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CONDITIONAL MONTE CARLO FOR REACTION NETWORKS

DAVID F. ANDERSON* AND KURT W. EHLERT?

Abstract. Reaction networks are often used to model interacting species in fields such as
biochemistry and ecology. When the counts of the species are sufficiently large, the dynamics of
their concentrations are typically modeled via a system of differential equations. However, when the
counts of some species are small, the dynamics of the counts are typically modeled stochastically via
a discrete state, continuous time Markov chain.

A key quantity of interest for such models is the probability mass function of the process at some
fixed time. Since paths of such models are relatively straightforward to simulate, we can estimate
the probabilities by constructing an empirical distribution. However, the support of the distribution
is often diffuse across a high-dimensional state space, where the dimension is equal to the number of
species. Therefore generating an accurate empirical distribution can come with a large computational
cost.

We present a new Monte Carlo estimator that fundamentally improves on the “classical” Monte
Carlo estimator described above. It also preserves much of classical Monte Carlo’s simplicity. The
idea is basically one of conditional Monte Carlo. Our conditional Monte Carlo estimator has two
parameters, and their choice critically affects the performance of the algorithm. Hence, a key con-
tribution of the present work is that we demonstrate how to approximate optimal values for these
parameters in an efficient manner. Moreover, we provide a central limit theorem for our estimator,
which leads to approximate confidence intervals for its error.

Key words. Monte Carlo, continuous time Markov chain, chemical master equation, nonpara-
metric density estimation, reaction networks

AMS subject classifications. 65C05, 60J28, 62G07

1. Introduction. Systems of interacting species appear often in nature. To
better understand the dynamics of such systems, we can model them as reaction
networks with deterministic or stochastic dynamics [7, 23, 30, 52]. If the counts of the
constituent species are high, then the dynamics are commonly modeled by a system of
differential equations [7, 19, 52]. However, if the count of any species is small, then a
stochastic model with a discrete state space is more appropriate [6, 7, 37, 44, 49, 52].

Since the amount of each species is necessarily nonnegative and discrete, the state
space of the stochastic process is a subset of Z‘io, where d is the number of species
types. Let v be the distribution of the initial state, which is often a point mass
distribution, and suppose we are interested in the distribution of the state of the
process at some fixed time ¢ > 0. That is, if X(¢) is the state of the process at time
t, then we would like to know the value of

v def
pi () = P,(X(t)==z),z € Zgo.

In general, finding the exact values of pY(-) is extremely difficult. More precisely,
the authors are not aware of any general class of models for which p; can be solved for
explicitly, with the exception of linear, or first-order, models [28] or, more generally,
models that satisfy a dynamical and restricted complex-balanced condition and admit
a time-dependent product form Poisson distribution [8]. However, there are many
numerical methods that give an estimate. One type of approach is to approximately
solve Kolmogorov’s forward equation, which is called the chemical master equation
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2 D. F. ANDERSON K. W. EHLERT

(CME) in much of the biology and chemistry literature. The CME can be written as

1) S @) =3 e - M- ) N @), € 2,

r=1

where R is the number of reactions in the system, A, : Z‘éo — R is the intensity (or

propensity) function for the rth reaction, ¢, € Z? gives the net change in the counts
of the species due to an occurrence of the rth reaction, and the initial distribution
pg(+) is given by v. See section 2 for the precise specification of the model, including
terminology.

For most models of interest, solving (1.1) entails solving a high-dimensional (often
infinite-dimensional) system of linear ordinary differential equations. Solving such
a system directly is almost always very difficult, so there has been a considerable
amount of research devoted to the development of fast and accurate approximate
algorithms. The general approach for many such algorithms is to first truncate the
state space of the system to a smaller subset. This truncation makes solving the
problem computationally feasible, at the cost of introducing a controllable error to
the solution. After truncation, the new system of ODEs must be solved.

There is currently a wide variety of methods for performing both the truncation
step and solution step. In particular, there is the finite state projection algorithm
[39, 50], the uniformization method [16], sliding window methods [27, 53], the sparse
grid method [26], the radial basis function approximation [32], a class of spectral
methods [18; 29], and methods that specialize to systems with multiple scales [11,
14, 34, 35, 42]. Moreover, there are tensor methods [31, 47, 51] that represents the
truncated CME with tensors.

As an alternative to approximating (1.1) directly via the methods above, we can
take a Monte Carlo approach. That is, we can generate n independent and identically
distributed (i.i.d.) realizations of the process X, denoted by {X;}" ,, and use the
Monte Carlo estimator

(1.2)

where E, o is the expectation under the initial distribution v and starting time of
zero. By the strong law of large numbers, the approximation becomes an equality as
n goes to infinity.

To utilize the above estimator, we need to simulate exact realizations of the
process X over the time interval [0,t], and there are many methods to choose from.
In particular, there is the Gillespie algorithm [21], the next reaction method [20], and
the modified next reaction method [1], which are all straightforward to implement
and often have similar efficiency. For our numerical results in the later sections, we
used the modified next reaction method.

One drawback of using the Monte Carlo estimator (1.2) to approximate the solu-
tion to the CME (1.1) is that huge numbers of simulations are generally required to
achieve a high level of accuracy. That said, the Monte Carlo estimator has at least
two distinct advantages when compared against the methods that approximately solve
the CME directly: it is very simple to implement and it is substantially less sensitive
to the dimension of the state space.

There are two natural ways to improve upon a Monte Carlo estimator. The
first way is to decrease the time required to generate realizations of the random
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CONDITIONAL MONTE CARLO FOR REACTION NETWORKS 3

samples (i.e., the process X in our case). Lowering the time required to generate
paths of the processes that we are interested in has been an active area of research for
almost two decades [1, 20, 36, 38, 43, 48]. Moreover, researchers have also designed
efficient algorithms that generate approximate paths that trade some accuracy for
speed [2, 5, 12, 13, 17, 22, 25, 45].

The second way to improve upon a Monte Carlo estimator, and the focus of
this article, is to instead lower the variance of the estimator itself. There are many
broadly applicable variance reduction techniques, including coupling methods, control
variates, stratified sampling, antithetic random variables, quasi-Monte Carlo, and
conditional Monte Carlo [24, 41].

In this paper, we utilize a form of conditional Monte Carlo to reduce the variance.
Briefly, conditional Monte Carlo follows from the observation that for one-dimensional
random variables X and Y, defined on the same probability space, we have E[X] =
E[E[X]|Y]], and Var(E[X|Y]) < Var(X), so long as all the expectations are well
defined [9]. That is, one can always reduce variance by conditioning. Of course, the
“art” is in the selection of an appropriate random variable Y.

Returning to our situation, define E, ,[f(X (¢)] as the expectation of f(X (¢)) taken
with respect to the initial state distribution v and starting time 0 < s < ¢. That is,
P(X(s) = z) = v(z). If v is a point-mass distribution at y € Z<,, then we write
E, s[f(X(t))]. Fix h € [0,t], then B

pi(z) =Ky [L(X(¢t) = )]
=E, 0 [Evo[L(X(t) =2)| X(t — h)]]
=Ev0 [Ex—n)t—n [L(X(t) = 2)]] (Markov property)

1 n

(1.3) = nlggo - ZEXi(t,h))t,h [1(X(t) = z)], a.s. (strong law of large numbers)
i=1

where the {X;(t — h)}_, are i.i.d. realizations of X (¢t — h). A natural estimator for

the right hand side of the above equation is

(1.4 B G, ) 257 S 10X, (1) = ),

where we generate the X;; in the following manner:
e simulate n independent realizations of the process X over the time interval
[0,t — h], each with an initial value determined by v, and denote the ith
realization by X;,
e for each i € {1,...,n}, generate m conditionally independent realizations
over the time interval [t — h,t], each of which has initial state X;(t — h).
Denote the jth such realization by X;;.
Note that for each j € {1,...,m}, the process X;; is equal to X; over the interval
[0,t — h]. See Figure 1.
Since {X;,;(t)}72, and {X;,;}L, are independent for iy # iz, the strong law of
law numbers implies that with probability one we have

m

o 1 v
Jim P (z5n,m,h) = By | — E 1 L(Xy5(t) = =) | = p{ (@),
]:

Hereafter we will refer to the original estimator (1.2) as classical Monte Carlo, and
the new estimator (1.4) as conditional Monte Carlo. The conditional Monte Carlo
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(a) Two independent realizations of (b) Two independent realizations of
the process over the time interval the process generated over [0, 1.5].
[0,2]. Each is then followed by m con-

ditionally independent “branches”
simulated over [1.5,2].

F1G. 1. Paths generated for the birth model X — 2X.

estimator has two unspecified parameters, denoted m and h. The number of branches
is determined by m, and the time at which branching occurs is controlled by h. If m
and h are fixed, then the remaining parameter n is simply chosen large enough such
that the estimator’s variance is below some desired threshold. If m = 1, h = 0, or
h = t, then the conditional and classical Monte Carlo estimators are the same. If
m > 1 and h € (0,t), then for the same computational cost as classical Monte Carlo,
the conditional Monte Carlo estimator obtains more observations of X (¢). We would
like to choose the values of m and A such that, in some sense, our new estimator is
more efficient than classical Monte Carlo. In section 3, we provide an algorithm for
finding optimal values of m and h, which is the key contribution of this article.

The remainder of the article is organized as follows. In section 2, we define the
continuous time Markov chain model of reaction networks. Then in section 3, we
present an algorithm for finding the optimal values of m and h, and also the full
algorithm, Algorithm 3.3, for the implementation of the conditional Monte Carlo
estimator. Next, in section 4, we give numerical results demonstrating the order
of magnitude improvement that can be obtained with the use of conditional Monte
Carlo in the current context. In section 5, we derive a central limit theorem for
the error of the conditional Monte Carlo estimator and then test it on examples.
Finally, in section 6, we summarize our results and suggest ideas for future work. The
proofs of the main results are in Appendix A. The supplementary material contain
more figures related to numerical results. An example MATLAB implementation of
the conditional Monte Carlo algorithm is at https://github.com/kehlert/conditional_
monte_carlo_example.

2. Mathematical model. Suppose our reaction network has d types of species
and R reactions. For 1 <r < R,
(i) we will denote by ¢, the reaction vector for the rth reaction, meaning that
if the rth reaction occurs at time ¢, and the process is currently in state
T € Zio, then the new state becomes = + (;
(ii) we will denote by A, : Z‘éo — [0, 00) the intensity, or propensity, function of
the rth reaction.
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CONDITIONAL MONTE CARLO FOR REACTION NETWORKS 5

A standing assumption is that A.(z) = 0 if z 4 (. ¢ Z%m which preserves the non-
negativity of the components. We let X be a continuous time Markov chain (CTMC)
whose transition rate from state x to a’ is

R

q(z,2') = Z)\T(w)]l(x’ —x =)

r=1

Hence, X is a Markov process with infinitesimal generator Af(z) = Zil Ar(@)(f(x+
() — f(x)), where f : Z%, — R is a bounded function with compact support. We
will denote our process by X, so that X (t) € Z<,, is the vector whose ith component
gives the count of species ¢ at time ¢ > 0. -

The most common choice of intensity function is stochastic mass action kinetics.
Suppose that we require y; copies of species i for the rth reaction to occur. Then we

say that A\, has stochastic mass action kinetics if

d $1'

(2.1) A () fHTH (mi_yi)!]l(xz > i),
for some k, > 0, which is called the rate constant of the reaction. For example,
for the reaction 24 + B — A + C, where A, B, and C are the species types in our
model system, the reaction vector is (—1,—1,1)7 and y = (2,1,0)7, in which case
Ar(x) = Kpy (21 — 1)29, where we have ordered the species alphabetically.

None of our theoretical results assume that the A, has the above mass action
form, but the models we tested do use it unless otherwise noted.

One well-known representation for the stochastic process X is the random time
change representation of Thomas Kurtz [6, 7, 33]

(2.2) X(t) = X(0) + in ( / A (X () ds) G

where X (0) is the initial state and the Y, are independent unit-rate Poisson processes.
We will make use of the above representation in some of our proofs.

2.1. Examples. In the subsequent sections, we intersperse numerical results,
and below is a list of all the example models we used. The species to the left of the
arrows are the reactants (giving the counts of the species consumed in the reaction),
and those to the right are the products. The numbers above the arrows are the rate
constants k.. Unless otherwise noted, for every model and reaction we define the
intensities A, with (2.1).

(i) Birth

The initial state is X (0) = 10 and ¢ = 2. The single reaction is

x Lox.

Following (2.1), the rate of the reaction is A(z) = x.
(ii) Birth—Death
The initial state is X (0) = 100 and ¢ = 2. There are two reactions
02 X, x 50

Following (2.1), the rates of the reactions are Ai(z) = 50, and Aa(x) = z,
respectively.
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D. F. ANDERSON K. W. EHLERT

Lotka—Volterra
This model is also often called the predator-prey model. The initial state is
A(0) =200 and B(0) = 100. We set ¢ = 4. The reactions are

A224, A+B2% 9B B2 0.
Following (2.1), and after ordering the species as (4, B), the rates of the
reactions are A;(x) = 2z, A2(x) = 0.01lz 22, and Az(x) = 2z2, respectively.
Dimerization
In this model, mRN A is translated into the protein P, which then dimerizes
into D, and the dimer D accumulates over time. The initial state for every
species is zero except for G(0) = 1. We set t = 1. The reactions are

G 2 G+mRNA, mRNA % mRNA+ P

2P 2% D mRNA 2L 0, P Lo
Following (2.1), and after ordering the species as (G, mRN A, P, D), the rates
of the reactions are Aj(x) = 2521, A2(x) = 10022, A3(x) = 0.001z3(z5 — 1),
Ag(x) = 0.1z2, and A5(x) = x3 respectively.
Toggle
Each species represses the production of the other, which leads to a probabil-
ity mass function that is multimodal. The initial state is A(0) = B(0) = 0.
We set ¢t = 100. The reactions are

0—A A—=0,0— B, B—10.

For this model, the first and third intensity functions are not chosen to be
mass action. Specifically, we let

50 50

A =—— A = A =—— ) =
1($) 1 +'2$2’ 2($) 1, 3($) 1 +_2$13 4($) T2,
where we again ordered the species as (A, B).
Fast/Slow

A and B quickly convert into one another, and B slowly turns into C. The
initial state is A(0) = B(0) = 100 and C(0) = 0. We set t = 10. The reactions
are

A% B B A B2

Following (2.1), and after ordering the species as (4, B,C), the rates are
A1(z) = 10z, Ao(x) = 1029, and Az(x) = 0.1zo, respectively.

3. Determining the values of m and h via optimization. The conditional

Monte Carlo estimator (1.4) is of little value without knowledge of which values of m
and h to use. In this section, we will show that appropriate values can be found by
numerically solving an easy optimization problem.

Recall that the distribution of the process is denoted by pY, and we denote an

(3.1)

estimate of this distribution by p;. We will measure the quality of the estimation via
the mean integrated squared error (MISE), which is

MISE(p)) € Evo | S (9} (2) - p¥(2)’

d
zGZzo
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CONDITIONAL MONTE CARLO FOR REACTION NETWORKS 7

Note that if py is constructed via our conditional Monte Carlo estimator, then it,
and by extension MISE(p}), is a function of n,m, and h. Suppose we have a fixed
computational budget, which we denote as b. We then want to choose the values of
n, m, and h so that we minimize MISE(p;) subject to our budget constraint b.

3.1. Computational cost model. Assuming that our model is non-explosive
[3, 40], the expected number of reactions required to generate { X1} is given by

t—h

Xo(X(s))ds

t

+m- E,,,o[ )\O(X(s))ds} :

t—h

EV70
0

expected # of reactions in [0,t—h] expected # of reactions in [t—h,t]

R .
where Ao(z) = >°,_; A\r(x) (see Theorem A.1). Hence, the expected computational
cost for our conditional Monte Carlo estimator is

t
+m~EV’0 |:/ )\Q(X(S)) d8:| s
t—h
where ¢ > 0 is an unknown constant.

Since we cannot generally evaluate the expectations in the cost model (3.2), as
this would be as difficult as the problem we are attempting to solve, we need to
estimate them. To do so, fix a relatively small 7 and simulate 7 i.i.d. paths {X;}1 ;.
Then the expectations are approximately equal to

(3.3) 72 / Mo(X;(s)) ds, and = Z /

Importantly, for the fixed set of 7 paths, the values (3.3) can be computed for a
variety of different A values. The process X; is piecewise constant, and therefore so is
Ao(X;). Thus, for any value of h, we can easily compute the mtegrals so long as we
have stored the jump times of X; and the value of A\y(X;) at each jump.

t—h
(3.2) n-c <]E,,’O /0 Ao(X (s)) ds

3.2. Optimization problem. Given a reaction network, our goal is to find
values of n, m, and h that minimize the mean integrated squared error (MISE) (3.1) for
our conditional Monte Carlo estimator (1.4) while staying within our computational
budget of b. More precisely, we want to solve the following optimization problem

. v y 2
min EV,O (pt (Z’, n,m, h) - pt (1‘)) ’
(3.4) omah 2
z€ZL,
mean integrated squared error (MISE)
subject to

+m-Eyo [/:io(X(s))dsD <b

The following theorem will allow us to transform the above optimization problem
into a more solvable form.

t—h
(3.5) n-c (Eu,o /0 Mo(X(s))ds

n,m € Z>y and 0 < h <.

This manuscript is for review purposes only.



267
268
269

281

8 D. F. ANDERSON K. W. EHLERT

THEOREM 3.1. Suppose the process X is non-explosive. For any fired n,m € Z>,
and h € [0, 1]

% % + (1 - :n) P,(Xu(t) = X12(t) = Y} (2)?

er%O

The proof of Theorem 3.1 can be found in Appendix A.2.

If we allow n to be continuous, then we can use the constraint (3.5) to solve
for n~!, and subsequently eliminate the constraint by substitution. This leads to a
simpler optimization problem. In particular, let

t—h

f(m,h) 2o (;L Evo Ao(X(s)) ds

+Euo [ t)\O(X(s)) dsD

0 t—h

X | T4 (m = 1)P(X11(t) = X12(t)) = m Y pf/(2)?

er%o
Then the original optimization problem (3.4) and (3.5) is equivalent to

min f(m, h)
(3.6) m;h
m e Zs1,0 < h <t

Note that both ¢ and b have dropped out of the optimization problem.

There are three terms in f that we must know, or be able to approximate, in
order to solve (3.6).

e The expectations of the integrals. We discussed how to approximate these in
subsection 3.1.

e The sum Y p}(x)?. However, we note that >__ p¥(z)? is the probability that
two independent paths end up in the same state at time ¢. For many models,
including the ones we tested, that sum is much smaller than P,(X1(t) =
X12(t)) and is close to zero. Thus for our examples, we replace the sum with
zero and make that our general recommendation.

e The term P,(X11(t) = Xi12(t)), whose approximation is the subject of the
next section.

Note that there are many models for which Y p¥(z)? will not be near zero. How-
ever, for such models a small number of states will necessarily have a large probability.
An example of such a model would be a Birth-Death model, as in Section 2.1, with
input rate 1 and output rate 1. Such a model has a stationary distribution that is
Poisson with a parameter of 1 [4], and so for large ¢ the distribution p} will concen-
trate on the set {0,1,2,3}. Other examples where Y p¥(z)? is not small include
those with extinction events. For such models, it would not be appropriate to set
this term to zero. However, for models with diffuse probability mass functions, i.e.,
those models for which estimating py is difficult and are the focus of this paper, the
assumption will often be valid.
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CONDITIONAL MONTE CARLO FOR REACTION NETWORKS 9
3.3. Approximating the joint probability. In order to optimize the objective
function f(m,h) in (3.6), we need to know, or be able to quickly approximate, the

term P,(X11(t) = X12(t)). The following theorem, proven in Appendix A.3, will allow
us to make a good approximation, without requiring any additional simulations.

THEOREM 3.2. Let S be the d x R matriz whose rth column is ¢, and let null(S)
be the right nullspace of S restricted to integer values. Let X and Z satisfy

X() = X(0) + iY:‘ (f t XS

Z(t) = X(0) + iy ( / t AT(X(S))dS) 3

where the YTX and YTZ are independent, unit-rate Poisson processes. Assume that X
is mnon-explosive. For each 1 <r < R and 0 < a < b <t, denote

AP = / A (X ()i,

and let K& have the Skellam(A®*, A%Y) distribution. Then

(3.7) P (X(t)=Z(t) = > Eyo

kenull(S)

R
[[P (K% = | 229)].
r=1

Note that X is the process (2.2) that is of interest to us. Returning to our setup, if
we assume that

¢ t
)\T(Xll(s))ds ~ )\T(Xlg(s)) dS,
t—h t—h
which should be valid for small A, then Theorem 3.2 leads to an approximation of

P,(X11(t) = X12(t)). In particular, we may sample 7 paths and for the ith such path
define

t
A = / Ar(Xi(s))ds, 1 <i < n.
t—h

Then PU(Xll(t) = Xlg(t)) ~ P,,(Xll(t) = Xlg(t)), where

n R
38 PuUXu() = X)) 0SS TP (K =k | A1),

keEN =1 r=1

and N is a finite subset of null(S).

To find N, we use the “Algorithm for Solving the Linear Diophantine Equation
Problem” from section 1.5.2 of [15]. In general, the algorithm finds solutions x € Z¢
to linear equations of the form Ax = b for rational A and b. In our case, we enumerate
solutions to Sk = 0 for k € Z?. Generally, there are infinitely many solutions, however
the right-hand side of (3.8) is always maximized at k£ = 0, and decreases as k moves
away from 0. Thus we approximate (3.8) by starting at & = 0 and enumerating all
“nearby” solutions. Algorithm 3.1 shows how to apply the algorithm from [15] to our
particular problem. In all of our numerical examples, we chose C' = 4 in Algorithm 3.1.
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Algorithm 3.1 Algorithm for enumerating a finite subset of null(S) € Z4*%
Require: the stoichiometry matrix S and C € Z~q
if S does not have full row rank then

Remove redundant equations from the system and replace S.
end if

Transform S into its Hermite normal form H, and store the matrix U that satisfies
H=SU.

6: r < R —rank(9S)

7: Let U be the matrix containing the last = columns of U.
8:

9: N « {Uz 2 €Z"|2]|oo < C’}

Algorithm 3.2 Algorithm for computing P, (X11(t) = X12(t))

Require: 7 i.i.d. samples of X, denoted {X;}? ; > 7 = 500 was more than sufficient.
Require: the stoichiometry matrix S, and a finite N C null(S)

1: forallrinl,...,Randiin 1,...,7 do

2 A« ft—h ~(X;(s)) ds

3: end for

4:

5 P« 0

6: for all kin Nandiin 1,...,7 do

. PPy, P (Kt me_k, | AL t) b K1t~ Skellam(AT; ™, A
8: end for

9: . .

10: P, (X11(t) = X12(t)) « P/n

3.4. Approximation to the optimization problem. By using the joint prob-
ability approximation (3.8), we can approximate the function f in the optimization
problem (3.6). In particular, let

t—h t
F(m, h) dzef<1 Ro(X(s)) ds + AO(X(S))ds>

m Jo t—h

(3.9) .

1+(m—1)15V(X11( t) = Xqo(t m%ﬁ/pkf)'f ;

where Xo(X(5)) = 232 2% A(Xi(s)), and the {X;}7, are independent paths
of X. Then we may substitute f with J:" and our new optimization problem is the
following:

min f(m, h)
(3.10) moh
mERZl,OShgt.

Note that above we have allowed m to be real-valued, as opposed to integer valued.
This allows us to use continuous optimization algorithms, which generally converge
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more rapidly. According to Figure SM1, which shows JA“(m7 h) for many values of m
and h, f does not change too quickly with m, so allowing m to range over the reals
instead of the integers should not change the optimal values of m and h appreciably.

It is important to know when the optimization problem (3.10) has a finite solution.
In the proposition below, we show that a solution necessarily exists when PV(X 11(t) =
X12(t)) is larger than the approximation used for Y p¥(z)?. Since we approximate
the sum with zero, we may conclude that a finite solution always exists in our setup.

PROPOSITION 3.3. Let pA2 be our approzimation to > pY(z)?. If P, (X1(t) =
X12(t)) > p? for all h € [0,¢], then (3.10) has a finite solution.
Proof. Since the integrals are nonnegative, h is in a compact domain, f depends

continuously on h and m, and lim,, . f(m, h) = 0o, a finite solution exists. O

Algorithm 3.3 outlines the full conditional Monte Carlo algorithm, which brings
together all of the individual pieces of the algorithm that we previously discussed.

Algorithm 3.3 Conditional Monte Carlo algorithm

Require: 7 i.i.d. samples of X, denoted {X;}™ | > 7 = 500 was more than sufficient.

1: m,h < argming,er., f(m,h)

0<h<t
2: > Use {X;}7_,, (3.9), and Algorithm 3.2 to evaluate .
3: for all 7in1,... ,n do
4: Sample X;(t — h). > The X;(t — h) are i.i.d.
5: for all jinl,...,m do
6: Sample X;;(t) conditioned on X;;(t — h) = X;(t — h).
7 > See section 1 for details about Xj;.
8: end for
9: end for
10:
e Y (wmm, h) e X LS 1(X () = )

4. Numerical results. In this section, we present numerical results demon-
strating the improvement in accuracy, quantified via the mean integrated squared
error (3.1), that comes from using our conditional Monte Carlo estimator instead of
the classical Monte Carlo estimator. In particular, when near—optimal values of m
and h are utilized, the accuracy often improves by an order of magnitude for a fixed
computational budget. Moreover, we show that the function f of (3.10) is indeed a
very good approximation for f of (3.6) for the examples we considered, allowing us
to conclude that the values of m and h our method produces are near—optimal.

The following steps were carried out on each of our test examples. First, we fixed
an integer ny and computed the classical Monte Carlo estimator

ni

1
pMC(2;ny) = - Z 1(X;(t)=ux),z € Zgo.
i=1

For all models, we used n; = 10%. We also recorded the number of random variates
used in generating pMC( - ;n;), which served as the budget b in the computational
cost constraint (3.5).
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After obtaining pM©( - ;n;), we computed the conditional Monte Carlo estimator
1 no 1 m
pMC (2509, m, h) = - Z - Z 1(X;;(t) =x), z € Zéo,
i=1 " j=1

for various pairs of m and h, and ns was allowed to increase until the conditional
estimator used essentially the same number of random variates as the classical Monte
Carlo estimator. All random variates generated for the conditional estimators were
independent of those utilized for the classical estimator.

Next, for both classical and conditional Monte Carlo, we computed the integrated
squared error

(4.1) ISE =Y (p(z) - p}(2))*,
g

where S was a large fixed subset of the state space, and p(x) was either the classical
or conditional Monte Carlo estimate. The ISE is itself a random variable, and so we
approximated the mean integrated square error (MISE) by averaging 100 independent
samples of the ISE.

The exact values of pY(x) were unknown. Thus the values were estimated with
conditional Monte Carlo with a large value of n; (we used n; = 10%), and with m and
h chosen so that they approximately minimize the MISE.

Finally, we denote by MISEyic our estimate of the classical Monte Carlo MISE,
and, for a given m and h, we denote by MISEcyc(m, k) the conditional version. For
each model, and for each choice of m and h, an “empirical error improvement” was
computed as the following ratio

MISE ¢
MISECMC (m, h) ’

where a number greater than one implies that conditional Monte Carlo has a lower
MISE than classical Monte Carlo when given the same computational budget. These
values, one for each pair of m and h, can then be plotted. In the top half of Figures 2
and 3 (and Figures SM2 to SM5), we display these values with a heatmap. Of par-
ticular interest is the order of magnitude improvement in computational efficiency we
see with the conditional Monte Carlo estimator as compared to classical Monte Carlo
when well-chosen values of h and m are utilized. In particular, for the Lotka-Volterra
model we see a 40-fold improvement, for the dimerization model we see a 20-fold im-
provement, for the toggle model we see a 20-fold improvement, and for the fast/slow
model we see a 20-fold improvement. For the birth and birth—death models we see
more modest improvements in computational efficiency, but this can be explained by
the simplicity of these models which makes classical Monte Carlo sufficient for the
task at hand. In particular, one promising aspect of the present work comes into fo-
cus with these numerical results: the more complicated the model, and the larger and
more diffuse the distribution of the model (which is where other methods, including
those that approximately solve the chemical master equation directly, struggle), the
better the performance of the conditional Monte Carlo estimator.

In practice, we are not given the optimal values of the parameters m and h, so
we find them via the optimization problem (3.10). In each of the bottom portions
of Figures 2 and 3 (and Figures SM2 to SM5), we provide the values of f(m,h) for
the different pairs of m and h. We report the inverse so that the heatmap will agree
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Empirical error improvement
1| 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
20178 | 188 | 193 | 196 | 1.97 | 1.98 | 1.98 | 197 | 196 | 193 | 1.89 | 1.83 | 1.76 | 1.66 | 1.55
3| 2.40 2.64 279 287 2.91 2.93 2,93 2.91 2.87 2.80 269 254 2.35 214 1.90
5
8

3.33 3.94 4.33 4.59 471 4.78 4.77 4.71 4.58 4.37 4.06 3.66 3.21 277 233
4.25 5.45 6.29 6.90 7.23 7.38 7.38 7.22 6.88 6.37 5.68 4.87 4.05 3.32 2.65
12| 5.02 6.90 8.40 9.58 |10.28 |10.58 |10.58 |10.22 | 9.55 8.56 7.30 5.96 4.73 3.73 2.88
20| 5.87 8.76 |11.47 | 1385 | 1542 (1619 |16.17 |1533 |13.82 |11.76 | 9.46 7.28 5.48 413 3.10

m 32| 6.48 |10.27 |14.35 |18.47 |21.34 21.24 |18.38 |14.86 |11.30 | 8.27 6.00 4.40 3.22
52| 6.92 |11.52 |16.97 17.72 | 12.88 | 9.08 6.39 4.60 3.31
85| 7.18 | 12.32 | 18.88 4.16 8.29 8 80 19.92 | 13.99 | 9.59 6.63 472 3.37
139 | 7.25 [12.72 |19.85 0 42.76 6 0 21.18 | 1455 | 9.88 6.76 477 3.40
228 | 7.19 | 1253 |19.69 4 48 21.20 | 14.62 9.92 6.80 4.80 3.41
373| 6.95 |11.96 |18.40 {] 6 6 20.12 | 14.09 | 9.70 6.72 478 3.40
611| 6.53 | 10.87 |16.08 17.98 |13.14 9.31 6.57 4.76 3.39
1000 | 5.90 943 | 1327 |17.28 [20.41 |21.78 20.75 | 18.37 | 14.89 |11.56 | 8.53 6.31 4.66 3.38
K3

A N S o A © > 9 o N S a 5l
o (B (¢ (o (o (9 @ (@ (o (a8 8 3 o
h

Scaled reciprocal of the objective function
1] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2| 1.62 1.79 1.89 1.94 1.97 1.97 1.98 1.98 1.96 1.94 1.90 1.84 1.76 1.67 1.56
3| 2.03 243 2.68 2.82 2.90 2.90 293 2.92 2.88 2.81 270 2.54 2.36 215 1.91
5| 2,55 3.41 4.02 4.43 4.65 4.65 4.76 4.74 4.59 4.40 4.07 3.68 3.24 278 234
8
2

2.98 4.39 5.61 6.53 7.05 7.05 7.34 7.28 6.91 6.45 572 4.90 4.10 3.34 2.68
3.29 5.23 717 8.85 9.88 9.88 |10.49 |10.36 | 9.59 8.70 7.36 6.01 4.80 3.76 2,91
20| 3.58 6.16 920 |12.31 | 1450 [14.51 (1590 |1562 |13.89 |12.03 | 9.54 7.33 5.56 417 3.12

m 32| 376 6.82 |10.89 |15.72 | 19.55 |19.56 18.45 |15.27 [11.41 | 835 6.10 4.44 3.26
52| 3.87 7.27 |12.25 | 18.86 9 18.29 |12.98 | 9.13 6.48 4.63 3.34

85| 3.91 7.51 | 13.06 9.0 9.04 90 4.59 14.06 | 9.64 6.73 4.74 3.39
139 | 3.90 7.54 |13.29 0.9 0.88 9 14.53 | 9.83 6.80 4.78 3.42
228 | 3.82 7.34 | 12.87 9.8 9.8 86 6 14.48 | 9.83 6.77 | 477 3.43
373 | 3.68 6.93 |11.86 |18.97 66 19.98 |13.75 | 9.48 6.69 4.69 3.36
611 | 3.44 6.28 |10.35 | 15.76 17.30 |12.45 | 8.87 6.37 | 459 3.32
1000 | 8.11 5.41 846 |12.22 | 1547 (1547 (1837 [18.75 |16.62 |14.19 |10.79 | 7.93 5.83 4.35 3.16

o N o &3 & " > 3 SEEENY e A Al =y
[N S AN AN S RN P TS L C AN S
h

Fic. 2. Lotka-Volterra model. The first heatmap shows MISEyc/ MISEcpyc(m, h) for different
values of m and h. The method we used to obtain the ratio is described in section 4. The second
heatmap shows that value of f(1,0)/f(m,h). The definition of J is given by (3.9).

qualitatively with the top portion of the figures (higher values are desirable). We
also normalized the values by multiplying them by f(1,0), which does not affect the
results of the optimization problem in any way. To generate each value 1 / f m,h) we
first sampled 7 = 500 paths, which then allowed us to compute Ao and P, (X11( ) =
X12(t)) as detailed in the previous section. We could then use these values to compute
f(m, h) via (3.9).

Note that the empirical error improvement and j” do not need to have the same
value for a pair of m and h. The important thing is that the maximizer of the empirical
error improvement is similar to the minimizer of f The heatmaps do indeed suggest
that the true and approximate optimization problems have similar solutions. What
is also clear from these numerical results is that even if m and h slightly deviate from
their optimal values, we still get a substantial improvement.

We stress that such heatmaps do not need to be made by anyone who uses the
conditional Monte Carlo algorithm. They are only used here to demonstrate that
the optimization problem (3.10) can be safely used to find the near—optimal values
of m and h, which can then be used to construct the desired estimator (1.4) via
Algorithm 3.3.

5. A central limit theorem. In this section, we will show how to obtain an
approximate one-sided confidence interval for the integrated squared error (4.1) with-
out running more simulations. Specifically, for a fixed (presumably large) finite subset
of the state space S, a fixed o € (0,1), and large n, we want to find a sequence of
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Empirical error improvement
1| 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2| 1.85 1.90 1.93 1.95 1.96 1.95 1.95 1.93 1.90 1.86 1.80 173 1.63 1.51 1.37
3| 257 2.70 279 284 2.87 2.87 2.84 2.79 2.72 2.61 2.46 228 2.06 1.81 1.56
5
8

3.74 4.09 4.34 4.50 457 | 457 | 450 4.36 4.14 3.85 3.48 3.06 261 2.16 1.75
5.02 5.74 6.29 6.68 6.85 6.86 6.69 6.36 5.87 5.24 4.54 3.79 3.07 242 1.89
12| 6.19 7.38 837 | 9.11 9.47 | 948 9.14 8.51 7.62 6.57 5.45 437 | 339 259 1.97

20| 7.54 9.50 8.21 6.49 4.96 3.72 2.76 2,04

m 32| 851 40 9.53 7.25 5.38 3.93 2.85 2.08
52 | 9.08 8.8 0 0 9.6 7.81 5.66 4.07 2,91 211

85| 9.18 9.76 0 8 8.36 8.16 5.83 4.14 295 213
139 | 8.75 8 0.8! 88 0.8 8 8.25 5.90 4.18 2,96 213
228 | 7.85 6 8.80 8 8.16 5.86 4.18 2.96 213
373 | 6.60 8.33 7.89 5.75 4.13 2,94 212
611 | 5.20 6.29 7.40 860 | 9.61 9.19 7.31 5.49 4.01 292 2.1
1000 | 3.84 4.46 ‘ 5.12 ‘ 5.84 ‘ 6.50 7.21 7.88 8.36 8.38 7.74 6.56 514 | 3.84 2.84 2,07
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Scaled reciprocal of the objective function

[ 100 [1.00 [ 100 [ 100 [ 100 [1.00 [ 100 [ 100 [ 100 [ 100 | 1.00 [ 100 [ 100 [ 1.00 [ 1.00
2[131 [ 141 [ 149 | 149 | 164 | 169 | 174 | 176 | 178 | 177 | 175 | 168 | 160 | 149 | 136
3| 146 | 164 | 177 | 176 177 | 154
5[ 163 | 186 172
8| 1.68
12| 172 6 0
20 | 175 0 0 0
m 32| 173 6
52 | 167 1.80
85 | 168 176 | 158 | 154 | 145 | 139
139146 | 186 | 179 | 1.82 178 | 150 | 134 | 118 | 1.11 | 1.08 | 1.49 | 1.10
228 | 127 | 139 | 149 | 147 | 151 | 143 | 1.31 | 115 | 1.00 | 089 | 078 | 0.73 | 074 | 079 | 0.93
373| 105 | 110 | 112 | 1.11 | 1.08 | 099 | 0.85 | 078 | 0.65 | 0.55 | 050 | 048 | 050 | 078 | 0.86
61| 081 | 081 | 081 | 081 | 072 | 065 | 0.54 | 049 | 042 | 0.36 | 032 | 050 | 033 | 047 | 0.42
1000 | 060 | 058 | 0.55 | 055 | 0.47 | 042 | 035 | 0.30 | 026 | 022 | 019 | 025 | 0.25 | 023 | 038
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Fi1c. 3. Dimerization model. The first heatmap shows MISEyc/MISEcyc(m, h) for different

values of m and h. The method we used to obtain the ratio is described in section 4. The second
heatmap shows that value of f(1,0)/f(m,h). The definition of f is given by (3.9).

positive constants {C),} and a constant u > 0 such that

(5.1) lim P(Cn Z (f)t”(x;n, m, h) —pf{(x))Q < u) =1-aq,

n—oo
zES

integrated squared error
where C,, is allowed to depend on m and h. The following central limit theorem will
lead us to values for {C),} and u.
THEOREM 5.1. Fix m € Z>1 and h € [0,t]. Let S C Z‘éo be the state space
of the continuous time Markov chain, and let S be a finite subset of S. Choose an

enumeration of S and denote it {x,}lill Let py,p; € RISI with their ith elements
equal to pY(x;) and py (x;;n,m, h), respectively. Let

d . 174 1% 14
(5.2) = Yo diag(pl) +m(m — 1)A — m?p! ()",

where diag(pY) is the diagonal matriz with p! along its diagonal, and A is a |S| x |S|
matric where A;; = P,(X11(t) = x4, X12(t) = xj). Then
I5]
(5.3) nm? Z (DY (z;n,m, h) —p'{(w))2 A ZA@ZKQ, as n — oo,
z€S =1

where the {)\g}llel are the eigenvalues of ¥ and Z,; i N(0,1).
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3’ is usually an enormous matrix, so we do not want to store it, much less compute
its eigenvalues. The Satterthwaite approximation [46] says that

(5.4) Z)‘ZZE 4 YA o ((Ee )\e)2> _tr (x2) 2 <tr(2)2> |
¢

YPYR WD PY: @)\ w2

where x?(v) denotes a x? random variable with v degrees of freedom. The approxima-
tion is obtained by matching the first two moments of the linear combination (above
left-hand side) and the chi-squared distribution (above right-hand side). The advan-
tage of the approximation is that we can estimate tr (X) and tr (£?) without storing
Y. explicitly or computing its eigenvalues.

THEOREM 5.2. Fizn,m € Z>, and h € [0,t]. Let S, {xk}L‘ill, and py be defined
as in Theorem 5.1. For1 < i <mn, let M; € Zg, and set its kth element to M;(xy,) def

21]11 1(X;; = ap) (the {Xi;} are defined in section 1). Let S, be the usual sample

covariance matriz of {M;}_,. Specifically,

n

o def 1 — — T
En:en_lz(Mi—M)(Mi—M) :

i=1
where M =n~1Y"" | M;. Then
(5.5) tr(i ) - ZH:MTM»— o )T
. n _”*11»:1 i M nflpt by,
and
22 1 L —T 2
(5.6) tr(S,) = T [ My = 20T M+ (5) 7B
i=1
2 —T =T T ar]?
L S [MIM; = DM - BT M+ ()
1<i<j<n

Furthermore
tr (i]n) () and tr (i]i) 5t (2?) asn — .

For the models we tested, the optimal value of m was only moderately large (on
the order of 10 to 100), and the indicator in the summand of M;(x) is zero for many
values of . Whenever those two conditions hold, M; sparse. Consequently, storing
{M;}™_, does not require too much memory, and the terms M} M; and M M; are
cheap to compute. Algorithm 5.1 summarizes how we compute the traces. Using the
sparsity of the M; is important, because otherwise the vectors are too large to store
and the operations are slow.

COROLLARY 5.3. Fiz n,m € Z>1 and h € [0,t]. Also fix an o € (0,1), and let
X2 (v) be the 1 —a quantile of the x? distribution with v degrees of freedom. An approx-
imate 1 — o confidence interval for Y .5 (P} (x;n,m,h) — p;’(ac))2 is [0, Up/(nm?)],
where

(5.7) v, (5 o ()
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Algorithm 5.1 Algorithm for computing p}, tr (f]n), and tr (ii)

Require: n,m € Z>; and h € [0, 1]
1: foriin {1,...,n} do
2 Sample X;(t — h).
3 Given X;(t — h), sample {X;(t)}7L;.
4 for z in S do
5: Mi(z) + 3770, W(X;(t) = x) > Store M; as a sparse vector.
6 end for
7: end for
8
9

U 1 n
DD 2o M

10: Compute tr (En> according to (5.5).

2
11: Compute tr (En> according to (5.6).

Figures 4a and 4b (and also Figures SM6 to SM9), compare the empirical distri-
bution of

(5.8) nm? Z (P (z;m,m, h) — pt”(x))2
ze€8

to the approximate asymptotic distribution (5.4), where the true traces are replaced
with the sample traces from Algorithm 5.1. The figures also compare the sample 95%
quantile to the same quantile based on Corollary 5.3, which turned out to be close.

6. Directions for future research. We demonstrated how to implement a
version of conditional Monte Carlo in the context of continuous time Markov chain
models for reaction networks. There are many possible directions for future research;
we list two.

1. The method could be extended so it provides estimates of the distribution at
multiple fixed time-points. The method we developed, and in particular the
optimization problem we utilize to find the values of m and h, is tailored to
the single time-point case.

2. In the method developed here the conditional expectation in (1.3)

Ex,(t—n),t—n [L(X(t) = 2)]

is approximated by Monte Carlo with m conditionally independent realiza-
tions. However, it could be approximated by solving the chemical master
equation directly, perhaps via the finite state projection algorithm [39]. Be-
cause the solver need only integrate the system of ODEs over the time interval
[t — h,t], the probability mass should not become too diffuse, thereby solving
one of the major difficulties related to these solvers.

We implemented this approach and observed some increase in efficiency over
the conditional Monte Carlo algorithm Algorithm 3.3, around a factor of
three. However, the gains were only realized when an optimal value of h
was chosen, and we needed to test many different h values in order to find
the optimal value. In practice, we would need a faster method for finding
the optimal parameters, similar to the optimization problem detailed in this

paper.
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(b) Dimerization model.

Fic. 4. The dashed blue density is the empirical density of the integrated squared error (5.8),
whereas the solid red density is the Satterwaithe approzimation to the asymptotic density (5.4). The
blue cross and red circle are the 95% quantiles of their respective densities. To generate the blue
curve, first we sampled 10* values of nm? D e (Y (z;n,m, h) —pY¥ (17))2 (which we call the “scaled
integrated squared error”) for different values of n. Given those samples, we used MATLAB’s
ksdensity function to generate the blue curve. The traces of ¥ and ¥? were estimated with an
independent set of 105 simulations and Algorithm 5.1.
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Appendix A. Proofs.
A.1. Theorem regarding the expected number of reactions.

THEOREM A.1l. Suppose that the process X is non-explosive and fiz h € [0,t] and
m € Z>1. Then the expected number of reactions required to sample {le};-"zl s

t—h

Ao(X(s)) ds
0

t

+mE,, [ )\O(X(s))ds} .

t—h

EV,O

Proof. The number of reactions required to sample { X (s)}se[q,5] 18

Y, ( / A (X () ds> v, ( | d)] ,

where the Y, are independent unit-rate Poisson processes [33]. For each r,

v(f s (X(s) w)- [ A (X () ds

is a martingale [7, Theorem 1.22], so the result follows. d

R

>

A.2. Proof of Theorem 3.1. For simplicity, denote X;;(t) as X;;. We start
with the left-hand side of the desired equality. The monotone convergence theorem
implies that we can move the expectation inside the sum, by which we mean

>~ (b (asn,m, h) pz<x>)ﬂ = 3B (0 (win,m,h) - p} (2))]

x

EV,O

= Z Var[py (z;n, m, h)].

The last line follows from the fact that the estimator p; is unbiased. From the
definition of P}, and also basic properties of variance, the above is equal to

3

= Z ZVar (X1 =) +2 Z Cov(1(X1; = 2), 1(Xy,; = 2))

m2
1<i<j<m

= nmg Z [mVar[1(X11 = z)] + m(m — 1)Cov(1(X11 = z), L(X12 = x))]

- % Z [ )(1=pf (z)) + (m—l)(E%O [1(X11 = 2)1(X12 = 2)] 7ptV(m)2)}
= % Z [P/ (z) + (m—1)P,(X11 =2, X12 =x) — mpi’(x)Q]

% + (1 - ;) P, (X1 = X12) — Zx:pt”(x)zl :

We can also take pY(z) to be a marginal distribution. In that case, interpret sums
over x as sums over the lower-dimensional marginal variables. Also, view X1; = Xi9
as being true if their coordinates corresponding to the marginal variables are equal.

1
n
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A.3. Proof of Theorem 3.2. Let A% € RE | be the vector whose rth element
is AQ*, and let YX, Y7 € ZE be the vectors whose rth elements are Y,* (A2") and
Y,? (A%1), respectively. Then

P,(X(t) = Z(t)) = P, (SY* = 5Y?)
=P, (SY*-v?) =0)
=Y PYY-YZ=k
kenull(S)

= ) B0 [P(Y¥=YZ =k|A%)].

kenull(S)

The elements of YX and Y are independent when conditioned on A%*. Therefore
we can expand the conditional probability into a product of probabilities, by which
we mean

R
PYX—y? =k|AY) =[P (VX —V7 =k | ADY).
r=1
When conditioned on A% VX — Y, is the difference of two independent Poissons

with the same intensity A2¢. Therefore the difference follows a Skellam distribution.
To summarize,

KOty X _yZ o Skellam(A%Y, A%"), when conditioned on A%,

Continuing from above,

P, (X11(t) = X1a(t Z E.0 H (KX =k | ADY)
kenull(S) r=1

where the expectation is taken over A%

If we are estimating a marginal distribution, then we need to modify the sum
slightly. Let S’ be the same as S, except the rows corresponding to the marginalized-
out variables are removed. Then replace null(S) with null(S’).

A.4. Proof of Theorem 5.1. Let {X;(t—h)}, bei.i.d. realizations of X (t—h).
Define X;;(t) to be the state of the CTMC condltloned on X;;(t —h) = X;(t — h),
where 1 < j < m. For simplicity, later we will denote X;;(t) as just X;;.

Let M; € Zfo‘, where the kth element of M; is defined as Z;nzl 1(X,; = xg). Let

¥ € RISIXIS| be the covariance matrix of M. The M; are i.i.d., so if ¥ is finite, then
the usual multivariate central limit theorem implies that

1 — v d
ﬁZ(Ml —mpy) = N(0,%), as n — oo.
i=1
Let M;(z) denote the element if M; corresponding to . Then by definition, for all

n

nmpy (z;n,m,h) = Z M;(z).
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Therefore

Vinm (p; — pf) 4 N(0,%), as n — oc.

The dot product is continuous, so the continuous mapping theorem implies that

nm? Z (P} (x;n,m, h) —pt”(z))2 < N(0,2)TN(0,%), as n — oo.
ze8S

[10, Theorem 2.1] implies that the right side has the same distribution as Z'Ei‘l NeZ3.
Let ¥,, be the element of ¥ on the diagonal corresponding to state x. Then by
definition

Yee = Var i le =1x)

Z L(Xy; =2)]+2 Y Cov(1(Xy; =), 1(X1x = 7)).

1<j<k<m

Var [1(X1; = 2)] = p{(«)(1 — p}(z)), and the covariance simplifies when we rewrite it
in terms of expectations. We get

Yew = mp¥(z) + m(m — 1) P, (X11(t) = x, X12(t) = ) — m?p?(2)? < 0.

Let x; and 2 be distinct states, and let ¥, ., be the element whose row and column
correspond to the states x1 and xo, respectively. By definition

le’z&z = Cov |:Z ]].(le = 56‘1)72 ]].(le = 1‘2)

which is equivalent to

i ( 1(Xyy = 21)1(Xy, = 22)] —p(xl)p(ﬂfz))Jr

Since 1 # 2, 1(X1; = x1)1(X1; = z2) = 0. Also, the second expectation can be
rewritten as a probability. The above expression simplifies to

m(m —1)P, (X11(t) = z1, X12(t) = 22) — m*p} (x1)p} (22) < oc.
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Equation (5.2) simply expresses the above results with matrix-vector notation.

If we are estimating a marginal distribution, then take S to be the lower dimen-
sional space corresponding to the marginal variables. Also interpret X (¢) as the state
vector containing only the marginal variables.

A.5. Proof of Theorem 5.2. If we write out the definition of 3, and use the
fact that the trace is linear, we can see that

. 1 & _ _ .7
tr (2n) = — ;tr ((Mi — M) (M; — B1) ) .
We use the cyclic property of the trace to rewrite the right side as
1 _ .7 _
> (ag— 1) (v~ ).

i=1

n—1
Expanding the summands leads to

3 (M}” M; — 200" M, + MTM) .

i=1

1
n—1

From the definition of M, the above expression is equal to

n

— T — ]_ T )
— M M+n_1;Mi M;.

n

By definition, mp, = M, therefore

- nm? 5., 1 "
tr (En) =z l(pt)Tpt R ZMiTMi-
=1

-2
Next consider tr (En) We will proceed in a similar way. By definition

= (TL _1 1)2 ZZ(MZ - M)(Ml - M)T(MJ - M)(MJ - M)T
i=1 j=1
The trace is linear, so
i (£5) = ﬁ S e ((Ms = AE)(M; — 1Y (M — M) — 1))
= (n _1 1)2 ZZ [(Ml - M)T(MJ - M)]2

The last line follows from the cyclic property of the trace. When we expand the
summands, the right side becomes
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As for the claim about almost sure convergence of the traces, note that 3, 2w
Since matrix multiplication and the trace are continuous, the continuous mapping
theorem implies the result.

A.6. Proof of Corollary 5.3. Define
gt (Ez)xi tr (%) .
tr (X) tr (X2)

Since 3, %3 ¥ as n — oo, the continuous mapping theorem and Lemma A.2 taken
together imply that U, — U almost surely as n — oo. Also Theorem 5.1 says that

E
nm? Z (DY (z;n,m, h) — pt”(ﬂc))2 & Z NeZ2, as n — oo.
z€S =1

Therefore by Slutsky’s theorem

AV v 2 S
wn® s (0 (n,m ) = 0y ()" 4 S5 MeZE

U i , as n — 0o,
n
which we can rewrite as
) 15|
nh_{rgo P, [ nm? Z (P} (x;n,m,h) —p{ ()" <U, | =P Z MNZ;<U
z€8 =1

Applying the Satterthwaite approximation [46] to the right-hand side gives

. 2 AV (e —_pY 2
nh_}ng() P, | nm Z (pt (x7nam’ h) b (33)) <Un
€S

~ tr (22) tr(E)2
~P ( RS (tr(zz)> = U)

=1-aq.

The result still holds for marginal distributions. We just need to remove the coordi-
nates of S corresponding to the variables that are marginalized out.

LEMMA A.2. Let Xy be a family of random variables parameterized by 6 € R with
strictly increasing cumulative distribution functions Fy. Suppose that for each 0, the
function Fy is continuous. Assume also that Fy(x) is continuous in 6 for each x € R.
Then the 1 — a quantiles of Fy are also continuous in 0 for all « € (0,1).

Proof. Let oo € (0,1), and let {6,}52, be a sequence that converges to 6. Define
gn and q to be the 1 — a quantiles corresponding the 6,, and 6, respectively. We want
to show that ¢, converges to q.

Let € > 0. Since a € (0, 1), we know that ¢ is finite. Therefore, we can choose ¢
and g such that a

g<q<q and G—g<e.
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We want to show that |g, — ¢| < € for all sufficiently large n, so it will suffice to prove
that ¢ < g, < ¢ for all n large enough.

By assumption, Fy(g) is continuous in 6, so

lim Fy,(q) = Fy(q) < Fo(q) =1 —a = Fp, (qn).

n—oQ

The inequality is strict, because ¢ is a quantile and Fy is strictly increasing and ¢ < g.
Since Fy, is non-decreasing, g, > g for all sufficiently large n. We can use essentially
the same argument to conclude that ¢, < g for all n large enough. ]
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