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Abstract—Deadlocks in database-backed web applications
could involve different numbers of HTTP requests, and they
could be caused by locks explicitly requested in application code
or implicitly requested by databases during query execution.
To help developers understand these deadlocks and guide the
design of tools for combating these deadlocks, we conduct a
characteristic study with 49 deadlocks collected from real-world
web applications developed following different programming
paradigms. We provide categorization results based on HTTP
request numbers and resource types, with a special focus on cat-
egorizing deadlocks on database locks. We expect our results to be
useful for application developers to understand web-application
deadlocks and for tool researchers to design comprehensive
support for combating web-application deadlocks.

I. INTRODUCTION

Web applications are now an important platform for compa-
nies to deliver content and services to customers. By the nature
of web applications, they are concurrent and thus subject
to deadlocks. With the development of cloud platforms for
hosting web applications, they become more and more popular.
Coupled with the wide availability of hand-held devices,
deadlocks become a more critical problem as deadlocks could
happen more often with an increasing user base.

In web applications, the core business logic is a group of
request handlers, which are responsible for handling incom-
ing HTTP requests. Depending on the number of requests
involved, deadlocks can be categorized as inter-request dead-
locks where the deadlocks happen between request handlers
for two or more requests, intra-request deadlocks where the
deadlocks happen within a request handler while handling one
request, and non-request deadlocks where the deadlocks hap-
pen without involving request handling but in other execution
phases of the web applications, e.g., when the applications
start, shutdown, restart, or perform background tasks.

Web-application deadlocks could involve different types
of resources. As web applications are commonly backed
by databases on the server-side, database locks could be
one important type of resources involved in web-application
deadlocks. Language-level synchronization objects can also
be involved, depending on the support for concurrency and
synchronization provided by different web-application de-
velopment languages. For example, Java has more mature
support for multithreading compared with PHP and Python.
Lastly, as different paradigms and frameworks for developing
web applications, e.g., Object Relational Mapping (ORM)
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and event-driven Node.js, are being proposed and adopted,
synchronization objects in these frameworks and libraries can
also be involved. Among these lock types, database locks
are unique in that SQL queries could lead to implicit lock
acquisition due to database internals.

Most existing work on deadlocks focus on multi-threaded
programs, including characteristic studies [41], [51] and vari-
ous techniques for detection [14], [15], [24], [25], [31], [32],
[36], [39], [40], [45], [46], [49], [56], [60], [69], avoid-
ance [36], [65], [66], prevention [47], [69], testing [59], and
fixing [30], [50]. Since these general techniques focus on
modeling language-level locks, they will not be able to handle
deadlocks on database locks that are not explicitly requested
in application code. For web-application deadlocks not related
to concurrent request handlers or database locks, it is also not
clear how helpful existing techniques are.

Specific to web-application deadlocks, existing techniques
all focus on database-lock deadlocks, and detect-and-recover is
the most well-known approach. Specifically, major databases,
e.g., MySQL, PostgreSQL, and SQL Server, provide deadlock
detection capability [10], [13], [19]. Upon a detected deadlock,
a victim will be chosen, and the web application could retry
the victim transaction. Databases also provide error logs with
which application developers can diagnose the deadlocks and
fix the root cause of these deadlocks if they choose to.

However, deadlocks on database locks are difficult to under-
stand even with database logs. For example, someone posted
the following question on StackOverflow upon seeing error
logs about a deadlock from MySQL/InnoDB [23].

“Why MySQL starts deadlocking when this simple
command of scheduling a job is executed concurrently?
If it is really true that InnoDB is expected to create
deadlocks even in normal circumstances, then how is
MySQL expected to be used in any production database
which is expected to have more concurrent users? Am
I missing something?”

Since the aforementioned StackOverflow question has no
accepted answer yet, we use a deadlock example from the
MySQL manual [1] shown in Listing 1 to illustrate the
challenges of deadlock understanding. In Listing 1, three
transactions try to insert the same value on the primary key in
sequence, and then the first transaction rolls back, after which,
the second and third transactions will be in a deadlock.

To fully understand how this sequence of queries leads to
the deadlock, one needs to know the locking strategy followed
by the underlying database storage engine and different locks



CREATE TABLE tl (i INT, PRIMARY KEY (i)) ENGINE = InnoDB;

START TRANSACTION; /* TX1 =/
INSERT INTO tl VALUES (1)
START TRANSACTION; /% TX2 x/
INSERT INTO tl VALUES (1) ;
START TRANSACTION; /x TX3 x/
INSERT INTO tl1 VALUES(1);
ROLLBACK;

Listing 1. An example from MySQL’s official manual

requested by different queries being executed. Note that some-
times multiple locks could be requested during different phases
of executing one query. While some manuals for the locking
strategy used by database storage engines are usually provided
by vendors, they do not seem to be enough to help applica-
tion developers quickly understand web-application deadlocks
on database locks, as exemplified by the aforementioned
StackOverflow question. Facing these challenges, application
developers could benefit from a characteristic study of real-
world deadlocks on database locks, with which they can learn
common patterns and acquire the necessary knowledge on
database locking useful for deadlock understanding.

Beyond the detect-and-recover approach with support pri-
marily from the database community, the software-engineering
community has also contributed to the testing of deadlocks in
database-backed applications [44] and prevention of deadlocks
on database locks [43]. However, existing techniques only
model the locking behavior in database queries very conser-
vatively, and the example in Listing 1 is beyond the capability
of these techniques. It is unclear how well existing techniques
can cover real-world deadlocks on database locks.

To complement the current state of the art, in this work, we
conduct a characteristic study of real-world deadlocks from
database-backed web applications. We start our study with the
following research question:

o RQ1: What are the common types of deadlocks in web
applications regarding the number of HTTP requests and
deadlock resources, and how these characteristics are
impacted by application differences?

To answer RQ1, we do keyword search in the bug-tracking
systems of 106 database-backed web applications, covering
applications developed with major paradigms and languages,
and find 49 real-world deadlocks in web applications. We
characterize these 49 deadlocks based on the number of HTTP
requests and deadlock resources involved in them. Our results
suggest that inter-request deadlocks on database locks are
not only the most common but also the most challenging
type of deadlocks in web applications, which is worth further
investigation. As our keyword search only returns deadlocks
in a subset of web applications, we also study the relationship
between application characteristics and the number of dead-
locks, and our results suggest that both development paradigm
and project history could affect the number of deadlocks.

We proceed with the following two research questions to
further study web-application deadlocks on database locks:

« RQ2: What are the common types of web-application
deadlocks on database locks?

o RQ3: What are the common fixing strategies of web-
application deadlocks on database locks?

To answer RQ2 and RQ3, we use the 36 deadlocks on
database locks that we collect while answering RQ1, and we
further complement the bug set with 27 deadlocks based on
StackOverflow questions. We characterize these 63 deadlocks
into four different hold-and-wait cycles, depending on the
complexity of resources involved. To make our study results
useful for developers to understand database-lock deadlocks
they may encounter, we further divide three out of the four
types of cycles into 12 patterns and provide an example for
each pattern. For each example, we describe the queries and
the locks requested by these queries in detail. Among all
the different categories of database-lock deadlocks, existing
work [43], [44] may only be able to handle one pattern that
is the most straightforward. Compared with the patterns, we
find fixing strategies more straightforward to understand, and
we also summarize our findings.

Overall, we expect our results can (1) ease the task of
deadlock understanding for application developers and (2)
guide tool researchers and developers to design and implement
comprehensive tool support for deadlocks in web applications.

II. METHODOLOGY

In this section, we first describe our methodology on how we
collect and analyze bug reports related to deadlocks from real-
world web applications developed using different program-
ming paradigms and frameworks, and we then describe our
methodology on how we collect and analyze StackOverflow
posts related to deadlocks on database locks. To answer RQ1,
we use deadlock reports from real-world web applications.
To answer RQ2 and RQ3, we use real-world web-application
deadlocks on database locks labeled after answering RQ1
together with StackOverflow questions.

Our study includes three types of web applications, (1) clas-
sical ones that access databases by constructing SQL queries
directly, (2) those implemented on top of ORM frameworks,
and (3) those implemented on top of the Node.js framework.
For classical web applications, we start with the application
list from the study of performance antipatterns in classical web
applications [62]. For ORM web applications, we start with the
application list from the study of concurrency control in ORM
web applications [29]. For Node.js applications, we start with
the application list from the concurrency-bug study for Node.js
applications [64] but exclude those that are just libraries but
not complete applications. We also include other open-source
web applications that we are aware of and those we run into
during our study, e.g., some StackOverflow questions mention
the names of web applications we originally do not include.
To this end, our application set includes 11 classical, 77 ORM,
and 18 Node.js web applications.

We follow the methodology taken by existing studies on
concurrency bugs in multi-threaded applications [51], perfor-
mance bugs in web applications [62], [67], [68], and non-
deadlock concurrency bugs in web applications [37], [57], [64]
while collecting and studying bug reports related to deadlocks.



Table I. Web applications and numbers of bugs being studied and their overall characteristics

Server-Side Non-Request Intra-Request Inter-Request
Progr Appl Development Thread Sync. Database Thread Database Thread Database Cache
Paradigm (Abbreviation) L (Lock Only) Lock Lock Lock Lock Lock Lock
MediaWiki (MW) PHP B B B 2 B 16 1
Odoo (OD) Python - 4 - - -
Drupal (DPL) PHP - - - - 3
Classical Sonar (SNR) Java 1(1) - - - 2
BugZilla (BZ) Perl - - - - 1
OpenMRS (MRS) Java 3(2) - - - 1
Gerrit (GRT) Java 3(2) - - 2 -
Gitlab (GL) Ruby on Rails - - - - 1
Discourse (DC) Ruby on Rails - - 1
Spree (SPR) Ruby on Rails - - 1
ORM Openstreetmap (OSM) Ruby on Rails - - 1
Lobsters (LOB) Ruby on Rails - - 1
AWX (AWX) Django / Python 1 - -
Sentry (SEN) Django / Python 2 -
Node.js Ghost (GHO) Javascript 1 - - 1

To collect bugs related to deadlocks, we first search for

Table II. Accumulated numbers of deadlocks involving different numbers of

closed bug reports in each application’s issue-tracking system
with the keyword “deadlock(s).” We do not include other key-
words in our search because we would like to study bugs that
are determined by application developers as deadlocks, under
which case we believe the well-known word “deadlock(s)” will
appear in the bug report. After keyword search, we obtain a
total of 546 bug reports, i.e., 384 reports from 10 classical web
applications, 148 reports from 22 ORM web applications, and
14 reports from 7 Node.js web applications.

With this initial set of bug reports, we filter out ones
that only mention the word “deadlock(s)” but are actually
not deadlocks. For example, sometimes application developers
may call a hang bug due to infinite loops as deadlock. We also
filter out bug reports that do not contain sufficient information
for us to understand. A bug report typically contains some
bug description, followed by some discussion and comments
on possible causes and fixes, some intermediate fixes, and the
final committed fix. Every bug report is manually inspected
and discussed by at least two authors to ensure the objectivity
of our conclusions. We determine the root cause of each bug
by examining each bug report to understand what particular
reasons in program code, schemas, or database behaviors cause
the deadlock bugs, and we determine the fix strategy of each
bug by inspecting its accepted patch for changes in program
code, queries, or schema and reviewing the patch submitter’s
description of the fix.

Following this process, our final set has 49 closed re-
ports with sufficient information for us to determine that
their root causes are deadlocks. In comparison, the study of
concurrency bugs in multi-threaded applications includes 31
deadlocks [51]. Table I shows the names and the numbers
of deadlocks for each application. Note that the previous
concurrency-bug study on Node.js applications and libraries
states that they found no deadlock [64]. For the two Node.js
deadlocks we find, one of them is reported after the study is
published. The other is reported before the study is published,
but the deadlock happens during the application start phase
after a database upgrade, which could be the reason why it
was not included by the authors of the previous study [64].

To further complement our understanding of deadlock pat-
terns, we also search questions on StackOverflow for analysis.

requests and different types of resources

Thread Sync Database Cache

(Lock Only) Lock Lock Total
Non-Request 7 (5) 1 0 8
Intra-Request 33) 6 0 9
Inter-Request 2(2) 29 1 32
Total 12 36 1 49

We use 35 different combinations of tags and keywords, e.g.,
“deadlock,” “database,” “MySQL,” and “web application,”
for question search. For searches returning more than 50
questions, we include the first 50 with the highest votes.
Otherwise, all returned questions are included. To this end, we
obtain an initial set of 81 unique questions. We then manually
filter out questions without sufficient information for us to
understand, e.g., questions with no answer or no discussion.
Following this process, we finally obtain a set of 27 questions.

For each bug report and StackOverflow question, two au-
thors first independently examine all available information, in-
cluding description, discussion, database log, source code, and
fixes to make their own conclusion. Then, the two inspectors
cross-check with each other with more authors involved in the
discussion to reach a final conclusion.

III. RQ1: OVERALL DEADLOCK CHARACTERISTICS

In this section, we first discuss the overall characteristics of
the deadlocks we collect, and we then discuss how application
differences affect these characteristics.

A. Overall Characteristics of Collected Deadlocks

We first categorize web-application deadlocks based on the
number of HTTP requests and the types of resources involved
in deadlocks. On request numbers, we categorize them into
non-request, intra-request, and inter-request deadlocks, which
need zero, one, and more than one HTTP request, respectively.
On resource types, we differentiate database locks, thread
synchronization that includes locks and condition variables,
and other locks explicit in application code, e.g., cache locks.
Table I shows the numbers of deadlocks involving different
numbers of requests and different types of resources for each
application, and Table II shows the accumulated numbers.



Table III. Patterns of database-lock deadlocks and their numbers

Pattern Nested Simple Cycles Cycles with a Lock Held by Multi TXes Cycles with Lock Queues Total
TXes Pattern-1 Pattern-2 Pattern-3 Pattern-4 Pattern-5 Pattern-6 Pattern-7 Pattern-8 Pattern-9 Pattern-10 Pattern-11 Pattern-12

#in App 4 6 0 0 2 4 2 2 3 0 3 3 36

#in SO 0 2 6 1 5 1 0 2 0 1 0 1 27

Among the 8 non-request deadlocks, 7 of them are on thread
locks in applications developed with Java. These deadlocks ei-
ther happen during the starting, shutdown, or restarting phase,
or they are triggered while performing offline or background
tasks. In these scenarios, deadlocks happen due to concurrency
internal to the language but not due to external HTTP requests
that arrive concurrently. Thus, it is not surprising that these 7
deadlocks are in applications developed with Java. 5 of them
only involve locks. Among them, 4 are fixed by removing
unnecessary locks, and the remaining 1 is fixed by changing
application logic to make the two deadlock parties not con-
current; The other 2 involve condition variables, and they are
fixed by adding the missing signal or removing the untimely
wait. Overall, they are similar to classical thread deadlocks in
Java. The remaining non-request deadlock is in a Node.js web
application. The deadlock happens when the web application
starts after a database upgrade, and it involves concurrent
UPDATE queries. To fix this deadlock, programmers choose
to issue these queries sequentially.

Among the 9 intra-request deadlocks, 3 of them are on
thread locks in applications developed with Django, which
is a Python-based web framework with ORM support. These
deadlocks are all due to recursive lock operations on the
same lock, and they are fixed by either using a reentrant
lock instead of a normal lock or removing unnecessary calls
that try to acquire the same lock. In the remaining 6 intra-
request deadlocks on database locks, 4 happen in Odoo, which
uses PostgreSQL as its backend database, and 2 happen in
MediaWiki, which involves asynchronous execution, and we
will discuss their deadlock patterns in Section IV.

Among the 32 inter-request deadlocks, 3 of them are not
on database locks, where 2 are on thread locks and 1 is on a
cache lock. They happen all due to missing unlock calls while
handling one HTTP request, and they are fixed by adding the
missing unlock calls. The remaining 29 are all on database
locks, and we will detail them in Section IV.

From the discussion above, we can see that existing tech-
niques can handle the studied deadlocks on thread synchro-
nization or cache lock, regardless of the request number.

From the accumulated numbers in Table II, we can see that
inter-request deadlocks are more common than non-request
and intra-request deadlocks, which is likely due to the nature
of web applications that their core logic is handling concurrent
requests. We can also see that deadlocks on database locks
are more common, which is likely due to the deep coupling
between web applications and databases. To this end, inter-
request deadlocks on database locks are the most common, and
they are also the most challenging for existing techniques to
handle due to two challenges, i.e., they require new techniques
to (1) analyze the relationship between different requests and

(2) model database locking behavior. To handle non-request
and intra-request deadlocks on database locks, while they
would not exhibit the first challenge, we still need to handle
the second challenge.

For the relationship between request numbers and deadlock
resources, we can see that both thread locks and database
locks could be involved in non-request, intra-request, and
inter-request deadlocks. Therefore, they are two orthogonal
dimensions for web-application deadlocks.

B. Application Differences vs. Deadlock Characteristics

For the relationship between deadlock resources and devel-
opment languages, deadlocks on thread synchronization are
more common in web applications developed with languages
that provide mature support for concurrency and synchro-
nization, i.e., Java in our case, but deadlocks on threaded
synchronization can also happen in applications developed
with other languages, as more languages have now gradually
added support for concurrency and synchronization.

For the relationship between development paradigms and
numbers of deadlocks, we can see classical applications have
more deadlocks compared with web applications based on
ORM frameworks or Node.js. Note that we also searched
many applications with results of zero deadlocks, as described
in Section II. This result could be due to two reasons. First,
classical web applications generally have a longer development
history. Secondly, ORM web-application developers reportedly
prefer not to use transactions in their code [29], which is a
necessary condition for database-lock deadlocks to happen.

IV. RQ2: PATTERNS OF DATABASE-LOCK DEADLOCKS

Following the process discussed in Section II, we identify
36 deadlock bugs on database locks from real-world web
applications and 27 such deadlocks from StackOverflow ques-
tions. As database-lock deadlocks happen between concurrent
transactions, but the source of concurrency does not affect the
patterns for database-lock deadlocks much, we include all non-
request, intra-request, and inter-request cases in this section.

From these cases, we summarize four patterns of deadlocks
on database locks that differ on the types of resources involved
in deadlock hold-and-wait cycles, and Table III shows the
overall results. Specifically, in the order of increasing com-
plexity, the four cycle patterns are: (1) Nested Transactions,
where a program creates two database connections in one
thread, starts a transaction in each connection, and requests
two conflicting locks, and this is similar to deadlocks caused
by nested lock acquisition in multi-threaded programs; (2)
Simple Cycles that involve locks on two rows; (3) Cycles with
a Lock Held by Multiple Transactions, which involve locks
that can be held by multiple transactions simultaneously, and



they require extra modeling efforts; and (4) Cycles with Lock
Queues that further involve lock queues, which is due to how
locks are implemented internally in databases.

In this section, we first provide necessary background con-
cepts on database locking, and we then detail the four deadlock
cycle patterns with more subpatterns and concrete examples.
As our goal is to help application developers understand
database-lock deadlocks that they may encounter in the future,
our subpatterns and examples are very detailed. We do not try
to exhaustively enumerate all possible patterns that may occur
in theory, but we categorize and show real-world cases that
we see in web applications and StackOverflow questions.

A. Background on Locking Strategy

All database-lock deadlocks that we study are either on
MySQL/InnoDB or PostgreSQL. Both MySQL/InnoDB and
PostgreSQL use multiversion concurrency control (MVCC)
and provide four isolation levels following SQL standard, i.e.,
Read Uncommitted, Read Committed, Repeatable Read, and
Serializable, but their locking strategies are different. In the
deadlocks that we study, 32 application and 22 StackOverflow
deadlocks are on MySQL/InnoDB, and 4 application and 5
StackOverflow deadlocks are on PostgreSQL.

To understand the deadlocks on PostgreSQL locks, only
general knowledge of standard SQL is needed, e.g., the
concepts of clustered index, secondary index, primary key,
and non-primary index. Such knowledge is assumed in this
section. Next, we describe concepts that are fundamental for
understanding deadlocks on MySQL/InnoDB locks. Due to
space limitations, we are not trying to be comprehensive in this
subsection, but we focus on two concepts, i.e., lock modes and
lock types. Later in this section, we will describe the mode and
type of locks being requested by each query in our examples.

In MySQL/InnoDB, locks can be in two modes: (1) a
shared (S) lock permits the transaction that holds the lock
to read some rows, and (2) an exclusive (X) lock permits the
transaction to modify some rows. Locks can be in one of four
types: (1) Record Lock, which is a lock on an index record, (2)
Gap Lock, which is a lock on a gap between index records, or
a lock on the gap before the first or after the last index record,
(3) Next-Key Lock, which is a combination of a record lock on
the index record and a gap lock on the gap before the index
record, and (4) Insert-Intention Lock, which is a type of gap
lock set by INSERT operations prior to row insertion.

Under MVCC, locks are requested automatically for SQL
queries based on the isolation level, and queries could be
blocked if the requested locks conflict with locks granted to
other transactions. Unless otherwise specified, the isolation
level in our studied bugs is repeatable read. All locks are
released when a transaction is committed or aborted. Transac-
tions can be started and committed explicitly, or a query that
is not in any transaction is a transaction by itself.

B. Cycles with Nested Transactions

The 4 intra-request deadlocks in PostgreSQL-backed Odoo
are due to nested transactions in one execution thread, where

CREATE TABLE live_measures (
UUID VARCHAR (40) NOT NULL,
)i
ALTER TABLE live_measures ADD CONSTRAINT PK_LIVE_MEASURES
PRIMARY KEY (UUID) ;

START TRANSACTION; /* TX1 x/
UPDATE live_measures SET ... WHERE UUID=2;

START TRANSACTION; /x TX2 «*/

DELETE FROM live_measures WHERE UUID=1;
UPDATE live_measures SET ... WHERE UUID=1;

DELETE FROM live_measures WHERE UUID=2;

Listing 2. Sonar #11097

one request handler first makes a database connection, starts
one transaction, and requests one lock, and it then makes a
new database connection within the same execution thread,
starts a new transaction, and requests a conflicting lock.

C. Simple Cycles

Figure 1 shows the simple deadlock
cycle with locks on two records R1 and
R2. In the diagram, transaction TX1
holds lock L1a and waits for lock L2b,
and transaction TX2 holds lock L.2a

and waits for lock Li1b. Further, locks
Lla and L1b are conflicting, and locks
L2a and L2b are conflicting. Note that L1a and L1b can be
one lock, and L2a and L2b can also be one lock. Depending
on how many SQL queries are involved, we further divide
deadlocks with simple cycles on database locks into three
categories with four, three, and two queries, respectively.

Fig. 1. A simple cycle

[Pattern-1] Simple Cycles with Four Queries

Description: Pattern-1 deadlocks involve four queries from
two transactions, with two queries from each transaction, and
these queries access the database with primary-key values or
unique-index values specified.

Example: Listing 2 shows the deadlock in Sonar #11097 [5].
The four queries involved in the deadlock either UPDATE or
DELETE one row with values of the primary key specified.
Thus, they all acquire a record lock for its corresponding row
in the exclusive mode, but the two transactions acquire the
two locks in the opposite order, resulting in a deadlock.

[Pattern-2] Simple Cycles with Three Queries

Description: Pattern-2 deadlocks involve three queries from
two transactions, with two queries in one transaction and one
query in the other transaction. The one query could request
multiple locks due to several different reasons: full table scan
during query execution, multiple tables being involved, or
multiple indexes being involved.

Examples: Listings 3 and 4 show two examples where one
query leads to a full table scan and locks multiple primary-
key records, and they are based on StackOverflow questions
#40653848 [16] and #1851528 [20], respectively. In Listing 3,
the SELECT subquery of INSERT in TX2 will perform a full
table scan and acquire a shared record lock on each primary-
key record that satisfies the WHERE condition. Although there is
an index on type, the database engine still decides to perform



CREATE TABLE problem_table (
id INT(11) NOT NULL,
type enum('TYPEl', 'TYPE2', 'TYPE3') NOT NULL,
source VARCHAR(16) DEFAULT NULL,
PRIMARY KEY (id),
KEY type_idx (type),
)i

START TRANSACTION; /x TX1 =/
UPDATE problem_table SET ... WHERE id=2;
START TRANSACTION; /x TX2 «*/

INSERT INTO temp SELECT ... FROM
problem_table p WHERE p.type IN
('TYPEL1', 'TYPE2') AND p.source='FOO';

UPDATE problem_table SET ... WHERE id=1;

Listing 3. StackOverflow #40653848

CREATE TABLE jobs (

jid INT(11) NOT NULL,
status VARCHAR NOT NULL,
PRIMARY KEY (jid)

)i

START TRANSACTION; /x TX1 =/
UPDATE jobs SET ... WHERE jid=2;
START TRANSACTION; /* TX2 «/
SELECT ... FROM jobs WHERE status='new' FOR
UPDATE;

UPDATE jobs SET ... WHERE jid=1l;

Listing 4. StackOverflow #1851528

START TRANSACTION; /# TX1 x/
INSERT INTO phppos_sales VALUES (...);
START TRANSACTION; /% TX2 x/
CREATE temporary TABLE temp SELECT ... FROM

phppos_sales_items INNER JOIN
phppos_sales ON ... INNER JOIN ...
WHERE ...;

INSERT INTO phppos_sales_items VALUES (...);

Listing 5. StackOverflow #23768456

a full table scan. In Listing 4, the SELECT FOR UPDATE query
in TX2 will perform a full table scan as well and acquire an
exclusive record lock on each primary-key record that satisfies
the WHERE condition. The database engine performs a full
table scan in this case, as the field in the WHERE condition is
not indexed. In both cases, the two queries from TX1 request
exclusive record locks on two rows but in an order opposite
with the order that the query from Tx2 locks the same two
rows during the full table scan.

Listing 5 shows an example based on StackOverflow ques-
tion #23768456 [18], and it is one example where one query
locks rows from two different tables due to joined tables.
In Tx2, the SELECT subquery of CREATE is performed on a
table joined from two existing tables. For each row match-
ing the WHERE condition, the corresponding row in table
phppos_sales_items will be locked first, and then the
corresponding row in table phppos_sales will be locked.
On the other hand, the two queries in Tx1 request exclusive
record locks on the two rows of these two tables in a different
order, resulting in a deadlock.

Listing 6 shows an example based on StackOverflow ques-
tion #2560070 [21], where one query locks rows from two
tables due to foreign keys. In TX1, the SELECT FOR UPDATE
query requests an exclusive lock on the row with 1d=1000 in
table A. Then, the INSERT query in Tx2 first gets an exclusive
record lock on the row with id=1 just being inserted in table

create table A (id INT(11l) PRIMARY KEY);
create table B (

id INT(11) PRIMARY KEY,

aid INT(11),

FOREIGN KEY (aid) REFERENCES A (id)
)i

START TRANSACTION; /+ TX1 +/
SELECT % FROM A WHERE id=1000 FOR UPDATE;
START TRANSACTION; /+ TX2 +/
INSERT INTO B (id, aid, ...)
VALUES (1, 1000, ...);
INSERT INTO B (id, aid, ...)
VALUES (1, 1000, ...);

Listing 6. StackOverflow #2560070

CREATE TABLE tabl (
id INT(11l) NOT NULL AUTO_INCREMENT,
sn VARCHAR (20) NOT NULL,
is_fetch TINYINT (1) NOT NULL DEFAULT '0O'
PRIMARY KEY (id),
KEY sn (sn),
KEY is_fetch (is_fetch),
)i

START TRANSACTION; /* TX1 «*/
SELECT sn FROM tabl WHERE is_fetch=0
LIMIT 200 FOR UPDATE;
START TRANSACTION; /x TX2 «/
INSERT IGNORE INTO tabl (sn, is_fetch, ...)
VALUES ('4287', 0, ...);
UPDATE tabl SET is_fetch=1
WHERE sn in ('4287', ...);

Listing 7. StackOverflow #24327317

B, and it will then request a shared record lock on the row
with 1d=1000 in table A, as the primary key of table A is
a foreign key in table B. However, this request from TX2 is
blocked due to the lock on that row held by Tx1. Finally, the
INSERT query in TX1 will also try to insert into table B, but it
gets blocked during duplicate-key checking by Tx2, as a row
satisfying id=1 has been inserted into table B by Tx2 already.

Listing 7 shows an example based on StackOverflow ques-
tion #24327317 [3], where one query locks rows in two
indexes. In Tx1, the SELECT FOR UPDATE query acquires an
exclusive next-key lock on every record in index is_fetch
satisfying is_fetch=0 and a gap lock on the range after the
last record satisfying is_fetch=0. These ranges are locked
to prevent other transactions from inserting records satisfying
is_fetch=0 in the is_fetch index concurrently. Then, the
INSERT query in TX2 inserts a row whose is_fetch field
equals 0. It successfully inserts the record to the primary index
and acquires an exclusive lock on the newly inserted primary-
index record, but it gets blocked while requesting an exclusive
insert-intention lock on secondary index is_fetch, as it falls
into the range after last is_fetch=0 record, which has been
locked by Tx1. Finally, the database engine chooses to perform
a full table scan based on existing data in the table while
executing the UPDATE query in Tx1. During this process, it
tries to acquire an exclusive next-key lock on every primary-
key record, including the newly inserted row, and thus gets
blocked as the new row is inserted by TX2.

[Pattern-3] Simple Cycles with Two Queries

Description: Pattern-3 deadlocks involve two queries from
two transactions, and each query requests multiple locks.



CREATE TABLE fruit_setting (
id BIGINT (20) NOT NULL AUTO_INCREMENT,
aid VARCHAR(32) NOT NULL,
eid VARCHAR(32) NOT NULL,
mykey VARCHAR(32) NOT NULL,
PRIMARY KEY (id),
KEY i_aid_mykey (aid, mykey),
UNIQUE KEY i_eid_mykey (eid, mykey),
)i
INSERT INTO fruit_setting (id, aid, eid, mykey, ...)

VALUES (1, 'a', 'b', 'a', ...);
INSERT INTO fruit_setting (id, aid, eid, mykey, ...)
VALUES (2, 'a', 'a', 'a', ...);

START TRANSACTION; /x TX1 */
UPDATE fruit_setting SET ...
aid='a' and mykey='a';
START TRANSACTION; /x TX2 x/
UPDATE fruit_setting SET ... WHERE
eid IN ('a', 'b') and mykey='a';

WHERE

Listing 8. StackOverflow #65519414

Example: Listing 8 shows an example based on StackOver-
flow question #65519414 [2]. The table schema contains 2
different indexes. One consists of columns eid and mykey,
and the other consists of aid and mykey. The UPDATE query
in Tx1 updates the records via searching in the order of index
i_aid_mykey. Since the two existing rows have the same
values for aid and mykey, the two rows will be accessed in
an order based on the values of primary key id. Specifically,
the query will request an exclusive lock first on the row with
id=1 and then on the row with id=2. On the other hand, the
UPDATE query in Tx2 updates the records via searching in the
order of index i_eid_mykey. With the two existing rows, it
will request exclusive locks on the two rows in an opposite
order as the query in Tx1, resulting in a deadlock.

D. Cycles with a Lock Held by
Multiple Transactions

Deadlocks involving a lock held by
multiple transactions cannot be mod-
eled with the simple cycle already de-
scribed, and Figure 2 shows the dead-

lock cycle that we come up with to
model deadlocks involving such locks.
In the diagram, transactions TX1 and
Tx2 both hold the same lock on record
R. Then, they both request the exclusive lock, which conflicts
with the lock held by the other transaction, and thus the
two transactions get blocked by each other, resulting in a
deadlock. Depending on the type of the lock held by multiple
transactions, we further divide them into three types. Below,
we omit the Description paragraph if the pattern name is self-
explanatory and we do not have more to add.

Fig. 2. A cycle with
a lock held by multiple
transactions

[Pattern-4] Multiple TXes Holding One Shared Record Lock

Description: The lock held by multiple transactions is a shared
record lock, and this is the classical conversion case [58].

Examples: Listing 9 shows an example based on StackOver-
flow question #5353877 [22]. First, the SELECT subqueries
of INSERT in both transactions acquire a shared record lock
on the row with id=10 in table trades. Then, the UPDATE

CREATE TABLE tradeshistory (
PRIMARY KEY (id),

)i

CREATE TABLE trades (
PRIMARY KEY (id),

)i

START TRANSACTION; /* TX1 «/
INSERT INTO tradeshistory (SELECT
trades.* FROM trades WHERE id=10);
START TRANSACTION; /% TX2 »*/
INSERT INTO tradeshistory (SELECT
trades.* FROM trades WHERE id=10);
UPDATE trades SET ... WHERE id=10;

UPDATE trades SET ... WHERE id=10;

Listing 9. StackOverflow #5353877

CREATE TABLE votes ( ...,
story_id BIGINT (20) NOT NULL, ...,
FOREIGN KEY (story_id) REFERENCES stories(id);
)i
CREATE TABLE stories (
id BIGINT (20) NOT NULL PRIMARY KEY,
)

START TRANSACTION; /* TX1 x/
INSERT INTO votes (story_id, ...)
VALUES (1, ...);

START TRANSACTION; /x TX2 x/
INSERT INTO votes (story_id, ...)
VALUES (1, ...);
UPDATE stories SET ... WHERE id=1;

UPDATE stories SET ... WHERE id=1;

Listing 10. Lobsters #39

queries in both transactions ask for an exclusive record lock
on the same row, but both get blocked by the shared record
lock held by the other transaction. Listing 10 shows a similar
example from Lobsters #39 [17]. The INSERT queries in both
transactions acquire a shared record lock on the row with id=1
in table stories, but this is due to foreign key, which is the
same as the case in Listing 6.

[Pattern-5] Multiple TXes Holding One Shared Gap Lock

Example: The example from MySQL’s official manual in
Listing 1 as mentioned in Section I is a Pattern-5 deadlock. In
TX1, the INSERT query acquires an exclusive record lock on
the row inserted. In Tx2 and Tx3, the INSERT query asks for
a shared record lock during duplicate-key checking because
the query inserts the primary key. When TX1 is rolled back,
the INSERT queries in Tx2 and Tx3 both get the shared gap
lock because the row inserted by Tx1 does not exist anymore.
Then, the INSERT queries in both transactions ask for the
same exclusive insert-intention lock, but both get blocked by
the shared gap lock held by the other transaction.

[Pattern-6] Multiple TXes Holding One Exclusive Gap Lock

Description: The lock held by multiple transactions is an ex-
clusive gap lock. Although in the exclusive mode, an exclusive
gap lock can be held by multiple transactions simultaneously.
Example: Listing 11 shows MediaWiki #214035 [6]. With
existing data in table page_restrictions, the DELETE
queries in both transactions acquire an exclusive gap lock
on the same range, as the WHERE conditions in both queries
match no existing rows but fall into the same range. Then,



CREATE TABLE page_restrictions (
pr_id INT unsigned NOT NULL PRIMARY KEY AUTO_INCREMENT,
pr_page INT NOT NULL,
pr_type VARBINARY (60) NOT NULL,
)
CREATE UNIQUE INDEX pr_pagetype ON page_restrictions
(pr_page, pr_type);

START TRANSACTION; /* TX1 x/
DELETE FROM page_restrictions WHERE
pr_page=125 and pr_type='move';
START TRANSACTION; /x TX2 =/
DELETE FROM page_restrictions WHERE
pr_page=150 and pr_type='move';
INSERT INTO page_restrictions
(pr_page, pr_type, ...) VALUES
(125, 'move',...);
INSERT INTO page_restrictions
(pr_page, pr_type, ...) VALUES
(150, 'move',...);

Listing 11. MediaWiki #214035

CREATE TABLE cache_config(
cid VARCHAR(255) NOT NULL,
PRIMARY KEY (cid)

)i

START TRANSACTION; /x TX1 =*/
DELETE FROM cache_config WHERE cid=1;
START TRANSACTION; /* TX2 »*/
DELETE FROM cache_config WHERE cid=1;
INSERT INTO cache_config (cid, ...)
VALUES (1, ...);

Listing 12. Drupal #2336627

the INSERT queries in both transactions ask for an exclusive
insert-intention lock on the same range, and they get blocked
by the exclusive gap lock held by the other transaction.
Besides DELETE, SELECT FOR UPDATE or UPDATE can
also have WHERE conditions matching no rows, thus acquiring
exclusive gap locks and causing the same type of deadlocks.

E. Cycles with Lock Queues

Each MySQL/InnoDB record inter-
nally maintains a queue, and queries
requesting locks on the same record
are queued in the order these requests

® @m0

are made. Therefore, queries enqueued
later need to wait for queries enqueued
earlier. Figure 3 shows the deadlock
cycle that we come up with to model
deadlocks involving such wait relationships on lock queues. In
the diagram, (1) TX1 acquires La, (2) TX2 requests Lb but gets
blocked by Tx1, and TX2 is put into the queue corresponding
to record R, and (3) TX1 requests Lc that conflicts with Lb
being requested by Tx2, and thus Tx1 is blocked by Tx2
and put into the same queue after Tx1. Deadlocks involving
lock queues all have three queries, and we further divide such
deadlocks based on the query types and lock types involved
in the deadlock. We group the examples for Patterns 7, 8, and
9 together as they share the same query pattern. ‘X’ and ‘S’
in the following pattern names are lock modes.

Fig. 3. A cycle with a
lock queue

[Pattern-7] DELETE-DELETE-INSERT Acquiring X Record
Lock, X Record Lock, and S Next-key Lock

CREATE TABLE user_properties (
up_user INT NOT NULL,
up_property VARBINARY (255) NOT NULL,
)
CREATE UNIQUE INDEX user_properties_user_property ON
user_properties (up_user,up_property);

START TRANSACTION; /x TX1 x/
DELETE FROM user_properties WHERE
up_user=1 AND up_property='aaa';
START TRANSACTION; /* TX2 x/
DELETE FROM user_properties WHERE
up_user=1 AND up_property='aaa';
INSERT INTO user_properties (up_user,
up_property, ...) VALUES(l, 'aaa', ...);

Listing 13. MediaWiki #38116

[Pattern-8] DELETE-DELETE-INSERT Acquiring X Record
Lock, X Next-Key Lock, and S Next-Key Lock

[Pattern-9] DELETE-DELETE-INSERT Acquiring X next-key
Lock, X Next-Key Lock, and X Insert-Intention Lock

Examples: Listing 12 shows a Pattern-7 deadlock in Drupal
#2336627 [8]. In Tx1, the DELETE query first acquires an
exclusive record lock on the row of cid=1 because it uses the
primary key to search for records. In TX2, the DELETE query
asks for the same exclusive record lock on the same row but
gets blocked. Thus, TX2 is put into a wait queue corresponding
to the row of cid=1. Finally, the INSERT query in TX1 wants
to insert a record with cid=1. Because cid is the primary
key of the table, it asks for a shared next-key lock to check if
the primary key value to be inserted exists. This lock cannot
be granted because it conflicts with the lock requested by the
DELETE query in TX2. Thus, TX1 has to wait for Tx2 that
is currently the head of lock queue for the row of cid=1,
completing the hold-and-wait cycle.

Listing 13 shows a Pattern-8 deadlock in MediaWiki
#38116 [9]. Among all locks that it acquires, the DELETE
query in TX1 acquires an exclusive record lock on the unique
index satisfying the WHERE condition, as it uses the unique
index to search for records. Then, the DELETE query in Tx2
requests an exclusive next-key lock on the unique index, but
it gets blocked due to the aforementioned exclusive record
lock held by Tx1. Based on comments from MySQL source
code, since in a unique secondary index, there may be different
delete-marked versions of a record where only the primary key
values differ, next-key locks are used on a secondary index
when locking delete-marked records. Finally, the INSERT
query asks for a shared next-key lock to check if the new row
with up_user=1 AND up_property='aaa' to be inserted
may result in duplicates on the unique index. This lock cannot
be granted because it conflicts with the lock requested by Tx2.
Thus, Tx1 again has to wait for TX2.

Listing 14 shows a Pattern-9 deadlock in MediaWiki
#30598 [7]. In this case, the two DELETE queries in both
transactions use non-unique indexes to search for records.
In TX1, the DELETE query acquires exclusive next-key locks
on the two indexes satisfying the WHERE condition because
the indexes are non-unique. Then, the DELETE query in TxX2
requests the same locks and gets blocked by Tx1, and it is put
into wait queues corresponding to these two indexes. Finally,



CREATE TABLE wb_terms (

term_row_id INT unsigned NOT NULL PRIMARY KEY
AUTO_INCREMENT,

term_entity_id INT unsigned NOT NULL,

term_entity_type VARBINARY (32) NOT NULL,

)i

CREATE INDEX wb_terms_entity_id ON wb_terms
(term_entity_id);

CREATE INDEX wb_terms_entity_type ON wb_terms
(term_entity_type);

START TRANSACTION; /x TX1 «/
DELETE FROM wb_terms WHERE term_entity_id=1
AND term_entity_type='A';
START TRANSACTION; /* TX2 «/
DELETE FROM wb_terms WHERE term_entity_id=1
AND term_entity_type='A"';
INSERT INTO wb_terms (term_entity_id,
term_entity_type, ...) VALUES (1, 'A'...);

Listing 14. MediaWiki #44547

CREATE TABLE parent (id INT(11) PRIMARY KEY);
CREATE TABLE child (

id INT(11) PRIMARY KEY,

parent_id INT(11),

FOREIGN KEY (parent_id) REFERENCES parent (id)
)i

START TRANSACTION; /x TX1 «/
INSERT INTO child (id, parent_id)
VALUES (10, 1);
START TRANSACTION; /* TX2 «/
SELECT id FROM parent WHERE id=1
FOR UPDATE;
SELECT id FROM parent WHERE id=1
FOR UPDATE;

Listing 15. StackOverflow #41015813

the INSERT query in TX1 wants to insert a record sharing
the same values with the DELETE query on the non-unique
indexes. Since the indexes are not unique, the INSERT query
does not need to perform the duplicate key checking, but it will
directly request an exclusive insert-intention lock. This lock
cannot be granted because it conflicts with the lock requested
by Tx2. Thus, TX1 has to wait for TX2.

[Pattern-10] INSERT-SELECT FOR UPDATE-SELECT FOR
UPDATE Acquiring S Record Lock, X Record Lock, and X
Record Lock

Example: Listing 15 shows an example based on StackOver-
flow question #41015813 [4]. The INSERT query in TX1
inserts a row of parent_id=1 into table child, and it
acquires a shared lock on the record satisfying id=1 in table
parent because of the foreign-key constraint between these
two tables. Then, Tx2’s SELECT FOR UPDATE query will ask
for an exclusive lock on the record satisfying id=1 in table
parent. This lock request from Tx2 is blocked by Tx1.
After that, TX1’s SELECT FOR UPDATE query also asks for an
exclusive lock on the same record. This lock request from Tx1
cannot be granted because it conflicts with the lock requested
by Tx2, completing the deadlock cycle.

[Pattern-11] INSERT-INSERT-DELETE Acquiring X Record
Lock, S Record Lock, and X Next-Key Lock

Example: Listing 16 shows OpenMRS #674 [11]. In Tx1, the
INSERT query inserts a new row in the table cache_config

CREATE TABLE cache_config(
idset_key CHAR(40) NOT NULL,
member_id INT(11) NOT NULL,
PRIMARY KEY (idset_key, member_id)
)i

START TRANSACTION; /* TX1 x/
INSERT INTO reporting_idset
(idset_key, member_id) VALUES (5, 5);
START TRANSACTION; /* TX2 =/
INSERT INTO reporting_idset
(idset_key, member_id) VALUES (5, 5);
DELETE FROM reporting_idset
WHERE idset_key=5;

Listing 16. OpenMRS #674

CREATE TABLE wbc_entity_usage (
eu_row_id BIGINT NOT NULL PRIMARY KEY AUTO_INCREMENT,
eu_entity_id VARBINARY (255) NOT NULL,
eu_aspect VARBINARY (37) NOT NULL,
eu_page_id INT NOT NULL
)i
CREATE UNIQUE INDEX eu_entity_id ON wbc_entity_usage (
eu_entity_id, eu_aspect, eu_page_id );

START TRANSACTION; /% TX1 =/
INSERT INTO wbc_entity_usage
(eu_page_id=10, eu_aspect='10"', eu_entity_id='10");
START TRANSACTION; /* TX2 x/
INSERT INTO wbc_entity_usage
(eu_page_id=10, eu_aspect='10",
eu_entity id='10");
INSERT INTO wbc_entity_usage
(eu_page_id=9, eu_aspect='9', eu_entity_id='9");

Listing 17. MediaWiki #192349

and acquires an exclusive record lock on that row. Then, the
INSERT query in Tx2 tries to insert the same record and
asks for a shared record lock on that row for duplicate-key
checking. It gets blocked by TX1 and is put into a wait queue.
After that, the DELETE query in TX1 tries to delete records
satisfying idset_key=5, including the newly inserted record
by the previous INSERT query in Tx1. Since idset_key
is part of the multi-column primary key, it will ask for an
exclusive next-key lock on every record satisfying the where
condition. This lock cannot be granted as it conflicts with the
lock requested by Tx2, completing the deadlock cycle.

[Pattern-12] INSERT-INSERT-INSERT Acquiring X Record
Lock, S Next-Key Lock, and X Insert-Intention Lock

Example: Listing 17 shows MediaWiki #192349 [12].
The first INSERT query in TX1 acquires an exclusive
record lock on both the row being inserted and the
unique index with eu_page_id=10, eu_aspect='10",
eu_entity_id='10'. The INSERT query in TX2 requests a
shared next-key lock on the unique index during duplicate-
key checking. Tx2 gets blocked by Tx1 and is put
into a wait queue. The second INSERT query in TX1
passes the duplicate-key checking, as eu_page_id=9,
eu_aspect='9', eu_entity_id='9"' is not in the table,
and it proceeds to request an exclusive insert-intention lock.
When existing data in the table makes the insert-intention lock
be on the record of eu_page_id=10, eu_aspect='10",
eu_entity_id='10", the insert-intention lock requested by
Tx1 conflicts with the lock requested by Tx2. Thus, TX1 is
also blocked by Tx2.



Table IV. Fixing strategies

Fixing Strategies Total
Enforcing lock order by changing query order
Omitting unnecessary queries

Omitting unnecessary SELECT FOR UPDATE locks
Removing unnecessary transactions

Avoiding concurrent execution with app-level lock
Avoiding concurrent execution with ordered execution
Avoiding conflicting by changing queries or logic
Avoiding nested transactions

Avoiding using database

Splitting a large transaction into smaller ones

Reduce the number of resources requested

Catch and retry

w

Reduce
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F. Discussion

Among those PostgreSQL-lock deadlocks, the 4 from ap-
plications are due to cycles with nested transactions, and the
5 from StackOverflow questions are of Patterns 1, 2, and 4.
Deadlocks of these patterns can be understood with general
SQL knowledge, while deadlocks on MySQL/InnoDB locks
are more challenging for application developers to understand.

To help application developers in tackling this challenge,
we categorize deadlocks on MySQL/InnoDB locks in fine
granularity and provide a concrete example for each pattern
that we observe in our deadlock set. We believe the knowledge
gained through our examples will be valuable for application
developers to understand and diagnose deadlocks that they
may encounter, even for those beyond the patterns that we
observe. For tool researchers and developers, our results sug-
gest that existing tool support is not sufficient and call for
more effort in this area. Specifically, our results on database-
lock deadlocks reveal cycle patterns that existing techniques
on deadlocks have not accounted for.

V. RQ3: FIXES FOR DATABASE-LOCK DEADLOCKS

Unlike hold-and-wait cycle patterns, the fixing strategies
for database-lock deadlocks are much straightforward to un-
derstand. Table IV shows the different fixing strategies used
for the 36 deadlocks from real-world applications and their
corresponding numbers. On the high level, fixing strategies for
database-lock deadlocks can be categorized as (1) completely
eliminating the possibility of deadlocks, (2) reducing the
chance of deadlocks, or (3) adding catch-and-retry.

The majority, i.e., 28 out of 36, of the studied database-
lock deadlocks are completely fixed with various strategies.
The first three strategies can be viewed as different ways to
break the hold-and-wait cycle. The next three strategies can be
viewed as different ways to avoid concurrent transactions. The
last three strategies are more application-specific. In particular,
avoiding nested transactions is only used to fix Odoo intra-
request deadlocks, and the “avoiding using database” strategy
is used when the data can be moved to cache.

5 deadlocks are not completely fixed, but developers either
reduce transaction length or reduce the number of resources
requested in transactions to reduce the chance of deadlocks.
This could happen if a complete fix is too complex, and the
chance of deadlocks can be reduced to an acceptable level.

In the remaining 3 cases, developers take the catch-and-retry
approach by adding code to retry transactions on deadlocks,
and the chance of deadlocks is likely considered as acceptable.

In the case of StackOverflow questions, 10 of them have ac-
cepted answers with fixing strategies proposed. The proposed
strategies are no different from what we see in real-world web
applications. Since the actual patch being applied in practice
is only mentioned in one StackOverflow question, we do not
include it in Table IV.

VI. RELATED WORK

Earlier in this paper, we have discussed some related work
on deadlocks in multi-threaded programs and web applica-
tions. Our results suggest that existing work cannot handle
a large portion of real-world deadlocks in web applications,
especially those inter-request deadlocks on database locks.
While there are studies focusing on concurrency bugs in web
applications [37], [57], [64], they do not cover deadlocks.

Server-side web applications have been the subject of a lot
of existing research, and we next briefly discuss other related
work on server-side web applications. Many different tech-
niques have been proposed for improving their reliability [26]—-
[28], [38], [42], [53]-[55], [61], mostly focusing on program
analysis, bug detection, input generation, or automated repair.
Techniques focusing on the security aspect of web applications
have also been proposed, e.g., auditing [48], [63], intrusion
detection and recovery [33], [34], [52], identifying information
disclosure [35]. However, none of them handles deadlocks.

VII. THREATS TO VALIDITY

Our study may be subject to several validity threats. Next,
we describe potential threats and our ways to address them.
(1) We may not include all representative web applications.
To minimize this threat, we choose popular open-source
applications with a significant user base from state-of-the-
art studies on web applications, and we search deadlocks
in all applications from these studies that are still available.
We further include StackOverflow questions to further enrich
our understanding of deadlocks on database locks. Our re-
sults show the characteristics are similar for database-lock
deadlocks from web-application bugs and those based on
StackOverflow questions. So the characteristic study results
can likely be generalized to other web applications. (2) We
may miss relevant bug reports while searching for deadlocks.
We mitigate this threat by using keyword search in both bug
descriptions and comments together with bug categories and
tags. (3) We inspect bug reports manually. To alleviate this
threat, each report is examined by at least two authors, and the
group discusses the bug report together to reach a consensus.

VIII. CONCLUSION

In this paper, we characterize deadlocks from real-world
web applications based on the number of HTTP requests and
the types of resources involved. For deadlocks on database
locks, we further categorize their hold-and-wait cycle patterns
and fix strategies. The patterns and concrete examples pre-
sented in this paper can help application developers understand
and diagnose deadlocks that they may encounter. Our study
results can also guide future research in combating deadlocks
in web applications.
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