Scheduling Constrained-Deadline Tasks in Precise
Mixed-Criticality Systems on a Varying-Speed Processor

Tianning She Zhishan Guo Kecheng Yang
t_s374@txstate.edu zsguo@ucf.edu yangk@txstate.edu
Texas State University University of Central Florida Texas State University
USA USA USA

ABSTRACT

Real-time systems usually require guarantees in all possible sce-
narios including the worst case. As a result, when each system
parameter is specified by a single estimate, significant pessimism is
inevitably introduced. To mitigate such pessimism, mixed-criticality
(MC) design has been proposed, where a single system parameter is
provided multiple estimates. Most existing work on MC scheduling
is directed to (fully or partially) sacrifice low-critical workloads in
the event of high-critical workloads overrunning their normal-case
estimate. Recently, another approach called precise MC scheduling
has been investigated, where no low-critical workload is sacrificed
in such situation but the speed of the processor is boosted to accom-
modate the extra execution requirement by high-critical workloads.

Prior work on precise MC scheduling has focused on implicit-
deadline tasks only. In this work, we extend the efforts in pre-
cise MC scheduling to constrained-deadline tasks by developing
demand-based schedulability analysis in place of the utilization-
based ones in prior work. This new analysis also enables more
flexible virtual-deadline settings. The synthetic experiments have
shown that significant schedulability improvements are achieved by
this new analysis and by the flexibility in setting virtual deadlines.

CCS CONCEPTS

« Computer systems organization — Real-time systems; Embed-
ded systems.

KEYWORDS

constrained deadlines, mixed-criticality systems, precise scheduling,
varying-speed processor, virtual deadlines.

ACM Reference Format:

Tianning She, Zhishan Guo, and Kecheng Yang. 2022. Scheduling Constrained-
Deadline Tasks in Precise Mixed-Criticality Systems on a Varying-Speed
Processor. In Proceedings of the 30th International Conference on Real-Time
Networks and Systems (RTINS ’22), June 7-8, 2022, Paris, France. ACM, New
York, NY, USA, 9 pages. https://doi.org/10.1145/3534879.3534897

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

RTNS °22, June 7-8, 2022, Paris, France

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9650-9/22/06....$15.00
https://doi.org/10.1145/3534879.3534897

1 INTRODUCTION

Safety-critical systems often requires stringent worst-case correct-
ness guarantees for their temporal behaviors. They rely on pes-
simistic worst-case estimates of system execution behaviors (pa-
rameters) and thus lead to huge resource inefficiency in normal
(non-worst-case) scenarios. Mixed-criticality (MC) design has been
proposed to mitigate such pessimism by adopting multiple esti-
mates to a single system parameter, allowing the system to execute
in multiple modes—each of which has its own correctness criteria,
or provides service guarantee according to corresponding estimates
associated with system modes.

Although MC design and scheduling were originally proposed
for different levels of pessimism and confidence for offline (pre-
runtime) verification and certification, there also has been attempts
and believes that it may also be suitable in handling runtime robust-
ness requirements, which is orthogonal to a priori verification. As
suggested in [2, 8], in this context, robustness means that system
performance will degrade gracefully (if at all) when its behavior
does not conform to the models that were assumed during verifi-
cation. An example of degradation would be to compromise less
important aspects of system functionalities. However, in extending
the verification-oriented MC models and algorithms to handling
runtime robustness requirements, there is still criticism of MC
scheduling. The key argument is that low-critical workloads are
not non-critical but are of certain criticality level; therefore, their
execution guarantees should not be compromised even in the event
of more important tasks demanding more resources.

In addressing this issue, the precise-MC model has been pro-
posed [11]. Under the precise-MC model, upon a mode switch, no
(low- or high-critical) task will be sacrificed either fully or par-
tially. Instead, the additional execution requirements demanded
by high-critical tasks are supposed to be compensated by boost-
ing the platform capability, such as increasing the processor speed.
Since it was introduced, existing work on the precise-MC model
has been focused on implicit-deadline tasks only and therefore of-
ten yields utilization-based schedulability tests. Although system
execution modes are triggered by overrun of hi-critical tasks under
both Vestal-MC and precise-MC, the non-sacrificing setting under
precise-MC makes the problem completely different. We do not
know the computation complexity of the schedulability problem
for precise-MC yet. Also, even if we could adapt Vestal-MC [33]
schedulers such as the virtual-deadline based ones to precise-MC,
the original schedulability analysis does not apply to precise-MC
setting. New schedulability tests and analysis techniques must be
developed from first principles, as demonstrated in [11].

https://doi.org/10.1145/3534879.3534897
https://doi.org/10.1145/3534879.3534897

RTNS ’22, June 7-8, 2022, Paris, France

In this paper, focusing on constrained-deadline tasks, we develop
new demand-based analysis that significantly improves the schedu-
lability, compared to directly adapting the existing methods for
implicit deadlines to constrained deadline by treating density as
utilization.

Contributions. To the best of our knowledge, this is the first work
to address constrained-deadline tasks for the precise-MC model. In
this work, we

e formalize the schedulability problem for precise-MC tasks
with constrained deadlines on a varying-speed processor;

e present a virtual-deadline based algorithm for this problem,
called EDF-VD-FLX, which extends EDF-VD in [11] by relax-
ing the “common factor” restriction in virtual deadlines;

o derive a sufficient schedulability test for EDF-VD-FLX by
demand-based analysis, where new techniques are developed
and presented to overcome new challenges in the context of
the precise-MC model; and

e conduct schedulability experiments by synthetic workloads
to evaluate the improvements made by the new analysis
only and by the new analysis together with the flexibility in
setting virtual deadlines, respectively.

Organization. The rest of the paper is organized as follows. Sec-
tion 2 specifies the system model and assumptions to respect in this
paper. Section 3 presents algorithm EDF-VD-FLX and its associated
schedulability test. Section 4 proves the schedulability test by show-
ing the demand-based analysis. Section 5 reports our schedulability
results in synthetic experiments. Section 6 reviews related work,
and Section 7 concludes the paper.

2 SYSTEM MODEL

We denote a set of n sporadic MC tasks by 7~ = {71, 72, ,7n}
and denote a task by a 4-tuple as 7; = (Tj, ClL, ClH ,D;). Each task ;
releases a (potentially infinite) sequence of jobs with a minimum
release separation of T; time units, and every job has an absolute
deadline D; time units after its release. In this paper, we only con-
sider constrained-deadline tasks, i.e., Vi, D; < T;. The worst-case
execution requirement of task 7;, defined by the worst-case execu-
tion time on a unit-speed processor, is estimated a two criticality
levels: a low-criticality estimate C{‘ and a high-criticality estimate
Cfl, where it is assumed that Cl.L < CfI,Vi. Besides, C{“ (respec-
tively, C;H) is also the execution requirement budgets of task 7; in
the L (respectively, H)-mode, to be described later. In particular,
CII‘ < CIH indicates that 7; is a high-criticality task that may trigger
a system mode switch, whereas C{“ = Cfl indicates that 7; is a
low-criticality task that cannot trigger any system mode switch. In
this paper, we say “Hi-task” for “high-criticality task” and “Lo-task”
for “low-criticality task” for short. Similarly, we also use “Hi-job(s)”
to mean “job(s) of Hi-task(s)” and use “Lo-job(s)” to mean “job(s) of
Lo-task(s)” Let the j job of task 7; be denoted as J; ;.

In this paper, we assume that all job release times, all absolute
actual deadlines, and all absolute virtual deadlines (to be introduced
in the next section) must be at integer time instants, but we allow
the amount of work and the execution of jobs to be continuous.
In other words, Vi, T;, D;, and D; (to be introduced in the next
section) must be integers, but (L- or H-) C; and C;/p (where p is

Tianning She, Zhishan Guo, and Kecheng Yang

the degraded speed to be introduced in the next paragraph) are not
necessarily to be integers. Also, the mode switch might happen at
a non-integer time instant. Moreover, in this paper, we assume that
the preemption and migration overheads e.g., due to memory inter-
ference are negligible. (Equivalently, we assume such overheads are
pessimistically taken into account in the execution requirements
estimates.)
Varying-speed processor and mode switch. We consider the
problem of scheduling the set of tasks 7 on a single energy-conserving
processor that can operate at a degraded or full speed. The proces-
sor begins with a degraded speed p < 1.0, which indicates that
any workload being executed under this speed for ¢ time units is
equivalent to that under a unit-speed processor for p x t time units!.
During runtime, the amount of workload completed for each job
is being monitored. If any job J; ; has cumulatively executed for
a workload of CIL under degraded processing speed p (i.e., has re-
ceived a cumulative actual execution time of C{‘ /p units) but still
requires further execution, the system is immediately notified, and
the processor starts to perform its full speed 1.0 from that instance.
We call this moment as the time instant of mode switch, from the
L-mode (where the processor speed is p) to the H-mode (where the
processor speed becomes 1.0). In the H-mode, once the processor
becomes idle, the system immediately switches back to the L-mode.

Note that, in contrast to the majority of existing works on MC
scheduling, no task is entirely or partially dropped upon a mode
switch, and every job meets its absolute deadline in any system
mode. The difference between the two execution requirement bud-
gets upon mode switch, i.e., C{{ —C{“, is supposed to be compensated
by the processor recovering to its full speed. Furthermore, any job
Ji,j that has cumulatively executed for a workload of Cf{ yet still
not completed, is considered as erroneous and would be terminated.
That is, only Hi-tasks, for which C{‘ < Cf{ , could trigger a mode
switch.

We denote the utilization of a task 7; in L- and H-modes, respec-

tively, by
L H
ul = C—’ and uff = C—l
1 Ti 4 Ti

We further denote the total of all tasks in L- and H-modes, respec-

UL=ZuiL and UH=ZulH.

€T €T

We also denote the set of all Lo-tasks by 7;, and denote the set of all
HI-tasks by 7y;. Then, we also have following per-task-set-per-mode
total utilizations:

L _ L L _ L
Ug = Z uy, Uy = Z uy,

tively, by

7;€To 7; € Tar
UL{)I = Z u{{, and Uf = Z ulH
7i €70 7i €T

It is also clear that UL = UL + UL and UH = UH + UH. Since
CiL = CIH holds for every ro-task, it also holds ulL = u{i for such
task. Therefore, it is also clear that UL = UH,

!Such linear relationship is safe, as a lowered processor frequency may not cause the
execution time to grow much.

Scheduling Constrained-Deadline Tasks in Precise Mixed-Criticality Systems on a Varying-Speed Processor

Schedulability in this paper. We address the problem of sched-
uling the MC tasks on a varying-speed uniprocessor. A system is
said schedulable under a given algorithm if and only if it is guaran-
teed that all deadlines are met in all scenarios with the following
additional requirements on processor execution speed:

o the processor must only operate at its energy-conserving
speed p if all jobs finish within their C{“ budget;

o the processor may operate at full speed 1.0 if any Hi-job
executes beyond its CIL budget (yet finishes within its C{{
budget).

Also, a system is said feasible if and only if there exists an algorithm
under which this system is schedulable.

3 ALGORITHM EDF-VD-FLX

In this section, we introduce the scheduling algorithm, EDF-VD-
FLX, on which we will be focused in this paper. EDF-VD-FLX in-
deed follows the conventional way of assigning virtual deadlines
to address MC problems. The suffix “FLX” (which stands for “flex-
ible”) is to distinguish with the EDF-VD in [11], where the ratio
between relative virtual deadline and relative actual deadline must
be the same for all HI-tasks. EDF-VD-FLX relaxes this restriction
on virtual-deadline settings by allowing each Hi-task to set its own
relative virtual deadline independently. As shown in Section 4, the
schedulability test to be presented in this paper can indeed take
this flexibility into account. Furthermore, the experiments in Sec-
tion 5 shows that even following the same virtual-deadline setting
as that in [11] (i.e., same virtual-to-actual ratio for every Hi-task),
the advances in the proposed schedulability analysis also gain a
significant schedulability margin compared to adopting the existing
analysis in [11].

Virtual deadlines. Under EDF-VD-FLX, each (H1- or Lo-) task 7; is
assigned one more parameter Dj, which is its relative virtual dead-
line; and each (a1- or Lo-) job Jj, j is assigned one more parameter
d;,j’ which is its absolute virtual deadline and is set at d;,j = a; j+Dj,
where a; j is the arrival (release) time of job J; ;. Furthermore, for
every Lo-task 7, we set D% = Dy; for every Hi-task 7, the setting
of D;1 can be arbitrary as long as 0 < D;1 < Dy. As we will see
later, the concrete virtual-deadline setting for Hi-tasks is taken as
an input to the schedulability test, and in Section 5, we will present
and evaluate certain specific such settings.

Runtime scheduling policies and mode switches. In the run-
time, EDF-VD-FLX has two modes to select ready jobs to execute
on the processor. In the L-mode, the ready (uI- or Lo-) job with
the earliest absolute virtual deadline is always selected to execute;
by contrast, in the H-mode, the ready (u1- or L0-) job with the
earliest absolute actual deadline is always selected to execute. The
system (and EDF-VD-FLX) always starts with the L-mode, where
the processor also operates at its energy-saving speed p. Upon a
time instant where some Hi-job J; ; has cumulatively executed a
workload of C{‘ but has not finished yet, the mode is immediately
switched to the H-mode and the processor thereafter operates at its
full speed 1.0 as well. On the other hand, upon a time instant where
the processor becomes idle, the mode is immediately switched back
to the L-mode and the processor reduces its speed to p.
Schedulability test. For any given virtual deadline setting un-
der EDF-VD-FLX, we present the following schedulability test, for

RTNS °22, June 7-8, 2022, Paris, France

which the detailed analysis and proofs will be presented next in
Section 4. Also, we will discuss and evaluate a few methods and
heuristics to set the virtual deadlines in Section 5.

Please note that this schedulability test requires that UL < p and
UM < 1. Since it is trivial that UL < p and UH < 1 are necessary
for the feasibility. This requirement barely eliminates the cases
where UL = p and U¥ = 1 and similar requirements often exist
in demand-based schedulability analysis, such as the classic one
from [9].

Given that UL < p and U < 1, we claim that a system follows
the models in Section 2 is schedulable under EDF-VD-FLX, if both
of the following (A) and (B) are true.

(A) Y€ € Z" such that £ < K,

t-D)
> ({ — +1)C,.LSpf,
T €T !
where
L
= . T; - D’}:
P g‘g?;{ i —Di}

(B) V¢, € Z* such that £’ < € < K’

3 (|52)t 3 (|22

el 7i €T

+ 1) (cH-ch

<(-p+t
where

K’ vt (T; - D;}
= -max{T; — D;
min{p—UL,l—UH} el ! !

vf -yt
+ — - max {T; + D} - D;}.
min{p - UL, 1 - UH} 7Ty !
Note that this schedulability test runs in pseudo-polynomial time
for any task system where the L-mode total utilization UL is upper
bounded by some constant ¢; < p and the H-mode total utilization
UH is upper bounded by some constant ¢z < 1.

4 SCHEDULABILITY ANALYSIS

In this section, we present our schedulability analysis under EDF-
VD-FLX and prove a sufficient schedulability test, which is the one
as claimed in the prior section.

In particular, the two parts of the schedulability test, (A) and (B),
are to be proved in the following Sections 4.1 and 4.2, respectively.
The analysis and proofs in Section 4.1 are somewhat straight ap-
plication and adaption of the classic demand based schedulability
analysis from [9]. Readers who are familiar with this kind of analy-
sis might be intuitively convinced by looking at (A) itself and skip
the proof; nonetheless, we provide the full proof here in Section 4.1
for completeness and showing all details and modifications. On the
other hand, the analysis and proofs in Section 4.2 do require new
techniques to achieve a meaningful result as (B).

4.1 Schedulability in the L-mode

The following lemma proves a sufficient condition under which
it is guaranteed that all virtual deadlines in the L-mode must be
met, although it potentially requires to verify the inequality for an
infinite number of values of ¢.

RTNS ’22, June 7-8, 2022, Paris, France

LeEmMA 4.1. All virtual deadlines in the L-mode must be met, if

¢—-D/
VeeZ", Z ({TL

1
€T

+1)C§Sp€

Proor. We prove the contrapositive, i.e., if there is a missed
virtual deadline in the L-mode, then

¢-D!
ez,) ({ —

1
€T

+ I)C{“ > pl.

We let t; denote the first missed virtual deadline in the L-mode and
let ty denote the latest idle? time instant at or before t;. Then, the
processor is busy during time interval (¢, t;] and provides a supply
of p(ty — to) for executing jobs with virtual deadlines at or before
tg. On the other hand, each (Lo- or HI-) task 7; can only have at

/
td—tU—Di

most ({ T J + 1) jobs with virtual deadlines at or before t;

that contribute to the demand in time interval (¢o, t4]. This yields a

total demand of
Z ta—to—Dj
T;

T, €T

+1)-C{“.

Then, missing the virtual deadline at t; implies that

tqg —to —Dl{
> (|

T, €T

+ 1) . CiL > p(tg — to).

Letting £ = tg — to, it becomes

5 (|52)t = o

i
€T

By their definition, it is clear that ¢y < t;. Also, because fo and tg
are a release time and an absolute virtual deadline, both of which
must be integers by our system model assumptions, £ must be an
integer as well. Therefore, £ € Z*, and the lemma follows.]

Then, the following lemma shows that, in fact, only a finite set
of values of the ¢ in Lemma 4.1 is needed to verify.

Lemma 4.2, If
L
Ve € Z* such that € < - max{T; — Dj},
pP— UL €T
¢-D!
> ({ — +1)C,.L < pt,
T, €T !

then

{-D;
erZ‘F, Z ({TI
i

T €T

+1)C,.Ls,o€

Proor. We prove the contrapositive, i.e., if

+ f_D; L
EI(eZ,Z — | +1]ct > ot 1)

€T g

2Executing a job with a virtual deadline after ¢, is considered as idle.

Tianning She, Zhishan Guo, and Kecheng Yang

then
L
3¢ € Z* such that £ < - max{T; - D}},
p— UL T €T
DN
Z T +1|Cy > pl. (2)
T €T !

We let £* denotes such an ¢ that satisfies (1), i.e, £* € Z* and

* =D}
Z ({ T 1J+1)C{‘>p€*.

1

T, €T
So, it follows that
- D'
Z((’)+1)C~L>p€*,
T' 1
€T !
which is
cL
> (¢ -D;+T) = > pt".
T, €T !
Therefore,
ck
(é’* + glg{)}(_{Ti —Dl'-}) . Z Tll > pt¥,
€T
which is

(f* + max{T; — D:}) vt > pl*.
T, €T
By rearranging, it yields
L
"<

ooyt maxdli - Dik

That is, £* is such an integer that satisfies (2). In other words, (2) is
true and the lemma follows. n

Combining Lemmas 4.1 and 4.2, we can conclude the following
theorem, which is part (A) of our schedulability test.

THEOREM 4.3. All virtual deadlines in the L-mode must be met, if

¢—-D’
V¢ € ZY such that € < K, Z ({ L
T,

i

+ 1) ck<pt, (3)

T €T
L
where K = - max{T; — D}}.
pP— UL TiET{ ! l}

4.2 Schedulability in the H-mode

Theorem 4.3 above has shown that (3), which is part (A) of our
schedulability test, is sufficient to ensure all virtual deadlines to
be met in the L-mode. To determine the schedulability for a given
system, we will always examine (A) for the schedulability in the
L-mode; and only if it is true, we will then continue to examine (B)
for the schedulability in the H-mode. Therefore, in the following
lemmas and theorem that establish part (B) of our schedulability
test, it is assumed that (A) is true, ie., all virtual deadlines in the
L-mode are already guaranteed to be met.

Based on this assumption, the following lemma proves a suffi-
cient condition for ensuring all actual deadlines in the H-mode to
be met, although it potentially requires to verify the inequality for
an infinite number of values of £ and ¢’.

Scheduling Constrained-Deadline Tasks in Precise Mixed-Criticality Systems on a Varying-Speed Processor

=7

RTNS °22, June 7-8, 2022, Paris, France

£ must be an integer because
both end points are integers

v

= pH
A

H-behavior job of 7;
N—

I
to release time of the first

we denote £’ = |£H]

——
< D{ + |#¥]

because both end points are integers, and D; is an integer

Figure 1: An illustration of the time instants and intervals in the proof of Lemma 4.4.

LEMMA 4.4. All actual deadlines in the H-mode must be met if
Ve, 0 € Z* such that ' < ¢, the following inequality (4) holds.

D (V‘T_Di +1)c5+ D (J+1)<c,H_c,.L)

T, €T ! 7; €T
<SE-p+l" (@)

4 +D; —D;
T;

Proor. We prove the contrapositive, i.e., if there is a missed
actual deadline in the H-mode, then

3¢,¢" € 7' such that £/ < ¢, and

A (PR R (e

T.
1 1
€T 7; €T

J+1)(C,H—c§)

>(=p+ (5

We let t; denote the first missed actual deadline in the H-mode and
let #y denote the latest idle? time instant at or before tg. Then, at
time tp, the system must be in the L-mode, because under EDF-VD-
FLX, the system would switch back to the L-mode at an idle time
instant even if it was in the H-mode before. Also, it is clear that
some job is released at time #p and the entire time interval (¢, 4]
must be busy; otherwise, fyp would be a later time instant. Thus,
within time interval (¢, t;], there must exist and only exist one
mode switch from the L-mode to the H-mode, and we denote the
mode-switch time instant by ts. Figure 1 depicts an illustration of
these time instants. We let £ denote the length of this busy time
interval of interest, i.e., £ = tj — tp, and let ¢H denote the length of
the H-mode sub-interval, i.e, £ = tg —ts.

We then examine a necessary condition for the deadline at t;
to be missed. Namely, the demand must exceed the supply for the
time interval of interest, i.e., [to, t;], where the demand is defined
as the total work from all jobs that both are released and have an
actual deadline within this time interval and supply is defined as
the total amount of work the processor can complete within this
busy time interval.

For each (Lo- or HI-) task 7, it can release at most ({%J + l)

jobs that both are released and have an actual deadline within
time interval [#, t;]. We count a ClL towards the demand due to
each of such job. Then, it upper bounds the work from Lo-jobs and

3Executing a job with an actual deadline after ¢4 is considered as idle.

L-behaviour Hi-jobs (that do not overrun their C{“), and partially
covers the work from H-behaviour H1-jobs (that do overrun their
CiL), This part of work can be summarized as

W=y (V_T_DiJ +1)CiL.

€T g

Note that, ty must be the released time of some job and t; must
be an actual absolute deadline of some job, so both #y and ¢; must
be integer time instants by our system model assumptions. Thus,
{ =ty — to must be an integer.

Then, rest of the work that contribute to the demand are all from
the work beyond CZL of H-behaviour HI-jobs. For each Hi-task z;,
its first H-behaviour job cannot be released earlier than t5 — DJ.
Otherwise, the mode switch must have already been triggered
before t;. This is because, due to the assumption of meeting all
virtual deadlines in the L-mode, any job must have completed Cl.L
amount of work by its virtual deadline, which is before ¢, for a job
released before t; — D7; and a H-behaviour H1-job that completes
C lL amount of work but has not finished yet would trigger the mode
switch immediately. In other words, the length of the H-behaviour
window for each Hi-task 7;, i.e., the time interval from the release
of its first H-behaviour job to tg, is at most tg — (ts = D) = o7 4 Di.
Note that, this time window begins from some job’s release (which
must be an integer time instant) and ends at some job’s absolute
deadline (which also must be an integer time instant), so the length
of this time window must be an integer as well. Therefore, the
length of the H-behaviour window for each Hi-task 7; is at most
LeH] + D!, given that the relative deadline D] must be an integer.
(¢H might not be an integer because the mode-switch instant £
might not be an integer time instant as we have the processor speed
varying and assume the execution is continuous.)

Therefore, letting £’ = |_€H |, each Hi-task 7; can release at most
(I.HD#Z—D,J + 1) H-behaviour jobs that have an actual deadline
at or before t;. Note that a certain part of the work from these
H-behaviour jobs—an amount of CI.L for each—has already been
counted in Wj. Therefore, the additional work towards the demand
due to these H-behaviour jobs is upper bounded by

€/+D£—D,’
T;

+ 1) (cH -chy.

RTNS ’22, June 7-8, 2022, Paris, France

Thus, the total demand is at most W; + W5. On the other hand,
the supply within [ty, t4] is (€ — £7)p + £ > (£ - €')p + ¢’, where
the inequality is because ¢’ = | ¢f] < ¢H by its definition and
p < 1 as the degraded speed. Therefore,

W1+W2>(f—f’)p+fl

is necessary for the demand exceeding the supply for time interval
[20, 4], which is necessary for missing an actual deadline at #,4. That

is,

t +Dl{ —D;
T;

> (|52

1
€T

+1)C1-L+ Z (

7; €T

J + 1) (cH-ch
>+l

is necessary for missing the deadline at .

Earlier in this proof, we have already discussed and shown that
¢ must be an integer, and £’ also must be an integer by its definition
that ¢/ = []. Thus, (5) is a necessary condition for missing actual
deadline in the H-mode, and the lemma follows.]

Next, the following lemma shows that, to apply Lemma 4.4, it
is sufficient to just examine the possible values of ¢ and ¢’ uppper-
bounded by K’.

LEMMA 4.5. IfV{, ¢’ € Z% suchthatt’ < € < K’, (4) is true,
then V¢, 0" € Z* such that ¢’ < ¢, (4) is true, where K’ is defined as
follows.

K’ v {T; - D;}
= -max{T; — D;
min{p—UL,l—UH} el ! !

vyt ,
+ — - max {T; + D; — D;}
min{p - UL, 1 -UH} 7Ty

ProOF. We prove the contrapositive, i.e., if 3¢, ¢’ € Z* such that
¢’ < €, (4) is false, then 3¢,¢’ € Z" such that ¢/ < € < K’, (4) is
false. We let £* and ¢”* denote an instance of such ¢ and ¢’ that
make (4) be false, i.e., £*,£’* € Z* such that £’* < {* and

2t 5, (52 e

€T ! 7; €T

> (E =)+ (6)

Then, our goal is to show that {* < K’.
By (6), it follows that

* - D; "™ + D}, -D;
e e R
T, €T T T; €T T
N (5* _ f[*)p + f'*,
which is

ck cH_cL
> (€ +Ti=Di) -+ > (¢ +Ti+ D) -Dy) "
€T b oeTm !

> (6 =)p + ",

Tianning She, Zhishan Guo, and Kecheng Yang

Therefore,
ctL
 + T; — D; —+
(glgg{ i l}) Z T,
T, €T
cH _cL
"+ T; + D} — D; L
[¢+ mg e pi-00) 31 55
7; €Tm
> (5* _fl*)p +€/*,
which is

(é’* + max{T; — Di}) Ukt
T, €T

(t”* + max {T; + D! —Di}) (UH - yk

7; €T T
> =")p+ ",
Because Lo-tasks have the same utilization in both L- and H-modes,
UH —yL = UH + uH) - UL + UL) = UF - UL, by which we
have

(f* + max{Tl- - Di}) UL+
€T

(f’* + max {T; + D} - Di}) UH -uh

Ti €Jm
> =)p+ 7.
By rearranging,
(p-UHE +(1-p-UT + ULy
< UY - max{T; - D;} + U - UY) - max {T; + D} -D;} (7)
T, €T Ti €m

By the supposition that ¢*, £’ € Z* such that ¢’ < ¢, we can dis-

cuss the two exhaustive cases of (1 — p — U + UL) as follows:

If1-p-U"+UL >0, (7) implies

(p-UN* < UL max{T; - D;} + (U ~UY)- max {T; + D, -D;}.
T €T Ti €/m

By rearranging, in this case,

UL . max,ierr{Ti = Di} + (UH - UL) * MaXrz; efy {Ti + D; - Di}
p-UkL '
If1-p—UH + UL <0, since £* < ¢*, (7) implies

<

(p-UHE +(1-p-UT + UL
< U - max{T; - D;} + UH - UY) - max {T; + D} - D;},
T €T Ti €/mr
which is

(1-Uye* < UF - max{T; - D;} +(UH -U") max {T; +D}-D;}.
T, €T 7; €Tm

By rearranging, in this case,
UL . max,ieT{Ti - Di} + (UH - UL) * MaXrz; Py {Ti + D; - Di}

<
1-UH

Thus, we can conclude that, in either case of (1 — p — UH 4+ UL), it
holds that

UL max,er {T; - D;} + (UH - UL) - max,,eq, {Ti + D, - Di }
min{p - UL, 1-UH}

" <

s

where the right-hand side is indeed K’. So, the lemma follows. =

Scheduling Constrained-Deadline Tasks in Precise Mixed-Criticality Systems on a Varying-Speed Processor

Combining Lemmas 4.4 and 4.5 and recalling that the H-mode
analysis is based on the assumption that the L-mode schedulability
has been established first, the following theorem directly follows.

THEOREM 4.6. Given that all virtual deadlines in the L-mode are
met, all actual deadlines in the H-mode must be met, if V¢, (' €
Z%F such thatt’ < € < K’,

£ —D; ' + D) - D;
D ({ D +1)c5+ D (T{’JH)@J_C;)
T, €T ! 7; €Tm g
S(E-)p+l
where
UL

K' = - max{T; — D;

min{p - UL, 1 - UH} r,»e’]'{l i}

vt -yt
+ — + max {Ti+D;—Di}.
min{p - UL, 1 -UH} rieFy
Theorems 4.3 and 4.6 together have established that (A) and (B)
are a sufficient schedulability test, as claimed in Section 3.

5 EXPERIMENTAL EVALUATION

In this section, we conduct schedulability experiments by synthetic
workloads to evaluate the effectiveness of our proposed new schedu-
lability analysis as well as the flexible virtual-deadline settings it
enables.

Schemes to compare. Given the focus on the precise scheduling
of MC tasks with constrained deadlines, we specifically compare
the following three schemes for schedulability analysis and setting
virtual deadlines.

(S1) Directly adopt EDF-VD and its schedulability analysis in [11]
with minimum modifications. Since implicit-deadline tasks
are assumed in [11] where utilization-based test was derived,
we just need to use the density (i.e., C;/D;) in place of every
corresponding utilization. Then, the results in [11] can be
applied. This simple adoption is the base line to compare
against in our experiments.

(S2) While applying the new schedulability analysis in this paper,
we keep the setting of virtual deadlines (almost) the same as
(S1) (i.e., the same as [11]). In other words, we also calculate
a common factor x for shrinking virtual deadlines by

L
Z‘l'i €T g_l,
>
P Zne‘?{o %ll

X =

and then assign the relative virtual deadline for each Hi-task
t; by D} = [x - D;]. Note that, we would require the ceil-
ings here for deriving D] because the schedulability analysis
presented in this paper require all virtual deadlines to be
integers.

(S3) While applying the new schedulability analysis in this paper,
we also use a more “personalized” way to set virtual deadlines
for each individual H1-task. Specifically, for each Hi-task z;,
we calculate a separate factor x; by x; = Cl!‘/ CIH and then
derive its relative virtual deadline by D} = [x; - D;].

RTNS °22, June 7-8, 2022, Paris, France

To compare the above (S1), (82), and (S3), we conduct the schedu-
lability experiments on randomly generated MC tasks with con-
strained deadlines.

Task generation. For each given H-mode total utilization, we gen-
erated 500 task sets and we report the percentage of these task
sets that are deemed schedulable under (S1), (S2), and (S3), re-
spectively. For each task set, we generate 20 MC tasks as follows.
Given H-mode total utilization, we first generate the H-mode uti-
lization for each task by UUnifastDiscard [16]. Then, each task is
selected to be a HI-task with probability P (i.e., to be a Lo-task with
probability 1 — P). In our experiments reported in this paper, we
have set P = 0.75. If a task 7; has been selected to be a Lo-task,
then its L-mode utilization ulL must equal to its H-mode utiliza-
tion qu . By contrast, u{‘ is randomly and uniformly chosen from
[0.2 x uf{, 0.8 X u{{] for each Hi-task. Moreover, the period T; for
each (Lo- or HI-) task 7; is randomly generated from a log-uniform
distribution with the range [10, 100]. We also set a factor a; such
that 0 < a; < 1 to represent how constrained the relative deadlines
are expected to be for each task ;. Specifically, the relative deadline
D; is set by D; = [Cf{ +(T; — CIH) % a;]. Note that the ceilings
are used to ensure that the relative deadlines are integers, which is
required by the proposed schedulability analysis in this paper, and
that D; > ClH is necessarily required for feasibility.

Results. In our experiments, we consider three different ranges,
[0.1,0.4], [0.4,0.7], [0.7,1.0] for uniformly selecting «;, and we
also consider three different settings, 0.25, 0.50, and 0.75, for the
degraded processor speed p. Therefore, we have 3 X 3 = 9 combi-
nations of the setting for a; and p to conduct the schedulability
experiments. The results have been summarized and plotted in
the nine sub-figures in Figure 2. In the legends, “Take density as
utilization” stands for results under scheme (S1), “Demand based,
common x” stands for results under scheme (S2), and “Demand
based, separate x;” stands for results under scheme (S3).
Observations. Comparing each pair of the blue, circle plot and the
orange, triangle plot in all sub-figures in Figure 2, we can see that the
proposed demand-based schedulability analysis significantly out
performs the utilization-based on from prior work [11], even if the
virtual-deadline setting remains the same. Furthermore, comparing
each pair of the orange, triangle plot and the red, square plot in all
sub-figures in Figure 2, we can see that the individual, personalized
virtual-deadline setting is able to further improve the schedulability
also significantly. Note that this more flexible setting of virtual
deadlines is enabled by the demand-based analysis proposed in this
paper and was not supported by the analysis in [11]. We have also
summarized the total number of schedulable task sets (graphically,
the “area” between the plot and the x-axis) for the three plots that
represent (S1), (82), and (83), respectively. In this metrics, (S2) is
1.38 times of (S1), and (S3) is 1.86 times of (S1).

6 RELATED WORK

Since MC model is originally introduced by Vestal [33], several
versions of MC model has been proposed in the real-time systems
research community. A comprehensive review of updated models
and results is presented in [13]. Traditionally, Lo-tasks were fully
dropped for sufficient budget to mi-tasks. [1, 6, 14, 15] However,

RTNS ’22, June 7-8, 2022, Paris, France

Tianning She, Zhishan Guo, and Kecheng Yang

1.0 Take density 1.0 Take density 1.0 Take density
as utilization as utilization as utilization
0.8 Demand based, ©0.8 Demand based, 008 Demand based,
% . common x %) common x 'ag . common x
[+ Demand based, o Demand based, o Demand based,
é‘ 0.6 separate x; ? 0.6 separate x; @ 0.6 separate x;
3 3 3
8 o o
E 0.4 32 0.4 3 0.4
9] 9] o}
S S S
»n 0.2 »n 0.2 »n 0.2
0.0 0.0 E-E-E-E-a-E-0-8 0.0 a S-E-E-E-E-a-8
0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 0.1 0.2 0.3 04 05 0.6 0.7 0.8 0.9 0.1 0.2 0.3 04 05 0.6 0.7 0.8 0.9
H-mode System Utilization H-mode System Utilization H-mode System Utilization
(a) a; €[0.1,0.4], p = 0.25. (b) a; €[0.1,0.4], p = 0.5. (c) a; €[0.1,0.4], p = 0.75.
1.0 Take density Take density 1.0 e 8RE5ERES
as utilization as utilization
°0.8 Demand based, o Demand based, 00.8
e common x = common x =i
© © © v
o Demand based, | & Demand based, | & Take density
20.6 separate Xx; > separate x; 206 as utilization
= = = Demand based,
2 2 2 common x
504 E 504 Demand based,
g 3 ® 5~ separate x;
S S S
»n 0.2 %] »n 0.2
0.0 S e e S =58 0.0 o 0008
0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 0.1 0.2 0.3 04 05 0.6 0.7 0.8 0.9 0.1 0.2 0.3 04 05 0.6 0.7 0.8 0.9
H-mode System Utilization H-mode System Utilization H-mode System Utilization
(d) a; €[0.4,0.7], p = 0.25. (e) @; €[0.4,0.7], p = 0.5. (f) a; €[0.4,0.7], p = 0.75.
1.0 Take density 1.01 B-8-8-8-8-5-8F 58 1.0 R R e SRR R RN
as utilization
008 Demand based, ©0.8 ©0.8
= common x = =T
© © ©
[Demand based, -2 [~4
20.6 separate x; 20.6 20.6
3 3 3
S S o
> 0.4 > 0.4 Take density S 0.4 Take density
B B as utilization B as utilization \
S S Demand based, S Demand based,
» 0.2 »n 0.2 common x »n 0.2 common x :
Demand based, Demand based,
0.0 - 0.0 separate x; 0.0 separate Xx; 5 o

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
H-mode System Utilization

(g) @i €[0.7,1.0], p = 0.25.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
H-mode System Utilization

(h) a; €[0.7,1.0], p = 0.5.

01 02 03 04 05 06 07 0.8 0.9
H-mode System Utilization

(i) a; €[0.7,1.0], p = 0.75.

Figure 2: Schedulability experiment results. Schedulability ratio is defined as the ratio of the number of schedulable task sets
and the number of randomly generated task sets for each given H-mode system utilization.

Such sacrifice are criticized by Ernst et al. [17]. Dropping all ro-
tasks could not be practical. Recently, more practical model was
presented by [12], known as imprecise MC model(MC), providing
degraded service for Lo-tasks, where the execution time of Lo-tasks
is reduced in the event of a mode-switch rather than dropped. Sev-
eral subsequent works of imprecise scheduling providing degrade
service [3, 12, 22, 24, 25, 27] either in the form of reduced execution
window, increased period, or dropping some jobs.

The schedulability analysis of the IMC model has been investi-
gated for fixed-priority scheduling and EDF-VD in [12] and [28],
respectively. A generalization of the Vestal model is considered
in [3], where the less critical functionalities are not fully dropped
even in H-mode. A fluid model-based scheduling algorithm, called

MC-Fluid, is presented in [26] for MC tasks on multiprocessors. In
the MC-Fluid scheduling, each task may receive a fraction of a pro-
cessor and have a constant execution rate. All tasks may progress
at specific rates simultaneously. A simplified variant of MC-Fluid,
MCEF, is proposed by [5]. It has a speedup bound no worse than
1.33, improved from 1.618 for a dual-criticality system. For the adap-
tive MC- Weakly Hard model, a response time-based schedulability
analysis was proposed in [18] that guarantees a minimum service
for Lo-tasks in the event of a mode switch.

Although such degraded service is better than no service for
Lo-tasks, it is not acceptable for certain applications as pointed out
in [17]. To address this shortcoming, the precise MC scheduling [11]
was proposed which provide full service for low-critical tasks even

Scheduling Constrained-Deadline Tasks in Precise Mixed-Criticality Systems on a Varying-Speed Processor

at the mode-switch. The problem of precise MC scheduling was
investigated on varying-speed uniprocessor [11, 34] and multipro-
cessors [31]. Reserving processors by precise MC scheduling on
multiprocessors is proposed in [30], where a part of processors are
reserved in L-mode for extra workloads in H-mode but the speed
of processors is constant in both modes.

Non-functional requirements such as energy consumption and
its relationship to the operating frequency of the processors were
considered in non-mixed-crticality systems [10, 20, 21, 32]. and mix-
criticality systems [7, 19, 23]. [23] proposed the energy minimiza-
tion by reducing operating frequency using the DVFS technique.
The frequency of the processor can be later changed to higher by the
DVFS technique when needed, such as the mode switch. The advan-
tage of reducing the energy consumption of the system by throttling
speed of processors during run-time was also concluded in [23]. A
natural extension to multiprocessors was presented in [4, 29].

7 CONCLUSION

In this work, we addressed the precise scheduling of MC tasks with
constrained deadlines on a varying-speed processor. We presented
a virtual-deadline based algorithm for this problem, called EDF-
VD-FLX, which extends EDF-VD in prior work [11] by relaxing the
“common factor” restriction in setting virtual deadlines. By analyz-
ing the demand carefully, we derived a sufficient schedulability test
for EDF-VD-FLX. As demonstrated by synthetic experiments, both
the new schedulability analysis and the flexibility in setting virtual
deadlines are able to significantly improve the schedulability.

ACKNOWLEDGMENTS

This work was supported in part by NSF grants CNS-1850851, CNS-
2104181, a start-up grant from University of Central Florida, and
start-up and REP grants from Texas State University.

REFERENCES

[1] Sanjoy Baruah, Vincenzo Bonifaci, Gianlorenzo D’angelo, Haohan Li, Alberto
Marchetti-Spaccamela, Suzanne Van Der Ster, and Leen Stougie. 2015. Preemptive
uniprocessor scheduling of mixed-criticality sporadic task systems. Journal of
the ACM (JACM) 62, 2 (2015), 14.

[2] Sanjoy Baruah and Alan Burns. 2019. Incorporating robustness and resilience into
mixed-criticality scheduling theory. In 2019 IEEE 22nd International Symposium
on Real-Time Distributed Computing (ISORC). IEEE, 155-162.

[3] Sanjoy Baruah, Alan Burns, and Zhishan Guo. 2016. Scheduling mixed-criticality
systems to guarantee some service under all non-erroneous behaviors. In 2016
28th Euromicro Conference on Real-Time Systems (ECRTS). IEEE, 131-138.

[4] Sanjoy Baruah, Bipasa Chattopadhyay, Haohan Li, and Insik Shin. 2014. Mixed-
criticality scheduling on multiprocessors. Real-Time Systems 50, 1 (2014), 142-177.

[5] Sanjoy Baruah, Arvind Easwaran, and Zhishan Guo. 2015. MC-Fluid: simplified
and optimally quantified. In 2015 IEEE Real-Time Systems Symposium. 327-337.

[6] Sanjoy Baruah and Zhishan Guo. 2014. Scheduling mixed-criticality implicit-
deadline sporadic task systems upon a varying-speed processor. In Proceedings
of the 35th Real-Time Systems Symposium (RTSS), IEEE. IEEE, 31-40.

[7] Sanjoy Baruah and Zhishan Guo. 2014. Scheduling Mixed-Criticality Implicit-
Deadline Sporadic Task Systems upon a Varying-Speed Processor. In 2014 IEEE
Real-Time Systems Symposium. 31-40.

[8] Sanjoy K Baruah. 2018. Mixed-Criticality Scheduling Theory: Scope, Promise,
and Limitations. IEEE Des. Test 35, 2 (2018), 31-37.

[9] Sanjoy K Baruah, Aloysius K Mok, and Louis E Rosier. 1990. Preemptively
scheduling hard-real-time sporadic tasks on one processor. In Proceedings 11th
Real-Time Systems Symposium. IEEE, 182-190.

[10] Ashikahmed Bhuiyan, Zhishan Guo, Abusayeed Saifullah, Nan Guan, and Haoyi
Xiong. 2018. Energy-efficient real-time scheduling of DAG tasks. ACM Transac-
tions on Embedded Computing Systems (TECS) 17, 5 (2018), 84.

Ashikahmed Bhuiyan, Sai Sruti, Zhishan Guo, and Kecheng Yang. 2019. Precise
scheduling of mixed-criticality tasks by varying processor speed. In Proceedings

[11

[12]
[13]

[14

[15

=
&

(17

[18

[19

[20

)
=

[22

[23

[24]

~
2

[26]

[27

[28

™~
9,

[30

[31

[32

&
&

(34

RTNS °22, June 7-8, 2022, Paris, France

of the 27th International Conference on Real-Time Networks and Systems. 123-132.
Alan Burns and Sanjoy Baruah. 2013. Towards a more practical model for mixed
criticality systems. In Workshop on Mixed-Criticality Systems.

Alan Burns and Robert Ian Davis. 2022. Mixed Criticality Systems-A Re-
view:(February 2022). (2022).

Arvind Easwaran. 2013. Demand-based scheduling of mixed-criticality sporadic
tasks on one processor. In Proceedings of the 34th Real-Time Systems Symposium
(RTSS), IEEE. IEEE, 78-87.

Pontus Ekberg and Wang Yi. 2014. Bounding and shaping the demand of gen-
eralized mixed-criticality sporadic task systems. Real-time systems 50, 1 (2014),
48-86.

Paul Emberson, Roger Stafford, and Robert I Davis. 2010. Techniques for the
synthesis of multiprocessor tasksets. In proceedings Ist International Workshop
on Analysis Tools and Methodologies for Embedded and Real-time Systems. 6-11.
Rolf Ernst and Marco Di Natale. 2016. Mixed Criticality Systems - A History of
Misconceptions? IEEE Design & Test 33, 5 (2016), 65-74.

Oliver Gettings, Sophie Quinton, and Robert I Davis. 2015. Mixed criticality
systems with weakly-hard constraints. In Proceedings of the 23rd International
Conference on Real Time and Networks Systems. ACM, 237-246.

Zhishan Guo and Sanjoy Baruah. 2015. The concurrent consideration of uncer-
tainty in WCETs and processor speeds in mixed-criticality systems. In Proceedings
of the 23rd International Conference on Real Time and Networks Systems. 247-256.
Zhishan Guo, Ashikahmed Bhuiyan, Di Liu, Aamir Khan, Abusayeed Saifullah,
and Nan Guan. 2019. Energy-Efficient Real-Time Scheduling of DAGs on Clus-
tered Multi-Core Platforms. In 2019 IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS). IEEE, 156-168.

Zhishan Guo, Ashikahmed Bhuiyan, Abusayeed Saifullah, Nan Guan, and Haoyi
Xiong. 2017. Energy-efficient multi-core scheduling for real-time DAG tasks. In
29th Euromicro conference on real-time systems (ECRTS 2017). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik.

Zhishan Guo, Kecheng Yang, Sudharsan Vaidhun, Samsil Arefin, Sajal K Das, and
Haoyi Xiong. 2018. Uniprocessor Mixed-Criticality Scheduling with Graceful
Degradation by Completion Rate. In 2018 IEEE Real-Time Systems Symposium
(RTSS). IEEE, 373-383.

Pengcheng Huang, Pratyush Kumar, Georgia Giannopoulou, and Lothar Thiele.
2014. Energy efficient dvfs scheduling for mixed-criticality systems. In Proceedings
of the 14th International Conference on Embedded Software, ACM. ACM, 11.
Pengcheng Huang, Pratyush Kumar, Georgia Giannopoulou, and Lothar Thiele.
2015. Run and be safe: Mixed-criticality scheduling with temporary processor
speedup. In Design, Automation & Test in Europe Conference & Exhibition (DATE),
2015. IEEE, 1329-1334.

Mathieu Jan, Lilia Zaourar, and Maurice Pitel. 2013. Maximizing the execution
rate of low criticality tasks in mixed criticality system. Proc. WMC, RTSS (2013),
43-48.

Jaewoo Lee, Kieu-My Phan, Xiaozhe Gu, Jiyeon Lee, Arvind Easwaran, Insik Shin,
and Insup Lee. 2014. Mc-fluid: Fluid model-based mixed-criticality scheduling
on multiprocessors. In 2014 IEEE Real-Time Systems Symposium. 41-52.

Di Liu, Jelena Spasic, Nan Guan, Gang Chen, Songran Liu, Todor Stefanov, and
Wang Yi. 2016. EDF-VD scheduling of mixed-criticality systems with degraded
quality guarantees. In 2016 IEEE Real-Time Systems Symposium (RTSS). 35-46.
Di Liu, Jelena Spasic, Nan Guan, Gang Chen, Songran Liu, Todor Stefanov, and
Wang Yi. 2016. EDF-VD scheduling of mixed-criticality systems with degraded
quality guarantees. In Proceedings of the 37th Real-Time Systems Symposium
(RTSS), 2016 IEEE. 35-46.

Sujay Narayana, Pengcheng Huang, Georgia Giannopoulou, Lothar Thiele, and
R Venkatesha Prasad. 2016. Exploring energy saving for mixed-criticality systems
on multi-cores. In Proceedings of the 22nd Real-Time and Embedded Technology
and Applications Symposium (RTAS), IEEE. IEEE, 1-12.

Tianning She, Zhishan Guo, Qijun Gu, and Kecheng Yang. 2021. Reserving
Processors by Precise Scheduling of Mixed-Criticality Tasks. In 2021 IEEE 27th
International Conference on Embedded and Real-Time Computing Systems and
Applications (RTCSA). IEEE, 103-108.

Tianning She, Sudharsan Vaidhun, Qijun Gu, Sajal Das, Zhishan Guo, and
Kecheng Yang. 2021. Precise scheduling of mixed-criticality tasks on varying-
speed multiprocessors. In 29th International Conference on Real-Time Networks
and Systems. 134-143.

Saad Zia Sheikh and Muhammad Adeel Pasha. 2018. Energy-Efficient Multi-
core Scheduling for Hard Real-Time Systems: A Survey. ACM Transactions on
Embedded Computing Systems (TECS) 17, 6 (2018), 94.

S. Vestal. 2007. Preemptive scheduling of multi-criticality systems with varying
degrees of execution time assurance. In Proceedings of the 28th IEEE Real-Time
Systems Symposium (RTSS).

Kecheng Yang, Ashikahmed Bhuiyan, and Zhishan Guo. 2020. F2VD: Fluid Rates
to Virtual Deadlines for Precise Mixed-Criticality Scheduling on a Varying-Speed
Processor. In 2020 IEEE/ACM International Conference On Computer Aided Design
(ICCAD). IEEE, 1-9.

	Abstract
	1 Introduction
	2 System Model
	3 Algorithm EDF-VD-FLX
	4 Schedulability Analysis
	4.1 Schedulability in the L-mode
	4.2 Schedulability in the H-mode

	5 Experimental Evaluation
	6 Related Work
	7 Conclusion
	Acknowledgments
	References

