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Abstract 25 

Arsenicals are one of the oldest treatments for a variety of human disorders. Although infamous 26 

for its toxicity, arsenic is paradoxically a therapeutic agent that has been used since ancient times 27 

for the treatment of multiple diseases. The use of most arsenic-based drugs was abandoned with 28 

the discovery of antibiotics in the 1940s, but a few remained in use such as those for the treatment 29 

of trypanosomiasis. In the 1970s, arsenic trioxide (ATO), the active ingredient in a traditional 30 

Chinese medicine, was shown to produce dramatic remission of acute promyelocytic leukemia 31 

(APL) similar to the effect of all-trans retinoic acid (ATRA). Since then, there has been a renewed 32 

interest in the clinical use of arsenicals. Here the ancient and modern medicinal uses of inorganic 33 

and organic arsenicals are reviewed. Included are antimicrobial, antiparasitic and anticancer 34 

applications. In the face of increasing antibiotic resistance and the emergence of deadly 35 

pathogens such as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), we 36 

propose revisiting arsenicals with proven efficacy to combat emerging pathogens. Current 37 

advances in science and technology can be employed to design newer arsenical drugs with high 38 

therapeutic index. These novel arsenicals can be used in combination with existing drugs or serve 39 

as valuable alternatives in the fight against cancer and emerging pathogens. The discovery of the 40 

pentavalent arsenic-containing antibiotic arsinothricin (AST),  which is effective against multidrug-41 

resistant pathogens, illustrates the future potential of this new class of organoarsenical antibiotics. 42 

  43 
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1. Introduction 44 

History of arsenic in medicine 45 

In this article we review the history and present use of arsenicals in medicine. The origin of the 46 

name “arsenic” traces back to the Greek word “arsenikon” meaning “potent” (Jolliffe 1993; 47 

Hoonjan et al. 2018). Arsenic was known empirically as a potent medicinal agent as early as 2000 48 

BC (Fig. 1), when arsenic trioxide (ATO, As2O3, also known as white arsenic) (Fig. 2A) obtained 49 

from copper smelting was used as both a drug and a poison (Jolliffe 1993). Orpiment, (As2S3, 50 

yellow arsenic) and realgar, (As4S4, red arsenic) (Fig. 2B), described as early as the 4th Century 51 

BC by the Greek philosopher Aristotle (384–322 BC), were the earliest arsenic minerals in 52 

recorded history (Fig. 1) (Gorby 1988; Bentley and Chasteen 2002). Although arsenic-containing 53 

minerals were known in antiquity, it was not until 1250 that elemental arsenic was conclusively 54 

identified by the German alchemist Albertus Magnus (1193-1280) 55 

(https://pubchem.ncbi.nlm.nih.gov/element/Arsenic). 56 

 57 

 58 

Figure 1. Milestones of the use and development of arsenicals in medicine 59 

 60 

History is rife with stories of arsenic used as a poison for both royalty and commoners. Odorless 61 

and tasteless ATO has been used as a poison for millennia due to its availability and low cost 62 

https://pubchem.ncbi.nlm.nih.gov/element/Arsenic
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(Jolliffe 1993; Hoonjan et al.  2018; Gorby 1988; Hughes et al. 2011). One of the earliest recorded 63 

cases of arsenic poisoning was in the year 55 AD, when the fifth Roman emperor Nero ordered 64 

the poisoning of his 13-year-old stepbrother Britannicus to secure his Roman throne (Jolliffe 1993; 65 

Gorby 1988; Bentley and Chasteen 2002; Doyle 2009). Pope Alexander VI (1431–1503), a 66 

member of the Borgia family, one of the most eminent dynasties of the Italian Renaissance, used 67 

the infamous powder called cantarella, which is widely believed to have consisted mainly of 68 

arsenic, to murder cardinals for their property and wealth (Gorby 1988). A well-known example of 69 

arsenic poisoning is “The Affair of the Poisons” in the French court of Louis XIV, where Catherine 70 

Deshayes provided the arsenic-based poison La Poudre de Succession or “inheritance powder” 71 

to women to help them rid themselves of their husbands (Gorby 1988; Bentley and Chasteen 72 

2002). The inheritance powder continued to be popular in France until the 19th century, when it 73 

became the most favorite poison, as recorded by early forensic toxicologists (Gorby 1988). The 74 

incidence of arsenic poisoning dramatically waned after the advent of the Marsh test, a sensitive 75 

forensic test for arsenic developed in 1836 by the English chemist James Marsh (Gorby 1988; 76 

Hughes et al. 2011). 77 

 78 

Behind its inglorious history as a poison, however, arsenic has an even more prestigious history 79 

as a pharmaceutical agent. Arsenic has been in use as therapeutics since ancient times in the 80 

Greek and Roman civilizations, as well as in Chinese and Indian traditional medicine (Doyle 81 

2009). Hippocrates (460–377 BC), the Greek physician, often referred to as the Father of 82 

Medicine, is thought to have administered the arsenic minerals orpiment and realgar as 83 

escharotics and remedies for ulcers and abscesses (Fig. 1) (Jolliffe 1993; Hoonjan et al. 2018; 84 

Hughes et al. 2011; Bentley and Chasteen 2002; Waxman and Anderson 2001; Zhu et al. 2002; 85 

Riethmiller 2005). Aristotle and the Roman author Pliny the Elder (23–79 AD) both wrote on the 86 

medicinal properties of arsenicals (Fig. 1) (Jolliffe 1993; Gorby 1988). The Greek physician Galen 87 

(129–210 AD) recommended the use of arsenic sulfide to treat ulcers (Jolliffe 1993; Riethmiller 88 
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2005). The first book on Chinese traditional medicine, Shen Nong Ben Cao Jing, compiled in the 89 

Eastern Han dynasty (25–220 AD), traces the use of arsenic in traditional Chinese medicine as 90 

far back as 200 BC (Fig. 1) (Liu et al. 2008), which agrees with the fact that the Chinese Nei Jing 91 

Treaty (263 BC) recorded the use of arsenic pills for treatment of periodic fever (Hoonjan et al. 92 

2018; Zhu et al. 2002; Chen and Chen 2017). Sun Si-Miao (581–682 AD), a Chinese physician 93 

called China’s King of Medicine, used a combination of realgar, orpiment and ATO for treatment 94 

of malaria (Hoonjan et al. 2018; Zhu et al. 2002; Chen and Chen 2017). Shi-Zhen Li (1518 – 1593 95 

AD), a Chinese physician in the Ming dynasty, wrote Ben Cao Gang Mu, or Compendium of 96 

Materia Medical, a major pharmacopoeia in Chinese history, where he described the use of ATO 97 

as a remedy for various diseases (Zhu et al. 2002; Chen and Chen 2017; Gibaud and Jaouen 98 

2010). In traditional Indian medicine, the three main arsenicals used in Ayurveda, an alternative 99 

system of medicine originating from the ancient Indian subcontinent several thousand years ago, 100 

are orpiment, realgar and ATO (Panda and Hazra 2012). In Arabia, Avicenna (980–1037 AD), a 101 

Persian physician, introduced the internal use of ATO for the treatment of fevers (Zhu et al. 2002). 102 

Paracelsus (1493 – 1541 AD), a Swiss physician recognized as the Father of Toxicology and 103 

Pharmacology, is known to have used elemental arsenic extensively (Fig. 1) (Jolliffe 1993; 104 

Hoonjan et al. 2018; Gorby 1988; Waxman and Anderson 2001; Zhu et al. 2002; Borzelleca 2000). 105 

He advocated for the use of minerals and chemicals, including arsenic, in medicine, emphasizing 106 

that the dosage makes the difference between a drug and a poison. In 1786 Thomas Fowler 107 

(1736–1801 AD), a British physician and pharmacist, reported the effects of a flavored solution of 108 

1% potassium arsenite named “liquor mineralis” for malaria, remittent fevers, and periodic 109 

headaches (Fig. 1). This medicine, renamed “Fowler’s solution”, once introduced into the London 110 

Pharmacopoeia in 1809, became popular in Western countries throughout the Victorian Era as a 111 

main therapeutic option for a wide variety of ailments and diseases, including asthma, chorea, 112 

eczema, psoriasis, rheumatism, syphilis, tuberculosis and ulcers (Jolliffe 1993; Hoonjan et al.  113 
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2018; Gorby 1988; Hughes et al. 2011; Bentley and Chasteen 2002; Doyle 2009; Waxman and 114 

Anderson 2001; Zhu et al. 2002; Gibaud and Jaouen 2010; Thomas and Troncy 2009).  115 

There is some concern over the present-day use of arsenicals in traditional medicine (Ernst 2002), 116 

leading to evaluation of the bioavailability of arsenic species in their prescriptions. In Indian 117 

traditional ayurvedic medicine, for example, a special subset of herbal medicines called Rasa 118 

Shastra involves intentional use of toxic elements including arsenic, which are believed to be 119 

converted into non-toxic forms called bhasmas via the preparation procedures. However, the 120 

bioaccessibility of arsenic in several traditional Indian medicines was suggested to lead to 121 

accumulation of arsenic above the acceptable daily limit if consumed at recommended doses 122 

(Koch et al. 2011). More recently a similar concern was raised about some traditional Chinese 123 

medicines (Liu et al. 2018). To exploit the full potential of arsenic as medicine, therefore, further 124 

evaluation is required to develop regulations for the proper dosage of arsenic-containing 125 

traditional medicines. 126 

Applications of arsenicals extend beyond drugs and poisons. They have been used in areas of 127 

agriculture, metallurgy, cosmetics, electronics semiconductor and other industrial uses (Bentley 128 

and Chasteen 2002). Monosodium methylarsenate (MSMA) and sodium dimethylarsenate 129 

(cacodylate) have been used as post-emergent herbicides on cotton fields and other non-food 130 

crops (Matteson et al. 2014). Although banned for general use by the USA by the Environmental 131 

Protection Agency (EPA), MSMA is still in limited use in the United States for cotton fields, new 132 

golf courses and highway medians, and it is still applied world-wide as an herbicide on rice, cotton, 133 

fruit trees and coffee in a number of countries around Asia (Burló et al. 1999). 134 

 135 

2.  Inorganic and organic arsenic-containing drugs 136 

2.1  Development of arsenical drugs 137 

In the modern era, the use of arsenicals as drugs has alternated between successes and failures. 138 

As described below, arsenical drugs can be generally grouped into inorganic, for example, ATO 139 
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(Fig. 2A), and organic compounds, such as atoxyl (p-aminophenylarsenate or p-arsanilic acid (p-140 

ASA)) (Fig. 2U). Atoxyl, the first effective artificial organoarsenic drug, was synthesized by the 141 

French scientist Antoine Béchamp (1816–1908 AD), in 1859 by heating a mixture of aniline and 142 

arsenic acid (Fig. 1) (Riethmiller 2005; Gibaud and Jaouen 2010). Its clinical effectiveness was 143 

not demonstrated until some forty years later, when the physicians Canadian Harold W. Thomas 144 

(1875–1931 AD) and Australian Anton Breinl (1880–1944 AD) at the Liverpool School of Tropical 145 

Medicine first used it in 1905 to treat human trypanosomiasis (Fig. 1) (Jolliffe 1993; Gibaud and 146 

Jaouen 2010). Although it causes optic atrophy due to its high arsenic content (Jolliffe 1993), the 147 

trypanocidal effects of Béchamp’s atoxyl inspired Paul Ehrlich (1854 – 1915), the German Nobel 148 

Laureate known as the Father of Chemotherapy, to initiate an extensive synthesis of organic 149 

arsenicals to find a drug against the syphilis spirochaete (Jolliffe 1993). Arsphenamine, was the 150 

606th aromatic arsenical he synthesized in 1910 (Fig. 1). Compound 606 was later called the silver 151 

bullet Salvarsan, the first effective chemotherapeutic drug for the treatment of syphilis (Jolliffe 152 

1993; Gorby 1988; Hughes et al. 2011; Bentley and Chasteen 2002). The composition of 153 

Salvarsan was a question of debate for almost a century. In 2005, Nicholas and colleagues 154 

provided evidence based on electrospray ionization mass spectrometric data that Salvarsan in 155 

solution exists as cyclic species (RA)n, with n=3 (Fig. 2O) and n=5 (Fig. 2P) (Lloyd et al. 2005). 156 

Like atoxyl, however, Salvarsan treatment was lengthy, and the side effects unpleasant. Less 157 

toxic derivatives such as neoarsphenamine (Neosalvarsan) (Fig. 2Q) and oxophenarsine 158 

hydrochloride (Mapharsen) (Fig. 2R) made treatment more bearable (Jolliffe 1993; Bentley and 159 

Chasteen 2002; Gibaud and Jaouen 2010). Ehrlich’s work with Salvarsan ushered in the modern 160 

era of chemotherapy.  161 
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Fig. 2. Chemical structure of arsenicals  162 



 

 

9 

 

 163 

2.2. Arsenical anticancer chemotherapeutic agents 164 

2.2.1. Arsenic trioxide (ATO) 165 

Arsenicals have a long history of use as cancer chemotherapeutic agents. ATO (Fig. 2A) was a 166 

favorite compound in traditional ancient Chinese medicine for over 2000 years (Bentley and 167 

Chasteen 2002). ATO is an amphoteric oxide that readily dissolves in alkaline solutions. It was 168 

originally made from orpiment by roasting and purifying the smoke (Gibaud and Jaouen 2010). In 169 

1878, the related formulation, Fowler’s solution, was found to be effective for the treatment of 170 

leukemia, and, in addition, Fowler pastes were applied topically potentially for the treatment of 171 

skin and breast cancers (Hoonjan et al. 2018; Hughes et al. 2011; Waxman and Anderson 2001; 172 

Gibaud and Jaouen 2010). Arsenic therapy was the mainstay of antileukemia treatment until the 173 

advent of radiation therapy in the early 20th century (Hoonjan, et al. 2018; Waxman and Anderson 174 

2001). Despite its toxicity, arsenic remained in use in traditional Chinese medicine (Bentley and 175 

Chasteen 2002). Taking inspiration from this traditional medicine, investigators at Harbin Medical 176 

University showed that a solution of ATO produced complete remission of acute promyelocytic 177 

leukemia (APL) in about two-third of patients in the 1970s (Fig. 1) (Zhu et al. 2002; Chen and 178 

Chen 2017). The ATO used in those clinical studies contained trace amounts of mercury, so it 179 

was possible that the anticancer effects were due to mercury rather than arsenic. Clinical trials 180 

with pure ATO began in 1994, and, by 1996, its effectiveness was confirmed in other countries. 181 

In 2003 ATO, marketed as Trisenox®, was approved by the U.S. Food and Drug Administration 182 

(FDA) for treatment of APL refractory to all-trans retinoic acid (ATRA) (Gibaud and Jaouen 2010). 183 

The revival of ATO for treatment of APL and other specific hematological malignancies has 184 

sparked renewed interest in arsenic-based drugs (Hoonjan et al. 2018; Hughes et al. 2011; 185 

Gibaud and Jaouen 2010).  186 
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Since ATO was approved as an effective drug for clinical treatment of hematological 187 

malignancies, including APL and multiple myeloma (MM), its mechanism as anticancer agent has 188 

been under active investigation. The mechanism of action of ATO is not clear, and there are a 189 

number of potential targets. Like most trivalent arsenicals, it has the potential to bind to thiols in 190 

metabolites such as glutathione, vicinal thiol pairs in lipoamide and in proteins such as lipoamide 191 

dehydrogenase, inhibiting cellular energy production and increasing production of intracellular 192 

reactive oxygen species (ROS) (Carney 2008; Emadi and Gore 2010). ATO treatment results in 193 

demethylation of DNA, affecting the promoters of many genes and also binds to 194 

oncoproteins/transcription factors (Emadi and Gore 2010; Dawood et al. 2018; Huynh et al. 2019). 195 

These alterations affect multiple cellular processes in a variety of cancers, resulting in cell cycle 196 

arrest, apoptosis and mesenchymal to epithelial transition through a variety of molecular targets 197 

(Chen et al. 1997; Bao et al. 2016; Miller et al. 2002; Shao et al. 1998). The final outcome depends 198 

on the cell type as well as the concentrations of administration and duration of ATO exposure 199 

(Chen et al. 1997).  200 

However, those are rather nonspecific effects of ATO and do not explain its selective ability to 201 

treat APL. APL is characterized by chromosomal translocation t(15;17) (q24;q21), which produces 202 

a fusion promyelocytic leukemia protein-retinoic acid receptor alpha (PML-RARα) gene that is 203 

found in over 98% of patients (Borrow et al. 1990; de Thé et al. 1990; Golomb et al. 1980). The 204 

PML-RARα fusion gene consists of the PML gene on chromosome 15 and the RARα gene on 205 

chromosome 17. The production of the PML-RARα oncoprotein alters myeloid differentiation at 206 

the promyelocytic stage, leading to accumulation of immature cells (Grisolano et al. 1997). In 207 

addition, PML-RARα increases cell survival and increases proliferation of leukemic cells, resulting 208 

in progressive leukemogenesis (Grignani et al. 1993; Pandolfi 2001; Puccetti and Ruthardt 2004). 209 

PML-RARα appears to be a target of ATO, which binds to the PML-RARα oncoprotein in NB4 210 

cells, a human APL cell line, and alters SUMOylation of the PML moiety, leading to protein 211 
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degradation (Zhang et al. 2010). Although the effect of ATO on the PML-RARα leukemic stem 212 

cells appears to be mainly throught inhibition of proliferation (Testa and Lo-Coco 2015), this PML-213 

RARα degradation is also thought to induce apoptosis or differentiation to myeloid cells, leading 214 

decrease in the leukemic cells (Zhang et al. 2010; Rojewski et al. 2002).  215 

 216 

Another putative target of ATO is the Wip1 phosphatase. ATO has been reported to activate the 217 

Chk2 and/or p38 MAPK apoptotic pathways in various chronic myelogenous leukemia cells (Giafis 218 

et al. 2006; Shim et al. 2002; Verma et al. 2002) as well as APL cells (Yoda et al. 2008) by 219 

inhibiting Wip1 phosphatase activity. Since expression of Wip1 is amplified in a number of 220 

cancers, including breast, papillary thyroid, colorectal and prostate cancers and other types 221 

(Emelyanov and Bulavin 2015; Li et al. 2002; Natrajan et al. 2009), ATO is potentially a therapeutic 222 

agent for other tumor types. 223 

ATO may also be a treatment for other forms of leukemia via its function as a pro-oxidant factor, 224 

disrupting redox pathways in cancer cells. The combination of ATO with ascorbate (vitamin C), a 225 

dietary antioxidant that also possesses pro-oxidant activity in high concentrations (Kaźmierczak-226 

Barańska et al. 2020), selectively killed blasts from APL patients and was also effective against 227 

approximately one-third of primary acute myeloid leukemia (AML) samples examined, 228 

presumably due to apoptosis induced by overproduction of ROS (Noguera et al. 2017). This pro-229 

oxidant activity provides a rationale for testing the combination of ATO and ascorbate in advanced 230 

cases of AML and APL (Noguera et al. 2017). 231 

Pin1, the peptidyl-prolyl cis–trans isomerase NIMA (never in mitosis A)-interacting 1, has been 232 

reported to be another target of ATO, enhancing its anti-cancer effects against multiple tumor 233 

types (Kozono et al. 2018). Pin1 is a major regulator of cancer signaling networks. It catalyzes 234 

cis–trans isomerization at phosphorylated Ser/Thr–Pro motifs, resulting in changes of protein 235 
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conformation, function and stability, which in turn activates numerous cancer-driving pathways. 236 

Pin1 is overexpressed in various cancers and cancer stem cells (Ayala et al. 2003; Bao et al. 237 

2004; Luo et al. 2015; Rustighi et al. 2014; Wulf et al. 2004) and involved in regulation of more 238 

than 50 oncogenes and 20 tumor suppressor factors (Lu and Hunter 2014; Zhou and Lu 2016). 239 

ATO inhibits Pin1 via direct and noncovalent binding to the active site, inducing degradation of 240 

Pin1. Interestingly, the anticancer effects of ATO are indirectly enhanced by co-treatment with all-241 

trans retinoic acid (ATRA), another well-known Pin1 inhibitor, which increases cellular ATO 242 

uptake via induction of Aquaporin-9 (AQP9) expression, in addition to directly inhibiting and 243 

degrading Pin1 (Kozono et al. 2018).  244 

However, a higher dose of ATO is required for the treatment of solid tumors compared to soft 245 

tumor hematologic malignancies, which raises concerns about toxicity. Methods to effectively 246 

deliver ATO to the cells without the accompanying toxicity are under development. For example, 247 

liposomal-encapsulated ATO delivered to HeLa cells, which are derived from human 248 

papillomavirus (HPV)-cervical carcinoma, effectively reduced levels of HPV-E6 proteins and 249 

induced apoptosis with reduced toxicity compared to free ATO. Encapsulation of ATO using this 250 

liposomal nanotechnology was shown to decrease membrane permeability to ATO by allowing its 251 

gradual release (Wang et al. 2016). The O’Halloran group developed a nanoparticulate 252 

formulation of ATO encapsulated in “nanobins” (liposomal vesicles) (Chen et al. 2006). The 253 

cytotoxicity of the encapsulated ATO was evaluated against a panel of human breast cancer cell 254 

lines and was found to be much less compared to the free ATO. In contrast, the nanobins 255 

potentiated the antitumor efficacy of ATO in vivo in an orthopic model of triple-negative breast 256 

cancer (Ahn et al. 2010). The group has also developed a synthesis method that combines ATO 257 

and cisplatin (cis-diamminedichloroplatinum(II)), a compound commonly used in the treatment of 258 

solid tumors, to form a stable aqueous complex, arsenoplatin, having a distinct biological activity 259 

from ATO and cisplatin individually (Miodragović Đ et al. 2013). Arsenoplatin can be loaded in 260 
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liposomal drug delivery systems and has been shown to possess significant biological activity 261 

against several cancer cell lines. When compared to cisplatin, it showed greater activity in breast, 262 

leukemia, colon, and central nervous system cancer cell lines (Miodragović et al. 2019). Other 263 

systems have been investigated for the effective delivery of arsonium compounds in cancer 264 

therapeutics, such as the triphenylarsonium-functionalised gold nanoparticles (Lalwani et al. 265 

2015). The gold nanoparticles are decorated with the triphenylarsonium groups to serve as 266 

potential nanocariers for intracellular therapeutics. The development of delivery systems for slow 267 

dosing with arsenical drugs can modulate toxicity, significantly expanding medical applications of 268 

arsenic. 269 

 270 

2.2.2. Realgar 271 

Another form of inorganic arsenic, realgar (As4S4, red arsenic) (Fig. 2B), has been used as a 272 

therapeutic agent since the days of ancient China (Wu et al. 2011). Inspired by nano-drug, lately, 273 

realgar nanoparticles (an average particle size of <100 nm) have been employed in studies rather 274 

than coarse realgar. This approach is adopted to overcome the problem of limited solubility of 275 

realgar particles in aqueous solutions, and to increase its bioavailability (Shi et al. 2016). Several 276 

in vitro studies demonstrated that realgar nanoparticles significantly decreased cell proliferation 277 

and promoted apoptosis in B16 melanoma cells (Zhao et al. 2010) and rat C6 glioma cells (An et 278 

al. 2011). Furthermore, in tumor-bearing C57BL/6 mice, transdermal delivery of the realgar 279 

nanoparticles markedly decreased the tumor volumes with little toxicity to the mice (Zhao et al. 280 

2010). Recently the effect of realgar nanoparticles was compared with ATO against several 281 

multiple myeloma cell lines and primary cell lines from multiple myeloma patients (Cholujova et 282 

al. 2017). The realgar nanoparticles were prepared by milling realgar into nano-sized dimensions 283 

under high energy. Both forms of inorganic arsenic were cytotoxic, but the realgar nanoparticles 284 

were two- to four-fold more effective than ATO in the cell lines, xenograft and multiple myeloma 285 

patient-derived myeloma mouse models. Mechanistic studies showed that the effects of the 286 
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realgar nanoparticles and ATO on the multiple myeloma models included pronounced apoptosis 287 

and G2/M cell cycle arrest. In this study, realgar nanoparticles but not ATO could significantly 288 

deplete the amount and clonogenicity of multiple myeloma stem-like side population in bone 289 

marrow stromal cells. Also, there was synergistic anti-multiple myeloma activity when realgar and 290 

ATO were combined with lenalidomide or melphalan, both of which have been approved for 291 

treatment of multiple myeloma. In an attempt to increase the uptake of realgar and prolong the 292 

retention time in cancer cells, (-)-Epigallocatechin-3-gallate (EGCG), another natural medicine 293 

that inhibits cancer cell growth, was used as a drug carrier to encapsulate realgar nanoparticles 294 

(Fang et al. 2019). Compared with realgar nanoparticles, the EGCG-realgar nanoparticles 295 

significantly inhibited the proliferation of APL HL-60 cells. In a subcutaneous solid tumor model 296 

mice, EGCG-realgar nanoparticles decreased tumor volumes at an inhibitory rate of 60.18% at a 297 

dose of 70mg/kg. More recently, the effect of realgar nanoparticles on lung cancer stem cell 298 

(LCSC) was also examined. The nano-realgar was shown to inhibit tumor growth both in vitro and 299 

in vivo by repressing metabolic reprogramming via downregulation of HIF-1α expression and 300 

PI3K/Akt/mTOR pathway (Yang et al. 2021). 301 

 302 

2.2.3. Organoarsenicals  303 

Organic arsenicals are under current examination for potential therapeutic use. Several synthetic 304 

organoarsenicals were tested for antitumor activity against HL-60 (leukemia), SGC 7901 (gastric 305 

cancer) and MCF-7 (breast cancer) human cancer cell lines (Fan et al. 2016). 2-(((4-306 

(oxoarsanyl)phenyl)imino)methyl)phenol (C13H10AsNO2) (Fig. 2C) and 2-methoxy-4-(((4-307 

(oxoarsanyl)phenyl)imino)methyl)phenol (C14H12AsNO3) (Fig. 2D)  exhibited the highest growth 308 

inhibition of HL-60 cells, with IC50 values of 0.77 μM and 0.51 μM, respectively. Both induced 309 

apoptosis via oxidative stress in HL-60 cells (Fan et al. 2016). Another organoarsenical that is 310 

being evaluated for the treatment of solid tumors is the glutathione conjugate of DMAs(III), 311 
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darinaparsin (L-γ-glutamyl-S-(dimethylarsino)-L-cysteinyl-glycine) (Fig. 2E). The injectable form 312 

of darinaparsin, SP-02L, is currently in phase 2 clinical trial in patients with relapsed or refractory 313 

peripheral T-cell lymphoma (https://clinicaltrials.gov/ct2/show/NCT02653976). Analysis of data 314 

from two phase 1 clinical trials in Japan and Korea showed that darinaparsin has good potential 315 

efficacy and high safety profile (Ogura et al. 2021). A related glutathione conjugate, 4-(N-(S-316 

glutathionylacetyl)amino) phenylarsenoxide or GSAO (Fig. 2F), is in phase 1 clinical trial in 317 

patients with advanced solid tumors (Horsley et al. 2013). 318 

 319 

2.2.4. Polyorganoarsenicals 320 

Another class of organoarsenicals with potential clinical value is polyarsenicals. The first reported 321 

is arsenicin A (2,4,6-trioxa-1,3,5,7-tetrarsatricyclo [3.3.1.13,7] decane) (C3H6As4O3) (Fig. 2G), a 322 

natural product isolated from Echinochalina bargibanti, a marine sponge belonging to the class 323 

Demospongiae (Mancini et al. 2006). Arsenicin A has both antibiotic and anti-APL leukemia 324 

activity. It has a cage-like structure similar to the carbon structure in the diamond backbone 325 

adamantane ((CH)4(CH2)6), in which the four methanetriyl carbon bridgeheads are replaced by 326 

arsenic and three methylene bridges are replaced by oxygen (Lu et al. 2012; Lu et al. 2010). The 327 

anti-proliferative activity of arsenicin A was examined in the PML-RARα-positive APL cell line NB4 328 

(Lu et al. 2012). Arsenicin A exhibits a 21-fold greater anti-proliferative activity compared ATO in 329 

NB4 cells. Using flow cytometry, arsenicin A was shown to induce cell death at a 27-fold lower 330 

concentration (IC50 = 53 nM) compared with ATO (IC50 = 1440 nM), and proliferative arrest at 20 331 

nM compared with 790 nM for ATO (Lu et al. 2012). 332 

 333 

Five arsenicin A analogs were synthesized, and their activity was evaluated in vitro against a full 334 

panel of human cancer cell lines from the National Cancer Institute (NCI-USA) (Mancini, 335 

Planchestainer, and Defant 2017). Three of these compounds, designated compound 2 (9,10-336 

https://clinicaltrials.gov/ct2/show/NCT02653976
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dimethyl-2,4,6,8-tetraoxa-1,3,5,7,-tetraarsatricyclo[3.3.1.13,7]decane) (C4H8As4O4) (Fig. 2H), 337 

compound 3 (2,4,6,8-tetraoxa-1,3,5,7-tetraarsa-adamantane) (C2H4As4O4) (Fig. 2I),  and 338 

compound 5 (an isomer of Arsenicin A) (Fig. 2J), showed significantly higher cytotoxicity against 339 

the various cancer cell lines than ATO. Compound 2 was particularly effective in inhibiting growth 340 

of solid tumor cell lines of colon cancer, melanoma, ovarian cancer, renal cancer, prostate cancer 341 

and breast cancer. Two sulfur-containing derivatives, arsenicin B and arsenicin C, also possess 342 

antibiotic activity against human pathogens. Although less potent than arsenicin A against 343 

leukemia cells, these sulfur-containing polyarsenicals have especially potent antimicrobial activity 344 

against Staphylococcus aureus, a major human pathogen with growing resistance to conventional 345 

antibiotics (Tähtinen et al. 2018). These findings lend new perspectives on the development and 346 

use of polyorganoarsenicals as therapeutics. 347 

 348 

 349 

2.3. Arsenical antiparasitic agents 350 

Tryparsamide (p-glycineamidophenylarsonate) (Fig. 2K), developed by Walter A. Jacobs and 351 

Michael Heidelberger at the Rockefeller University in 1919, is acknowledged as the first effective 352 

arsenical therapeutic agent against Gambian sleeping sickness. That disease is the slow-353 

progressing form of human African trypanosomiasis (HAT) and is caused by Trypanosoma brucei 354 

gambiense, which is endemic in western and central Africa, especially in the late stage of the 355 

infection (e.g. neurological stage through central nervous system invasion) (Gibaud and Jaouen 356 

2010). Although this drug was widely used from the early 1920’s, its use waned in the 1940’s due 357 

to the spread of resistant strains. In the 1940s, Ernst A. H. Friedheim improved the treatment of 358 

trypanosomiasis with the introduction of melaminophenyl arsenicals (Fig. 1), although toxicity was 359 

still reported (Gibaud and Jaouen 2010). Melarsen (4-(4,6-diamino-1,3,5-triazin-2-360 

yl)amino]phenylarsenate) (Fig. 2L), the first melaminophenyl arsenical that Friedheim synthesized 361 
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in 1939, was less active than tryparsamide. In contrast, melarsen oxide (Fig. 2M), the reduced 362 

form of melarsen and the first trivalent organoarsenical used against trypanosomes, was very 363 

effective against both early (hemolymphatic) and late (neurologic) stages, yet it exhibited high 364 

toxicity (Friedheim 1948). Friedeim combined dimercaprol or BAL (British anti-Lewisite), the 365 

counteract compound for Lewisite, the trivalent organoarsenical-based chemical weapon first 366 

used in World War I (Peters, Stocken, and Thompson 1945), with melarsen oxide to produce the 367 

drug melarsoprol (MelB or arsobal) (Fig. 2N) (Friedheim 1949). Melarsoprol is 100-fold less 368 

cytotoxic and 2.5-fold less trypanocidal compared with melarsen oxide (Fairlamb and Horn 2018). 369 

It was introduced into clinical use in 1949 for use in African countries to treat Gambian sleeping 370 

sickness. Melarsoprol can cross the blood-brain barrier (Sekhon 2013) via the P2 adenosine 371 

transporter (TbAT1) (Carter and Fairlamb 1993; Mäser et al. 1999) and aquaglyceroporin 2 372 

(TbAQP2) (Alsford et al. 2012; Baker et al. 2012). However, a serious side effect of melarsoprol 373 

is reactive encephalopathy, which occurs in about 10% of patients (Blum et al. 2001; Pepin and 374 

Milord 1991). Even so, its ability to cross the blood-brain barrier into the cerebrospinal fluid made 375 

it especially useful for treatment of second stage Gambian sleeping sickness, when the 376 

trypanosome enters the central nervous system (Colotti et al. 2018; Rodgers et al. 2011). Given 377 

the absence of effective alternatives, the World Health Organization (WHO) recommends its use 378 

as the only chemotherapeutic for the second stage of the faster-progressing form of human 379 

African trypanosomiasis caused by Trypanosoma brucei rhodesiense, which is more common in 380 

southern and eastern Africa (Büscher et al. 2017). Melarsoprol is a prodrug, and the active form 381 

of the drug is melarsen oxide (Fig. 2M). This trivalent form of melarsen (Fig. 2L) can be detected 382 

in ceresbrospinal fluid 1 h after injection (Keiser et al. 2000). Melarsoprol is rapidly broken down 383 

mainly into melarsen oxide, perhaps enzymatically  (Fairlamb and Horn 2018). As a trivalent 384 

organoarsenical, melarsen oxide has high affinity for thiols and forms a stable adduct with the 385 

parasite’s alternative to glutathione, trypanothione. Reduction of free cytosolic trypanothione 386 

inhibits trypanothione reductase, the parasite enzyme that contributes to cytosolic redox balance 387 
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(Cunningham et al. 1994; Fairlamb et al. 1989). In addition, melarsen oxide causes rapid lysis of 388 

Trypanosoma brucei in vitro (Van Schaftingen et al. 1987). Beginning in the 1990s, resistance to 389 

melarsoprol became widespread (Brun et al. 2001). Melarsoprol resistance in clinical isolates 390 

(Graf et al. 2013; Pyana Pati et al. 2014) is predominantly related to mutations in the parasite 391 

TbAQP2 gene (Munday et al. 2015). Mutations in this aquaglyceroporin, which is involved in 392 

uptake of melarsoprol, include deletions (Baker et al. 2012) or rearrangements with TbAQP3 to 393 

form a chimeric AQP2-3 gene (Munday et al. 2014). Resistance to melarsoprol in human African 394 

trypanosomiasis patients has led to a decrease in the use of this arsenical drug (Fairlamb and 395 

Horn 2018). With the development of newer drugs and antibiotics, interest in arsenic-based drugs 396 

gradually waned mainly due to their low therapeutic index. 397 

 398 

2.4. Antiviral arsenic agents  399 

In addition to the use of arsenicals for control of pathogens and as cancer chemotherapeutics, 400 

their potential as antiviral agents is also under investigation. ATO has been shown to inhibit 401 

Hepatitis C Virus (HCV) replication at submicromolar concentrations (Hwang et al. 2004). The 402 

concentrations that gave 50% inhibition of replication (EC50) without causing cellular cytotoxicity 403 

are 0.35 and <0.2 µM, when determined by a reporter-based HCV replication assay and by RT-404 

qPCR analysis, respectively. The anti-HCV activity of ATO was also demonstrated using an 405 

engineered cell line-based assay system that constitutes all steps in the full cycle of HCV infection 406 

and replication, where ATO at 0.3 µM abolished the HCV signal, while high concentrations of 407 

interferon (IFN)-α, an antiviral cytokine used for the treatment of chronic hepatitis C, only 408 

minimally suppressed the viral signal.  In a follow-up study, treatment of HCV-infected cells with 409 

1 µM ATO, which effectively inhibited the HCV RNA replication without exhibiting cytotoxicity, led 410 

to depletion of intracellular glutathione and an increase in superoxide anion radicals (Kuroki et al. 411 
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2009). The anti-HCV activity of ATO was inhibited in the presence of N-acetyl-cysteine, an 412 

antioxidant and glutathione precursor. These results suggest that ATO exerts its effect against 413 

HCV by modulating the intracellular glutathione redox system and oxidative stress. These findings 414 

demonstrate the potential of ATO for the development of potent antiviral agents against HCV and 415 

related viruses. 416 

Viral latency has been recognized as the major source of viral rebound in human 417 

immunodeficiency virus-1 (HIV-1) infections after discontinuation of antiretroviral therapy (ART) 418 

(Siliciano and Siliciano 2000). There is, therefore, a need to render the latent HIV-1 susceptible 419 

to eradication. One way to provide drug access is by reactivation of viral replication. ATO has 420 

been reported to activate latent HIV-1 in the Jurkat T cell line in a process that involves the nuclear 421 

factor kappa B (NF-κB) signaling pathway (Wang et al. 2013). Similarly, inorganic sodium arsenite 422 

was shown to reactivate gene expression and viral replication of the latent genome of herpes 423 

simplex virus type 1 (HSV1) (Preston and Nicholl 2008). These results suggest that inorganic 424 

arsenicals may be able to enhance ART. Recently the ability of ATO in combination with ART to 425 

regulate viral reservoirs in primary CD4+ T lymphocytes of HIV-1-infected patients and simian 426 

immunodeficiency virus (SIV)-infected Chinese rhesus macaques was examined (Yang et al. 427 

2019). ATO significantly increased the levels of cell-associated RNAs in resting CD4+ T cells from 428 

both HIV-1-infected patients and SIV-infected macaques in a dose-dependent manner. Using 429 

chronically SIV-infected macaques, ATO in combination with ART delayed viral rebound, 430 

decreased SIV integrated DNA in CD4+ T cells and restored CD4+ T cell counts in vivo. In 431 

contrast, there was a rebound in the control group treated with ART alone in an average interval 432 

of 22 days after discontinuation of therapy. Furthermore, SIV-specific immune responses against 433 

the multiple SIV antigens increased after treatment with ATO. The use of ATO as a latency-434 

reversing agent (LRA) in combination with combined ART (CART) is currently under investigation 435 
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in a clinical trial (“The Effect of ATO on Eliminating HIV-1 Reservoir Combined with CART” 2019). 436 

https://clinicaltrials.gov/ct2/show/NCT03980665 437 

ATO has been reported to exhibit potent inhibition of human adenovirus infection in vitro 438 

(Hofmann et al. 2020). PML nuclear bodies, otherwise referred to as PML oncogenic domains, 439 

are IFN-inducible nuclear structures that participate in cellular processes including apoptosis, 440 

senescence and antiviral defense. Infection with human adenovirus reorganizes the dot-like PML 441 

nuclear bodies into track-like structures, impairing their function. This aberrant PML nuclear body 442 

phenotype is observed in acute PML cells. In vitro treatment of APL cells with ATO at micromolar 443 

concentrations produced significant anti-adenovirus activity. This activity was partly due to the 444 

ability of ATO to induce oxidation of PML nuclear bodies before multimerization by the virus, 445 

reconstituting the usual dot-like structure and restoring the antiviral function of PML nuclear 446 

bodies in the cells of APL patients’ cells (Hofmann et al. 2020). 447 

The effectiveness of arsenic-based drugs in virus-associated cancers has also been reported  448 

(Kchour et al. 2013). In patients with human T-cell leukemia virus type 1 (HTLV-1) associated 449 

adult T-cell leukemia/lymphoma (ATL), ATO in combination with IFN-α and zidovudine, an FDA-450 

approved nucleoside reverse-transcriptase inhibitor (NRTI) class antiretroviral drug, improved the 451 

cytokine gene expression profile by a shift from an initial immunosuppressive-like state (Treg /T 452 

regulatory)/Th2 phenotype) to an immunocompetent-like state (Th1 phenotype) after 30 days of 453 

treatment. This shift is possibly the result of the enhanced immune response leading to 454 

eradication of ATL cells and control of infections caused by opportunistic pathogens. These 455 

results support  suggestions on the use of ATO to treat immune disorders (Wang et al. 2019; An 456 

et al. 2020). 457 

Epstein-Barr virus (EBV), the first identified human oncogenic virus, is associated with various 458 

malignancies, including carcinomas (e.g. nasopharyngeal carcinoma) and lymphomas (e.g. 459 

https://clinicaltrials.gov/ct2/show/NCT03980665
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Burkitt's lymphoma). In a study of the role of PML nuclear bodies in EBV latency, treatment with 460 

low dose ATO disrupted PML nuclear bodies, leading to induction of EBV lytic proteins and 461 

increased susceptibility of the virus to ganciclovir, an approved FDA drug for the treatment of 462 

EBV-associated disorders (Sides et al. 2013). Low concentrations of ATO (0.5 - 2 nM) were shown 463 

to inhibit expression of EBV lytic genes Zta, Rta and BMRF1, promoting cell death in various EBV-464 

positive latency cells (Mutu, Akata, BX-1, Cl13 and JY) in a dose-dependent manner. A synergistic 465 

effect was observed with ganciclovir, specifically in EBV-positive cells. These effects were 466 

reversed in the presence of a proteasome inhibitor, which suggests that ATO-mediated inhibition 467 

of EBV lytic genes occurs via the ubiquitin pathway, promoting ubiquitin conjugation and 468 

proteasomal degradation of EBV genes (Yin et al. 2017). Induction of cell death by ATO was also 469 

observed in P3HR1 cells, another EBV-positive latency cell line, yet it occurs via autophagy. With 470 

this cell line, treatment with sodium arsenite also leads cell death but via a different mechanism, 471 

caspase-dependent apoptosis (Zebboudj et al. 2014). These results demonstrate that ATO and 472 

sodium arsenite have the potential to be therapeutic agents for EBV-associated lymphoma. 473 

A recent in silico study identified darinaparsin (Fig. 2M) as a potent inhibitor of the RNA-dependent 474 

RNA polymerases of SARS-CoV-2. The drug inhibited the 3C-like protease and papain-like 475 

protease that are necessary for formation of the viral replication complex (Chowdhury et al. . 476 

These results suggest that, in addition to its anticancer activity (Bansal et al. 2015; Mann et al. 477 

2009; Tian et al. 2012), darinarparsin has the potential to be repurposed against the novel 478 

coronavirus that is responsible for the current global pandemic. 479 

 480 

2.5. Arsenical natural products antibiotics 481 

Selman Waksman, the Russian-Ukrainian-born American microbiologist, defined the term 482 

‘antibiotic’ as “a chemical substance, produced by micro-organisms, which has the capacity to 483 

inhibit the growth of and even to destroy bacteria and other micro-organisms”’ (Waksman 1947).  484 
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In 1952, Waksman was awarded the Nobel Prize in Physiology or Medicine for his discovery of 485 

the aminoglycoside antibiotic streptomycin, a natural product produced by the soil bacterium 486 

Steptomyces griseus that gave the organism a growth advantage over other soil bacteria. In this 487 

section two organoarsenicals with antimicrobial activity, methylarsenite (MAs(III)) and 488 

arsinothricin (AST), will be described. Both are natural products produced by soil bacteria to kill 489 

other bacteria, meeting Waksman’s definition of an antibiotic (Li et al. 2021). 490 

 491 

2.5.1. Methylarsenite (MAs(III)): a primordial antibiotic 492 

Highly toxic MAs(III) (Fig. 2S) is produced by methylation of inorganic As(III) by the enzyme As(III) 493 

S-adenosylmethionine (SAM) methyltransferase, which is termed ArsM in microbes and AS3MT 494 

in animals (Dheeman et al. 2014; Qin et al. 2006). The arsM gene is considered to be one of the 495 

most ancient ars genes according to molecular clock analyses, arising at least 3 billion years ago 496 

(Chen et al. 2017; Chen and Rosen 2020). Thus, environmental arsenic methylation was 497 

widespread nearly a billion years before the Great Oxidation Event (GOE), when oxygen 498 

accumulated in the atmosphere. In the original anoxic atmosphere, trivalent MAs(III) would be 499 

stable. Since the ArsM product MAs(III) is considerably more toxic than the substrate As(III), 500 

methylation has been proposed to be an activation process, generating the primordial antibiotic 501 

MAs(III), which gave producers a competitive growth advantage over sensitive microbes during 502 

the Archean era (Li et al. 2016). Further methylation generates nontoxic volatile trimethylarsine 503 

(TMAs(III)), which may have functioned as a primitive mechanism for self-protection by the 504 

MAs(III)-producing microbes. After the GOE, MAs(III) would have been unstable in air, oxidizing 505 

to relatively nontoxic methylarsenate, MAs(V). Filling an ecological niche, other aerobic bacteria 506 

evolved the ability to reduce pentavalent MAs(V), regenerating the MAs(III) antibiotic (Yan et al. 507 

2019; Yoshinaga et al. 2011). The genes involved in MAs(V) reduction have not yet been 508 

identified, but this reaction now gives extant reducing microorganisms an advantage over 509 
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MAs(III)-sensitive bacteria in microbial communities (Chen et al. 2019). Trivalent arsenicals such 510 

as MAs(III) are toxic in part due to their affinity for thiols groups in proteins and other cellular 511 

metabolites (Shen et al. 2013). Since MAs(III) can react with a large number of molecules, no 512 

single target can be assigned for its mechanism of action that applies in every cell.  513 

However, one target for the antibiotic action of MAs(III) was recently identified in Shewanella 514 

putrefaciens 200 (Garbinski et al. 2020). MAs(III), but not inorganic As(III), effectively inhibits the 515 

enzyme MurA (uridine diphosphate (UDP)-N-acetylglucosamine enolpyruvyl transferase), a 516 

cytoplasmic enzyme involved in the synthesis of the key precursor of the peptidoglycan, UDP-N-517 

acetylmuramate (UNAM) (Barreteau et al. 2008). Only prokaryotes utilize peptidoglycan as an 518 

essential structural component of the cell wall, which makes it a singular target for antibacterial 519 

therapy in gram-negative and gram-positive pathogenic bacteria (Du et al. 2000; Raz 2012; 520 

Sonkar et al. 2017; Vollmer, Blanot, and de Pedro 2008). Fosfomycin (C3H7O4P), the only clinically 521 

approved antibiotic that acts against MurA, inhibits MurA by alkylation of the highly-conserved 522 

catalytic cysteine residue in the active site (Baum et al. 2001). However, the conserved cysteine 523 

is often replaced by an arspartate in MurA orthologs from various pathogens such as 524 

Mycobacterium tuberculosis, contributing to their intrinsic fosfomycin resistance (De Smet et al. 525 

1999). MurA from S. putrefaciens 200 has the conserved catalytic cysteine and is sensitive to 526 

fosfomycin, while its Cys-to-Asp mutant is resistant to fosfomycin but remained sensitive to 527 

MAs(III), indicating that the two compounds have different mechanisms of action. MAs(III) 528 

represent a new area for the development of novel compounds for combating the threat of 529 

antibiotic resistance (Garbinski et al. 2020). For MAs(III) to exert its antibiotic action, it first must 530 

enter sensitive cells. How do arsenicals in general and MAs(III) in particular get into and out of 531 

cells? The aquaglyceroporin GlpF facilitates uptake As(III) and Sb(III) into cells of Escherichia coli 532 

(Meng et al. 2004; Sanders et al. 1997). Uptake of MAs(III) by GlpF has not been studied, but 533 

other AQPs facilitate its movement into and out of cells. The aquaglyceroporin AqpS from 534 
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Sinorhizobium meliloti was recently demonstrated to conduct both MAs(III) and MAs(V) (Chen et 535 

al. Rosen 2021). Heterologous expression of the related mammalian aquaporin AQP9 in 536 

Saccharomyces cerevisiae resulted in three-fold more MAs(III) accumulation than inorganic 537 

As(III) (Liu et al. 2006). In addition, inorganic As(III) is transported by sugar permeases, including 538 

yeast hexose (Hxt) transporters (Liu et al. 2006) and plant inositol permeases (Duan et al. 2016). 539 

The mammalian glucose permease GLUT1 has been shown to transport MAs(III) as well as As(III) 540 

(Liu et al. 2006). However, it is not clear if bacterial sugar transporters also transport arsenicals. 541 

In response to the high toxicity of MAs(III), bacteria adapted by developing resistance 542 

mechanisms (Chen and Rosen 2020). One of the most common mechanisms of bacterial 543 

resistance to antibiotics is to pump it out of the cells (Jia et al. 2019). Two MAs(III) efflux 544 

permeases are ArsP (Chen et al. 2015) and ArsK (Jia et al. 2019; Shi et al. 2018). Other 545 

mechanisms that confer resistance to MAs(III) are the C–As bond lyase ArsI, which demethylates 546 

MAs(III) to As(III) (Pawitwar et al. 2017; Yoshinaga and Rosen 2014), and methylarsenite 547 

oxidases such as ArsH, ArsU and ArsV that oxidize MAs(III) to MAs(V) (Chen et al. 2015). 548 

  549 

2.5.2 Arsinothricin (AST), a pentavalent organoarsenical antibiotic 550 

Arsinothricin (2-amino-4-(hydroxymethylarsinoyl)butanoate, or AST) (Fig. 2T) is a newly identified 551 

broad-spectrum organoarsenical antibiotic (Nadar et al. 2019). AST was first discovered as a 552 

natural product synthesized by the rice rhizosphere bacterium Burkholderia gladioli strain 553 

GSRB05 (Kuramata et al. 2016). AST is a non-proteinogenic analog of both glutamate and the 554 

arsenic mimetic of L-phosphinothricin (2-amino-4-(hydroxymethylphosphinyl)butanoate or PT), 555 

the antibiotic moiety of a Streptomyces antibiotic prodrug phosphinothricin tripeptide (PTT) or 556 

bialaphos (Nadar et al. 2019; Kuramata et al. 2016). AST inhibits the growth of M. bovis BCG, the 557 

attenuated etiological agent of bovine tuberculosis, which is closely related to M. tuberculosis, the 558 

cause of human tuberculosis, and one of the WHO-designated priority pathogens carbapenem-559 
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resistant Enterobacter cloacae, whereas it exhibits low cytotoxicity on human monocytes. AST is 560 

chemically unrelated to other organoarsenicals and is a promising candidate to usher in a new 561 

class of antimicrobial agents (Nadar et al. 2019). MAs(III) and other trivalent arsenicals exert their 562 

toxicity through reaction with thiols. In contrast, AST is a pentavalent organoarsenical, and 563 

pentavalent arsenicals have low reactivity with thiols. Even though other pentavalent arsenicals 564 

are relatively benign and less toxic, AST is as effective an antimicrobial as MAs(III) and is 15-fold 565 

more effective as an antimicrobial than PT. PT and AST act by inhibition of glutamine synthetase 566 

(GS), a central enzyme in nitrogen metabolism. The likely mechanism of action is by mimicking 567 

the γ-glutamyl phosphate intermediate in the glutamine synthetase catalytic pathway (Nadar et 568 

al. 2019; Suzol et al. 2020). 569 

 570 

Recently the biosynthetic gene cluster for biosynthesis of AST was identified (Galván et al. 2021). 571 

An ars operon consisting of three genes, arsQML, was identified in the draft genome sequence 572 

of B. gladioli GSRB05, the AST producer. These three genes were shown to encode genes for 573 

the synthesis of AST and for its efflux from the cells. The arsL gene encodes a non-canonical 574 

radical S-adenosylmethionine (SAM) enzyme that transfers the 3-amino-3-carboxypropyl group 575 

from SAM to inorganic arsenite, forming hydroxyarsinothricin (2-amino-4-576 

(dihydroxyarsinoyl)butanoate, or AST-OH), the precursor of AST. The arsM gene product, an 577 

As(III) SAM methyltransferase, methylates AST-OH, producing AST. Finally, arsQ encodes an 578 

efflux permease that extrudes AST from the cells, both protecting the producing cells from its own 579 

product and releasing AST into the extracellular milieu, allowing it to exert its antibiotic action 580 

(Galván et al. 2021). For AST to be a useful antibiotic, it must be available in sufficient quantities 581 

for clinical trials and for further drug development. Recently, a semi-synthetic method was 582 

reported in which D,L-AST-OH is chemically synthesized and then enzymatically methylated by 583 

ArsM to produce D,L-AST (Suzol et al. 2020). 584 
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Paul Ehrlich, the father of modern drug chemotherapy who synthesized the antimicrobial 585 

organoarsenical salvarsan, prophesied that drug resistance follows the drug like a faithful shadow 586 

(Ebrahim 2010). This has proven true for nearly every antibiotic and antimicrobial, and resistance 587 

to AST has already arisen. AST is inactivated by acetylation of α-amino group by the enzyme 588 

ArsN1. The arsN1 gene is found in ars operons, suggesting that resistance to AST probably arose 589 

soon after the evolution of its synthesis. ArsN1 is highly selective and has higher affinity for AST 590 

than structurally related PT (Nadar et al. 2019). The arsN1 gene is widely distributed in bacteria, 591 

which implies that AST is also produced by many environmental bacteria. Even so, AST still has 592 

a future as an antibiotic. First, AST can be used in combination with ArsN1 inhibitors that can be 593 

predicted from the crystal structure of AST-bound ArsN1. Second, the chemical synthesis of AST 594 

can be used to produce modified derivatives with higher inhibition of GS or that evade ArsN1 595 

acetylation. These inhibitors and derivatives will improve the clinical utility of this promising new 596 

class of antimicrobial drugs. 597 

 598 

3. Synthetic aromatic arsenicals in animal husbandry 599 

Although their medicinal uses waned after the advent of penicillin in the early 1940s, synthetic 600 

aromatic arsenicals have been repurposed for use in animal husbandry. Four pentavalent 601 

aromatic arsenicals were extensively used in the poultry and swine industry in the US since the 602 

mid-1940’s and played significant roles as feed additives for improvement of weight gain, feed 603 

efficiencies and pigmentation, as well as prevention and treatment of parasitic infectious diseases 604 

until banned in the mid-2010’s. Atoxyl (p-ASA) (Fig. 2U), the first organoarsenical drug for human 605 

trypanosomiasis, was repurposed for poultry and swine to promote growth and prevent or treat 606 

dysentery (Sharma and Anand 1997). Carbarsone (4-carbamoylaminophenylarsenate or Car(V)) 607 

(Fig. 2V), the carbamoylated p-ASA(V) derivative originally introduced in 1931 for the treatment 608 

of human protozoal infectious diseases trichomoniasis and amebiasis, was later restricted to 609 

application with turkeys to improve weight and control blackhead disease, a protozoan disease 610 
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caused by Histomonas meleagridis (Hoekenga 1951; McDougald 1979; Radke 1955; Sasaki et 611 

al. 1956; Worden and Wood 1973). The other two are nitroaromatic pentavalent arsenicals, 612 

roxarsone (4-hydroxy-3-nitrophenylarsonate or Rox(V)) (Fig. 2W) and nitarsone (4-613 

nitrophenylarsenate or Nit(V)) (Fig. 2X) that were exclusively used for animal husbandry. Rox(V) 614 

was used for poultry to promote growth, treat coccidiosis, an intestinal protozoan parasitic disease 615 

caused by Eimeria tenella, as well as prevent gastrointestinal tract infections. Although mostly 616 

excreted unchanged from the animals, administered organoarsenical drugs were shown to 617 

increase the level of inorganic arsenic species in the chicken breasts (Liu et al. 2016). Roxarsone 618 

and nitrasone have been banned for nearly two decades by the European Union, in 2014 and 619 

2015, respectively, by the FDA 620 

(https://www.fda.gov/AnimalVeterinary/SafetyHealth/ProductSafetyInformation/ucm257540.htm), 621 

and more recently banned in China (Hu et al. 2019), although compliance is difficult to enforce. 622 

Several countries including Malaysia, Canada and Australia followed this move, yet their use is 623 

still allowed in countries such as Argentina, Brazil, Chile, Mexico and Vietnam (Hu et al. 2019). 624 

Nit(V) was the last drug in use in the United States to prevent and treat blackhead disease in 625 

poultry, and currently there are no efficacious drugs for this serious avian disease, raising a 626 

concern in poultry industry (https://www.fda.gov/animal-veterinary/resources-you/blackhead-627 

disease-poultry).  628 

 629 

 630 

 631 

 632 

4. Future perspectives 633 

The major drawback of the use of arsenic in medicine is its toxicity. Therefore, there is a need 634 

to employ current advances in science to develop new generation arsenicals that can make up 635 

for the shortcomings of currently used arsenic-based drugs. Development of future arsenical 636 

https://www.fda.gov/AnimalVeterinary/SafetyHealth/ProductSafetyInformation/ucm257540.htm
https://www.fda.gov/animal-veterinary/resources-you/blackhead-disease-poultry
https://www.fda.gov/animal-veterinary/resources-you/blackhead-disease-poultry
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drugs will build on the chemistry and properties of arsenic-based drugs already proven to be 637 

effective. Before advancements in scientific research, most arsenic-based drugs throughout 638 

history were marketed and used without rigorous clinical trials or understanding of their 639 

mechanisms of action. This lack of scientific rigor may have been responsible for the disuse of 640 

arsenic-based drugs in the late 1900s. The re-emergence of arsenic as a frontline treatment for 641 

APL shows the potential for development of new arsenicals with higher therapeutic efficacy and 642 

lower toxicity. 643 
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Abbreviations 651 

AML   Acute myeloid leukemia 652 

APL    Acute promyelocytic leukemia 653 

AQP   Aquaporin/aquaglyceroporin 654 

ArsM   As(III) S-adenosylmethionine methyltransferase 655 

ART   Antiretroviral therapy 656 

As(III)   Arsenite 657 

As(V)   Arsenate 658 

AST   Arsinothricin 659 

AST-OH   Hydroxyarsinothricin 660 

ATL    Adult T-cell leukemia/lymphoma 661 

ATO   Arsenic trioxide 662 

ATRA   All-trans retinoic acid  663 

BAL    British anti-Lewisite 664 

EBV   Epstein-Barr virus 665 

EGCG   (-)-Epigallocatechin-3-gallate 666 

FDA   Food and Drug Administration 667 

GOE   Great Oxidation Event 668 

GS    Glutamine synthetase 669 

HAT   Human African trypanosomiasis 670 
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HCV   Hepatitis C Virus 671 

HIV-1   Human immunodeficiency virus-1 672 

HPV   Human papillomavirus 673 

MAs(III)   Methylarsenite  674 

MAs(V)   Methylarsenate 675 

MSMA   Monosodium methylarsenate 676 

MurA   UDP-N-acetylglucosamine enolpyruvyl transferase 677 

Nit(V)   Nitarsone 678 

p-ASA   p-arsanilic acid 679 

Pin1   Peptidyl-prolyl cis–trans isomerase NIMA (never in mitosis A)-interacting 1 680 

PML   Promyelocytic leukemia 681 

PML-RARα  Promyelocytic leukemia protein-retinoic acid receptor alpha 682 

PT    L-phosphinothricin 683 

PTT    Phosphinothricin tripeptide 684 

ROS   Reactive oxygen species 685 

Rox(V)   Roxarsone 686 

SAM   S-adenosylmethionine 687 

SARS-CoV-2 Severe acute respiratory syndrome coronavirus 2 688 

SIV    Simian immunodeficiency virus 689 

UDP   uridine diphosphate 690 
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WHO   World Health Organization  691 
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