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Abstract. Reaction networks are often used to model interacting species in fields such as3
biochemistry and ecology. When the counts of the species are sufficiently large, the dynamics of4
their concentrations are typically modeled via a system of differential equations. However, when the5
counts of some species are small, the dynamics of the counts are typically modeled stochastically via6
a discrete state, continuous time Markov chain.7

A key quantity of interest for such models is the probability mass function of the process at some8
fixed time. Since paths of such models are relatively straightforward to simulate, we can estimate9
the probabilities by constructing an empirical distribution. However, the support of the distribution10
is often diffuse across a high-dimensional state space, where the dimension is equal to the number of11
species. Therefore generating an accurate empirical distribution can come with a large computational12
cost.13

We present a new Monte Carlo estimator that fundamentally improves on the “classical” Monte14
Carlo estimator described above. It also preserves much of classical Monte Carlo’s simplicity. The15
idea is basically one of conditional Monte Carlo. Our conditional Monte Carlo estimator has two16
parameters, and their choice critically affects the performance of the algorithm. Hence, a key con-17
tribution of the present work is that we demonstrate how to approximate optimal values for these18
parameters in an efficient manner. Moreover, we provide a central limit theorem for our estimator,19
which leads to approximate confidence intervals for its error.20
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1. Introduction. Systems of interacting species appear often in nature. To24

better understand the dynamics of such systems, we can model them as reaction25

networks with deterministic or stochastic dynamics [7, 23, 30, 52]. If the counts of the26

constituent species are high, then the dynamics are commonly modeled by a system of27

differential equations [7, 19, 52]. However, if the count of any species is small, then a28

stochastic model with a discrete state space is more appropriate [6, 7, 37, 44, 49, 52].29

Since the amount of each species is necessarily nonnegative and discrete, the state30

space of the stochastic process is a subset of Zd
≥0, where d is the number of species31

types. Let ν be the distribution of the initial state, which is often a point mass32

distribution, and suppose we are interested in the distribution of the state of the33

process at some fixed time t > 0. That is, if X(t) is the state of the process at time34

t, then we would like to know the value of35

pνt (x)
def
= Pν(X(t) = x), x ∈ Zd

≥0.36

In general, finding the exact values of pνt (·) is extremely difficult. More precisely,37

the authors are not aware of any general class of models for which pνt can be solved for38

explicitly, with the exception of linear, or first-order, models [28] or, more generally,39

models that satisfy a dynamical and restricted complex-balanced condition and admit40

a time-dependent product form Poisson distribution [8]. However, there are many41

numerical methods that give an estimate. One type of approach is to approximately42

solve Kolmogorov’s forward equation, which is called the chemical master equation43
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2 D. F. ANDERSON K. W. EHLERT

(CME) in much of the biology and chemistry literature. The CME can be written as44

(1.1)
d

dt
pνt (x) =

R∑︂
r=1

[︁
pνt (x− ζr)λr(x− ζr)− pνt (x)λr(x)

]︁
, x ∈ Zd

≥0,45

where R is the number of reactions in the system, λr : Zd
≥0 → R≥0 is the intensity (or46

propensity) function for the rth reaction, ζr ∈ Zd gives the net change in the counts47

of the species due to an occurrence of the rth reaction, and the initial distribution48

pν0(·) is given by ν. See section 2 for the precise specification of the model, including49

terminology.50

For most models of interest, solving (1.1) entails solving a high-dimensional (often51

infinite-dimensional) system of linear ordinary differential equations. Solving such52

a system directly is almost always very difficult, so there has been a considerable53

amount of research devoted to the development of fast and accurate approximate54

algorithms. The general approach for many such algorithms is to first truncate the55

state space of the system to a smaller subset. This truncation makes solving the56

problem computationally feasible, at the cost of introducing a controllable error to57

the solution. After truncation, the new system of ODEs must be solved.58

There is currently a wide variety of methods for performing both the truncation59

step and solution step. In particular, there is the finite state projection algorithm60

[39, 50], the uniformization method [16], sliding window methods [27, 53], the sparse61

grid method [26], the radial basis function approximation [32], a class of spectral62

methods [18, 29], and methods that specialize to systems with multiple scales [11,63

14, 34, 35, 42]. Moreover, there are tensor methods [31, 47, 51] that represents the64

truncated CME with tensors.65

As an alternative to approximating (1.1) directly via the methods above, we can66

take a Monte Carlo approach. That is, we can generate n independent and identically67

distributed (i.i.d.) realizations of the process X, denoted by {Xi}ni=1, and use the68

Monte Carlo estimator69

(1.2)
1

n

n∑︂
i=1

1(Xi(t) = x) ≈ Eν,0 [1(X(t) = x)] = pνt (x),70

where Eν,0 is the expectation under the initial distribution ν and starting time of71

zero. By the strong law of large numbers, the approximation becomes an equality as72

n goes to infinity.73

To utilize the above estimator, we need to simulate exact realizations of the74

process X over the time interval [0, t], and there are many methods to choose from.75

In particular, there is the Gillespie algorithm [21], the next reaction method [20], and76

the modified next reaction method [1], which are all straightforward to implement77

and often have similar efficiency. For our numerical results in the later sections, we78

used the modified next reaction method.79

One drawback of using the Monte Carlo estimator (1.2) to approximate the solu-80

tion to the CME (1.1) is that huge numbers of simulations are generally required to81

achieve a high level of accuracy. That said, the Monte Carlo estimator has at least82

two distinct advantages when compared against the methods that approximately solve83

the CME directly: it is very simple to implement and it is substantially less sensitive84

to the dimension of the state space.85

There are two natural ways to improve upon a Monte Carlo estimator. The86

first way is to decrease the time required to generate realizations of the random87
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samples (i.e., the process X in our case). Lowering the time required to generate88

paths of the processes that we are interested in has been an active area of research for89

almost two decades [1, 20, 36, 38, 43, 48]. Moreover, researchers have also designed90

efficient algorithms that generate approximate paths that trade some accuracy for91

speed [2, 5, 12, 13, 17, 22, 25, 45].92

The second way to improve upon a Monte Carlo estimator, and the focus of93

this article, is to instead lower the variance of the estimator itself. There are many94

broadly applicable variance reduction techniques, including coupling methods, control95

variates, stratified sampling, antithetic random variables, quasi-Monte Carlo, and96

conditional Monte Carlo [24, 41].97

In this paper, we utilize a form of conditional Monte Carlo to reduce the variance.98

Briefly, conditional Monte Carlo follows from the observation that for one-dimensional99

random variables X and Y , defined on the same probability space, we have E[X] =100

E[E[X|Y ]], and Var(E[X|Y ]) ≤ Var(X), so long as all the expectations are well101

defined [9]. That is, one can always reduce variance by conditioning. Of course, the102

“art” is in the selection of an appropriate random variable Y .103

Returning to our situation, define Eν,s[f(X(t)] as the expectation of f(X(t)) taken104

with respect to the initial state distribution ν and starting time 0 ≤ s ≤ t. That is,105

P (X(s) = x) = ν(x). If ν is a point-mass distribution at y ∈ Zd
≥0, then we write106

Ey,s[f(X(t))]. Fix h ∈ [0, t], then107

pνt (x) = Eν,0 [1(X(t) = x)]108

= Eν,0 [Eν,0 [1(X(t) = x)|X(t− h)]]109

= Eν,0

[︁
EX(t−h),t−h [1(X(t) = x)]

]︁
(Markov property)110

= lim
n→∞

1

n

n∑︂
i=1

EXi(t−h),t−h [1(X(t) = x)] , a.s. (strong law of large numbers)(1.3)111

112

where the {Xi(t − h)}ni=1 are i.i.d. realizations of X(t − h). A natural estimator for113

the right hand side of the above equation is114

(1.4) p̂νt (x;n,m, h)
def
=

1

n

n∑︂
i=1

1

m

m∑︂
j=1

1(Xij(t) = x),115

where we generate the Xij in the following manner:116

• simulate n independent realizations of the process X over the time interval117

[0, t − h], each with an initial value determined by ν, and denote the ith118

realization by Xi,119

• for each i ∈ {1, . . . , n}, generate m conditionally independent realizations120

over the time interval [t − h, t], each of which has initial state Xi(t − h).121

Denote the jth such realization by Xij .122

Note that for each j ∈ {1, . . . ,m}, the process Xij is equal to Xi over the interval123

[0, t− h]. See Figure 1.124

Since {Xi1j(t)}mj=1 and {Xi2j}mj=1 are independent for i1 ̸= i2, the strong law of125

law numbers implies that with probability one we have126

lim
n→∞

p̂νt (x;n,m, h) = Eν,0

⎡⎣ 1

m

m∑︂
j=1

1(Xij(t) = x)

⎤⎦ = pνt (x).127

Hereafter we will refer to the original estimator (1.2) as classical Monte Carlo, and128

the new estimator (1.4) as conditional Monte Carlo. The conditional Monte Carlo129
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(a) Two independent realizations of
the process over the time interval
[0, 2].
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(b) Two independent realizations of
the process generated over [0, 1.5].
Each is then followed by m con-
ditionally independent “branches”
simulated over [1.5, 2].

Fig. 1. Paths generated for the birth model X → 2X.

estimator has two unspecified parameters, denoted m and h. The number of branches130

is determined by m, and the time at which branching occurs is controlled by h. If m131

and h are fixed, then the remaining parameter n is simply chosen large enough such132

that the estimator’s variance is below some desired threshold. If m = 1, h = 0, or133

h = t, then the conditional and classical Monte Carlo estimators are the same. If134

m > 1 and h ∈ (0, t), then for the same computational cost as classical Monte Carlo,135

the conditional Monte Carlo estimator obtains more observations of X(t). We would136

like to choose the values of m and h such that, in some sense, our new estimator is137

more efficient than classical Monte Carlo. In section 3, we provide an algorithm for138

finding optimal values of m and h, which is the key contribution of this article.139

The remainder of the article is organized as follows. In section 2, we define the140

continuous time Markov chain model of reaction networks. Then in section 3, we141

present an algorithm for finding the optimal values of m and h, and also the full142

algorithm, Algorithm 3.3, for the implementation of the conditional Monte Carlo143

estimator. Next, in section 4, we give numerical results demonstrating the order144

of magnitude improvement that can be obtained with the use of conditional Monte145

Carlo in the current context. In section 5, we derive a central limit theorem for146

the error of the conditional Monte Carlo estimator and then test it on examples.147

Finally, in section 6, we summarize our results and suggest ideas for future work. The148

proofs of the main results are in Appendix A. The supplementary material contain149

more figures related to numerical results. An example MATLAB implementation of150

the conditional Monte Carlo algorithm is at https://github.com/kehlert/conditional151

monte carlo example.152

2. Mathematical model. Suppose our reaction network has d types of species153

and R reactions. For 1 ≤ r ≤ R,154

(i) we will denote by ζr the reaction vector for the rth reaction, meaning that155

if the rth reaction occurs at time t, and the process is currently in state156

x ∈ Zd
≥0, then the new state becomes x+ ζr;157

(ii) we will denote by λr : Zd
≥0 → [0,∞) the intensity, or propensity, function of158

the rth reaction.159
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A standing assumption is that λr(x) = 0 if x + ζr /∈ Zd
≥0, which preserves the non-160

negativity of the components. We let X be a continuous time Markov chain (CTMC)161

whose transition rate from state x to x′ is162

q(x, x′) =

R∑︂
r=1

λr(x)1(x
′ − x = ζr).163

Hence, X is a Markov process with infinitesimal generator Af(x) =
∑︁R

r=1 λr(x)(f(x+164

ζr) − f(x)), where f : Zd
≥0 → R is a bounded function with compact support. We165

will denote our process by X, so that X(t) ∈ Zd
≥0 is the vector whose ith component166

gives the count of species i at time t ≥ 0.167

The most common choice of intensity function is stochastic mass action kinetics.168

Suppose that we require yi copies of species i for the rth reaction to occur. Then we169

say that λr has stochastic mass action kinetics if170

(2.1) λr(x) = κr

d∏︂
i=1

xi!

(xi − yi)!
1(xi ≥ yi),171

for some κr > 0, which is called the rate constant of the reaction. For example,172

for the reaction 2A + B → A + C, where A, B, and C are the species types in our173

model system, the reaction vector is (−1,−1, 1)T and y = (2, 1, 0)T , in which case174

λr(x) = κrx1(x1 − 1)x2, where we have ordered the species alphabetically.175

None of our theoretical results assume that the λr has the above mass action176

form, but the models we tested do use it unless otherwise noted.177

One well–known representation for the stochastic process X is the random time178

change representation of Thomas Kurtz [6, 7, 33]179

(2.2) X(t) = X(0) +

R∑︂
r=1

Yr

(︃∫︂ t

0

λr (X(s)) ds

)︃
ζr,180

where X(0) is the initial state and the Yr are independent unit-rate Poisson processes.181

We will make use of the above representation in some of our proofs.182

2.1. Examples. In the subsequent sections, we intersperse numerical results,183

and below is a list of all the example models we used. The species to the left of the184

arrows are the reactants (giving the counts of the species consumed in the reaction),185

and those to the right are the products. The numbers above the arrows are the rate186

constants κr. Unless otherwise noted, for every model and reaction we define the187

intensities λr with (2.1).188

(i) Birth189

The initial state is X(0) = 10 and t = 2. The single reaction is190

X
1−→ 2X.191

Following (2.1), the rate of the reaction is λ(x) = x.192

(ii) Birth–Death193

The initial state is X(0) = 100 and t = 2. There are two reactions194

∅ 50−→ X, X
1−→ ∅.195

Following (2.1), the rates of the reactions are λ1(x) = 50, and λ2(x) = x,196

respectively.197
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(iii) Lotka–Volterra198

This model is also often called the predator-prey model. The initial state is199

A(0) = 200 and B(0) = 100. We set t = 4. The reactions are200

A
2−→ 2A, A+B

0.01−−→ 2B, B
2−→ ∅.201

Following (2.1), and after ordering the species as (A,B), the rates of the202

reactions are λ1(x) = 2x1, λ2(x) = 0.01x1x2, and λ3(x) = 2x2, respectively.203

(iv) Dimerization204

In this model, mRNA is translated into the protein P , which then dimerizes205

into D, and the dimer D accumulates over time. The initial state for every206

species is zero except for G(0) = 1. We set t = 1. The reactions are207

G
25−→ G+mRNA, mRNA

100−−→ mRNA+ P208

2P
0.001−−−→ D, mRNA

0.1−−→ ∅, P 1−→ ∅.209210

Following (2.1), and after ordering the species as (G,mRNA,P,D), the rates211

of the reactions are λ1(x) = 25x1, λ2(x) = 100x2, λ3(x) = 0.001x3(x3 − 1),212

λ4(x) = 0.1x2, and λ5(x) = x3 respectively.213

(v) Toggle214

Each species represses the production of the other, which leads to a probabil-215

ity mass function that is multimodal. The initial state is A(0) = B(0) = 0.216

We set t = 100. The reactions are217

∅ −→ A, A −→ ∅, ∅ −→ B, B −→ ∅.218

For this model, the first and third intensity functions are not chosen to be219

mass action. Specifically, we let220

λ1(x) =
50

1 + 2x2
, λ2(x) = x1, λ3(x) =

50

1 + 2x1
, λ4(x) = x2,221

where we again ordered the species as (A,B).222

(vi) Fast/Slow223

A and B quickly convert into one another, and B slowly turns into C. The224

initial state is A(0) = B(0) = 100 and C(0) = 0. We set t = 10. The reactions225

are226

A
10−→ B, B

10−→ A, B
0.1−−→ C.227

Following (2.1), and after ordering the species as (A,B,C), the rates are228

λ1(x) = 10x1, λ2(x) = 10x2, and λ3(x) = 0.1x2, respectively.229

3. Determining the values of m and h via optimization. The conditional230

Monte Carlo estimator (1.4) is of little value without knowledge of which values of m231

and h to use. In this section, we will show that appropriate values can be found by232

numerically solving an easy optimization problem.233

Recall that the distribution of the process is denoted by pνt , and we denote an234

estimate of this distribution by p̂νt . We will measure the quality of the estimation via235

the mean integrated squared error (MISE), which is236

(3.1) MISE(p̂νt )
def
= Eν,0

⎡⎢⎣ ∑︂
x∈Zd

≥0

(︁
p̂νt (x)− pνt (x)

)︁2⎤⎥⎦ .237
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Note that if p̂νt is constructed via our conditional Monte Carlo estimator, then it,238

and by extension MISE(p̂νt ), is a function of n,m, and h. Suppose we have a fixed239

computational budget, which we denote as b. We then want to choose the values of240

n, m, and h so that we minimize MISE(p̂νt ) subject to our budget constraint b.241

3.1. Computational cost model. Assuming that our model is non-explosive242

[3, 40], the expected number of reactions required to generate {X1j}mj=1 is given by243

Eν,0

[︄∫︂ t−h

0

λ0(X(s)) ds

]︄
⏞ ⏟⏟ ⏞

expected # of reactions in [0,t−h]

+ m · Eν,0

[︃∫︂ t

t−h

λ0(X(s)) ds

]︃
⏞ ⏟⏟ ⏞

expected # of reactions in [t−h,t]

,244

where λ0(x) =
∑︁R

r=1 λr(x) (see Theorem A.1). Hence, the expected computational245

cost for our conditional Monte Carlo estimator is246

(3.2) n · c

(︄
Eν,0

[︄∫︂ t−h

0

λ0(X(s)) ds

]︄
+m · Eν,0

[︃∫︂ t

t−h

λ0(X(s)) ds

]︃)︄
,247

where c > 0 is an unknown constant.248

Since we cannot generally evaluate the expectations in the cost model (3.2), as249

this would be as difficult as the problem we are attempting to solve, we need to250

estimate them. To do so, fix a relatively small ñ and simulate ñ i.i.d. paths {Xi}ñi=1.251

Then the expectations are approximately equal to252

(3.3)
1

ñ

ñ∑︂
i=1

∫︂ t−h

0

λ0(Xi(s)) ds, and
1

ñ

ñ∑︂
i=1

∫︂ t

t−h

λ0(Xi(s)) ds.253

Importantly, for the fixed set of ñ paths, the values (3.3) can be computed for a254

variety of different h values. The process Xi is piecewise constant, and therefore so is255

λ0(Xi). Thus, for any value of h, we can easily compute the integrals so long as we256

have stored the jump times of Xi and the value of λ0(Xi) at each jump.257

3.2. Optimization problem. Given a reaction network, our goal is to find258

values of n,m, and h that minimize the mean integrated squared error (MISE) (3.1) for259

our conditional Monte Carlo estimator (1.4) while staying within our computational260

budget of b. More precisely, we want to solve the following optimization problem261

min
n,m,h

Eν,0

⎡⎢⎣ ∑︂
x∈Zd

≥0

(︁
p̂νt (x;n,m, h)− pνt (x)

)︁2⎤⎥⎦
⏞ ⏟⏟ ⏞

mean integrated squared error (MISE)

,
(3.4)262

subject to263

n · c

(︄
Eν,0

[︄∫︂ t−h

0

λ0(X(s)) ds

]︄
+m · Eν,0

[︃∫︂ t

t−h

λ0(X(s)) ds

]︃)︄
≤ b

n,m ∈ Z≥1 and 0 ≤ h ≤ t.

(3.5)264

The following theorem will allow us to transform the above optimization problem265

into a more solvable form.266
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Theorem 3.1. Suppose the process X is non-explosive. For any fixed n,m ∈ Z≥1267

and h ∈ [0, t]268

269

Eν,0

⎡⎢⎣ ∑︂
x∈Zd

≥0

(︁
p̂νt (x;n,m, h)− pνt (x)

)︁2⎤⎥⎦ =270

1

n

⎡⎢⎣ 1

m
+

(︃
1− 1

m

)︃
Pν(X11(t) = X12(t))−

∑︂
x∈Zd

≥0

pνt (x)
2

⎤⎥⎦ .271

272

The proof of Theorem 3.1 can be found in Appendix A.2.273

If we allow n to be continuous, then we can use the constraint (3.5) to solve274

for n−1, and subsequently eliminate the constraint by substitution. This leads to a275

simpler optimization problem. In particular, let276

f(m,h)
def
=

(︄
1

m
Eν,0

[︄∫︂ t−h

0

λ0(X(s)) ds

]︄
+ Eν,0

[︃∫︂ t

t−h

λ0(X(s)) ds

]︃)︄
277

×

⎛⎜⎝1 + (m− 1)Pν(X11(t) = X12(t))−m
∑︂

x∈Zd
≥0

pνt (x)
2

⎞⎟⎠ .278

279

Then the original optimization problem (3.4) and (3.5) is equivalent to280

min
m,h

f(m,h)

m ∈ Z≥1, 0 ≤ h ≤ t.
(3.6)281

Note that both c and b have dropped out of the optimization problem.282

There are three terms in f that we must know, or be able to approximate, in283

order to solve (3.6).284

• The expectations of the integrals. We discussed how to approximate these in285

subsection 3.1.286

• The sum
∑︁

x p
ν
t (x)

2. However, we note that
∑︁

x p
ν
t (x)

2 is the probability that287

two independent paths end up in the same state at time t. For many models,288

including the ones we tested, that sum is much smaller than Pν(X11(t) =289

X12(t)) and is close to zero. Thus for our examples, we replace the sum with290

zero and make that our general recommendation.291

• The term Pν(X11(t) = X12(t)), whose approximation is the subject of the292

next section.293

Note that there are many models for which
∑︁

x p
ν
t (x)

2 will not be near zero. How-294

ever, for such models a small number of states will necessarily have a large probability.295

An example of such a model would be a Birth-Death model, as in Section 2.1, with296

input rate 1 and output rate 1. Such a model has a stationary distribution that is297

Poisson with a parameter of 1 [4], and so for large t the distribution pνt will concen-298

trate on the set {0, 1, 2, 3}. Other examples where
∑︁

x p
ν
t (x)

2 is not small include299

those with extinction events. For such models, it would not be appropriate to set300

this term to zero. However, for models with diffuse probability mass functions, i.e.,301

those models for which estimating pνt is difficult and are the focus of this paper, the302

assumption will often be valid.303
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3.3. Approximating the joint probability. In order to optimize the objective304

function f(m,h) in (3.6), we need to know, or be able to quickly approximate, the305

term Pν(X11(t) = X12(t)). The following theorem, proven in Appendix A.3, will allow306

us to make a good approximation, without requiring any additional simulations.307

Theorem 3.2. Let S be the d×R matrix whose rth column is ζr and let null(S)308

be the right nullspace of S restricted to integer values. Let X and Z satisfy309

X(t) = X(0) +

R∑︂
r=1

Y X
r

(︃∫︂ t

0

λr(X(s))ds

)︃
ζr,310

Z(t) = X(0) +

R∑︂
r=1

Y Z
r

(︃∫︂ t

0

λr(X(s))ds

)︃
ζr,311

312

where the Y X
r and Y Z

r are independent, unit-rate Poisson processes. Assume that X313

is non-explosive. For each 1 ≤ r ≤ R and 0 ≤ a ≤ b ≤ t, denote314

Λa,b
r =

∫︂ b

a

λr(X(s))ds,315

and let Ka,b
r have the Skellam(Λa,b

r ,Λa,b
r ) distribution. Then316

(3.7) Pν(X(t) = Z(t)) =
∑︂

k∈null(S)

Eν,0

[︄
R∏︂

r=1

P
(︁
K0,t

r = kr
⃓⃓
Λ0,t
r

)︁]︄
.317

Note that X is the process (2.2) that is of interest to us. Returning to our setup, if318

we assume that319 ∫︂ t

t−h

λr(X11(s)) ds ≈
∫︂ t

t−h

λr(X12(s)) ds,320

which should be valid for small h, then Theorem 3.2 leads to an approximation of321

Pν(X11(t) = X12(t)). In particular, we may sample ñ paths and for the ith such path322

define323

Λt−h,t
r,i =

∫︂ t

t−h

λr(Xi(s)) ds, 1 ≤ i ≤ ñ.324

Then Pν(X11(t) = X12(t)) ≈ P̂ ν(X11(t) = X12(t)), where325

(3.8) P̂ ν(X11(t) = X12(t))
def
=
∑︂
k∈Ñ

1

ñ

ñ∑︂
i=1

R∏︂
r=1

P
(︂
Kt−h,t

r = kr
⃓⃓
Λt−h,t
r,i

)︂
,326

and Ñ is a finite subset of null(S).327

To find Ñ , we use the “Algorithm for Solving the Linear Diophantine Equation328

Problem” from section 1.5.2 of [15]. In general, the algorithm finds solutions x ∈ Zd329

to linear equations of the form Ax = b for rational A and b. In our case, we enumerate330

solutions to Sk = 0 for k ∈ Zd. Generally, there are infinitely many solutions, however331

the right-hand side of (3.8) is always maximized at k = 0, and decreases as k moves332

away from 0. Thus we approximate (3.8) by starting at k = 0 and enumerating all333

“nearby” solutions. Algorithm 3.1 shows how to apply the algorithm from [15] to our334

particular problem. In all of our numerical examples, we chose C = 4 in Algorithm 3.1.335
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Algorithm 3.1 Algorithm for enumerating a finite subset of null(S) ∈ Zd×R

Require: the stoichiometry matrix S and C ∈ Z>0

1: if S does not have full row rank then
2: Remove redundant equations from the system and replace S.
3: end if
4:

5: Transform S into its Hermite normal form H, and store the matrix U that satisfies
H = SU .

6: r ← R− rank(S)
7: Let Ũ be the matrix containing the last r columns of U .
8:

9: Ñ ←
{︂
Ũz
⃓⃓⃓
z ∈ Zr, ||z||∞ ≤ C

}︂
Algorithm 3.2 Algorithm for computing P̂ ν(X11(t) = X12(t))

Require: ñ i.i.d. samples of X, denoted {Xi}ñi=1 ▷ ñ = 500 was more than sufficient.
Require: the stoichiometry matrix S, and a finite Ñ ⊂ null(S)
1: for all r in 1, . . . , R and i in 1, . . . , ñ do
2: Λt−h,t

r,i ←
∫︁ t

t−h
λr(Xi(s)) ds

3: end for
4:

5: P̂ ← 0
6: for all k in Ñ and i in 1, . . . , ñ do

7: P̂ ← P̂ +
∏︁R

r=1 P
(︂
Kt−h,t

r = kr
⃓⃓
Λt−h,t
r,i

)︂
▷ Kt−h,t

r ∼ Skellam(Λt−h,t
r,i ,Λt−h,t

r,i )

8: end for
9:

10: P̂ ν(X11(t) = X12(t))← P̂ /ñ

3.4. Approximation to the optimization problem. By using the joint prob-336

ability approximation (3.8), we can approximate the function f in the optimization337

problem (3.6). In particular, let338

f̂(m,h)
def
=

(︄
1

m

∫︂ t−h

0

λ̄0(X(s)) ds+

∫︂ t

t−h

λ̄0(X(s)) ds

)︄
⎛⎜⎝1 + (m− 1)P̂ ν(X11(t) = X12(t))−m

�
���

��⌃
0∑︂

x∈Zd
≥0

pνt (x)
2

⎞⎟⎠ ,

(3.9)339

340

where λ̄0(X(s)) = 1
ñ

∑︁ñ
i=1

∑︁R
r=1 λr(Xi(s)), and the {Xi}ñi=1 are independent paths341

of X. Then we may substitute f with f̂ and our new optimization problem is the342

following:343

min
m,h

f̂(m,h)

m ∈ R≥1, 0 ≤ h ≤ t.
(3.10)344

Note that above we have allowed m to be real–valued, as opposed to integer valued.345

This allows us to use continuous optimization algorithms, which generally converge346
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more rapidly. According to Figure SM1, which shows f̂(m,h) for many values of m347

and h, f̂ does not change too quickly with m, so allowing m to range over the reals348

instead of the integers should not change the optimal values of m and h appreciably.349

It is important to know when the optimization problem (3.10) has a finite solution.350

In the proposition below, we show that a solution necessarily exists when P̂ ν(X11(t) =351

X12(t)) is larger than the approximation used for
∑︁

x p
ν
t (x)

2. Since we approximate352

the sum with zero, we may conclude that a finite solution always exists in our setup.353

Proposition 3.3. Let ˆ︁p2 be our approximation to
∑︁

x p
ν
t (x)

2. If P̂ ν(X11(t) =354

X12(t)) > ˆ︁p2 for all h ∈ [0, t], then (3.10) has a finite solution.355

Proof. Since the integrals are nonnegative, h is in a compact domain, f̂ depends356

continuously on h and m, and limm→∞ f̂(m,h) =∞, a finite solution exists.357

Algorithm 3.3 outlines the full conditional Monte Carlo algorithm, which brings358

together all of the individual pieces of the algorithm that we previously discussed.359

Algorithm 3.3 Conditional Monte Carlo algorithm

Require: ñ i.i.d. samples of X, denoted {Xi}ñi=1 ▷ ñ = 500 was more than sufficient.

1: m,h← argminm∈R≥1

0≤h≤t

f̂(m,h)

2: ▷ Use {Xi}ñi=1, (3.9), and Algorithm 3.2 to evaluate f̂ .
3: for all i in 1, . . . , n do
4: Sample Xi(t− h). ▷ The Xi(t− h) are i.i.d.
5: for all j in 1, . . . ,m do
6: Sample Xij(t) conditioned on Xij(t− h) = Xi(t− h).
7: ▷ See section 1 for details about Xij .
8: end for
9: end for

10:

11: p̂νt (x;n,m, h)← 1
n

∑︁n
i=1

1
m

∑︁m
j=1 1(Xij(t) = x)

4. Numerical results. In this section, we present numerical results demon-360

strating the improvement in accuracy, quantified via the mean integrated squared361

error (3.1), that comes from using our conditional Monte Carlo estimator instead of362

the classical Monte Carlo estimator. In particular, when near–optimal values of m363

and h are utilized, the accuracy often improves by an order of magnitude for a fixed364

computational budget. Moreover, we show that the function f̂ of (3.10) is indeed a365

very good approximation for f of (3.6) for the examples we considered, allowing us366

to conclude that the values of m and h our method produces are near–optimal.367

The following steps were carried out on each of our test examples. First, we fixed368

an integer n1 and computed the classical Monte Carlo estimator369

pMC
t (x;n1) =

1

n1

n1∑︂
i=1

1(Xi(t) = x), x ∈ Zd
≥0.370

For all models, we used n1 = 104. We also recorded the number of random variates371

used in generating pMC
t ( · ;n1), which served as the budget b in the computational372

cost constraint (3.5).373
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After obtaining pMC
t ( · ;n1), we computed the conditional Monte Carlo estimator374

pCMC
t (x;n2,m, h) =

1

n2

n2∑︂
i=1

1

m

m∑︂
j=1

1(Xij(t) = x), x ∈ Zd
≥0,375

for various pairs of m and h, and n2 was allowed to increase until the conditional376

estimator used essentially the same number of random variates as the classical Monte377

Carlo estimator. All random variates generated for the conditional estimators were378

independent of those utilized for the classical estimator.379

Next, for both classical and conditional Monte Carlo, we computed the integrated380

squared error381

(4.1) ISE =
∑︂
S̃

(p̂(x)− pνt (x))
2
,382

where S̃ was a large fixed subset of the state space, and p̂(x) was either the classical383

or conditional Monte Carlo estimate. The ISE is itself a random variable, and so we384

approximated the mean integrated square error (MISE) by averaging 100 independent385

samples of the ISE.386

The exact values of pνt (x) were unknown. Thus the values were estimated with387

conditional Monte Carlo with a large value of n1 (we used n1 = 109), and with m and388

h chosen so that they approximately minimize the MISE.389

Finally, we denote by MISEMC our estimate of the classical Monte Carlo MISE,390

and, for a given m and h, we denote by MISECMC(m,h) the conditional version. For391

each model, and for each choice of m and h, an “empirical error improvement” was392

computed as the following ratio393

MISEMC

MISECMC(m,h)
,394

where a number greater than one implies that conditional Monte Carlo has a lower395

MISE than classical Monte Carlo when given the same computational budget. These396

values, one for each pair of m and h, can then be plotted. In the top half of Figures 2397

and 3 (and Figures SM2 to SM5), we display these values with a heatmap. Of par-398

ticular interest is the order of magnitude improvement in computational efficiency we399

see with the conditional Monte Carlo estimator as compared to classical Monte Carlo400

when well–chosen values of h and m are utilized. In particular, for the Lotka-Volterra401

model we see a 40-fold improvement, for the dimerization model we see a 20-fold im-402

provement, for the toggle model we see a 20-fold improvement, and for the fast/slow403

model we see a 20-fold improvement. For the birth and birth–death models we see404

more modest improvements in computational efficiency, but this can be explained by405

the simplicity of these models which makes classical Monte Carlo sufficient for the406

task at hand. In particular, one promising aspect of the present work comes into fo-407

cus with these numerical results: the more complicated the model, and the larger and408

more diffuse the distribution of the model (which is where other methods, including409

those that approximately solve the chemical master equation directly, struggle), the410

better the performance of the conditional Monte Carlo estimator.411

In practice, we are not given the optimal values of the parameters m and h, so412

we find them via the optimization problem (3.10). In each of the bottom portions413

of Figures 2 and 3 (and Figures SM2 to SM5), we provide the values of f̂(m,h) for414

the different pairs of m and h. We report the inverse so that the heatmap will agree415
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Fig. 2. Lotka-Volterra model. The first heatmap shows MISEMC/MISECMC(m,h) for different
values of m and h. The method we used to obtain the ratio is described in section 4. The second
heatmap shows that value of f̂(1, 0)/f̂(m,h). The definition of f̂ is given by (3.9).

qualitatively with the top portion of the figures (higher values are desirable). We416

also normalized the values by multiplying them by f̂(1, 0), which does not affect the417

results of the optimization problem in any way. To generate each value 1/f̂(m,h) we418

first sampled ñ = 500 paths, which then allowed us to compute λ̄0 and P̂ ν(X11(t) =419

X12(t)) as detailed in the previous section. We could then use these values to compute420

f̂(m,h) via (3.9).421

Note that the empirical error improvement and f̂ do not need to have the same422

value for a pair ofm and h. The important thing is that the maximizer of the empirical423

error improvement is similar to the minimizer of f̂ . The heatmaps do indeed suggest424

that the true and approximate optimization problems have similar solutions. What425

is also clear from these numerical results is that even if m and h slightly deviate from426

their optimal values, we still get a substantial improvement.427

We stress that such heatmaps do not need to be made by anyone who uses the428

conditional Monte Carlo algorithm. They are only used here to demonstrate that429

the optimization problem (3.10) can be safely used to find the near–optimal values430

of m and h, which can then be used to construct the desired estimator (1.4) via431

Algorithm 3.3.432

5. A central limit theorem. In this section, we will show how to obtain an433

approximate one-sided confidence interval for the integrated squared error (4.1) with-434

out running more simulations. Specifically, for a fixed (presumably large) finite subset435

of the state space S̃, a fixed α ∈ (0, 1), and large n, we want to find a sequence of436
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Fig. 3. Dimerization model. The first heatmap shows MISEMC/MISECMC(m,h) for different
values of m and h. The method we used to obtain the ratio is described in section 4. The second
heatmap shows that value of f̂(1, 0)/f̂(m,h). The definition of f̂ is given by (3.9).

positive constants {Cn} and a constant u > 0 such that437

(5.1) lim
n→∞

P
(︂
Cn

∑︂
x∈S̃

(︁
p̂νt (x;n,m, h)− pνt (x)

)︁2
⏞ ⏟⏟ ⏞

integrated squared error

≤ u
)︂
= 1− α,438

where Cn is allowed to depend on m and h. The following central limit theorem will439

lead us to values for {Cn} and u.440

Theorem 5.1. Fix m ∈ Z≥1 and h ∈ [0, t]. Let S ⊂ Zd
≥0 be the state space441

of the continuous time Markov chain, and let S̃ be a finite subset of S. Choose an442

enumeration of S̃ and denote it {xi}|S̃|
i=1. Let pνt , p̂

ν
t ∈ R|S̃| with their ith elements443

equal to pνt (xi) and p̂νt (xi;n,m, h), respectively. Let444

(5.2) Σ
def
= m diag(pνt ) +m(m− 1)A−m2pνt (p

ν
t )

T ,445

where diag(pνt ) is the diagonal matrix with pνt along its diagonal, and A is a |S̃| × |S̃|446

matrix where Aij = Pν(X11(t) = xi, X12(t) = xj). Then447

(5.3) nm2
∑︂
x∈S̃

(︁
p̂νt (x;n,m, h)− pνt (x)

)︁2 d→
|S̃|∑︂
ℓ=1

λℓZ
2
ℓ , as n→∞,448

where the {λℓ}|S̃|
ℓ=1 are the eigenvalues of Σ and Zℓ

i.i.d.∼ N(0, 1).449
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Σ is usually an enormous matrix, so we do not want to store it, much less compute450

its eigenvalues. The Satterthwaite approximation [46] says that451

(5.4)
∑︂
ℓ

λℓZ
2
ℓ

d
≈
∑︁

ℓ λ
2
ℓ∑︁

ℓ λℓ
χ2

(︄
(
∑︁

ℓ λℓ)
2∑︁

ℓ λ
2
ℓ

)︄
=

tr
(︁
Σ2
)︁

tr (Σ)
χ2

(︄
tr (Σ)

2

tr (Σ2)

)︄
,452

where χ2(v) denotes a χ2 random variable with v degrees of freedom. The approxima-453

tion is obtained by matching the first two moments of the linear combination (above454

left-hand side) and the chi-squared distribution (above right-hand side). The advan-455

tage of the approximation is that we can estimate tr (Σ) and tr
(︁
Σ2
)︁
without storing456

Σ explicitly or computing its eigenvalues.457

Theorem 5.2. Fix n,m ∈ Z≥1 and h ∈ [0, t]. Let S̃, {xk}|S̃|
k=1, and p̂νt be defined458

as in Theorem 5.1. For 1 ≤ i ≤ n, let Mi ∈ Z|S̃|
≥0, and set its kth element to Mi(xk)

def
=459 ∑︁m

j=1 1(Xij = xk) (the {Xij} are defined in section 1). Let Σ̂n be the usual sample460

covariance matrix of {Mi}ni=1. Specifically,461

Σ̂n
def
=

1

n− 1

n∑︂
i=1

(︁
Mi −M

)︁ (︁
Mi −M

)︁T
,462

where M = n−1
∑︁n

i=1 Mi. Then463

(5.5) tr
(︂
Σ̂n

)︂
=

1

n− 1

n∑︂
i=1

MT
i Mi −

nm2

n− 1
(p̂νt )

T p̂νt ,464

and465
466

(5.6) tr
(︂
Σ̂

2

n

)︂
=

1

(n− 1)2

n∑︂
i=1

[︂
MT

i Mi − 2M
T
Mi +m2(p̂νt )

T p̂νt

]︂2
467

+
2

(n− 1)2

∑︂
1≤i<j≤n

[︂
MT

i Mj −M
T
Mi −M

T
Mj +m2(p̂νt )

T p̂νt

]︂2
.468

469

Furthermore470

tr
(︂
Σ̂n

)︂
a.s.→ tr (Σ) and tr

(︂
Σ̂

2

n

)︂
a.s.→ tr

(︁
Σ2
)︁
as n→∞.471

For the models we tested, the optimal value of m was only moderately large (on472

the order of 10 to 100), and the indicator in the summand of Mi(x) is zero for many473

values of x. Whenever those two conditions hold, Mi sparse. Consequently, storing474

{Mi}ni=1 does not require too much memory, and the terms MT
i Mj and M

T
Mi are475

cheap to compute. Algorithm 5.1 summarizes how we compute the traces. Using the476

sparsity of the Mi is important, because otherwise the vectors are too large to store477

and the operations are slow.478

Corollary 5.3. Fix n,m ∈ Z≥1 and h ∈ [0, t]. Also fix an α ∈ (0, 1), and let479

χ2
α(v) be the 1−α quantile of the χ2 distribution with v degrees of freedom. An approx-480

imate 1 − α confidence interval for
∑︁

x∈S̃
(︁
p̂νt (x;n,m, h) − pνt (x)

)︁2
is [0, Un/(nm

2)],481

where482

(5.7) Un
def
=

tr
(︂
Σ̂

2

n

)︂
tr
(︂
Σ̂n

)︂χ2
α

⎛⎜⎝ tr
(︂
Σ̂n

)︂2
tr
(︂
Σ̂

2

n

)︂
⎞⎟⎠ .483
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Algorithm 5.1 Algorithm for computing p̂νt , tr
(︂
Σ̂n

)︂
, and tr

(︂
Σ̂

2

n

)︂
Require: n,m ∈ Z≥1 and h ∈ [0, t]
1: for i in {1, . . . , n} do
2: Sample Xi(t− h).
3: Given Xi(t− h), sample {Xij(t)}mj=1.

4: for x in S̃ do
5: Mi(x)←

∑︁m
j=1 1(Xij(t) = x) ▷ Store Mi as a sparse vector.

6: end for
7: end for
8:

9: p̂νt ← 1
nm

∑︁n
i=1 Mi

10: Compute tr
(︂
Σ̂n

)︂
according to (5.5).

11: Compute tr
(︂
Σ̂

2

n

)︂
according to (5.6).

Figures 4a and 4b (and also Figures SM6 to SM9), compare the empirical distri-484

bution of485

(5.8) nm2
∑︂
x∈S̃

(︁
p̂νt (x;n,m, h)− pνt (x)

)︁2
486

to the approximate asymptotic distribution (5.4), where the true traces are replaced487

with the sample traces from Algorithm 5.1. The figures also compare the sample 95%488

quantile to the same quantile based on Corollary 5.3, which turned out to be close.489

6. Directions for future research. We demonstrated how to implement a490

version of conditional Monte Carlo in the context of continuous time Markov chain491

models for reaction networks. There are many possible directions for future research;492

we list two.493

1. The method could be extended so it provides estimates of the distribution at494

multiple fixed time-points. The method we developed, and in particular the495

optimization problem we utilize to find the values of m and h, is tailored to496

the single time-point case.497

2. In the method developed here the conditional expectation in (1.3)498

EXi(t−h),t−h [1(X(t) = x)]499

is approximated by Monte Carlo with m conditionally independent realiza-500

tions. However, it could be approximated by solving the chemical master501

equation directly, perhaps via the finite state projection algorithm [39]. Be-502

cause the solver need only integrate the system of ODEs over the time interval503

[t−h, t], the probability mass should not become too diffuse, thereby solving504

one of the major difficulties related to these solvers.505

We implemented this approach and observed some increase in efficiency over506

the conditional Monte Carlo algorithm Algorithm 3.3, around a factor of507

three. However, the gains were only realized when an optimal value of h508

was chosen, and we needed to test many different h values in order to find509

the optimal value. In practice, we would need a faster method for finding510

the optimal parameters, similar to the optimization problem detailed in this511

paper.512

This manuscript is for review purposes only.



CONDITIONAL MONTE CARLO FOR REACTION NETWORKS 17

0 100 200 300 400 500
0

0.01

0.02

0.03

0.04

0.05
339.07

338.86

0 100 200 300 400 500
0

0.01

0.02

0.03

0.04

0.05
335.88

338.86

0 100 200 300 400 500
0

0.01

0.02

0.03

0.04

0.05
335.88

338.86

0 100 200 300 400 500
0

0.01

0.02

0.03

0.04

0.05
338.90

338.86

(a) Lotka-Volterra model.
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(b) Dimerization model.

Fig. 4. The dashed blue density is the empirical density of the integrated squared error (5.8),
whereas the solid red density is the Satterwaithe approximation to the asymptotic density (5.4). The
blue cross and red circle are the 95% quantiles of their respective densities. To generate the blue

curve, first we sampled 104 values of nm2
∑︁

x∈S̃
(︁
p̂νt (x;n,m, h)−pνt (x)

)︁2
(which we call the “scaled

integrated squared error”) for different values of n. Given those samples, we used MATLAB’s
ksdensity function to generate the blue curve. The traces of Σ and Σ2 were estimated with an
independent set of 105 simulations and Algorithm 5.1.

This manuscript is for review purposes only.



18 D. F. ANDERSON K. W. EHLERT

Appendix A. Proofs.513

A.1. Theorem regarding the expected number of reactions.514

Theorem A.1. Suppose that the process X is non-explosive and fix h ∈ [0, t] and515

m ∈ Z≥1. Then the expected number of reactions required to sample {X1j}mj=1 is516

Eν,0

[︄∫︂ t−h

0

λ0(X(s)) ds

]︄
+mEν,0

[︃∫︂ t

t−h

λ0(X(s)) ds

]︃
.517

Proof. The number of reactions required to sample {X(s)}s∈[a,b] is518

R∑︂
r=1

[︄
Yr

(︄∫︂ b

0

λr (X(s)) ds

)︄
− Yr

(︃∫︂ a

0

λr (X(s)) ds

)︃]︄
,519

where the Yr are independent unit-rate Poisson processes [33]. For each r,520

Yr

(︃∫︂ t

0

λr (X(s)) ds

)︃
−
∫︂ t

0

λr (X(s)) ds521

is a martingale [7, Theorem 1.22], so the result follows.522

A.2. Proof of Theorem 3.1. For simplicity, denote Xij(t) as Xij . We start523

with the left-hand side of the desired equality. The monotone convergence theorem524

implies that we can move the expectation inside the sum, by which we mean525

Eν,0

[︄∑︂
x

(︁
p̂νt (x;n,m, h)− pνt (x)

)︁2]︄
=
∑︂
x

Eν,0

[︂(︁
p̂νt (x;n,m, h)− pνt (x)

)︁2]︂
526

=
∑︂
x

Var[p̂νt (x;n,m, h)].527

528

The last line follows from the fact that the estimator p̂νt is unbiased. From the529

definition of p̂νt , and also basic properties of variance, the above is equal to530

=
∑︂
x

Var

⎡⎣ 1

nm

n∑︂
i=1

m∑︂
j=1

1(Xij = x)

⎤⎦531

=
1

nm2

∑︂
x

⎡⎣ m∑︂
j=1

Var[1(X1j = x)] + 2
∑︂

1≤i<j≤m

Cov
(︁
1(X1i = x),1(X1j = x)

)︁⎤⎦532

=
1

nm2

∑︂
x

[mVar[1(X11 = x)] +m(m− 1)Cov(1(X11 = x),1(X12 = x))]533

=
1

nm

∑︂
x

[︂
pνt (x)(1−pνt (x)) + (m−1)

(︂
Eν,0 [1(X11 = x)1(X12 = x)]− pνt (x)

2
)︂]︂

534

=
1

nm

∑︂
x

[︁
pνt (x) + (m− 1)Pν(X11 = x,X12 = x)−mpνt (x)

2
]︁

535

=
1

n

[︄
1

m
+

(︃
1− 1

m

)︃
Pν(X11 = X12)−

∑︂
x

pνt (x)
2

]︄
.536

537

We can also take pνt (x) to be a marginal distribution. In that case, interpret sums538

over x as sums over the lower-dimensional marginal variables. Also, view X11 = X12539

as being true if their coordinates corresponding to the marginal variables are equal.540
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A.3. Proof of Theorem 3.2. Let Λ0,t ∈ RR
≥0 be the vector whose rth element541

is Λ0,t
r , and let Y X , Y Z ∈ ZR

≥0 be the vectors whose rth elements are Y X
r (Λ0,t

r ) and542

Y Z
r (Λ0,t

r ), respectively. Then543

Pν(X(t) = Z(t)) = Pν

(︁
SY X = SY Z

)︁
544

= Pν

(︁
S(Y X − Y Z) = 0

)︁
545

=
∑︂

k∈null(S)

Pν(Y
X − Y Z = k)546

=
∑︂

k∈null(S)

Eν,0

[︁
P (Y X − Y Z = k

⃓⃓
Λ0,t)

]︁
.547

548

The elements of Y X and Y Z are independent when conditioned on Λ0,t. Therefore549

we can expand the conditional probability into a product of probabilities, by which550

we mean551

P
(︁
Y X − Y Z = k |Λ0,t

)︁
=

R∏︂
r=1

P
(︁
Y X
r − Y Z

r = kr
⃓⃓
Λ0,t
r

)︁
.552

When conditioned on Λ0,t
r , Y X

r − Y Z
r is the difference of two independent Poissons553

with the same intensity Λ0,t
r . Therefore the difference follows a Skellam distribution.554

To summarize,555

K0,t
r

def
= Y X

r − Y Z
r ∼ Skellam(Λ0,t

r ,Λ0,t
r ), when conditioned on Λ0,t.556

Continuing from above,557

Pν(X11(t) = X12(t)) =
∑︂

k∈null(S)

Eν,0

[︄
R∏︂

r=1

P
(︁
K0,t

r = kr
⃓⃓
Λ0,t
r

)︁]︄
,558

where the expectation is taken over Λ0,t.559

If we are estimating a marginal distribution, then we need to modify the sum560

slightly. Let S′ be the same as S, except the rows corresponding to the marginalized-561

out variables are removed. Then replace null(S) with null(S′).562

A.4. Proof of Theorem 5.1. Let {Xi(t−h)}ni=1 be i.i.d. realizations ofX(t−h).563

Define Xij(t) to be the state of the CTMC conditioned on Xij(t − h) = Xi(t − h),564

where 1 ≤ j ≤ m. For simplicity, later we will denote Xij(t) as just Xij .565

Let Mi ∈ Z|S̃|
≥0, where the kth element of Mi is defined as

∑︁m
j=1 1(Xij = xk). Let566

Σ ∈ R|S̃|×|S̃| be the covariance matrix of M1. The Mi are i.i.d., so if Σ is finite, then567

the usual multivariate central limit theorem implies that568

1√
n

n∑︂
i=1

(Mi −mpνt )
d→ N(0,Σ), as n→∞.569

Let Mi(x) denote the element if Mi corresponding to x. Then by definition, for all x570

nmp̂νt (x;n,m, h) =

n∑︂
i=1

Mi(x).571
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Therefore572

√
nm (p̂νt − pνt )

d→ N(0,Σ), as n→∞.573

The dot product is continuous, so the continuous mapping theorem implies that574

nm2
∑︂
x∈S̃

(︁
p̂νt (x;n,m, h)− pνt (x)

)︁2 d→ N(0,Σ)TN(0,Σ), as n→∞.575

[10, Theorem 2.1] implies that the right side has the same distribution as
∑︁|S̃|

ℓ=1 λℓZ
2
ℓ .576

Let Σxx be the element of Σ on the diagonal corresponding to state x. Then by577

definition578

Σxx = Var

⎡⎣ m∑︂
j=1

1(X1j = x)

⎤⎦
=

m∑︂
j=1

Var [1(X1j = x)] + 2
∑︂

1≤j<k≤m

Cov (1(X1j = x),1(X1k = x)) .

579

Var [1(X1j = x)] = pνt (x)(1− pνt (x)), and the covariance simplifies when we rewrite it580

in terms of expectations. We get581

Σxx = mpνt (x) +m(m− 1)Pν(X11(t) = x,X12(t) = x)−m2pνt (x)
2 <∞.582

Let x1 and x2 be distinct states, and let Σx1,x2 be the element whose row and column583

correspond to the states x1 and x2, respectively. By definition584

Σx1,x2
= Cov

⎡⎣ m∑︂
j=1

1(X1j = x1),

m∑︂
j=1

1(X1j = x2)

⎤⎦585

=

m∑︂
j=1

m∑︂
k=1

Cov [1(X1j = x1),1(X1k = x2)] .586

587

Rearrange the terms in the sum to get588

m∑︂
j=1

Cov [1(X1j = x1),1(X1j = x2)] +

m∑︂
j=1

m∑︂
k=1
k ̸=j

Cov [1(X1j = x1),1(X1k = x2)] ,589

590

which is equivalent to591
592

m∑︂
j=1

(︂
Eν,0 [1(X1j = x1)1(X1j = x2)]− p(x1)p(x2)

)︂
+593

m∑︂
j=1

m∑︂
k=1
k ̸=j

(︂
Eν,0 [1(X1j = x1)1(X1k = x2)]− p(x1)p(x2)

)︂
.594

595

Since x1 ̸= x2, 1(X1j = x1)1(X1j = x2) = 0. Also, the second expectation can be596

rewritten as a probability. The above expression simplifies to597

m(m− 1)Pν (X11(t) = x1, X12(t) = x2)−m2pνt (x1)p
ν
t (x2) <∞.598
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Equation (5.2) simply expresses the above results with matrix-vector notation.599

If we are estimating a marginal distribution, then take S to be the lower dimen-600

sional space corresponding to the marginal variables. Also interpret X(t) as the state601

vector containing only the marginal variables.602

A.5. Proof of Theorem 5.2. If we write out the definition of Σ̂n and use the603

fact that the trace is linear, we can see that604

tr
(︂
Σ̂n

)︂
=

1

n− 1

n∑︂
i=1

tr
(︂(︁

Mi − M̄
)︁ (︁

Mi − M̄
)︁T)︂

.605

We use the cyclic property of the trace to rewrite the right side as606

1

n− 1

n∑︂
i=1

(︁
Mi − M̄

)︁T (︁
Mi − M̄

)︁
.607

Expanding the summands leads to608

1

n− 1

n∑︂
i=1

(︂
MT

i Mi − 2M̄
T
Mi + M̄

T
M̄
)︂
.609

From the definition of M̄ , the above expression is equal to610

− n

n− 1
M̄

T
M̄ +

1

n− 1

n∑︂
i=1

MT
i Mi.611

By definition, mp̂t = M̄ , therefore612

tr
(︂
Σ̂n

)︂
= − nm2

n− 1
(p̂νt )

T p̂νt +
1

n− 1

n∑︂
i=1

MT
i Mi.613

Next consider tr
(︂
Σ̂

2

n

)︂
. We will proceed in a similar way. By definition614

Σ̂
2

n =
1

(n− 1)2

[︄
n∑︂

i=1

(Mi − M̄)(Mi − M̄)T

]︄2
615

=
1

(n− 1)2

n∑︂
i=1

n∑︂
j=1

(Mi − M̄)(Mi − M̄)T (Mj − M̄)(Mj − M̄)T .616

617

The trace is linear, so618

tr
(︂
Σ̂

2

n

)︂
=

1

(n− 1)2

n∑︂
i=1

n∑︂
j=1

tr
(︁
(Mi − M̄)(Mi − M̄)T (Mj − M̄)(Mj − M̄)T

)︁
619

=
1

(n− 1)2

n∑︂
i=1

n∑︂
j=1

[︁
(Mi − M̄)T (Mj − M̄)

]︁2
.620

621

The last line follows from the cyclic property of the trace. When we expand the622

summands, the right side becomes623

1

(n− 1)2

n∑︂
i=1

n∑︂
j=1

[︂
MT

i Mj − M̄
T
Mi − M̄

T
Mj +m2(p̂νt )

T p̂νt

]︂2
.624
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As for the claim about almost sure convergence of the traces, note that Σ̂n
a.s.→ Σ.625

Since matrix multiplication and the trace are continuous, the continuous mapping626

theorem implies the result.627

A.6. Proof of Corollary 5.3. Define628

U =
tr
(︁
Σ2
)︁

tr (Σ)
χ2
α

(︄
tr (Σ)

2

tr (Σ2)

)︄
.629

Since Σ̂n
a.s.→ Σ as n → ∞, the continuous mapping theorem and Lemma A.2 taken630

together imply that Un → U almost surely as n→∞. Also Theorem 5.1 says that631

nm2
∑︂
x∈S̃

(︁
p̂νt (x;n,m, h)− pνt (x)

)︁2 d→
|S̃|∑︂
ℓ=1

λℓZ
2
ℓ , as n→∞.632

Therefore by Slutsky’s theorem633

nm2
∑︁

x∈S̃
(︁
p̂νt (x;n,m, h)− pνt (x)

)︁2
Un

d→
∑︁|S̃|

ℓ=1 λℓZ
2
ℓ

U
, as n→∞,634

which we can rewrite as635

lim
n→∞

Pν

⎛⎝nm2
∑︂
x∈S̃

(︁
p̂νt (x;n,m, h)− pνt (x)

)︁2 ≤ Un

⎞⎠ = P

⎛⎝ |S̃|∑︂
ℓ=1

λℓZ
2
ℓ ≤ U

⎞⎠ .636

Applying the Satterthwaite approximation [46] to the right-hand side gives637

lim
n→∞

Pν

⎛⎝nm2
∑︂
x∈S̃

(︁
p̂νt (x;n,m, h)− pνt (x)

)︁2 ≤ Un

⎞⎠638

≈ P

(︄
tr
(︁
Σ2
)︁

tr (Σ)
χ2

(︄
tr (Σ)

2

tr (Σ2)

)︄
≤ U

)︄
639

= 1− α.640641

The result still holds for marginal distributions. We just need to remove the coordi-642

nates of S̃ corresponding to the variables that are marginalized out.643

Lemma A.2. Let Xθ be a family of random variables parameterized by θ ∈ R with644

strictly increasing cumulative distribution functions Fθ. Suppose that for each θ, the645

function Fθ is continuous. Assume also that Fθ(x) is continuous in θ for each x ∈ R.646

Then the 1− α quantiles of Fθ are also continuous in θ for all α ∈ (0, 1).647

Proof. Let α ∈ (0, 1), and let {θn}∞n=1 be a sequence that converges to θ. Define648

qn and q to be the 1−α quantiles corresponding the θn and θ, respectively. We want649

to show that qn converges to q.650

Let ε > 0. Since α ∈ (0, 1), we know that q is finite. Therefore, we can choose q651

and q such that652

q < q < q and q − q < ε.653
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We want to show that |qn− q| < ε for all sufficiently large n, so it will suffice to prove654

that q < qn < q for all n large enough.655

By assumption, Fθ(q) is continuous in θ, so656

lim
n→∞

Fθn(q) = Fθ(q) < Fθ(q) = 1− α = Fθn(qn).657

The inequality is strict, because q is a quantile and Fθ is strictly increasing and q < q.658

Since Fθn is non–decreasing, qn > q for all sufficiently large n. We can use essentially659

the same argument to conclude that qn < q for all n large enough.660
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