

1 Mercury Source Changes and Food Web Shifts Alter Contamination Signatures of 2 Predatory Fish from Lake Michigan

3

4 *Ryan F. Lepak^{a,b,c}, Joel C. Hoffman^c, Sarah E. Janssen^b, David P. Krabbenhoft^b, Jacob*
5 *M. Ogorek^b, John F. DeWild^b, Michael T. Tate^b, Christopher L. Babiarz^b, Runsheng Yin^d,*
6 *Elizabeth W. Murphy^e, Daniel R. Engstrom^f and James P. Hurley^{l,b,g,h}*

7

BIOLOGICAL SCIENCES - Environmental Sciences

8
9

^aEnvironmental Chemistry and Technology Program, University of Wisconsin-Madison,
660 N. Park Street, Madison, WI 53706, USA

10
11

^bU.S. Geological Survey, Wisconsin Water Science Center, 8505 Research Way, Middleton, Wisconsin 53562, USA

12
13
14

^cU.S. EPA Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201 Congdon Blvd, Duluth, MN 55804, USA

15
16
17

^dState Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 99 Lincheng West Road, Guanshanhu District, Guiyang, Guizhou 550081, China

18
19

^eU.S. EPA, Great Lakes National Program Office, 77 West Jackson Boulevard, Chicago, IL, 60604, USA

20
21

^fSt. Croix Watershed Research Station, Science Museum of Minnesota, 16910 152nd St N., Marine on St. Croix, MN 55047, USA

22

^gDepartment of Civil and Environmental Engineering, University of Wisconsin-Madison,
1415 Engineering Dr., Madison, WI 53706, USA

24
25

^hUniversity of Wisconsin Aquatic Sciences Center, 1975 Willow Dr., Madison, WI 53706, USA

26

27

¹corresponding author

28

28 James P. Hurley, University of Wisconsin-Madison, Environmental Chemistry and
29 Technology Program, Madison, WI 53706; iphurley@wisc.edu; 608-262-0905.

30 **Abstract**

31 To understand the impact reduced mercury (Hg) loading and invasive species have had on
32 methylmercury bioaccumulation in predator fish of Lake Michigan, we reconstructed
33 bioaccumulation trends from a fish archive (1978-2012). By measuring fish Hg stable isotope
34 ratios, we related temporal changes in Hg concentrations to varying Hg sources. Additionally,
35 dietary tracers were necessary to identify food web influences. Through combined Hg, C, and N
36 stable isotopic analyses, we were able to differentiate between a shift in Hg sources to fish and
37 periods when energetic transitions (from dreissenid mussels) led to the assimilation of contrasting
38 Hg pools (2000-present). In the late 1980s, lake trout $\delta^{202}\text{Hg}$ increased (0.4‰) from regulatory
39 reductions in regional Hg emissions. After 2000, C and N isotopes ratios revealed altered food
40 web pathways resulting in a benthic energetic shift and changes to Hg bioaccumulation.
41 Continued increases in $\delta^{202}\text{Hg}$ indicate fish are responding to several U.S. mercury emission
42 mitigation strategies that were initiated circa 1990 and continued through the 2011 promulgation
43 of the Mercury and Air Toxics Standards rule. Unlike archives of sediments this fish archive
44 tracks Hg sources susceptible to bioaccumulation in Great Lakes fisheries. Analysis reveals that
45 trends in fish Hg concentrations can be substantially affected by shifts in trophic structure and
46 dietary preferences initiated by invasive species in the Great Lakes. This does not diminish the
47 benefits of declining emissions over this period as fish Hg concentrations would have been higher
48 without these actions.

49 **Significance Statement:**

50 Elevated mercury in fish poses risks to fish-consuming wildlife and humans. Tracing sources of
51 mercury by analyzing stable isotope ratios leads to improved source-receptor understanding and
52 natural resource management. This work utilizes fish and sediment archives to trace the response
53 to recent domestic mercury mitigation actions. Fish and sediments rapidly responded to a source
54 perturbation contemporaneous with the reduction of mercury in the late 1980s. Subsequently,
55 energetic pathways were altered due to dreissenid invasions, which dampened the expected
56 decrease in fish Hg concentration. These findings reveal the importance of domestic mercury
57 sources relative to global mercury to the Great Lakes. Results also show methylmercury
58 concentrations in fish are sensitive to changes in trophic structure and diet driven by invasive
59 species.

60

61

62 Keywords:

63 Isotopes

64 Invasive

65 Fish

66 Mercury

67 Lake Michigan

68

69 \body

70 **Introduction**

71 Mercury (Hg) is ubiquitous naturally, but since the mid-1800s anthropogenic activity has
72 increased atmospheric concentrations by three to four times, enriching Hg reservoirs
73 worldwide^{1,2}. Gaseous elemental Hg emitted to the atmosphere has a long atmospheric residence
74 time (about 6 to 12 months) resulting in deposition and contamination in even the most remote
75 areas¹. While in the atmosphere, reactions with oxidants produce highly water soluble, divalent
76 Hg that is susceptible to rapid deposition to aquatic ecosystems, and subsequent microbial
77 conversion to methylmercury (MeHg), a highly bioavailable neurotoxin^{1,3}. Bioaccumulation of
78 MeHg results in fish concentrations over a million times greater than surrounding waters, which
79 can lead to detrimental effects to fish and to humans and wildlife⁴.

80 Fish contaminant monitoring in the Great Lakes began by the mid-1970s for lake trout
81 (*Salvelinus namaycush*). By the late 1970s, the USEPA Great Lakes Fish Monitoring and
82 Surveillance Program (GLFMS) was established to assess ecosystem health using top predator
83 fish, which were then archived as sentinels for monitoring chemical contaminants. The GLFMS
84 archive offers the opportunity to assess long-term trends in Hg bioaccumulation. This rare sample
85 set allowed us to examine how variations in ecosystems and changes in regulatory actions have
86 affected fish Hg bioaccumulation. Multiple factors affect total Hg (HgT) concentration in fish,
87 including changes to Hg loading and cycling (HgT inputs, methylation rates of Hg, uptake of
88 MeHg by primary producers); photochemical demethylation rate of MeHg, fish bioenergetics,
89 and diet (changes in fish metabolism or growth rate, spawning, changes in trophic position or
90 foraging habitat, varied fish size or age); and ecosystem chemical characteristics (pH and
91 dissolved organic carbon [DOC] content)⁴⁻⁹. Fish archives can be powerful indicators of change,
92 but multi-decadal archives are rare¹⁰, highlighting the tremendous value of analyses associated
93 with these biomonitoring efforts.

94 Nationally, several regulations have been implemented since the early 1980s that affect
95 Hg use, releases, and loading to the Great Lakes region. These include the U.S. Clean Air Act,
96 Mercury Export Ban Act of 2008, SO_x and NO_x pollution controls, and the 2011 promulgation of
97 the Mercury and Air Toxics Standards (MATS) rule with required compliance in 2015¹¹. In
98 addition to these mitigation strategies, changes in energy production, namely the conversion from
99 coal to natural gas, have resulted in further decreases in Hg emissions¹¹. These domestic
100 mitigation strategies are important to reducing the contributions of regional Hg sources to the
101 Great Lakes¹². Hg emission sources vary in the species of Hg released (Hg⁰, Hg(II), and Hg_p);
102 therefore, while reduction of all Hg is essential to reducing ecosystem loads, the elimination of
103 sources containing high proportions of Hg(II), such as incineration-sourced Hg, provides
104 immediate local responses in aquatic ecosystems¹². Considering differences in Hg reactivity of
105 varied Hg species is important to understanding the potential of source Hg to become methylated
106 and subsequently bioaccumulate in fish^{3,6}. Understanding Hg speciation and the processes that
107 affect MeHg formation and bioaccumulation is crucial to assessing multiple drivers of trends in
108 fish Hg concentrations^{1,3,12}.

109 Tracing historical Hg deposition and the success of Hg mitigation strategies typically
110 invoke the assessment of inorganic Hg reservoirs (peat¹³, ice¹⁴, sediment¹⁵, and soil cores¹⁶).
111 Remote regions of the world have served as interpretable archives for tracing global signals. the
112 degree of anthropogenic enrichment can be determined by comparing these regions to areas
113 experiencing greater anthropogenic influence. These historical trend investigations are useful for
114 reconstructing loading and can provide insights to help quantify Hg inputs to ecosystems. These
115 media however, typically integrate all the Hg sources to a receiving water body or ecosystem.
116 Thus, they are not readily used to assess discrete Hg sources. In addition, different Hg sources
117 possess varying potential for methylation and bioaccumulation. As a result, as others have

118 recently noted¹⁷, paleo-reconstruction of Hg inventories cannot directly assess exposure routes of
119 MeHg to fish.

120 By coupling measurements of stable isotope ratios (C, N, and Hg) on tissues from this
121 long-term fish tissue archive, we can better resolve the bioavailability of certain Hg sources, the
122 susceptibility of Hg sources to methylation, and changes in fish diet habits. Hg stable isotopic
123 fractionation has been used to identify inorganic Hg sources to ecosystems and to understand *in*
124 *situ* processes occurring during transport^{5,13,16,18,19}. The large range in natural mass dependent
125 fractionation Hg (MDF; denoted as $\delta^{202}\text{Hg}$) is a result of kinetic and equilibrium reactions⁶ that
126 can divide into reactant-favored ($-\delta^{202}\text{Hg}$) or product-favored ($+\delta^{202}\text{Hg}$) reservoirs. MDF is
127 common in most Hg reactions, including those relevant in the environment: adsorption,
128 photochemical reduction, photochemical demethylation of MeHg, and microbial methylation and
129 demethylation⁵. In contrast, mass independent fractionation (MIF, denoted as $\Delta^{199}\text{Hg}$ or $\Delta^{200}\text{Hg}$)
130 is a phenomenon not commonly observed in heavy metals⁵. Hg is susceptible to multiple odd-
131 MIF processes and at least one even-MIF process, that together result in the potential for
132 multidimensional tracking of Hg sources and transformations^{5,13,16,18,19}. In aquatic ecosystems,
133 odd-MIF is typically the result of photochemical reduction of inorganic Hg (measured in
134 sediments, particulates, and water) and photochemical demethylation of MeHg (measured in
135 biota)⁵. In fish, odd-MIF tracks the extent of photochemical demethylation, typically linked to
136 water clarity, and, in some instances, the source MeHg²⁰⁻²³. Empirically, even-MIF serves as a
137 binary tool for determining the relative importance of atmospherically sourced Hg^{13,23,24}, with
138 positive reservoirs reflecting precipitation ($+\Delta^{200}\text{Hg}$, oxidant product)^{25,26} and negative reservoirs
139 reflecting gaseous elemental ($-\Delta^{200}\text{Hg}$, reactant)¹⁹ influence.

140 Carbon and nitrogen stable isotope ratios are used to trace food web pathways, including
141 identifying energy source and estimating trophic position²⁷⁻²⁹. In the Great Lakes, nearshore
142 carbon sources, such as benthic algae and littoral vegetation, are ^{13}C -enriched compared to open

143 water phytoplankton, owing to habitat-specific differences in both the isotopic composition of
144 dissolved inorganic carbon pools and fractionation during carbon fixation³⁰⁻³². In addition, food
145 webs demonstrate ¹⁵N enrichment with depth, which is presumably caused by microbial
146 processing of sinking organic matter^{33,34}. In Lake Michigan, there is additional complexity to
147 consider because the offshore pelagic food web demonstrates ¹⁵N enrichment compared to the
148 nearshore food web^{28,30}. Furthermore, $\delta^{15}\text{N}$ values of organisms systematically increase with
149 trophic position and thus can be used to determine effective trophic position^{29,30}. While trophic
150 position is typically useful in tracing the efficiency of contaminant accumulation in fish²⁹, here
151 we focus on the relative $\delta^{15}\text{N}$ values along short timescales (5 – 10 years). By assuming a
152 constant baseline, we can then infer changes to $\delta^{15}\text{N}$ in fish are the result of changed energy
153 pathways rather than changed trophic position. When paired together, C and N stable isotope
154 ratios can serve as powerful tools to trace dietary shifts and habitat-specific energy pathways in
155 Great Lakes fishes^{28,30}.

156 Lake Michigan has undergone substantial changes in contaminant loading since the
157 1970s and in food web shifts following the dreissenid mussel invasion of the 1990s³⁵⁻³⁷.
158 Therefore, the GLFMSP lake trout archive therefore represents an excellent opportunity to
159 explore the effect these changes have had on MeHg sources and bioaccumulation to top predator
160 fish. In addition, because of the Lake Michigan Mass Balance study and subsequent studies³⁸⁻⁴¹,
161 the lake has been the subject of pioneering Hg research within the Great Lakes; however,
162 consistently monitored long-term temporal data for Hg in Lake Michigan fish are scant compared
163 to other Great Lakes,⁴² which are served by both U.S. and Canadian monitoring programs. Based on
164 our prior work in the Great Lakes^{18,23}, we expect that, due to low sedimentary MeHg fluxes and
165 watershed loading, sediment Hg concentrations in Lake Michigan are not well corroborated with
166 MeHg concentrations in fish. We also expect that reductions in regional Hg emissions will be
167 reflected in Hg isotope ratios in fish and sediments⁶. Thus, as domestic Hg mitigation strategies

168 have affected the emission portfolio of Lake Michigan's airshed during the time covered by the
169 archive (1978-2012), we hypothesize that changes in the Hg isotopic composition and MeHg
170 concentration of fish will be evident. Second, we expect that the lake-wide food web response
171 from dreissenid invasions will be reflected in MeHg isotope signatures in fish due to increased
172 water clarity and lake trout diet shifts. Here we couple stable isotope analyses of C, N, and Hg to
173 better understand the impact reduced Hg emissions and food web shifts exert on Hg
174 bioaccumulation in a key Lake Michigan biomonitor.

175 **Results and Discussion**

176 *HgT concentration and energy sources using traditional stable isotope ratios*

177 Fish composites, each composed of five 400-600mm whole body lake trout grinds
178 collected during the fall season from 1978 – 2012, averaged 361 ng g^{-1} HgT dry weight (117 ng g^{-1}
179 ^{1}SD ; $n = 132$ composites, 660 individual fish) with a maximum HgT of 812 ng g^{-1} dry weight
180 and a minimum 182 ng g^{-1} (Fig.1A). No composites exceeded the 300 ng g^{-1} whole body, wet
181 weight (composites averaged 75% water, $\sim 1,200 \text{ ng g}^{-1}$ dry weight) lowest observed effect
182 residue for fish health⁴³. Figure 1 identifies key subsections of our time series that align well with
183 known lake trout food source inflections: ample prey with generally declining Hg emissions
184 (1978 – 1989; red), prey quality declining due to declines in *Diporeia* spp. (1989 – 2000; green),
185 and dietary shifts as round goby (*Neogobius melanostomus*) becomes an increasingly more
186 prominent dietary item (2000 – 2012; yellow). From 1978 to 1989, HgT concentrations were
187 somewhat variable but continually decreased until stable from 1989 to 1993 (Pearson's rho, $\rho = -$
188 0.42). From 1993 to 2001, HgT concentrations increased by approximately 400 ng g^{-1} ($\rho = 0.80$).
189 From 2001 to 2012, concentrations decreased by approximately 300 ng g^{-1} . The decrease in Hg
190 loading to Lake Michigan, corroborated by sediment cores (SI Appendix, Fig. S1)¹⁵, is in direct
191 conflict with fish Hg trends following 1995. To better understand the decoupled Hg patterns

192 between fish and sediments then, an understanding of the importance of fish diet or tracing of
193 energy pathways is necessary.

194 Biological and aquatic chemical factors may also affect Hg concentrations in fish.
195 Reproductive cycles, for example, can affect HgT concentrations; however, our composites are,
196 on average, equally composed of males and females, and were continually collected during the
197 spawning period. Thus, variations in HgT concentrations, then, are not attributable to gender or
198 reproduction cycles. Through previous work, we also conclude that DOC concentrations have
199 been stable, while pH slightly increased following the early 1990s and slowly declined since the
200 early 2000s⁴⁴. We therefore do not believe this to be a major driving factor to observed trends.
201 Here, we focused our research on the effects on fish Hg concentrations due to diet-related factors
202 (using carbon and nitrogen stable isotope ratios), changes to Hg loading, water clarity, and
203 sources of inorganic Hg.

204 Invasive zebra (*Dreissena polymorpha*) and quagga mussels (*Dreissena rostriformis*
205 *bugensis*), which arrived in the early 1990s and 2000s respectively, dramatically changed carbon
206 and nutrient dynamics in Lake Michigan by efficiently filtering phytoplankton and terrigenous
207 inputs and rerouting energy and nutrients into nearshore and benthic habitats⁴⁵. The collapse of
208 *Diporeia* spp. (a benthic amphipod) populations during the onset of mussel invasions led to
209 changes in dietary strategies of alewife (*Alosa pseudoharengus*) and the energy pathways
210 therein^{37,46,47} (Fig. 1; 1989-2000). This, in combination with dense piscivore populations,
211 ultimately led to a substantial decrease in prey fish (e.g. alewife), forcing lake trout to transition a
212 proportion of their dietary habits (Fig. 1; 2000-2012)⁴⁸. During this same period, round goby, an
213 invasive benthic fish that consumes dreissenid mussels, became prominent in the Lake Michigan
214 food web⁴⁸. Alewife has remained the most important component of lake trout diet (>50%), but
215 the contribution of round goby has increased through the late 2000s, though it remains relatively
216 small (<30%)^{37,46,49,50}. Because of reduced quality in prey, the growth rate of lake trout in Lake

217 Michigan has slowed^{51,52}. To confirm whether invasive species have resulted in dietary shifts in
218 lake trout, we utilized lipid-normalized $\delta^{13}\text{C}$ ($\delta^{13}\text{C}_{\text{lipid-free}}$) and $\delta^{15}\text{N}$ values²⁸.

219 The $\delta^{13}\text{C}_{\text{lipid-free}}$ values in nearly all the fish composites sampled during 1978 to 2000 were
220 similar, within $\sim 2.50\text{\textperthousand}$ (-24.23 ± 0.48 ; $n = 77$; Fig. 1B). After 2000, $\delta^{13}\text{C}_{\text{lipid-free}}$ values became
221 distinct between Sturgeon Bay and Saugatuck, and $\delta^{13}\text{C}_{\text{lipid-free}}$ steadily increased through time
222 (0.08 to $0.11\text{\textperthousand y}^{-1}$). This change was coincident with the dreissenid mussel invasion, increases in
223 Secchi depth⁵³, and increased nearshore primary production, which is a zone of increased MeHg
224 enhancement when compared to offshore regions²⁸. In the Great Lakes, benthic algae contribute
225 to the nearshore food web and are substantially ^{13}C -enriched relative to phytoplankton; thus,
226 benthic, nearshore fishes have higher $\delta^{13}\text{C}$ values than offshore fishes³². Similarly, during
227 particulate organic matter sedimentation, microbial processing enriches its ^{13}C content, resulting
228 in slightly higher $\delta^{13}\text{C}$ values in benthic consumers than pelagic consumers^{33,54}. The shift in lake
229 trout $\delta^{13}\text{C}_{\text{lipid-free}}$ values indicated a corresponding energetic shift towards either the benthos²⁸ or
230 the nearshore environment, or some combination thereof, following the dreissenid mussel
231 invasion⁴⁷. In many of the Great Lakes, the $\delta^{13}\text{C}$ of organic matter in sinking particles was
232 conserved through sedimentation and burial^{33,54}. It was therefore plausible to reconstruct $\delta^{13}\text{C}$
233 baselines using sediment cores. Since the 1970s, negative $\delta^{13}\text{C}$ baseline shifts have been observed
234 (roughly 1\textperthousand)³³ likely attributable to decreased offshore productivity. We therefore concluded
235 that the ^{13}C -enrichment in lake trout was not the result of an underlying shift in the baseline $\delta^{13}\text{C}$
236 because the shifts in regional sediment $\delta^{13}\text{C}$ values and Lake Michigan lake trout $\delta^{13}\text{C}_{\text{lipid-free}}$
237 values were opposite in direction.

238 For fish collected between 1978 and 2000, $\delta^{15}\text{N}$ values spanned a larger range relative to
239 $\delta^{13}\text{C}_{\text{lipid-free}}$ values and continually increased through time ($0.04\text{\textperthousand y}^{-1}$; Fig. 1C; $\rho = 0.51$) resulting
240 in a net $0.8\text{\textperthousand}$ increase from 1978 to 2000 (mean \pm SD = 14.30 ± 0.31 ; $n = 77$). While alewife
241 remained the mainstay of lake trout diet throughout this study time^{49,55-57}, this shift was likely due

242 to decreasing alewife density through the 1980s and early 1990s and lake trout targeting
243 alternative ^{15}N -enriched benthic prey with similar $\delta^{13}\text{C}$ values, such as bloater (*Coregonus hoyi*;
244 until the early 1990s)^{28,48}.

245 Following 2000, a rapid decrease in lake trout $\delta^{15}\text{N}$ values occurred at Saugatuck and
246 Sturgeon Bay (-0.14 and -0.05 ‰ y^{-1} respectively). This trend continued through 2010 at
247 Saugatuck, whereas post-2006, $\delta^{15}\text{N}$ values at Sturgeon Bay returned to values like the 1990s.
248 While these responses differ somewhat, the net change in lake trout $\delta^{13}\text{C}_{\text{lipid-free}}$ (enriched) and
249 $\delta^{15}\text{N}$ values indicated increased reliance on the benthic food web. At the base of both the pelagic
250 and benthic food web pathways in Lake Michigan, offshore pelagic $\delta^{15}\text{N}$ values were higher than
251 nearshore $\delta^{15}\text{N}$ values²⁸. The change in lake trout $\delta^{15}\text{N}$ values between the two stations was large
252 and the result of ^{15}N depletion in nearshore (Saugatuck, 61-m depth) regions owing to altered N
253 cycling by dreissenid mussels, favoring nitrification from the nearshore shunt and changed lake
254 trout dietary pathways toward dreissenid mussels^{37,45}. In contrast, in offshore waters (Sturgeon
255 Bay, 119-m depth), benthic nitrogen is largely from the atmosphere, biologically fixed³⁴, and
256 delivered seasonally during turnover. Therefore, offshore isotopic baseline change is slower and
257 smaller than in the nearshore, given that fluxes of new nitrogen are small relative to the total
258 nitrogen budget. The difference in $\delta^{15}\text{N}$ values post-2005 between Saugatuck and Sturgeon Bay
259 may also reflect lake-wide changes in the $\delta^{15}\text{N}$ baseline because ^{15}N depletion was observed in
260 the northern basin sediments relative to southern basin during the same period, albeit of lesser
261 magnitude than observed in lake trout (roughly 0.5 to 1‰)^{33,54}. Caution is necessary, however, as
262 sediment cores provide less diagnostic information when compared to the $\delta^{13}\text{C}$ value of organic
263 matter because $\delta^{15}\text{N}$ values in sediment are affected by overlying water column productivity as
264 well as *in situ* nitrification and denitrification^{33,54}.

265 *Using $\Delta^{199}\text{Hg}$ as a tracer for water quality and MeHg photochemical processing*

266 From 1978 – 1995, $\Delta^{199}\text{Hg}$ values averaged $4.95 \pm 0.33\text{\textperthousand}$ ($n = 61$; Fig. 2A) and increased
267 slightly through this period. Following 1995, $\Delta^{199}\text{Hg}$ values slowly declined ($\sim 0.02\text{\textperthousand y}^{-1}$) until
268 2007, after which values became steady. Previously, $\Delta^{199}\text{Hg}$ has been considered a positive
269 predictor for overall water clarity, determinable by DOC content, Secchi depth⁵³, and direct light
270 attenuation profiles over a diverse set of waterbodies^{23,58}. Regular measurements of Secchi depth
271 became available for Lake Michigan following 1983 (Fig. 2A, gray lines) and can be found at the
272 U.S. EPA GLNPO, Great Lakes Environmental Database (<https://cdx.epa.gov>). Beginning in
273 1983, Secchi depth decreased slightly until achieving a water clarity minimum (7m) in 1993.
274 After 2000, water clarity rapidly increased, likely owing to dreissenid mussel invasion⁴⁵. During
275 this period $\Delta^{199}\text{Hg}$ values decreased slightly. Previously, we made observations between Secchi
276 depth and $\Delta^{199}\text{Hg}$ in predator fish of the Great Lakes²³ that led us to expect that a large increase in
277 water clarity following quagga mussel invasion would lead to a detectable increase in lake
278 trout $\Delta^{199}\text{Hg}$ values. While reasonable to assume we could predict changes in $\Delta^{199}\text{Hg}$ values with
279 enhanced water clarity, food web pathways (i.e., benthic or pelagic energy sources, and trophic
280 position) influence $\Delta^{199}\text{Hg}$ values more than previously recognized^{22,23,58}. After 2000, lake trout
281 reliance on benthic dietary pathways increased due to changed dietary pathways for alewives and
282 increased consumption of round goby. This resulted in the bioaccumulation of Hg that was less
283 photochemically fractionated ($\Delta^{199}\text{Hg}$) in comparison to pelagic Hg sources^{23,58}. Simultaneously,
284 both lake trout condition, as indicated by lipid content (SI Appendix, Fig. S2) and growth rates
285 declined^{51,52}. Due to slower growth, as previously noted, lake trout Hg concentration post-2000
286 was elevated relative to the early 1990s^{51,52}.

287 $\delta^{202}\text{Hg}$ as a source indicator

288 $\delta^{202}\text{Hg}$ has been used as a surrogate for sources of inorganic Hg because different Hg
289 reservoirs exhibit distinct $\delta^{202}\text{Hg}$ ranges⁵. In cores of sediment and peat, $\delta^{202}\text{Hg}$ is used as a source
290 indicator to investigate historical deposition or changes in Hg source profiles^{13,15}. In fish,

291 however, using $\delta^{202}\text{Hg}$ for MeHg in a diagnostic manner is more challenging than simply
292 identifying inorganic Hg sources because MDF also occurs during photochemical demethylation⁵,
293 during microbial methylation and demethylation⁵⁹, and potentially during metabolic
294 processing^{22,60}. We expect, however, that these variables will not impart considerable changes to
295 the $\delta^{202}\text{Hg}$ of these lake trout due to the consistency in sampling protocol.

296 Lake trout $\delta^{202}\text{Hg}$ values from 1978 to 1988 were similar ($0.64 \pm 0.15\text{\textperthousand}$, $n = 21$; Fig.
297 2B); however, from 1988 to 1996, $\delta^{202}\text{Hg}$ values increased ($\sim 0.6\text{\textperthousand}$; $p = 0.81$) rapidly for all sites
298 to $\sim 1.2\text{\textperthousand}$. Measurements of $\delta^{15}\text{N}$ and $\delta^{13}\text{C}_{\text{lipid free}}$ provided evidence that this $\delta^{202}\text{Hg}$ shift was not
299 due to an altered dietary pathway (e.g., benthic versus pelagic) but rather from a change in Hg
300 source that acted independently upon $\delta^{202}\text{Hg}$, resulting in a positive MDF shift. The coherent
301 response of all 6-8-year-old fish⁵² suggested a large change in source, such as a cessation of a
302 $\delta^{202}\text{Hg}$ -deplete point source.

303 Understanding the response of $\delta^{202}\text{Hg}$ in fish requires knowledge of whole body isotopic
304 turnover rates of C, N, and Hg in fish. Isotopic turnover of C and N was estimated to be 6 months
305 to 2 years in adult fish⁶¹, with 600 to 700mm lake trout reaching turnover in about 1.2 years
306 ($\sim 2.7\text{kg}$ whole body weight)⁶². This biennial sampling therefore captured time-discrete $\delta^{13}\text{C}$ and
307 $\delta^{15}\text{N}$ in lake trout, and results can trace the sensitive dynamic equilibrium sufficiently. Other
308 studies have demonstrated that MeHg in fish has a modestly longer half-life than C and N^{60,62} and
309 that fish can respond rapidly to MeHg source perturbations⁶. Based on those observations, along
310 with the rapid, coherent $\delta^{202}\text{Hg}$ shift in lake trout, we believe that the lake trout rapidly respond to
311 cessation in Hg emissions from regional sources. Similarly, we predict that only atmospherically
312 transported sources would uniformly deposit to Lake Michigan; therefore, a cessation of Hg
313 would result in uniform response.

314 Over the time this fish archive spans (1978 – 2012), several Federal environmental
315 regulations were implemented that resulted in substantial reductions in U.S. atmospheric Hg

316 emissions. It is important to note that most of these actions did not necessarily target Hg-emission
317 reductions, but nonetheless reduced Hg emissions were realized as a secondary consequence. For
318 example, 1990 amendments to the Clean Air Act were intended to reduce many toxic chemical
319 emissions from medical and municipal waste incineration, including SO_x and NO_x acidic gases, as
320 well particulate matter < 2.5 micrometers in diameter ($\text{PM}_{2.5}$). While these actions were not
321 specifically intended to reduce Hg emissions, removing primary targets resulted in secondary
322 benefits (e.g., Hg reductions with decreasing high sulfur coal use). Phasing out Hg use in battery
323 manufacturing in 1996 (Mercury-Containing and Rechargeable Battery Management Act) more
324 directly reduced Hg emissions by eliminating these products in waste streams intended for
325 incineration. Collectively, these actions represented the largest reduction in domestic atmospheric
326 Hg emissions over the period studied⁶³ and thus are likely responsible for the observed increase in
327 $\delta^{202}\text{Hg}$ from 1988 to 1996 (Fig 2B). These actions also most efficiently targeted particulate bound
328 Hg and Hg(II), both of which rapidly deposited to the lakes^{6,12}. Further, improved NO_x (selective
329 catalytic reduction) and SO_x control strategies (Clean Air Interstate Rule; mid-2000s) resulted in
330 additional Hg removal¹¹. The Mercury Export Ban of 2008 further decreased the supply-chain
331 availability of Hg in manufacturing globally, thereby reducing global emissions. Finally, the
332 MATS rule was promulgated in 2011 and placed requirements on Hg emission reductions by the
333 largest remaining source at that time – electric power generation. At the same time the MATS
334 rule was implemented, substantial increases in natural gas availability resulted in shift in many
335 electric power generation units from coal to natural gas (coal use for electrical generation in the
336 Midwest U.S. declined 30 to 40% in the 2000s; www.eia.gov/coal) which has also unintentionally
337 reduced regional emissions of Hg¹¹. In total, North American Hg emissions declined by a factor
338 of 3.8 from 1990 to 2010 (469 to 124 Mg y^{-1})¹¹. Together, this history of emission declines
339 reduced gaseous elemental and divalent Hg concentrations in the airshed of Lake Michigan^{11,63}
340 and atmospheric deposition of Hg in the Great Lakes region⁶⁴. From these reduced Hg emissions,
341 we postulate that corresponding shifts in the isotopic source portfolio of Hg has likewise arisen

342 and was observed in our measured lake trout $\delta^{202}\text{Hg}$ values. More specifically, we hypothesize the
 343 reduction of Hg from various incineration processes has resulted in a net enrichment ($+\delta^{202}\text{Hg}$) of
 344 the Hg isotopic signature in the atmosphere as observed previously^{65,66}.

345 Following 2000, Hg isotope transitions were decoupled from the expected shifts
 346 associated with changes to photochemical demethylation^{20,23,58}. Lake trout $\Delta^{199}\text{Hg}$ values
 347 decreased following 2000 (Fig. 2A), indicating water clarity was not the driver for increasing
 348 $\delta^{202}\text{Hg}$ values. Instead, a change to increased reliance on benthic food web pathways (defined by
 349 some combination of increased reliance on round gobies⁵⁰ or changed dietary strategies of prey
 350 fish due to collapsed *Diporeia*^{46,47}), as indicated by C and N stable isotope ratios (Fig. 1B and
 351 1C), resulted in the bioaccumulation of a different MeHg source. Further, $\delta^{13}\text{C}$ and $\delta^{15}\text{N}$ values
 352 were dissimilar between the north (Sturgeon Bay) and south (Saugatuck) sites, indicating the fish
 353 were not routinely mixing between the sites over a time scale equal to their isotopic turnover (1-2
 354 years)⁶¹. As such, similarity in Hg isotopic compositions between the two sites reaffirmed our
 355 finding that the MeHg source shift was not related to regional point sources (ex: rivers or
 356 discharges), but was most likely a diffuse source, such as the atmosphere. Only with the
 357 combination of $-\delta^{15}\text{N}$, $+\delta^{13}\text{C}_{\text{lipid free}}$, $-\Delta^{199}\text{Hg}$, and $+\delta^{202}\text{Hg}$ values during the 2000s and by
 358 including lake trout harvested in the north and south Lake Michigan, could we hypothesize an
 359 ecosystem-wide benthic transition in both regions. This finding was also corroborated by the
 360 parallel shift in $-\delta^{15}\text{N}$ and $+\delta^{13}\text{C}_{\text{lipid free}}$ observed in the Lake Michigan invertivore lake whitefish
 361 (*Coregonus clupeaformis*)⁶⁷ following dreissenid mussel invasion.

362 *Comparing a fish archive to sedimentary accumulation*

363 Owing to their excellent capacity to reconstruct Hg deposition trends, sedimentary
 364 archives have, at times, been used as a proxy to assess Hg loading to fish HgT and to trace Hg
 365 deposition fluxes and sources to sediment through time^{2,13,15}. In regions with direct Hg
 366 contamination, the Hg source is usually sequestered in sediments, where it is available for

367 methylation, and it is in these settings that inferences between sediment and fish can be drawn.
368 However, in aquatic ecosystems with complex source portfolios and in which MeHg fluxes to
369 overlying waters from sediments are a minimal contributor, sedimentary archives may be
370 insufficient to predict MeHg concentrations in fish. In Lake Michigan, we previously
371 hypothesized that MeHg was likely produced in the water column^{23,35}. It was therefore plausible
372 that Hg sources depositing to the near surface lake environment were more likely to be
373 bioaccumulated fish than Hg sources that reach the sediments, which reflect a combination of
374 both remnant Hg from surface deposition and particulates carried by lake currents¹⁸.

375 Here we found that the magnitude of the sediment $\delta^{202}\text{Hg}$ response was subdued when
376 compared to the fish response around 1990, supporting our hypothesis that fish and sediment
377 signals were tracing different Hg sources or pathways (Fig. 2C). We examined two sediment
378 cores, sliced to 2-to-3 year resolution, from Lake Michigan near the sites of fish collection (SI
379 Appendix, Fig. S3 and Table S1). We observed that the $\delta^{202}\text{Hg}$ response in sedimentary Hg was
380 only about 30% (0.1 to 0.2‰; Fig. 2C) that of the fish. Further, the absolute ranges of $\Delta^{199}\text{Hg}$
381 and $\delta^{202}\text{Hg}$ values were dissimilar between the cores and fish because sediments reflected
382 inorganic Hg that was not extensively photochemically reacted. Sediment $\Delta^{199}\text{Hg}$ values for the
383 north Manitou and southern basin cores (SI Appendix, Table S2) were relatively constant at 0.21
384 $\pm 0.02\text{‰}$ ($n = 21$) and $0.08 \pm 0.02\text{‰}$ ($n = 17$), respectively. Neither core location appeared to
385 convincingly respond to the increase in water clarity, which would have been expected to produce
386 a change in $\Delta^{199}\text{Hg}$, indicating that sources of sedimentary Hg were not closely linked to shifts in
387 productivity in Lake Michigan.

388 Researchers often compare the slope of photochemical demethylation of MeHg
389 ($\Delta^{199}\text{Hg}:\delta^{202}\text{Hg}$ slope = 2.4) between fish (containing MeHg) and sediments (dominantly
390 composed of inorganic Hg) within an ecosystem to draw inferences about sources of Hg to
391 fish^{5,22}. This relationship is valuable when sediment MeHg fluxes are elevated, for instance in

392 hypolimnion of anoxic lakes and in riverine systems^{5,22,68}. Further, variations in the relative
393 degree of microbial methylation and demethylation can affect the Hg isotope ratios of MeHg
394 fluxes from sediments^{3,59}. Here the combined dated sediment profile and lake trout archive in
395 Lake Michigan allowed us to investigate paired sediment and fish Hg isotopic composition over
396 time. During this time, we assumed Hg methylation and demethylation rates in sediments have
397 remained constant. The sediment to fish $\Delta^{199}\text{Hg}:\delta^{202}\text{Hg}$ relationship began with a slope of 3.5 in
398 1978 (SI Appendix, Fig. S4) and decreased in a linear fashion ($R^2 = 0.65$) to 2.4 in 2013 at a rate
399 ($m = 0.035$) of 1 to 1.5% per year (change in $\Delta^{199}\text{Hg}:\delta^{202}\text{Hg} = -0.04 \text{ y}^{-1}$). Wet deposition of Hg,
400 has been decreasing at a rate similar to this $\Delta^{199}\text{Hg}:\delta^{202}\text{Hg}$ slope change ($-1.6 \pm 0.3\% \text{ y}^{-1}$) in North
401 America from 1990 to 2013¹¹ and, for this reason, we propose that in Lake Michigan, the
402 $\Delta^{199}\text{Hg}:\delta^{202}\text{Hg}$ slope actually traces the signal of incoming precipitation, which is then methylated
403 in the water column^{23,69} rather than as a sedimentary MeHg efflux. We would however, need
404 temporally similar precipitation samples to confirm this hypothesis. We postulate that the
405 $\Delta^{199}\text{Hg}:\delta^{202}\text{Hg}$ slope of 2.4 measured between fish and sediment in the 2010s was the result of
406 profundal sediments reflecting a signal from recently deposited algal and detrital remains from
407 the water column. In Lake Michigan however, this has not always been the case because,
408 historically, fish received a proportionally greater amount of atmospherically delivered Hg, a
409 subtlety that would be missed without the paired dated sediment and fish collections.

410 *$\Delta^{200}\text{Hg}$ comparison between fish and sediment cores over time*

411 Increasingly, $\Delta^{200}\text{Hg}$ has been used as a tracer for both gaseous elemental ($-\Delta^{200}\text{Hg}$) and
412 oxidized atmospheric Hg ($+\Delta^{200}\text{Hg}$ - precipitation)⁷⁰. $\Delta^{200}\text{Hg}$ is thought to form in the upper
413 atmosphere in the presence of higher energy UV light⁷⁰. Due to this specific formation pathway,
414 $\Delta^{200}\text{Hg}$ is linked to long-range transport, conservative upon deposition, susceptible only to
415 dilution and thus has become a relative tracer of the effect of far-field atmospheric Hg to an
416 ecosystem^{13,18,23,70}. These lake trout, $\Delta^{200}\text{Hg}$ values were remarkably constant, albeit elevated,

417 (0.09 ± 0.02‰; SI Appendix, Fig. S5) throughout the study. In addition, $\Delta^{200}\text{Hg}$ values for both
418 the Manitou core (0.06 ± 0.01‰) and southern basin core (0.04 ± 0.01‰) were constant through
419 time.

420 The lack of annual variation is perplexing considering the profound changes in U.S. and
421 global Hg mitigation strategies. We recognize though, that we do not fully understand drivers in
422 variability of $\Delta^{200}\text{Hg}$. We can only conclude that the Hg sources mitigated regionally had little
423 effect on $\Delta^{200}\text{Hg}$ values in sediment and lake trout; therefore, the source of $\Delta^{200}\text{Hg}$ to fish did not
424 change in the Great Lakes region over the study period. To more completely understand these
425 results, more work on $\Delta^{200}\text{Hg}$ formation and transport is necessary.

426 *Recalibrating our interpretation of archives*

427 Previous work has shown that fish and sediment archives agree well with emission
428 inventories when studies investigate persistent organic pollutants such as PCBs, dieldrin, and
429 chlordane⁷¹. Except for the period from 1972-88, we found that Hg concentrations in lake trout do
430 not agree well with declined emission inventories or Hg deposition to the sediment. Unlike many
431 organic contaminants, MeHg has historically been naturally present in the environment, and
432 anthropogenic activity has exacerbated the amount of actively cycling Hg. Our study shows that
433 source reductions of Hg have altered the Hg isotopic composition of predatory fish, but food web
434 shifts have at least temporarily offset a beneficial effect on fish bioaccumulation. We could not
435 have made this conclusion without analyzing Hg, C, and N stable isotopes. During Hg source
436 reductions, lake trout energetic pathways shifted either directly or indirectly to the benthos which
437 has dampened the expected reduction in MeHg concentrations in fish²⁸. This is additionally due to
438 lake trout growth rate decreases⁵². Further, we have shown that sediment cores, often applied to
439 show success of Hg mitigation strategies, do not predict MeHg trends in fish because they are
440 inadequate to trace complex food web perturbations and the effect of Hg mitigation on Hg
441 bioaccumulated in fish. Further, these results demonstrate the importance of the route of delivery

442 for bioavailable Hg, as reductions to emissions impacted Hg isotopic shifts in fish 3 to 4 times
443 greater than sediments.

444 The rapid rate of $\delta^{202}\text{Hg}$ response in Lake Michigan from 1988 to 1992 (Fig. 2B)
445 indicates a near-field Hg source shift to the Hg deposited to the lake, and the synchronous shift
446 between separate basins (Fig. 2C) indicates a broadly distributed Hg regional source. The large
447 increase in $\delta^{202}\text{Hg}$ (+0.6‰; $\rho = 0.81$) beginning in 1988 provides evidence that reductions to
448 domestic emissions affects fish more rapidly than previously recognized, however it is perplexing
449 that HgT concentration did not immediately decrease in parallel. In the North American
450 atmosphere, researchers are observing faster than expected reductions in domestic atmospheric
451 Hg inventories¹¹ resulting from reduced U.S. emissions. In Lake Michigan, fish $\delta^{202}\text{Hg}$ responded
452 more rapidly than expected due to the late 1980s shift in source inputs of Hg and to a greater
453 degree than sediments.

454 Our research reveals that it is possible to detect source-specific Hg reductions in fish
455 archives by incorporating isotopic analyses. This would not have been possible by assessing HgT
456 concentration only. Independent of Hg emissions, Hg concentrations in fish responded to an
457 ecosystem perturbation resulting from invasive dreissenid mussels that without the aid of the
458 combined Hg, C and N stable isotopes ratios, would provide a false impression that reduced Hg
459 emissions are no longer benefiting Hg concentrations in fish. From literature, we know that
460 during the mid to late 1990s, prey quality decreased^{46,50} due to decreasing *Diporeia* populations³⁸,
461 and temporarily lake trout lipid content decreased (Fig S2) which led to increasing HgT
462 concentrations in fish but stable C, N, and Hg isotope ratios. This, along with the invasion of
463 round gobies led to a dietary shift by lake trout toward round gobies and resulted in changes to
464 stable C, N, and Hg isotope ratios. Further, because the ratios of $\delta^{202}\text{Hg}$ and $\Delta^{199}\text{Hg}$ responded in
465 opposite directions, we can conclude that lake trout in 2012 are bioaccumulating a different Hg
466 source portfolio in Lake Michigan relative to the 1970s. Hg concentrations in fish following

467 energetic shifts in the food web would be higher if not for reduction in Hg emissions at the
468 domestic level. For decision-makers and natural resource managers, it is crucial to be aware that
469 Hg source control and MeHg bioaccumulation are not intrinsically linked, as demonstrated by the
470 lack of monotonic decline in Hg concentrations in fish from this study period. Many other factors
471 (e.g., dietary shifts, water quality, biogenetics and fish age⁴) can affect fish Hg concentration
472 beyond input rates, highlighting the value of this fish archive and the necessity of additional
473 isotopic information to interpret source reductions. While specific source inputs may be declining
474 due to Hg mitigation, declines in HgT concentrations in lake trout may be counteracted by shifts
475 in dietary sources of Hg.

476 **Materials and Methods**

477 *Sample collection*

478 Field sampling protocols for the GLFMSP have been documented elsewhere^{72,73}.
479 Generally, sites were visited on a biennial basis, where one site was intended to represent a
480 shallow, southern location (Saugatuck, Michigan – 61m) and another a deep, northern location
481 (Sturgeon Bay, Wisconsin – 119m, SI Appendix, Fig. S3). In early years of the survey, a site in
482 near Charlevoix, Michigan (61m) was also sampled. Since 1978, five similarly-sized whole lake
483 trout (600-700mm) were composited to create one sample and 10 unique samples were created at
484 each collection location. From this collection of 10 composites, 1 to 5 composite samples were
485 randomly chosen per year based on availability. In instances where only 1 composite was
486 available, the data were reported as points rather than a boxplot.

487 Archived lake trout samples obtained from the GLFMSP were removed from freezers (-
488 20°C) and allowed to thaw until a Teflon-coated stainless-steel spatula could mix and then
489 remove enough partially frozen mass sufficient for the necessary analyses. Subsamples were
490 lyophilized at the USGS Mercury Research Lab (MRL), Middleton, Wisconsin. Unlike previous

491 studies investigating HgT in Great Lakes trout^{23,42,51}, we chose to analyze on a dry weight basis to
492 avoid the complexities associated with water content in older (1970's) samples.

493 In 2009 and 2010, sediment cores were collected using clean metal techniques in the
494 southern basin and northern Manitou pass (SI Appendix, Fig. S2). Cores were collected from the
495 USEPA R/V *Lake Guardian* with a box corer, then sub-cored and sectioned onboard and frozen.
496 Frozen samples were then lyophilized. Age dating was performed at the St. Croix Watershed
497 Research Station, Science Museum of Minnesota, using ²¹⁰Pb decay (measured via ²¹⁰Po) and
498 constant rate of supply model was applied to estimate sediment age and dry mass accumulation
499 using previously established methods^{2,74}.

500 *Sample [HgT] determination and Hg isotope preparation*

501 Fish composite samples were weighed into borosilicate vials and digested with
502 concentrated nitric acid (5mL) for 8 hours at 90°C. Then samples were cooled and concentrated
503 BrCl (10% v/v) was added to completely oxidize MeHg into inorganic Hg. Samples were then
504 heated for an additional 8 hours (90°C). The resulting solutions were diluted to a 50% acid
505 concentration and quantified for HgT using an adaptation of EPA method 1631^{18,20,75}. Briefly,
506 hydroxylamine was used to reduce the oxidative capacity of BrCl, followed by stannous
507 reduction, gold amalgamation and thermal release. Atomic fluorescence was used to quantify HgT.
508 A thorough dataset ensuring the digest precision and accuracy may be found in the SI Appendix,
509 Table S3. Secondary standard recoveries were 101 ± 4% and spiked recoveries, 100 ± 5% (max
510 106% and min 92%). To determine whether inorganic Hg was a substantial proportion of the
511 HgT, 30 randomly chosen fish, spanning the entirety of this dataset, were digested for MeHg⁷⁶. In
512 all instances MeHg content was within 5% of the HgT concentration and quality control and
513 assurance met or exceeded the USGS MRL criteria (<https://wi.water.usgs.gov/mercury-lab>).

514 Sediments were similarly processed by weighing sample into borosilicate vials and
515 digested with aqua regia (5mL) overnight at 90°C. Following digestion, cooled solutions were
516 diluted to 50% acid and quantified in a manner consistent with the previously mentioned fish. To
517 ensure precision and accuracy, 5% of the sample count was represented by standard reference
518 material (SRM) IAEA SL1 (130 ng g⁻¹). Recoveries of SRMs were 100% (1 SD = 0.02%);
519 triplicate relative standard deviations (SDs) were 3 – 4%.

520 *Hg stable isotope ratios*

Using the appropriate aliquot to make an approximate 1.5 ng Hg mL⁻¹ solution, samples were pipetted into polypropylene vials. When necessary, matrix matching acid was added to ensure a consistent matrix was shared among samples. The sample introduction process, lab protocol, and instrument setup have been thoroughly described elsewhere⁷⁷. Briefly, using a matrix-matched NIST 3133, samples were measured for Hg isotopes following the standard sample bracketing, Tl (NIST 997) was used for mass bias correction, and Hg gas was produced by stannous reduction over a custom designed gas liquid separator^{18,77}. We followed previous convention⁷⁸ by expressing mass dependent fractionation (MDF) in terms of $\delta^{203}\text{Hg}$ and mass independent fractionation of Hg in odd isotopes and even isotopes as $\Delta^{199}\text{Hg}$ and $\Delta^{200}\text{Hg}$ respectively⁷⁸. Samples were consistently within 10% (averaged $0 \pm 6\%$) of the NIST concentration, and UM-Almaden was measured in 20% of samples to ensure instrument stability and accuracy. Isotopic results of UM-Almaden ($\delta^{202}\text{Hg}:-0.51 \pm 0.04\text{\textperthousand}$, $\Delta^{199}\text{Hg}: 0.00 \pm 0.03\text{\textperthousand}$, $\Delta^{200}\text{Hg}: -0.01 \pm 0.01\text{\textperthousand}$, and $\Delta^{204}\text{Hg}: 0.01 \pm 0.03 - 1\text{SD}$) and IAEA SL1 ($\delta^{202}\text{Hg}: -1.27 \pm 0.03\text{\textperthousand}$, $\Delta^{199}\text{Hg}: -0.17 \pm 0.05\text{\textperthousand}$, $\Delta^{200}\text{Hg}: 0.01 \pm 0.03\text{\textperthousand}$, and $\Delta^{204}\text{Hg}: -0.04 \pm 0.05\text{\textperthousand} - 1\text{SD}$) were consistent with previous findings^{18,77}. Triplicate results are in SI Appendix, Table S3 and the replication of sample triplicates indicated that the $\Delta^{204}\text{Hg}$ patterns observed are substantial and not simply the result of analytical variance of each Hg isotope ratio.

538 *C, N stable isotope ratios*

539 For carbon and nitrogen stable isotope analysis, 1.00 ± 0.10 mg (dry mass) of each
540 composite fish tissue sample was weighed into a tin capsule; samples were analyzed at the UC
541 Davis Stable Isotope Facility, Davis, CA. Results are reported as δ values ($\delta^{13}\text{C}$, $\delta^{15}\text{N}$) using
542 Vienna PeeDee Belemnite as the standard for $\delta^{13}\text{C}$ and atmospheric nitrogen as the standard for
543 $\delta^{15}\text{N}$. Laboratory standards included G-13 (bovine liver), G-18 (nylon 5), G-20, (glutamic acid),
544 and G-21 (enriched alanine); mean stable isotope values matched reference values within 0.03‰
545 and precision was <0.08 ‰ (1 SD). Triplicates were added to determine precision (results in SI
546 Appendix, Table S4). The resulting error from replication was not substantial compared to the
547 changes in carbon and nitrogen isotope ratios, confirming that the observations here are not the
548 result of analytical variance. Because sample differences in lipid content can bias $\delta^{13}\text{C}$ values
549 owing to differences in fractionation between lipids and protein, sample $\delta^{13}\text{C}$ values should be
550 normalized for lipid content⁷⁹. We corrected $\delta^{13}\text{C}$ values for variable lipid content using an
551 arithmetic, mass-balance correction⁷⁹ (SI Appendix, Eqn. S1).

552 *Acknowledgements*

553 This work was supported by the EPA Great Lakes Restoration Initiative (Project GL-
554 00E01139) and the USGS Toxic Substances Hydrology Program. This project was supported by
555 the EPA Great Lakes Fish Monitoring and Surveillance Program (Elizabeth Murphy, Program
556 Manager). The views expressed in this paper are solely those of the authors and the content of the
557 paper does not represent the views or position of the U.S. EPA, but do represent the views U.S.
558 Geological Survey. Any use of trade, firm, or product, in this publication is for descriptive
559 purposes only and does not imply endorsement by the U.S. Government. Partial graduate student
560 support was provided by the Wisconsin Alumni Research Foundation through the University of
561 Wisconsin-Madison Graduate School (award no. MSN165161) and the University of Wisconsin
562 Water Resources Institute through a USGS-NIWR fellowship (award no. MSN197848).

563 Lake Michigan sediment core collection was coordinated by Mark Edlund (St. Croix
564 Watershed Research Station) and was supported by the Great Lakes Fishery Trust (Project
565 2008.960) and the National Park Service and U.S. EPA (Great Lakes Restoration Initiative
566 Project #91). Ship support was provided by the University of Michigan/NOAA R/V *Laurentian*
567 and the USEPA R/V *Lake Guardian*.

568 *Author contributions*

569 R.F.L, D.P.K., E.W.M. and J.P.H. designed the study. R.F.L, J.C.H., D.P.K. and J.P.H. wrote this
570 manuscript. D.R.E. provided sediment samples. R.F.L., S.E.J, J.M.O., J.F.D., M.T.T., C.L.B.,
571 R.Y. and D.R.E. provided substantial analytical support. S.E.J, J.M.O., J.F.D., M.T.T., C.L.B.,
572 R.Y. E.W.M. and D.R.E provided editorial comments.

573 *Declaration of conflict*

574 The authors declare no conflict of interest.

575

576

577 References

578 (1) Amos, H. M.; Jacob, D. J.; Streets, D. G.; Sunderland, E. M. Legacy Impacts of All-Time
 579 Anthropogenic Emissions on the Global Mercury Cycle. *Glob. Biogeochem. Cycles* **2013**, *27* (2),
 580 410–421. <https://doi.org/10.1002/gbc.20040>.

581 (2) Engstrom, D. R.; Fitzgerald, W. F.; Cooke, C. A.; Lamborg, C. H.; Drevnick, P. E.; Swain, E. B.;
 582 Balogh, S. J.; Balcom, P. H. Atmospheric Hg Emissions from Preindustrial Gold and Silver
 583 Extraction in the Americas: A Reevaluation from Lake-Sediment Archives. *Environ. Sci. Technol.*
 584 **2014**, *48* (12), 6533–6543. <https://doi.org/10.1021/es405558e>.

585 (3) Hsu-Kim, H.; Kucharzyk, K. H.; Zhang, T.; Deshusses, M. A. Mechanisms Regulating Mercury
 586 Bioavailability for Methylating Microorganisms in the Aquatic Environment: A Critical Review.
 587 *Environ. Sci. Technol.* **2013**, *47* (6), 2441–2456. <https://doi.org/10.1021/es304370g>.

588 (4) Wiener, J. G.; Sandheinrich, M. B.; Bhavsar, S. P.; Bohr, J. R.; Evers, D. C.; Monson, B. A.;
 589 Schrank, C. S. Toxicological Significance of Mercury in Yellow Perch in the Laurentian Great
 590 Lakes Region. *Environ. Pollut.* **2012**, *161*, 350–357. <https://doi.org/10.1016/j.envpol.2011.09.025>.

591 (5) Blum, J. D.; Sherman, L. S.; Johnson, M. W. Mercury Isotopes in Earth and Environmental
 592 Sciences. *Annu. Rev. Earth Planet. Sci.* **2014**, *42*, 249–269.

593 (6) Harris, R. C.; Rudd, J. W. M.; Amyot, M.; Babiarz, C. L.; Beaty, K. G.; Blanchfield, P. J.; Bodaly,
 594 R. A.; Branfireun, B. A.; Gilmour, C. C.; Graydon, J. A.; et al. Whole-Ecosystem Study Shows
 595 Rapid Fish-Mercury Response to Changes in Mercury Deposition. *Proc. Natl. Acad. Sci.* **2007**,
 596 *104* (42), 16586–16591. <https://doi.org/10.1073/pnas.0704186104>.

597 (7) Cleckner, L. B.; Back, R.; Gorski, P. R.; Hurley, J. P.; Byler, S. M. Seasonal and Size-Specific
 598 Distribution of Methylmercury in Seston and Zooplankton of Two Contrasting Great Lakes
 599 Embayments. *J. Gt. Lakes Res.* **2003**, *29* (1), 134–144. [https://doi.org/10.1016/S0380-1330\(03\)70422-5](https://doi.org/10.1016/S0380-1330(03)70422-5).

600 (8) Gorski, P. R.; Armstrong, D. E.; Hurley, J. P.; Krabbenhoft, D. P. Influence of Natural Dissolved
 601 Organic Carbon on the Bioavailability of Mercury to a Freshwater Alga. *Environ. Pollut.* **2008**,
 602 *154* (1), 116–123. <https://doi.org/10.1016/j.envpol.2007.12.004>.

603 (9) Eagles-Smith, C. A.; Wiener, J. G.; Eckley, C. S.; Willacker, J. J.; Evers, D. C.; Marvin-
 604 DiPasquale, M.; Obrist, D.; Fleck, J. A.; Aiken, G. R.; Lepak, J. M.; et al. Mercury in Western
 605 North America: A Synthesis of Environmental Contamination, Fluxes, Bioaccumulation, and Risk
 606 to Fish and Wildlife. *Sci. Total Environ.* **2016**, *568*, 1213–1226.
 607 <https://doi.org/10.1016/j.scitotenv.2016.05.094>.

608 (10) Åkerblom, S.; Bignert, A.; Meili, M.; Sonesten, L.; Sundbom, M. Half a Century of Changing
 609 Mercury Levels in Swedish Freshwater Fish. *AMBIO* **2014**, *43* (1), 91–103.
 610 <https://doi.org/10.1007/s13280-014-0564-1>.

611 (11) Zhang, Y.; Jacob, D. J.; Horowitz, H. M.; Chen, L.; Amos, H. M.; Krabbenhoft, D. P.; Slemr, F.;
 612 Louis, V. L. S.; Sunderland, E. M. Observed Decrease in Atmospheric Mercury Explained by
 613 Global Decline in Anthropogenic Emissions. *Proc. Natl. Acad. Sci.* **2016**, *113* (3), 526–531.
 614 <https://doi.org/10.1073/pnas.1516312113>.

615 (12) Cohen, M.; Artz, R.; Draxler, R.; Miller, P.; Poissant, L.; Niemi, D.; Ratté, D.; Deslauriers, M.;
 616 Duval, R.; Laurin, R.; et al. Modeling the Atmospheric Transport and Deposition of Mercury to
 617 the Great Lakes. *Environ. Res.* **2004**, *95* (3), 247–265.
 618 <https://doi.org/10.1016/j.envres.2003.11.007>.

619 (13) Enrico, M.; Le Roux, G.; Heimbürger, L.-E.; Van Beek, P.; Souhaut, M.; Chmeleff, J.; Sonke, J. E.
 620 Holocene Atmospheric Mercury Levels Reconstructed from Peat Bog Mercury Stable Isotopes.
 621 *Environ. Sci. Technol.* **2017**, *51* (11), 5899–5906. <https://doi.org/10.1021/acs.est.6b05804>.

622 (14) Schuster, P. F.; Krabbenhoft, D. P.; Naftz, D. L.; Cecil, L. D.; Olson, M. L.; Dewild, J. F.; Susong,
 623 D. D.; Green, J. R.; Abbott, M. L. Atmospheric Mercury Deposition during the Last 270 Years: A
 624 <https://doi.org/10.1016/j.envres.2003.11.007>.

625 Glacial Ice Core Record of Natural and Anthropogenic Sources. *Environ. Sci. Technol.* **2002**, *36*
 626 (11), 2303–2310. <https://doi.org/10.1021/es0157503>.

627 (15) Yin, R.; Lepak, R. F.; Krabbenhoft, D. P.; Hurley, J. P. Sedimentary Records of Mercury Stable
 628 Isotopes in Lake Michigan. *Elem. Sci. Anthr.* **2016**, *4*, 000086.
<https://doi.org/10.12952/journal.elementa.000086>.

629 (16) Jiskra, M.; Wiederhold, J. G.; Skyllberg, U.; Kronberg, R.-M.; Hajdas, I.; Kretzschmar, R.
 630 Mercury Deposition and Re-Emission Pathways in Boreal Forest Soils Investigated with Hg
 631 Isotope Signatures. *Environ. Sci. Technol.* **2015**, *49* (12), 7188–7196.

632 (17) Wang, F.; Outridge, P. M.; Feng, X.; Meng, B.; Heimbürger-Boavida, L.-E.; Mason, R. P. How
 633 Closely Do Mercury Trends in Fish and Other Aquatic Wildlife Track Those in the Atmosphere? –
 634 Implications for Evaluating the Effectiveness of the Minamata Convention. *Sci. Total Environ.*
 635 **2019**, *674*, 58–70. <https://doi.org/10.1016/j.scitotenv.2019.04.101>.

636 (18) Lepak, R. F.; Yin, R.; Krabbenhoft, D. P.; Ogorek, J. M.; DeWild, J. F.; Holsen, T. M.; Hurley, J.
 637 P. Use of Stable Isotope Signatures to Determine Mercury Sources in the Great Lakes. *Environ.*
 638 *Sci. Technol. Lett.* **2015**, *2* (12), 335–341. <https://doi.org/10.1021/acs.estlett.5b00277>.

639 (19) Demers, J. D.; Blum, J. D.; Zak, D. R. Mercury Isotopes in a Forested Ecosystem: Implications for
 640 Air-Surface Exchange Dynamics and the Global Mercury Cycle. *Glob. Biogeochem. Cycles* **2013**,
 641 *27* (1), 222–238. <https://doi.org/10.1002/gbc.20021>.

642 (20) Li, M.; Schartup, A. T.; Valberg, A. P.; Ewald, J. D.; Krabbenhoft, D. P.; Yin, R.; Balcom, P. H.;
 643 Sunderland, E. M. Environmental Origins of Methylmercury Accumulated in Subarctic Estuarine
 644 Fish Indicated by Mercury Stable Isotopes. *Environ. Sci. Technol.* **2016**, *50* (21), 11559–11568.
<https://doi.org/10.1021/acs.est.6b03206>.

645 (21) Štrok, M.; Baya, P. A.; Hintelmann, H. The Mercury Isotope Composition of Arctic Coastal
 646 Seawater. *Comptes Rendus Geosci.* **2015**, *347* (7–8), 368–376.
<https://doi.org/10.1016/j.crte.2015.04.001>.

647 (22) Kwon, S. Y.; Blum, J. D.; Nadelhoffer, K. J.; Timothy Dvonch, J.; Tsui, M. T.-K. Isotopic Study
 648 of Mercury Sources and Transfer between a Freshwater Lake and Adjacent Forest Food Web. *Sci.*
 649 *Total Environ.* **2015**, *532*, 220–229. <https://doi.org/10.1016/j.scitotenv.2015.06.012>.

650 (23) Lepak, R. F.; Janssen, S. E.; Yin, R.; Krabbenhoft, D. P.; Ogorek, J. M.; DeWild, J. F.; Tate, M.
 651 T.; Holsen, T. M.; Hurley, J. P. Factors Affecting Mercury Stable Isotopic Distribution in
 652 Piscivorous Fish of the Laurentian Great Lakes. *Environ. Sci. Technol.* **2018**, *52* (5), 2768–2776.
<https://doi.org/10.1021/acs.est.7b06120>.

653 (24) Sun, G.; Sommar, J.; Feng, X.; Lin, C.-J.; Ge, M.; Wang, W.; Yin, R.; Fu, X.; Shang, L. Mass-
 654 Dependent and -Independent Fractionation of Mercury Isotope during Gas-Phase Oxidation of
 655 Elemental Mercury Vapor by Atomic Cl and Br. *Environ. Sci. Technol.* **2016**, *50* (17), 9232–9241.
<https://doi.org/10.1021/acs.est.6b01668>.

656 (25) Chen, J.; Hintelmann, H.; Feng, X.; Dimock, B. Unusual Fractionation of Both Odd and Even
 657 Mercury Isotopes in Precipitation from Peterborough, ON, Canada. *Geochim. Cosmochim. Acta*
 658 **2012**, *90*, 33–46. <https://doi.org/10.1016/j.gca.2012.05.005>.

659 (26) Sherman, L. S.; Blum, J. D.; Dvonch, J. T.; Gratz, L. E.; Landis, M. S. The Use of Pb, Sr, and Hg
 660 Isotopes in Great Lakes Precipitation as a Tool for Pollution Source Attribution. *Sci. Total*
 661 *Environ.* **2015**, *502*, 362–374. <https://doi.org/10.1016/j.scitotenv.2014.09.034>.

662 (27) France R.L. Differentiation between Littoral and Pelagic Food Webs in Lakes Using Stable
 663 Carbon Isotopes. *Limnol. Oceanogr.* **2003**, *40* (7), 1310–1313.
<https://doi.org/10.4319/lo.1995.40.7.1310>.

664 (28) Turschak, B. A.; Bunnell, D.; Czesny, S.; Höök, T. O.; Janssen, J.; Warner, D.; Bootsma, H. A.
 665 Nearshore Energy Subsidies Support Lake Michigan Fishes and Invertebrates Following Major
 666 Changes in Food Web Structure. *Ecology* **2014**, *95* (5), 1243–1252. <https://doi.org/10.1890/13-0329.1>.

674 (29) Cabana, G.; Rasmussen, J. B. Modelling Food Chain Structure and Contaminant Bioaccumulation
 675 Using Stable Nitrogen Isotopes. *Nature* **1994**, *372* (6503), 255–257.
 676 <https://doi.org/10.1038/372255a0>.

677 (30) Hoffman, J. Tracing the Origins, Migrations, and Other Movements of Fishes Using Stable
 678 Isotopes; **2016**; pp 169–196. <https://doi.org/10.1201/b21321-14>.

679 (31) Peterson, B. J.; Fry, B. Stable Isotopes in Ecosystem Studies. *Annu. Rev. Ecol. Syst.* **1987**, *18*,
 680 293–320.

681 (32) Sierszen, M. E.; Hrabik, T. R.; Stockwell, J. D.; Cotter, A. M.; Hoffman, J. C.; Yule, D. L. Depth
 682 Gradients in Food-Web Processes Linking Habitats in Large Lakes: Lake Superior as an Exemplar
 683 Ecosystem. *Freshw. Biol.* **2014**, *59* (10), 2122–2136. <https://doi.org/10.1111/fwb.12415>.

684 (33) Bonina, S. M. C.; Codling, G.; Corcoran, M. B.; Guo, J.; Giesy, J. P.; Li, A.; Sturchio, N. C.;
 685 Rockne, K. J. Temporal and Spatial Differences in Deposition of Organic Matter and Black
 686 Carbon in Lake Michigan Sediments over the Period 1850–2010. *J. Gt. Lakes Res.* **2018**.
 687 <https://doi.org/10.1016/j.jglr.2018.03.001>.

688 (34) MacGregor, B. J.; Mooy, B. V.; Baker, B. J.; Mellon, M.; Moisander, P. H.; Paerl, H. W.; Zehr, J.;
 689 Hollander, D.; Stahl, D. A. Microbiological, Molecular Biological and Stable Isotopic Evidence
 690 for Nitrogen Fixation in the Open Waters of Lake Michigan. *Environ. Microbiol.* **2001**, *3* (3), 205–
 691 219. <https://doi.org/10.1046/j.1462-2920.2001.00180.x>.

692 (35) Lepak, R. F.; Krabbenhoft, D. P.; Ogorek, J. M.; Tate, M. T.; Bootsma, H. A.; Hurley, J. P.
 693 Influence of Cladophora–Quagga Mussel Assemblages on Nearshore Methylmercury Production
 694 in Lake Michigan. *Environ. Sci. Technol.* **2015**, *49* (13), 7606–7613.
 695 <https://doi.org/10.1021/es506253v>.

696 (36) Bunnell, D. B.; Barbiero, R. P.; Ludsin, S. A.; Madenjian, C. P.; Warren, G. J.; Dolan, D. M.;
 697 Brenden, T. O.; Briland, R.; Gorman, O. T.; He, J. X.; et al. Changing Ecosystem Dynamics in the
 698 Laurentian Great Lakes: Bottom-Up and Top-Down Regulation. *BioScience* **2014**, *64* (1), 26–39.
 699 <https://doi.org/10.1093/biosci/bit001>.

700 (37) Madenjian, C. P.; Bunnell, D. B.; Warner, D. M.; Pothoven, S. A.; Fahnenstiel, G. L.; Nalepa, T.
 701 F.; Vanderploeg, H. A.; Tsehay, I.; Claramunt, R. M.; Clark, R. D. Changes in the Lake Michigan
 702 Food Web Following Dreissenid Mussel Invasions: A Synthesis. *J. Gt. Lakes Res.* **2015**, *41*, 217–
 703 231. <https://doi.org/10.1016/j.jglr.2015.08.009>.

704 (38) Mason, R. P.; Sullivan, K. A. Mercury in Lake Michigan. *Environ. Sci. Technol.* **1997**, *31* (3),
 705 942–947. <https://doi.org/10.1021/es9606561>.

706 (39) Gratz, L. E.; Keeler, G. J.; Marsik, F. J.; Barres, J. A.; Dvonch, J. T. Atmospheric Transport of
 707 Speciated Mercury across Southern Lake Michigan: Influence from Emission Sources in the
 708 Chicago/Gary Urban Area. *Sci. Total Environ.* **2013**, *448*, 84–95.
 709 <https://doi.org/10.1016/j.scitotenv.2012.08.076>.

710 (40) Hurley, J. P.; Cowell, S. E.; Shafer, M. M.; Hughes, P. E. Tributary Loading of Mercury to Lake
 711 Michigan: Importance of Seasonal Events and Phase Partitioning. *Sci. Total Environ.* **1998**, *213*
 712 (1–3), 129–137. [https://doi.org/10.1016/S0048-9697\(98\)00084-9](https://doi.org/10.1016/S0048-9697(98)00084-9).

713 (41) Landis, M. S.; Keeler, G. J. Atmospheric Mercury Deposition to Lake Michigan during the Lake
 714 Michigan Mass Balance Study. *Environ. Sci. Technol.* **2002**, *36* (21), 4518–4524.
 715 <https://doi.org/10.1021/es011217b>.

716 (42) Bhavsar, S. P.; Gewurtz, S. B.; McGoldrick, D. J.; Keir, M. J.; Backus, S. M. Changes in Mercury
 717 Levels in Great Lakes Fish between 1970s and 2007. *Environ. Sci. Technol.* **2010**, *44* (9), 3273–
 718 3279.

719 (43) Sandheinrich, M. B.; Bhavsar, S. P.; Bodaly, R. A.; Drevnick, P. E.; Paul, E. A. Ecological Risk of
 720 Methylmercury to Piscivorous Fish of the Great Lakes Region. *Ecotoxicology* **2011**, *20* (7), 1577–
 721 1587. <https://doi.org/10.1007/s10646-011-0712-3>.

722 (44) Phillips, J. C.; McKinley, G. A.; Bennington, V.; Bootsma, H. A.; Pilcher, D. J.; Sterner, R. W.;
 723 Urban, N. R. The Potential for CO₂-Induced Acidification in Freshwater: A Great Lakes Case
 724 Study. *Oceanography* **2015**, *28* (2), 136–145.

725 (45) Hecky, R. E.; Smith, R. E.; Barton, D. R.; Guildford, S. J.; Taylor, W. D.; Charlton, M. N.;
 726 Howell, T. The Nearshore Phosphorus Shunt: A Consequence of Ecosystem Engineering by
 727 Dreissenids in the Laurentian Great Lakes. *Can. J. Fish. Aquat. Sci.* **2004**, *61* (7), 1285–1293.
 728 <https://doi.org/10.1139/f04-065>.

729 (46) Madenjian, C. P.; Pothoven, S. A.; Dettmers, J. M.; Holuszko, J. D. Changes in Seasonal Energy
 730 Dynamics of Alewife (*Alosa Pseudoharengus*) in Lake Michigan after Invasion of Dreissenid
 731 Mussels. *Can. J. Fish. Aquat. Sci.* **2006**, *63* (4), 891–902. <https://doi.org/10.1139/f06-017>.

732 (47) Nalepa, T. F.; Fanslow, D. L.; Lang, G. A. Transformation of the Offshore Benthic Community in
 733 Lake Michigan: Recent Shift from the Native Amphipod *Diporeia* Spp. to the Invasive Mussel
 734 *Dreissena Rostriformis Bugensis*. *Freshw. Biol.* **2009**, *54* (3), 466–479.
 735 <https://doi.org/10.1111/j.1365-2427.2008.02123.x>.

736 (48) Madenjian, C. P., Fahnenstiel, G. L., Johengen, T. H., Nalepa, T. F., Vanderploeg, H. A.,
 737 Fleischer, G. W., et al. Dynamics of the Lake Michigan food web, 1970 2000. *Canadian Journal of*
 738 *Fisheries and Aquatic Sciences*, **2002**, *59*:736–753.

739 (49) Jacobs, G. R.; Madenjian, C. P.; Bunnell, D. B.; Holuszko, J. D. Diet of Lake Trout and Burbot in
 740 Northern Lake Michigan During Spring: Evidence of Ecological Interaction. *J. Gt. Lakes Res.*
 741 **2010**, *36* (2), 312–317. <https://doi.org/10.1016/j.jglr.2010.02.007>.

742 (50) USGS (U.S. Geological Survey). **2018**. Compiled reports to the Great Lakes Fishery Commission
 743 of the annual bottom trawl and acoustics surveys for 2017 [online]. Available from
 744 http://www.glfcc.org/pubs/lake_committees/common_docs/CompiledReportsfromUSGS2017.pdf
 745 [accessed 28-8-2019].

746 (51) Zhou, C.; Cohen, M. D.; Crimmins, B. A.; Zhou, H.; Johnson, T. A.; Hopke, P. K.; Holsen, T. M.
 747 Mercury Temporal Trends in Top Predator Fish of the Laurentian Great Lakes from 2004 to 2015:
 748 Are Concentrations Still Decreasing? *Environ. Sci. Technol.* **2017**, *51* (13), 7386–7394.
 749 <https://doi.org/10.1021/acs.est.7b00982>.

750 (52) Murphy, E.W., Smith, M.L., He, J.X., Wellenkamp, W., Barr, E., Downey, P.C., Miller, K.M. and
 751 Meyer, K.A., 2018. Revised fish aging techniques improve fish contaminant trend analyses in the
 752 face of changing Great Lakes food webs. *J. Gt. Lakes Res.*, **2018**, *44*(4), pp.725-734.

753 (53) Barbiero, R. P.; Lesht, B. M.; Warren, G. J.; Rudstam, L. G.; Watkins, J. M.; Reavie, E. D.;
 754 Kovalenko, K. E.; Karatayev, A. Y. A Comparative Examination of Recent Changes in Nutrients
 755 and Lower Food Web Structure in Lake Michigan and Lake Huron. *J. Gt. Lakes Res.* **2018**, *44* (4),
 756 573–589. <https://doi.org/10.1016/j.jglr.2018.05.012>.

757 (54) Meyers, P. A.; Eadie, B. J. Sources, Degradation and Recycling of Organic Matter Associated with
 758 Sinking Particles in Lake Michigan. *Org. Geochem.* **1993**, *20* (1), 47–56.
 759 [https://doi.org/10.1016/0146-6380\(93\)90080-U](https://doi.org/10.1016/0146-6380(93)90080-U).

760 (55) Stewart, D. J.; Weininger, D.; Rottiers, D. V.; Edsall, T. A. An Energetics Model for Lake Trout,
 761 *Salvelinus Namaycush*: Application to the Lake Michigan Population. *Can. J. Fish. Aquat. Sci.*
 762 **1983**, *40* (6), 681–698. <https://doi.org/10.1139/f83-091>.

763 (56) Jude, D. J.; Tesar, F. J.; Deboe, S. F.; Miller, T. J. Diet and Selection of Major Prey Species by
 764 Lake Michigan Salmonines, 1973–1982. *Trans. Am. Fish. Soc.* **1987**, *116* (5), 677–691.
 765 [https://doi.org/10.1577/1548-8659\(1987\)116<677:DASOMP>2.0.CO;2](https://doi.org/10.1577/1548-8659(1987)116<677:DASOMP>2.0.CO;2).

766 (57) Madenjian, C. P.; Desorcie, T. J.; Stedman, R. M. Ontogenetic and Spatial Patterns in Diet and
 767 Growth of Lake Trout in Lake Michigan. *Trans. Am. Fish. Soc.* **1998**, *127* (2), 236–252.
 768 [https://doi.org/10.1577/1548-8659\(1998\)127<0236:OASPID>2.0.CO;2](https://doi.org/10.1577/1548-8659(1998)127<0236:OASPID>2.0.CO;2).

769 (58) Sherman, L. S.; Blum, J. D. Mercury Stable Isotopes in Sediments and Largemouth Bass from
 770 Florida Lakes, USA. *Sci. Total Environ.* **2013**, *448*, 163–175.
 771 <https://doi.org/10.1016/j.scitotenv.2012.09.038>.

772 (59) Janssen, S. E.; Schaefer, J. K.; Barkay, T.; Reinfelder, J. R. Fractionation of Mercury Stable
 773 Isotopes during Microbial Methylmercury Production by Iron- and Sulfate-Reducing Bacteria.
 774 *Environ. Sci. Technol.* **2016**, *50* (15), 8077–8083. <https://doi.org/10.1021/acs.est.6b00854>.

775 (60) Kwon, S. Y.; Blum, J. D.; Madigan, D. J.; Block, B. A.; Popp, B. N. Quantifying Mercury Isotope
 776 Dynamics in Captive Pacific Bluefin Tuna (*Thunnus Orientalis*). *Elem Sci Anth* **2016**, *4* (0).
 777 <https://doi.org/10.12952/journal.elementa.000088>.

778 (61) Hesslein, R. H.; Hallard, K. A.; Ramlal, P. Replacement of Sulfur, Carbon, and Nitrogen in Tissue
 779 of Growing Broad Whitefish (*Coregonus Nasus*) in Response to a Change in Diet Traced by $\Delta^{34}\text{S}$,
 780 $\Delta^{13}\text{C}$, and $\Delta^{15}\text{N}$. *Can. J. Fish. Aquat. Sci.* **1993**, *50* (10), 2071–2076. <https://doi.org/10.1139/f93-230>.

782 (62) Zandeen, M. J. V.; Clayton, M. K.; Moody, E. K.; Solomon, C. T.; Weidel, B. C. Stable Isotope
 783 Turnover and Half-Life in Animal Tissues: A Literature Synthesis. *PLOS ONE* **2015**, *10* (1),
 784 e0116182. <https://doi.org/10.1371/journal.pone.0116182>.

785 (63) Schmeltz, D., Evers, D.C., Driscoll, C.T., Artz, R., Cohen, M., Gay, D., Haeuber, R., Krabbenhoft,
 786 D.P., Mason, R., Morris, K. and Wiener, J.G., 2011. MercNet: a national monitoring network to
 787 assess responses to changing mercury emissions in the United States. *Ecotox.* **2011**, *20*(7),
 788 pp.1713-1725.

789 (64) Risch, M. R.; Kenski, D. M.; Gay, D. A. A Great Lakes Atmospheric Mercury Monitoring
 790 Network: Evaluation and Design. *Atmos. Environ.* **2014**, *85*, 109–122.
 791 <https://doi.org/10.1016/j.atmosenv.2013.11.050>.

792 (65) Sun, R.; Sonke, J. E.; Heimbürger, L.-E.; Belkin, H. E.; Liu, G.; Shome, D.; Cukrowska, E.;
 793 Liousse, C.; Pokrovsky, O. S.; Streets, D. G. Mercury Stable Isotope Signatures of World Coal
 794 Deposits and Historical Coal Combustion Emissions. *Environ. Sci. Technol.* **2014**, *48* (13), 7660–
 795 7668. <https://doi.org/10.1021/es501208a>.

796 (66) Sherman, L. S.; Blum, J. D.; Keeler, G. J.; Demers, J. D.; Dvonch, J. T. Investigation of Local
 797 Mercury Deposition from a Coal-Fired Power Plant Using Mercury Isotopes. *Environ. Sci.
 798 Technol.* **2012**, *46* (1), 382–390. <https://doi.org/10.1021/es202793c>.

799 (67) Fera, S. A., Rennie, M. D., & Dunlop, E. S. Broad shifts in the resource use of a commercially
 800 harvested fish following the invasion of dreissenid mussels. *Ecology* **2017**, 98:1681-1692.

801 (68) Gehrke, G. E.; Blum, J. D.; Slotton, D. G.; Greenfield, B. K. Mercury Isotopes Link Mercury in
 802 San Francisco Bay Forage Fish to Surface Sediments. *Environ. Sci. Technol.* **2011**, *45* (4), 1264–
 803 1270.

804 (69) Lehnher, I.; Louis, V. L. S.; Hintelmann, H.; Kirk, J. L. Methylation of Inorganic Mercury in
 805 Polar Marine Waters. *Nat. Geosci.* **2011**, *4* (5), 298–302. <https://doi.org/10.1038/ngeo1134>.

806 (70) Cai, H.; Chen, J. Mass-Independent Fractionation of Even Mercury Isotopes. *Sci. Bull.* **2016**, *61*
 807 (2), 116–124. <https://doi.org/10.1007/s11434-015-0968-8>.

808 (71) Hickey, J. P.; Batterman, S. A.; Chernyak, S. M. Trends of Chlorinated Organic Contaminants in
 809 Great Lakes Trout and Walleye from 1970 to 1998. *Arch. Environ. Contam. Toxicol.* **2006**, *50* (1),
 810 97–110. <https://doi.org/10.1007/s00244-005-1007-6>.

811 (72) Zananski, T. J.; Holsen, T. M.; Hopke, P. K.; Crimmins, B. S. Mercury Temporal Trends in Top
 812 Predator Fish of the Laurentian Great Lakes. *Ecotoxicology* **2011**, *20* (7), 1568–1576.
 813 <https://doi.org/10.1007/s10646-011-0751-9>.

814 (73) David, S., Hesselberg, R., Rodgers, P. W., & Feist, T. J. Contaminant trends in lake trout and
 815 walleye from the Laurentian Great Lakes. *J. Gt. Lakes Res.* **1996**, *22*:884-895.

816 (74) Appleby, P. G. Chronostratigraphic Techniques in Recent Sediments. In *Tracking environmental
 817 change using lake sediments*; Springer, **2002**; pp 171–203.

818 (75) EPA, U. Method 1631, Revision E: Mercury in Water by Oxidation, Purge and Trap, and Cold
 819 Vapor Atomic Fluorescence Spectrometry. *US Environ. Prot. Agency Wash. DC* **2002**.

820 (76) Hammerschmidt, C. R.; Fitzgerald, W. F. Methylmercury in Mosquitoes Related to Atmospheric
 821 Mercury Deposition and Contamination. *Environ. Sci. Technol.* **2005**, *39* (9), 3034–3039.
 822 <https://doi.org/10.1021/es0485107>.

823 (77) Yin, R.; P. Krabbenhoft, D.; A. Bergquist, B.; Zheng, W.; F. Lepak, R.; P. Hurley, J. Effects of
 824 Mercury and Thallium Concentrations on High Precision Determination of Mercury Isotopic

825 Composition by Neptune Plus Multiple Collector Inductively Coupled Plasma Mass Spectrometry.
826 *J. Anal. At. Spectrom.* **2016**, *31* (10), 2060–2068. <https://doi.org/10.1039/C6JA00107F>.

827 (78) Blum, J. D.; Bergquist, B. A. Reporting of Variations in the Natural Isotopic Composition of
828 Mercury. *Anal. Bioanal. Chem.* **2007**, *388* (2), 353–359. <https://doi.org/10.1007/s00216-007-1236-9>.

829 (79) Hoffman, J. C.; Sierszen, M. E.; Cotter, A. M. Fish Tissue Lipid-C:N Relationships for Correcting
830 $\Delta^{13}\text{C}$ Values and Estimating Lipid Content in Aquatic Food-Web Studies. *Rapid Commun. Mass*
831 *Spectrom.* **2015**, *29* (21), 2069–2077. <https://doi.org/10.1002/rcm.7367>.

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850 Figure Legends

851 Figure 1: Tracing the influence of varying perturbations to Lake Michigan that affected HgT
852 concentration in lake trout composites (n = 132) (A), and energetic pathways, traced by lipid-corrected
853 $\delta^{13}\text{C}$ (B), and $\delta^{15}\text{N}$ (C) from 1978 - 2013. Each data point represents a composite of 5 lake trout, and the
854 boxplots were used when 2-5 separate composites were measured within a single year. Box plots indicate
855 the mean and quartiles of the fish composites sampled in a site and year. Whiskers represent the 10th and
856 90th percentiles. Plot color indicates site with gray, red, and blue representing Charlevoix, Saugatuck and
857 Sturgeon Bay respectively. Locations of these sites may be found in Figure S3. Three considerable
858 perturbations to lake trout and Hg cycling are marked: major Hg source shifts due mitigation strategies;
859 invasion of zebra mussels; and, then quagga mussel invasions. Missing is the late 1980s removal of Hg
860 from medical use and waste incineration. The background highlights the three time-dependent subsections
861 discussed in the text.

862 Figure 2: Tracing Hg isotope composition in fish and sediments. $\Delta^{199}\text{Hg}$ (A) and $\delta^{202}\text{Hg}$ (B) in Lake
863 Michigan lake trout composites (box plots, left axis) is represented in the top two panels and $\delta^{202}\text{Hg}$ in
864 two Lake Michigan sediment cores (C) is represented in the bottom panel. Secchi depth (A) was collected
865 at a broad range of sites within a given year and data was retrieved from the EPA data exchange database
866 (<https://cdx.epa.gov>). This centerline of the Secchi depth represents a 2-year average of all sites and the
867 dotted lines, represent the spring and summer variability (1SD). Detailed description of the fish data may
868 be found in Figure 1. Core data points represent a single sediment slice at the mid interval year. Marked
869 on the figure top are three considerable perturbations to lake trout and Hg cycling; a major Hg source shift
870 from mitigation strategies and the zebra and then quagga mussel invasions. Missing is the late 1980s
871 removal of Hg from medical use and waste incineration. The background highlights the three time-
872 dependent subsection discussion in the text.