
5230 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 2, APRIL 2022

Probabilistic Gas Leak Rate Estimation Using
Submodular Function Maximization

With Routing Constraints
Kalvik Jakkala and Srinivas Akella

Abstract—Harmful greenhouse gases such as methane are prone
to leak during extraction, transportation, and storage in oil fields.
Therefore we must monitor gas leak rates to keep such fugitive
emissions in check. However, most currently available approaches
incur significant computational costs to generate informative paths
for mobile sensors and estimate leak rates from the collected data.
As such, they do not scale to large oil fields and are infeasible for
real-time applications. We address these problems by deriving an
efficient analytical approach to compute the leak rate distribution
and Expected Entropy Reduction (EER) metric used for path
generation. Moreover, a faster variant of a submodular function
maximization algorithm is introduced, along with a generalization
of the algorithm to find informative data collection walks with arc
routing constraints. Our simulation experiments demonstrate the
approach’s validity and substantial computational gains.

Index Terms—Environment monitoring and management,
fugitive emissions, integrated planning and learning, informative
path planning, probabilistic inference.

I. INTRODUCTION

M ETHANE accounted for 10% of the global greenhouse
gas emissions in 2018 [1]. However, in the form of

natural gas, methane is a viable energy source that can slow
global emissions since it has a smaller carbon footprint than
most other fossil fuels [2]. Unfortunately, it is not possible to
extract without leaking, and its carbon footprint is small only if
under 4% of its total production volume leaks [3]. Since methane
leaks are unavoidable, we need to estimate leak rates in oil fields
and take appropriate actions depending on the estimated rate.

However, estimating the leak rates of gas sources is non-
trivial. Recent work [4] has shown that current methods have
heavily underestimated methane leaks. The reason leak rate
estimation is difficult is because it is inherently an ill-posed
problem. Even if a single source is considered, multiple leak
rates could result in sensing the same gas concentration at a
given location as environmental factors such as wind speed and
temperature could affect the dispersion of the gas. Furthermore,
when multiple leak sources are considered (Fig. 1), it is possible
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Fig. 1. Illustration of an oil field depicting storage tanks. Note that methane
gas is not in the visible spectrum; it is shown gray for visualization.

to have overlapping gas plumes making it difficult to attribute
the data to each source.

Robots can collect gas concentration data from oil fields to
estimate leak rates. The data collection locations have to be
planned so that each location is highly informative and reachable
within the robot’s distance budget. So we also have to consider
the informative path planning problem (IPP) for mobile robots.
Even if we restrict data collection to a road network, depending
on the size of the road network and distance budget, there
could be a prohibitively large number of possible data collection
walks.1

We address two main problems in this letter. First, we derive a
computationally efficient probabilistic approach for estimating
gas leak rates. We improve on the approach of Albertson et al. [5]
by introducing a simplifying Gaussian assumption that results
in substantial computational gains while retaining leak rate
estimate convergence. Second, we address the IPP problem;
we use the Generalized Cost-benefit (GCB) algorithm [6] to
find data collection walks. However, the GCB algorithm does
not consider arc routing constraints needed to find informative
data collection walks in road networks; we introduce a variant
that considers such constraints. We also present a modification
to the GCB algorithm that substantially improves its runtime
efficiency.

1A walk is any sequence of alternating vertices and edges
v1, e1, v2, e2, . . ., vk, ek, vk+1 in a graph such that each edge ei has
endpoints vi and vi+1. A walk could contain repeated edges or vertices. It is
considered closed if the first and last vertices are the same, and open otherwise.
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This letter makes the following contributions:
1) Presents a fast and effective Bayesian approach for leak

rate estimation from gas concentration data.
2) Derives an efficient analytical solution to an information

metric–Expected Entropy Reduction (EER)–that is used
in the IPP problem.

3) Improves the runtime efficiency of the GCB algorithm
used to solve the IPP problem.

4) Introduces an arc routing variant of the GCB algorithm
for IPP in graph networks.

II. PROBLEM STATEMENT

We are given a road network graph G = (V,E) with inter-
sections modeled as vertices V and roads as edges E. We are
also given a set of candidate leak locations and environmental
factors such as wind speed and ambient temperature. We need
to accurately estimate the leak rate of each leak source. The
problem entails identifying informative data collection walks
within a distance budget b and using the collected data to estimate
the leak rates. Furthermore, depending on the leak rate of each
source, we can detect the gas leaks at varying distances from
the source. Therefore, our goal is to find minimal length data
collection walks by selectively approaching the sources and
getting only as close as needed to the sources. Additionally,
the estimates could have high variance or become obsolete as
environmental factors and leak rates continually change over
time. Thus the solution approach would have to be fast, accurate,
and iterative to update the leak rate estimates whenever needed.

III. RELATED WORK

Leak rate estimation: There are several approaches to leak rate
estimation based on whether the sensors are fixed or mobile, the
type of gas concentration sensors, and resolution of the sensors.

Pandey et al. [7] showed that it is possible to estimate methane
leak rates from satellite measurements. However, satellites are
expensive to deploy and maintain. The approach also has a lim-
ited ground pixel resolution and suffers occlusion from clouds,
making it challenging to estimate small scale leaks omnipresent
in oil fields.

An alternative to satellite data based sensing is to deploy a
methane sensor at each oil well. To ascertain the feasibility of
such a method, Project Astra [8] aims to build a sensor network
for an entire oil field and develop a network monitoring method.
However, it might be challenging to deploy and maintain a
sensor network in an oil field like the Permian Basin in the
US, spanning about 220,000 square kilometers with over 3500
drilled but uncompleted wells (DUC) [9], given the large number
of sensors required.

Travis et al. [10] addressed methane leak rate estimation
using fixed sensors by training a Neural Network (NN) on data
from gas leak simulations. The NN could predict leak rates
with reasonable accuracy but assumed stationary methane gas
concentration sensors. Furthermore, the NN was an entirely
data-driven, black-box approach that does not generalize to oil
fields that do not follow the same leak rate distribution as the
simulated data.

Albertson et al. [5] developed a Bayesian model for leak rate
estimation in an oil field. The Generalized Extreme Value (GEV)
Type II distribution [11] was used as the prior distribution in their
approach. They also used Expected Entropy Reduction (EER)
as an optimization metric to find data collection paths for mo-
bile sensors. However, using the GEV distribution necessitated
approximation methods like numerical quadrature to evaluate
the nested integrals involved in the computation of EER and the
posterior distribution of leak rates.

Furthermore, the framework of [5] is an iterative approach
wherein one generates a data collection path, collects data,
updates the leak rate estimates, and repeats the process until
convergence to the true leak rates. However, every new iteration
introduces an additional nested integral, each incurring substan-
tial computation costs. Although the approach is theoretically
elegant, it is computationally prohibitive and infeasible for large
oil fields.

Informative Path Planning: Finding the most informative
walk for data collection is known as the Informative Path Plan-
ning (IPP) problem. Despite its name, IPP is not limited to just
paths but includes tours and walks as well.2

Usually, information metrics such as mutual information are
used to quantify the informativeness of data collection locations
in IPP. But the IPP problem is known to be NP-hard [13], and
as a consequence, only suboptimal solutions can be obtained for
most real-world problems.

Hollinger and Sukhatme [14] presented branch and bound
techniques for IPP and established asymptotically optimal guar-
antees; their algorithms converge to the optimal solution as the
run time approaches infinity.

A recent approach presented by Bottarelli et al. [15] developed
active learning algorithms for the IPP problem with a complexity
of O(|D|5) where D is the discretized data collection space.
They also suggested optimizations that trade search space com-
plexity for reduced computation time.

Some IPP methods exploit structure in their optimization
functions, mainly submodularity [16]–[19], a property often
found in information metrics used in IPP. Submodular functions
have a diminishing returns property that makes them amenable
to greedy optimization with known approximation factors. Iyer
and Bilmes [20] established tight approximation factors for
the maximization of submodular functions with submodular
constraints.

Zhang and Vorobeychik [6] developed the Generalised Cost-
benefit (GCB) algorithm with approximation guarantees to find
a subset of vertices in a graph that maximize submodular func-
tions with node routing constraints. They imposed node routing
constraints by solving the Travelling Salesperson Problem (TSP)
while ensuring that the walk is within the distance budget and
includes the selected vertices of the graph. In practice, the
method therefore requires numerous computations of the TSP,
making it relatively expensive, and the method was limited to
node routing constraints.

A closely related problem is gas distribution estimation [21],
[22]. In this problem, gas leak sources are at unknown locations.

2A walk with no repeated edges is called a tour, and a walk with no repeated
vertices is called a path [12].
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The task is to estimate the gas density at each region and locate
the leak. The problem also entails determining the data collection
locations. Arain et al. [23] presented an approach that discretizes
the search space and solves a convex relaxation of an integer
linear program for near-optimal environment coverage.

Nonetheless, our problem is intrinsically different from the
conventional IPP problem. We are interested in collecting data
only to predict the leak rates of potential sources in an oil
field instead of building a model of the entire data collection
space. Therefore, an optimal walk for our problem might be
substantially different from an optimal walk for the conventional
IPP problem.

Albertson et al. [5] addressed our variant of the IPP problem
by iterating over every possible path within the distance budget
b between a given start and end location. The authors then
computed each path’s EER and selected the maximal EER path
as the solution. However, a road network will have exponentially
many possible walks, some of which might not even go near any
leak source in the field. As such, the method incurs exponential
computational costs to find the solution route and is feasible only
for small road networks.

Arc Routing: Arc Routing Problems (ARP) [12] are closely
related to TSP. But unlike node routing problems such as TSP
that look for a walk that visits all nodes, ARPs look for a walk
that traverses the arcs or edges of a graph at least once. The
Rural Postman Problem (RPP) [24], a variant of ARP, is to find
the shortest walk that traverses a specified subset of edges, the
required edges of a graph. Since a walk needs to be continuous,
RPP solvers may additionally use non-required edges.

IV. PRELIMINARIES

Foster-Wittig et al. [25] developed a gas dispersion model
to calculate fugitive gas concentration at any location given the
leak rate of the source. The gas concentration C(s, x, y, z) at the
location (x, y, z) when the leak rate is s is given by:

C(s, x, y, z) =
s

U
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Here, U is the observed speed of the gas plume advection, Ā,
B, and z are functions of atmospheric stability, and σy is the
length scale of the plume along the horizontal axis. The (x, y, z)
coordinates are relative to the origin centered at the leak’s source,
with the x-axis along the wind direction.

Albertson et al. [5] used the above gas dispersion model
in a Bayesian model to compute the posterior distribution of
the leak rates given the methane gas concentration data from
field measurements. A new instance of the Bayesian model was
associated with each source.

The Bayesian model was also used to evaluate the Expected
Entropy Reduction (EER) information metric ϕ to set up an op-
timization problem and find maximally informative data collec-
tion walks. EER measures mutual information [26], the amount
of information one random variable contains about another.
Mutual information can also be interpreted as the reduction in

uncertainty of one variable due to the knowledge of another
variable. Mutual information is treated as a dimensionless metric
that can only be interpreted in its relative sense [26].

In [5], EER ϕ quantifies the information relevant to a source’s
leak rate in gas concentration data collected from a path. It also
allows us to quantify this information without knowing the true
leak rate. Here, M is the set of gas concentration data from the
data collection path. Each m ∈ M represents the measured gas
concentration in parts per million (ppm).S ⊆ R≥0 is the domain
of the leak rate s.

ϕ[S;M ] = − log2
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EER is submodular [27]. Submodular functions are set func-
tions with returns that diminish as the input set size increases.
Any submodular function f satisfies the following property for
sets X,Y, and T , with u being an element of the set T that is
not already in Y .

f(X ∪ {u})− f(X) ≥ f(Y ∪ {u})− f(Y )

∀X ⊆ Y ⊂ T and u ∈ T\Y
Consider the EER function–adding more locations to a data

collection path will increase the EER. However, the size of the
incremental increases in the EER will diminish as the number
of data points increases, as the amount of additional information
in a path decreases with each newly collected data sample.

Like prior approaches, we assume that the oil field is on flat
terrain without any large obstacles obstructing the gas plumes.
Source detection is done by thresholding the leak rate of every
well. Table I lists all the variables used in this letter along with
their definitions.

V. APPROACH

Our approach assumes a Gaussian prior for the leak rates,
which we use to derive an analytical EER and posterior for the
leak rates; we use the analytical EER to perform informative
path planning.

A. Gaussian Assumption

To avoid the drawbacks of using the GEV Type II distribution
as the prior over the leak rates, we instead use the Gaussian
distribution as the prior. The Gaussian distribution is conjugate–
if the likelihood is Gaussian, using a Gaussian prior over its
mean will result in a Gaussian posterior. Moreover, its mean
and variance compactly parameterize the distribution and are
amenable to analytical computations.

The Gaussian prior assumption facilitates our derivation of
an analytical equation to compute the EER and the posterior in
time linear in the number of gas concentration samples collected
from the field. Since Gaussian distributions have the maximal
likelihood at the mean, instead of sampling the entire domain
of s as was done in [5], we only have to compute the mean
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TABLE I
DEFINITIONS OF VARIABLES

to determine the most likely leak rate s (i.e., the maximum a
posteriori probability estimate).

However, assuming a Gaussian distribution for the prior
has its shortcomings. It is not consistent with the results of
Brantley et al. [28] whose findings showed that the leak rates
follow a log-normal distribution. Nevertheless, we found that
the computational gains from computing both the EER and
posterior analytically outweigh aligning the prior to a log-normal
distribution. Moreover, our experiments show that our approach
converges to the simulated leak rate despite the Gaussian prior.
We next describe the critical steps in our derivations.

B. Analytical EER and Posterior

We formulate the prior p(s) and likelihood p(m|s) functions
of the leak rate s as follows.

p(s) ∼ N (μs, σ
2
s)

p(m|s) = 1
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√
2π

exp
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2

(
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σe

)2
]

(3)

Here, μs and σs are the mean and standard deviation of the
leak rate s. The combined gas dispersion model and concen-
tration measurement error is σe. The gas concentration m is
measured at coordinates x, y, z.

The evaluation of EER and the posterior involves integrating
the likelihood function p(m|s) with respect to s. However, the
likelihood p(m|s) contains the gas dispersion model C (1),
which is a function of numerous parameters and seemingly
intractable to analytical integration.

We found that the dispersion model C can be factorized
into a product of s and the remaining terms independent of s.
Therefore, we can combine all the terms other than s into a
single function A, dependent on the (x, y, z) coordinates where

the dispersion is calculated. This factorization allows us to treat
the output of the function A(x, y, z) as a constant with respect
to the likelihood p(m|s), allowing us to treat the likelihood as a
Gaussian. And since both the prior p(s) and likelihood p(m|s)
are Gaussian, our posterior p(s|m) will also follow a Gaussian
distribution. We omit the arguments of A for brevity.
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We derived3 the EER ϕ and Gaussian posterior p(s|M) using
the factorized likelihood p(m|s) and Gaussian prior p(s). Here,
M is a vector containing gas concentration data m at every
sampling location. Axyz is the scalar output of the function A
computed for the sampling location with coordinates (x, y, z),
A is the vector representation of all the Axyz values, and c is a
constant.
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Note that while computing the EER, M is calculated using a
simulated leak source (1) with an arbitrary leak rate since we are
only interested in the amount of information in a data collection
walk, independent of the actual leak rate. However, to compute
the posterior leak rate, we use gas concentration data collected
from the generated data collection route.

Moreover, unlike the GEV prior model, the Gaussian prior
model’s posterior can be represented by its mean and variance.
So when the posterior needs to be used as the new prior dis-
tribution to determine subsequent data collection walks, it will
not introduce any nested integrals as we can update the prior by
changing its mean and variance.

C. Informative Path Planning (IPP)

Our approach to evaluating EER and the posterior substan-
tially decreases the computation time. However, we still need to
solve the IPP problem. Using the EER function as an optimiza-
tion metric, we wish to find a data collection walk that maximizes
the EER. Such a walk will result in the most informative sensor
data for leak rate estimation.

We reformulate the problem as one where we have to find
the edges in the graph G that maximize the aggregate EER
and find a walk within the distance budget that includes all
the selected edges. This problem, belonging to the class of arc
routing problems with profits, is NP-hard [12].

Since EER is a submodular function, we could use the GCB
algorithm [6] to maximize EER while imposing routing con-
straints. However, the GCB algorithm operates on nodes and
imposes only node routing constraints. We need arc routing
constraints, as the EER function operates on edges to quantify

3The derivation and code can be found at
https://github.com/UNCCharlotte-CS-Robotics/Gas-Leak-Estimation

https://github.com/UNCCharlotte-CS-Robotics/Gas-Leak-Estimation
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information. Solving the routing problem as a node routing
problem does not always give us the best solutions. Furthermore,
it nullifies the approximation guarantee established for the GCB
algorithm [6].

We address this problem by proposing an ARP variant of the
GCB algorithm. Our ARP variant selects edges of the graph
instead of vertices and imposes arc routing constraints. We set
up the routing problem as the Rural Postman Problem (RPP) [24]
and solve it using an RPP solver. The RPP solver finds the short-
est walk within the distance budget (if one exists) while including
all the edges in the subset selected by the GCB algorithm. We
found that the RPP variant of the GCB algorithm often results in
walks with higher or equivalent EER than those generated using
the original TSP variant. Furthermore, the RPP variant retains
the approximation guarantee of the GCB algorithm since both
the subset selection and routing constraints operate on the edges
of the graph.

Moreover, we also improve the runtime efficiency of the GCB
algorithm by adding a conditional break statement (Algorithm1).
Let S ⊆ W be the solution set generated by the GCB algorithm.
The original algorithm takes |W | iterations of the while loop.
In contrast, our modified GCB algorithm (MGCB) takes only
|S|+ 1 iterations of the while loop and returns the same result
as the original algorithm.

The MGCB algorithm (Algorithm 1) starts by ensuring that at
least one element (nodes if using TSP or edges if using ARP) is
reachable within the distance budget (Line 1). Then it computes
the increments in the route cost Δx

c and submodular function
cost Δx

ϕ upon adding each available element x ∈ W ′ to the
solution set Z (Lines 5–8). Any infeasible routes are filtered,

and it checks if any feasible elements remain that it could add
to the solution route (Lines 9–12). If none remain, the algorithm
returns the best-known solution up to that point. Else it adds
the element x∗ with the highest increment ratio (of submodular
cost to route cost) to the solution set Z and removes it from the
available elements set W ′ (Lines 13–15). The algorithm iterates
until either the available elements set is empty or the condition
for the break statement is satisfied (i.e., there are no more feasible
elements).

VI. SIMULATION EXPERIMENTS

This section compares the EER and posterior computations
using the GEV Type II and Gaussian priors. Additionally, it
illustrates the advantages of the modified GCB algorithm for
IPP. Real-world experiments on gas leak rates are stochastic, in-
fluenced by environmental conditions such as wind or humidity.
To control for such variations, we conducted our experiments in
simulation with the fixed environmental conditions documented
in [29] and used the dispersion model (1) from Foster-Wittig et
al. [25].

In all our experiments, we used the GEV Type II prior with
model parameters γ, μ, β, and σe set to 1, 0.19, 0.23, and
0.01 respectively, obtained from [5], and the Gaussian prior
with μs, σs, and σe set to 0.15, 0.65, and 0.03 respectively. The
Gaussian prior’s mean was estimated by fitting to data sampled
from the GEV Type II distribution with the parameter values
mentioned above. We can generalize this fitting process to any
oil field of interest by replacing the GEV distribution data with
aggregate historical leak data from that oil field. The σs and σe

parameters were tuned so that the largest leak rate in our sampled
data used to fit the Gaussian mean was within two standard
deviations, which gave us Gaussian posterior predictions close
to that of the original GEV prior model.

A. Leak Rate Posterior

First, to establish our approach’s validity, we simulated a
source leaking at three different leak rates and calculated gas
concentrations M at ten random locations around the source.
Using the GEV Type II and Gaussian prior-based approaches,
we then used the simulated gas concentration dataM to estimate
the true leak rate s. The results are shown in Fig. 2.

We found that using either prior we can accurately estimate
the true leak rate. Even when the leak rate has a low likelihood in
the prior distribution, such as 5 g/s, our approach’s estimates are
close to the true leak rate. But the Gaussian prior based model
underestimates the leak rate as the true leak rate moves far away
from the prior distribution’s mean.

However, this is a degenerate scenario, as we limited the data
to only 10 points to show our approach’s limits. Moreover, gas
concentration sensors have much higher sampling rates, and
according to Brantley et al. [28], most leaks occur at much lower
rates, around 0.16 g/s, which is close to the mean μs of our prior
distribution p(s). As such, we anticipate that our approach’s
estimated leak rate would be closer to the true leak rate in a
real-world scenario.
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Fig. 2. Posterior leak rate distribution with GEV Type II and Gaussian priors for different true leak rates. The posterior with GEV prior is shown in orange (solid
line), and the posterior with Gaussian prior is shown in blue (dashed line). Subplot titles show the true leak rate, the absolute difference between each distribution’s
mode and the true leak rate, and the computation time. The GEV Type II and Gaussian priors were parametrized with a mode (most likely leak rate) of 0.09 g/s
and 0.15 g/s respectively.

TABLE II
EER COMPUTATION TIME WITH GEV TYPE II AND GAUSSIAN PRIORS FOR

PATHS AT VARYING DISTANCES FROM THE LEAK SOURCE. THE RESULTS WERE

AVERAGED OVER 10 ITERATIONS

Furthermore, the Gaussian prior based approach is five orders
of magnitude faster than the GEV prior based approach. This is
because, unlike the GEV based approach, we can analytically
compute our model’s posterior.

B. Expected Entropy Reduction (EER)

The following experiment details the computational gains of
our approach when computing the EER. We are interested in
paths with the most information about leak rates quantified by
EER. The EER computation cost is substantial when using the
GEV Type II prior. We demonstrate the advantages of the Gaus-
sian prior based approach to EER computation by evaluating
the EER of six paths and sorting them in decreasing order. The
EER values are not interpretable by themselves. Therefore, we
are only interested in the order of the paths sorted by EER. We
considered straight-line paths (each with 100 evenly sampled
data points) parallel to the Y -axis at different distances along
the X-axis from a simulated leak source.

We found that using either prior distribution to compute the
EER gives the same ordering of paths. However, the Gaussian
prior based model took five orders of magnitude less compu-
tation time compared to the GEV model, as shown in Table II.
Furthermore, our approach’s benefits multiply in an actual oil
field where hundreds of leak sources are considered, and the
computation is repeated for numerous paths. We also observed
fluctuations in the GEV model’s computation time due to the
stochastic nature of adaptive quadrature used to evaluate the
integrals in its EER. In contrast, the Gaussian prior model takes

TABLE III
STATISTICS OF THE GRAPHS USED TO BENCHMARK THE MGCB ALGORITHM

an almost constant amount of time to compute the EER, given
the analytical solution to its integrals.

Our results above establish that our method converges to the
true simulated leak rate with significantly reduced computation
time despite the Gaussian assumption.

C. Informative Path Planning (IPP)

We also improved the IPP approach as mentioned in Sec-
tion V-C. The following experiment establishes the improvement
in computation time of the IPP approach using our modified
GCB algorithm.

We considered a corpus of 80,000 oil wells in the Permian
basin in Texas, USA [30]. The wells were clustered into 1000
clusters based on their relative positions. We then extracted the
road network associated with each cluster. To ensure that the path
iteration algorithm’s runtime is feasible, we empirically chose
the connectivity range and total graph distance. We filtered out
graphs with average node connectivity [31] higher than 1.1 and
graphs with total road network length less than two times the
distance budget b, which gave us 134 graphs. The statistics of
the considered graphs are shown in Table III.

We then generated data collection walks with a distance
budget of 15 km, which we found to be the range feasible
for selected unmanned aerial vehicles (UAVs) and unmanned
ground vehicles (UGVs). We generated the walks using the path
iteration approach of Albertson et al. [5], the GCB algorithm
with TSP, our modified GCB algorithm with TSP, the GCB
algorithm with RPP, and the modified GCB algorithm with
RPP. The TSP [32] and RPP [24]4 solvers we used had a
3/2-approximation guarantee. To compute the EER, we sampled

4We used the Line Coverage Library available at
https://github.com/UNCCharlotte-CS-Robotics/LineCoverage-library

https://github.com/UNCCharlotte-CS-Robotics/LineCoverage-library


5236 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 2, APRIL 2022

Fig. 3. Example graph extracted from the oil well corpus and the walk generated with each algorithm. The graph has 35 vertices, 36 edges, and 43 oil wells.

TABLE IV
LEAK RATE PREDICTION MEAN SQUARED ERROR (MSE) AND COMPUTATION

TIME FOR EACH METHOD (LOWER IS BETTER). PATH ITER IS THE PATH

ITERATION, GCB IS THE ORIGINAL GCB ALGORITHM, MGCB IS OUR

MODIFIED GCB ALGORITHM, AND THE TSP/RPP POSTFIX REFERS TO THE

ROUTING CONSTRAINT SOLVER USED IN GCB

the gas concentration at ten evenly spaced points along each edge
in the route generated by the routing algorithm.

In this experiment, we used the Gaussian prior based EER
computation method as it would be far too expensive to compute
EER with the GEV prior. We randomly sampled the oil well
leak rates from a uniform distribution over the range 0 to 6 g/s
and assumed that we were given no prior leak rate estimates.
Therefore we used the defaultμs andσs obtained from historical
leak rate data [5]. Furthermore, we allocated a maximum of
20 mins to each algorithm for each graph. The mean squared
error (MSE) of the leak estimates for each method and the
computation times are shown in Table IV. Additionally, one of
the generated graphs, along with its walks, is shown in Fig. 3.

Path iteration is infeasible for large graphs as the number
of possible walks increases exponentially with the number of
graph edges; this is reflected in its computation time. In almost
all cases, it terminates with a timeout and returns the best-known
solution up to that point, which also explains the low standard
deviation of computation time.

In contrast, the GCB and MGCB algorithms’ computational
complexity does not grow exponentially. But GCB is still costly
to compute and usually terminates with a timeout and returns the
best-known solution up to that point, thereby underutilizing the
distance budget. This also explains the low standard deviation
of GCB’s computation time.

Even though GCB finds the solution early on in its computa-
tion, it continues to iterate through the algorithm as there is no
test to detect convergence and terminate the algorithm. However,
MGCB converges to the same solution as the GCB algorithm in
a fraction of the time on all considered graphs.

We notice a higher standard deviation in the computation time
of MGCB because the graphs are of varying sizes, therefore
taking a varying amount of time to solve. Finally, we also note
that the RPP variant of GCB performs better than the TSP variant
as the arc routing constraints align with the EER function that
measures information along the edges of the graph.

VII. DISCUSSION

Suppose the routing constraint solver used in MGCB is
stochastic, which is sometimes the case when using heuristics
to solve the TSP/ARP. In this case, one should expect to see the
original GCB algorithm improve its solution even after |S|+ 1
iterations of the algorithm. This is because even though the GCB
algorithm converges to the solution subset of nodes/edges in
|S|+ 1 iterations, the algorithm keeps solving the routing prob-
lem with the same required solution subset for |W | − |S| − 1
iterations. Heuristic-based solvers usually find better solutions
after a few such iterations. However, one could always use an
exact solver once MGCB converges to improve the solution and
get similar results.

Also, note that even though the MGCB algorithm takes
|S|+ 1 while loop iterations, |S| could still be close to |W |
in the worst case. This would be the case when the distance
budget b is large enough, and the total distance of the graph
edges is small enough that the solution could traverse the whole
graph. Nonetheless, our approach does not incur any significant
additional computation costs. As such, it results in the same
computation time as the original GCB algorithm.

A limitation of our work is that our experiments were con-
ducted only in simulation. However, we did not change the gas
dispersion model, which is the only component influenced by
real-world conditions. Since the validity of the dispersion model
and the Bayesian approach was already established by Albertson
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et al. [5], we believe field experiments would be consistent with
our simulations.

Additionally, the dispersion model we considered assumed
flat terrain and steady state environmental conditions. One could
potentially develop a more sophisticated dispersion model that
can be factorized into A and s to handle dynamic environmental
conditions and use it in our approach.

VIII. CONCLUSION

We presented a method for efficient and accurate gas leak rate
estimation of greenhouse gases such as methane. We derived
a closed-form equation for EER, a mutual information metric,
and substantially improved the runtime efficiency of the GCB
algorithm used to maximize the EER to find informative data
collection walks. Since the GCB algorithm did not consider arc
routing constraints, we presented a GCB variant that addressed
such constraints. We also derived an efficient analytical approach
for computing the posterior distribution of the gas leak rate for
each leak source.

Our simulated experiments, using oil well data, established
the convergence of our approach to the true leak rate. We also
showed that our approach computes the EER and posterior leak
rates five orders of magnitude faster than the prior approach.
Furthermore, our modified GCB algorithm (MGCB) was shown
to be at least an order of magnitude faster than the original GCB
algorithm. Finally, we demonstrated that our ARP variant of
the MGCB algorithm obtains data collection walks for oil fields
that on average result in more accurate leak rate estimates when
compared to the original GCB algorithm.

The TSP/ARP routing algorithm is invoked numerous times,
with only one new element added to the required set in each iter-
ation. One could reduce this computation cost by incorporating
incremental solutions in each iteration. We plan to address this
in our future work.
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