERVALS AND THEIR ENERGY

CONSUMPTION

To incorporate the DPM approach in DAG tasks we need to

model the idle intervals at the end of each node. In Subsection

IV-A, we propose an approach to compute the idle intervals. In

Subsection IV-B, we provide a discussion regarding the energy

consumption during each idle interval and the task period.
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A. Modeling the Idle Interval

In the DPM approach, the processors enter a deep sleep state

when idle and wake up when necessary. DPM is a useful tool

in decreasing system energy consumption without degrading

the performance. However, the beneficial employment of DPM

is a non-trivial problem. The main reason is the non-negligible

transition overhead (in terms of time and energy) between

sleep and wakeup state [32], [33]. It is essential to know

the processor idle interval, which leads to achieving the right

strategy for the successful employment of the DPM approach.

Calculating the idle interval before each node. Upon ap-

plying the existing task decomposition and intra-task processor

merging techniques (refer to [3], [13] and Subsection III-C),

some essential information (e.g., the maximum degree of

parallelism of the task, the required number of cores) becomes

available. Recall that task decomposition is a technique to

convert each node, N l
i ∈ τi, into an individual sub-task with

its own release time, deadline, and execution requirement,

without violating their precedence constraints. At each level,

there might exist a single node or multiple nodes. For example,

in Figure 1, N 1
i ,N 4

i , and N 6
i execute at level 1 (bordered

inside the dotted blue rectangle), and N 5
i executes at level 3

(bordered inside the dotted red rectangle).

For such a decomposed task τi, we are aware of the optimal

execution speed for each node N l
i ∈ τi, which also guarantee

the real-time correctness, i.e., τi does not miss its deadline

under any circumstances. In the assignment of a processor to

each level, we satisfy the speed requirements of each node

in this level, i.e., the assigned processor executes at speed

greater or equal to each node’s energy-aware execution speed.

For details, refer to Section V and Eq. (7), where we propose

a processor-task allocation approach that minimizes energy

consumption. Hence, each node finishes its execution earlier

and leave some idle slot within its scheduling window.

Before moving further into the details, we define some

notations used several times throughout this paper. We denote

the start time and the duration of a node N l
i ∈ τi at processor

pk as bl,ki and dl,ki , respectively, where dl,ki is defined as

Cl
i/S

l
i,k. The speed of Sk of the processor pk is given and

constant. We define a decision variable called Ok,N l
i ,Nm

i
that

represents node execution order at pk processor [29]. We

define Ok,N l
i ,Nm

i
as:

Ok,N l
i ,Nm

i
=

⎧⎨
⎩
1 if N l

i is scheduled immediately before

Nm
i at pk processor

0 otherwise

We use the notation Ok,0,N l
i

to denote whether N l
i is the first

node to be scheduled at pk processor, at any inter-arrival period

of a job of task τi. Similarly, Ok,Nm
i ,J denotes that Nm

i

is the last node (at any inter-arrival period of a job of task

τi) to be scheduled at pk processor. Now we can model idle

intervals for all the nodes that are allocated to the pk processor,

thanks to the decision variable, Ok,N l
i ,Nm

i
. Note that the start

time of node Nm
i depends on other nodes (if it has multiple

parents) executing on a different processor. However, the task

decomposition technique determines the starting time of each

node respecting their precedence constraints, refer to Figure

1(b). Here we concern only about the parent node N l
i that

shares the same processor with Nm
i as the completion time of

this parent node influences the idle time available before node

Nm
i starts execution.

We consider the following two cases (to model the idle

interval before executing node Nm
i at pk processor) in each

period:

Case-1: Nm
i is not the first node to be served at processor pk

(e.g., node N 6
i at the topmost level in Figure 1(b)). Let the

total amount of idle time immediately before scheduling Nm
i

(at processor pk) be Im,k
i and calculated as follows:

Im,k
i = bm,k

i −
∑

∀l:N l
i∈τi

(bl,ki + dl,ki ) · Ok,N l
i ,Nm

i
(1)

Case-2: Nm
i is the first node to be served at processor pk

(e.g., node N 5
i at the bottom-most level in Figure 1(b)). In

this case Im,k
i is:

Im,k
i = bm,k

i −
∑

∀l:N l
i∈τi

(bl,ki + dl,ki ) · Ok,N l
i ,J (2)

Where the second term denotes the completion time of the last

node of task τi (at pk processor) in the previous period. By

subtracting it from bm,k
i , we calculate the idle time (before

serving this node) in this period. Because the goal of our

approach is to optimize the single-task energy consumption,

we assumed that the previous job running on the processor is

a job of the same task τi. In the other case, depending on the

task scheduling algorithm, we have three options: 1) replace τi
in Eq. (2) with the previous task, provided that the schedule is

predictable; 2) assume the idle time only from the beginning

of the task, i.e., Im,k
i = bm,k

i −minx b
x,y
i ; 3) use, even so, the

single-task idle time of Eq. (2). The last two solutions are both

sub-optimal but safe to use. Which one is preferable depends

on the specific case and considered task scheduling algorithm.

B. Energy Consumption During an Idle Interval

Having incorporated the DPM in our model, we now study

the energy consumption the system incurs switching to and

from the sleep mode. The switching to the sleep mode is

not beneficial (w.r.t energy consumption) if the idle interval

is smaller than a threshold [33]. This idle interval is known as

the break-even time [11], [34]. Esmaili et al. [29] calculated

the break-even time as follows: TBE = max(Tsw,
Esw

C ). We

extend this notation by introducing a set of break-even times

for each C-State Θj (1 ≤ j ≤ r) and for each processor pk:

T j,k
BE = max

(
T j,k
sw , T j,k

E

)
(3)

where:

T j,k
E =

Ej,k
sw − Ej−1,k

sw − Cj,kT j,k
sw + Cj−1,kT j−1,k

sw

Cj−1,k − Cj,k
(4)

The break-even point formula has been derived as follows:
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Fig. 2. The graphical interpretation of the break-even points of an example

with three C-states and C0,k = 1, C1,k = 0.5, C2,k = 0.25, E1,k
sw = 5,

E2,k
sw = 10, T 1,k

sw = 1, T 1,k
sw = 3.

• The break-even time cannot be lower than the time

required for switching, otherwise we can possibly in-

validate the timing requirements: if the maximum idle

time is smaller than the time required for switching, the

overhead of the C-State switch delays the activation of

the following node.

• Since the C-State switch has an overhead also in terms

of energy (Ej,k
sw ), the switch is not advantageous for

smaller values of idle time. The graphical representation

has been depicted in Figure 2. The energy consumption

as a linear function of time for a C-State Θj is Cj,k · t,
then the intersection between the energy consumption

line of Θj−1 and Θj gives us the break-even point for

the switching from Θj−1 to Θj . The break-even point is

then the solution x of the equation: Ej−1,k
sw +Cj−1,k(x−

T j−1,k
sw ) = Ej,k

sw + Cj,k(x− T j,k
sw ).

To model the CPU energy consumption during an idle

interval, we proceed by extending the original function for

Eidle [29], obtaining:

Eidle(Im,k
i ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

C0,kIm,k
i if 0 ≤ Im,k

i < T 1,k
BE

E1,k
sw + C1,k(Im,k

i − T 1,k
sw ) if T 1,k

BE ≤ Im,k
i < T 2,k

BE

...

Ek,r
sw + Cr,k(Im,k

i − T r,k
sw ) if T r,k

BE ≤ Im,k
i

(5)

In this formula, T i,k
BE denotes the break-even times previ-

ously computed by Eq. (3), and Im,k
i denotes the total idle

time before executing Nm
i ∈ τi, and Im,k

i is derived from Eq.

(1) and Eq. (2). Finally, total energy consumption during all

the idle intervals in a task-period, Ti, is calculated as follows:

Eidle(Ti) =
∑

∀l:N l
i∈τi

Eidle(Il,k
i ) (6)

In Section V we exploit this information of Eidle(Im,k
i ) to

derive an offline minimization strategy for the WCEC. While,

in Section VI, we introduce probabilistic information to use

the same strategy for computing, and minimizing the ACEC.

However, it should be noted that the decision taken with Eq.

(5) can be also applied online for a further optimization:

TABLE III
THE ENERGY CONSUMPTION TABLE, SHOWING THE RELATION BETWEEN

THE PROCESSOR pk ∈ p WHEN pk IS ALLOCATED TO A LEVEL Li
j ∈ Li .

Processors→
Levels↓ p1 p2 · · · pk

Li
1 E1

1 E2
1 · · · Ek

1

Li
2 E1

2 E2
2 · · · Ek

2
.
.
.

.

.

.
.
.
. · · ·

.

.

.

Li
j E1

j E2
j · · · Ek

j

The idle time can be measured at the end of each node and

compared with the offline-computed break-even points. The

decision can, in this way, change online and be different with

respect to the decision used for WCET and ACEC analyses,

further improving the energy consumption for each specific

case of execution. However, the following offline analyses are

still essential to verify that the system adhere with the WCEC

and ACEC design requirements.

V. EFFICIENT PROCESSOR ALLOCATION ALGORITHM

Our energy management strategy is composed of two pro-

cesses. First, identify the idle slot while executing a task

τi and employ the DPM technique, i.e., decide whether to

switch to a higher C-State during the idle slots to minimize

energy consumption. Second, allocate a set of cores to the

DAG task τi to minimize overall energy consumption while

satisfying the strict schedulability requirements. In Section IV,

we have already discussed how to identify the idle interval

(while executing a task) interval and calculate the energy

consumption during this idle interval. In this section, we

discuss our second goal, i.e., allocating a set of cores to the

nodes of the DAG task τi to reduce energy consumption.

We apply the Hungarian algorithm [35] to the decomposed

DAG to find an energy-conserving task-processor allocation.

Although the DAG decomposition technique or the Hungarian

algorithm itself is not new, analyzing the energy optimization

by exploiting the idle slots is sufficiently novel. Finally,

we discuss how to calculate the overall energy consumption

throughout the task period of Ti (of task τi), combining both

the analyses presented in Section IV and in Section V.

Processor to task allocation. Let, Li denotes the set of

levels of task τi when decomposed. In our task allocation

approach, we allocate one processor pk exclusively at each

level Li
j ∈ Li; hence, all the nodes at the same level execute

at the same speed throughout their release to their deadline.

If the processor speed is known, we can easily calculate the

energy consumption, as we know the information regarding the

release time, deadline, and execution requirement of each node

executing at each level. Note that we can allocate a processor

to any level, provided that the speed of the processor is

sufficient to finish all the nodes within its scheduling window.

Hence, at any level Li
j ∈ Li, we can allocate a processor

pk ∈ p, if it satisfies the following constraints:
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Algorithm 1 Building the energy consumption table.

1: Input: Set of processors p = {p1, . . . , pk} and the number

of levels Li = {Li
1, . . . ,Li

j} in a DAG task τi.
2: Output: A table that store the energy consumption value.

3: E [j][k]; /* A table to store energy consumption */

4: Set ∞ to 106 /* An arbitrary large value */

5: for x = 1 to j do
6: for y = 1 to k do
7: /* Verify speed-constraints in Eq. (7) */

8: if ∀N l
i ∈ Li

x :
Cl

i
∑fl

i

z=bl
i

tzi

≤ Sy then

9: Calculate Ek
j according to Eq. (8)

10: E [x][y] = Ek
j ;

11: else
12: E [x][y] = ∞;
13: end if
14: end for
15: end for
16: return E .

∀N l
i ∈ Li

j :
Cl

i∑f l
i

z=bli
tzi

≤ Sl
i,k (7)

Here Cl
i , b

l
i, and f l

i respectively denotes the execution re-

quirement, release offset and deadline of node N l
i (see Ex-

ample 1), tzi denotes the length of segment z, and
∑f l

i

z=bli
tzi

denotes the available execution slot for a specific node. Refer

to Example 1 and Figure 1(b) for details. Let us assume that

we allocate a processor pk in level Li
j , and denote the energy

consumption (by processor pk) as Ek
j , where we calculate Ek

j

as follows:

Ek
j = Eidle(T (Li

j)) + Eactive(T (Li
j)) (8)

where

Eidle(T (Li
j)) =

∑
∀N l

i∈Li
j

Eidle(Il,k
i ), and

Eactive(T (Li
j)) =

∑
∀N l

i∈Li
j

dl,ki C0,k

Here, T (Li
j) denotes the duration of level Li

j . Note that, there

may be some idle time available at the end of each level (since

the critical path length Li is less than or equals to task period

Ti), task decomposition distributes such idle slot, i.e., Ti−Li,

uniformly by multiplying each segment by a common factor

Ti/Li (refer to Section III in [3]). Hence, we can conclude

that ∀j : T (Li
j) = Ti.

We calculate Ek
j (∀Li

j ∈ Li, pk ∈ p) according to Eq. (8)

and Algorithm 1, storing these information in a two dimen-

sional array E represented in Table III. Algorithm 1 starts

by creating E of size j × k, where j ≤ k (Line 3), and

traverses each level Li
j ∈ Li and each processor pk ∈ p (Lines

5-6). Then it checks whether a processor can be assigned

to a level (Line 8), i.e., speed of this processor satisfies

Algorithm 2 Processor to task allocation.

1: Input: Energy consumption table E .

2: Output: Processor to level allocation that results mini-

mum energy consumption.

3: Set ∞ to 106 /* An arbitrary large value */

4: /* If E is not a square table, add dummy row to make it

square size */

5: if j < k then
6: for x = j + 1 to k do
7: for y = 1 to k do
8: E [x][y] = ∞; /* Dummy row */

9: end for
10: end for
11: end if
12: Solve E using the Hungarian algorithm [35].

13: return the optimal processor to level allocation.

the speed constraint presented in Eq. (7). If it satisfies the

speed constraints, we store the energy consumed by this

processor (when allocated to this level) at the corresponding

cell (Line 9). Otherwise, we put an arbitrarily large value

to this cell (Line 11). Algorithm 1 concludes by returning

E (Line 15). Here, each entry Ek
j ∈ E denotes the energy

consumed by processor pk, when pk is allocated to level Li
j .

For any level Li
j ∈ Li, if any processor pk ∈ p, fails to satisfy

the constraints in Eq. (7), we put an arbitrarily large value in

the corresponding cell. We do this to ensure that the scheduler

does not assign pk to Li
j , i.e. to a level which does not satisfy

the timing requirements.

Now we know the energy consumption at all possible pro-

cessor to level mapping combinations. We use this information

to determine the processor allocation with minimum energy

consumption. At each level, we assign a processor that is not

allocated to any other level previously – we pick a single

entry from each row and column in Table III. The pseudo-

code is presented in Algorithm 2. We determine the optimum

assignment that minimizes the total energy consumption using

the Hungarian algorithm [35], [36] (Line 12), which has

polynomial complexity. Note that the Hungarian algorithm

works only when the input is an N × N square matrix with

non-negative elements. In our case, Table III may not be square

in size as j ≤ k. Hence, we add (k− j) extra dummy rows in

Table III (to make it square in size), and fill them with arbitrary

large values (Lines 5–11). Finally, Algorithm 2 concludes by

returning the optimal processor to task allocation that results

in minimum energy consumption.

Total Energy Consumption. Having computed the energy

consumption at each level and the optimal processor allo-

cation, let the energy consumption at each level Li
j (after

assigned with the processor determined by Algorithm 2) be

denoted by Ei
j . The total energy consumption Ei

tot of the task

τi is:

Ei
tot =

∑
∀Li

j∈Li

Ei
j (9)
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Optimality. The use of the Hungarian algorithm guarantees

the energy consumption optimality of the processor to level

allocation. The optimality of the overall solution depends

then on the selection of DPM states, which is optimal by

construction for a given DAG decomposition. In fact, Eq. (5)

minimizes the energy consumption according to the idle times

Im,k
i which in turns depends on the DAG decomposition and

on how intra-task processor merging is performed. Therefore,

we can claim the optimality of the offline algorithm for a given

DAG decomposition, while the overall optimality depends on

the algorithms used to build the DAG decomposition.

VI. EXPLOITING PROBABILISTIC INFORMATION TO

MODEL THE AVERAGE-CASE

The analysis presented in the previous two sections was

performed by considering the WCET: the definition of duration

of a node (dl,ki ) was defined as Cl
i/Sk. Instead, in this section,

we consider the duration of a node as a function of the random

variable3 of the execution time X̃i, i.e., d̃l,ki = X̃ l
i/Sk. This

random variable is used, as subsequently detailed, to optimize

the ACEC instead of the WCEC.

Remark 2. The probabilistic information is used for energy
optimization only, and the hard real-time guarantees are not
affected by such information. In this way, any inaccuracy in
the probabilistic characterization of the execution time would
impact the energy optimization problem only, but not the
schedulability analysis, that still relies on the static WCET.

Alternatively, the statically-computed WCET can be replaced

by the probabilistic-WCET [37]. In a such a case, the

probabilistic-WCET can be used to compute the probabilistic-

WCEC and, in turn, the WCEC and apply the same procedure

of the previous section. The probabilistic analysis of this

section focus, instead, on the average-case and not the worst-

case.

A. Probabilistic Execution Time Model

A random variable is the statistical representation of the

output of a phenomenon: in our case, it is the node execution

time. In common with previous works [38], [39], the random

variable of the execution time is a discrete quantity, and it can

be expressed with a probabilistic profile matrix. This matrix

is identified by the symbol pET l,k
i , has size 3 × w, and is

defined as follows:

pET l,k
i =

⎛
⎝ e1 e2 · · · ew

fi(e1) fi(e2) · · · fi(ew)
Fi(e1) Fi(e2) · · · Fi(ew)

⎞
⎠ (10)

where e1, e2, ..., ew are execution time values, f(·) is the

probabilistic mass function (PMF), and F (·) the cumulative

distribution function (CDF). Even if the last two rows are

redundant (PMF is computable from the CDF and vice versa),

this simplifies the notation in the subsequent sections.

3In this paper, the random variables are identified by the mark ˜

Example 2. Let us consider the following execution profile:

pET 2,3
1 =

⎛
⎝ 5 7 12 19 20

0.10 0.60 0.25 0.04 0.01
0.10 0.70 0.95 0.99 1

⎞
⎠

It represents the statistical distribution of the execution time of
the node N 2

1 ∈ τ1 running in the processor p3. The probability
that the node requires 5 units of execution time is 0.1, for 7
unit of execution time case the probability is 0.6 and so on.
The last row represents the CDF. For instance, in this profile,
the probability is 0.95 for execution time less or equal to 12.

1) Estimating the Distribution: The distribution of execu-

tion time is rarely known at design-time, and it is, in general,

computationally expensive. A more practical approach is to

measure the execution time directly on the real system and

estimate the probabilistic execution time distribution. The es-

timation is possible by exploiting different statistical methods.

If we are interested in the probabilistic-WCET (pWCET), we

have to choose the Extreme Value Theory approach, while

an estimation of the probabilistic-ET can be performed by

estimating the empirical CDF. We assumed the WCET as given

and statically computed in this work, so the pWCET is not

useful in such a scenario. Instead, to improve the average-

case energy consumption, the pET can be estimated by directly

measuring n-samples of the execution time:

Fi(x) =
1

n

n∑
i=1

1xi<x

where 1xi<x is the indicator function4 and x1, x2, ..., xn is the

set of measured execution time samples. From the empirical-

CDF Fi(x) it is possible to compute the PMF by subsequent

differences of the CDF: fi(x) = F (x)−F (x−1). In this way,

the pET matrices can be estimated.

Uncertainty quantification. Provided that we observed all in-

put and states of our systems, the Dvoretzky-Kiefer-Wolfowitz

inequality [40] provides us the measurement error:

ε =

√(
log

(
2

c

))
/(2n) (11)

where c is an arbitrary low confidence. For example, if the

number of samples is n = 10 000, the maximum absolute

error on the CDF is lower than ε ≤ 0.02 with a confidence

of c = 10−6. More sophisticated statistical techniques can

obtain better results with a smaller number of samples, but

this analysis would be out of scope for this paper’s goals. The

error in the estimated distribution would increase (or decrease)

the expected energy consumption, but it would not affect the

scheduling analysis. Having this value, we can determine, by

adding it to the subsequent formulas, the final expected error

(at a given confidence) on the overall energy consumption of

the system.

4The indicator function 1A has value 1 if the condition A is respected,
otherwise 0.
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2) Common Operations: To deal with the algebra of ran-

dom variables, we report in this paragraph the operations

necessary for the subsequent analysis.

Convolution. The sum of random variables is performed

thanks to an operator called convolution. This operator is

identified by the symbol �. In particular, the convolution of

two random variables Xsum = X1 � X2 is defined as the

convolution of their PMFs fXsum
(x) = fX1

(x)�fX2
(x). The

general formula of X = Y �Z for discrete random variables

is:

pX(x) = pY (x)� pZ(x) =

+∞∑
n=−∞

pY (n)pZ(x− n)

Sum and product with a constant. The sum and product of

a random variable with a constant are a shift of PMF function

along the random variable axis: the expression of the PMF for

Y , where Y = X + k, is pY (x) = pX(x− k); the expression

of the PMF for Z, where Z = kX , is pZ(x) = pX(x/k). The

pET matrix can be accordingly recomputed with the newly

obtained PMF.

Expected value. Also called mean, average or first moment,

the expected value of a discrete random variable is defined

as E[X] =
∑k

i=1 xipi, where n is the number of terms

composing the PMF, i.e., in our pET representation, the

number of columns of the pET matrix.

B. Computing the Probabilistic Idle Time and the Average
Energy

From the probabilistic execution time profile of each node,

we compute the probabilistic version of Eq. (1) and Eq. (2),

by exploiting the previously defined operator:

Case-1:

Ĩm,k
i = bm,k

i − �
∀l:N l

i∈τi

(bl,ki + d̃l,ki ) · Ok,N l
i ,Nm

i
(12)

Case-2:

Ĩm,k
i = bm,k

i − �
∀l:N l

i∈τi

(bl,ki + d̃l,ki ) · Ok,N l
i ,J (13)

The start time bl,ki , the decision variables Ok,N l
i ,Nm

i
and

Ok,N l
i ,J are deterministic and non-random variables. The

break-even points T j,k
BE of Eq. (3) are not affected by the

probabilistic analysis because they are computed from the

processor’s C-States characteristics and not dependent on the

task. Instead, Eq. (5) is transformed by replacing the condition

with the probability values extracted from the CDF of the idle

time as follows:

Ẽidle(Ĩm,k
i ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

C0,k · Ĩm,k
i P = FĨm,k

i
(T 1,k

BE)

E1,k
sw + C1,k · (Ĩm,k

i − T 1,k
sw ) P = FĨm,k

i
(T 2,k

BE)− FĨm,k
i

(T 1,k
BE)

...

Er,k
sw + Cr,k · (Ĩm,k

i − T r,k
sw ) P = 1− FĨm,k

i
(T r,k

BE)

(14)

The graphical interpretations of the probabilistic version for

break-even points and the Ẽidle are depicted in Figure 3.

0

1

Stay in Switch to Switch to

Fig. 3. Graphical interpretation, given the probabilistic information, of the
break-even points. The figure shows the CDF of the idle time for the m node
of the i-th task running on processor pk .

From this equation it is possible to rebuild a probabilistic

profile as defined in Section VI-A. Then, we can recompute

the Eq. (8) by using a characteristic function of the random

variable to compute a scalar value for Eidle(Ĩm,k
i ). We are

interested in the ACEC, therefore we compute the expected

value of Eidle(Ĩm,k
i ) = E[Ẽidle(Ĩm,k

i )] with the previous

formula defined in Section VI-A2. In this work we limit our

focus to the average value, but other approaches are possible,

including optimizing the 95% percentile, the median value,

the pWCET, or the pWCEC [8]. Once the scalar value for

Eidle(Ĩm,k
i ) is computed, the energy analysis proceed as ex-

plained in the previous section – in particular, via Algorithm 1

and Algorithm 2 – but, instead of optimizing the WCEC, it

minimizes the ACEC.

C. A Complete Example

To show a complete example with the probabilistic informa-

tion, we consider the DAG task of Figure 1, and, in particular,

we focus on the decision during the idle time between the node

N2
i and the node N3

i execution on p2 with speed S3
i,2 = 1.

Let us assume that the node N2
i has a begin time b2,2i = 0

and is characterized by the following probabilistic-ET:

pET 2,2
i =

⎛
⎝ 1 2 3

0.20 0.75 0.05
0.20 0.95 1

⎞
⎠

By using the WCET to compute d2,2i , the idle time I3,2
i is

zero, as calculated by Eq. (5) because the next node N3
i has

b3,2i = 3 and S3
i,2 = 1. Instead, by replacing the duration

with its probabilistic version d̃2,2i , we obtain the following

probabilistic profile for Ĩ3,2
i :

pĨ3,2
i =

⎛
⎝ 0 1 2

0.05 0.75 0.20
0.05 0.80 1

⎞
⎠

Let us assume that the computing platform has the following

parameters:

• Three C-states: Θ0,Θ1,Θ2

• Power consumption of p2 for each C-state: C0,2 =
15, C1,2 = 5, C2,2 = 1
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• Energy overheads: E1,2
sw = 7, E2,2

sw = 12
• Time overheads: T 1,2

sw = 0.2, T 2,2
sw = 0.5

So, we can compute the break-even times according to Eq. (3)

(please note that the computation of break-even time is not

dependent on probabilistic information): T 1,2
BE = 3

5 , T 2,2
BE =

11
8 . We then build the energy idle as follows:

Ẽidle(Ĩ3,2
i ) =

⎧⎪⎪⎨
⎪⎪⎩
15 · Ĩ3,2

i P = FĨ3,2
i

(3/5) = 0.05

7 + 5 · (Ĩ3,2
i − 0.2) P = FĨ3,2

i
(11/8)− FĨ3,2

i
(3/5) = 0.75

12 + 1 · (Ĩ3,2
i − 0.5) P = 1− FĨ3,2

i
(11/8) = 0.2

Finally, we compute the scalar expected value of Eidle(Ĩ3,2
i ) =

E[Ẽidle(Ĩ3,2
i )]:

Eidle(Ĩm,k
i ) = [15 · 0] · 0.05 + [7 + 5(1− 0.2)] · 0.75

+ [12 + 1(2− 0.5)] · 0.2 = 10.95

This value represents the average energy consumption of the

idle time when the break-even strategy is applied, and it can

then be used to optimize the ACEC. For the sake of the

example, we also computed the idle energy in case a fixed

selection C-States policy is applied:

• the processor remains in Θ0, obtaining average

Eidle(Ĩ3,2
i ) = 17.25

• the processor always switches (and remains) to Θ1 ,

obtaining average Eidle(Ĩ3,2
i ) = 12.75

• the processor always switches (and remains) to Θ2 ,

obtaining average Eidle(Ĩ3,2
i ) = 13.15

In this example, it is possible to notice how the optimized

strategy is better than any fixed selection of the C-States. The

next section performs an extensive simulation to show how

this strategy is beneficial in different scenarios.

VII. SIMULATION RESULTS

We performed a large-scale simulation and an experimental

study on a real hardware platform to evaluate the proposed

policies and their energy efficiency. The latter is presented in

Section VIII, while, in this section, we focus on the simulation.

Subsection VII-A compares our approach with a previous work

by focusing on the WCEC optimization, while Section VII-B

improves the ACEC by exploiting the probabilistic policy.

We compared our policies with the recent work by Guo et

al. [3] because it has a similar DAG task model and problem

assumptions, while other works would make a correct and fair

comparison difficult. We denoted this baseline in this article

with Fed Guo.

A. Energy Results of the WCEC Approach

To verify the performance of our WCEC policy, we con-

ducted the simulation on randomly generated task sets by

varying the following input parameters:

• 2 ≤ Mi ≤ 4: Degree of parallelism of DAG tasks (with

the number of nodes in the interval [4; 16]
• p: Set of processors

• S ∈ [1; 1.5]: Execution speeds

A total number of 10 000 random generated task sets

have been explored, comparing the energy consumption of

Fig. 4. Energy consumption comparison between our approach and Fed Guo.
The figure shows only the first 20 scenarios of the overall 10 000 randomly
generated DAGs.

TABLE IV
AGGREGATE RESULTS OF THE IMPROVEMENT OF OUR APPROACH

COMPARED TO THE BASELINE Fed Guo ON 10 000 GENERATED TASK SETS.

Energy Saving Absolute value Percentage
Average 46 J 22.2%
Variance 264 J2 -

Maximum 94 J 32.1%
Minimum 12 J 9.6%

both our approach and the baseline approach Fed Guo. The

code and the full dataset is available online to enhance the

reproducibility5. We depicted the results of the first 20 runs in

Figure 4, while the aggregate data of the whole experiments

are reported in Table IV. Our approach exhibits an average

of 22% energy savings compared to Fed Guo, with a peak

maximum of 32.1% and a minimum 9.6%. Our approach

outperforms the baseline in all the generated task sets. The

application of the C-States method is more effective than the

static policy applied to idle slots like in Fed Guo, considerably

reducing the energy consumption when the policy is optimized

for the WCEC case.

B. Energy Results of the ACEC Approach

To check the improvement of the ACEC optimization, we

considered the DAG A of Figure 4 and generated random

CDFs for the task execution time. We performed the energy

optimization, this time according to the probabilistic analysis

of Section VI. Then, we run the task set 10 000 times by

sampling the task execution time from the random CDFs

previously generated with the inverse transform sampling

method. The first 50 runs are illustrated in Figure 5. The

theoretical WCEC (estimated by the analysis of the previous

subsection) is 165. On the overall 10 000 samples data, the

two optimizations performed as follows:

• WCEC-policy (Section V): the minimum and maximum

observed energy consumption are respectively 28.8 J and

94.3 J , while the average value is 53.6 J .

• ACEC-policy (Section VI): the minimum and maximum

observed energy consumption are respectively 27.8 J and

89.9 J , while the average value is 46.7 J .

Consequently, the ACEC-policy reduces the average energy

consumption on average of about 12.8%, compared to our

5https://doi.org/10.5281/zenodo.5528052
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Fig. 5. The first 50 runs of the ACEC experiment. The figure shows the
pessimism of the theoretical WCEC and how the allocation of the ACEC-
optimized policy presents a lower average-case energy consumption compared
to the WCEC-optimized policy.

TABLE V
CHARACTERIZATION OF THE ODROID-H2 BOARD. THE VALUES OF Tsw

ARE PROVIDED BY THE MANUFACTURER, WHILE WE MEASURED THE

OTHER PARAMETERS. EACH REPORTED VALUE IS THE AVERAGE OF 1 000
SAMPLES, AND THE OEFFICIENT OF VARIATION WAS LESS THAN 1 FOR

ALL THE VALUES.

Θi Tsw[μs] Esw[mJ ] Cl,1[mW ] Cl,2[mW ] Cl,3[mW ]
C0 0 0 656.3 507.7 310.0

C1E 10 0.23 41.3
C6 150 0.32 29.6
C8 5963 1.31 27.4

WCEC-policy, and 28.6%, compared to the Fed Guo WCEC-

policy.

VIII. EXPERIMENTAL RESULTS

This section reports the experimental evaluation to estimate

the improvement in terms of both ACEC and WCEC compared

to the Fed Guo baseline (described in Section VII), when our

analyses are employed on a real platform.

A. Experimental Setup

The chosen platform is the Odroid-H2 board equipped with

a quad-core J4105 processor and implementing the Intel x86-

64 C-States. In particular, this board is capable of applying

DVFS for each core. We used this feature not for energy con-

sumption but to simulate the processor heterogeneity setting

a different fixed frequency to each core. The board has the

4 C-States (including the running C-State Θ0) reported in

Table V. The board runs the Linux kernel, which has been

patched with PREEMPT RT and configured for the real-time

workload. Even if Linux is not a hard real-time kernel in

the safety-critical sense, the PREEMPT RT patch makes it

a good test bench for scientific purposes [41]. To improve

the reproducibility and reduce the interference, we dedicated

the core 0 to run the Linux kernel, service applications,

interrupts, and the measurement scripts, while core 1, core
2, core 3 are the actual processors considered in the analysis

and configured to run real-time workload by following the

relative guidelines [41]. The core 1 was configured at full

speed S1 = 1, core 2 at speed S2 = 1.25, and core 3 at speed

S3 = 1.5. We connected the board to an industrial-graded

power measurement device with a resolution of 2μW and a

sampling frequency of 320S/s controlled by a third machine

not affecting the timing property of the system under analysis.

To characterize each core, we computed the difference between

the baseline (core 0, with all the other core offline) and each

configuration (e.g., core 0 and core 2 online, with all the other

core offline). The results of the relevant metrics are reported

in Table V.

B. Results

We compare our approach to the same baseline used in

Section VII. We built a DAG and its decomposed structure

similar to the example of Figure 1. The workload of each

node has been selected by taking 5 benchmarks from the

well-known Mälardalen WCET suite [42]: N1
i = cnt, N2

i =
insert, N3

i = ns, N4
i = N5

i = prime, and N6
i =

sqrt. Each benchmark was modified to allow us to inject

a random (but predictable, for reproducibility) input and to

increase the total execution time. The original Mälardalen

WCET benchmarks are too small and fast to efficaciously

measure the power/energy consumption. Therefore, depending

on the benchmark, we implemented each execution so that it

is composed of repetitive executions for a variable number

of times. The benchmark choices have been driven by their

WCETs in order to match the decomposition of Figure 1. Due

to the complexity of the test-bench hardware and software, a

measurement-based approach was used to obtain the WCET

estimation. Since a WCET underestimation would have inval-

idated the results, a proper run-time mechanism was put in

place to detect any violation (which never occurred in any the

experiment case) of the WCET thresholds of the nodes.

We run the experiments and compared the baseline Fed Guo
with our policy. Both WCEC-optimization and ACEC-

optimization policies provided the same processor allocation.

Hence the optimal WCEC solution is also the optimal ACEC

solution in this case. We gathered 1 000 samples data resulting

in the following aggregate data:

• Fed Guo: the minimum and maximum observed energy

consumption are respectively 1.78 J and 4.80 J , while

the average value is 2.00 J .

• Our policy: the minimum and maximum observed energy

consumption are respectively 1.53 J and 4.50 J , while the

average value is 1.75 J .

Our policy improved the (observed) WCEC of 12.32% and

of the ACEC of 6.29%. These results are slightly worse than

the theoretical results of the previous section. This can be

explained by the fact that our approach relies on a perfect

characterization of the hardware and the benchmarks (like

most of all hard real-time approaches), which is difficult in

the considered complex computing platform. The operating

system and the software layers are another source of overhead

not considered in the model but present in the experimental

data. Nevertheless, even with such an imperfect model, our

approach still outperforms the baseline, saving a significant

amount of energy.
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IX. CONCLUSION

We proposed an energy-aware task allocation strategy that

can optimize the WCEC in the context of hard real-time

tasks described with a DAG and running on heterogeneous

processors. The offline analysis allows us to verify worst-

case requirements in an energy-constrained system, while the

online actuation ensures the best possible choice depending

on the actual values of tasks’ execution time. Then, this

allocation policy is extended thanks to probabilistic execution

time information to optimize the average-case – i.e., minimize

the ACEC. Both policies guarantee the schedulability thanks

to the statically computed node WCETs, taking into account

also the DPM overheads. To verify the effectiveness of our

approach, we run an extensive simulation, which resulted in

an energy saving of up to 32.1% of the WCEC compared to

the baseline (22% on average), with a further improvement

of 12.8% when the ACEC-policy is employed. Then, we run

a small-scale experimental test on a real board to measure

the real energy consumption, resulting in an improvement of

12.32% the WCEC and 6.29% the ACEC.

Future Research. Although representing parallelizable code

using a DAG model is very popular in the real-time com-

munity, such a model suffers from several shortcomings [43],

e.g., the complex internal structure of the code. Recently, an

alternative model is proposed that characterizes a DAG by

just two parameters [43] – work and span. This model does

not require details knowledge regarding each node and its

dependencies. In the future, we plan to extend our analysis for

the model mentioned above. In addition, future works dealing

with scheduling and resource management may consider other

components, e.g., resource contention (cache misses, shared

data, etc.), software overheads (context switches, scheduler,

etc.), and input/output devices that affect the overall power

and energy consumption.

ACKNOWLEDGMENTS

This work is supported by NSF grants CNS 1850851,

PPoSS 2028481, and the European Union’s Horizon 2020

Research and Innovation programme (No. 801137) [44].

REFERENCES

[1] V. Bonifaci, A. Marchetti-Spaccamela, S. Stiller, and A. Wiese, “Feasi-
bility analysis in the sporadic DAG task model,” in ECRTS, 2013.

[2] J. Li, J. J. Chen, K. Agrawal, C. Lu, C. Gill, and A. Saifullah, “Analysis
of federated and global scheduling for parallel real-time tasks,” in
ECRTS. IEEE, 2014.

[3] Z. Guo, A. Bhuiyan, A. Saifullah, N. Guan, and H. Xiong, “Energy-
efficient multi-core scheduling for real-time dag tasks,” in LIPIcs-Leibniz
International Proceedings in Informatics. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2017.

[4] J. Goossens and P. Richard, “Optimal scheduling of periodic gang tasks,”
Leibniz transactions on embedded systems, vol. 3, no. 1, pp. 04–1, 2016.

[5] Z. Dong and C. Liu, “Analysis techniques for supporting hard real-time
sporadic gang task systems,” in Real-Time Systems Symposium (RTSS),
2017 IEEE. IEEE, 2017, pp. 128–138.

[6] A. ahmed Bhuiyan, K. Yang, S. Arefin, A. Saifullah, N. Guan, and
Z. Guo, “Mixed-criticality multicore scheduling of real-time gang task
systems,” in 2019 IEEE Real-Time Systems Symposium (RTSS). IEEE,
2019, pp. 469–480.

[7] B. Andersson and D. de Niz, “Analyzing global-edf for multiprocessor
scheduling of parallel tasks,” in International Conference On Principles
Of Distributed Systems. Springer, 2012, pp. 16–30.

[8] F. Reghenzani, G. Massari, and W. Fornaciari, “A probabilistic approach
to energy-constrained mixed-criticality systems,” in 2019 IEEE/ACM In-
ternational Symposium on Low Power Electronics and Design (ISLPED),
2019, pp. 1–6.

[9] N. K. Jha, “Low power system scheduling and synthesis,” in IEEE/ACM
International Conference on Computer Aided Design. ICCAD 2001.
IEEE/ACM Digest of Technical Papers (Cat. No. 01CH37281). IEEE,
2001, pp. 259–263.

[10] K. Huang, L. Santinelli, J.-J. Chen, L. Thiele, and G. C. Buttazzo, “Ap-
plying real-time interface and calculus for dynamic power management
in hard real-time systems,” Real-Time Systems, vol. 47, no. 2, pp. 163–
193, 2011.

[11] H. Cheng and S. Goddard, “Online energy-aware I/O device scheduling
for hard real-time systems,” in Proceedings of the conference on Design,
automation and test in Europe:. European Design and Automation
Association, 2006.

[12] M. Bambagini, M. Marinoni, H. Aydin, and G. Buttazzo, “Energy-
aware scheduling for real-time systems: A survey,” ACM Transactions
on Embedded Computing Systems (TECS), vol. 15, no. 1, p. 7, 2016.

[13] A. Saifullah, D. Ferry, J. Li, K. Agrawal, C. Lu, and C. D. Gill,
“Parallel real-time scheduling of dags,” IEEE Transactions on Parallel
and Distributed Systems, vol. 25, no. 12, pp. 3242–3252, 2014.

[14] K. Agrawal, S. Baruah, P. Ekberg, and J. Li, “Optimal scheduling of
measurement-based parallel real-time tasks,” Real-Time Systems, pp. 1–
7, 2020.

[15] D. Ferry, J. Li, M. Mahadevan, K. Agrawal, C. Gill, and C. Lu, “A real-
time scheduling service for parallel tasks,” in 2013 IEEE 19th Real-Time
and Embedded Technology and Applications Symposium (RTAS). IEEE,
2013, pp. 261–272.

[16] A. Saifullah, J. Li, K. Agrawal, C. Lu, and C. Gill, “Multi-core real-time
scheduling for generalized parallel task models,” Real-Time Systems,
2013.

[17] S. Baruah, V. Bonifaci, and A. Marchetti-Spaccamela, “The global EDF
scheduling of systems of conditional sporadic DAG tasks,” in ECRTS,
2015.

[18] S. Baruah, V. Bonifaci, A. Marchetti-Spaccamela, L. Stougie, and
A. Wiese, “A generalized parallel task model for recurrent real-time
processes,” in RTSS. IEEE, 2012.

[19] S. Baruah, “The federated scheduling of systems of mixed-criticality
sporadic DAG tasks,” in 2016 IEEE Real-Time Systems Symposium
(RTSS). IEEE, 2016, pp. 227–236.

[20] D. Zhu, N. AbouGhazaleh, D. Mossé, and R. Melhem, “Power aware
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