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Abstract

Reaction networks are commonly used within the mathematical biology and mathematical
chemistry communities to model the dynamics of interacting species. These models differ from
the typical graphs found in random graph theory since their vertices are constructed from
elementary building blocks, i.e., the species. In this paper, we consider these networks in an
Erdés-Rényi framework and, under suitable assumptions, derive a threshold function for the
network to have a deficiency of zero, which is a property of great interest in the reaction network
community. Specifically, if the number of species is denoted by n and if the edge probability is
denote by p,, then we prove that the probability of a random binary network being deficiency

zero converges to 1 if p,, < r(n), as n — 0o, and converges to 0 if p,, > r(n), as n — oo, where

r(n) = 2.

1 Introduction

Reaction network models are often used to study the dynamics of the abundances of species
from various branches of chemistry and biology. Here the word “species” can refer to different
(bio)chemical molecules or different animal species, depending on the context. These networks
take the form of directed graphs in which the vertices, often termed compleres in the domains
of interest, are linear combinations of the species over the non-negative integers and the directed
edges, which imply a state transition for the associated dynamical system, are termed reactions.
See Figure [1| for an example of a reaction network.

To each such graph a quantity termed the deficiency can be computed, and this quantity has
been central to many classical results pertaining to the associated dynamical systems [4, [5, 1T}, 13|
15,16, @]. To compute the deficiency, we first note that the vertices of a reaction network, which will
be denoted by y and/or 3’ throughout this paper, can be viewed as vectors in Z%,. For example,

117117 10] |2
directed edge between two such vectors, y — 3/, implies a state update of the form 3y’ —y € Z".
The set of state update vectors implied by the graph is called the set of “reaction vectors” for the
model. Viewing things in this manner the deficiency for the graph provides a relation between the
number of vertices, the number of connected components and the dimension of the space spanned
by the reaction vectors. The formal definition of deficiency will be given in Definition [2.6

1 2
the vertices in Figure |1{ can be associated with the vectors [8} , [ ] , [0} , [ ] , [0} . Moreover, a
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Figure 1: A reaction network with two species: S; and Ss. The vertices are linear combinations
of the species over the integers. The directed edges are termed reactions and determine the net
change in the counts of the species due to one instance of the reaction. For example, the reaction
S1 4+ S92 — S5 reduces the count of S7 by one, but does not affect the count of Ss.

Given the importance of the deficiency zero property, it is natural to ask: how common is this
property? There are a number of ways one can tackle this question, including a simple enumeration
of all networks of a given size. In fact, the earliest attempt to answer this question can be traced
back to work by Horn in 1973 [14]. In that paper, Horn considered all reaction networks with
exactly three vertices, each of which satisfies > " ; y; < 2 where y; denotes the i-th component of
the vector associated with a vertex y, but no condition on the number of species. Horn found 43
isomorphism classes of such networks, and among these, 41 have deficiency zero.

We choose a different approach by considering networks with a fixed number of species, say n,
and then quantifying the prevalence of the deficiency zero property via limit theorems (as n — 00)
in an Erdds-Rényi random graph framework in which there is an equal probability, p,, that there
is an edge between any two vertices. However, we are immediately confronted with a modeling
problem: for any finite number of species there are an infinite number of possible graphs that can
be constructed from them. For example, with just the single species S7, possible vertices include
51,251,351, . ... Hence, we must restrict ourselves in some manner so that for a given number of
species, only a finite number of vertices are possible.

In this paper, we restrict ourselves to study so-called “binary” reaction networks, whose vertices
satisfy > " ;y; < 2. Such models are quite common in the literature. Our main finding is that
in such a scenario r(n) = % is a threshold function in that if p, < r(n), as n — oo, then the
probability of deficiency zero converges to 1, whereas if p,, > r(n), then the probability of deficiency
zero converges to 0. See Theorem [£.1] and Theorem [£.2] Moreover, along the way we prove that
in the setting of p, < r(n), with high probability all the connected components of deficiency zero
reaction networks will consist of pairs of vertices. Intriguingly, paired reaction networks can be
found in certain models of autocatalytic cycles related to the study of the origin of life [16].

The remainder of this paper is organized as follows. In Section [2] we briefly review some key
terminology of reaction network theory, and provide some preliminary results related to deficiency.
In Section |3 we set up the Erdés-Rényi random graph framework for reaction networks. In Section
[ we present our main results, which quantify the prevalence of deficiency zero reaction networks
in our chosen framework. Finally, in Section [5] we end with a brief discussion.



2 Chemical reaction networks

Here we formally introduce reaction networks and deficiency. Moreover, we collect some preliminary
results related to the deficiency of a reaction network.

2.1 Reaction networks and key definitions

Let {S1,...,Sn} be a set of n species undergoing a finite number of reaction types. We denote a
particular reaction by y — 1/, where y and ¢’ are linear combinations of the species on {0,1,2,...}
representing the number of molecules of each species consumed and created in one instance of that
reaction, respectively. The linear combinations y and y’ are often called complezes of the system.
For a given reaction, y — v/, the complex y is called the source compler and 3’ is called the
product compler. A complex can be both a source complex and a product complex. However, a
complex can not be both the source and product for a single reaction nor do we include isolated
complexes that are not involved in any reaction. We may associate each complex with a vector in
7%, whose coordinates give the number of molecules of the corresponding species in the complex.
As is common in the reaction network literature, both ways of representing complexes will be
used interchangeably throughout the paper. For example, if the system has 2 species {57, S2}, the

1
reaction S; 4+ So — 255 has y = S1 + S, which is associated with the vector L], and y' = 2855,

which is associated with the vector [ 2]. Viewing the complexes as vectors, the reaction vector

associated to the reaction y — 1/ is simply v/ — y € Z", which gives the state update of the system
due to one occurrence of the reaction.

Definition 2.1. For n > 0, let S = {S1,..., S0}, C = Uy {y,v'}, and R = Uy {y — ¥’} be
the sets of species, complexes, and reactions respectively. The triple {S,C, R} is called a reaction
network. When n = 0, in which case S = C = R = (), the network is termed the empty network. /A

To each reaction network {S,C, R}, there is a unique directed graph constructed in the obvious
manner: the vertices of the graph are given by C and a directed edge is placed from y to y' if
and only if y — 3/ € R. Figure [l is an example of such a graph. Note that by definition the
directed graph associated to a reaction network contains only vertices corresponding to elements
in C involved in some reaction, i.e., the degree of all vertices is at least 1 and so isolated vertices
are not present in the associated network. We denote by ¢ the number of connected components
of the graph.

Remark 1. Note that since each connected component must consist of at least two vertices, we
have the bound £ < l%'

Definition 2.2. The linear subspace generated by all reaction vectors is called the stoichiometric
subspace of the network. Denote s = dim(span{y’ —y : y — 3y’ € R}) the dimension of the
stoichiometric subspace. A

Note that s < n, where n is the number of species. This fact will be used a number of times in
this paper.

Definition 2.3. A vertex, y € Z%, is called binary if Yoy = 2. A vertex is called unary if
>y yi = 1. The vertex 0 € Z" is said to be of zeroth order- A



Definition 2.4. A reaction network {S,C, R} is called binary if each vertex is binary, unary, or of
zeroth order. A

As discussed in the introduction, we will focus on binary reaction networks in this paper.
The following type of network will play a key role in the current paper.

Definition 2.5. A reaction network is called paired if each of its connected components contains
precisely two vertices. A reaction network is called i-paired if it is paired and contains ¢ connected
components. A

2.2 Deficiency of a reaction network

Definition 2.6. The deficiency of a reaction network {S,C,R} is § = |C| — ¢ — s, where |C| is
the number of vertices, ¢ is the number of connected components of the associated graph, and
s = dim(span{y’ —y : y — 3’ € R}) is the dimension of the stoichiometric subspace of the network.

For each j < /¢, we let C; denote the collection of vertices in the jth connected component, s;
be the corresponding dimension of the span of the reaction vectors of that component, and define
d; =|Cj| — 1 — s; to be the deficiency of that component. A

We collect a number of basic properties of deficiency in the following lemma.
Lemma 2.1. Let n > 1 and let {S,C, R} be a reaction network with n species.
(a) & does not depend upon the direction of the edges.

(b) s; <|Cj| —1, and so 6; > 0.
(¢) s <|C|—¥, and so § > 0.
(d) 6 =0 if and only if both the following conditions hold:

(i) s; =|Cj| =1 for each j <1 (equivalently, 6; =0 for each j < £).
(i) Sy 5 =s.

(e) If § =0, then
IC| < 2n.

(f) Suppose the reaction network is paired, and that (; is a reaction vector from the jth connected
component. Then § = 0 if and only if U§:1{Cj} ={G,...,C} are linearly independent.

(9) (Monotonicity of deficiency.) Let {S,C, R} and {S,C, R} be two reaction networks with R\R =
{y = ¢'}, a single reaction. Let § and § be the deficiencies of the two networks. Then

5> 6.

Proof. (a) This follows from the definition of deficiency.

(b) This follows from the observation that a cycle within a connected component implies a depen-
dency among the reaction vectors.

(¢) This follows from (b) since C = Ule(fj and s < 25:1 55.

4



(d) This follows in a straightforward manner from (b) and (c).

(e) From the definition of deficiency 6 = |C| — £ — s, the fact that s < n, and ¢ < ‘%l (from Remark
1)), we have

cr_,_k
-n=-—-n

2 2

Since the reaction network has deficiency zero, we therefore have

oz’g'_n, (1)

d>|C|—

which implies |C| < 2n.

(f) Since the reaction network is paired, we have s; = 1 and |C;| = 2 for each j < £. Thus condition
() in (d) is satisfied. Since s; = 1, condition (77) in (d) holds if and only if all (; are linearly
independent.

(g) Let ¢,s and @, 5 be the number of connected components and dimension of the stoichiometric
subspace of {S,C, R} and {S,C, R}, respectively.

e Case 1: y,v € C and y and 3/ are from the same connected component. In this case, we
have \5\ = |C| and £ = . Since y and ¢/ are from the same connected component, the
reaction vector ¢y’ — y can be written as the linear combination of the remaining reaction
vectors from its connected component. Therefore adding y — v’ to {S,C, R} does not
increase the dimension of its stoichiometric subspace. Thus § = s and 5 =9.

e Case 2: 3,9 € C and y and 3 are from different connected components. In this case, we
have |C] = |C| and ¢ = ¢ — 1. Since we are adding one reaction to {S,C, R} to obtain
{§ , C. , ﬁ}, we add at most 1 dimension to the stoichiometric subspace of {S,C,R}. Thus
$<s+1and

§=1[Cl—l—-3>Cl—(t—-1)—(s+1)=4.

e Case 3: y € C and ¢ ¢ C or vice versa. In this case, we have |C| = |C| + 1, and / = (.
Similar to the previous case, we must have 5§ < s+ 1, and thus

§=ICl—0—-5>1[Cl+1—L—(s4+1)=4.

e Case 4: y,y ¢ C. In this case, we have ]a = |C|+2, and ¢ = ¢+1. Similar to the previous
cases, we still have § < s+ 1 and thus

b=ICl—0—-3>1[Cl|+2—(+1)—(s+1)=0. O

Remark 2. Lemma (g) implies that if we remove a reaction from a reaction network with
deficiency zero, then the resulting network also has deficiency zero. This means deficiency zero is a
monotone decreasing property, which guarantees that a threshold function for deficiency zero exists

(see [8]).

We will illustrate the concept of deficiency via two examples.



Example 1 (Enzyme kinetics [5]). Consider a reaction network with species {S, E,SE, P} and
associated graph
S+EFSSES P+ FE
ESDsS.
In this example, the reaction network has |C| = 6 vertices, there are £ = 2 connected components,
and the dimension of the stochiometric subspace is s = 4. Thus the deficiency is
0=6—-2—-4=0.
0

The following example demonstrates that it is sometimes most natural to use Lemma [2.1{f) to
verify that a network has a deficiency of zero.

Example 2 (Binary, 3-paired network). Consider a reaction network with species {51, S2,...,S9}
and associated graph

S1+ S = S35+ 5y
S|+ 53 = 55 + Sg
Se + S7 = Sg + Sy.

This network is paired in the sense of Definition Moreover, there is linear independence among
the connected components, which can be seen easily since each connected component has a species
not found in any other connected component. Hence, Lemma f) implies that the deficiency of
this network is zero. O

3 Erdos-Rényi model for binary reaction networks

As alluded to in the introduction, the vast majority of reaction network models found in the
literature are binary. Hence, those are the focus of the current paper.

Let the set of species be § = {51,S59,...,5,}. We consider binary reaction networks with
species in §. The set of all possible vertices is then

ng{(l),Si,Si—i—Sj:forlgignandlgjgn.}

For a given n, we denote N, = |CY|, the cardinality of CO. Thus, N, is the total number of
possible zeroth order, unary and binary vertices that can be generated from n distinct species. A
straightforward calculation gives

(n—1) n?+3n+2

n
Ny,=14+n+n+ 5 = 5 )

n ~ \/2N,.

Here we use the notation ~ in the standard way: for any two sequences of real numbers {a,} and
{bn}, we write ap, ~ by, if lim,, o §* = ¢ for some constant c € R.

and so

We consider an Erdés-Rényi random graph G (N, p,,), which we will simply denote G,, through-
out, where the set of vertices is the set C0, and the probability that there is an edge between any
2 particular vertices is p,, independently of all other edges. To each such random graph a reaction
network graph can be associated in the following way



24 A

Figure 2: A realization of a random graph when n = 1 and p € (0,1). The associated reaction
network is ) S A = 2A.

1. each vertex with positive degree in the random graph represents a vertex in the reaction
network, and

2. each edge in the random graph represents a reaction in the reaction network (we can assume
all reactions are reversible, i.e., that y =+ 3y € R = 3y’ — y € R, since we do not need to
worry about direction-see Lemma [2.1](a)).

We will denote the reaction network associated with the graph G(N,,p,) by R,. We will denote
the deficiency of R, by dg, .
In order to solidify the notation, we present below the cases n = 1 and n = 2.

Example 3 (The case with n = 1 species). Denote the only species by A. The set of vertices,
or equivalently the set of all possible complexes, is C) = {0, A,2A}. Figure [2| shows one possible
realization of the random graph G(N1,p) when p € (0,1). The associated reaction network Ry for
the particular graph shown in Figure 2|is ) = A < 2A. O

Example 4 (The case with n = 2 species). Denote the set of species by S = {A, B}. The set of
vertices is CY = {0, A, B,2A,2B, A + B}. Figure [3|illustrates a possible realization of the random
graph G(Na,p) when p € (0,1). The associated reaction network Ry for the particular graph shown
in Figure [2] is
2B

+ B.

mn

0
B

4 The threshold function for deficiency zero

The goal of this section is to prove that r(n) = % is a threshold function in that

{o, if pp > r(n)

lim P(dg, =0) =
Ok, ) 1 if p, < r(n).

n—o0

(2)

Throughout this section, we will make use of the standard notation of a, < b, or b, > a, to
mean lim, o §* = 0, whenever {a,} and {b,} are sequences of non-negative real numbers. We
also remind the reader that we write a,, ~ b, to mean lim,, z—: = ¢ for some constant ¢ € Ryy.

7
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Figure 3: A realization of a random graph when n =2 and p € (0, 1).

4.1 The case p, > r(n)

This case is relatively straightforward. We will show that if p, > r(n) = %, then with high
probability we have |C| > 2n. In this case, Lemma (e) implies the associated reaction network
does not have deficiency zero.

Since |C| is the number of non-isolated vertices in G, we start with a lemma regarding the
number of isolated vertices in G,.

Lemma 4.1. Suppose p, = 1\73%521) with o, > n'/2. Let I be the set of isolated vertices in G,
that is I = {v € C : deg(v) = 0}. Then we have

lim P(|I| > N, —2n) = 0.
n—oo
Proof. We require both E(|I|) and Var(|I|). First, a straightforward calculation yields
E(I) = E | 3 Haeaw=o} | = NaP(deg(v) = 0) = Nu(1 —pu) ™.

veCf

Turning to the variance, we have

2
P = ) Ldegw)=destw)=0} = Y Ljdeaw)=0} + D L{des(v)=deg(u)=0}-

v,weCy veCy v,weCYw#w

Therefore, we have

Var(|I]) = E(|I]2) — (B(1]))?

=E Z 1{deg(v):O} =+ Z 1{deg(v):deg(w):o} - Ng(l - pn)2Nn_2

veCy v,wWeCY :vFw

= Np(1 - pn)N"_l + Np(N, — 1)(1 _pn)QNn_g - N’r%(l _pn)QNn_Q
= Np(1 - pn)Nn_l(l - (1 _pn)Nn_2) + Nr%(l - pn)2Nn_3pn

< No(1 = po) V"N, = 2)pn + N2(1 — po) P 3p,

< Na(Ny = 2)pn + Npn < 2N;pn,



where the first inequality follows from Bernoulli’s inequality.
We will utilize E(|I|) and Var(|I|) to show that

lim P(|I| > N, —2n) =0. (3)
n—oo

It suffices to prove in the three cases below.

1. When «,, ~ N,, we have p, ~ Nin, and thus p, > Nin for some constant ¢ > 0 and n large
enough. Therefore

Np,—1
Ewn:ma—mWH<A@Q— ) < Noe—e,

<
Ny,
Applying Chebyshev’s inequality yields

Var(|1}) 2N7pn 2pn
P(lI| > N, —2n) < < = = .
(1> ") S W, —on - BITNE = (Ve 20— Npe 2~ (1= 2n/N, — )2

Since p,, ~ NL and N,, ~ n?, we have
n

lim P(|I| > N, —2n) = 0.

n—oo

2. The next case is when a, < N, or equivalently when p, < Nin Using Taylor’s expansion,
we have

E(|1]) = Na(1 = pa)™ ™ < N, <1 = 1) 42 DT 1)2(N" - 2)>.

Again, we apply Chebyshev’s inequality:

Var(|I])

P12 No = 2n) < (50— = B2

IN

2N2pn

IN

2
(0= 20 = N o Ny (0, = D), — NPl
2N7ipn

2
( 9t Ny(Ny — 1)y — Nnuvn;wvnmp%>

2n+aom,

Now we plug in p, = N (N 2T and proceed:

2N,
2n + «
P(|I| > N,, — 2n) < N1 )

2
—2n+2n+ an — oy (o (20 + Oén)2>

2N, 2n + oy,

N, — 1 } Ph
(ozn - 72]\,52’}\,"2_1) (2n + Oln)2>




If o, < n or a, ~ n, we have

2n+« n
- 5~ 2 0
Np—2 A
(an — N (NL=T) (2n + an)2>
as n — 00, since a,, > nl/2,
If o, > n, we have
2n+ « a 1
= —=——0,
i g

2
Np—2
<an ~ WL (NLT) (2n + an)2)
as n — 00, since a,, < N,. Thus, either way we must have

lim P(|I| > N, —2n) =0.

n—oo

3. When «a, > N,,, we can apply the same argument as Case 2, since

2 1
nE o <=~ 50
Np—2 2 ? Oé% On
On — 5, (v, 1) (2 + )
In all cases above, we have lim,_,oc P(|I| > N,, —2n) = 0. O

We are now ready to provide the first main theorem.

Theorem 4.1. Let G, denote the Erdds-Rényi random graph with Ny, vertices and edge probability
Pn, and let Ry, be the reaction network associated to Gy. When p, > r(n) = %, we have

lim P(dp, = 0) = 0.

n—oo

Proof. Note that the vertices of the reaction network R, correspond to the vertices in G, with
positive degree. Thus, letting I denote the set of isolated vertices of GG,,, Lemma (e) implies that
if the network is deficiency zero, we must have

11| > Np — 2n. (4)

From (4)), we have
P(65, = 0) < B(|I] > N, — 2n). (5)

Since r(n) = n% ~ wz and p, > r(n), we have p, satisfies the condition in Lemma Hence,
using Lemma [4.1] we have

lim P(6g, =0) = lim P(|I| > N, —2n) =0. O

n—o0 n—oo

10



4.2 The case p, < r(n)

We will show that in the case p, < r(n) it is enough to focus on paired reaction networks, which
are introduced in Section Pl We first state the main theorem.

Theorem 4.2. Let G, denote the Erdds-Rényi random graph with Ny, vertices and edge probability
Pn, and let R, be the reaction network associated to Gy,. When p, < r(n) = #, we have

lim P(dgr, =0) =1,

n—oo

Proof. We have

P(6g, =0) =P(dr, =0, R, is paired) + P(dg, = 0, R,, is not paired)
> P(0g, =0, R, is paired).

Therefore it suffices to show

lim P(dg, =0, R, is paired) = 1.

n—0o0

Noting that for deficiency zero models, the number of reversible reaction vectors is bounded above
by n, we have

P(0g, =0, Ry, is paired) = ZP(5Rn =0, R, is i-paired)
i=1

= ZIP’((FRn = 0|R,, is i-paired)P(R,, is i-paired)

Ny!

T, gL~ pa) e

= P(5g, = 0|Ry, is i-paired)

= N, —2 .
> ZIP’(cSRn =0|R, is i—paired)i( i ) ph(1— )Nn(Nn—l)/Q—Z (6)

where the third equality uses that the number of i-paired graphs is ( )(N "2_2) e (N"_22i+2), with
the repetition of the graphs accounted for by division by 4!.

Note that because p, < l/n3 and N,, ~ n? we have that N,%pn < n. Now let k, satisfy
lim,,—y o ky, = 00 and Nflpn <k, < n. Cutting off the last n — k,, terms from @, yields

kn
P(0k, =0, Ry is paired) > Y P(dg, = O|R, is i-paired)
i=1

kn .4 . N\ 27
¢ 210\ (Ny — 20)% Np(Np—1)/2—i
> — — _— 7 — Dn n{{Vn
¢ %4) (-2 ) 0 pa) @
. N2/2 - 22 i
1 Z Z'2Z

ko 21k (N — 2kn)?
—eon _ n N2/2 i
> <1 Cn4><1 - ) E 2'21 Dy,

26
(N, '—2 22) P (1 — pn)Nn(Nn—l)/Z—i
120




where the inequality in will be proven using Lemma Proposition and Lemma after
the proof of the main theorem. The inequalities after follow by noting that i < k,,.

B 2
Let )\, = W, and note that A\, < k, since we chose N2p, < k,. Using Taylor’s
remainder theorem and Stirling’s approximation, we have

; n\En - kn+1
I (e L [N (W (A |
2.5 = (ko + 1) = V2 (ki + 1)fntle—Fntl o \ ko + 1

Thus we have
kn+1
ot g (1 L (2 ),
" V2r \kn +1

Since A\, < k, < n, the first, second, and last terms converge to one. Hence, it suffices to show

kyy 21k,
P(dg, = 0, R,, is paired) > (1 - cZ) (1 -
n n

lim (1 —pn)N?Lﬂe/\” =1,
n—oo

or
N2
lim —1In(1—py) + A, =0.
n—oo 2

Since p, < 1, we have —p, — p2 < In(1 — p,,) < —pp. Thus

2 2

N N
Sl = pa) + An € —pu+ = %((Nn — 2k,)% — N2) = %(—M%Nn +4k2).

On the other hand, and using the equality above,

N? N2 N2p2
I = pa) + An = =P+ PE) + An = (4 Ny + 4K7) — =2,

Since k, < n, N, ~ n? and p, < %, we have

N2 2
lim % (—4k,N, +4k2) =0, and, lim —22n =
n—00 n—oo 2
Thus
. N2
nlLH;O - In(1—pp) + A\, =0,
which concludes the proof of the theorem. O

We complete this section by providing the required technical lemmas and proposition leading to
the inequality in (|7]). Recall that we only consider binary reaction networks, thus each reaction can
contain at most 4 species (2 species in each vertex). The next lemma shows that for our analysis
later, it suffices to only consider reaction networks for which each reaction vector has exactly four
non-zero components.

Note that in the construction we are using, random graphs with the same number of edges
have the same probability. We use this fact heavily in the proofs of the next two lemmas, where
we condition on R, being k,-paired and can therefore generate R, uniformly from the set of all
kyn-paired graphs.

12



Lemma 4.2. Suppose that k, < n. Let A, be the event that each reaction vector in R, has exactly
4 non-zero components. Then we have

21k,
n

P(Ay| Ry, is kn-paired) > 1 —

Proof. Let R, be a ky-paired reaction network, where k, < n. Denote the k, reaction vectors
by {v;}fgl € Z™. We denote by A! the event that the vector v! has 4 non-zero elements, thus
A, = ﬂfglAﬁl. The proof will proceed by using that

kn—1
P(A,|R,, is k,-paired) = H P(AIT n)_, AL, R, is ky-paired),
=0

and showing the limit of the right-hand side, as n — oo, is 1.

First, note that the total number of vertices of the form S + S, where k # m is (g) Suppose
we have already picked j pairs of reversible reactions where each pair has 4 species. Then the
number of unpicked vertices of the form Sy + .S, where k # m is (72‘) — 24. After picking one such
Sk + Sy, for the j + 1% pair, we need to pick another vertex. The number of available vertices of
the form S, + S;, where p,q, m, and k are all different is at least ("52) — 24, where the minus 2
comes from the fact that we remove the species Sy and .S, from the possibilities, and the 2j is the
number of vertices we have already chosen.

Thus for n large enough, we have

P(AIY N)_, A%, R, is ky-paired)
3((5) = 20)(("3%) — 24)

(")

3((3) = 20)((";*) = 2n)

()
(n? —5n)(n? —9n+6) _ (n? —5n)(n® —9n)
(n?2+3n+2)(n?2+3n) — (n?+4n)(n? + 3n)

> (by considering our choices as detailed above)

> (since j < n)

Cn—ldn+45 21n — 33
n2+Tmn+12 n2+ 7+ 12
21
21_77
n

and where the 1/2 in the first term accounts for the symmetry between the selected vertices.
Therefore, for n large enough, we have

B PR B 21\ " 21k
P(A,|Ry, is kn-paired) = H P(AIT n)_, AL, R, is ky-paired) > <1 - > >1—-—= (8)
n n
§=0
where the last inequality is due to Bernoulli’s inequality. O

Lemma [£:2] showed that if k,, < n and R, is k,-paired, then with high probability each reaction
vector will have precisely 4 non-zero components. The following proposition, stated in terms of

13



discrete random matrices, proves that with probability approaching one, as n — oo, this set of
reaction vectors will be linearly independent.

For each n > 4, let D,, C R™ be a set of vectors for which (i) each vector in D,, has precisely
four non-zero elements, and (ii) for each choice of four distinct indices from {1,...,n} there is
precisely one vector in D,, with those as its non-zero components (so the size of D, is (Z)) While
the specific values of the non-zero elements do not play a role in the subsequent proposition, we
note that these values are +1 and —1 in the current paper.

Proposition 4.1. Let k, < n and let T, € R™*n be a matriz whose columns are distinct vec-
tors chosen uniformly from D,,. Let I, be the event that all column vectors of I',, are linearly
independent. Then there is a constant ¢ > 0 for which

4

kn

Proof. We denote the k, column vectors of '), by {v,@}f;l € R™. We say a set of vectors is minimally
dependent if any of its proper subsets are linearly independent. For any set of indices of vectors
T C{1,2,...,k,} we denote V,I = {v} :i € T}. By noting that

kn
Ik = U {3 a minimally dependent set of size ¢},
(=2

we have

k k
n n kn
P(Ig) <> > P(V is minimally dependent) = » _ < z )]P’(Bg) (9)

(=2 |T|=¢ =2

where By is the event that V,I' is minimally dependent for a particular set T satisfying |T'| = .

Now fix a set T with |T| = ¢. Without loss of generality, let T' = {1,2,...,¢}. Consider a
matrix M, whose columns are the vectors in V,I. Note that the set VI being minimally dependent
implies that M, has no row with only one non-zero entry (for otherwise, the set of vectors without
the column associated to that element would be linearly dependent). This implies further that each
non-zero row of My, has at least 2 entries. Since each column of M, has exactly 4 non-zero entries,
My has exactly 4¢ non-zero entries. Therefore, the number of non-zero rows in M, must be at most
2¢ and the number of zero rows in M; must be at least n — 2. Combining all of the arguments
above, we must have

P(By) < P(M;y has at least n — 2¢ zero rows). (10)

We denote the row vectors of M, by {w? }™_;. For a subset of indices of species R C {1,2,...,n}
we denote W, = {wi :i € R}. We say that W;® = 0 if all the vectors in the set are the zero vector.
We have

- < R_ogy=( "
P(M, has at least n — 2¢ zero rows) < Rl_z:_%]P’(Wn 0) <n - 2€> P(Cy) (11)

where Cy is the event that W,* = 0 for a particular R satisfying |R| = n — 2/.
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Now fix a set R with |R| = n — 2¢. Without loss of generality, let R ={2¢+1,...,n}. Then

the event Cy involves picking ¢ column vectors: V,I' = {v}, ... ,vn where the last n — 2€ elements

of each column vector are zero. Recall that each column vector has exactly 4 non-zero elements.
Suppose we have already picked j such column vectors. The number of ways we can pick the j+ 1-st
vector is at least ((3) — 27)(("3 2) — 2j) (this follows from the same argument as in the proof of
Lemma . Among these, the number of ways we can pick the j 4+ 1-st vector whose last n — 2¢

elements are zero is less than (225) (%2_ 2). Thus we have

<£—1 (22Z) (252—2) - /—1 2@ 2) % 4
P =1 = —Ho4”<2> i(5)

where the 2nd inequality is due to the fact that j < n. Plugging the above into , We see

n 20\ ¥ 2¢
P(M; has at least n — 2¢ zero rows) < 4 —) < 4
n— 20 n (25)

< o (a) %(2@

Now combining @, , and , we have
P<Ig>gz(kn) () ()
o\t Ve = S vam\m
Z" L (e R eI EGIAY (13)
5 V27 ( f/e )E n B T\ n?
4e3k2 k4
< < 2.
- ;:; T < n? > =

for some constant ¢ > 0, since k,, < n. Thus we have

4

kA
>1—c—.
P(I) 21— c )

We return to the setting of reaction networks with our final key lemma.

Lemma 4.3. Suppose that k, < n. Then we have

K} 21k,
P(0g, = O|R,, is ky-paired) > <1 - n) < )

n

Proof. Let R, be a ky-paired reaction network, where k,, < n. From Lemma[2.1] R,, has deficiency
zero if and only if all k,, reaction vectors are linearly independent. Let I,, be the event that all k,,
reaction vectors are linearly independent.

Similar to Lemma denote by A,, the event that all reactions have exactly 4 species. We
have

P(6R, = O|R,, is ky-paired) = P(I,| Ry, is k,-paired)

> P(1,|An, Ry, is ky-paired)P(A,| R, is k,-paired). (14)
Utilizing Lemma [4.2] and Proposition we complete the proof of Lemma O
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5 Discussion

This work stemmed from a natural question pertaining to reaction networks: given the importance
of deficiency zero in the reaction network literature, can we quantify how prevalent the condition
is? In the Erdés-Rényi framework we have chosen here, we have provided a threshold function,
r(n) = n—lg,, for the property in that if p,, /r(n) — 0, then the probability of deficiency zero converges
to 1, and if p, /r(n) — oo, then the probability of deficiency zero converges to 0.

We do not make the claim that the framework selected here is the only, or even the most,
biologically relevant. Instead, having equal probabilities for each edge puts as few assumptions on
our model as possible, thereby making it a reasonable starting point for analysis. In fact, there are

multiple avenues for future research, and we list just a few here.

e One may want to study models in which some added structure is known. For example, our
assumption of equal probabilities would need to be relaxed in those contexts where different
reaction types are more likely to appear in the network than others (such as when in-flows
and out-flows of species are common). This would necessitate the use of a stochastic block
model framework. We have carried out such an analysis in [7].

e In the setting of molecular biology some proteins may be more active and interact with many
other proteins while some proteins may be relatively inactive and have fewer interactions.
In such cases, we can study random reaction networks under a more general random graph
framework such as the Chung-Lu model, where vertices can be assigned different weights [10].

e Situations can arise in which some species are chemostated, which keeps their concentrations
constant. In such a case we may want to focus on the asymptotic behavior of “sub-networks”,
which consist of the species not being chemostated, instead of the whole network. The study
of sub-networks may also be useful in the multi-scale settings, where we want to focus on a
subset of “discrete” species which are in low abundances and behave differently than those in
high abundance. [3].

e There are other meaningful topological features beside deficiency zero that we could study
with our approach. Some features of interest are deficiency one (together with additional
graphical features) as in [I7], endotactic, strongly endotactic, and asyphonic as in [I}, 2 [12].

The analysis and methods developed here will, to varying degrees, be applicable to each of the
situations listed above.
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