
Scheduling Constrained-Deadline Tasks in Precise
Mixed-Criticality Systems on a Varying-Speed Processor

Tianning She

t_s374@txstate.edu

Texas State University

USA

Zhishan Guo

zsguo@ucf.edu

University of Central Florida

USA

Kecheng Yang

yangk@txstate.edu

Texas State University

USA

ABSTRACT
Real-time systems usually require guarantees in all possible sce-

narios including the worst case. As a result, when each system

parameter is specified by a single estimate, significant pessimism is

inevitably introduced. Tomitigate such pessimism, mixed-criticality

(MC) design has been proposed, where a single system parameter is

provided multiple estimates. Most existing work on MC scheduling

is directed to (fully or partially) sacrifice low-critical workloads in

the event of high-critical workloads overrunning their normal-case

estimate. Recently, another approach called precise MC scheduling

has been investigated, where no low-critical workload is sacrificed

in such situation but the speed of the processor is boosted to accom-

modate the extra execution requirement by high-critical workloads.

Prior work on precise MC scheduling has focused on implicit-

deadline tasks only. In this work, we extend the efforts in pre-

cise MC scheduling to constrained-deadline tasks by developing

demand-based schedulability analysis in place of the utilization-

based ones in prior work. This new analysis also enables more

flexible virtual-deadline settings. The synthetic experiments have

shown that significant schedulability improvements are achieved by

this new analysis and by the flexibility in setting virtual deadlines.

CCS CONCEPTS
• Computer systems organization→ Real-time systems; Embed-
ded systems.

KEYWORDS
constrained deadlines, mixed-criticality systems, precise scheduling,

varying-speed processor, virtual deadlines.

ACM Reference Format:
Tianning She, ZhishanGuo, and Kecheng Yang. 2022. Scheduling Constrained-

Deadline Tasks in Precise Mixed-Criticality Systems on a Varying-Speed

Processor. In Proceedings of the 30th International Conference on Real-Time
Networks and Systems (RTNS ’22), June 7–8, 2022, Paris, France. ACM, New

York, NY, USA, 9 pages. https://doi.org/10.1145/3534879.3534897

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

RTNS ’22, June 7–8, 2022, Paris, France
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9650-9/22/06. . . $15.00

https://doi.org/10.1145/3534879.3534897

1 INTRODUCTION
Safety-critical systems often requires stringent worst-case correct-

ness guarantees for their temporal behaviors. They rely on pes-

simistic worst-case estimates of system execution behaviors (pa-

rameters) and thus lead to huge resource inefficiency in normal

(non-worst-case) scenarios. Mixed-criticality (MC) design has been

proposed to mitigate such pessimism by adopting multiple esti-

mates to a single system parameter, allowing the system to execute

in multiple modes—each of which has its own correctness criteria,

or provides service guarantee according to corresponding estimates

associated with system modes.

Although MC design and scheduling were originally proposed

for different levels of pessimism and confidence for offline (pre-

runtime) verification and certification, there also has been attempts

and believes that it may also be suitable in handling runtime robust-

ness requirements, which is orthogonal to a priori verification. As
suggested in [2, 8], in this context, robustness means that system

performance will degrade gracefully (if at all) when its behavior

does not conform to the models that were assumed during verifi-

cation. An example of degradation would be to compromise less

important aspects of system functionalities. However, in extending

the verification-oriented MC models and algorithms to handling

runtime robustness requirements, there is still criticism of MC

scheduling. The key argument is that low-critical workloads are

not non-critical but are of certain criticality level; therefore, their

execution guarantees should not be compromised even in the event

of more important tasks demanding more resources.

In addressing this issue, the precise-MC model has been pro-

posed [11]. Under the precise-MC model, upon a mode switch, no

(low- or high-critical) task will be sacrificed either fully or par-

tially. Instead, the additional execution requirements demanded

by high-critical tasks are supposed to be compensated by boost-

ing the platform capability, such as increasing the processor speed.

Since it was introduced, existing work on the precise-MC model

has been focused on implicit-deadline tasks only and therefore of-

ten yields utilization-based schedulability tests. Although system

execution modes are triggered by overrun of hi-critical tasks under

both Vestal-MC and precise-MC, the non-sacrificing setting under

precise-MC makes the problem completely different. We do not

know the computation complexity of the schedulability problem

for precise-MC yet. Also, even if we could adapt Vestal-MC [33]

schedulers such as the virtual-deadline based ones to precise-MC,

the original schedulability analysis does not apply to precise-MC

setting. New schedulability tests and analysis techniques must be

developed from first principles, as demonstrated in [11].

https://doi.org/10.1145/3534879.3534897
https://doi.org/10.1145/3534879.3534897

RTNS ’22, June 7–8, 2022, Paris, France Tianning She, Zhishan Guo, and Kecheng Yang

In this paper, focusing on constrained-deadline tasks, we develop
new demand-based analysis that significantly improves the schedu-

lability, compared to directly adapting the existing methods for

implicit deadlines to constrained deadline by treating density as

utilization.

Contributions. To the best of our knowledge, this is the first work
to address constrained-deadline tasks for the precise-MC model. In

this work, we

• formalize the schedulability problem for precise-MC tasks

with constrained deadlines on a varying-speed processor;

• present a virtual-deadline based algorithm for this problem,

called EDF-VD-FLX, which extends EDF-VD in [11] by relax-

ing the “common factor” restriction in virtual deadlines;

• derive a sufficient schedulability test for EDF-VD-FLX by

demand-based analysis, where new techniques are developed

and presented to overcome new challenges in the context of

the precise-MC model; and

• conduct schedulability experiments by synthetic workloads

to evaluate the improvements made by the new analysis

only and by the new analysis together with the flexibility in

setting virtual deadlines, respectively.

Organization. The rest of the paper is organized as follows. Sec-

tion 2 specifies the system model and assumptions to respect in this

paper. Section 3 presents algorithm EDF-VD-FLX and its associated

schedulability test. Section 4 proves the schedulability test by show-

ing the demand-based analysis. Section 5 reports our schedulability

results in synthetic experiments. Section 6 reviews related work,

and Section 7 concludes the paper.

2 SYSTEM MODEL
We denote a set of n sporadic MC tasks by T = {τ1,τ2, · · · ,τn }
and denote a task by a 4-tuple as τi = (Ti ,C

L
i ,C

H
i ,Di). Each task τi

releases a (potentially infinite) sequence of jobs with a minimum

release separation of Ti time units, and every job has an absolute

deadline Di time units after its release. In this paper, we only con-

sider constrained-deadline tasks, i.e., ∀i,Di ≤ Ti . The worst-case
execution requirement of task τi , defined by the worst-case execu-

tion time on a unit-speed processor, is estimated a two criticality

levels: a low-criticality estimate CL
i and a high-criticality estimate

CH
i , where it is assumed that CL

i ≤ CH
i ,∀i . Besides, CL

i (respec-

tively, CH
i) is also the execution requirement budgets of task τi in

the L (respectively, H)-mode, to be described later. In particular,

CL
i < CH

i indicates that τi is a high-criticality task that may trigger

a system mode switch, whereas CL
i = CH

i indicates that τi is a
low-criticality task that cannot trigger any system mode switch. In

this paper, we say “hi-task” for “high-criticality task” and “lo-task”

for “low-criticality task” for short. Similarly, we also use “hi-job(s)”

to mean “job(s) of hi-task(s)” and use “lo-job(s)” to mean “job(s) of

lo-task(s).” Let the jth job of task τi be denoted as Ji, j .
In this paper, we assume that all job release times, all absolute

actual deadlines, and all absolute virtual deadlines (to be introduced

in the next section) must be at integer time instants, but we allow

the amount of work and the execution of jobs to be continuous.

In other words, ∀i , Ti , Di , and D ′
i (to be introduced in the next

section) must be integers, but (L- or H-) Ci and Ci/ρ (where ρ is

the degraded speed to be introduced in the next paragraph) are not

necessarily to be integers. Also, the mode switch might happen at

a non-integer time instant. Moreover, in this paper, we assume that

the preemption and migration overheads e.g., due to memory inter-

ference are negligible. (Equivalently, we assume such overheads are

pessimistically taken into account in the execution requirements

estimates.)

Varying-speed processor and mode switch. We consider the

problem of scheduling the set of tasksτ on a single energy-conserving
processor that can operate at a degraded or full speed. The proces-
sor begins with a degraded speed ρ < 1.0, which indicates that

any workload being executed under this speed for t time units is

equivalent to that under a unit-speed processor for ρ×t time units
1
.

During runtime, the amount of workload completed for each job

is being monitored. If any job Ji, j has cumulatively executed for

a workload of CL
i under degraded processing speed ρ (i.e., has re-

ceived a cumulative actual execution time of CL
i /ρ units) but still

requires further execution, the system is immediately notified, and

the processor starts to perform its full speed 1.0 from that instance.

We call this moment as the time instant of mode switch, from the

L-mode (where the processor speed is ρ) to the H-mode (where the

processor speed becomes 1.0). In the H-mode, once the processor

becomes idle, the system immediately switches back to the L-mode.

Note that, in contrast to the majority of existing works on MC

scheduling, no task is entirely or partially dropped upon a mode

switch, and every job meets its absolute deadline in any system

mode. The difference between the two execution requirement bud-

gets uponmode switch, i.e.,CH
i −CL

i , is supposed to be compensated

by the processor recovering to its full speed. Furthermore, any job

Ji, j that has cumulatively executed for a workload of CH
i yet still

not completed, is considered as erroneous and would be terminated.

That is, only hi-tasks, for which CL
i < CH

i , could trigger a mode

switch.

We denote the utilization of a task τi in L- and H-modes, respec-

tively, by

uLi =
CL
i
Ti

and uHi =
CH
i
Ti
.

We further denote the total of all tasks in L- and H-modes, respec-

tively, by

U L =
∑
τi ∈T

uLi and UH =
∑
τi ∈T

uHi .

We also denote the set of all lo-tasks by Tlo and denote the set of all

hi-tasks byThi. Then, we also have following per-task-set-per-mode

total utilizations:

U L
lo
=

∑
τi ∈Tlo

uLi , U L
hi
=

∑
τi ∈Thi

uLi ,

UH
lo
=

∑
τi ∈Tlo

uHi , and UH
hi
=

∑
τi ∈Thi

uHi .

It is also clear that U L = U L
lo
+ U L

hi
and UH = UH

lo
+ UH

hi
. Since

CL
i = CH

i holds for every lo-task, it also holds uLi = uHi for such

task. Therefore, it is also clear that U L
lo
= UH

lo
.

1
Such linear relationship is safe, as a lowered processor frequency may not cause the

execution time to grow much.

Scheduling Constrained-Deadline Tasks in Precise Mixed-Criticality Systems on a Varying-Speed Processor RTNS ’22, June 7–8, 2022, Paris, France

Schedulability in this paper.We address the problem of sched-

uling the MC tasks on a varying-speed uniprocessor. A system is

said schedulable under a given algorithm if and only if it is guaran-

teed that all deadlines are met in all scenarios with the following

additional requirements on processor execution speed:

• the processor must only operate at its energy-conserving

speed ρ if all jobs finish within their CL
i budget;

• the processor may operate at full speed 1.0 if any hi-job

executes beyond its CL
i budget (yet finishes within its CH

i
budget).

Also, a system is said feasible if and only if there exists an algorithm

under which this system is schedulable.

3 ALGORITHM EDF-VD-FLX
In this section, we introduce the scheduling algorithm, EDF-VD-
FLX, on which we will be focused in this paper. EDF-VD-FLX in-

deed follows the conventional way of assigning virtual deadlines

to address MC problems. The suffix “FLX” (which stands for “flex-

ible”) is to distinguish with the EDF-VD in [11], where the ratio

between relative virtual deadline and relative actual deadline must

be the same for all hi-tasks. EDF-VD-FLX relaxes this restriction

on virtual-deadline settings by allowing each hi-task to set its own

relative virtual deadline independently. As shown in Section 4, the

schedulability test to be presented in this paper can indeed take

this flexibility into account. Furthermore, the experiments in Sec-

tion 5 shows that even following the same virtual-deadline setting

as that in [11] (i.e., same virtual-to-actual ratio for every hi-task),

the advances in the proposed schedulability analysis also gain a

significant schedulability margin compared to adopting the existing

analysis in [11].

Virtual deadlines. Under EDF-VD-FLX, each (hi- or lo-) task τi is
assigned one more parameter D ′

i , which is its relative virtual dead-
line; and each (hi- or lo-) job Ji, j is assigned one more parameter

d ′i, j , which is its absolute virtual deadline and is set atd
′
i, j = ai, j+D

′
i ,

where ai, j is the arrival (release) time of job Ji, j . Furthermore, for

every lo-task τℓ , we set D
′
ℓ
= Dℓ ; for every hi-task τh , the setting

of D ′
h can be arbitrary as long as 0 ≤ D ′

h ≤ Dh . As we will see

later, the concrete virtual-deadline setting for hi-tasks is taken as

an input to the schedulability test, and in Section 5, we will present

and evaluate certain specific such settings.

Runtime scheduling policies and mode switches. In the run-

time, EDF-VD-FLX has two modes to select ready jobs to execute

on the processor. In the L-mode, the ready (hi- or lo-) job with

the earliest absolute virtual deadline is always selected to execute;

by contrast, in the H-mode, the ready (hi- or lo-) job with the

earliest absolute actual deadline is always selected to execute. The

system (and EDF-VD-FLX) always starts with the L-mode, where

the processor also operates at its energy-saving speed ρ. Upon a

time instant where some hi-job Ji, j has cumulatively executed a

workload of CL
i but has not finished yet, the mode is immediately

switched to the H-mode and the processor thereafter operates at its

full speed 1.0 as well. On the other hand, upon a time instant where

the processor becomes idle, the mode is immediately switched back

to the L-mode and the processor reduces its speed to ρ.
Schedulability test. For any given virtual deadline setting un-

der EDF-VD-FLX, we present the following schedulability test, for

which the detailed analysis and proofs will be presented next in

Section 4. Also, we will discuss and evaluate a few methods and

heuristics to set the virtual deadlines in Section 5.

Please note that this schedulability test requires thatU L < ρ and

UH < 1. Since it is trivial that U L ≤ ρ and UH ≤ 1 are necessary

for the feasibility. This requirement barely eliminates the cases

where U L = ρ and UH = 1 and similar requirements often exist

in demand-based schedulability analysis, such as the classic one

from [9].

Given that U L < ρ and UH < 1, we claim that a system follows

the models in Section 2 is schedulable under EDF-VD-FLX, if both
of the following (A) and (B) are true.
(A) ∀ℓ ∈ Z+ such that ℓ < K ,∑

τi ∈T

(⌊
ℓ − D ′

i
Ti

⌋
+ 1

)
CL
i ≤ ρℓ,

where

K =
U L

ρ −U L · max

τi ∈T
{Ti − D ′

i };

(B) ∀ℓ, ℓ′ ∈ Z+ such that ℓ′ ≤ ℓ < K ′∑
τi ∈T

(⌊
ℓ − Di
Ti

⌋
+ 1

)
CL
i +

∑
τi ∈Thi

(⌊
ℓ′ + D ′

i − Di

Ti

⌋
+ 1

)
(CH

i −CL
i)

≤ (ℓ − ℓ′)ρ + ℓ′

where

K ′ =
U L

min{ρ −U L , 1 −UH }
· max

τi ∈T
{Ti − Di }

+
UH −U L

min{ρ −U L , 1 −UH }
· max

τi ∈Thi
{Ti + D

′
i − Di }.

Note that this schedulability test runs in pseudo-polynomial time

for any task system where the L-mode total utilizationU L
is upper

bounded by some constant c1 < ρ and the H-mode total utilization

UH
is upper bounded by some constant c2 < 1.

4 SCHEDULABILITY ANALYSIS
In this section, we present our schedulability analysis under EDF-
VD-FLX and prove a sufficient schedulability test, which is the one

as claimed in the prior section.

In particular, the two parts of the schedulability test, (A) and (B),
are to be proved in the following Sections 4.1 and 4.2, respectively.

The analysis and proofs in Section 4.1 are somewhat straight ap-

plication and adaption of the classic demand based schedulability

analysis from [9]. Readers who are familiar with this kind of analy-

sis might be intuitively convinced by looking at (A) itself and skip

the proof; nonetheless, we provide the full proof here in Section 4.1

for completeness and showing all details and modifications. On the

other hand, the analysis and proofs in Section 4.2 do require new

techniques to achieve a meaningful result as (B).

4.1 Schedulability in the L-mode
The following lemma proves a sufficient condition under which

it is guaranteed that all virtual deadlines in the L-mode must be

met, although it potentially requires to verify the inequality for an

infinite number of values of ℓ.

RTNS ’22, June 7–8, 2022, Paris, France Tianning She, Zhishan Guo, and Kecheng Yang

Lemma 4.1. All virtual deadlines in the L-mode must be met, if

∀ℓ ∈ Z+,
∑
τi ∈T

(⌊
ℓ − D ′

i
Ti

⌋
+ 1

)
CL
i ≤ ρℓ

Proof. We prove the contrapositive, i.e., if there is a missed

virtual deadline in the L-mode, then

∃ℓ ∈ Z+,
∑
τi ∈T

(⌊
ℓ − D ′

i
Ti

⌋
+ 1

)
CL
i > ρℓ.

We let td denote the first missed virtual deadline in the L-mode and

let t0 denote the latest idle
2
time instant at or before td . Then, the

processor is busy during time interval (t0, td] and provides a supply
of ρ(td − t0) for executing jobs with virtual deadlines at or before

td . On the other hand, each (lo- or hi-) task τi can only have at

most

(⌊
td−t0−D′

i
Ti

⌋
+ 1

)
jobs with virtual deadlines at or before td

that contribute to the demand in time interval (t0, td]. This yields a
total demand of ∑

τi ∈T

(⌊
td − t0 − D ′

i
Ti

⌋
+ 1

)
·CL

i .

Then, missing the virtual deadline at td implies that∑
τi ∈T

(⌊
td − t0 − D ′

i
Ti

⌋
+ 1

)
·CL

i > ρ(td − t0).

Letting ℓ = td − t0, it becomes∑
τi ∈T

(⌊
ℓ − D ′

i
Ti

⌋
+ 1

)
·CL

i > ρℓ.

By their definition, it is clear that t0 < td . Also, because t0 and td
are a release time and an absolute virtual deadline, both of which

must be integers by our system model assumptions, ℓ must be an

integer as well. Therefore, ℓ ∈ Z+, and the lemma follows. ■

Then, the following lemma shows that, in fact, only a finite set

of values of the ℓ in Lemma 4.1 is needed to verify.

Lemma 4.2. If

∀ℓ ∈ Z+ such that ℓ <
U L

ρ −U L · max

τi ∈T
{Ti − D ′

i },∑
τi ∈T

(⌊
ℓ − D ′

i
Ti

⌋
+ 1

)
CL
i ≤ ρℓ,

then

∀ℓ ∈ Z+,
∑
τi ∈T

(⌊
ℓ − D ′

i
Ti

⌋
+ 1

)
CL
i ≤ ρℓ

Proof. We prove the contrapositive, i.e., if

∃ℓ ∈ Z+,
∑
τi ∈T

(⌊
ℓ − D ′

i
Ti

⌋
+ 1

)
CL
i > ρℓ, (1)

2
Executing a job with a virtual deadline after td is considered as idle.

then

∃ℓ ∈ Z+ such that ℓ <
U L

ρ −U L · max

τi ∈T
{Ti − D ′

i },∑
τi ∈T

(⌊
ℓ − D ′

i
Ti

⌋
+ 1

)
CL
i > ρℓ. (2)

We let ℓ∗ denotes such an ℓ that satisfies (1), i.e., ℓ∗ ∈ Z+ and∑
τi ∈T

(⌊
ℓ∗ − D ′

i
Ti

⌋
+ 1

)
CL
i > ρℓ∗.

So, it follows that∑
τi ∈T

((
ℓ∗ − D ′

i
Ti

)
+ 1

)
CL
i > ρℓ∗,

which is ∑
τi ∈T

(
ℓ∗ − D ′

i +Ti
) CL

i
Ti
> ρℓ∗.

Therefore, (
ℓ∗ + max

τi ∈T
{Ti − D ′

i }

)
·
∑
τi ∈T

CL
i
Ti
> ρℓ∗,

which is (
ℓ∗ + max

τi ∈T
{Ti − D ′

i }

)
U L > ρℓ∗.

By rearranging, it yields

ℓ∗ <
U L

ρ −U L · max

τi ∈T
{Ti − D ′

i }.

That is, ℓ∗ is such an integer that satisfies (2). In other words, (2) is

true and the lemma follows. ■

Combining Lemmas 4.1 and 4.2, we can conclude the following

theorem, which is part (A) of our schedulability test.

Theorem 4.3. All virtual deadlines in the L-mode must be met, if

∀ℓ ∈ Z+ such that ℓ < K ,
∑
τi ∈T

(⌊
ℓ − D ′

i
Ti

⌋
+ 1

)
CL
i ≤ ρℓ, (3)

where K =
U L

ρ −U L · max

τi ∈T
{Ti − D ′

i }.

4.2 Schedulability in the H-mode
Theorem 4.3 above has shown that (3), which is part (A) of our
schedulability test, is sufficient to ensure all virtual deadlines to

be met in the L-mode. To determine the schedulability for a given

system, we will always examine (A) for the schedulability in the

L-mode; and only if it is true, we will then continue to examine (B)
for the schedulability in the H-mode. Therefore, in the following

lemmas and theorem that establish part (B) of our schedulability
test, it is assumed that (A) is true, i.e., all virtual deadlines in the

L-mode are already guaranteed to be met.

Based on this assumption, the following lemma proves a suffi-

cient condition for ensuring all actual deadlines in the H-mode to

be met, although it potentially requires to verify the inequality for

an infinite number of values of ℓ and ℓ′.

Scheduling Constrained-Deadline Tasks in Precise Mixed-Criticality Systems on a Varying-Speed Processor RTNS ’22, June 7–8, 2022, Paris, France

𝑡𝑡0 𝑡𝑡𝑑𝑑𝑡𝑡𝑠𝑠release time of the first
H-behavior job of 𝜏𝜏𝑖𝑖

= ℓ𝐻𝐻≤ 𝐷𝐷𝑖𝑖′

= ℓ

≤ 𝐷𝐷𝑖𝑖′ + ℓ𝐻𝐻

because both end points are integers, and 𝐷𝐷𝑖𝑖′ is an integer
we denote ℓ′ = ℓ𝐻𝐻

ℓ must be an integer because
both end points are integers

Figure 1: An illustration of the time instants and intervals in the proof of Lemma 4.4.

Lemma 4.4. All actual deadlines in the H-mode must be met if
∀ℓ, ℓ′ ∈ Z+ such that ℓ′ ≤ ℓ, the following inequality (4) holds.∑

τi ∈T

(⌊
ℓ − Di
Ti

⌋
+ 1

)
CL
i +

∑
τi ∈Thi

(⌊
ℓ′ + D ′

i − Di

Ti

⌋
+ 1

)
(CH

i −CL
i)

≤ (ℓ − ℓ′)ρ + ℓ′ (4)

Proof. We prove the contrapositive, i.e., if there is a missed

actual deadline in the H-mode, then

∃ℓ, ℓ′ ∈ Z+ such that ℓ′ ≤ ℓ, and∑
τi ∈T

(⌊
ℓ − Di
Ti

⌋
+ 1

)
CL
i +

∑
τi ∈Thi

(⌊
ℓ′ + D ′

i − Di

Ti

⌋
+ 1

)
(CH

i −CL
i)

> (ℓ − ℓ′)ρ + ℓ′ (5)

We let td denote the first missed actual deadline in the H-mode and

let t0 denote the latest idle
3
time instant at or before td . Then, at

time t0, the system must be in the L-mode, because under EDF-VD-
FLX, the system would switch back to the L-mode at an idle time

instant even if it was in the H-mode before. Also, it is clear that

some job is released at time t0 and the entire time interval (t0, td]
must be busy; otherwise, t0 would be a later time instant. Thus,

within time interval (t0, td], there must exist and only exist one

mode switch from the L-mode to the H-mode, and we denote the

mode-switch time instant by ts . Figure 1 depicts an illustration of

these time instants. We let ℓ denote the length of this busy time

interval of interest, i.e., ℓ = td − t0, and let ℓH denote the length of

the H-mode sub-interval, i.e., ℓH = td − ts .
We then examine a necessary condition for the deadline at td

to be missed. Namely, the demand must exceed the supply for the

time interval of interest, i.e., [t0, td], where the demand is defined

as the total work from all jobs that both are released and have an

actual deadline within this time interval and supply is defined as

the total amount of work the processor can complete within this

busy time interval.

For each (lo- or hi-) task τi , it can release at most

(⌊
ℓ−Di
Ti

⌋
+ 1

)
jobs that both are released and have an actual deadline within

time interval [t0, td]. We count a CL
i towards the demand due to

each of such job. Then, it upper bounds the work from lo-jobs and

3
Executing a job with an actual deadline after td is considered as idle.

L-behaviour hi-jobs (that do not overrun their CL
i), and partially

covers the work from H-behaviour hi-jobs (that do overrun their

CL
i). This part of work can be summarized as

W1 =
∑
τi ∈T

(⌊
ℓ − Di
Ti

⌋
+ 1

)
CL
i .

Note that, t0 must be the released time of some job and td must

be an actual absolute deadline of some job, so both t0 and td must

be integer time instants by our system model assumptions. Thus,

ℓ = td − t0 must be an integer.

Then, rest of the work that contribute to the demand are all from

the work beyond CL
i of H-behaviour hi-jobs. For each hi-task τi ,

its first H-behaviour job cannot be released earlier than ts − D ′
i .

Otherwise, the mode switch must have already been triggered

before ts . This is because, due to the assumption of meeting all

virtual deadlines in the L-mode, any job must have completed CL
i

amount of work by its virtual deadline, which is before ts for a job
released before ts − D ′

i ; and a H-behaviour hi-job that completes

CL
i amount of work but has not finished yet would trigger the mode

switch immediately. In other words, the length of the H-behaviour

window for each hi-task τi , i.e., the time interval from the release

of its first H-behaviour job to td , is at most td −(ts −D ′
i) = ℓ

H +D ′
i .

Note that, this time window begins from some job’s release (which

must be an integer time instant) and ends at some job’s absolute

deadline (which also must be an integer time instant), so the length

of this time window must be an integer as well. Therefore, the

length of the H-behaviour window for each hi-task τi is at most

⌊ℓH ⌋ + D ′
i , given that the relative deadline D ′

i must be an integer.

(ℓH might not be an integer because the mode-switch instant ts
might not be an integer time instant as we have the processor speed

varying and assume the execution is continuous.)

Therefore, letting ℓ′ = ⌊ℓH ⌋, each hi-task τi can release at most(⌊
ℓ′+D′

i−Di
Ti

⌋
+ 1

)
H-behaviour jobs that have an actual deadline

at or before td . Note that a certain part of the work from these

H-behaviour jobs—an amount of CL
i for each—has already been

counted inW1. Therefore, the additional work towards the demand

due to these H-behaviour jobs is upper bounded by

W2 =
∑

τi ∈Thi

(⌊
ℓ′ + D ′

i − Di

Ti

⌋
+ 1

)
(CH

i −CL
i).

RTNS ’22, June 7–8, 2022, Paris, France Tianning She, Zhishan Guo, and Kecheng Yang

Thus, the total demand is at mostW1 +W2. On the other hand,

the supply within [t0, td] is (ℓ − ℓ
H)ρ + ℓH ≥ (ℓ − ℓ′)ρ + ℓ′, where

the inequality is because ℓ′ = ⌊ℓH ⌋ ≤ ℓH by its definition and

ρ < 1 as the degraded speed. Therefore,

W1 +W2 > (ℓ − ℓ′)ρ + ℓ′

is necessary for the demand exceeding the supply for time interval

[t0, td], which is necessary for missing an actual deadline at td . That
is, ∑

τi ∈T

(⌊
ℓ − Di
Ti

⌋
+ 1

)
CL
i +

∑
τi ∈Thi

(⌊
ℓ′ + D ′

i − Di

Ti

⌋
+ 1

)
(CH

i −CL
i)

> (ℓ − ℓ′)ρ + ℓ′

is necessary for missing the deadline at td .
Earlier in this proof, we have already discussed and shown that

ℓ must be an integer, and ℓ′ also must be an integer by its definition

that ℓ′ = ⌊ℓH ⌋. Thus, (5) is a necessary condition for missing actual

deadline in the H-mode, and the lemma follows. ■

Next, the following lemma shows that, to apply Lemma 4.4, it

is sufficient to just examine the possible values of ℓ and ℓ′ uppper-

bounded by K ′
.

Lemma 4.5. If ∀ℓ, ℓ′ ∈ Z+ such that ℓ′ ≤ ℓ < K ′, (4) is true,
then ∀ℓ, ℓ′ ∈ Z+ such that ℓ′ ≤ ℓ, (4) is true, where K ′ is defined as
follows.

K ′ =
U L

min{ρ −U L , 1 −UH }
· max

τi ∈T
{Ti − Di }

+
UH −U L

min{ρ −U L , 1 −UH }
· max

τi ∈Thi
{Ti + D

′
i − Di }

Proof. We prove the contrapositive, i.e., if ∃ℓ, ℓ′ ∈ Z+ such that

ℓ′ ≤ ℓ, (4) is false, then ∃ℓ, ℓ′ ∈ Z+ such that ℓ′ ≤ ℓ < K ′
, (4) is

false. We let ℓ∗ and ℓ′∗ denote an instance of such ℓ and ℓ′ that

make (4) be false, i.e., ℓ∗, ℓ′∗ ∈ Z+ such that ℓ′∗ ≤ ℓ∗ and∑
τi ∈T

(⌊
ℓ∗ − Di

Ti

⌋
+1

)
CL
i +

∑
τi ∈Thi

(⌊
ℓ′∗ + D ′

i − Di

Ti

⌋
+1

)
(CH

i −CL
i)

> (ℓ∗ − ℓ′∗)ρ + ℓ′∗. (6)

Then, our goal is to show that ℓ∗ < K ′
.

By (6), it follows that∑
τi ∈T

((
ℓ∗ − Di

Ti

)
+1

)
CL
i +

∑
τi ∈Thi

((
ℓ′∗ + D ′

i − Di

Ti

)
+1

)
(CH

i −CL
i)

> (ℓ∗ − ℓ′∗)ρ + ℓ′∗,

which is∑
τi ∈T

(
ℓ∗ +Ti − Di

) CL
i
Ti
+

∑
τi ∈Thi

(
ℓ′∗ +Ti + D

′
i − Di

) CH
i −CL

i
Ti

> (ℓ∗ − ℓ′∗)ρ + ℓ′∗.

Therefore,(
ℓ∗ + max

τi ∈T
{Ti − Di }

) ∑
τi ∈T

CL
i
Ti
+(

ℓ′∗ + max

τi ∈Thi
{Ti + D

′
i − Di }

) ∑
τi ∈Thi

CH
i −CL

i
Ti

> (ℓ∗ − ℓ′∗)ρ + ℓ′∗,

which is(
ℓ∗ + max

τi ∈T
{Ti − Di }

)
U L+(

ℓ′∗ + max

τi ∈Thi
{Ti + D

′
i − Di }

)
(UH

hi
−U L

hi
)

> (ℓ∗ − ℓ′∗)ρ + ℓ′∗.

Because lo-tasks have the same utilization in both L- and H-modes,

UH
hi

− U L
hi
= (UH

hi
+ UH

lo
) − (U L

hi
+ U L

lo
) = UH − U L

, by which we

have(
ℓ∗ + max

τi ∈T
{Ti − Di }

)
U L+(

ℓ′∗ + max

τi ∈Thi
{Ti + D

′
i − Di }

)
(UH −U L)

> (ℓ∗ − ℓ′∗)ρ + ℓ′∗.

By rearranging,

(ρ −U L)ℓ∗ + (1 − ρ −UH +U L)ℓ′∗

< U L · max

τi ∈T
{Ti − Di } + (U

H −U L) · max

τi ∈Thi
{Ti + D

′
i − Di } (7)

By the supposition that ℓ∗, ℓ′∗ ∈ Z+ such that ℓ′ ≤ ℓ, we can dis-

cuss the two exhaustive cases of (1 − ρ −UH +U L) as follows:

If 1 − ρ −UH +U L ≥ 0, (7) implies

(ρ−U L)ℓ∗ < U L ·max

τi ∈T
{Ti −Di }+ (U

H −U L) · max

τi ∈Thi
{Ti +D

′
i −Di }.

By rearranging, in this case,

ℓ∗ <
U L ·maxτi ∈T {Ti − Di } + (U H −U L) ·maxτi ∈Thi {Ti + D

′
i − Di }

ρ −U L .

If 1 − ρ −UH +U L < 0, since ℓ′∗ < ℓ∗, (7) implies

(ρ −U L)ℓ∗ + (1 − ρ −UH +U L)ℓ∗

< U L · max

τi ∈T
{Ti − Di } + (U

H −U L) · max

τi ∈Thi
{Ti + D

′
i − Di },

which is

(1−UH)ℓ∗ < U L ·max

τi ∈T
{Ti −Di }+ (U

H −U L) · max

τi ∈Thi
{Ti +D

′
i −Di }.

By rearranging, in this case,

ℓ∗ <
U L ·maxτi ∈T {Ti − Di } + (U H −U L) ·maxτi ∈Thi {Ti + D

′
i − Di }

1 −U H .

Thus, we can conclude that, in either case of (1 − ρ −UH +U L), it
holds that

ℓ∗ <
U L ·maxτi ∈T {Ti − Di } + (U H −U L) ·maxτi ∈Thi {Ti + D

′
i − Di }

min{ρ −U L, 1 −U H }
,

where the right-hand side is indeed K ′
. So, the lemma follows. ■

Scheduling Constrained-Deadline Tasks in Precise Mixed-Criticality Systems on a Varying-Speed Processor RTNS ’22, June 7–8, 2022, Paris, France

Combining Lemmas 4.4 and 4.5 and recalling that the H-mode

analysis is based on the assumption that the L-mode schedulability

has been established first, the following theorem directly follows.

Theorem 4.6. Given that all virtual deadlines in the L-mode are
met, all actual deadlines in the H-mode must be met, if ∀ℓ, ℓ′ ∈

Z+ such that ℓ′ ≤ ℓ < K ′,∑
τi ∈T

(⌊
ℓ − Di
Ti

⌋
+ 1

)
CL
i +

∑
τi ∈Thi

(⌊
ℓ′ + D ′

i − Di

Ti

⌋
+ 1

)
(CH

i −CL
i)

≤ (ℓ − ℓ′)ρ + ℓ′

where

K ′ =
U L

min{ρ −U L , 1 −UH }
· max

τi ∈T
{Ti − Di }

+
UH −U L

min{ρ −U L , 1 −UH }
· max

τi ∈Thi
{Ti + D

′
i − Di }.

Theorems 4.3 and 4.6 together have established that (A) and (B)
are a sufficient schedulability test, as claimed in Section 3.

5 EXPERIMENTAL EVALUATION
In this section, we conduct schedulability experiments by synthetic

workloads to evaluate the effectiveness of our proposed new schedu-

lability analysis as well as the flexible virtual-deadline settings it

enables.

Schemes to compare. Given the focus on the precise scheduling

of MC tasks with constrained deadlines, we specifically compare

the following three schemes for schedulability analysis and setting

virtual deadlines.

(S1) Directly adopt EDF-VD and its schedulability analysis in [11]

with minimum modifications. Since implicit-deadline tasks

are assumed in [11] where utilization-based test was derived,

we just need to use the density (i.e., Ci/Di) in place of every

corresponding utilization. Then, the results in [11] can be

applied. This simple adoption is the base line to compare

against in our experiments.

(S2) While applying the new schedulability analysis in this paper,

we keep the setting of virtual deadlines (almost) the same as

(S1) (i.e., the same as [11]). In other words, we also calculate

a common factor x for shrinking virtual deadlines by

x =

∑
τi ∈Thi

CL
i

Di

ρ −
∑
τi ∈Tlo

CL
i

Di

,

and then assign the relative virtual deadline for each hi-task

τi by D ′
i = ⌈x · Di ⌉. Note that, we would require the ceil-

ings here for deriving D ′
i because the schedulability analysis

presented in this paper require all virtual deadlines to be

integers.

(S3) While applying the new schedulability analysis in this paper,

we also use amore “personalized”way to set virtual deadlines

for each individual hi-task. Specifically, for each hi-task τi ,
we calculate a separate factor xi by xi = CL

i /C
H
i and then

derive its relative virtual deadline by D ′
i = ⌈xi · Di ⌉.

To compare the above (S1), (S2), and (S3), we conduct the schedu-
lability experiments on randomly generated MC tasks with con-

strained deadlines.

Task generation. For each given H-mode total utilization, we gen-

erated 500 task sets and we report the percentage of these task

sets that are deemed schedulable under (S1), (S2), and (S3), re-
spectively. For each task set, we generate 20MC tasks as follows.

Given H-mode total utilization, we first generate the H-mode uti-

lization for each task by UUnifastDiscard [16]. Then, each task is

selected to be a hi-task with probability P (i.e., to be a lo-task with

probability 1 − P). In our experiments reported in this paper, we

have set P = 0.75. If a task τi has been selected to be a lo-task,

then its L-mode utilization uLi must equal to its H-mode utiliza-

tion uHi . By contrast, uLi is randomly and uniformly chosen from

[0.2 × uHi , 0.8 × uHi] for each hi-task. Moreover, the period Ti for
each (lo- or hi-) task τi is randomly generated from a log-uniform

distribution with the range [10, 100]. We also set a factor αi such
that 0 ≤ αi ≤ 1 to represent how constrained the relative deadlines

are expected to be for each task τi . Specifically, the relative deadline
Di is set by Di = ⌈CH

i + (Ti − CH
i) × αi ⌉. Note that the ceilings

are used to ensure that the relative deadlines are integers, which is

required by the proposed schedulability analysis in this paper, and

that Di ≥ CH
i is necessarily required for feasibility.

Results. In our experiments, we consider three different ranges,

[0.1, 0.4], [0.4, 0.7], [0.7, 1.0] for uniformly selecting αi , and we

also consider three different settings, 0.25, 0.50, and 0.75, for the

degraded processor speed ρ. Therefore, we have 3 × 3 = 9 combi-

nations of the setting for αi and ρ to conduct the schedulability

experiments. The results have been summarized and plotted in

the nine sub-figures in Figure 2. In the legends, “Take density as

utilization” stands for results under scheme (S1), “Demand based,

common x” stands for results under scheme (S2), and “Demand

based, separate xi ” stands for results under scheme (S3).
Observations. Comparing each pair of the blue, circle plot and the

orange, triangle plot in all sub-figures in Figure 2, we can see that the

proposed demand-based schedulability analysis significantly out

performs the utilization-based on from prior work [11], even if the

virtual-deadline setting remains the same. Furthermore, comparing

each pair of the orange, triangle plot and the red, square plot in all

sub-figures in Figure 2, we can see that the individual, personalized

virtual-deadline setting is able to further improve the schedulability

also significantly. Note that this more flexible setting of virtual

deadlines is enabled by the demand-based analysis proposed in this

paper and was not supported by the analysis in [11]. We have also

summarized the total number of schedulable task sets (graphically,

the “area” between the plot and the x-axis) for the three plots that

represent (S1), (S2), and (S3), respectively. In this metrics, (S2) is
1.38 times of (S1), and (S3) is 1.86 times of (S1).

6 RELATEDWORK
Since MC model is originally introduced by Vestal [33], several

versions of MC model has been proposed in the real-time systems

research community. A comprehensive review of updated models

and results is presented in [13]. Traditionally, lo-tasks were fully

dropped for sufficient budget to hi-tasks. [1, 6, 14, 15] However,

RTNS ’22, June 7–8, 2022, Paris, France Tianning She, Zhishan Guo, and Kecheng Yang

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
H-mode System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

Sc
he

du
la

bi
lit

y
Ra

tio

Take density
as utilization
Demand based,
common x
Demand based,
separate xi

(a) αi ∈ [0.1, 0.4], ρ = 0.25.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
H-mode System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

Sc
he

du
la

bi
lit

y
Ra

tio

Take density
as utilization
Demand based,
common x
Demand based,
separate xi

(b) αi ∈ [0.1, 0.4], ρ = 0.5.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
H-mode System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

Sc
he

du
la

bi
lit

y
Ra

tio

Take density
as utilization
Demand based,
common x
Demand based,
separate xi

(c) αi ∈ [0.1, 0.4], ρ = 0.75.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
H-mode System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

Sc
he

du
la

bi
lit

y
Ra

tio

Take density
as utilization
Demand based,
common x
Demand based,
separate xi

(d) αi ∈ [0.4, 0.7], ρ = 0.25.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
H-mode System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

Sc
he

du
la

bi
lit

y
Ra

tio

Take density
as utilization
Demand based,
common x
Demand based,
separate xi

(e) αi ∈ [0.4, 0.7], ρ = 0.5.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
H-mode System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

Sc
he

du
la

bi
lit

y
Ra

tio

Take density
as utilization
Demand based,
common x
Demand based,
separate xi

(f) αi ∈ [0.4, 0.7], ρ = 0.75.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
H-mode System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

Sc
he

du
la

bi
lit

y
Ra

tio

Take density
as utilization
Demand based,
common x
Demand based,
separate xi

(g) αi ∈ [0.7, 1.0], ρ = 0.25.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
H-mode System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

Sc
he

du
la

bi
lit

y
Ra

tio

Take density
as utilization
Demand based,
common x
Demand based,
separate xi

(h) αi ∈ [0.7, 1.0], ρ = 0.5.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
H-mode System Utilization

0.0

0.2

0.4

0.6

0.8

1.0
Sc

he
du

la
bi

lit
y

Ra
tio

Take density
as utilization
Demand based,
common x
Demand based,
separate xi

(i) αi ∈ [0.7, 1.0], ρ = 0.75.

Figure 2: Schedulability experiment results. Schedulability ratio is defined as the ratio of the number of schedulable task sets
and the number of randomly generated task sets for each given H-mode system utilization.

Such sacrifice are criticized by Ernst et al. [17]. Dropping all lo-

tasks could not be practical. Recently, more practical model was

presented by [12], known as imprecise MC model(MC), providing

degraded service for lo-tasks, where the execution time of lo-tasks

is reduced in the event of a mode-switch rather than dropped. Sev-

eral subsequent works of imprecise scheduling providing degrade

service [3, 12, 22, 24, 25, 27] either in the form of reduced execution

window, increased period, or dropping some jobs.

The schedulability analysis of the IMC model has been investi-

gated for fixed-priority scheduling and EDF-VD in [12] and [28],

respectively. A generalization of the Vestal model is considered

in [3], where the less critical functionalities are not fully dropped

even in H-mode. A fluid model-based scheduling algorithm, called

MC-Fluid, is presented in [26] for MC tasks on multiprocessors. In

the MC-Fluid scheduling, each task may receive a fraction of a pro-

cessor and have a constant execution rate. All tasks may progress

at specific rates simultaneously. A simplified variant of MC-Fluid,

MCF, is proposed by [5]. It has a speedup bound no worse than

1.33, improved from 1.618 for a dual-criticality system. For the adap-

tive MC- Weakly Hard model, a response time-based schedulability

analysis was proposed in [18] that guarantees a minimum service

for lo-tasks in the event of a mode switch.

Although such degraded service is better than no service for

lo-tasks, it is not acceptable for certain applications as pointed out

in [17]. To address this shortcoming, the precise MC scheduling [11]

was proposed which provide full service for low-critical tasks even

Scheduling Constrained-Deadline Tasks in Precise Mixed-Criticality Systems on a Varying-Speed Processor RTNS ’22, June 7–8, 2022, Paris, France

at the mode-switch. The problem of precise MC scheduling was

investigated on varying-speed uniprocessor [11, 34] and multipro-

cessors [31]. Reserving processors by precise MC scheduling on

multiprocessors is proposed in [30], where a part of processors are

reserved in L-mode for extra workloads in H-mode but the speed

of processors is constant in both modes.

Non-functional requirements such as energy consumption and

its relationship to the operating frequency of the processors were

considered in non-mixed-crticality systems [10, 20, 21, 32]. and mix-

criticality systems [7, 19, 23]. [23] proposed the energy minimiza-

tion by reducing operating frequency using the DVFS technique.

The frequency of the processor can be later changed to higher by the

DVFS technique when needed, such as the mode switch. The advan-

tage of reducing the energy consumption of the system by throttling

speed of processors during run-time was also concluded in [23]. A

natural extension to multiprocessors was presented in [4, 29].

7 CONCLUSION
In this work, we addressed the precise scheduling of MC tasks with

constrained deadlines on a varying-speed processor. We presented

a virtual-deadline based algorithm for this problem, called EDF-
VD-FLX, which extends EDF-VD in prior work [11] by relaxing the

“common factor” restriction in setting virtual deadlines. By analyz-

ing the demand carefully, we derived a sufficient schedulability test

for EDF-VD-FLX. As demonstrated by synthetic experiments, both

the new schedulability analysis and the flexibility in setting virtual

deadlines are able to significantly improve the schedulability.

ACKNOWLEDGMENTS
This work was supported in part by NSF grants CNS-1850851, CNS-

2104181, a start-up grant from University of Central Florida, and

start-up and REP grants from Texas State University.

REFERENCES
[1] Sanjoy Baruah, Vincenzo Bonifaci, Gianlorenzo D’angelo, Haohan Li, Alberto

Marchetti-Spaccamela, Suzanne Van Der Ster, and Leen Stougie. 2015. Preemptive

uniprocessor scheduling of mixed-criticality sporadic task systems. Journal of
the ACM (JACM) 62, 2 (2015), 14.

[2] Sanjoy Baruah and Alan Burns. 2019. Incorporating robustness and resilience into

mixed-criticality scheduling theory. In 2019 IEEE 22nd International Symposium
on Real-Time Distributed Computing (ISORC). IEEE, 155–162.

[3] Sanjoy Baruah, Alan Burns, and Zhishan Guo. 2016. Scheduling mixed-criticality

systems to guarantee some service under all non-erroneous behaviors. In 2016
28th Euromicro Conference on Real-Time Systems (ECRTS). IEEE, 131–138.

[4] Sanjoy Baruah, Bipasa Chattopadhyay, Haohan Li, and Insik Shin. 2014. Mixed-

criticality scheduling onmultiprocessors. Real-Time Systems 50, 1 (2014), 142–177.
[5] Sanjoy Baruah, Arvind Easwaran, and Zhishan Guo. 2015. MC-Fluid: simplified

and optimally quantified. In 2015 IEEE Real-Time Systems Symposium. 327–337.

[6] Sanjoy Baruah and Zhishan Guo. 2014. Scheduling mixed-criticality implicit-

deadline sporadic task systems upon a varying-speed processor. In Proceedings
of the 35th Real-Time Systems Symposium (RTSS), IEEE. IEEE, 31–40.

[7] Sanjoy Baruah and Zhishan Guo. 2014. Scheduling Mixed-Criticality Implicit-

Deadline Sporadic Task Systems upon a Varying-Speed Processor. In 2014 IEEE
Real-Time Systems Symposium. 31–40.

[8] Sanjoy K Baruah. 2018. Mixed-Criticality Scheduling Theory: Scope, Promise,

and Limitations. IEEE Des. Test 35, 2 (2018), 31–37.
[9] Sanjoy K Baruah, Aloysius K Mok, and Louis E Rosier. 1990. Preemptively

scheduling hard-real-time sporadic tasks on one processor. In Proceedings 11th
Real-Time Systems Symposium. IEEE, 182–190.

[10] Ashikahmed Bhuiyan, Zhishan Guo, Abusayeed Saifullah, Nan Guan, and Haoyi

Xiong. 2018. Energy-efficient real-time scheduling of DAG tasks. ACM Transac-
tions on Embedded Computing Systems (TECS) 17, 5 (2018), 84.

[11] Ashikahmed Bhuiyan, Sai Sruti, Zhishan Guo, and Kecheng Yang. 2019. Precise

scheduling of mixed-criticality tasks by varying processor speed. In Proceedings

of the 27th International Conference on Real-Time Networks and Systems. 123–132.
[12] Alan Burns and Sanjoy Baruah. 2013. Towards a more practical model for mixed

criticality systems. InWorkshop on Mixed-Criticality Systems.
[13] Alan Burns and Robert Ian Davis. 2022. Mixed Criticality Systems-A Re-

view:(February 2022). (2022).

[14] Arvind Easwaran. 2013. Demand-based scheduling of mixed-criticality sporadic

tasks on one processor. In Proceedings of the 34th Real-Time Systems Symposium
(RTSS), IEEE. IEEE, 78–87.

[15] Pontus Ekberg and Wang Yi. 2014. Bounding and shaping the demand of gen-

eralized mixed-criticality sporadic task systems. Real-time systems 50, 1 (2014),
48–86.

[16] Paul Emberson, Roger Stafford, and Robert I Davis. 2010. Techniques for the

synthesis of multiprocessor tasksets. In proceedings 1st International Workshop
on Analysis Tools and Methodologies for Embedded and Real-time Systems. 6–11.

[17] Rolf Ernst and Marco Di Natale. 2016. Mixed Criticality Systems - A History of

Misconceptions? IEEE Design & Test 33, 5 (2016), 65–74.
[18] Oliver Gettings, Sophie Quinton, and Robert I Davis. 2015. Mixed criticality

systems with weakly-hard constraints. In Proceedings of the 23rd International
Conference on Real Time and Networks Systems. ACM, 237–246.

[19] Zhishan Guo and Sanjoy Baruah. 2015. The concurrent consideration of uncer-

tainty inWCETs and processor speeds in mixed-criticality systems. In Proceedings
of the 23rd International Conference on Real Time and Networks Systems. 247–256.

[20] Zhishan Guo, Ashikahmed Bhuiyan, Di Liu, Aamir Khan, Abusayeed Saifullah,

and Nan Guan. 2019. Energy-Efficient Real-Time Scheduling of DAGs on Clus-

tered Multi-Core Platforms. In 2019 IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS). IEEE, 156–168.

[21] Zhishan Guo, Ashikahmed Bhuiyan, Abusayeed Saifullah, Nan Guan, and Haoyi

Xiong. 2017. Energy-efficient multi-core scheduling for real-time DAG tasks. In

29th Euromicro conference on real-time systems (ECRTS 2017). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik.

[22] Zhishan Guo, Kecheng Yang, Sudharsan Vaidhun, Samsil Arefin, Sajal K Das, and

Haoyi Xiong. 2018. Uniprocessor Mixed-Criticality Scheduling with Graceful

Degradation by Completion Rate. In 2018 IEEE Real-Time Systems Symposium
(RTSS). IEEE, 373–383.

[23] Pengcheng Huang, Pratyush Kumar, Georgia Giannopoulou, and Lothar Thiele.

2014. Energy efficient dvfs scheduling formixed-criticality systems. In Proceedings
of the 14th International Conference on Embedded Software, ACM. ACM, 11.

[24] Pengcheng Huang, Pratyush Kumar, Georgia Giannopoulou, and Lothar Thiele.

2015. Run and be safe: Mixed-criticality scheduling with temporary processor

speedup. In Design, Automation & Test in Europe Conference & Exhibition (DATE),
2015. IEEE, 1329–1334.

[25] Mathieu Jan, Lilia Zaourar, and Maurice Pitel. 2013. Maximizing the execution

rate of low criticality tasks in mixed criticality system. Proc. WMC, RTSS (2013),
43–48.

[26] Jaewoo Lee, Kieu-My Phan, Xiaozhe Gu, Jiyeon Lee, Arvind Easwaran, Insik Shin,

and Insup Lee. 2014. Mc-fluid: Fluid model-based mixed-criticality scheduling

on multiprocessors. In 2014 IEEE Real-Time Systems Symposium. 41–52.

[27] Di Liu, Jelena Spasic, Nan Guan, Gang Chen, Songran Liu, Todor Stefanov, and

Wang Yi. 2016. EDF-VD scheduling of mixed-criticality systems with degraded

quality guarantees. In 2016 IEEE Real-Time Systems Symposium (RTSS). 35–46.
[28] Di Liu, Jelena Spasic, Nan Guan, Gang Chen, Songran Liu, Todor Stefanov, and

Wang Yi. 2016. EDF-VD scheduling of mixed-criticality systems with degraded

quality guarantees. In Proceedings of the 37th Real-Time Systems Symposium
(RTSS), 2016 IEEE. 35–46.

[29] Sujay Narayana, Pengcheng Huang, Georgia Giannopoulou, Lothar Thiele, and

R Venkatesha Prasad. 2016. Exploring energy saving for mixed-criticality systems

on multi-cores. In Proceedings of the 22nd Real-Time and Embedded Technology
and Applications Symposium (RTAS), IEEE. IEEE, 1–12.

[30] Tianning She, Zhishan Guo, Qijun Gu, and Kecheng Yang. 2021. Reserving

Processors by Precise Scheduling of Mixed-Criticality Tasks. In 2021 IEEE 27th
International Conference on Embedded and Real-Time Computing Systems and
Applications (RTCSA). IEEE, 103–108.

[31] Tianning She, Sudharsan Vaidhun, Qijun Gu, Sajal Das, Zhishan Guo, and

Kecheng Yang. 2021. Precise scheduling of mixed-criticality tasks on varying-

speed multiprocessors. In 29th International Conference on Real-Time Networks
and Systems. 134–143.

[32] Saad Zia Sheikh and Muhammad Adeel Pasha. 2018. Energy-Efficient Multi-

core Scheduling for Hard Real-Time Systems: A Survey. ACM Transactions on
Embedded Computing Systems (TECS) 17, 6 (2018), 94.

[33] S. Vestal. 2007. Preemptive scheduling of multi-criticality systems with varying

degrees of execution time assurance. In Proceedings of the 28th IEEE Real-Time
Systems Symposium (RTSS).

[34] Kecheng Yang, Ashikahmed Bhuiyan, and Zhishan Guo. 2020. F2VD: Fluid Rates

to Virtual Deadlines for Precise Mixed-Criticality Scheduling on a Varying-Speed

Processor. In 2020 IEEE/ACM International Conference On Computer Aided Design
(ICCAD). IEEE, 1–9.

	Abstract
	1 Introduction
	2 System Model
	3 Algorithm EDF-VD-FLX
	4 Schedulability Analysis
	4.1 Schedulability in the L-mode
	4.2 Schedulability in the H-mode

	5 Experimental Evaluation
	6 Related Work
	7 Conclusion
	Acknowledgments
	References

