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Area Coverage With Multiple
Capacity-Constrained Robots

Saurav Agarwal

Abstract—The area coverage problem is the task of efficiently
servicing a given two-dimensional surface using sensors mounted
on robots such as unmanned aerial vehicles (UAVs) and unmanned
ground vehicles (UGVs). We present a novel formulation for gen-
erating coverage routes for multiple capacity-constrained robots,
where capacity can be specified in terms of battery life or flight time.
Traversing the environment incurs demands on the robot resources,
which have capacity limits. The central aspect of our approach
is transforming the area coverage problem into a line coverage
problem (i.e., coverage of linear features), and then generating
routes that minimize the total cost of travel while respecting the
capacity constraints. We define two modes of travel: (1) servicing
and (2) deadheading, which correspond to whether a robot is
performing task-specific actions or not. Our formulation allows
separate and asymmetric travel costs and demands for the two
modes. Furthermore, the cells computed from cell decomposition,
aimed at minimizing the number of turns, are not required to be
monotone polygons. We develop new procedures for cell decomposi-
tion and generation of service tracks that can handle non-monotone
polygons with or without holes. We establish the efficacy of our
algorithm on a ground robot dataset with 25 indoor environments
and an aerial robot dataset with 300 outdoor environments. The
algorithm generates solutions whose costs are 10% lower on av-
erage than state-of-the-art methods. We additionally demonstrate
our algorithm in experiments with UAVs.

Index Terms—Path planning for multiple mobile robots or
agents, aerial systems: applications, computational geometry, area
coverage, line coverage.

I. INTRODUCTION

HIS paper addresses the area coverage problem—the task
T of efficiently servicing a given planar surface. There are
several applications of the area coverage problem; these include
mapping and inspection of large regions using a team of aerial
robots (i.e., UAVs), and vacuuming, lawn mowing and harvest-
ing with ground robots (i.e., UGVs). The area coverage prob-
lem also applies to CNC-based machining operations [1]. The
problem is widely studied in the robotics literature (see recent
surveys [2], [3]). However, relatively few approaches for the
area coverage problem consider multiple robots. Furthermore,
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Fig. 1. Area coverage of an environment with a team of capacity-constrained
robots. The grey regions represent obstacles in the environment. The black square
(near the center) represents the depot location—the robots start and end their
routes at the depot. The solution consists of two routes, shown in dark blue and
light red. The solid lines represent the service tracks. The dashed lines represent
deadheading travel—the robots can turn off the sensors and travel at faster speeds
along these line segments.

practical constraints such as limited battery capacity and the
effect of wind or uneven terrain are usually not considered. The
paper presents a method for area coverage that addresses these
challenges. Even when these constraints are not modeled, the
algorithms in this paper, in comparison to recent work, generate
higher quality solutions.

We consider two modes of travel for a robot. A robot is said
to be servicing when it performs task-specific actions, such as
taking images or vacuuming using its sensors or tools. A robot
may travel from one location to another at faster speeds without
performing task-specific actions—referred to as deadheading—
to optimize the mission time, conserve energy, or reduce the
amount of sensor data for analysis. The robots usually have
a finite amount of resources, such as battery charge, which
can be specified in terms of energy or a time limit, referred
to hereafter as capacity. The robots must return to their home
location before the resource consumed exceeds the capacity. The
goal is to find efficient routes for a team of robots such that
the entire environment is serviced while respecting the capacity
constraints. Fig. 1 shows an example environment and routes
generated for capacity-constrained robots.

Our formulation for solving the area coverage problem con-
sists primarily of three components: 1) Cell decomposition of
the environment, 2) Service track generation for individual cells,
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and 3) Routing to traverse the service tracks. The central aspect
is to transform the area coverage problem into a line coverage
problem—the coverage of linear features in an environment [4].
The service tracks form the linear features that the robots must
service, and an efficient algorithm for the line coverage problem
is used to generate routes for the team of robots. This allows us
to model the cost of travel (e.g., time), the demands on resources
(e.g., battery), and asymmetric costs and demands for travel
due to wind or uneven terrain. Our formulation facilitates a
significant generalization of the cell decomposition component
to reduce the number of turns that the robots must take. In
particular, the cells are no longer required to be monotone
polygons [5] with respect to the service direction. This gen-
eralization enables additional service directions for the cells to
minimize the number of turns. Furthermore, allowing cells to
be non-monotone polygons with holes enables the additional
merging of adjacent cells with the same service directions.
Merging adjacent cells reduces the number of service tracks by
avoiding overlapping sensor coverage regions at the common
boundary of a pair of adjacent cells. Additionally, we observe
that a simple back-and-forth (i.e., boustrophedon) pattern does
not always guarantee complete coverage. We mitigate this issue
in the new service track generation algorithm.

The contributions of the paper are:

1) A cell decomposition algorithm that allows non-monotone
polygons and optimizes the number of turns that the robots
need to take.

2) A new service track generation algorithm capable of
handling non-monotone polygons with obstacles. The al-
gorithm improves coverage of the environment over the
traditional boustrophedon pattern.

3) A new formulation to transform an instance of the area
coverage problem into that of the line coverage problem.

4) We minimize the total cost of coverage routes for multiple
robots while respecting their capacity constraints.

5) An open-source implementation' of our algorithms.

This is the first method for cell decomposition and service
track generation that minimizes the number of turns while
allowing non-monotone polygons with holes. Furthermore, this
is the first approach for the area coverage problem that allows
two modes of travel, capacity constraints, and asymmetric travel
costs and demands.

II. RELATED WORK

Area coverage has a large body of work that has been covered
extensively in recent survey papers [2], [3]. The area coverage
problem is related to the lawn mowing problem, which was
shown to be NP-hard [1]. Consequently, several approximation
and heuristic algorithms have been proposed. The approaches
for area coverage problems can be broadly classified into ap-
proximate and exact methods.

Grid-based approaches, which fall under approximate meth-
ods, were some of the earliest techniques for solving the area

'Source code available at:
https://github.com/UNCCharlotte-CS-Robotics/ AreaCoverage-library.
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coverage problem [6]. These methods typically discretize the
environment into small cells based on a given resolution. Thus,
the quality of the results depends on the resolution [7]. More-
over, the computational complexity increases rapidly with en-
vironment size. Vandermeulen et al. [8] address coverage with
multiple robots using turn minimization as the objective for cell
decomposition. The environment is contracted into a rectilinear
polygon with integer side lengths. This new polygon is then
decomposed into rectangles of unit width (called ranks) such
that the sum of altitudes is minimized. An m-TSP algorithm
is used to find paths for the robots. While the algorithm works
well for rectilinear environments, it is not designed for complex
non-rectilinear environments.

There has been recent interest in learning-based strategies.
However, they are not yet generalizable to large complex envi-
ronments. Usually, very small grid sizes are used to benchmark
the results—a 16x 16 grid was used in [9] and a 7x7 grid in [10].
Retraining of the neural network was required for each environ-
ment in [10]. Moreover, these do not consider multiple robots.
In contrast to the above grid-based approaches, our formulation
can handle environments with non-rectilinear boundaries and
obstacles. We also allow capacity constraints, asymmetric costs
and demands, and two different modes of travel.

In this paper, we focus our attention on exact methods. These
methods typically use computational geometry and graph theory.
A common approach is to decompose the environment into cells,
known as cell decomposition. Choset [11] presented the widely
used boustrophedon cell decomposition (BCD), an efficient way
to decompose a given environment with obstacles. The key idea
is to generate monotone polygons [5] with respect to a given
service direction using a sweep-line based algorithm.

In most mobile robotics applications, it is desirable to have
long paths with as few turns as possible. Turns can be very
expensive both in terms of time and battery consumption, as
the robot may need to slow down, take a turn, and then accel-
erate again. Huang [12] presented a minimum sum of altitudes
(MSA) formulation. The MSA corresponds to the number of
turns required for a robot to service the environment. For both
convex and non-convex polygons, the service track orientation
that minimizes the number of turns is parallel to one of the
polygon edges. A dynamic programming algorithm with an
exponential running time was presented to compute an optimal
decomposition. In contrast, the BCD is computationally very
efficient but does not consider the number of turns. Hence,
several heuristic algorithms have been developed that trade off
optimizing the number of turns and computational efficiency.

A trapezoidal decomposition was used in [13] to obtain an ini-
tial set of cells that are then merged to reduce the number of cells.
Service directions are determined by using a bisection search.
A sweep-line based algorithm, similar to BCD, was presented
in [14] to obtain an initial decomposition of the environment.
A service direction is determined independently for each cell.
Adjacent cells that have the same service direction are merged
if they remain monotone even after merging. In [15], an initial
decomposition of the environment is obtained by extending
interior edges of concave vertices. An integer programming
formulation and a heuristic algorithm are proposed to obtain
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solutions efficiently. An approach based on vehicle routing
problems is used to route multiple robots. All these techniques
require a set of monotone polygons. In contrast, our approach
removes this requirement, enabling us to improve the cell de-
composition procedure.

In [16] and [17], a Reeb graph is generated from the BCD,
where the cells are represented by edges and the connectivity
of cells is represented using vertices. An algorithm for the
Chinese postman problem (CPP) finds a tour on the Reeb graph,
which provides a sequence of cells to be visited by the robot. A
single service direction is assumed for the entire environment,
determined by simple heuristics such as longest edge or wind
direction. This work was extended in [18] to multiple robots
using clustering and the k-CPP algorithm for routing. These
methods do not consider the minimization of the number of
turns. Furthermore, each cell is treated as a unit. Assuming a
fixed path for individual cells or treating each cell as a unit can
be very restrictive, especially for capacity-constrained robots.
The robots might not be able to cover multiple cells or even a
single large cell, resulting in a large number of inefficient routes.

Algorithms for the generalized traveling salesperson problem
(GTSP) are often used for computing routes. In [19], the BCD
is used to obtain a set of cells with the same service direction. A
GTSP instance is generated with two vertices for each service
track for the two travel directions, forming a cluster. A GTSP
algorithm generates a tour such that a single vertex is traversed
from each cluster. In [20], the cell decomposition starts with any
convex decomposition of the polygon and is improved by adding
cuts atreflex vertices. Finally, the GTSP is used to generate a tour
on an auxiliary graph, similar to [19]. In a recent paper [21], the
BCD is computed for each edge direction, and cells are assigned
independent service directions. The BCD that has the least MSA
is selected. For each cell and edge direction, four patterns for
servicing are provided based on where the robot starts and ends.
Each pattern forms a vertex in the GTSP instance graph, and
vertices corresponding to the same cell are grouped in a cluster. A
visibility graph is used to form edges between vertices. A GTSP
tour then traverses a vertex, representing a pattern, from each
cluster. In GTSP [19], [20] and m-TSP [8] based approaches, the
cells are usually not treated as a unit (except for [21]) and thus,
are more efficient. These procedures do not consider capacity
constraints and are designed for a single robot. Algorithms for
vehicle routing problems (VRP) [22] allow capacity constraints
and multiple robots. Although the costs of the edges in both
VRP and GTSP graphs can be asymmetric, the service tracks
are represented as nodes, which do not have costs or demands.
Thus the nodes cannot model asymmetric costs and demands of
the service tracks. Our approach uses the line coverage problem
to closely model the area coverage problem, with the edges in
the graph representing the service tracks. This enables modeling
of capacity constraints, asymmetric costs and demands, and two
modes of travel.

III. THE AREA COVERAGE PROBLEM

Given a region R C R?, the area coverage problem is to find
a set of routes for a team of robots such that the total cost of the
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routes is minimized, and all the points in the region are serviced
by the robots. Limited battery life is one of the most critical
restrictions on mobile robots, especially for aerial robots. Thus,
in our formulation, we incorporate an additional constraint that
the total demand on resources for each route should not exceed
a given capacity for the robots. The capacity can be specified in
terms of energy, time limit, or travel length. We have two modes
of travel for the robots: (1) servicing and (2) deadheading. A
robot is said to be servicing if it performs task-specific actions,
such as taking images, as it traverses a path. A robot may travel
from one location to another while not performing servicing
tasks, such as returning to the home/depot location. Such travel is
known as deadheading. Functions for service and deadhead costs
and demands are given as input to the problem. Our formulation
can handle separate and asymmetric costs and demands.

We model the environment with a set of polygons. The
environment may have obstacles or sub-regions that are not
required to be serviced. These sub-regions are referred to as
holes. Depending on the application, the robots may be permitted
to travel across the holes, e.g., an aerial robot flying at a high
altitude may optimize its path by flying over a hole representing
a building. We treat the robots as point robots, unless otherwise
specified. For finite-sized robots, we compute the free workspace
using techniques for computing configuration space, such as the
Minkowski sum [5].

We now describe our approach to solve the area coverage
problem with multiple capacity-constrained robots. We break
the problem into three components: (1) Cell decomposition,
(2) Service track generation, and (3) Routing.

A. Cell Decomposition

The primary motivation for the cell decomposition component
is to minimize the number of turns that the robots need to take.
This is done by decomposing the environment into smaller poly-
gons, referred to as cells, and computing a service direction that
minimizes the number of turns for each cell independently. Such
an optimal direction is related to the minimum sum of altitudes
(MSA) of a polygon and is parallel to one of the edges of the
boundary or hole of the cell [ 12]. The service tracks are generated
parallel to the corresponding service direction for a cell. Our cell
decomposition method is a culmination of experimentation with
various existing methods. However, we deviate significantly in
one crucial aspect—we allow the cells to be non-monotone with
respect to the direction perpendicular to the service direction,
i.e., the intersection of a cell (its interior) and a line parallel
to the service direction need not be a connected line segment.
Allowing non-monotone cells increases the feasible solution
space, enabling cell decompositions that can potentially reduce
the number of turns.

Our cell decomposition method is composed of three steps
(1) initial decomposition, (2) greedy improvement, and (2) cell
merging.

Initial Decomposition: We use an approach similar to [21] for
the initial decomposition.

1) Obtain a set of directions corresponding to the edges of

the environment, i.e., edges of the outer boundary and the
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(a) Initial cell decomposition

Fig. 2.

(b) Final cell decomposition

(c) Service tracks

An environment with four obstacles. The double head arrows indicate the service directions. (a) In the initial decomposition with ten cells, the cell ¢

has an optimal service direction for which it is not monotone. (b) The final decomposition, with eight cells, is obtained after the greedy improvement and then
merging adjacent cells with the same service direction. The cells in the final decomposition are also not necessarily monotone polygons. (c) The service tracks are
generated for each cell independently, and overlapping segments are removed. Service tracks include those belonging to the two scenarios described in Fig. 3, e.g.,
the vertical purple and green tracks on the left edge of cell ¢! and some of the edges of the star-shaped obstacle.

holes. Parallel directions are ignored. Let )V denote the set

of all such directions.

2) For each direction v € V:

a) Perform BCD with a line parallel to v and sweeping
perpendicular to itself. Let C denote the set of cells
obtained from the BCD.

b) For each cell ¢ € C: Compute the MSA a. and the
corresponding service direction u., even if the cell ¢ is
non-monotone with respect to the direction perpendic-
ular to u..

¢) Compute the total MSA for the direction v: o, =
ZCEC Q.

3) Select the decomposition that gives the minimum sum of

altitudes, i.e., & = min,ey Q.

Fig. 2(a) shows an initial decomposition consisting of ten cells
for an environment with four obstacles. The double arrows indi-
cate the optimal service direction. Note that the right cell marked
¢ is non-monotone with respect to the direction perpendicular to
the optimal service direction. Such directions would have been
eliminated in [21].

The running time for this step is O(n? log n), where n is the
number of vertices in the environment, and it dictates the overall
complexity for cell decomposition.

Greedy Improvement: Improvements to the decomposition
have been shown by further decomposition of the cells by
splitting them along edges corresponding to a non-convex vertex
of a polygon [12], [15], [20]. Thus, we apply a greedy strategy
to split the cells in the initial decomposition further. We identify
the non-convex vertices for a cell and compute a set of splitting
lines L,. There are two types of splitting lines: (1) The set of
lines corresponding to an edge adjacent to a non-convex vertex,
and (2) The set of lines parallel to an edge of the cell and passing
through a non-convex vertex such that both its adjacent edges
lie on the same side of the line. We ensure that the splitting
lines are neither parallel nor anti-parallel to each other. For each
line [ € L, we split the cell polygon to obtain a new set of
polygons C;. Now obtain the total MSA for C;. If this total MSA
is less than the MSA for the original cell, then the line [ is a
valid candidate for splitting. Of all the splitting lines [ € L,
we greedily select the one that gives the least total MSA after

splitting. The new polygons are then recursively improved using
the same procedure. The cell marked ¢ in Fig. 2(a) has been
split further by a vertical line of Type 2 to create three new cells,
shown in Fig. 2(b). Note that the splitting line does not lie within
the cone of bisection described in [20]. As the objective is to
reduce the number of turns, the greedy improvement may split
a non-monotone cell into monotone cells if doing so reduces
the number of turns. We used a greedy approach instead of a
dynamic programming approach to reduce computation costs.

Cell Merging: Adjacent cells that have the same (or similar)
service directions can be merged to reduce the total number of
cells [13], [14]. Merging adjacent cells reduces the overlapping
regions of sensor coverage. This decreases the number of service
tracks and the number of turns. We allow the merging of adjacent
cells even when the resulting cell is non-monotone and contains
holes; this significantly reduces the number of cells. Fig. 2(b)
shows the final decomposition with eight cells. The total length
of the service tracks for the initial decomposition is 2146 m.
The greedy improvement reduces it to 2103 m, and cell merging
reduces it further to 2003 m, an improvement of 6.7% over
the initial decomposition. The most significant reduction comes
from merging the cells around the star-shaped obstacle into a
non-monotone cell with a hole.

B. Service Track Generation

The next step is to generate the service tracks for each cell.
Since the cells are not required to be monotone polygons with
respect to the service direction, we develop a new algorithm to
generate the service tracks. Existing approaches usually generate
a path, in the form of a boustrophedon or lawn mower pattern,
within each cell that a robot must follow. We identify two
scenarios wherein a boustrophedon pattern does not guarantee
complete coverage, as shown in Fig. 3. Assuming a square sensor
field-of-view, these can happen (1) when an edge is oriented at
a very small angle with the service direction, and (2) when an
edge is inclined at an angle smaller than 7/4 with the service
direction and intersects the service tracks. These scenarios can
be extended to other types of sensor field-of-view as well. The
second scenario was discussed for disc-shaped sensors in [8].
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Fig.3. Two scenarios, identified by the red arrows, for which a boustrophedon
pattern does not always guarantee a complete coverage even when the polygon
is monotone with respect to the service direction (horizontal here). The blue
shaded region represents coverage of the environment with a square sensor
field-of-view.

We now discuss a new algorithm, based on the sweep-line
algorithm [5], for generating the service tracks for a cell obtained
from the cell decomposition step. The algorithm can handle
non-monotone cells with holes and resolves the issues shown
in Fig. 3. Without loss of generality, we assume the service
direction is parallel to the X -axis. The sweep line is parallel to
the service direction and sweeps vertically from the lowest to the
highest vertex while keeping track of the edges it encounters. The
vertices of the edges correspond to the events in the sweep-line
algorithm. We assume a square sensor field-of-view for clarity.

Initialization:

* Represent a cell vertex u by its coordinates (ug, u,), and
represent each cell edge by a pair of vertices (u,v) such
that u, < vy, i.e., the lower vertex appears first.

* Let & be a list of all the edges in the cell. Sort the edges in
& in ascending order by u,, the y-coordinate of the lower
vertex u, for faster computation in Step (2).

* Let & represent the set of current edges used for generating
service tracks parallel to the service direction.

o Let & represent the set of special edges of the cell that
correspond to scenario 1 shown in Fig. 3.

» Let S represent the set of service tracks.

o Initially, the sets &, &, and S are all empty.

* Let the sweep line L be the line parallel to the service
direction (X-axis) and passing through the lowest vertex
u' = (ul,,ul,) of the first edge in the sorted list £.

¢ Set the offset 0o = uﬁl + f/2, where f is the lateral sensor
field-of-view. '

Iteration: while the edge list £ is not empty

1) Offset the line L to be at a distance o from the X -axis.

2) For each edge e € £ with u,, < o, remove e from &:

e ifv, <o,addeto&,,

* else, add e to the set of current edges &.. If the edge subtends
an angle smaller than 7 /4, add e to the list of service tracks
S as well (scenario 2).

3) Compute the intersections of the line L with the edges
in &.. Sort these intersection points in ascending order of the
x-coordinate. Generate service tracks using the intersection
points such that the tracks do not overlap with the interior of
the obstacles. Add the service tracks to the set S.

4)Foreachedge e € &, checkif e lies within the field-of-view
of any of the service tracks generated in the current and the
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previous iterations. If not, add e to the set of service tracks S.
Remove all edges from &;.

5) Offset the sweep line by f and leto =0+ f.

The set S gives the set of service tracks for a cell. We compute
the service tracks for each cell in the decomposition. Finally,
overlapping components of any pair of service tracks for the
entire environment are iteratively removed. Fig. 2(c) shows
the generated service tracks. The running time complexity is
O(n.MSA.), where n. and MSA,. are the number of vertices
and the MSA for a cell ¢, respectively.

C. Routing

Once the service tracks are computed, the problem can be
transformed into the line coverage problem—the coverage of
linear features. Here the service tracks correspond to the linear
features in the environment. We have recently addressed the
line coverage problem and presented an efficient algorithm for
multiple capacitated robots [4]. We use a graph as the underlying
data structure for the transformation.

Vertices V': The set of vertices V' consists of:

e the endpoints of the service tracks;

e the vertices of the environment polygons;

e the depot: A special vertex in the graph from where the
routes start and end. For aerial robots, it corresponds to the
home location for take off and landing.

Required Edges E,.: A required edge is an edge that needs to
be serviced exactly once, and therefore the set of required edges
E,. is precisely the set of service tracks. There is a cost and a
demand associated with each of the required edges. Furthermore,
the edges are considered to have asymmetric costs and demands.
Techniques from [23]-[25] can be used to obtain demands on
battery life. Demands can also be specified in terms of time.
Our algorithm can handle arbitrary non-negative input values
for costs and demands.

Non-required Edges F,,: We add anon-required edge between
each pair of vertices u, v € V such that the line segment (u, v)
does not pass through any of the obstacles and remains within
the interior of the outer boundary. We compute a visibility graph
to determine if a pair of vertices forms a valid edge for travel.
In applications where the robots may travel across the holes,
such as aerial robots flying at high altitudes, we do not need to
check if the line segment crosses the holes. We may still need to
compute the visibility graph as the outer boundary may be non-
convex. The robots are not required to traverse the non-required
edges. They may, however, use these edges to travel quickly from
one vertex to another. A robot is said to be deadheading when
traveling along a non-required edge. There is a cost and demand
associated with deadheading also. As task-specific actions such
as taking images need not be performed, the robots may travel
faster than when servicing. Thus, the deadheading costs and
demands can differ from those for servicing. Energy-efficient
operating speeds for servicing and deadheading can be obtained
through experiments [24]; these show that as the speed increases,
the power consumption first decreases and then increases rapidly
as the speed approaches the upper limit.
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Capacity Q: A fixed capacity such as battery life or maximum
flight time is specified for the robots. The total demand on the re-
sources accumulated from traversing required and non-required
edges along each route should not exceed the capacity (. This
constraint is critical for safe operations, particularly for UAVs,
as the battery life can be very limited.

Let G = (V, E, E,) be the graph created from the area cover-
age problem, where £ = E,. U E,, is the set of all the edges. The
line coverage problem is then to find a set of routes such that the
total cost of travel is minimized and each of the required edges
is serviced, while ensuring that the total demand for each route
is less than the capacity of the robots [4]. We use the Merge-
Embed-Merge (MEM) algorithm [4] to solve the line coverage
problem as it is fast and efficient for robotics applications.

The MEM algorithm is composed of four elements: (1) ini-
tialization of routes, (2) computation of savings, (3) merging
of two routes to form a new route, and (4) embedding the new
merged route. A route is initialized for each of the required
edges (i.e., service tracks) by deadheading from the depot to
one of the vertices of the edge, servicing the required edge,
and then deadheading back to the depot via the other vertex.
Since the costs are asymmetric, the service direction that gives
a lower route cost is selected. Two routes can be merged to form
anew route with potentially lower cost than the sum of the costs
of the two routes. The difference in the costs by performing
such a merge is called savings. There are eight possible ways of
merging two routes, and only the ones that satisfy the capacity
constraint are considered. For each pair of initial routes, the
optimal savings that respects the capacity constraint is inserted
into a max-heap data structure. The routes with the maximum
savings are extracted from the max-heap and are merged to form
anew route. The new route is inserted into the set of routes, and
the individual routes are set to invalid. This new route is then
embedded into the max-heap by computing savings with the
other valid routes. The merging and the embedding operations
are performed iteratively until no further valid merge is possible.
Since the capacity constraints are checked before creating a new
route, the algorithm always maintains a set of feasible routes.
The running time of the algorithm is O(m? log m), where m is
the number of required edges (i.e., service tracks).

Using the line coverage problem, instead of a node routing
problem such as the GTSP or the vehicle routing problem [22],
allows direct modeling of the service tracks as graph edges. More
importantly, asymmetric costs and demands for the edges can be
modeled in the line coverage problem, along with the capacity
constraints. The MEM algorithm for the line coverage problem
rapidly computes routes of high quality.

The service track generation and the routing components are
independent modules. The modular nature of these components
allows making independent improvements. Tracks can be gen-
erated by other decomposition methods, and a line coverage
algorithm can be used for routing.

IV. SIMULATIONS AND EXPERIMENTS
The algorithms for the area coverage problem are
implemented in C++. We use the computational geometry algo-
rithms library (CGAL) [26] for precise numerical computations
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Fig. 4. Coverage of a large indoor environment with 107 m? area and 151
vertices, given in [8]. The left figure shows our solution for two robots with a
tool width of 0.1 m and a capacity of 700 m, with tour costs 616 m and 620 m.
The right figure shows our solution for four robots with a capacity of 320 m,
with tour costs 312 m, 313 m, 318 m, and 300 m.
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Fig. 5. Comparison of total travel time cost of routes computed by our
algorithm and the GTSP based algorithm [21]. The instances are arranged in
increasing order of the number of vertices in the environments. We compute the
results for two cases: (1) Single robot with infinite capacity (red crosses), and
(2) Multiple robots with a capacity of 1200 s (blue pluses). The sum of costs for
a single robot over all 300 instances is 577,218 s for [21] and 512,619 s for our
method. Our algorithm consistently performs better than [21], with an average
cost reduction of 10%.

and geometry functionalities. The program is executed on a
desktop with an Intel 7thGen Core 19-7980XE processor.

A. Dataset With 25 Indoor Environments

Simulation results on a dataset’> with 25 large indoor en-
vironments for vacuuming robots were presented in [8]. The
environments are primarily rectilinear in structure. The robots
have a tool width of 0.1 m. We use the path length for both
the cost and demand functions for direct comparison with [8].
We compute the free workspace by taking a Minkowski sum of
the obstacle polygons with the square robot geometry [5]. The
robots must graze the boundaries to vacuum thoroughly. Thus,
the entire boundary of the free workspace is added to the set of
service tracks. Thereafter, we run the three components of our
algorithm to obtain the coverage routes for the robots.

The cumulative lengths and number of turns for the 25 en-
vironments are presented in Table 1. Fig. 4 shows our solution
with 2 and 4 robots for the largest environment.

2The datasets and our detailed results are available at:
https://github.com/UNCCharlotte-CS-Robotics/ AreaCoverage-dataset.
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Fig. 6. Average computation times for the 300 outdoor environment dataset

from [21]; the route costs are shown in Fig. 5. Each environment is placed in
bins of size 5 according to the number of vertices in the environment. The time
is averaged over 100 runs for all the environments in a bin. The bars indicate
the standard deviation of the computation time. The computation time increases
with the number of vertices in the environment. The cell decomposition is the
most time-consuming step of the algorithm, while the MEM routing algorithm
is very fast.

TABLE I
CUMULATIVE RESULTS FOR THE 25 INDOOR ENVIRONMENTS DATASET

r Capacity [8] This Paper Improvement (%)
1 (m) n ! (m) n ! n

1 oo 15,195 11,377 14,781 10,183 2.72 10.49

2 0.75 15303 11,380 14,793 10,191 3.33 10.45

3 0.50 15461 11,533 14,823 10,211 4.13 11.46

4 030 15,564 11,586 14,939 10,274 4.02 11.32

5 0.25 15,715 11,663 15,030 10,308 4.36 11.62

The first column 7 indicates the number of robots. The length and the number of turns
are denoted by I and 7, respectively. The capacity is set as a fraction of the route cost
for a single robot. The average computation time is 0.42 s, over all 25 environments and
over 100 runs. The computation time does not vary much with the number of robots.

B. Dataset With 300 Outdoor Environments

To benchmark our results for outdoor coverage with aerial
robots, we use the dataset (provided with the source code)
from [21] consisting of 300 unique environments with 1 to 15
holes derived from buildings. The outer boundary has an area of
10,000 m?2, and an aerial robot with a 3 m sided square sensor
field-of-view is used. The trajectories of the robots are defined
by a velocity ramp model with a maximum acceleration @ax
and velocity vpax of 1 m/s? and 3 m/s, respectively. The travel
time ¢ is used as the cost and demand functions and is given in
terms of segment length d as:

4d : 2
ifd <d v
t = Gmax’ . ' “ , where d, = 22
LUmax. if d > da (max
Amax Umax ’

‘We ran the simulations for two scenarios: (1) infinite capacity,
representing coverage with a single robot, and (2) capacity of the
robots set to 20 minutes (1200 s). The comparison of the total
cost of the routes is shown in Fig. 5. Our algorithm generates
lower cost solutions than that of [21] for both single and multiple
robots and for all the instances, with an average improvement
of 10% and a standard deviation of 4%. The total cost for the
multiple robot solutions is the sum of the costs of the individual
routes, and the solutions are better than [21], even though a
limited battery capacity reduces the feasible space considerably.
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The computation time is shown in Fig. 6, and is similar for
both single and multiple robots; the only difference is in the
running time of the MEM algorithm, which converges faster as
the capacity decreases.

C. Outdoor Experiment With Aerial Robots

We selected a 19,000 m? area in the UNC Charlotte campus,
shown in Fig. 7, for coverage with UAVs. An appropriate launch
site was assigned as a depot. A subregion corresponding to the
footprint of a building was selected as a hole, consisting of 45
vertices, in the environment. As aerial robots can fly at high
altitudes, we allow non-required edges that cross the hole. The
servicing and deadheading speeds were set to 3.33 m/s and 5 m/s,
respectively. A wind of 1.39 m/s at an angle of 225 degrees (from
NE), for the day of the experiment, was incorporated into the
cost and demand functions, making the edges asymmetric in the
two directions of travel. The costs and the demands are based
on the edge travel times. A conservative capacity of 600 s was
set, and two routes, computed in 2.4 s, were obtained. A DJI
Phantom 4 drone was used to autonomously fly the two routes
sequentially. The routes and the orthomosaic obtained from the
collected images are shown in Fig. 7. The computed costs for
the routes, shown in blue and red in Fig. 7, were 336 s and 394 s,
and the flight times were 317 s and 369 s.

Discussion: In our simulations and experiments, we consid-
ered three types of scenarios: (1) The ground robots of finite size
cannot intersect with the obstacles, (2) The aerial robots are not
permitted to fly over obstacles, and (3) The aerial robots can fly
over obstacles. Using a visibility graph, we can address any com-
bination of the above scenarios by permitting non-required edges
only over the obstacles that the robots can traverse. We can also
compute the Minkowski sum for the obstacles that a finite-sized
robot is not allowed to overlap. Furthermore, non-overlapping
disconnected regions of environments can also be addressed by
performing cell decomposition and service track generation for
each such region individually and computing routes using the
MEM algorithm for the service tracks in a unified manner.

V. CONCLUSION

We presented a novel approach for solving the area coverage
problem with multiple capacity-constrained robots by trans-
forming itinto the line coverage problem. This allowed us to gen-
erate routes that minimize the total cost of travel while respecting
the capacity constraints. The formulation enables two modes
of travel—servicing and deadheading—with distinct and asym-
metric costs and demands that can have arbitrary non-negative
values. Travel time, travel length, or battery consumption can
be used to model costs and demands. A depot, from where the
robots start and end their routes, can be specified. These features
were demonstrated in an outdoor experiment using a commercial
UAV.

The cell decomposition permits non-monotone polygons, thus
increasing the feasible solution space for the service directions to
further minimize the number of turns. Allowing non-monotone
polygons with holes enables further merging of adjacent cells.
A new service track generation algorithm generates tracks for
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(d) Orthomosaic from images

(c) Actual flight paths

Area coverage by autonomous aerial robots: (a) The region surrounding a building is to be covered. The blue marker indicates the depot location for the

robots to take off and land. The cell decomposition is shown with double head arrows indicating service directions. Note that the cells are non-monotone. (b) The
generated routes for the aerial robots, distinguished by color. The dashed lines correspond to deadheading travel. Here deadheading is permitted over the building
for efficiency. (c) The actual paths taken by the aerial robots. (d) Orthomosaic generated from images taken during the flights.

non-monotone polygons with or without holes. We benchmarked
the approach on a ground robot dataset with 25 indoor environ-
ments and an aerial robot dataset with 300 environments, with
an average cost improvement of 10%.

Since we establish that the cells from cell decomposition are
no longer required to be monotone, our work raises the following
questions: Is there a better strategy for cell decomposition to
minimize the number of turns? Is a polynomial-time optimal
algorithm possible, or is this cell decomposition problem NP-
hard?

Future work includes incorporating turning costs and non-
holonomic constraints, and using a more realistic energy model
for the demands and the capacity. Another interesting direction
is maximizing the area covered by the robots when there are
limits on the number of routes or robots.
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