

1                   **Using carbon, nitrogen, and mercury isotope values to distinguish**  
2                   **mercury sources to Alaskan lake trout**

3           *Ryan F. Lepak<sup>1,2\*</sup>, Jacob M. Ogorek<sup>3</sup>, Krista K. Bartz<sup>4\*</sup>, Sarah E. Janssen<sup>3</sup>, Michael T. Tate<sup>3</sup>, Yin  
4           Runsheng<sup>5</sup>, James P. Hurley<sup>1,6,7</sup>, Daniel B. Young<sup>8</sup>, Collin A. Eagles-Smith<sup>9</sup>, and David P.  
5           Krabbenhoft<sup>3</sup>*

6           <sup>1</sup>Environmental Chemistry and Technology Program, University of Wisconsin-Madison,  
7           Madison, WI 53706, USA

8           <sup>2</sup>U.S. Environmental Protection Agency Office of Research and Development, Center for  
9           Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division,  
10           6201 Congdon Blvd, Duluth, MN 55804, USA

11           <sup>3</sup>U.S. Geological Survey, Upper Midwest Water Science Center, Mercury Research  
12           Laboratory, 1 Gifford Pinchot Dr, Madison, WI 53726, USA

14           <sup>4</sup>National Park Service, Southwest Alaska Inventory and Monitoring Network, 240 West  
15           5<sup>th</sup> Avenue, Anchorage, AK, 99501, USA

16           <sup>5</sup>State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese  
17           Academy of Sciences, Guiyang 550081, China

18           <sup>6</sup>Department of Civil and Environmental Engineering,  
19           University of Wisconsin-Madison, Madison, WI 53706, USA

20           <sup>7</sup>University of Wisconsin Aquatic Sciences Center, Madison, WI 53706, USA

21           <sup>8</sup>National Park Service, Lake Clark National Park and Preserve, 240 West 5<sup>th</sup> Avenue,  
22           Anchorage, AK, 99501, USA

23           <sup>9</sup>U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, Corvallis, OR  
24           97330, USA

25

26           \*Denotes corresponding authors

27

28 **ABSTRACT**

29 Lake trout (*Salvelinus namaycush*), collected from 13 remote lakes located in  
30 southwestern Alaska, were analyzed for carbon, nitrogen, and mercury (Hg) stable isotope  
31 values to assess the importance of migrating oceanic salmon, volcanic activity, and atmospheric  
32 deposition to fish Hg burden. Methylmercury (MeHg) bioaccumulation in phytoplankton (5.0 –  
33 6.9 kg L<sup>-1</sup>) was also measured to quantify the basal uptake of MeHg to these aquatic food webs.  
34 Hg isotope values in lake trout revealed that while the extent of precipitation-delivered Hg was  
35 similar across the entire study area, volcanic Hg is likely an important additional source to lake  
36 trout in proximate lakes. In contrast, migratory salmon (*Oncorhynchus nerka*) deliver little MeHg  
37 to lake trout directly, although indirect delivery processes via decay could exist. A high level of  
38 variability in carbon, nitrogen, and Hg isotope values indicate niche partitioning in lake trout  
39 populations within each lake and that a complex suite of ecological interactions is occurring,  
40 complicating the conceptually linear assessment of contaminant source to receiving organism.  
41 Without connecting energy and contaminant isotope axes, we would not have understood why  
42 lake trout from these pristine lakes have highly variable Hg burdens despite consistently low  
43 water Hg and comparable age-length dynamics.

44 **Keywords**

45 Mercury, isotopes, fish, volcanos, salmon, lake trout, Minamata Convention

46 **Synopsis**

47 Mercury, carbon and nitrogen isotope values in lake trout revealed that in remote southwestern  
48 Alaska, resident lake trout in lakes proximate to local volcanic activity had higher mercury

49 burden and for lakes receiving migratory salmon, no direct evidence of oceanic mercury could  
50 be found though indirect exposure routes surely exist and warrant further investigation.

51 **INTRODUCTION**

52 Mercury (Hg) concentrations in fish result from both ecosystem-scale and individual-  
53 scale factors. Ecosystem-scale variables include productivity,<sup>1, 2</sup> land use or land cover (e.g.  
54 glaciation),<sup>3</sup> sources of Hg, favorable conditions for methylmercury (MeHg) production<sup>4</sup> or  
55 removal (e.g. reduction),<sup>5-7</sup> and the susceptibility of Hg to methylation or demethylation.<sup>4, 8, 9</sup>  
56 Individual-scale factors include foraging habits, trophic position, and growth rates<sup>10</sup>. The  
57 confounding effects of variables at both scales can complicate the interpretation of Hg  
58 concentrations in fish across heterogenous ecosystems.

59 Stable isotope ratios of carbon and nitrogen on bulk tissue are a useful tool used to  
60 predict trophic positions and energy pathways. Carbon stable isotopes values ( $\delta^{13}\text{C}$ ) change very  
61 little through trophic linkages and act as indices of foraging behavior and fish habitat.<sup>11</sup> Stable  
62 isotopes values of nitrogen ( $\delta^{15}\text{N}$ ) undergo predictable trophic enrichment from prey to  
63 predators, allowing us to estimate trophic position.<sup>12, 13</sup> While information regarding MeHg  
64 bioaccumulation and biomagnification can be inferred from  $\delta^{13}\text{C}$  and  $\delta^{15}\text{N}$  analyses, the  
65 connection of Hg sources through dietary pathways is best assessed by including Hg stable  
66 isotope analyses.<sup>1, 12, 14, 15</sup>

67 Combining  $\delta^{13}\text{C}$  and  $\delta^{15}\text{N}$  with Hg stable isotope values facilitates determination of Hg  
68 sources and energy pathways to fish, but less commonly tested is the connection between fish  
69 habitat use and Hg sources in ecosystems where heterogeneity of Hg sources exists.<sup>12</sup> Mass-  
70 dependent fractionation (MDF) of Hg isotopes (represented as  $\delta^{202}\text{Hg}$ ) enables inferences about  
71 Hg sources<sup>16-18</sup> and reaction processes<sup>5, 16, 19-22</sup>. In contrast, mass-independent fractionation

72 (MIF) of Hg isotopes (represented by  $\Delta^{###}\text{Hg}$ ) is observed in odd-isotopes and, by separate  
73 mechanisms, even-isotopes. In aquatic settings, odd-isotope fractionation (odd-MIF, reported as  
74  $\Delta^{199}\text{Hg}$ ) results from near-surface photoreduction or oxidation and has been leveraged as an  
75 indicator for depth.<sup>5, 16, 23, 24</sup> Even-isotope fractionation (even-MIF, reported as  $\Delta^{200}\text{Hg}$ ) occurs in  
76 the upper atmosphere, and in fish marks the importance of precipitation-delivered Hg.<sup>1, 12, 17, 18,</sup>  
77 <sup>25-28</sup> MeHg biomagnification processes conserve  $\Delta^{199}\text{Hg}$ ,  $\Delta^{200}\text{Hg}$ , and to some extent  $\delta^{202}\text{Hg}$   
78 values through the food web.<sup>29-31</sup> Thus, Hg isotope values measured in fish provide information  
79 on the MeHg that enters at the base of the food web, and when heterogeneity in Hg isotope  
80 values exists between habitats (e.g., littoral, pelagic, and benthic zones) of an ecosystem, we can  
81 link fish habitats using Hg and carbon.<sup>1, 12, 32</sup> These multidimensional isotope values  
82 simultaneously allow us to track Hg reactionary processes<sup>5-7, 16, 23</sup> and sources<sup>1, 3, 21, 25, 29, 33-38</sup> as  
83 well as fish habitat preference<sup>11</sup> and trophic placement.<sup>12, 13</sup>

84 The pristine and rugged landscape of southwest Alaska is characterized by a marked  
85 spectrum of topography, glaciation, wetland cover, and connectivity to the ocean, all of which  
86 potentially influence how Hg inputs that are both shared (e.g., global Hg sources) and regional  
87 (e.g., proximity to volcanoes and prevalence of salmon) are received by lakes and the resident  
88 fish therein. To assess the relative importance of these variables, we selected 13 lakes and  
89 performed limnological measurements, assessment of watershed features, Hg concentration  
90 analyses in water, and biological sample collections (seston [plankton], lake trout [*Salvelinus*  
91 *namaycush*], and sockeye salmon [*Oncorhynchus nerka*]) for Hg concentration and isotopic  
92 analyses. Since direct deposition of long-range atmospheric Hg is uniform across the study area,  
93 we hypothesized that isotope values in lake trout inhabiting lakes that receive anadromous  
94 sockeye salmon (representing incoming flux of oceanic MeHg) and those located near volcanic  
95 Hg sources (deposited as inorganic Hg from particles and fumaroles<sup>39, 40</sup>) would be isotopically

96 distinct. We also hypothesized that variability in carbon isotope values of bulk tissue within a  
97 lake would be attributable to lake trout habitat preference and that this habitat partitioning<sup>41</sup>  
98 would result in variation in Hg isotope values, provided that differences in the Hg isoscape exist  
99 as shown previously<sup>12</sup>.

100 **MATERIALS AND METHODS**

101 *Site description*

102 The study lakes are in southwest Alaska within the boundaries of two national parks and  
103 preserves (Lake Clark – LACL and Katmai – KATM), span three level III ecoregions, and feature  
104 landscapes shaped by glaciation and volcanism. Eighteen volcanoes exist within the study area,  
105 with 16 of them located in KATM. We selected 13 lakes according to four criteria: resident lake  
106 trout, quantified migratory salmon estimates, existing water quality monitoring efforts, and  
107 representative gradients in glacier and wetland cover. Lakes in these parks are oligotrophic and  
108 have low to moderate acid buffering capacity. Summertime measurements show that most of  
109 these lakes only weakly stratify. Further description of the lakes can be found in Table S1.

110 *Field collections and preservation*

111 In July of 2016, surface water samples<sup>42</sup> were collected from various open water depths  
112 using a Niskin sampler. Sample depth layers were chosen using a water quality profile measured  
113 by sonde upon arrival. Samples were temporarily held on ice in new Hg-clean 2-liter bottles,  
114 filtered, acidified, and measured for total Hg (HgT, filter-passing as FHgT) and MeHg (FMeHg).  
115 Unacidified filter-passing water was collected, refrigerated, and analyzed for dissolved organic  
116 carbon (DOC; Tables S2-S3).<sup>32</sup> Details of ancillary water analyses and associated quality control  
117 procedures can be found on the U.S. Geological Survey Mercury Research Laboratory (USGS-

118 MRL) website.<sup>3, 43, 44</sup> Seston were collected by vertical tows in the surficial 20 meters with a 52  
119 µm Nitex mesh net and subsequently size sieved (Table S4).<sup>44</sup>

120 Ten adult lake trout and three adult sockeye salmon (where present) were collected per  
121 lake by angling or gill net between 2011 and 2016. Sex, weight, and length were measured at  
122 capture, and sagittal otoliths and axial muscle tissue were removed from the carcass for age  
123 determination (Figure S1, Table S5)<sup>45</sup> and constituent analyses, respectively. All biological tissues  
124 were stored frozen, lyophilized, and homogenized prior to analysis.

125 *Constituent analyses*

126 Fish tissue HgT concentrations were determined using direct combustion combined with  
127 atomic absorbance spectroscopy (Table S5).<sup>34</sup> A triplicate and standard reference material (SRM)  
128 analysis was performed once every 10 samples, with acceptable triplicate data achieving a  
129 relative standard deviation of less than 10% and an average SRM recovery of IAEA 407 (fish  
130 homogenate) measured at  $100\% \pm 6\%$ . Plankton MeHg concentrations were determined using  
131 4.5 M nitric acid extraction, sodium tetraethylborate ethylation, gaseous purge and trap,  
132 thermal desorption, and atomic fluorescence spectroscopy (AFS). After successful MeHg  
133 analysis, plankton extracts were oxidized with bromine monochloride and analyzed for HgT  
134 concentration by AFS. For plankton analyses, SRM IAEA 452 (Scallop - *Pecten. Maximus*)  
135 recoveries were consistently within 10% of reported values, reagent blanks were negligible, and  
136 an in-house secondary standard to verify ongoing instrument calibration was within 10% of  
137 expected concentration.<sup>44</sup>

138 For HgT stable isotope analysis, approximately 0.1 g of fish tissue was digested in 5 mL  
139 of concentrated nitric acid (95°C) overnight, oxidized with 5% bromine monochloride, and then  
140 heated for 4 hours. Extracts were diluted to a 10% acid concentration, measured for HgT by AFS

141 to assess recovery, and then analyzed for HgT stable isotopes.<sup>1, 46</sup> IAEA 407 was used as the  
142 isotopic Hg SRM and UM-Almadén was used as a secondary standard (Table S6).

143 Carbon and nitrogen stable isotopes values in fish and plankton were analyzed by the  
144 University of California-Davis Stable Isotope Facility and reference material results met lab  
145 standards. Triplicates were added to determine precision (Table S7). To account for the  $\delta^{13}\text{C}$   
146 fractionation associated with lipid formation in fish, mathematical lipid corrections (lipid content  
147 approximated from molar C:N<sub>ratio</sub>) were performed on lake trout  $\delta^{13}\text{C}$  and labeled as  $\delta^{13}\text{C}_{\text{lipid-free}}$ .<sup>47</sup>  
148 Fatty acid content in zooplankton also fractionates  $\delta^{13}\text{C}$  so mathematical corrections  
149 approximated from sample C:N<sub>ratio</sub> were also applied to >118- $\mu\text{m}$  size-sieved plankton  $\delta^{13}\text{C}$  and  
150 labeled as  $\delta^{13}\text{C}_{\text{lipid-free}}$ .<sup>48</sup>

151 **RESULTS AND DISCUSSION**

152 *Hg in lake water, the lower food web, and lake trout*

153 Analyzed constituents in filter-passing waters were among the lowest reported for  
154 surface waters in the literature. FHgT ( $0.18 \pm 0.04$  and  $0.22 \pm 0.11 \text{ ng L}^{-1}$  for KATM and LACL,  
155 respectively; Table S2) in surface waters was similar between parks and lower, on average, than  
156 both the pelagic Pacific Ocean and Laurentian Great Lakes.<sup>1, 43, 49</sup> The FMeHg (often at or below  
157 method detection limits of  $0.010 \text{ ng L}^{-1}$ ) and DOC ( $0.89 \pm 0.39$  and  $0.62 \pm 0.71 \text{ mg L}^{-1}$  for KATM  
158 and LACL respectively) concentrations were extremely low, often lower than the open Pacific  
159 Ocean and Upper Great Lakes.<sup>43, 44, 49</sup>

160 The uptake of MeHg from water into plankton marks the baseline for MeHg entry into  
161 the food web in freshwater and marine systems and can be measured as the bioaccumulation  
162 factor (BAF [ $\text{kg L}^{-1}$ ]). Bulk plankton, size-sieved at the 63 – 118  $\mu\text{m}$  size fraction, was composed  
163 primarily of algae and contained very few zooplankton, as indicated by low  $\delta^{15}\text{N}$  values and high

164 C:N ratios (Table S4).<sup>44</sup> Focusing on bioaccumulation in phytoplankton allows us to estimate  
165 MeHg bioavailability while avoiding the complexities of biomagnification through higher trophic  
166 level zooplankton. BAFs, while commonly utilized in the literature to compare MeHg  
167 bioaccumulation across various water qualities and spatiotemporal ranges, are uncommonly  
168 measured in Alaska. We compared BAFs here to analogous oligotrophic systems with existing  
169 data, such as the open ocean and the Laurentian Great Lakes.<sup>2, 44</sup> Although the 63–118- $\mu\text{m}$  size  
170 fraction was consistently low in MeHg ( $6.1 \pm 4.4 \text{ ng g}^{-1}$ ; Table S4) when compared to the larger  
171 size fractions collected here and algae reported elsewhere,<sup>43, 44</sup> average BAFs are higher in these  
172 lakes ( $\log 5.8 \pm 0.5 \text{ L kg}^{-1}$ ) than typically found globally ( $\log 2.4$  to  $5.9$  in marine systems and  $\log$   
173  $5.5$  to  $6.0$  in the Laurentian Great Lakes  $\text{L kg}^{-1}$ ),<sup>44, 50</sup> indicating more efficient MeHg  
174 bioaccumulation.

175 Lake trout HgT concentrations were widely variable within and across lakes (Figure 1),  
176 with fish from KATM often having higher HgT than fish from LACL. Variation in HgT  
177 concentrations within lakes were in part due to fish age and size differences, but systematic  
178 relationships were only present for some lakes which prevented us from performing corrections  
179 across the study. Great Lakes work<sup>44</sup> showed a significant and positive relationship between  
180 MeHg BAFs in phytoplankton and lake trout HgT, but here no relationship existed. This is likely  
181 because our seston-water data represents a single temporal snapshot and lake trout were not  
182 size-age standardized.<sup>51</sup> However, C, N, and Hg isotope values in fish capture longer biological  
183 timespans that better integrate fish habitat, diet and Hg content.

184 *Hg isotopes reveal Hg sources to lake trout*

185 Lake trout spanned a large range in  $\delta^{202}\text{Hg}$  and  $\Delta^{199}\text{Hg}$  values (-0.42 to 2.06‰ and 1.13  
186 to 7.59‰, respectively; Figure 2). These ranges were similar to those reported from the Great

187 Lakes, where Hg isotope variability is primarily driven by trophic status and water clarity, and  
188 secondarily by the localized influence of anthropogenic inputs.<sup>1</sup> Although the Alaskan lakes are  
189 similarly oligotrophic to the least productive of the Great Lakes (like lake Superior), they lack a  
190 localized source of anthropogenic Hg and nutrient inputs (like lake Erie) that would drive  
191 variation in  $\Delta^{199}\text{Hg}$ , so another mechanism, besides water clarity, must drive  $\Delta^{199}\text{Hg}$  variability.  
192 The  $\Delta^{199}\text{Hg}:\Delta^{201}\text{Hg}$ <sup>5, 16, 23</sup> slopes (KATM =  $1.27 \pm 0.01$ ,  $r^2 = 1.0$ ; and LACL =  $1.22 \pm 0.01$ ,  $r^2 = 0.99$ )  
193 measured in lake trout are indicative of photochemical demethylation<sup>5-7</sup>, so variability in lake  
194 trout  $\Delta^{199}\text{Hg}$  values within a lake did not originate in the Hg source but rather from the extent of  
195 *in situ* photochemical processing. Secchi depth generally increased with mean lake trout  $\Delta^{199}\text{Hg}$   
196 across lakes, with some exceptions (Figures S3), in part supporting these conclusions. But some  
197 lakes had very low Secchi depth accompanied by high  $\Delta^{199}\text{Hg}$  values, and we postulate that is  
198 related to the depth of chlorophyll maxima which for some lakes was proximate to the surface.  
199 Vertical placement of phytoplankton is important because phytoplankton are the entry point for  
200 MeHg, where pelagic  $\Delta^{199}\text{Hg}$  values are captured initially. Phytoplankton can enhance  
201 photochemical demethylation when exposed to UV light,<sup>52</sup> which likely exacerbates  $\Delta^{199}\text{Hg}$   
202 formation in those anomalous lakes, and we propose vertical phytoplankton positioning might  
203 be influenced by unrealized variables (like glacial till shading) and should be investigated in the  
204 future.

205 The collection of  $\Delta^{199}\text{Hg}:\delta^{202}\text{Hg}$  values between the two parks is also offset by roughly  
206 0.5‰ (Figure 2 left) likely due to differing proportions of distinct Hg sources between parks. The  
207  $\Delta^{199}\text{Hg}:\delta^{202}\text{Hg}$  slope in LACL lake trout ( $2.28 \pm 0.09$ ,  $r^2 = 0.97$ ) was like laboratory-derived  
208 photochemical demethylation in low DOC conditions (slope = 2.4),<sup>3,6,7,29</sup> indicating a similar Hg  
209 source among LACL lakes that is photochemically fractionated to varying degrees. In contrast,  
210 the  $\Delta^{199}\text{Hg}:\delta^{202}\text{Hg}$  slope for KATM lake trout ( $3.48 \pm 0.33$ ,  $r^2 = 0.90$ ) was substantially higher than

211 LACL, indicating that KATM lakes receive differing proportions of distinct Hg sources that were  
212 also photochemically demethylated to dissimilar extents (Figure S5). Finally, the lake trout  
213  $\Delta^{199}\text{Hg}:\delta^{202}\text{Hg}$  values do not overlap with the anadromous salmon values (except at Crescent  
214 Lake, where later we will also rule out direct salmon consumption) indicating that direct  
215 consumption of salmon is not a dominant MeHg source.

216 Photochemical demethylation also changes  $\delta^{202}\text{Hg}$  values, but  $\Delta^{199}\text{Hg}$  can be used to  
217 estimate this fractionation.<sup>3</sup> The extent of photochemical demethylation (reflected by  $\Delta^{199}\text{Hg}$   
218 magnitude) differed among lakes making it challenging to compare  $\delta^{202}\text{Hg}$  values between lakes.  
219 DOC and FHgT concentrations can influence  $\delta^{202}\text{Hg}$  corrections, but here they are similar among  
220 lakes (Table S2), reducing concerns. We correct  $\delta^{202}\text{Hg}$  using lake trout  $\Delta^{199}\text{Hg}$ , the laboratory-  
221 derived  $\Delta^{199}\text{Hg}:\delta^{202}\text{Hg}$  slope (2.4) specific to these DOC and FHgT conditions, and the assumption  
222 that  $\Delta^{199}\text{Hg}$  values of incoming inorganic Hg are near-zero.<sup>16, 53, 54</sup> Although sources of Hg with  
223 non-zero  $\Delta^{199}\text{Hg}$  values are typical from precipitation, we postulate that wet Hg deposition is  
224 relatively similar across all lakes and this is supported by low  $\Delta^{200}\text{Hg}$  variability among lake  
225 trout.<sup>16, 25, 27, 33, 36, 55</sup> Furthermore, the lack of increased particulate or dissolved Hg below the  
226 thermocline indicate the sediments were not an appreciable Hg source to fish<sup>1, 12, 42</sup> (Table S2).  
227 Together, these factors and assumptions allowed us to estimate a  $\delta^{202}\text{Hg}_{\text{corr.}}$  for each fish, which  
228 we then compared across lakes.

229 We observed decreasing  $\delta^{202}\text{Hg}_{\text{corr.}}$  values and increasing lake trout HgT concentrations  
230 (Figure S6 - Pearson's  $r = -0.55$  and  $p < 0.001$  – Figure S6) as proximity to volcanoes increased  
231 (Figures 1B and 2 left). Isotope values from gaseous elemental Hg and fumarole-reactive Hg  
232 released from volcanoes are low in  $\Delta^{199}\text{Hg}$  (-0.1 and -0.1 to 0.2‰, respectively) and  $\delta^{202}\text{Hg}$  (-1.7  
233 and -1.1 to -0.2‰ respectively) when compared to background gaseous elemental and

234 precipitation-delivered Hg isotope values ( $\Delta^{199}\text{Hg}$ ; -0.3 to -0.1 and 0.2 to 0.6‰ are the  
235 interquartile ranges respectively and  $\delta^{202}\text{Hg}$ ; 0.0 to 0.7 and -1.1 to 0.0‰ are the interquartile  
236 ranges respectively).<sup>33, 36, 53, 56, 57</sup> Because the  $\delta^{202}\text{Hg}$  values for fumarole-released Hg are lower  
237 than background measurements in precipitation and gaseous elemental Hg, and because we  
238 observed decreased  $\delta^{202}\text{Hg}_{\text{corr.}}$  values in lakes proximate to volcanoes, we have concluded that  
239 the southern KATM lake trout receive additional Hg from volcanism, likely as fumarole  
240 deposition directly to lakes or to the watershed.<sup>39</sup>

241 *Determining the importance of salmon to lake trout Hg accumulation*

242 We found little evidence of direct contribution of salmon-derived Hg to lake trout. Lake  
243 trout  $\delta^{202}\text{Hg}_{\text{corr.}}$  values did not overlap with salmon  $\delta^{202}\text{Hg}_{\text{corr.}}$  values (Figure 2 left) in any lakes  
244 except Turquoise (which lacks salmon migration). Crescent Lake trout overlapped with salmon  
245 for paired  $\delta^{202}\text{Hg}$  and  $\Delta^{199}\text{Hg}$  values, but only when uncorrected  $\delta^{202}\text{Hg}$  values are used. Our  
246 study design does not account for indirect routes of Hg exposure from salmon. For example,  
247 lake trout may consume oceanic salmon MeHg through salmon eggs and newly hatched fry.  
248 Also, salmon decay as an exposure route was not considered. Decay results in the simultaneous  
249 liberation of Hg and a considerable influx of nutrients to these oligotrophic ecosystems.<sup>10, 58-61</sup>

250 Although plankton would be the preferred sentinel to capture a  $\delta^{15}\text{N}$  and  $\delta^{13}\text{C}_{\text{lipid-free}}$  or  
251 Hg signal from decaying salmon, plankton collections slightly preceded salmon migration. So, we  
252 can only conclude that plankton  $\delta^{15}\text{N}$  and  $\delta^{13}\text{C}_{\text{lipid-free}}$  values do not differ between lakes with and  
253 without salmon migrations despite our assumption that salmon migrations would alter each  
254 lake's  $\delta^{15}\text{N}$  and  $\delta^{13}\text{C}$  baseline over timescales exceeding a year. We expected to observe a  $\delta^{15}\text{N}$   
255 and  $\delta^{13}\text{C}_{\text{lipid-free}}$  or Hg shift in the lake trout too because migrating salmon deliver, *en masse*, large  
256 amounts of isotopically distinct sources of C, N, and Hg to relatively nutrient and Hg poor lake

257 ecosystems.<sup>58, 59, 62</sup> C, N, and Hg half-lives in long-lived lake trout are expected to extend beyond  
258 one year, allowing them to serve as sentinels to capture salmon migrations if salmon tissue is of  
259 direct and important sustenance.<sup>12, 63-65</sup> While C and Hg isotope axes in lake trout were not  
260 distinguishable between lakes with and without salmon migrations,  $\delta^{15}\text{N}$  values were higher in  
261 salmon-run lakes (T-test;  $t = 9.06$ ,  $p \leq 0.001$  and Figure S2). Elevated  $\delta^{15}\text{N}$  indicate that  
262 senescent salmon might alter the nitrogen baselines, however our study was not designed to  
263 accurately characterize this result in detail. Direct and indirect routes of trout exposure to  
264 salmon Hg warrant focused study, including a mass-balance approach using specimens collected  
265 over more frequent intervals, to better understand the influence of migratory salmon as a  
266 source of MeHg to resident fish in lakes and rivers.

267 *The importance of habitat uses by lake trout*

268 Using Hg stable isotope values to delineate Hg sources to fish can be complex when  
269 species undergo changes in life cycle<sup>14</sup> or dietary niche partitioning.<sup>13</sup> We propose that these  
270 lake trout niche-partition among preferred foraging habitats. In lakes where the largest  
271 observable differences in Hg and C isotope values exist between habitats, we can explore this  
272 partitioning. Trophic modifications and *in situ* reactions complicate interpreting  $\delta^{15}\text{N}$  and  $\delta^{202}\text{Hg}$   
273 directly.<sup>12, 18, 66</sup>  $\Delta^{199}\text{Hg}$  and  $\delta^{13}\text{C}_{\text{lipid-free}}$  values are conserved along trophic processes, allowing us  
274 to trace foraging habits along axes of depth (via  $\Delta^{199}\text{Hg}$ )<sup>1, 12, 32</sup> and pelagic-versus littoral habitat  
275 types (via  $\delta^{13}\text{C}_{\text{lipid-free}}$ )<sup>11</sup>. When we subtract the lake-specific lake trout mean  $\Delta^{199}\text{Hg}$  and  $\delta^{13}\text{C}_{\text{lipid-free}}$   
276 values from each individual lake trout, we can compare  $\Delta^{199}\text{Hg}$  and  $\delta^{13}\text{C}_{\text{lipid-free}}$  values between  
277 lakes with differing baselines (Figure 2 right). We found many lakes where lake trout foraging  
278 habitat preferences exist. Some lake trout used relatively more littoral areas of the lake ( $\Delta^{199}\text{Hg}$   
279 decreased and  $\delta^{13}\text{C}_{\text{lipid-free}}$  increased) and others used deep pelagic areas ( $\Delta^{199}\text{Hg}$  increased and

280  $\delta^{13}\text{C}_{\text{lipid-free}}$  decreased; Figure 2 right). More work would be useful to clarify whether this  
281 influences fish nutrition or Hg burden.<sup>12</sup> Together these tools provide yet another line of  
282 evidence supporting the use of multi-isotope values to better understand energy pathways,  
283 contaminant sources, contaminant burdens, and variance therein.

284 *Supporting information*

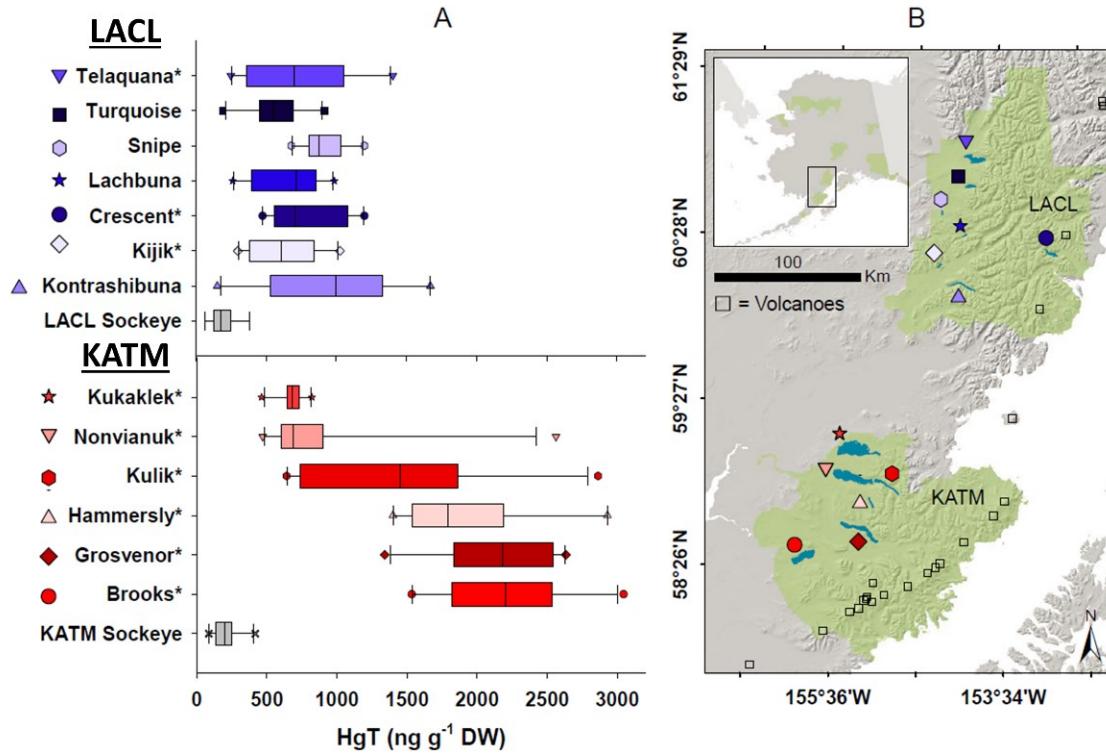
285 The Supporting Information is available free of charge at: [ES&T Enter DOI](#)  
286 This document covers supplementary text on the research approach, site description, biological  
287 analyses and factors and, the soil collections performed. Following are a series of figures that  
288 support points of discussion in the main manuscript as well as a diagram that helps  
289 communicate the process of correcting  $\delta^{202}\text{Hg}$  for mass dependent fractionation attributed to  
290 photochemical demethylation. Next are the supporting data tables for the figures presented this  
291 manuscript. Those tables can also be found at <https://doi.org/10.5066/P9UEP9C5>. Finally, we  
292 conclude with the citations pertinent to the supporting information.

293 *Acknowledgements*

294 This work was supported by the U.S. Geological Survey (USGS) Toxic Substances  
295 Hydrology Program, USGS Contaminant Biology Program, and the USGS - NPS Natural Resources  
296 Preservation Program. The views expressed in this paper represent the views solely of the  
297 authors from the U.S. Environmental Protection Agency but do represent the views of the U.S.  
298 Geological Survey. Any use of trade, firm, or product names in this publication is for descriptive  
299 purposes only and does not imply endorsement by the U.S. Government. All animals were  
300 collected following the protocols in the approved National Park Service Institutional Animal Care  
301 and Use Committee plan, under protocol number (AKR\_SWAN\_Bartz\_Fish\_2019.A3). Partial

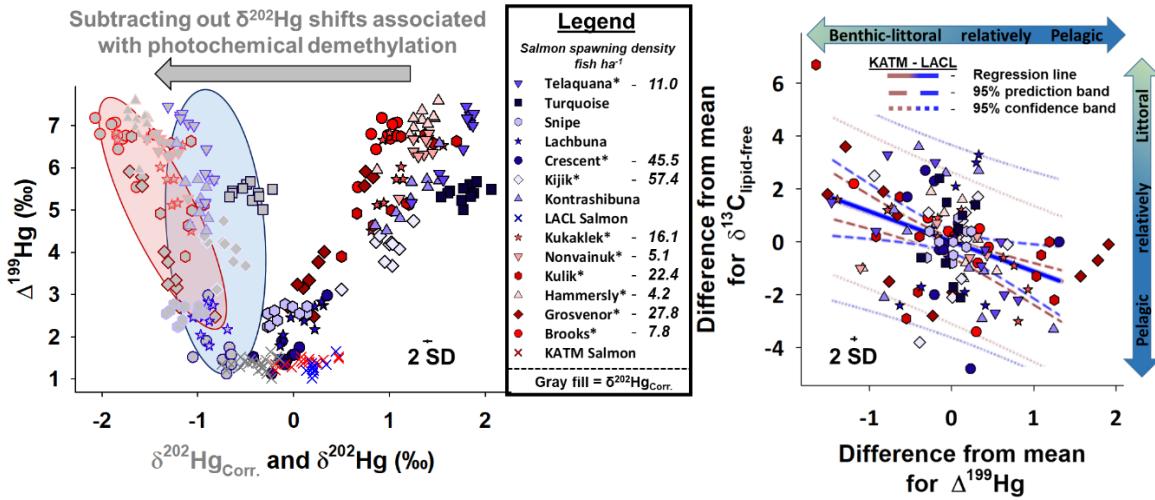
302 graduate student support was provided by the Wisconsin Alumni Research Foundation through  
303 the University of Wisconsin-Madison Graduate School (award no. MSN165161), and the  
304 University of Wisconsin Water Resources Institute through a USGS-NIWR fellowship (award no.  
305 MSN197848). Postdoctoral support was provided by the National Science Foundation  
306 Postdoctoral Fellowships for Research in Biology – Collection Program 2018 (award no.  
307 1812211). We thank Dr. Jessica Brandt and Dr. Sarah Laske, who both contributed a volunteer  
308 peer review of this work, and Evan Booher, Katie Junghans, and Jeff Nelson who provided critical  
309 field support. Data collected for this study are available at <https://doi.org/10.5066/P9UEP9C5>.

310 Author contributions


311 K.K.B., C.A.E. and D.P.K. designed the study. R.F.L., J.M.O., and K.K.B. wrote this manuscript.  
312 C.A.E., D.P.K., J.P.H., Y.R., S.E.J. and D.B.Y. provided editorial input. R.F.L., K.K.B., J.M.O. collected  
313 samples. R.F.L., M.T.T., S.E.J. and J.M.O. provided substantial analytical support.

314 Declaration of conflict

315 The authors declare no conflict of interest.


316

317



318

Figure 1: A) Total mercury concentrations ( $\text{HgT ng g}^{-1} \text{ DW}$ ) in lake trout and sockeye salmon sampled from 13 lakes spanning two National Parks, Lake Clark (LACL) and Katmai (KATM). Box plots are distinguished by color (park), symbol (lake), and shading (water clarity, with lighter tones representing greater water clarity). Lakes are displayed along a latitudinal gradient, from north-most at the top to south-most at the bottom. Asterisks indicates the presence of sockeye salmon in lakes. Each red or blue box represents a collection of 10 – 11 lake trout, and each gray box includes all the sockeye salmon measured in a park (Table S1 and S5). Whiskers mark the 25<sup>th</sup> and 75<sup>th</sup> quartiles, the center line the mean, and the symbols outliers. B) Map of lake locations relative to nearby volcanoes (open squares on map). National Parks are depicted in green.



319

320 Figure 2: Left – Hg stable isotope values of  $\delta^{202}\text{Hg}$  (colored)  $\delta^{202}\text{Hg}_{\text{corr.}}$  (gray-filled) versus  $\Delta^{199}\text{Hg}$   
 321 in individual lake trout and anadromous sockeye salmon from 13 lakes in two parks (Table S1  
 322 and S5).  $\delta^{202}\text{Hg}_{\text{corr.}}$  derivation is detailed in SI, but represents a term corrected for the MDF  
 323 produced during photochemical demethylation. Right - Datapoints represent individual lake trout  
 324 that have been corrected to the lake population mean for  $\delta^{13}\text{C}_{\text{lipid-free}}$  and  $\Delta^{199}\text{Hg}$ . Solid, medium  
 325 hashed, and dotted lines are color-coded and represent parks-specific regression lines, 95%  
 326 prediction bands, and 95% confidence bands, respectively. Legend - Color formatting follows  
 327 Figure 1A except for the gray filled boxes. Asterisks indicates the presence of sockeye salmon in  
 328 lakes. The legend is ordered by decreasing latitude from top to bottom. When italicized numbers  
 329 are listed, those indicate that lakes' salmon spawning density (fish  $\text{ha}^{-1}$ ).

330

331

332

333

334

335

336

## 337        References

338        1. Lepak, R. F.; Janssen, S. E.; Yin, R.; Krabbenhoft, D. P.; Ogorek, J. M.; DeWild, J. F.; Tate, M. T.; Holsen, T. M.; Hurley, J. P., Factors Affecting Mercury Stable Isotopic Distribution in Piscivorous Fish of the Laurentian Great Lakes. *Environmental science & technology* **2018**, *52*, (5), 2768-2776.

342        2. Wiener, J. G.; Sandheinrich, M. B.; Bhavsar, S. P.; Bohr, J. R.; Evers, D. C.; Monson, B. A.; Schrank, C. S., Toxicological significance of mercury in yellow perch in the Laurentian Great Lakes region. *Environmental pollution* **2012**, *161*, 350-357.

345        3. Janssen, S. E.; Riva-Murray, K.; DeWild, J. F.; Ogorek, J. M.; Tate, M. T.; Van Metre, P. C.; Krabbenhoft, D. P.; Coles, J. F., Chemical and Physical Controls on Mercury Source Signatures in Stream Fish from the Northeastern United States. *Environmental Science & Technology* **2019**, *53*, (17), 10110-10119.

349        4. Hsu-Kim, H.; Kucharzyk, K. H.; Zhang, T.; Deshusses, M. A., Mechanisms regulating mercury bioavailability for methylating microorganisms in the aquatic environment: a critical review. *Environmental science & technology* **2013**, *47*, (6), 2441-2456.

352        5. Bergquist, B. A.; Blum, J. D., Mass-dependent and-independent fractionation of Hg isotopes by photoreduction in aquatic systems. *Science* **2007**, *318*, (5849), 417-420.

354        6. Chandan, P.; Ghosh, S.; Bergquist, B. A., Mercury isotope fractionation during aqueous photoreduction of monomethylmercury in the presence of dissolved organic matter. *Environmental science & technology* **2014**, *49*, (1), 259-267.

357        7. Rose, C. H.; Ghosh, S.; Blum, J. D.; Bergquist, B. A., Effects of ultraviolet radiation on mercury isotope fractionation during photo-reduction for inorganic and organic mercury species. *Chemical Geology* **2015**, *405*, 102-111.

360        8. Aiken, G., Fluorescence and dissolved organic matter: a chemist's perspective. *Aquatic organic matter fluorescence* **2014**, *35*.

362        9. Gilmour, C. C.; Podar, M.; Bullock, A. L.; Graham, A. M.; Brown, S. D.; Somenahally, A. C.; Johs, A.; Hurt Jr, R. A.; Bailey, K. L.; Elias, D. A., Mercury methylation by novel microorganisms from new environments. *Environmental science & technology* **2013**, *47*, (20), 11810-11820.

365        10. von Biela, V. R.; Black, B. A.; Young, D. B.; van der Sleen, P.; Bartz, K. K.; Zimmerman, C. E., Lake trout growth is sensitive to spring temperature in southwest Alaska lakes. *Ecology of Freshwater Fish* **2021**, *30*, (1), 88-99.

368        11. France, R. L., Differentiation between littoral and pelagic food webs in lakes using stable carbon isotopes. *Limnology and Oceanography* **1995**, *40*, (7), 1310-1313.

370        12. Lepak, R. F.; Hoffman, J. C.; Janssen, S. E.; Krabbenhoft, D. P.; Ogorek, J. M.; DeWild, J. F.; Tate, M. T.; Babiarz, C. L.; Yin, R.; Murphy, E. W., Mercury source changes and food web shifts alter contamination signatures of predatory fish from Lake Michigan. *Proceedings of the National Academy of Sciences* **2019**, *116*, (47), 23600-23608.

374        13. Zimmerman, M. S.; Schmidt, S. N.; Krueger, C. C.; Vander Zanden, M. J.; Eshenroder, R. L., Ontogenetic niche shifts and resource partitioning of lake trout morphotypes. *Canadian Journal of Fisheries and Aquatic Sciences* **2009**, *66*, (6), 1007-1018.

377        14. Madenjian, C. P.; Janssen, S. E.; Lepak, R. F.; Ogorek, J. M.; Rosera, T. J.; DeWild, J. F.; Krabbenhoft, D. P.; Cogswell, S. F.; Holey, M. E., Mercury Isotopes Reveal an Ontogenetic Shift in Habitat Use by Walleye in Lower Green Bay of Lake Michigan. *Environmental Science & Technology Letters* **2018**, *6*, (1), 8-13.

381 15. Tsui, M. T. K.; Uzun, H.; Ruecker, A.; Majidzadeh, H.; Ulus, Y.; Zhang, H.; Bao, S.; Blum, J.  
382 D.; Karanfil, T.; Chow, A. T., Concentration and isotopic composition of mercury in a blackwater  
383 river affected by extreme flooding events. *Limnology and Oceanography* **2020**.

384 16. Blum, J. D.; Sherman, L. S.; Johnson, M. W., Mercury isotopes in earth and  
385 environmental sciences. *Annual Review of Earth and Planetary Sciences* **2014**, *42*, 249-269.

386 17. Kwon, S. Y.; Blum, J. D.; Yin, R.; Tsui, M. T.-K.; Yang, Y. H.; Choi, J. W., Mercury stable  
387 isotopes for monitoring the effectiveness of the Minamata Convention on Mercury. *Earth-  
388 Science Reviews* **2020**, *203*, 103111.

389 18. Tsui, M. T.-K.; Blum, J. D.; Kwon, S. Y., Review of stable mercury isotopes in ecology and  
390 biogeochemistry. *Science of The Total Environment* **2019**, *135386*.

391 19. Jiskra, M.; Wiederhold, J. G.; Bourdon, B.; Kretzschmar, R., Solution speciation controls  
392 mercury isotope fractionation of Hg (II) sorption to goethite. *Environmental science &  
393 technology* **2012**, *46*, (12), 6654-6662.

394 20. Janssen, S. E.; Schaefer, J. K.; Barkay, T.; Reinfelder, J. R., Fractionation of mercury stable  
395 isotopes during microbial methylmercury production by iron-and sulfate-reducing bacteria.  
396 *Environmental science & technology* **2016**, *50*, (15), 8077-8083.

397 21. Lepak, R. F.; Yin, R.; Krabbenhoft, D. P.; Ogorek, J. M.; DeWild, J. F.; Holsen, T. M.;  
398 Hurley, J. P., Use of stable isotope signatures to determine mercury sources in the Great Lakes.  
399 *Environmental Science & Technology Letters* **2015**, *2*, (12), 335-341.

400 22. Yin, R.; Feng, X.; Chen, B.; Zhang, J.; Wang, W.; Li, X., Identifying the sources and  
401 processes of mercury in subtropical estuarine and ocean sediments using Hg isotopic  
402 composition. *Environmental science & technology* **2015**, *49*, (3), 1347-1355.

403 23. Sun, G.; Sommar, J.; Feng, X.; Lin, C.-J.; Ge, M.; Wang, W.; Yin, R.; Fu, X.; Shang, L., Mass-  
404 dependent and-independent fractionation of mercury isotope during gas-phase oxidation of  
405 elemental mercury vapor by atomic Cl and Br. *Environmental science & technology* **2016**, *50*,  
406 (17), 9232-9241.

407 24. Madigan, D. J.; Li, M.; Yin, R.; Baumann, H.; Snodgrass, O. E.; Dewar, H.; Krabbenhoft, D.  
408 P.; Baumann, Z.; Fisher, N. S.; Balcom, P. H., Mercury stable isotopes reveal influence of foraging  
409 depth on mercury concentrations and growth in Pacific bluefin tuna. *Environmental science &  
410 technology* **2018**.

411 25. Chen, J.; Hintemann, H.; Feng, X.; Dimock, B., Unusual fractionation of both odd and  
412 even mercury isotopes in precipitation from Peterborough, ON, Canada. *Geochimica et  
413 Cosmochimica Acta* **2012**, *90*, 33-46.

414 26. Gratz, L. E.; Keeler, G. J.; Blum, J. D.; Sherman, L. S., Isotopic composition and  
415 fractionation of mercury in Great Lakes precipitation and ambient air. *Environmental Science &  
416 Technology* **2010**, *44*, (20), 7764-7770.

417 27. Sherman, L. S.; Blum, J. D.; Dvonch, J. T.; Gratz, L. E.; Landis, M. S., The use of Pb, Sr, and  
418 Hg isotopes in Great Lakes precipitation as a tool for pollution source attribution. *Science of the  
419 Total Environment* **2015**, *502*, 362-374.

420 28. Lepak, R. F.; Janssen, S. E.; Engstrom, D. R.; Krabbenhoft, D. P.; Tate, M. T.; Yin, R.;  
421 Fitzgerald, W. F.; Nagorski, S. A.; Hurley, J. P., Resolving atmospheric mercury loading and source  
422 trends from isotopic records of remote North American lake sediments. *Environmental Science  
423 & Technology* **2020**.

424 29. Kwon, S. Y.; Blum, J. D.; Nadelhoffer, K. J.; Dvonch, J. T.; Tsui, M. T.-K., Isotopic study of  
425 mercury sources and transfer between a freshwater lake and adjacent forest food web. *Science  
426 of the Total Environment* **2015**, *532*, 220-229.

427 30. Motta, L. C.; Kritee, K.; Blum, J. D.; Tsz-Ki Tsui, M.; Reinfelder, J. R., Mercury Isotope  
428 Fractionation during the Photochemical Reduction of Hg (II) Coordinated with Organic Ligands.  
429 *The Journal of Physical Chemistry A* **2020**, 124, (14), 2842-2853.

430 31. Kwon, S. Y.; Blum, J. D.; Carvan, M. J.; Basu, N.; Head, J. A.; Madenjian, C. P.; David, S. R.,  
431 Absence of fractionation of mercury isotopes during trophic transfer of methylmercury to  
432 freshwater fish in captivity. *Environmental science & technology* **2012**, 46, (14), 7527-7534.

433 32. Blum, J. D.; Popp, B. N.; Drazen, J. C.; Choy, C. A.; Johnson, M. W., Methylmercury  
434 production below the mixed layer in the North Pacific Ocean. *Nature Geoscience* **2013**, 6, (10),  
435 879.

436 33. Demers, J. D.; Blum, J. D.; Zak, D. R., Mercury isotopes in a forested ecosystem:  
437 Implications for air-surface exchange dynamics and the global mercury cycle. *Global  
438 Biogeochemical Cycles* **2013**, 27, (1), 222-238.

439 34. AGENCY., U. E. P., Mercury in solids and solutions by thermal decomposition,  
440 amalgamation, and atomic absorption spectrophotometry. Method 7473. In US Environmental  
441 Protection Agency Washington, DC: 1998.

442 35. Chen, J.; Hintelmann, H.; Zheng, W.; Feng, X.; Cai, H.; Wang, Z.; Yuan, S.; Wang, Z.,  
443 Isotopic evidence for distinct sources of mercury in lake waters and sediments. *Chemical  
444 Geology* **2016**, 426, 33-44.

445 36. Demers, J. D.; Sherman, L. S.; Blum, J. D.; Marsik, F. J.; Dvonch, J. T., Coupling  
446 atmospheric mercury isotope ratios and meteorology to identify sources of mercury impacting a  
447 coastal urban-industrial region near Pensacola, Florida, USA. *Global Biogeochemical Cycles* **2015**,  
448 29, (10), 1689-1705.

449 37. Tsui, M. T. K.; Blum, J. D.; Kwon, S. Y.; Finlay, J. C.; Balogh, S. J.; Nollet, Y. H., Sources and  
450 transfers of methylmercury in adjacent river and forest food webs. *Environmental science &  
451 technology* **2012**, 46, (20), 10957-10964.

452 38. Tsui, M. T.-K.; Blum, J. D.; Finlay, J. C.; Balogh, S. J.; Nollet, Y. H.; Palen, W. J.; Power, M.  
453 E., Variation in terrestrial and aquatic sources of methylmercury in stream predators as revealed  
454 by stable mercury isotopes. *Environmental science & technology* **2014**, 48, (17), 10128-10135.

455 39. Si, M.; McLagan, D. S.; Mazot, A.; Szponar, N.; Bergquist, B.; Lei, Y. D.; Mitchell, C. P.;  
456 Wania, F., Measurement of Atmospheric Mercury over Volcanic and Fumarolic Regions on the  
457 North Island of New Zealand Using Passive Air Samplers. *ACS Earth and Space Chemistry* **2020**.

458 40. Zambardi, T.; Sonke, J.; Toutain, J.; Sortino, F.; Shinohara, H., Mercury emissions and  
459 stable isotopic compositions at Vulcano Island (Italy). *Earth and Planetary Science Letters* **2009**,  
460 277, (1-2), 236-243.

461 41. Chavarie, L.; Hoffmann, J.; Muir, A. M.; Krueger, C. C.; Bronte, C. R.; Howland, K. L.;  
462 Gallagher, C. P.; Sitar, S. P.; Hansen, M. J.; Vinson, M. R., Dietary versus nondietary fatty acid  
463 profiles of lake trout ecotypes from Lake Superior and Great Bear Lake: Are fish really what they  
464 eat? *Canadian Journal of Fisheries and Aquatic Sciences* **2020**, 77, (7), 1209-1220.

465 42. Janssen, S. L., Ryan, Data release for: Using light isotope and mercury isotope values to  
466 distinguish mercury sources in Alaskan lake food webs *U.S. Geological Survey Data Release, U.S.  
467 Geological Survey* **2022**.

468 43. Lepak, R. F.; Krabbenhoft, D. P.; Ogorek, J. M.; Tate, M. T.; Bootsma, H. A.; Hurley, J. P.,  
469 Influence of cladophora-quagga mussel assemblages on nearshore methylmercury production  
470 in Lake Michigan. *Environmental science & technology* **2015**, 49, (13), 7606-7613.

471 44. Ogorek, J. M.; Lepak, R. F.; Hoffman, J. C.; DeWild, J. F.; Rosera, T. J.; Tate, M. T.; Hurley,  
472 J. P.; Krabbenhoft, D. P., Enhanced Susceptibility of Methylmercury Bioaccumulation into Seston  
473 of the Laurentian Great Lakes. *Environmental Science & Technology* **2021**.

474 45. Campana, S., Accuracy, precision and quality control in age determination, including a  
475 review of the use and abuse of age validation methods. *Journal of fish biology* **2001**, *59*, (2), 197-  
476 242.

477 46. Yin, R.; Krabbenhoft, D. P.; Bergquist, B. A.; Zheng, W.; Lepak, R. F.; Hurley, J. P., Effects  
478 of mercury and thallium concentrations on high precision determination of mercury isotopic  
479 composition by Neptune Plus multiple collector inductively coupled plasma mass spectrometry.  
480 *Journal of Analytical Atomic Spectrometry* **2016**, *31*, (10), 2060-2068.

481 47. Hoffman, J. C.; Sierszen, M. E.; Cotter, A. M., Fish tissue lipid-C: N relationships for  
482 correcting  $\delta^{13}\text{C}$  values and estimating lipid content in aquatic food-web studies. *Rapid*  
483 *Communications in Mass Spectrometry* **2015**, *29*, (21), 2069-2077.

484 48. Smyntek, P. M.; Teece, M. A.; Schulz, K. L.; Thackeray, S. J., A standard protocol for  
485 stable isotope analysis of zooplankton in aquatic food web research using mass balance  
486 correction models. *Limnology and Oceanography* **2007**, *52*, (5), 2135-2146.

487 49. Sunderland, E. M.; Krabbenhoft, D. P.; Moreau, J. W.; Strode, S. A.; Landing, W. M.,  
488 Mercury sources, distribution, and bioavailability in the North Pacific Ocean: Insights from data  
489 and models. *Global Biogeochemical Cycles* **2009**, *23*, (2).

490 50. Schartup, A. T.; Qureshi, A.; Dassuncao, C.; Thackray, C. P.; Harding, G.; Sunderland, E.  
491 M., A model for methylmercury uptake and trophic transfer by marine plankton. *Environmental*  
492 *science & technology* **2018**, *52*, (2), 654-662.

493 51. Watras, C.; Back, R.; Halvorsen, S.; Hudson, R. J.; Morrison, K.; Wente, S.,  
494 Bioaccumulation of mercury in pelagic freshwater food webs. *Science of the Total Environment*  
495 **1998**, *219*, (2-3), 183-208.

496 52. Kritee, K.; Motta, L. C.; Blum, J. D.; Tsui, M. T.-K.; Reinfelder, J. R., Photomicrobial visible  
497 light-induced magnetic mass independent fractionation of mercury in a marine microalga. *ACS*  
498 *Earth and Space Chemistry* **2017**, *2*, (5), 432-440.

499 53. Sun, R.; Jiskra, M.; Amos, H. M.; Zhang, Y.; Sunderland, E. M.; Sonke, J. E., Modelling the  
500 mercury stable isotope distribution of Earth surface reservoirs: Implications for global Hg  
501 cycling. *Geochimica et Cosmochimica Acta* **2019**, *246*, 156-173.

502 54. Washburn, S. J.; Blum, J. D.; Kurz, A. Y.; Pizzuto, J. E., Spatial and temporal variation in  
503 the isotopic composition of mercury in the South River, VA. *Chemical Geology* **2018**, *494*, 96-  
504 108.

505 55. Enrico, M.; Le Roux, G. I.; Heimbürger, L.-E.; Van Beek, P.; Souhaut, M.; Chmeleff, J. r.;  
506 Sonke, J. E., Holocene atmospheric mercury levels reconstructed from peat bog mercury stable  
507 isotopes. *Environmental Science & Technology* **2017**, *51*, (11), 5899-5906.

508 56. Jiskra, M.; Wiederhold, J. G.; Skjellberg, U.; Kronberg, R.-M.; Kretzschmar, R., Source  
509 tracing of natural organic matter bound mercury in boreal forest runoff with mercury stable  
510 isotopes. *Environmental Science: Processes & Impacts* **2017**, *19*, (10), 1235-1248.

511 57. Jiskra, M.; Heimbürger-Boavida, L.-E.; Desgranges, M.-M.; Petrova, M. V.; Dufour, A.;  
512 Ferreira-Araujo, B.; Masbou, J.; Chmeleff, J.; Thyssen, M.; Point, D., Mercury stable isotopes  
513 constrain atmospheric sources to the ocean. *Nature* **2021**, *597*, (7878), 678-682.

514 58. Baker, M. R.; Schindler, D. E.; Holtgrieve, G. W.; St. Louis, V. L., Bioaccumulation and  
515 transport of contaminants: migrating sockeye salmon as vectors of mercury. *Environmental*  
516 *science & technology* **2009**, *43*, (23), 8840-8846.

517 59. Bilby, R. E.; Fransen, B. R.; Bisson, P. A., Incorporation of nitrogen and carbon from  
518 spawning coho salmon into the trophic system of small streams: evidence from stable isotopes.  
519 *Canadian Journal of Fisheries and Aquatic Sciences* **1996**, *53*, (1), 164-173.

520 60. Kline Jr, T. C.; Goering, J. J.; Mathisen, O. A.; Poe, P. H.; Parker, P. L.; Scalán, R. S.,  
521 Recycling of elements transported upstream by runs of Pacific salmon: II.  $\delta^{15}\text{N}$  and  $\delta^{13}\text{C}$

522 evidence in the Kvichak River watershed, Bristol Bay, southwestern Alaska. *Canadian Journal of*  
523 *Fisheries and Aquatic Sciences* **1993**, 50, (11), 2350-2365.

524 61. Nagorski, S. A.; Engstrom, D. R.; Hudson, J. P.; Krabbenhoft, D. P.; Hood, E.; DeWild, J. F.;  
525 Aiken, G. R., Spatial distribution of mercury in southeastern Alaskan streams influenced by  
526 glaciers, wetlands, and salmon. *Environmental pollution* **2014**, 184, 62-72.

527 62. Zhang, X.; Naidu, A. S.; Kelley, J. J.; Jewett, S. C.; Dasher, D.; Duffy, L. K., Baseline  
528 concentrations of total mercury and methylmercury in salmon returning via the Bering Sea  
529 (1999–2000). *Marine Pollution Bulletin* **2001**, 42, (10), 993-997.

530 63. Kwon, S. Y.; Blum, J. D.; Madigan, D. J.; Block, B. A.; Popp, B. N.; Barkay, T., Quantifying  
531 mercury isotope dynamics in captive Pacific bluefin tuna (*Thunnus orientalis*) Mercury isotope  
532 dynamics in Pacific bluefin tuna. *Elementa: Science of the Anthropocene* **2016**, 4.

533 64. Vander Zanden, M. J.; Clayton, M. K.; Moody, E. K.; Solomon, C. T.; Weidel, B. C., Stable  
534 isotope turnover and half-life in animal tissues: a literature synthesis. *PloS one* **2015**, 10, (1),  
535 e0116182.

536 65. Hesslein, R. H.; Hallard, K.; Ramlal, P., Replacement of sulfur, carbon, and nitrogen in  
537 tissue of growing broad whitefish (*Coregonus nasus*) in response to a change in diet traced by  
538  $\delta^{34}\text{S}$ ,  $\delta^{13}\text{C}$ , and  $\delta^{15}\text{N}$ . *Canadian Journal of Fisheries and Aquatic Sciences* **1993**, 50, (10), 2071-  
539 2076.

540 66. Cabana, G.; Rasmussen, J. B., Comparison of aquatic food chains using nitrogen isotopes.  
541 *Proceedings of the National Academy of Sciences* **1996**, 93, (20), 10844-10847.

542