

1 Submitted to *Biometals*, 5 October 2021

2 Revised version submitted 31 January, 2022

3

4

5 **Arsenic in medicine: past, present and future**

6

7 Ngozi P. Paul<sup>1</sup>, Adriana E. Galván<sup>1</sup>, Kunie Yoshinaga-Sakurai<sup>1</sup>, Barry P. Rosen\*, Masafumi  
8 Yoshinaga

9

10 Department of Cellular Biology and Pharmacology, Florida International University Herbert  
11 Wertheim College of Medicine, Miami, FL 33199, USA

12

13 <sup>1</sup>These authors contributed equally.

14

15 \*Corresponding author: Barry P. Rosen ([brosen@fiu.edu](mailto:brosen@fiu.edu)), Department of Cellular Biology and  
16 Pharmacology, Florida International University, Herbert Wertheim College of Medicine, Miami,  
17 Florida, 33199, USA. (305)348-0657; Fax: (305)348-0651.

18

19

20 **Key words:** arsenic; metalloids; metallodrugs; anticancer drugs; antivirals; antimicrobials

21

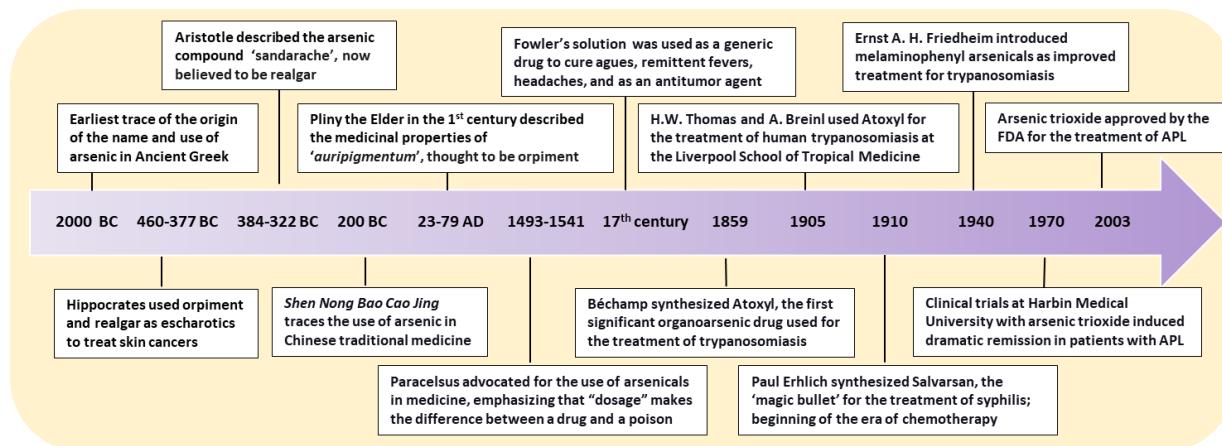
22

23

24

25 **Abstract**

26 Arsenicals are one of the oldest treatments for a variety of human disorders. Although infamous  
27 for its toxicity, arsenic is paradoxically a therapeutic agent that has been used since ancient times  
28 for the treatment of multiple diseases. The use of most arsenic-based drugs was abandoned with  
29 the discovery of antibiotics in the 1940s, but a few remained in use such as those for the treatment  
30 of trypanosomiasis. In the 1970s, arsenic trioxide (ATO), the active ingredient in a traditional  
31 Chinese medicine, was shown to produce dramatic remission of acute promyelocytic leukemia  
32 (APL) similar to the effect of *all-trans* retinoic acid (ATRA). Since then, there has been a renewed  
33 interest in the clinical use of arsenicals. Here the ancient and modern medicinal uses of inorganic  
34 and organic arsenicals are reviewed. Included are antimicrobial, antiparasitic and anticancer  
35 applications. In the face of increasing antibiotic resistance and the emergence of deadly  
36 pathogens such as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), we  
37 propose revisiting arsenicals with proven efficacy to combat emerging pathogens. Current  
38 advances in science and technology can be employed to design newer arsenical drugs with high  
39 therapeutic index. These novel arsenicals can be used in combination with existing drugs or serve  
40 as valuable alternatives in the fight against cancer and emerging pathogens. The discovery of the  
41 pentavalent arsenic-containing antibiotic arsinothricin (AST), which is effective against multidrug-  
42 resistant pathogens, illustrates the future potential of this new class of organoarsenical antibiotics.  
43


44 **1. Introduction**

45 *History of arsenic in medicine*

46 In this article we review the history and present use of arsenicals in medicine. The origin of the  
47 name “arsenic” traces back to the Greek word “*arsenikon*” meaning “*potent*” (Jolliffe 1993;  
48 Hoonjan et al. 2018). Arsenic was known empirically as a potent medicinal agent as early as 2000  
49 BC (Fig. 1), when arsenic trioxide (ATO,  $As_2O_3$ , also known as white arsenic) (Fig. 2A) obtained  
50 from copper smelting was used as both a drug and a poison (Jolliffe 1993). Orpiment, ( $As_2S_3$ ,  
51 yellow arsenic) and realgar, ( $As_4S_4$ , red arsenic) (Fig. 2B), described as early as the 4<sup>th</sup> Century  
52 BC by the Greek philosopher Aristotle (384–322 BC), were the earliest arsenic minerals in  
53 recorded history (Fig. 1) (Gorby 1988; Bentley and Chasteen 2002). Although arsenic-containing  
54 minerals were known in antiquity, it was not until 1250 that elemental arsenic was conclusively  
55 identified by the German alchemist Albertus Magnus (1193-1280)

56 (<https://pubchem.ncbi.nlm.nih.gov/element/Arsenic>).

57



58

59 **Figure 1. Milestones of the use and development of arsenicals in medicine**

60

61 History is rife with stories of arsenic used as a poison for both royalty and commoners. Odorless  
62 and tasteless ATO has been used as a poison for millennia due to its availability and low cost

63 (Jolliffe 1993; Hoonjan et al. 2018; Gorby 1988; Hughes et al. 2011). One of the earliest recorded  
64 cases of arsenic poisoning was in the year 55 AD, when the fifth Roman emperor Nero ordered  
65 the poisoning of his 13-year-old stepbrother Britannicus to secure his Roman throne (Jolliffe 1993;  
66 Gorby 1988; Bentley and Chasteen 2002; Doyle 2009). Pope Alexander VI (1431–1503), a  
67 member of the Borgia family, one of the most eminent dynasties of the Italian Renaissance, used  
68 the infamous powder called *cantarella*, which is widely believed to have consisted mainly of  
69 arsenic, to murder cardinals for their property and wealth (Gorby 1988). A well-known example of  
70 arsenic poisoning is “*The Affair of the Poisons*” in the French court of Louis XIV, where Catherine  
71 Deshayes provided the arsenic-based poison *La Poudre de Succession* or “*inheritance powder*”  
72 to women to help them rid themselves of their husbands (Gorby 1988; Bentley and Chasteen  
73 2002). The inheritance powder continued to be popular in France until the 19<sup>th</sup> century, when it  
74 became the most favorite poison, as recorded by early forensic toxicologists (Gorby 1988). The  
75 incidence of arsenic poisoning dramatically waned after the advent of the Marsh test, a sensitive  
76 forensic test for arsenic developed in 1836 by the English chemist James Marsh (Gorby 1988;  
77 Hughes et al. 2011).

78

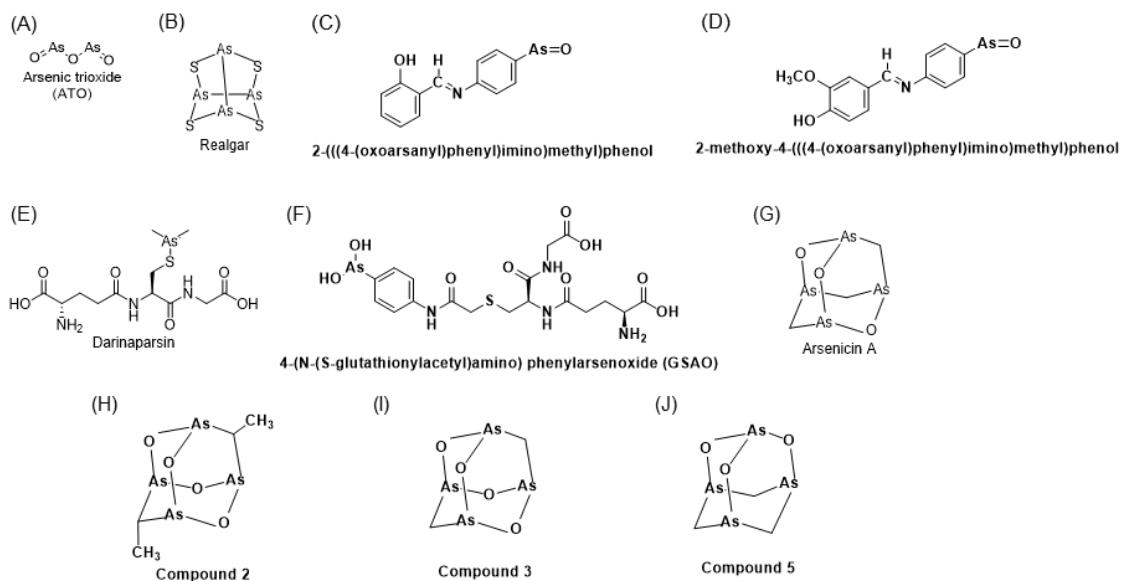
79 Behind its inglorious history as a poison, however, arsenic has an even more prestigious history  
80 as a pharmaceutical agent. Arsenic has been in use as therapeutics since ancient times in the  
81 Greek and Roman civilizations, as well as in Chinese and Indian traditional medicine (Doyle  
82 2009). Hippocrates (460–377 BC), the Greek physician, often referred to as the Father of  
83 Medicine, is thought to have administered the arsenic minerals orpiment and realgar as  
84 escharotics and remedies for ulcers and abscesses (Fig. 1) (Jolliffe 1993; Hoonjan et al. 2018;  
85 Hughes et al. 2011; Bentley and Chasteen 2002; Waxman and Anderson 2001; Zhu et al. 2002;  
86 Riethmiller 2005). Aristotle and the Roman author Pliny the Elder (23–79 AD) both wrote on the  
87 medicinal properties of arsenicals (Fig. 1) (Jolliffe 1993; Gorby 1988). The Greek physician Galen  
88 (129–210 AD) recommended the use of arsenic sulfide to treat ulcers (Jolliffe 1993; Riethmiller

89 2005). The first book on Chinese traditional medicine, *Shen Nong Ben Cao Jing*, compiled in the  
90 Eastern Han dynasty (25–220 AD), traces the use of arsenic in traditional Chinese medicine as  
91 far back as 200 BC (Fig. 1) (Liu et al. 2008), which agrees with the fact that the Chinese Nei Jing  
92 Treaty (263 BC) recorded the use of arsenic pills for treatment of periodic fever (Hoonjan et al.  
93 2018; Zhu et al. 2002; Chen and Chen 2017). Sun Si-Miao (581–682 AD), a Chinese physician  
94 called China's King of Medicine, used a combination of realgar, orpiment and ATO for treatment  
95 of malaria (Hoonjan et al. 2018; Zhu et al. 2002; Chen and Chen 2017). Shi-Zhen Li (1518 – 1593  
96 AD), a Chinese physician in the Ming dynasty, wrote *Ben Cao Gang Mu*, or *Compendium of*  
97 *Materia Medical*, a major pharmacopoeia in Chinese history, where he described the use of ATO  
98 as a remedy for various diseases (Zhu et al. 2002; Chen and Chen 2017; Gibaud and Jaouen  
99 2010). In traditional Indian medicine, the three main arsenicals used in Ayurveda, an alternative  
100 system of medicine originating from the ancient Indian subcontinent several thousand years ago,  
101 are orpiment, realgar and ATO (Panda and Hazra 2012). In Arabia, Avicenna (980–1037 AD), a  
102 Persian physician, introduced the internal use of ATO for the treatment of fevers (Zhu et al. 2002).  
103 Paracelsus (1493 – 1541 AD), a Swiss physician recognized as the Father of Toxicology and  
104 Pharmacology, is known to have used elemental arsenic extensively (Fig. 1) (Jolliffe 1993;  
105 Hoonjan et al. 2018; Gorby 1988; Waxman and Anderson 2001; Zhu et al. 2002; Borzelleca 2000).  
106 He advocated for the use of minerals and chemicals, including arsenic, in medicine, emphasizing  
107 that the dosage makes the difference between a drug and a poison. In 1786 Thomas Fowler  
108 (1736–1801 AD), a British physician and pharmacist, reported the effects of a flavored solution of  
109 1% potassium arsenite named “*liquor mineralis*” for malaria, remittent fevers, and periodic  
110 headaches (Fig. 1). This medicine, renamed “*Fowler's solution*”, once introduced into the London  
111 Pharmacopoeia in 1809, became popular in Western countries throughout the Victorian Era as a  
112 main therapeutic option for a wide variety of ailments and diseases, including asthma, chorea,  
113 eczema, psoriasis, rheumatism, syphilis, tuberculosis and ulcers (Jolliffe 1993; Hoonjan et al.

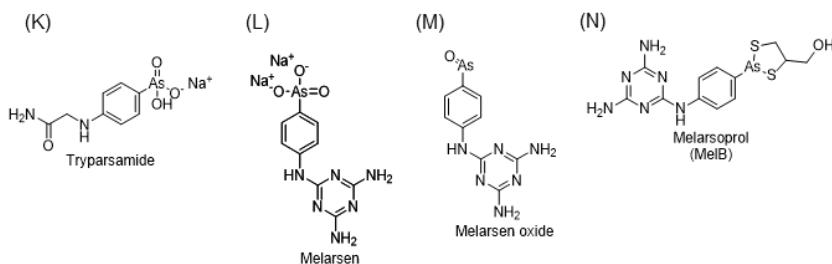
114 2018; Gorby 1988; Hughes et al. 2011; Bentley and Chasteen 2002; Doyle 2009; Waxman and  
115 Anderson 2001; Zhu et al. 2002; Gibaud and Jaouen 2010; Thomas and Troncy 2009).  
116 There is some concern over the present-day use of arsenicals in traditional medicine (Ernst 2002),  
117 leading to evaluation of the bioavailability of arsenic species in their prescriptions. In Indian  
118 traditional ayurvedic medicine, for example, a special subset of herbal medicines called *Rasa*  
119 *Shastra* involves intentional use of toxic elements including arsenic, which are believed to be  
120 converted into non-toxic forms called *bhasmas* via the preparation procedures. However, the  
121 bioaccessibility of arsenic in several traditional Indian medicines was suggested to lead to  
122 accumulation of arsenic above the acceptable daily limit if consumed at recommended doses  
123 (Koch et al. 2011). More recently a similar concern was raised about some traditional Chinese  
124 medicines (Liu et al. 2018). To exploit the full potential of arsenic as medicine, therefore, further  
125 evaluation is required to develop regulations for the proper dosage of arsenic-containing  
126 traditional medicines.

127 Applications of arsenicals extend beyond drugs and poisons. They have been used in areas of  
128 agriculture, metallurgy, cosmetics, electronics semiconductor and other industrial uses (Bentley  
129 and Chasteen 2002). Monosodium methylarsenate (MSMA) and sodium dimethylarsenate  
130 (cacodylate) have been used as post-emergent herbicides on cotton fields and other non-food  
131 crops (Matteson et al. 2014). Although banned for general use by the USA by the Environmental  
132 Protection Agency (EPA), MSMA is still in limited use in the United States for cotton fields, new  
133 golf courses and highway medians, and it is still applied world-wide as an herbicide on rice, cotton,  
134 fruit trees and coffee in a number of countries around Asia (Burló et al. 1999).

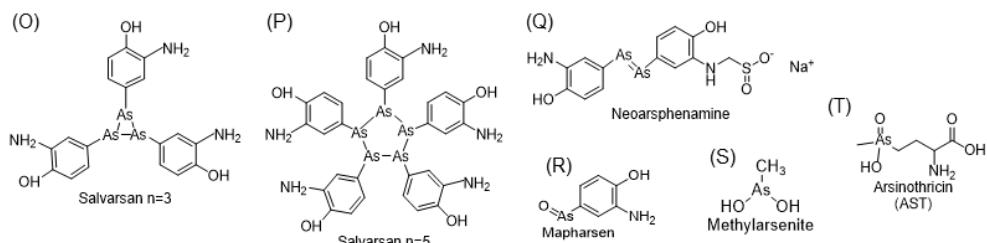
135


## 136 **2. Inorganic and organic arsenic-containing drugs**

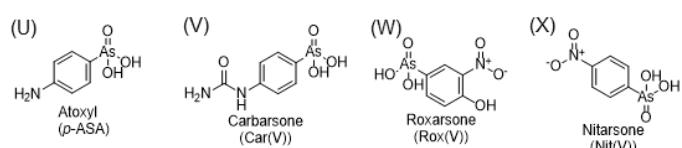
### 137 **2.1 Development of arsenical drugs**


138 In the modern era, the use of arsenicals as drugs has alternated between successes and failures.  
139 As described below, arsenical drugs can be generally grouped into inorganic, for example, ATO

140 (Fig. 2A), and organic compounds, such as atoxyl (*p*-aminophenylarsenate or *p*-arsanilic acid (*p*-ASA)) (Fig. 2U). Atoxyl, the first effective artificial organoarsenic drug, was synthesized by the  
141 French scientist Antoine Béchamp (1816–1908 AD), in 1859 by heating a mixture of aniline and  
142 arsenic acid (Fig. 1) (Riethmiller 2005; Gibaud and Jaouen 2010). Its clinical effectiveness was  
143 not demonstrated until some forty years later, when the physicians Canadian Harold W. Thomas  
144 (1875–1931 AD) and Australian Anton Breinl (1880–1944 AD) at the Liverpool School of Tropical  
145 Medicine first used it in 1905 to treat human trypanosomiasis (Fig. 1) (Jolliffe 1993; Gibaud and  
146 Jaouen 2010). Although it causes optic atrophy due to its high arsenic content (Jolliffe 1993), the  
147 trypanocidal effects of Béchamp's atoxyl inspired Paul Ehrlich (1854 – 1915), the German Nobel  
148 Laureate known as the Father of Chemotherapy, to initiate an extensive synthesis of organic  
149 arsenicals to find a drug against the syphilis spirochaete (Jolliffe 1993). Arsphenamine, was the  
150 606<sup>th</sup> aromatic arsenical he synthesized in 1910 (Fig. 1). Compound 606 was later called the *silver*  
151 *bullet* Salvarsan, the first effective chemotherapeutic drug for the treatment of syphilis (Jolliffe  
152 1993; Gorby 1988; Hughes et al. 2011; Bentley and Chasteen 2002). The composition of  
153 Salvarsan was a question of debate for almost a century. In 2005, Nicholas and colleagues  
154 provided evidence based on electrospray ionization mass spectrometric data that Salvarsan in  
155 solution exists as cyclic species (RA)<sub>n</sub>, with *n*=3 (Fig. 2O) and *n*=5 (Fig. 2P) (Lloyd et al. 2005).  
156 Like atoxyl, however, Salvarsan treatment was lengthy, and the side effects unpleasant. Less  
157 toxic derivatives such as neoarsphenamine (Neosalvarsan) (Fig. 2Q) and oxophenarsine  
158 hydrochloride (Mapharsen) (Fig. 2R) made treatment more bearable (Jolliffe 1993; Bentley and  
159 Chasteen 2002; Gibaud and Jaouen 2010). Ehrlich's work with Salvarsan ushered in the modern  
160 era of chemotherapy.


### Anticancer and Antivirals chemotherapeutic




### Antiparasitic agents



### Antibiotics and antimicrobials



### Synthetic aromatics in animal husbandry



162 Fig. 2. Chemical structure of arsenicals

163

164 **2.2. Arsenical anticancer chemotherapeutic agents**

165 *2.2.1. Arsenic trioxide (ATO)*

166 Arsenicals have a long history of use as cancer chemotherapeutic agents. ATO (Fig. 2A) was a  
167 favorite compound in traditional ancient Chinese medicine for over 2000 years (Bentley and  
168 Chasteen 2002). ATO is an amphoteric oxide that readily dissolves in alkaline solutions. It was  
169 originally made from orpiment by roasting and purifying the smoke (Gibaud and Jaouen 2010). In  
170 1878, the related formulation, Fowler's solution, was found to be effective for the treatment of  
171 leukemia, and, in addition, Fowler pastes were applied topically potentially for the treatment of  
172 skin and breast cancers (Hoonjan et al. 2018; Hughes et al. 2011; Waxman and Anderson 2001;  
173 Gibaud and Jaouen 2010). Arsenic therapy was the mainstay of antileukemia treatment until the  
174 advent of radiation therapy in the early 20<sup>th</sup> century (Hoonjan, et al. 2018; Waxman and Anderson  
175 2001). Despite its toxicity, arsenic remained in use in traditional Chinese medicine (Bentley and  
176 Chasteen 2002). Taking inspiration from this traditional medicine, investigators at Harbin Medical  
177 University showed that a solution of ATO produced complete remission of acute promyelocytic  
178 leukemia (APL) in about two-third of patients in the 1970s (Fig. 1) (Zhu et al. 2002; Chen and  
179 Chen 2017). The ATO used in those clinical studies contained trace amounts of mercury, so it  
180 was possible that the anticancer effects were due to mercury rather than arsenic. Clinical trials  
181 with pure ATO began in 1994, and, by 1996, its effectiveness was confirmed in other countries.  
182 In 2003 ATO, marketed as Trisenox®, was approved by the U.S. Food and Drug Administration  
183 (FDA) for treatment of APL refractory to all-trans retinoic acid (ATRA) (Gibaud and Jaouen 2010).  
184 The revival of ATO for treatment of APL and other specific hematological malignancies has  
185 sparked renewed interest in arsenic-based drugs (Hoonjan et al. 2018; Hughes et al. 2011;  
186 Gibaud and Jaouen 2010).

187 Since ATO was approved as an effective drug for clinical treatment of hematological  
188 malignancies, including APL and multiple myeloma (MM), its mechanism as anticancer agent has  
189 been under active investigation. The mechanism of action of ATO is not clear, and there are a  
190 number of potential targets. Like most trivalent arsenicals, it has the potential to bind to thiols in  
191 metabolites such as glutathione, vicinal thiol pairs in lipoamide and in proteins such as lipoamide  
192 dehydrogenase, inhibiting cellular energy production and increasing production of intracellular  
193 reactive oxygen species (ROS) (Carney 2008; Emadi and Gore 2010). ATO treatment results in  
194 demethylation of DNA, affecting the promoters of many genes and also binds to  
195 oncoproteins/transcription factors (Emadi and Gore 2010; Dawood et al. 2018; Huynh et al. 2019).  
196 These alterations affect multiple cellular processes in a variety of cancers, resulting in cell cycle  
197 arrest, apoptosis and mesenchymal to epithelial transition through a variety of molecular targets  
198 (Chen et al. 1997; Bao et al. 2016; Miller et al. 2002; Shao et al. 1998). The final outcome depends  
199 on the cell type as well as the concentrations of administration and duration of ATO exposure  
200 (Chen et al. 1997).

201 However, those are rather nonspecific effects of ATO and do not explain its selective ability to  
202 treat APL. APL is characterized by chromosomal translocation t(15;17) (q24;q21), which produces  
203 a fusion promyelocytic leukemia protein-retinoic acid receptor alpha (PML-RAR $\alpha$ ) gene that is  
204 found in over 98% of patients (Borrow et al. 1990; de Thé et al. 1990; Golomb et al. 1980). The  
205 PML-RAR $\alpha$  fusion gene consists of the PML gene on chromosome 15 and the RAR $\alpha$  gene on  
206 chromosome 17. The production of the PML-RAR $\alpha$  oncoprotein alters myeloid differentiation at  
207 the promyelocytic stage, leading to accumulation of immature cells (Grisolano et al. 1997). In  
208 addition, PML-RAR $\alpha$  increases cell survival and increases proliferation of leukemic cells, resulting  
209 in progressive leukemogenesis (Grignani et al. 1993; Pandolfi 2001; Puccetti and Ruthardt 2004).  
210 PML-RAR $\alpha$  appears to be a target of ATO, which binds to the PML-RAR $\alpha$  oncoprotein in NB4  
211 cells, a human APL cell line, and alters SUMOylation of the PML moiety, leading to protein

212 degradation (Zhang et al. 2010). Although the effect of ATO on the PML-RAR $\alpha$  leukemic stem  
213 cells appears to be mainly through inhibition of proliferation (Testa and Lo-Coco 2015), this PML-  
214 RAR $\alpha$  degradation is also thought to induce apoptosis or differentiation to myeloid cells, leading  
215 decrease in the leukemic cells (Zhang et al. 2010; Rojewski et al. 2002).

216

217 Another putative target of ATO is the Wip1 phosphatase. ATO has been reported to activate the  
218 Chk2 and/or p38 MAPK apoptotic pathways in various chronic myelogenous leukemia cells (Giafis  
219 et al. 2006; Shim et al. 2002; Verma et al. 2002) as well as APL cells (Yoda et al. 2008) by  
220 inhibiting Wip1 phosphatase activity. Since expression of Wip1 is amplified in a number of  
221 cancers, including breast, papillary thyroid, colorectal and prostate cancers and other types  
222 (Emelyanov and Bulavin 2015; Li et al. 2002; Natrajan et al. 2009), ATO is potentially a therapeutic  
223 agent for other tumor types.

224 ATO may also be a treatment for other forms of leukemia via its function as a pro-oxidant factor,  
225 disrupting redox pathways in cancer cells. The combination of ATO with ascorbate (vitamin C), a  
226 dietary antioxidant that also possesses pro-oxidant activity in high concentrations (Kaźmierczak-  
227 Barańska et al. 2020), selectively killed blasts from APL patients and was also effective against  
228 approximately one-third of primary acute myeloid leukemia (AML) samples examined,  
229 presumably due to apoptosis induced by overproduction of ROS (Noguera et al. 2017). This pro-  
230 oxidant activity provides a rationale for testing the combination of ATO and ascorbate in advanced  
231 cases of AML and APL (Noguera et al. 2017).

232 Pin1, the peptidyl-prolyl *cis–trans* isomerase NIMA (never in mitosis A)-interacting 1, has been  
233 reported to be another target of ATO, enhancing its anti-cancer effects against multiple tumor  
234 types (Kozono et al. 2018). Pin1 is a major regulator of cancer signaling networks. It catalyzes  
235 *cis–trans* isomerization at phosphorylated Ser/Thr–Pro motifs, resulting in changes of protein

236 conformation, function and stability, which in turn activates numerous cancer-driving pathways.  
237 Pin1 is overexpressed in various cancers and cancer stem cells (Ayala et al. 2003; Bao et al.  
238 2004; Luo et al. 2015; Rustighi et al. 2014; Wulf et al. 2004) and involved in regulation of more  
239 than 50 oncogenes and 20 tumor suppressor factors (Lu and Hunter 2014; Zhou and Lu 2016).  
240 ATO inhibits Pin1 via direct and noncovalent binding to the active site, inducing degradation of  
241 Pin1. Interestingly, the anticancer effects of ATO are indirectly enhanced by co-treatment with all-  
242 *trans* retinoic acid (ATRA), another well-known Pin1 inhibitor, which increases cellular ATO  
243 uptake via induction of Aquaporin-9 (AQP9) expression, in addition to directly inhibiting and  
244 degrading Pin1 (Kozono et al. 2018).

245 However, a higher dose of ATO is required for the treatment of solid tumors compared to soft  
246 tumor hematologic malignancies, which raises concerns about toxicity. Methods to effectively  
247 deliver ATO to the cells without the accompanying toxicity are under development. For example,  
248 liposomal-encapsulated ATO delivered to HeLa cells, which are derived from human  
249 papillomavirus (HPV)-cervical carcinoma, effectively reduced levels of HPV-E6 proteins and  
250 induced apoptosis with reduced toxicity compared to free ATO. Encapsulation of ATO using this  
251 liposomal nanotechnology was shown to decrease membrane permeability to ATO by allowing its  
252 gradual release (Wang et al. 2016). The O'Halloran group developed a nanoparticulate  
253 formulation of ATO encapsulated in "nanobins" (liposomal vesicles) (Chen et al. 2006). The  
254 cytotoxicity of the encapsulated ATO was evaluated against a panel of human breast cancer cell  
255 lines and was found to be much less compared to the free ATO. In contrast, the nanobins  
256 potentiated the antitumor efficacy of ATO *in vivo* in an orthopic model of triple-negative breast  
257 cancer (Ahn et al. 2010). The group has also developed a synthesis method that combines ATO  
258 and cisplatin (*cis*-diamminedichloroplatinum(II)), a compound commonly used in the treatment of  
259 solid tumors, to form a stable aqueous complex, arsenoplatin, having a distinct biological activity  
260 from ATO and cisplatin individually (Miodragović Đ et al. 2013). Arsenoplatin can be loaded in

261 liposomal drug delivery systems and has been shown to possess significant biological activity  
262 against several cancer cell lines. When compared to cisplatin, it showed greater activity in breast,  
263 leukemia, colon, and central nervous system cancer cell lines (Miodragović et al. 2019). Other  
264 systems have been investigated for the effective delivery of arsonium compounds in cancer  
265 therapeutics, such as the triphenylarsonium-functionalised gold nanoparticles (Lalwani et al.  
266 2015). The gold nanoparticles are decorated with the triphenylarsonium groups to serve as  
267 potential nanocarriers for intracellular therapeutics. The development of delivery systems for slow  
268 dosing with arsenical drugs can modulate toxicity, significantly expanding medical applications of  
269 arsenic.

270

#### 271 *2.2.2. Realgar*

272 Another form of inorganic arsenic, realgar ( $\text{As}_4\text{S}_4$ , red arsenic) (Fig. 2B), has been used as a  
273 therapeutic agent since the days of ancient China (Wu et al. 2011). Inspired by nano-drug, lately,  
274 realgar nanoparticles (an average particle size of <100 nm) have been employed in studies rather  
275 than coarse realgar. This approach is adopted to overcome the problem of limited solubility of  
276 realgar particles in aqueous solutions, and to increase its bioavailability (Shi et al. 2016). Several  
277 in vitro studies demonstrated that realgar nanoparticles significantly decreased cell proliferation  
278 and promoted apoptosis in B16 melanoma cells (Zhao et al. 2010) and rat C6 glioma cells (An et  
279 al. 2011). Furthermore, in tumor-bearing C57BL/6 mice, transdermal delivery of the realgar  
280 nanoparticles markedly decreased the tumor volumes with little toxicity to the mice (Zhao et al.  
281 2010). Recently the effect of realgar nanoparticles was compared with ATO against several  
282 multiple myeloma cell lines and primary cell lines from multiple myeloma patients (Cholujova et  
283 al. 2017). The realgar nanoparticles were prepared by milling realgar into nano-sized dimensions  
284 under high energy. Both forms of inorganic arsenic were cytotoxic, but the realgar nanoparticles  
285 were two- to four-fold more effective than ATO in the cell lines, xenograft and multiple myeloma  
286 patient-derived myeloma mouse models. Mechanistic studies showed that the effects of the

287 realgar nanoparticles and ATO on the multiple myeloma models included pronounced apoptosis  
288 and G2/M cell cycle arrest. In this study, realgar nanoparticles but not ATO could significantly  
289 deplete the amount and clonogenicity of multiple myeloma stem-like side population in bone  
290 marrow stromal cells. Also, there was synergistic anti-multiple myeloma activity when realgar and  
291 ATO were combined with lenalidomide or melphalan, both of which have been approved for  
292 treatment of multiple myeloma. In an attempt to increase the uptake of realgar and prolong the  
293 retention time in cancer cells, (-)-Epigallocatechin-3-gallate (EGCG), another natural medicine  
294 that inhibits cancer cell growth, was used as a drug carrier to encapsulate realgar nanoparticles  
295 (Fang et al. 2019). Compared with realgar nanoparticles, the EGCG-realgar nanoparticles  
296 significantly inhibited the proliferation of APL HL-60 cells. In a subcutaneous solid tumor model  
297 mice, EGCG-realgar nanoparticles decreased tumor volumes at an inhibitory rate of 60.18% at a  
298 dose of 70mg/kg. More recently, the effect of realgar nanoparticles on lung cancer stem cell  
299 (LCSC) was also examined. The nano-realgar was shown to inhibit tumor growth both *in vitro* and  
300 *in vivo* by repressing metabolic reprogramming via downregulation of HIF-1 $\alpha$  expression and  
301 PI3K/Akt/mTOR pathway (Yang et al. 2021).

302

### 303 2.2.3. *Organoarsenicals*

304 Organic arsenicals are under current examination for potential therapeutic use. Several synthetic  
305 organoarsenicals were tested for antitumor activity against HL-60 (leukemia), SGC 7901 (gastric  
306 cancer) and MCF-7 (breast cancer) human cancer cell lines (Fan et al. 2016). 2-(((4-  
307 (oxoarsanyl)phenyl)imino)methyl)phenol ( $C_{13}H_{10}AsNO_2$ ) (Fig. 2C) and 2-methoxy-4-(((4-  
308 (oxoarsanyl)phenyl)imino)methyl)phenol ( $C_{14}H_{12}AsNO_3$ ) (Fig. 2D) exhibited the highest growth  
309 inhibition of HL-60 cells, with  $IC_{50}$  values of 0.77  $\mu$ M and 0.51  $\mu$ M, respectively. Both induced  
310 apoptosis via oxidative stress in HL-60 cells (Fan et al. 2016). Another organoarsenical that is  
311 being evaluated for the treatment of solid tumors is the glutathione conjugate of DMA<sub>3</sub>(III),

312 darinaparsin (L- $\gamma$ -glutamyl-S-(dimethylarsino)-L-cysteinyl-glycine) (Fig. 2E). The injectable form  
313 of darinaparsin, SP-02L, is currently in phase 2 clinical trial in patients with relapsed or refractory  
314 peripheral T-cell lymphoma (<https://clinicaltrials.gov/ct2/show/NCT02653976>). Analysis of data  
315 from two phase 1 clinical trials in Japan and Korea showed that darinaparsin has good potential  
316 efficacy and high safety profile (Ogura et al. 2021). A related glutathione conjugate, 4-(N-(S-  
317 glutathionylacetyl)amino) phenylarsenoxide or GSAO (Fig. 2F), is in phase 1 clinical trial in  
318 patients with advanced solid tumors (Horsley et al. 2013).

319

320 *2.2.4. Polyorganoarsenicals*

321 Another class of organoarsenicals with potential clinical value is polyarsenicals. The first reported  
322 is arsenicin A (2,4,6-trioxa-1,3,5,7-tetrarsatricyclo [3.3.1.13,7] decane) ( $C_3H_6As_4O_3$ ) (Fig. 2G), a  
323 natural product isolated from *Echinochalina bargibanti*, a marine sponge belonging to the class  
324 Demospongiae (Mancini et al. 2006). Arsenicin A has both antibiotic and anti-APL leukemia  
325 activity. It has a cage-like structure similar to the carbon structure in the diamond backbone  
326 adamantine ( $(CH)_4(CH_2)_6$ ), in which the four methanetriyl carbon bridgeheads are replaced by  
327 arsenic and three methylene bridges are replaced by oxygen (Lu et al. 2012; Lu et al. 2010). The  
328 anti-proliferative activity of arsenicin A was examined in the PML-RAR $\alpha$ -positive APL cell line NB4  
329 (Lu et al. 2012). Arsenicin A exhibits a 21-fold greater anti-proliferative activity compared ATO in  
330 NB4 cells. Using flow cytometry, arsenicin A was shown to induce cell death at a 27-fold lower  
331 concentration ( $IC_{50} = 53$  nM) compared with ATO ( $IC_{50} = 1440$  nM), and proliferative arrest at 20  
332 nM compared with 790 nM for ATO (Lu et al. 2012).

333

334 Five arsenicin A analogs were synthesized, and their activity was evaluated in vitro against a full  
335 panel of human cancer cell lines from the National Cancer Institute (NCI-USA) (Mancini,  
336 Planchestainer, and Defant 2017). Three of these compounds, designated **compound 2** (9,10-

337 dimethyl-2,4,6,8-tetraoxa-1,3,5,7,-tetraarsatricyclo[3.3.1.13,7]decane) ( $C_4H_8As_4O_4$ ) (Fig. 2H),  
338 **compound 3** (2,4,6,8-tetraoxa-1,3,5,7-tetraarsa-adamantane) ( $C_2H_4As_4O_4$ ) (Fig. 2I), and  
339 **compound 5** (an isomer of Arsenicin A) (Fig. 2J), showed significantly higher cytotoxicity against  
340 the various cancer cell lines than ATO. **Compound 2** was particularly effective in inhibiting growth  
341 of solid tumor cell lines of colon cancer, melanoma, ovarian cancer, renal cancer, prostate cancer  
342 and breast cancer. Two sulfur-containing derivatives, arsenicin B and arsenicin C, also possess  
343 antibiotic activity against human pathogens. Although less potent than arsenicin A against  
344 leukemia cells, these sulfur-containing polyarsenicals have especially potent antimicrobial activity  
345 against *Staphylococcus aureus*, a major human pathogen with growing resistance to conventional  
346 antibiotics (Tähtinen et al. 2018). These findings lend new perspectives on the development and  
347 use of polyorganoarsenicals as therapeutics.

348

349

350 **2.3. Arsenical antiparasitic agents**

351 Tryparsamide (*p*-glycineamidophenylarsonate) (Fig. 2K), developed by Walter A. Jacobs and  
352 Michael Heidelberger at the Rockefeller University in 1919, is acknowledged as the first effective  
353 arsenical therapeutic agent against Gambian sleeping sickness. That disease is the slow-  
354 progressing form of human African trypanosomiasis (HAT) and is caused by *Trypanosoma brucei*  
355 *gambiense*, which is endemic in western and central Africa, especially in the late stage of the  
356 infection (e.g. neurological stage through central nervous system invasion) (Gibaud and Jaouen  
357 2010). Although this drug was widely used from the early 1920's, its use waned in the 1940's due  
358 to the spread of resistant strains. In the 1940s, Ernst A. H. Friedheim improved the treatment of  
359 trypanosomiasis with the introduction of melaminophenyl arsenicals (Fig. 1), although toxicity was  
360 still reported (Gibaud and Jaouen 2010). Melarsen (4-(4,6-diamino-1,3,5-triazin-2-  
361 yl)amino]phenylarsenate) (Fig. 2L), the first melaminophenyl arsenical that Friedheim synthesized

362 in 1939, was less active than tryparsamide. In contrast, melarsen oxide (Fig. 2M), the reduced  
363 form of melarsen and the first trivalent organoarsenical used against trypanosomes, was very  
364 effective against both early (hemolymphatic) and late (neurologic) stages, yet it exhibited high  
365 toxicity (Friedheim 1948). Friedeim combined dimercaprol or BAL (British anti-Lewisite), the  
366 counteract compound for Lewisite, the trivalent organoarsenical-based chemical weapon first  
367 used in World War I (Peters, Stocken, and Thompson 1945), with melarsen oxide to produce the  
368 drug melarsoprol (MeLB or arsobal) (Fig. 2N) (Friedheim 1949). Melarsoprol is 100-fold less  
369 cytotoxic and 2.5-fold less trypanocidal compared with melarsen oxide (Fairlamb and Horn 2018).  
370 It was introduced into clinical use in 1949 for use in African countries to treat Gambian sleeping  
371 sickness. Melarsoprol can cross the blood-brain barrier (Sekhon 2013) via the P2 adenosine  
372 transporter (TbAT1) (Carter and Fairlamb 1993; Mäser et al. 1999) and aquaglyceroporin 2  
373 (TbAQP2) (Alsfeld et al. 2012; Baker et al. 2012). However, a serious side effect of melarsoprol  
374 is reactive encephalopathy, which occurs in about 10% of patients (Blum et al. 2001; Pepin and  
375 Milord 1991). Even so, its ability to cross the blood-brain barrier into the cerebrospinal fluid made  
376 it especially useful for treatment of second stage Gambian sleeping sickness, when the  
377 trypanosome enters the central nervous system (Colotti et al. 2018; Rodgers et al. 2011). Given  
378 the absence of effective alternatives, the World Health Organization (WHO) recommends its use  
379 as the only chemotherapeutic for the second stage of the faster-progressing form of human  
380 African trypanosomiasis caused by *Trypanosoma brucei rhodesiense*, which is more common in  
381 southern and eastern Africa (Büscher et al. 2017). Melarsoprol is a prodrug, and the active form  
382 of the drug is melarsen oxide (Fig. 2M). This trivalent form of melarsen (Fig. 2L) can be detected  
383 in cerebrospinal fluid 1 h after injection (Keiser et al. 2000). Melarsoprol is rapidly broken down  
384 mainly into melarsen oxide, perhaps enzymatically (Fairlamb and Horn 2018). As a trivalent  
385 organoarsenical, melarsen oxide has high affinity for thiols and forms a stable adduct with the  
386 parasite's alternative to glutathione, trypanothione. Reduction of free cytosolic trypanothione  
387 inhibits trypanothione reductase, the parasite enzyme that contributes to cytosolic redox balance

388 (Cunningham et al. 1994; Fairlamb et al. 1989). In addition, melarsen oxide causes rapid lysis of  
389 *Trypanosoma brucei* *in vitro* (Van Schaftingen et al. 1987). Beginning in the 1990s, resistance to  
390 melarsoprol became widespread (Brun et al. 2001). Melarsoprol resistance in clinical isolates  
391 (Graf et al. 2013; Pyana Pati et al. 2014) is predominantly related to mutations in the parasite  
392 *TbAQP2* gene (Munday et al. 2015). Mutations in this aquaglyceroporin, which is involved in  
393 uptake of melarsoprol, include deletions (Baker et al. 2012) or rearrangements with *TbAQP3* to  
394 form a chimeric *AQP2-3* gene (Munday et al. 2014). Resistance to melarsoprol in human African  
395 trypanosomiasis patients has led to a decrease in the use of this arsenical drug (Fairlamb and  
396 Horn 2018). With the development of newer drugs and antibiotics, interest in arsenic-based drugs  
397 gradually waned mainly due to their low therapeutic index.

398

#### 399 **2.4. Antiviral arsenic agents**

400 In addition to the use of arsenicals for control of pathogens and as cancer chemotherapeutics,  
401 their potential as antiviral agents is also under investigation. ATO has been shown to inhibit  
402 Hepatitis C Virus (HCV) replication at submicromolar concentrations (Hwang et al. 2004). The  
403 concentrations that gave 50% inhibition of replication (EC<sub>50</sub>) without causing cellular cytotoxicity  
404 are 0.35 and <0.2 μM, when determined by a reporter-based HCV replication assay and by RT-  
405 qPCR analysis, respectively. The anti-HCV activity of ATO was also demonstrated using an  
406 engineered cell line-based assay system that constitutes all steps in the full cycle of HCV infection  
407 and replication, where ATO at 0.3 μM abolished the HCV signal, while high concentrations of  
408 interferon (IFN)-α, an antiviral cytokine used for the treatment of chronic hepatitis C, only  
409 minimally suppressed the viral signal. In a follow-up study, treatment of HCV-infected cells with  
410 1 μM ATO, which effectively inhibited the HCV RNA replication without exhibiting cytotoxicity, led  
411 to depletion of intracellular glutathione and an increase in superoxide anion radicals (Kuroki et al.

412 2009). The anti-HCV activity of ATO was inhibited in the presence of *N*-acetyl-cysteine, an  
413 antioxidant and glutathione precursor. These results suggest that ATO exerts its effect against  
414 HCV by modulating the intracellular glutathione redox system and oxidative stress. These findings  
415 demonstrate the potential of ATO for the development of potent antiviral agents against HCV and  
416 related viruses.

417 Viral latency has been recognized as the major source of viral rebound in human  
418 immunodeficiency virus-1 (HIV-1) infections after discontinuation of antiretroviral therapy (ART)  
419 (Siliciano and Siliciano 2000). There is, therefore, a need to render the latent HIV-1 susceptible  
420 to eradication. One way to provide drug access is by reactivation of viral replication. ATO has  
421 been reported to activate latent HIV-1 in the Jurkat T cell line in a process that involves the nuclear  
422 factor kappa B (NF- $\kappa$ B) signaling pathway (Wang et al. 2013). Similarly, inorganic sodium arsenite  
423 was shown to reactivate gene expression and viral replication of the latent genome of herpes  
424 simplex virus type 1 (HSV1) (Preston and Nicholl 2008). These results suggest that inorganic  
425 arsenicals may be able to enhance ART. Recently the ability of ATO in combination with ART to  
426 regulate viral reservoirs in primary CD4+ T lymphocytes of HIV-1-infected patients and simian  
427 immunodeficiency virus (SIV)-infected Chinese rhesus macaques was examined (Yang et al.  
428 2019). ATO significantly increased the levels of cell-associated RNAs in resting CD4+ T cells from  
429 both HIV-1-infected patients and SIV-infected macaques in a dose-dependent manner. Using  
430 chronically SIV-infected macaques, ATO in combination with ART delayed viral rebound,  
431 decreased SIV integrated DNA in CD4+ T cells and restored CD4+ T cell counts *in vivo*. In  
432 contrast, there was a rebound in the control group treated with ART alone in an average interval  
433 of 22 days after discontinuation of therapy. Furthermore, SIV-specific immune responses against  
434 the multiple SIV antigens increased after treatment with ATO. The use of ATO as a latency-  
435 reversing agent (LRA) in combination with combined ART (CART) is currently under investigation

436 in a clinical trial (“The Effect of ATO on Eliminating HIV-1 Reservoir Combined with CART” 2019).

437 <https://clinicaltrials.gov/ct2/show/NCT03980665>

438 ATO has been reported to exhibit potent inhibition of human adenovirus infection *in vitro*  
439 (Hofmann et al. 2020). PML nuclear bodies, otherwise referred to as PML oncogenic domains,  
440 are IFN-inducible nuclear structures that participate in cellular processes including apoptosis,  
441 senescence and antiviral defense. Infection with human adenovirus reorganizes the dot-like PML  
442 nuclear bodies into track-like structures, impairing their function. This aberrant PML nuclear body  
443 phenotype is observed in acute PML cells. *In vitro* treatment of APL cells with ATO at micromolar  
444 concentrations produced significant anti-adenovirus activity. This activity was partly due to the  
445 ability of ATO to induce oxidation of PML nuclear bodies before multimerization by the virus,  
446 reconstituting the usual dot-like structure and restoring the antiviral function of PML nuclear  
447 bodies in the cells of APL patients’ cells (Hofmann et al. 2020).

448 The effectiveness of arsenic-based drugs in virus-associated cancers has also been reported  
449 (Kchour et al. 2013). In patients with human T-cell leukemia virus type 1 (HTLV-1) associated  
450 adult T-cell leukemia/lymphoma (ATL), ATO in combination with IFN- $\alpha$  and zidovudine, an FDA-  
451 approved nucleoside reverse-transcriptase inhibitor (NRTI) class antiretroviral drug, improved the  
452 cytokine gene expression profile by a shift from an initial immunosuppressive-like state ( $T_{reg}$  /T  
453 regulatory)/Th2 phenotype) to an immunocompetent-like state (Th1 phenotype) after 30 days of  
454 treatment. This shift is possibly the result of the enhanced immune response leading to  
455 eradication of ATL cells and control of infections caused by opportunistic pathogens. These  
456 results support suggestions on the use of ATO to treat immune disorders (Wang et al. 2019; An  
457 et al. 2020).

458 Epstein-Barr virus (EBV), the first identified human oncogenic virus, is associated with various  
459 malignancies, including carcinomas (e.g. nasopharyngeal carcinoma) and lymphomas (e.g.

460 Burkitt's lymphoma). In a study of the role of PML nuclear bodies in EBV latency, treatment with  
461 low dose ATO disrupted PML nuclear bodies, leading to induction of EBV lytic proteins and  
462 increased susceptibility of the virus to ganciclovir, an approved FDA drug for the treatment of  
463 EBV-associated disorders (Sides et al. 2013). Low concentrations of ATO (0.5 - 2 nM) were shown  
464 to inhibit expression of EBV lytic genes Zta, Rta and BMRF1, promoting cell death in various EBV-  
465 positive latency cells (Mutu, Akata, BX-1, Cl13 and JY) in a dose-dependent manner. A synergistic  
466 effect was observed with ganciclovir, specifically in EBV-positive cells. These effects were  
467 reversed in the presence of a proteasome inhibitor, which suggests that ATO-mediated inhibition  
468 of EBV lytic genes occurs via the ubiquitin pathway, promoting ubiquitin conjugation and  
469 proteasomal degradation of EBV genes (Yin et al. 2017). Induction of cell death by ATO was also  
470 observed in P3HR1 cells, another EBV-positive latency cell line, yet it occurs via autophagy. With  
471 this cell line, treatment with sodium arsenite also leads cell death but via a different mechanism,  
472 caspase-dependent apoptosis (Zebboudj et al. 2014). These results demonstrate that ATO and  
473 sodium arsenite have the potential to be therapeutic agents for EBV-associated lymphoma.

474 A recent *in silico* study identified darinaparsin (Fig. 2M) as a potent inhibitor of the RNA-dependent  
475 RNA polymerases of SARS-CoV-2. The drug inhibited the 3C-like protease and papain-like  
476 protease that are necessary for formation of the viral replication complex (Chowdhury et al. .  
477 These results suggest that, in addition to its anticancer activity (Bansal et al. 2015; Mann et al.  
478 2009; Tian et al. 2012), darinaparsin has the potential to be repurposed against the novel  
479 coronavirus that is responsible for the current global pandemic.

480

## 481 **2.5. Arsenical natural products antibiotics**

482 Selman Waksman, the Russian-Ukrainian-born American microbiologist, defined the term  
483 'antibiotic' as "a *chemical substance, produced by micro-organisms, which has the capacity to*  
484 *inhibit the growth of and even to destroy bacteria and other micro-organisms*" (Waksman 1947).

485 In 1952, Waksman was awarded the Nobel Prize in Physiology or Medicine for his discovery of  
486 the aminoglycoside antibiotic streptomycin, a natural product produced by the soil bacterium  
487 *Streptomyces griseus* that gave the organism a growth advantage over other soil bacteria. In this  
488 section two organoarsenicals with antimicrobial activity, methylarsenite (MAs(III)) and  
489 arsinothricin (AST), will be described. Both are natural products produced by soil bacteria to kill  
490 other bacteria, meeting Waksman's definition of an antibiotic (Li et al. 2021).

491

492 *2.5.1. Methylarsenite (MAs(III)): a primordial antibiotic*

493 Highly toxic MAs(III) (Fig. 2S) is produced by methylation of inorganic As(III) by the enzyme As(III)  
494 S-adenosylmethionine (SAM) methyltransferase, which is termed ArsM in microbes and AS3MT  
495 in animals (Dheeman et al. 2014; Qin et al. 2006). The *arsM* gene is considered to be one of the  
496 most ancient *ars* genes according to molecular clock analyses, arising at least 3 billion years ago  
497 (Chen et al. 2017; Chen and Rosen 2020). Thus, environmental arsenic methylation was  
498 widespread nearly a billion years before the Great Oxidation Event (GOE), when oxygen  
499 accumulated in the atmosphere. In the original anoxic atmosphere, trivalent MAs(III) would be  
500 stable. Since the ArsM product MAs(III) is considerably more toxic than the substrate As(III),  
501 methylation has been proposed to be an activation process, generating the primordial antibiotic  
502 MAs(III), which gave producers a competitive growth advantage over sensitive microbes during  
503 the Archean era (Li et al. 2016). Further methylation generates nontoxic volatile trimethylarsine  
504 (TMA<sub>3</sub>(III)), which may have functioned as a primitive mechanism for self-protection by the  
505 MAs(III)-producing microbes. After the GOE, MAs(III) would have been unstable in air, oxidizing  
506 to relatively nontoxic methylarsenate, MAs(V). Filling an ecological niche, other aerobic bacteria  
507 evolved the ability to reduce pentavalent MAs(V), regenerating the MAs(III) antibiotic (Yan et al.  
508 2019; Yoshinaga et al. 2011). The genes involved in MAs(V) reduction have not yet been  
509 identified, but this reaction now gives extant reducing microorganisms an advantage over

510 MAs(III)-sensitive bacteria in microbial communities (Chen et al. 2019). Trivalent arsenicals such  
511 as MAs(III) are toxic in part due to their affinity for thiols groups in proteins and other cellular  
512 metabolites (Shen et al. 2013). Since MAs(III) can react with a large number of molecules, no  
513 single target can be assigned for its mechanism of action that applies in every cell.

514 However, one target for the antibiotic action of MAs(III) was recently identified in *Shewanella*  
515 *putrefaciens* 200 (Garbinski et al. 2020). MAs(III), but not inorganic As(III), effectively inhibits the  
516 enzyme MurA (uridine diphosphate (UDP)-N-acetylglucosamine enolpyruvyl transferase), a  
517 cytoplasmic enzyme involved in the synthesis of the key precursor of the peptidoglycan, UDP-N-  
518 acetyl muramate (UNAM) (Barreteau et al. 2008). Only prokaryotes utilize peptidoglycan as an  
519 essential structural component of the cell wall, which makes it a singular target for antibacterial  
520 therapy in gram-negative and gram-positive pathogenic bacteria (Du et al. 2000; Raz 2012;  
521 Sonkar et al. 2017; Vollmer, Blanot, and de Pedro 2008). Fosfomycin ( $C_3H_7O_4P$ ), the only clinically  
522 approved antibiotic that acts against MurA, inhibits MurA by alkylation of the highly-conserved  
523 catalytic cysteine residue in the active site (Baum et al. 2001). However, the conserved cysteine  
524 is often replaced by an aspartate in MurA orthologs from various pathogens such as  
525 *Mycobacterium tuberculosis*, contributing to their intrinsic fosfomycin resistance (De Smet et al.  
526 1999). MurA from *S. putrefaciens* 200 has the conserved catalytic cysteine and is sensitive to  
527 fosfomycin, while its Cys-to-Asp mutant is resistant to fosfomycin but remained sensitive to  
528 MAs(III), indicating that the two compounds have different mechanisms of action. MAs(III)  
529 represent a new area for the development of novel compounds for combating the threat of  
530 antibiotic resistance (Garbinski et al. 2020). For MAs(III) to exert its antibiotic action, it first must  
531 enter sensitive cells. How do arsenicals in general and MAs(III) in particular get into and out of  
532 cells? The aquaglyceroporin GlpF facilitates uptake As(III) and Sb(III) into cells of *Escherichia coli*  
533 (Meng et al. 2004; Sanders et al. 1997). Uptake of MAs(III) by GlpF has not been studied, but  
534 other AQPs facilitate its movement into and out of cells. The aquaglyceroporin AqpS from

535 *Sinorhizobium meliloti* was recently demonstrated to conduct both MAs(III) and MAs(V) (Chen et  
536 al. Rosen 2021). Heterologous expression of the related mammalian aquaporin AQP9 in  
537 *Saccharomyces cerevisiae* resulted in three-fold more MAs(III) accumulation than inorganic  
538 As(III) (Liu et al. 2006). In addition, inorganic As(III) is transported by sugar permeases, including  
539 yeast hexose (Hxt) transporters (Liu et al. 2006) and plant inositol permeases (Duan et al. 2016).  
540 The mammalian glucose permease GLUT1 has been shown to transport MAs(III) as well as As(III)  
541 (Liu et al. 2006). However, it is not clear if bacterial sugar transporters also transport arsenicals.  
542 In response to the high toxicity of MAs(III), bacteria adapted by developing resistance  
543 mechanisms (Chen and Rosen 2020). One of the most common mechanisms of bacterial  
544 resistance to antibiotics is to pump it out of the cells (Jia et al. 2019). Two MAs(III) efflux  
545 permeases are ArsP (Chen et al. 2015) and ArsK (Jia et al. 2019; Shi et al. 2018). Other  
546 mechanisms that confer resistance to MAs(III) are the C–As bond lyase Arsl, which demethylates  
547 MAs(III) to As(III) (Pawitwar et al. 2017; Yoshinaga and Rosen 2014), and methylarsenite  
548 oxidases such as ArsH, ArsU and ArsV that oxidize MAs(III) to MAs(V) (Chen et al. 2015).

549

#### 550 2.5.2 *Arsinothricin (AST), a pentavalent organoarsenical antibiotic*

551 Arsinothricin (2-amino-4-(hydroxymethylarsinoyl)butanoate, or AST) (Fig. 2T) is a newly identified  
552 broad-spectrum organoarsenical antibiotic (Nadar et al. 2019). AST was first discovered as a  
553 natural product synthesized by the rice rhizosphere bacterium *Burkholderia gladioli* strain  
554 GSRB05 (Kuramata et al. 2016). AST is a non-proteinogenic analog of both glutamate and the  
555 arsenic mimetic of L-phosphinothricin (2-amino-4-(hydroxymethylphosphinyl)butanoate or PT),  
556 the antibiotic moiety of a *Streptomyces* antibiotic prodrug phosphinothricin tripeptide (PTT) or  
557 bialaphos (Nadar et al. 2019; Kuramata et al. 2016). AST inhibits the growth of *M. bovis* BCG, the  
558 attenuated etiological agent of bovine tuberculosis, which is closely related to *M. tuberculosis*, the  
559 cause of human tuberculosis, and one of the WHO-designated priority pathogens carbapenem-

560 resistant *Enterobacter cloacae*, whereas it exhibits low cytotoxicity on human monocytes. AST is  
561 chemically unrelated to other organoarsenicals and is a promising candidate to usher in a new  
562 class of antimicrobial agents (Nadar et al. 2019). MAs(III) and other trivalent arsenicals exert their  
563 toxicity through reaction with thiols. In contrast, AST is a pentavalent organoarsenical, and  
564 pentavalent arsenicals have low reactivity with thiols. Even though other pentavalent arsenicals  
565 are relatively benign and less toxic, AST is as effective an antimicrobial as MAs(III) and is 15-fold  
566 more effective as an antimicrobial than PT. PT and AST act by inhibition of glutamine synthetase  
567 (GS), a central enzyme in nitrogen metabolism. The likely mechanism of action is by mimicking  
568 the  $\gamma$ -glutamyl phosphate intermediate in the glutamine synthetase catalytic pathway (Nadar et  
569 al. 2019; Suzol et al. 2020).

570

571 Recently the biosynthetic gene cluster for biosynthesis of AST was identified (Galván et al. 2021).  
572 An *ars* operon consisting of three genes, *arsQML*, was identified in the draft genome sequence  
573 of *B. gladioli* GSRB05, the AST producer. These three genes were shown to encode genes for  
574 the synthesis of AST and for its efflux from the cells. The *arsL* gene encodes a non-canonical  
575 radical S-adenosylmethionine (SAM) enzyme that transfers the 3-amino-3-carboxypropyl group  
576 from SAM to inorganic arsenite, forming hydroxyarsinotrichin (2-amino-4-  
577 (dihydroxyarsinoyl)butanoate, or AST-OH), the precursor of AST. The *arsM* gene product, an  
578 As(III) SAM methyltransferase, methylates AST-OH, producing AST. Finally, *arsQ* encodes an  
579 efflux permease that extrudes AST from the cells, both protecting the producing cells from its own  
580 product and releasing AST into the extracellular milieu, allowing it to exert its antibiotic action  
581 (Galván et al. 2021). For AST to be a useful antibiotic, it must be available in sufficient quantities  
582 for clinical trials and for further drug development. Recently, a semi-synthetic method was  
583 reported in which D,L-AST-OH is chemically synthesized and then enzymatically methylated by  
584 ArsM to produce D,L-AST (Suzol et al. 2020).

585 Paul Ehrlich, the father of modern drug chemotherapy who synthesized the antimicrobial  
586 organoarsenical salvarsan, prophesied that drug resistance follows the drug like a faithful shadow  
587 (Ebrahim 2010). This has proven true for nearly every antibiotic and antimicrobial, and resistance  
588 to AST has already arisen. AST is inactivated by acetylation of  $\alpha$ -amino group by the enzyme  
589 ArsN1. The *arsN1* gene is found in *ars* operons, suggesting that resistance to AST probably arose  
590 soon after the evolution of its synthesis. ArsN1 is highly selective and has higher affinity for AST  
591 than structurally related PT (Nadar et al. 2019). The *arsN1* gene is widely distributed in bacteria,  
592 which implies that AST is also produced by many environmental bacteria. Even so, AST still has  
593 a future as an antibiotic. First, AST can be used in combination with ArsN1 inhibitors that can be  
594 predicted from the crystal structure of AST-bound ArsN1. Second, the chemical synthesis of AST  
595 can be used to produce modified derivatives with higher inhibition of GS or that evade ArsN1  
596 acetylation. These inhibitors and derivatives will improve the clinical utility of this promising new  
597 class of antimicrobial drugs.

598

### 599 **3. Synthetic aromatic arsenicals in animal husbandry**

600 Although their medicinal uses waned after the advent of penicillin in the early 1940s, synthetic  
601 aromatic arsenicals have been repurposed for use in animal husbandry. Four pentavalent  
602 aromatic arsenicals were extensively used in the poultry and swine industry in the US since the  
603 mid-1940's and played significant roles as feed additives for improvement of weight gain, feed  
604 efficiencies and pigmentation, as well as prevention and treatment of parasitic infectious diseases  
605 until banned in the mid-2010's. Atoxyl (*p*-ASA) (Fig. 2U), the first organoarsenical drug for human  
606 trypanosomiasis, was repurposed for poultry and swine to promote growth and prevent or treat  
607 dysentery (Sharma and Anand 1997). Carbarsone (4-carbamoylaminophenylarsenate or Car(V))  
608 (Fig. 2V), the carbamoylated *p*-ASA(V) derivative originally introduced in 1931 for the treatment  
609 of human protozoal infectious diseases trichomoniasis and amebiasis, was later restricted to  
610 application with turkeys to improve weight and control blackhead disease, a protozoan disease

611 caused by *Histomonas meleagridis* (Hoekenga 1951; McDougald 1979; Radke 1955; Sasaki et  
612 al. 1956; Worden and Wood 1973). The other two are nitroaromatic pentavalent arsenicals,  
613 roxarsone (4-hydroxy-3-nitrophenylarsonate or Rox(V)) (Fig. 2W) and nitarsone (4-  
614 nitrophenylarsenate or Nit(V)) (Fig. 2X) that were exclusively used for animal husbandry. Rox(V)  
615 was used for poultry to promote growth, treat coccidiosis, an intestinal protozoan parasitic disease  
616 caused by *Eimeria tenella*, as well as prevent gastrointestinal tract infections. Although mostly  
617 excreted unchanged from the animals, administered organoarsenical drugs were shown to  
618 increase the level of inorganic arsenic species in the chicken breasts (Liu et al. 2016). Roxarsone  
619 and nitrasone have been banned for nearly two decades by the European Union, in 2014 and  
620 2015, respectively, by the FDA  
621 (<https://www.fda.gov/AnimalVeterinary/SafetyHealth/ProductSafetyInformation/ucm257540.htm>),  
622 and more recently banned in China (Hu et al. 2019), although compliance is difficult to enforce.  
623 Several countries including Malaysia, Canada and Australia followed this move, yet their use is  
624 still allowed in countries such as Argentina, Brazil, Chile, Mexico and Vietnam (Hu et al. 2019).  
625 Nit(V) was the last drug in use in the United States to prevent and treat blackhead disease in  
626 poultry, and currently there are no efficacious drugs for this serious avian disease, raising a  
627 concern in poultry industry (<https://www.fda.gov/animal-veterinary/resources-you/blackhead-disease-poultry>).  
628

629

630

631

632

#### 633 **4. Future perspectives**

634 The major drawback of the use of arsenic in medicine is its toxicity. Therefore, there is a need  
635 to employ current advances in science to develop new generation arsenicals that can make up  
636 for the shortcomings of currently used arsenic-based drugs. Development of future arsenical

637 drugs will build on the chemistry and properties of arsenic-based drugs already proven to be  
638 effective. Before advancements in scientific research, most arsenic-based drugs throughout  
639 history were marketed and used without rigorous clinical trials or understanding of their  
640 mechanisms of action. This lack of scientific rigor may have been responsible for the disuse of  
641 arsenic-based drugs in the late 1900s. The re-emergence of arsenic as a frontline treatment for  
642 APL shows the potential for development of new arsenicals with higher therapeutic efficacy and  
643 lower toxicity.

644

645 **Acknowledgements**

646 This work was supported by NSF BIO/MCB grant 1817962 to M.Y., NIH grants R35GM136211  
647 and R01GM55425 and R01 ES023779 to B.P.R. and a pilot project grant from the Herbert  
648 Wertheim College of Medicine (Project #800014873) to K.Y-S. The authors state that they have  
649 no competing interests.

650

651 **Abbreviations**

|     |         |                                                |
|-----|---------|------------------------------------------------|
| 652 | AML     | Acute myeloid leukemia                         |
| 653 | APL     | Acute promyelocytic leukemia                   |
| 654 | AQP     | Aquaporin/aquaglyceroporin                     |
| 655 | ArsM    | As(III) S-adenosylmethionine methyltransferase |
| 656 | ART     | Antiretroviral therapy                         |
| 657 | As(III) | Arsenite                                       |
| 658 | As(V)   | Arsenate                                       |
| 659 | AST     | Arsinothricin                                  |
| 660 | AST-OH  | Hydroxyarsinothricin                           |
| 661 | ATL     | Adult T-cell leukemia/lymphoma                 |
| 662 | ATO     | Arsenic trioxide                               |
| 663 | ATRA    | All-trans retinoic acid                        |
| 664 | BAL     | British anti-Lewisite                          |
| 665 | EBV     | Epstein-Barr virus                             |
| 666 | EGCG    | (-)-Epigallocatechin-3-gallate                 |
| 667 | FDA     | Food and Drug Administration                   |
| 668 | GOE     | Great Oxidation Event                          |
| 669 | GS      | Glutamine synthetase                           |
| 670 | HAT     | Human African trypanosomiasis                  |

|     |                  |                                                                             |
|-----|------------------|-----------------------------------------------------------------------------|
| 671 | HCV              | Hepatitis C Virus                                                           |
| 672 | HIV-1            | Human immunodeficiency virus-1                                              |
| 673 | HPV              | Human papillomavirus                                                        |
| 674 | MAs(III)         | Methylarsenite                                                              |
| 675 | MAs(V)           | Methylarsenate                                                              |
| 676 | MSMA             | Monosodium methylarsenate                                                   |
| 677 | MurA             | UDP- <i>N</i> -acetylglucosamine enolpyruvyl transferase                    |
| 678 | Nit(V)           | Nitarson                                                                    |
| 679 | <i>p</i> -ASA    | <i>p</i> -arsanilic acid                                                    |
| 680 | Pin1             | Peptidyl-prolyl cis–trans isomerase NIMA (never in mitosis A)-interacting 1 |
| 681 | PML              | Promyelocytic leukemia                                                      |
| 682 | PML-RAR $\alpha$ | Promyelocytic leukemia protein-retinoic acid receptor alpha                 |
| 683 | PT               | L-phosphinothricin                                                          |
| 684 | PTT              | Phosphinothricin tripeptide                                                 |
| 685 | ROS              | Reactive oxygen species                                                     |
| 686 | Rox(V)           | Roxarsone                                                                   |
| 687 | SAM              | S-adenosylmethionine                                                        |
| 688 | SARS-CoV-2       | Severe acute respiratory syndrome coronavirus 2                             |
| 689 | SIV              | Simian immunodeficiency virus                                               |
| 690 | UDP              | uridine diphosphate                                                         |

691 WHO

World Health Organization

692 **References**

693 Ahn RW, Chen F, Chen H, Stern ST, Clogston JD, Patri AK, Raja MR, Swindell EP, et al. (2010),  
694 A novel nanoparticulate formulation of arsenic trioxide with enhanced therapeutic efficacy in a  
695 murine model of breast cancer. *Clin Cancer Res* 16:3607-3617.

696 Alsfeld S, Eckert S, Baker N, Glover L, Sanchez-Flores A, Leung KF, Turner DJ, Field MC, et al.  
697 (2012), High-throughput decoding of antitrypanosomal drug efficacy and resistance. *Nature*  
698 482:232-236.

699 An K, Xue MJ, Zhong JY, Yu SN, Lan TS, Qi ZQ, Xia JJ (2020), Arsenic trioxide ameliorates  
700 experimental autoimmune encephalomyelitis in C57BL/6 mice by inducing CD4(+) T cell  
701 apoptosis. *J Neuroinflammation* 17:147.

702 An YL, Nie F, Wang ZY, Zhang DS (2011), Preparation and characterization of realgar  
703 nanoparticles and their inhibitory effect on rat glioma cells. *Int J Nanomedicine* 6:3187-3194.

704 Ayala G, Wang D, Wulf G, Frolov A, Li R, Sowadski J, Wheeler TM, Lu KP, et al. (2003), The  
705 prolyl isomerase Pin1 is a novel prognostic marker in human prostate cancer. *Cancer Res*  
706 63:6244-6251.

707 Baker N, Glover L, Munday JC, Aguinaga Andrés D, Barrett MP, de Koning HP, Horn D (2012),  
708 Aquaglyceroporin 2 controls susceptibility to melarsoprol and pentamidine in African  
709 trypanosomes. *Proc Natl Acad Sci U S A* 109:10996-11001.

710 Bansal N, Farley NJ, Wu L, Lewis J, Youssoufian H, Bertino JR (2015), Darinaparsin inhibits  
711 prostate tumor-initiating cells and Du145 xenografts and is an inhibitor of hedgehog signaling. *Mol*  
712 *Cancer Ther* 14:23-30.

713 Bao L, Kimzey A, Sauter G, Sowadski JM, Lu KP, Wang DG (2004), Prevalent overexpression of  
714 prolyl isomerase Pin1 in human cancers. *Am J Pathol* 164:1727-1737.

715 Bao X, Ren T, Huang Y, Wang S, Zhang F, Liu K, Zheng B, Guo W (2016), Induction of the  
716 mesenchymal to epithelial transition by demethylation-activated microRNA-125b is involved in the  
717 anti-migration/invasion effects of arsenic trioxide on human chondrosarcoma. *J Exp Clin Cancer*  
718 *Res* 35:129.

719 Barreteau H, Kovac A, Boniface A, Sova M, Gobec S, Blanot D (2008), Cytoplasmic steps of  
720 peptidoglycan biosynthesis. *FEMS Microbiol Rev* 32:168-207.

721 Baum EZ, Montenegro DA, Licata L, Turchi I, Webb GC, Foleno BD, Bush K (2001), Identification  
722 and characterization of new inhibitors of the *Escherichia coli* MurA enzyme. *Antimicrob Agents*  
723 *Chemother* 45:3182-3188.

724 Bentley R, Chasteen TG (2002), Arsenic Curiosa and Humanity. *The Chemical Educator* 7:51-  
725 60.

726 Blum J, Nkunku S, Burri C (2001), Clinical description of encephalopathic syndromes and risk  
727 factors for their occurrence and outcome during melarsoprol treatment of human African  
728 trypanosomiasis. *Trop Med Int Health* 6:390-400.

729 Borrow J, Goddard AD, Sheer D, Solomon E (1990), Molecular analysis of acute promyelocytic  
730 leukemia breakpoint cluster region on chromosome 17. *Science* 249:1577-1580.

731 Borzelleca JF (2000), Paracelsus: herald of modern toxicology. *Toxicol Sci* 53:2-4.

732 Brun R, Schumacher R, Schmid C, Kunz C, Burri C (2001), The phenomenon of treatment failures  
733 in Human African Trypanosomiasis. *Trop Med Int Health* 6:906-914.

734 Burló F, Guijarro I, Carbonell-Barrachina AA, Valero D, Martínez-Sánchez F (1999), Arsenic  
735 species: effects on and accumulation by tomato plants. *J Agric Food Chem* 47:1247-1253.

736 Büscher P, Cecchi G, Jamonneau V, Priotto G (2017), Human African trypanosomiasis. *Lancet*  
737 390:2397-2409.

738 Carney DA (2008), Arsenic trioxide mechanisms of action--looking beyond acute promyelocytic  
739 leukemia. *Leuk Lymphoma* 49:1846-1851.

740 Carter NS, Fairlamb AH (1993), Arsenical-resistant trypanosomes lack an unusual adenosine  
741 transporter. *Nature* 361:173-176.

742 Chen GQ, Shi XG, Tang W, Xiong SM, Zhu J, Cai X, Han ZG, Ni JH, et al. (1997), Use of arsenic  
743 trioxide (As<sub>2</sub>O<sub>3</sub>) in the treatment of acute promyelocytic leukemia (APL): I. As<sub>2</sub>O<sub>3</sub> exerts dose-  
744 dependent dual effects on APL cells. *Blood* 89:3345-3353.

745 Chen H, MacDonald RC, Li S, Krett NL, Rosen ST, O'Halloran TV (2006), Lipid encapsulation of  
746 arsenic trioxide attenuates cytotoxicity and allows for controlled anticancer drug release. *J Am*  
747 *Chem Soc* 128:13348-13349.

748 Chen J, Bhattacharjee H, Rosen BP (2015a), ArsH is an organoarsenical oxidase that confers  
749 resistance to trivalent forms of the herbicide monosodium methylarsenate and the poultry growth  
750 promoter roxarsone. *Mol Microbiol* 96:1042-1052.

751 Chen J, Madegowda M, Bhattacharjee H, Rosen BP (2015a), ArsP: a methylarsenite efflux  
752 permease. *Mol Microbiol* 98:625-635.

753 Chen J, Nadar VS, Rosen BP (2017), A novel MAs(III)-selective ArsR transcriptional repressor.  
754 *Mol Microbiol* 106:469-478.

755 Chen J, Nadar VS, Rosen BP (2021), Aquaglyceroporin AqpS from *Sinorhizobium meliloti*  
756 conducts both trivalent and pentavalent methylarsenicals. *Chemosphere* 270:129379.

757 Chen J, Rosen BP (2020), The Arsenic Methylation Cycle: How Microbial Communities Adapted  
758 Methylarsenicals for Use as Weapons in the Continuing War for Dominance. *Frontiers in*  
759 *Environmental Science* 8.

760 Chen J, Yoshinaga M, Rosen BP (2019), The antibiotic action of methylarsenite is an emergent  
761 property of microbial communities. *Mol Microbiol* 111:487-494.

762 Chen Z, Chen SJ (2017), Poisoning the Devil. *Cell* 168:556-560.

763 Cholujova D, Bujnakova Z, Dutkova E, Hidemitsu T, Groen RW, Mitsiades CS, Richardson PG,  
764 Dorfman DM, et al. (2017), Realgar nanoparticles versus ATO arsenic compounds induce in vitro  
765 and in vivo activity against multiple myeloma. *Br J Haematol* 179:756-771.

766 Chowdhury T, Roymahapatra G, Mandal SM (2020), In Silico Identification of a Potent Arsenic  
767 Based Approved Drug Darinaparsin against SARS-CoV-2: Inhibitor of RNA Dependent RNA  
768 polymerase (RdRp) and Essential Proteases. *Infect Disord Drug Targets*.

769 Colotti G, Fiorillo A, Ilari A (2018), Metal- and metalloid-containing drugs for the treatment of  
770 trypanosomatid diseases. *Front Biosci (Landmark Ed)* 23:954-966.

771 Cunningham ML, Zvelebil MJ, Fairlamb AH (1994), Mechanism of inhibition of trypanothione  
772 reductase and glutathione reductase by trivalent organic arsenicals. *Eur J Biochem* 221:285-295.

773 Dawood M, Hamdoun S, Efferth T (2018), Multifactorial Modes of Action of Arsenic Trioxide in  
774 Cancer Cells as Analyzed by Classical and Network Pharmacology. *Front Pharmacol* 9:143.

775 De Smet KAL, Kempsell KE, Gallagher A, Duncan K, Young DB (1999), Alteration of a single  
776 amino acid residue reverses fosfomycin resistance of recombinant MurA from *Mycobacterium*  
777 *tuberculosis*. *Microbiology (Reading)* 145 ( Pt 11):3177-3184.

778 de Thé H, Chomienne C, Lanotte M, Degos L, Dejean A (1990), The t(15;17) translocation of  
779 acute promyelocytic leukaemia fuses the retinoic acid receptor alpha gene to a novel transcribed  
780 locus. *Nature* 347:558-561.

781 Dheeman DS, Packianathan C, Pillai JK, Rosen BP (2014), Pathway of human AS3MT arsenic  
782 methylation. *Chem Res Toxicol* 27:1979-1989.

783 Doyle D (2009), Notoriety to respectability: a short history of arsenic prior to its present day use  
784 in haematology. *Br J Haematol* 145:309-317.

785 Du W, Brown JR, Sylvester DR, Huang J, Chalker AF, So CY, Holmes DJ, Payne DJ, et al. (2000),  
786 Two active forms of UDP-N-acetylglucosamine enolpyruvyl transferase in gram-positive bacteria.  
787 *J Bacteriol* 182:4146-4152.

788 Duan GL, Hu Y, Schneider S, McDermott J, Chen J, Sauer N, Rosen BP, Daus B, et al. (2016),  
789 Inositol transporters AtINT2 and AtINT4 regulate arsenic accumulation in *Arabidopsis* seeds. *Nat*  
790 *Plants* 2:15202.

791 Ebrahim GJ (2010), Bacterial resistance to antimicrobials. *J Trop Pediatr* 56:141-143.

792 Emadi A, Gore SD (2010), Arsenic trioxide - An old drug rediscovered. *Blood Rev* 24:191-199.

793 Emelyanov A, Bulavin DV (2015), Wip1 phosphatase in breast cancer. *Oncogene* 34:4429-4438.

794 Ernst E (2002), Toxic heavy metals and undeclared drugs in Asian herbal medicines. *Trends Pharmacol Sci* 23:136-139.

795 Fairlamb AH, Henderson GB, Cerami A (1989), Trypanothione is the primary target for arsenical drugs against African trypanosomes. *Proc Natl Acad Sci U S A* 86:2607-2611.

796 Fairlamb AH, Horn D (2018), Melarsoprol Resistance in African Trypanosomiasis. *Trends Parasitol* 34:481-492.

800 Fan XY, Chen XY, Liu YJ, Zhong HM, Jiang FL, Liu Y (2016), Oxidative stress-mediated intrinsic apoptosis in human promyelocytic leukemia HL-60 cells induced by organic arsenicals. *Sci Rep* 6:29865.

801 Fang W, Peng ZL, Dai YJ, Wang DL, Huang P, Huang HP (2019), (-)-Epigallocatechin-3-gallate encapsulated realgar nanoparticles exhibit enhanced anticancer therapeutic efficacy against acute promyelocytic leukemia. *Drug Delivery* 26:1058-1067.

802 Friedheim EA (1948), Melarsen oxide in the treatment of human trypanosomiasis. *Ann Trop Med Parasitol* 42:357-363.

803 Friedheim EA (1949), Mel B in the treatment of human trypanosomiasis. *Am J Trop Med Hyg* 29:173-180.

804 Galván AE, Paul NP, Chen J, Yoshinaga-Sakurai K, Utturkar SM, Rosen BP, Yoshinaga M (2021), Identification of the Biosynthetic Gene Cluster for the Organoarsenical Antibiotic Arsinothricin. *Microbiol Spectr* 9:e0050221.

805 Garbinski LD, Rosen BP, Yoshinaga M (2020), Organoarsenicals inhibit bacterial peptidoglycan biosynthesis by targeting the essential enzyme MurA. *Chemosphere* 254:126911.

806 Giafis N, Katsoulidis E, Sassano A, Tallman MS, Higgins LS, Nebreda AR, Davis RJ, Platanias LC (2006), Role of the p38 mitogen-activated protein kinase pathway in the generation of arsenic trioxide-dependent cellular responses. *Cancer Res* 66:6763-6771.

807 Gibaud S, Jaouen G (2010) Arsenic-Based Drugs: From Fowler's Solution to Modern Anticancer Chemotherapy. In: *Medicinal Organometallic Chemistry*, vol. (Jaouen G. M-NN, ed). Berlin, Heidelberg: Springer.

808 Golomb HM, Rowley JD, Vardiman JW, Testa JR, Butler A (1980), "Microgranular" acute promyelocytic leukemia: a distinct clinical, ultrastructural, and cytogenetic entity. *Blood* 55:253-259.

809 Gorby MS (1988), Arsenic poisoning. *West J Med* 149:308-315.

825 Graf FE, Ludin P, Wenzler T, Kaiser M, Brun R, Pyana PP, Büscher P, de Koning HP, et al.  
826 (2013), Aquaporin 2 mutations in *Trypanosoma brucei* gambiense field isolates correlate with  
827 decreased susceptibility to pentamidine and melarsoprol. *PLoS Negl Trop Dis* 7:e2475.

828 Grignani F, Ferrucci PF, Testa U, Talamo G, Fagioli M, Alcalay M, Mencarelli A, Grignani F, et al.  
829 (1993), The acute promyelocytic leukemia-specific PML-RAR alpha fusion protein inhibits  
830 differentiation and promotes survival of myeloid precursor cells. *Cell* 74:423-431.

831 Grisolano JL, Wesselschmidt RL, Pelicci PG, Ley TJ (1997), Altered myeloid development and  
832 acute leukemia in transgenic mice expressing PML-RAR alpha under control of cathepsin G  
833 regulatory sequences. *Blood* 89:376-387.

834 Hoekenga MT (1951), A comparison of aureomycin and carbarsone in the treatment of intestinal  
835 amebiasis. *Am J Trop Med Hyg* 31:423-425.

836 Hofmann S, Mai J, Masser S, Groitl P, Herrmann A, Sternsdorf T, Brack-Werner R, Schreiner S  
837 (2020), ATO (Arsenic Trioxide) Effects on Promyelocytic Leukemia Nuclear Bodies Reveals  
838 Antiviral Intervention Capacity. *Adv Sci (Weinh)* 7:1902130.

839 Hoonjan M, Jadhav V, Bhatt P (2018), Arsenic trioxide: insights into its evolution to an anticancer  
840 agent. *J Biol Inorg Chem* 23:313-329.

841 Horsley L, Cummings J, Middleton M, Ward T, Backen A, Clamp A, Dawson M, Farmer H, et al.  
842 (2013), A phase 1 trial of intravenous 4-(N-(S-glutathionylacetyl)amino) phenylarsenoxide  
843 (GSAO) in patients with advanced solid tumours. *Cancer Chemother Pharmacol* 72:1343-1352.

844 Hu Y, Cheng H, Tao S, Schnoor JL (2019), China's Ban on Phenylarsonic Feed Additives, A Major  
845 Step toward Reducing the Human and Ecosystem Health Risk from Arsenic. *Environ Sci Technol*  
846 53:12177-12187.

847 Hughes MF, Beck BD, Chen Y, Lewis AS, Thomas DJ (2011), Arsenic exposure and toxicology:  
848 a historical perspective. *Toxicol Sci* 123:305-332.

849 Huynh TT, Sultan M, Vidovic D, Dean CA, Cruickshank BM, Lee K, Loung CY, Holloway RW, et  
850 al. (2019), Retinoic acid and arsenic trioxide induce lasting differentiation and demethylation of  
851 target genes in APL cells. *Sci Rep* 9:9414.

852 Hwang DR, Tsai YC, Lee JC, Huang KK, Lin RK, Ho CH, Chiou JM, Lin YT, et al. (2004), Inhibition  
853 of hepatitis C virus replication by arsenic trioxide. *Antimicrob Agents Chemother* 48:2876-2882.

854 Jia MR, Tang N, Cao Y, Chen Y, Han YH, Ma LQ (2019), Efficient arsenate reduction by As-  
855 resistant bacterium *Bacillus* sp. strain PVR-YHB1-1: Characterization and genome analysis.  
856 *Chemosphere* 218:1061-1070.

857 Jolliffe DM (1993), A history of the use of arsenicals in man. *J R Soc Med* 86:287-289.

858 Kaźmierczak-Barańska J, Boguszewska K, Adamus-Grabicka A, Karwowski BT (2020), Two  
859 Faces of Vitamin C-Antioxidative and Pro-Oxidative Agent. *Nutrients* 12.

860 Kchour G, Rezaee R, Farid R, Ghantous A, Rafatpanah H, Tarhini M, Kooshyan MM, El Hajj H, et  
861 al. (2013), The combination of arsenic, interferon-alpha, and zidovudine restores an  
862 "immunocompetent-like" cytokine expression profile in patients with adult T-cell leukemia  
863 lymphoma. *Retrovirology* 10:91.

864 Keiser J, Ericsson O, Burri C (2000), Investigations of the metabolites of the trypanocidal drug  
865 melarsoprol. *Clin Pharmacol Ther* 67:478-488.

866 Koch I, Moriarty M, House K, Sui J, Cullen WR, Saper RB, Reimer KJ (2011), Bioaccessibility of  
867 lead and arsenic in traditional Indian medicines. *Sci Total Environ* 409:4545-4552.

868 Kozono S, Lin YM, Seo HS, Pinch B, Lian X, Qiu C, Herbert MK, Chen CH, et al. (2018), Arsenic  
869 targets Pin1 and cooperates with retinoic acid to inhibit cancer-driving pathways and tumor-  
870 initiating cells. *Nat Commun* 9:3069.

871 Kuramata M, Sakakibara F, Kataoka R, Yamazaki K, Baba K, Ishizaka M, Hiradate S, Kamo T, et  
872 al. (2016), Arsinothricin, a novel organoarsenic species produced by a rice rhizosphere bacterium.  
873 *Environmental Chemistry* 13:723-731.

874 Kuroki M, Ariumi Y, Ikeda M, Dansako H, Wakita T, Kato N (2009), Arsenic trioxide inhibits  
875 hepatitis C virus RNA replication through modulation of the glutathione redox system and  
876 oxidative stress. *J Virol* 83:2338-2348.

877 Lalwani N, Chen YS, Brooke G, Cross NA, Allen DW, Reynolds A, Ojeda J, Tizzard GJ, et al.  
878 (2015), Triphenylarsonium-functionalised gold nanoparticles: potential nanocarriers for  
879 intracellular therapeutics. *Chem Commun (Camb)* 51:4109-4111.

880 Li J, Pawitwar SS, Rosen BP (2016), The organoarsenical biocycle and the primordial antibiotic  
881 methylarsenite. *Metallomics* 8:1047-1055.

882 Li J, Yang Y, Peng Y, Austin RJ, van Eydoven WG, Nguyen KC, Gabriele T, McCurrach ME,  
883 et al. (2002), Oncogenic properties of PPM1D located within a breast cancer amplification  
884 epicenter at 17q23. *Nat Genet* 31:133-134.

885 Li YP, Fekih IB, Fru EC, Moraleda-Munoz A, Li X, Rosen BP, Yoshinaga M, Rensing C (2021),  
886 Antimicrobial Activity of Metals and Metalloids. *Annu Rev Microbiol*.

887 Liu J, Lu Y, Wu Q, Goyer RA, Waalkes MP (2008), Mineral arsenicals in traditional medicines:  
888 orpiment, realgar, and arsenolite. *J Pharmacol Exp Ther* 326:363-368.

889 Liu L, Zhang Y, Yun Z, He B, Zhang Q, Hu L, Jiang G (2018), Speciation and bioaccessibility of  
890 arsenic in traditional Chinese medicines and assessment of its potential health risk. *Sci Total  
891 Environ* 619-620:1088-1097.

892 Liu Q, Peng H, Lu X, Zuidhof MJ, Li XF, Le XC (2016), Arsenic Species in Chicken Breast:  
893 Temporal Variations of Metabolites, Elimination Kinetics, and Residual Concentrations. Environ  
894 Health Perspect 124:1174-1181.

895 Liu Z, Sanchez MA, Jiang X, Boles E, Landfear SM, Rosen BP (2006a), Mammalian glucose  
896 permease GLUT1 facilitates transport of arsenic trioxide and methylarsonous acid. Biochem  
897 Biophys Res Commun 351:424-430.

898 Liu Z, Styblo M, Rosen BP (2006b), Methylarsonous acid transport by aquaglyceroporins. Environ  
899 Health Perspect 114:527-531.

900 Lloyd NC, Morgan HW, Nicholson BK, Ronimus RS (2005), The composition of Ehrlich's  
901 salvarsan: resolution of a century-old debate. Angew Chem Int Ed Engl 44:941-944.

902 Lu D, Coote ML, Ho J, Kilah NL, Lin C-Y, Salem G, Weir ML, Willis AC, et al. (2012), Resolution  
903 and Improved Synthesis of ( $\pm$ )-Arsenicin A: A Natural Adamantane-Type Tetraarsenical  
904 Possessing Strong Anti-Acute Promelocytic Leukemia Cell Line Activity. Organometallics  
905 31:1808-1816.

906 Lu D, Rae AD, Salem G, Weir ML, Willis AC, Wild SB (2010), Arsenicin A, A Natural Polyarsenical:  
907 Synthesis and Crystal Structure. Organometallics 29:32-33.

908 Lu Z, Hunter T (2014), Prolyl isomerase Pin1 in cancer. Cell Res 24:1033-1049.

909 Luo ML, Gong C, Chen CH, Hu H, Huang P, Zheng M, Yao Y, Wei S, et al. (2015), The Rab2A  
910 GTPase promotes breast cancer stem cells and tumorigenesis via Erk signaling activation. Cell  
911 Rep 11:111-124.

912 Mancini I, Guella G, Frostin M, Hnawia E, Laurent D, Debitus C, Pietra F (2006), On the first  
913 polyarsenic organic compound from nature: arsenicin A from the New Caledonian marine sponge  
914 *Echinocalina bargibanti*. Chemistry 12:8989-8994.

915 Mancini I, Planchestainer M, Defant A (2017), Synthesis and in-vitro anticancer evaluation of  
916 polyarsenicals related to the marine sponge derived Arsenicin A. Scientific Reports 7:11548.

917 Mann KK, Wallner B, Lossos IS, Miller WH, Jr. (2009), Darinaparsin: a novel organic arsenical  
918 with promising anticancer activity. Expert Opin Investig Drugs 18:1727-1734.

919 Mäser P, Sütterlin C, Kralli A, Kaminsky R (1999), A nucleoside transporter from *Trypanosoma*  
920 *brucei* involved in drug resistance. Science 285:242-244.

921 Matteson AR, Gannon TW, Jeffries MD, Haines S, Lewis DF, Polizzotto ML (2014), Arsenic  
922 Retention in Foliage and Soil after Monosodium Methyl Arsenate (MSMA) Application to  
923 Turfgrass. J Environ Qual 43:379-388.

924 McDougald LR (1979), Efficacy and compatibility of amprolium and carbarsone against  
925 Coccidiosis and blackhead in turkeys. Poult Sci 58:76-80.

926 Meng YL, Liu Z, Rosen BP (2004), As(III) and Sb(III) uptake by GlpF and efflux by ArsB in  
927 *Escherichia coli*. *J Biol Chem* 279:18334-18341.

928 Miller WH, Jr., Schipper HM, Lee JS, Singer J, Waxman S (2002), Mechanisms of action of  
929 arsenic trioxide. *Cancer Res* 62:3893-3903.

930 Miodragović Đ, Merlini A, Swindell EP, Bogachkov A, Ahn RW, Abuhadba S, Ferraro G, Marzo  
931 T, et al. (2019), Arsenoplatin-1 Is a Dual Pharmacophore Anticancer Agent. *J Am Chem Soc*  
932 141:6453-6457.

933 Miodragović Đ U, Quentzel JA, Kurutz JW, Stern CL, Ahn RW, Kandela I, Mazar A, O'Halloran  
934 TV (2013), Robust structure and reactivity of aqueous arsenous acid-platinum(II) anticancer  
935 complexes. *Angew Chem Int Ed Engl* 52:10749-10752.

936 Munday JC, Eze AA, Baker N, Glover L, Clucas C, Aguinaga Andrés D, Natto MJ, Teka IA, et al.  
937 (2014), *Trypanosoma brucei* aquaglyceroporin 2 is a high-affinity transporter for pentamidine and  
938 melaminophenyl arsenic drugs and the main genetic determinant of resistance to these drugs. *J*  
939 *Antimicrob Chemother* 69:651-663.

940 Munday JC, Settimo L, de Koning HP (2015), Transport proteins determine drug sensitivity and  
941 resistance in a protozoan parasite, *Trypanosoma brucei*. *Front Pharmacol* 6:32.

942 Nadar VS, Chen J, Dheeman DS, Galván AE, Yoshinaga-Sakurai K, Kandavelu P, Sankaran B,  
943 Kuramata M, et al. (2019), Arsinothricin, an arsenic-containing non-proteinogenic amino acid  
944 analog of glutamate, is a broad-spectrum antibiotic. *Commun Biol* 2:131.

945 Natrajan R, Lambros MB, Rodríguez-Pinilla SM, Moreno-Bueno G, Tan DS, Marchiò C, Vatcheva  
946 R, Rayter S, et al. (2009), Tiling path genomic profiling of grade 3 invasive ductal breast cancers.  
947 *Clin Cancer Res* 15:2711-2722.

948 Noguera NI, Pelosi E, Angelini DF, Piredda ML, Guerrera G, Piras E, Battistini L, Massai L, et al.  
949 (2017), High-dose ascorbate and arsenic trioxide selectively kill acute myeloid leukemia and acute  
950 promyelocytic leukemia blasts in vitro. *Oncotarget* 8:32550-32565.

951 Ogura M, Kim WS, Uchida T, Uike N, Suehiro Y, Ishizawa K, Nagai H, Nagahama F, et al. (2021),  
952 Phase I studies of darinaparsin in patients with relapsed or refractory peripheral T-cell lymphoma:  
953 a pooled analysis of two phase I studies conducted in Japan and Korea. *Jpn J Clin Oncol* 51:218-  
954 227.

955 Panda A, Hazra J (2012), ARSENICAL COMPOUNDS IN AYURVEDA MEDICINE : A  
956 PROSPECTIVE ANALYSIS. *International journal of research in ayurveda and pharmacy* 3:772-  
957 776.

958 Pandolfi PP (2001), Oncogenes and tumor suppressors in the molecular pathogenesis of acute  
959 promyelocytic leukemia. *Hum Mol Genet* 10:769-775.

960 Pawitwar SS, Nadar VS, Kandegedara A, Stemmler TL, Rosen BP, Yoshinaga M (2017),  
961 Biochemical Characterization of Arsl: A Novel C-As Lyase for Degradation of Environmental  
962 Organoarsenicals. *Environ Sci Technol* 51:11115-11125.

963 Pepin J, Milord F (1991), African trypanosomiasis and drug-induced encephalopathy: risk factors  
964 and pathogenesis. *Trans R Soc Trop Med Hyg* 85:222-224.

965 Peters RA, Stocken LA, Thompson RH (1945), British anti-lewisite (BAL). *Nature* 156:616-619.

966 Preston CM, Nicholl MJ (2008), Induction of cellular stress overcomes the requirement of herpes  
967 simplex virus type 1 for immediate-early protein ICP0 and reactivates expression from quiescent  
968 viral genomes. *J Virol* 82:11775-11783.

969 Puccetti E, Ruthardt M (2004), Acute promyelocytic leukemia: PML/RARalpha and the leukemic  
970 stem cell. *Leukemia* 18:1169-1175.

971 Pyana Pati P, Van Reet N, Mumba Ngoyi D, Ngay Lukusa I, Karhemere Bin Shamamba S,  
972 Büscher P (2014), Melarsoprol sensitivity profile of *Trypanosoma brucei gambiense* isolates from  
973 cured and relapsed sleeping sickness patients from the Democratic Republic of the Congo. *PLoS*  
974 *Negl Trop Dis* 8:e3212.

975 Qin J, Rosen BP, Zhang Y, Wang G, Franke S, Rensing C (2006), Arsenic detoxification and  
976 evolution of trimethylarsine gas by a microbial arsenite S-adenosylmethionine methyltransferase.  
977 *Proc Natl Acad Sci U S A* 103:2075-2080.

978 Radke RA (1955), Ameboma of the intestine: an analysis of the disease as presented in 78  
979 collected and 41 previously unreported cases. *Ann Intern Med* 43:1048-1066.

980 Raz R (2012), Fosfomycin: an old--new antibiotic. *Clin Microbiol Infect* 18:4-7.

981 Riethmiller S (2005), From Atoxyl to Salvarsan: searching for the magic bullet. *Chemotherapy*  
982 51:234-242.

983 Rodgers J, Jones A, Gibaud S, Bradley B, McCabe C, Barrett MP, Gettinby G, Kennedy PG  
984 (2011), Melarsoprol cyclodextrin inclusion complexes as promising oral candidates for the  
985 treatment of human African trypanosomiasis. *PLoS Negl Trop Dis* 5:e1308.

986 Rojewski MT, Baldus C, Knauf W, Thiel E, Schrezenmeier H (2002), Dual effects of arsenic  
987 trioxide (As<sub>2</sub>O<sub>3</sub>) on non-acute promyelocytic leukaemia myeloid cell lines: induction of apoptosis  
988 and inhibition of proliferation. *Br J Haematol* 116:555-563.

989 Rustighi A, Zannini A, Tiberi L, Sommaggio R, Piazza S, Sorrentino G, Nuzzo S, Tuscano A, et  
990 al. (2014), Prolyl-isomerase Pin1 controls normal and cancer stem cells of the breast. *EMBO Mol*  
991 *Med* 6:99-119.

992 Sanders OI, Rensing C, Kuroda M, Mitra B, Rosen BP (1997), Antimonite is accumulated by the  
993 glycerol facilitator GlpF in *Escherichia coli*. *J Bacteriol* 179:3365-3367.

994 Sasaki T, Yokagawa M, Wykoff DE, Ritichie LS (1956), Asymptomatic amebiasis; treatment with  
995 atabrine in combination with carbarsone or chiniofon. U S Armed Forces Med J 7:363-368.

996 Sekhon BS (2013), Metalloid compounds as drugs. Res Pharm Sci 8:145-158.

997 Shao W, Fanelli M, Ferrara FF, Riccioni R, Rosenauer A, Davison K, Lamph WW, Waxman S, et  
998 al. (1998), Arsenic trioxide as an inducer of apoptosis and loss of PML/RAR alpha protein in acute  
999 promyelocytic leukemia cells. J Natl Cancer Inst 90:124-133.

1000 Sharma S, Anand N (1997) Chapter 4 - Organometallics. In: Pharmacochemistry Library, vol. 25  
1001 (Sharma S, Anand N, eds), pp. 124-147. Elsevier.

1002 Shen S, Li XF, Cullen WR, Weinfeld M, Le XC (2013), Arsenic binding to proteins. Chem Rev  
1003 113:7769-7792.

1004 Shi D, Liu Y, Xi R, Zou W, Wu L, Zhang Z, Liu Z, Qu C, et al. (2016), Caveolin-1 contributes to  
1005 realgar nanoparticle therapy in human chronic myelogenous leukemia K562 cells. Int J  
1006 Nanomedicine 11:5823-5835.

1007 Shi K, Li C, Rensing C, Dai X, Fan X, Wang G (2018), Efflux Transporter ArsK Is Responsible for  
1008 Bacterial Resistance to Arsenite, Antimonite, Trivalent Roxarsone, and Methylarsenite. Appl  
1009 Environ Microbiol 84.

1010 Shim MJ, Kim HJ, Yang SJ, Lee IS, Choi HI, Kim T (2002), Arsenic trioxide induces apoptosis in  
1011 chronic myelogenous leukemia K562 cells: possible involvement of p38 MAP kinase. J Biochem  
1012 Mol Biol 35:377-383.

1013 Sides MD, Sosulski ML, Luo F, Lin Z, Flemington EK, Lasky JA (2013), Co-treatment with arsenic  
1014 trioxide and ganciclovir reduces tumor volume in a murine xenograft model of nasopharyngeal  
1015 carcinoma. Virol J 10:152.

1016 Siliciano JD, Siliciano RF (2000), Latency and viral persistence in HIV-1 infection. J Clin Invest  
1017 106:823-825.

1018 Sonkar A, Shukla H, Shukla R, Kalita J, Pandey T, Tripathi T (2017), UDP-N-Acetylglucosamine  
1019 enolpyruvyl transferase (MurA) of *Acinetobacter baumannii* (AbMurA): Structural and functional  
1020 properties. Int J Biol Macromol 97:106-114.

1021 Suzol SH, Hasan Howlader A, Galván AE, Radhakrishnan M, Wnuk SF, Rosen BP, Yoshinaga M  
1022 (2020), Semisynthesis of the Organoarsenical Antibiotic Arsinothricin. J Nat Prod 83:2809-2813.

1023 Tähtinen P, Guella G, Saielli G, Debitus C, Hnawia E, Mancini I (2018), New Sulfur-Containing  
1024 Polyarsenicals from the New Caledonian Sponge *Echinocalina bargibanti*. Mar Drugs 16.

1025 Testa U, Lo-Coco F (2015), Targeting of leukemia-initiating cells in acute promyelocytic leukemia.  
1026 Stem Cell Investig 2:8.

1027 Thomas X, Troncy J (2009), Arsenic: a beneficial therapeutic poison - a historical overview. *Adler*  
1028 *Mus Bull* 35:3-13.

1029 Tian J, Zhao H, Nolley R, Reese SW, Young SR, Li X, Peehl DM, Knox SJ (2012), Darinaparsin:  
1030 solid tumor hypoxic cytotoxin and radiosensitizer. *Clin Cancer Res* 18:3366-3376.

1031 Van Schaftingen E, Opperdoes FR, Hers HG (1987), Effects of various metabolic conditions and  
1032 of the trivalent arsenical melarsen oxide on the intracellular levels of fructose 2,6-bisphosphate  
1033 and of glycolytic intermediates in *Trypanosoma brucei*. *Eur J Biochem* 166:653-661.

1034 Verma A, Mohindru M, Deb DK, Sassano A, Kambhampati S, Ravandi F, Minucci S, Kalvakolanu  
1035 DV, et al. (2002), Activation of Rac1 and the p38 mitogen-activated protein kinase pathway in  
1036 response to arsenic trioxide. *J Biol Chem* 277:44988-44995.

1037 Vollmer W, Blanot D, de Pedro MA (2008), Peptidoglycan structure and architecture. *FEMS*  
1038 *Microbiol Rev* 32:149-167.

1039 Waksman SA (1947), What is an antibiotic or an antibiotic substance? *Mycologia* 39:565-569.

1040 Wang P, Qu X, Wang X, Liu L, Zhu X, Zeng H, Zhu H (2013), As<sub>2</sub>O<sub>3</sub> synergistically reactivate  
1041 latent HIV-1 by induction of NF-κB. *Antiviral Res* 100:688-697.

1042 Wang W, Li C, Zhang Z, Zhang Y (2019), Arsenic Trioxide in Synergy with Vitamin D Rescues  
1043 the Defective VDR-PPAR-γ Functional Module of Autophagy in Rheumatoid Arthritis. *PPAR Res*  
1044 2019:6403504.

1045 Wang X, Li D, Ghali L, Xia R, Munoz LP, Garelick H, Bell C, Wen X (2016), Therapeutic Potential  
1046 of Delivering Arsenic Trioxide into HPV-Infected Cervical Cancer Cells Using Liposomal  
1047 Nanotechnology. *Nanoscale Res Lett* 11:94.

1048 Waxman S, Anderson KC (2001), History of the development of arsenic derivatives in cancer  
1049 therapy. *Oncologist* 6 Suppl 2:3-10.

1050 Worden AN, Wood EC (1973), The effect of Carbarsone (33.6 per cent w-v p-ureidobenzene  
1051 arsonic acid) on bodyweight gain, food conversion and tissue arsenic levels of turkey pouls. *J*  
1052 *Sci Food Agric* 24:35-41.

1053 Wu J, Shao Y, Liu J, Chen G, Ho PC (2011), The medicinal use of realgar (As<sub>4</sub>S<sub>4</sub>) and its recent  
1054 development as an anticancer agent. *J Ethnopharmacol* 135:595-602.

1055 Wulf G, Garg P, Liou YC, Iglesias D, Lu KP (2004), Modeling breast cancer in vivo and ex vivo  
1056 reveals an essential role of Pin1 in tumorigenesis. *Embo J* 23:3397-3407.

1057 Yan Y, Chen J, Galván AE, Garbinski LD, Zhu YG, Rosen BP, Yoshinaga M (2019), Reduction of  
1058 Organoarsenical Herbicides and Antimicrobial Growth Promoters by the Legume Symbiont  
1059 *Sinorhizobium meliloti*. *Environ Sci Technol* 53:13648-13656.

1060 Yang FR, Zhao YF, Hu XW, Liu ZK, Yu XD, Li CY, Li XR, Li HJ (2021), Nano-realgar suppresses  
1061 lung cancer stem cell growth by repressing metabolic reprogramming. *Gene* 788:145666.

1062 Yang Q, Feng F, Li P, Pan E, Wu C, He Y, Zhang F, Zhao J, et al. (2019), Arsenic Trioxide Impacts  
1063 Viral Latency and Delays Viral Rebound after Termination of ART in Chronically SIV-Infected  
1064 Macaques. *Adv Sci (Weinh)* 6:1900319.

1065 Yin Q, Sides M, Parsons CH, Flemington EK, Lasky JA (2017), Arsenic trioxide inhibits EBV  
1066 reactivation and promotes cell death in EBV-positive lymphoma cells. *Virol J* 14:121.

1067 Yoda A, Toyoshima K, Watanabe Y, Onishi N, Hazaka Y, Tsukuda Y, Tsukada J, Kondo T, et al.  
1068 (2008), Arsenic trioxide augments Chk2/p53-mediated apoptosis by inhibiting oncogenic Wip1  
1069 phosphatase. *J Biol Chem* 283:18969-18979.

1070 Yoshinaga M, Cai Y, Rosen BP (2011), Demethylation of methylarsonic acid by a microbial  
1071 community. *Environ Microbiol* 13:1205-1215.

1072 Yoshinaga M, Rosen BP (2014), A C-As lyase for degradation of environmental organoarsenical  
1073 herbicides and animal husbandry growth promoters. *Proc Natl Acad Sci U S A* 111:7701-7706.

1074 Zebboudj A, Maroui MA, Dutrieux J, Touil-Boukoffa C, Bourouba M, Chelbi-Alix MK, Nisole S  
1075 (2014), Sodium arsenite induces apoptosis and Epstein-Barr virus reactivation in lymphoblastoid  
1076 cells. *Biochimie* 107 Pt B:247-256.

1077 Zhang XW, Yan XJ, Zhou ZR, Yang FF, Wu ZY, Sun HB, Liang WX, Song AX, et al. (2010),  
1078 Arsenic trioxide controls the fate of the PML-RARalpha oncprotein by directly binding PML.  
1079 *Science* 328:240-243.

1080 Zhao QH, Zhang Y, Liu Y, Wang HL, Shen YY, Yang WJ, Wen LP (2010), Anticancer effect of  
1081 realgar nanoparticles on mouse melanoma skin cancer in vivo via transdermal drug delivery. *Med*  
1082 *Oncol* 27:203-212.

1083 Zhou XZ, Lu KP (2016), The isomerase PIN1 controls numerous cancer-driving pathways and is  
1084 a unique drug target. *Nat Rev Cancer* 16:463-478.

1085 Zhu J, Chen Z, Lallemand-Breitenbach V, de Thé H (2002), How acute promyelocytic leukaemia  
1086 revived arsenic. *Nat Rev Cancer* 2:705-713.