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Abstract: Geospatial models for predicting soil liquefaction infer subsurface traits via satellite remote sensing 1 

and mapped information, rather than directly measure them with subsurface tests. Field tests of such models 2 

have demonstrated both promising potential and severe shortcomings. Informed by these tests, this paper 3 

develops geospatial models that are driven by algorithmic learning but pinned to a physical framework, thereby 4 

benefiting both from machine and deep learning, or ML/DL, and the knowledge of liquefaction mechanics 5 

developed over the last 50 years. With this approach, subsurface cone penetration test (CPT) measurements 6 

are predicted remotely within the framing of a popular CPT model for predicting ground failure. This has three 7 

potential advantages: (i) a mechanistic underpinning; (ii) a significantly larger training set, with the model 8 

principally trained on in-situ test data, rather than on ground failures; and (iii) insights from ML/DL, with 9 

greater potential for geospatial data to be exploited. While liquefaction is a phenomenon best predicted by 10 

mechanics, subsurface traits lack theoretical links to above-ground parameters, but correlate in complex, 11 

interconnected ways - a prime problem for ML/DL. Preliminary models are trained using ML/DL and a modest 12 

U.S. dataset of CPTs to predict liquefaction-potential-index values via 12 geospatial variables. The models are 13 

tested on recent earthquakes and are shown – to a statistically significant degree – to perform as well as, or 14 

better than, the current leading geospatial model. The models are coded in free, simple-to-use Windows 15 

software. The only input is a ground-motion raster, downloadable minutes after an earthquake or available for 16 

countless future scenarios. Ultimately, the proposed approach and models, which warrant further application 17 

and evaluation, could be improved upon using additional training data and new predictor variables. Users of 18 

the models should understand key limitations, as discussed in detail herein.  19 

Keywords: soil liquefaction; geospatial modeling; artificial intelligence; software 20 

1. Introduction 21 

As evidenced by earthquakes occurring globally each year, reliable predictions of soil liquefaction are 22 

needed both prior to an earthquake for efficient planning and mitigation, and immediately after an earthquake 23 

for informing response, reconnaissance, and recovery. Such predictions would thus ideally have the capability 24 

of being made: (i) rapidly (e.g., in near-real-time after an event); (ii) at high resolution (e.g., consistent with 25 
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the scale of individual assets); and (iii) over the regional extents impacted by large earthquakes (e.g., that of a 26 

metropolis or transportation system). Problematically, state-of-practice liquefaction models require relatively 27 

costly geotechnical data, such as that from the cone-penetration-test (CPT). Given the infeasibility of in-situ 28 

testing across vast areas, regional-scale predictions of liquefaction have traditionally relied on geologic maps, 29 

from which generic areal classifications of liquefaction susceptibility may be assumed (e.g., Youd and Hoose, 30 

1977). Such an approach is simple, but also unacceptably uncertain for most intents. Alternatively, statistical 31 

distributions of geotechnical data within geologic units may be developed and used to predict liquefaction 32 

(e.g., Holzer et al., 2011). This is more data-driven and likely to be more accurate, but many in-situ tests are 33 

still required within each mapped unit of interest. Moreover, predictions using this approach have the coarse 34 

resolution of geologic maps and assume intra-unit uniformity (i.e., local conditions are not considered), 35 

meaning an entire city could potentially receive the same prediction. It thus remains a persistent challenge to 36 

model liquefaction (or any geohazard) in a manner that is regional and rapid, yet high resolution and accurate. 37 

The existence of a model having these traits is conceivable, however, given the growth of community 38 

geotechnical datasets, remote sensing, and algorithmic learning (i.e., machine and deep learning, or ML/ML).  39 

Towards that end, interest has grown in prediction models that use inputs readily available from satellite 40 

remote-sensing and existing mapped information. In contrast to geotechnical methods, “geospatial” models 41 

can predict liquefaction rapidly, at infinitely many locations. This is made possible using geospatial proxies of 42 

soil properties relevant to liquefaction (i.e., above-ground inferences of below-ground conditions). While the 43 

concept of such a model is not new (e.g., Kramer, 2008; FEMA, 2013), the model of Zhu et al. (2017), lightly 44 

modified by Rashidian and Baise (2020), is arguably the most rigorously formulated and widely accepted. It 45 

is also implemented in the United States Geological Survey (USGS) “PAGER” system, which provides content 46 

on possible earthquake impacts (Wald et al., 2008). In a recent study, Geyin et al. (2020) tested the Zhu et al. 47 

(2017) model against 18 CPT-based models using ~15,000 liquefaction case histories (essentially all CPT-48 

based case histories globally available to date). These analyses elucidated both the promising potential of 49 

geospatial data, as well as significant room, and potential means, for improving existing geospatial models.  50 

Informed by these analyses, this paper aims to develop an improved geospatial model driven by 51 

algorithmic learning (benefiting from ML/DL insights) but pinned to a physical framework (benefiting from 52 

mechanics and the knowledge of regression modelers). In the following, the typology of liquefaction models 53 

is succinctly summarized (to place this paper, and the methods it will utilize, in context). Next, tests of the Zhu 54 

et al. (2017) model are summarized and lessons for improvement are discussed, as are the potential advantages 55 

of the proposed approach. This approach is then used to develop ML/DL models that predict the probability 56 

of liquefaction-induced ground failure. Finally, these models are tested using unbiased data and implemented 57 

in RapidLiq, a new Windows software program.  58 
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1.1 A Succinct Overview of Geotechnical and Geospatial Liquefaction Models 59 

The typology of models for predicting liquefaction roughly consists of three tiers: (Tier 1) fully-empirical 60 

models that require only geospatial or geologic information (e.g., Rashidian and Baise, 2020); (Tier 2) semi-61 

mechanistic “stress-based” models that require in-situ test data and are widely used in engineering practice 62 

(e.g. Boulanger and Idriss, 2014; Green et al., 2019); and (Tier 3) numerical constitutive models, which require 63 

many material and model parameters (e.g., Cubrinovski and Ishihara, 1998; Ziotopoulou and Boulanger, 64 

2016). While improvements to computational throughput have grown the use of “Tier 3” models, their 65 

application is still limited to specific sites and special projects, given the required inputs and operator skill. 66 

Given the rapid and regional scale aims of the proposed work, “Tier 3” models will not be used herein, which 67 

is not to say that such models could not conceivably be implemented at regional scale.   68 

Many “Tier 2” models are popular in engineering practice. These include, among others, Robertson and 69 

Wride (1998), Moss et al. (2006), Idriss and Boulanger (2008), Kayen et al. (2013), and Green et al. (2019), 70 

which all use subsurface measurements to predict liquefaction as a function of earthquake magnitude (Mw) and 71 

peak ground acceleration (PGA). However, because these models predict the factor of safety against 72 

liquefaction “triggering” (FSliq) at-depth within a profile, the outputs are often used cooperatively with other 73 

models that predict manifestations of liquefaction at the surface (i.e., “ground failure”). One popular 74 

manifestation model is the liquefaction potential index (LPI) proposed by Iwasaki et al. (1978): 75 

𝐿𝑃𝐼 =  ∫ 𝐹(𝐹𝑆𝑙𝑖𝑞) ∙ 𝑤(𝑧) d𝑧
20 𝑚

0
                                                           (1) 76 

where F(FSliq) and w(z) weight the respective influences of FSliq and depth, z, on surface manifestation. 77 

Specifically, F(FSliq) = 1 – FSliq for FSliq ≤ 1 and F(FSliq) = 0 otherwise; w(z) = 10 – 0.5𝑧. LPI thus assumes 78 

that surface manifestation depends on the thickness of all liquefied strata in the upper 20 m, the degree to 79 

which FSliq in each stratum is less than 1.0, and how near those strata are to the surface. LPI can range from 80 

zero to 100, with surface manifestations becoming more likely as LPI increases (e.g., Maurer et al., 2014; 81 

Geyin and Maurer, 2020a). Other similar manifestation models include those of van Ballegooy et al. (2014) 82 

and Maurer et al. (2015a). 83 

 “Tier 1” geospatial models, which aim to predict liquefaction via readily available predictor variables, 84 

have recently received renewed attention. Like “Tier 2” models, geospatial models characterize liquefaction 85 

demand via ground-motion intensity measures (IMs). But, instead of quantifying liquefaction resistance with 86 

in-situ measurements, geospatial models predict below-ground conditions using above-ground information. 87 

Examples of such predictors include (among many) the slope and roughness of the surface; the distance to 88 

rivers and coasts; and compound-topographic-index, which can be derived from satellite data or existing 89 

prediction maps. Geospatial models are well suited for regional scale applications such as: (i) loss estimation 90 

and disaster simulation; (ii) city planning and policy development; (iii) emergency response; and (iv) post-91 
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event reconnaissance (e.g., to remotely identify sites of interest). Given these many uses, geospatial models 92 

have recently been explored by government agencies in the European Union, United States, and New Zealand 93 

for simulation, planning, and response purposes (e.g., MBIE, 2017; Lai et al., 2019; Allstadt et al., 2021). 94 

The geospatial model originally proposed by Zhu et al. (2017) is a logistic regression model of the form 95 

P(X) = (1 + e-X)-1 where X is a sequence of predictor variables and coefficients, and P(X) is the likelihood of 96 

ground failure (i.e., surface manifestation). The model, which was trained on observations of ground failure, 97 

takes on two forms depending on a site’s vicinity to a coastline. The equations for model parameter X are in 98 

Table 1. The variables are: PGV = peak ground velocity (cm/s); VS30 = shear-wave velocity of the upper 30-m 99 

(m/s) predicted from topography (Wald and Allen, 2007); dr = closest distance to a river (km) in the Lehner 100 

et al. (2006) dataset; dc = distance to coast (km); dw = the lesser of dr and dc (km); precip = mean annual 101 

precipitation (mm) (Fick and Hijmans, 2017); and wtd = predicted water table depth (m) (Fan and Miguez-102 

Macho, 2013). Following additional testing, Rashidian and Baise (2020) proposed two minor modifications to 103 

mitigate false positive predictions: (i) the model’s output should be reassigned as zero below a PGA of 0.1 g; 104 

and (ii) the precip input should be capped at 1700 mm/yr. 105 

Table 1. Geospatial Liquefaction Model Equations (Zhu et al., 2017; Rashidian and Baise, 2020). 

Model Model Parameter X 

(Coastal) 12.435 + 0.301·ln(PGV) – 2.615·ln(VS30) + 5.556 x 10-4 · precip – 0.0287·(dc)0.5 + 0.0666·dr – 0.0369 · dr · (dc)0.5 

(Inland) 8.801 + 0.334·ln(PGV) – 1.918·ln(VS30) + 5.408 x 10-4 · precip – 0.2054·dw – 0.0333·wtd 

1.2 A Test of Geospatial Liquefaction-Model Performance 106 

Using approximately 15,000 liquefaction case histories compiled from 23 earthquakes by Geyin et al. 107 

(2021) and Geyin and Maurer (2021a), Geyin et al., 2020 tested the Zhu et al. (2017) geospatial model against 108 

18 different CPT methods for predicting liquefaction surface manifestation. These were comprised of six 109 

different triggering models used in series with three different manifestation models. Because most of the case 110 

histories were sourced from three events in Canterbury, New Zealand, test cases were parsed into the 111 

“Canterbury” and “Global” datasets. Performance was quantified via receiver-operating-characteristic (ROC) 112 

analyses – specifically the area under the ROC curve, or AUC – which is a popular metric of prediction 113 

efficiency (e.g., Fawcett, 2006). Using this metric, a perfectly efficient model achieves an AUC of 1.0 whereas 114 

a model on par with random guessing achieves an AUC of 0.5. ROC analyses are also attractive in that they 115 

are insensitive to changes in class distribution. If the proportion of negative to positive instances in a test set 116 

changes, the AUC results will not change (Fawcett, 2006). P-values were computed per the method of DeLong 117 

et al. (1988) to determine whether measured differences in AUC could have arisen by chance (i.e., due to finite-118 
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sample uncertainty) and not because one model is more efficient than another. While the reader is referred to 119 

Geyin et al. (2020) for complete details, the most salient results are summarized as follows. First, on the 120 

“Canterbury” dataset, the geospatial model performed significantly better than 16 out of 18 CPT models, with 121 

a measured AUC of 0.84. Against the top two CPT models, it was statistically indifferent, and thus either 122 

outperformed or matched all 18 CPT models. This is a surprising result, given the relative costs of the required 123 

model inputs. Second, on the “Global” dataset, all geotechnical models performed significantly better than the 124 

Zhu et al. (2017) model, with the latter performing only somewhat better than random guessing with an AUC 125 

of 0.55. This might be expected, given: (i) the variation of geomorphic, topographic, and climatic environs in 126 

a global dataset; and (ii) the challenge, given this variation, of accurately predicting below-ground conditions 127 

from above-ground parameters. Inherently, the CPT models - being based on subsurface tests - should be more 128 

portable across environments. Nonetheless, the strong performance of the seminal Zhu et al. (2017) model in 129 

Canterbury demonstrates the promising potential of geospatial data for regional-scale purposes, a conclusion 130 

similarly reached by Lin et al. (2021a). 131 

1.3 Limitations of Existing Geospatial Modelling Approaches 132 

By way of the study above, possible shortcomings of the Zhu et al. (2017) and Rashidian and Baise (2020) 133 

geospatial model, henceforth referred to as RB20, were identified. It should be emphasized that this model has 134 

transformed the perception of geospatial modeling for geohazards. Nonetheless, like all models it has 135 

shortcomings that could be improved upon. First, RB20 was trained directly on outcomes (i.e., observations 136 

of ground failure) rather than on the mechanistic causes of those outcomes (i.e., subsurface engineering 137 

properties). While this lack of a mechanistic underpinning can be overcome with vast training data (e.g., how 138 

voice transcription apps predict words without understanding language), current ground failure inventories are 139 

arguably too sparse. Specifically, both “positive” and “negative” cases (i.e., sites with and without observed 140 

liquefaction) are needed in which predictor variables span the range of possible values. That is, the parameter 141 

space of all predictor variables should be fully populated. Yet, while liquefaction is common in earthquakes, 142 

ground failure inventories are slow to grow (relative, for example, to those of in-situ test data). Given the 143 

adopted approach, inadequate training data can result in a divergence from mechanistic principles (e.g., 144 

prediction of liquefaction given shaking too weak, from a mechanistic perspective, to induce liquefaction).  145 

Second, RB20 uses just 5-variables. Four represent capacity (distance to surface water; precipitation; and 146 

mapped VS30 and groundwater depth) and one represents demand (PGV). Notably, none of these variables are 147 

likely to correlate to the type of soil, or by corollary, to the susceptibility of the soil to liquefaction. This was 148 

a common cause of mispredictions identified in the Geyin et al. (2020) study, with RB20 expecting 149 

susceptibility if the ground is flat, saturated, and near water. However, such profiles can consist mostly of soils 150 

less- or un-susceptible to liquefaction (e.g., clays, peats, or gravels). Moreover, we find in many such cases 151 
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that geologic maps accurately predict the presence of such soils. An improved model might thus use mapped 152 

geologic data, when available, and/or other yet unidentified proxies of soil type. Third, and following from the 153 

above, RB20 is a traditional regression equation. This method of modeling inherently requires hypotheses of 154 

what is believed to matter and how (beliefs that are unnecessary with ML/DL). The efficient prediction of 155 

subsurface traits likely requires more than four geospatial variables, yet regression limits the number easily 156 

modeled. Algorithmic learning would allow more geospatial predictor variables to be used, with greater 157 

potential for those variables/data to be exploited fully. 158 

1.4 The Proposed Modelling Approach and its Potential Benefits 159 

This paper proposes a new geospatial modeling approach that is driven by algorithmic learning but pinned 160 

to an established mechanistic framework. Specifically, ML/DL models will be trained to predict LPI values in 161 

the absence of subsurface test data. Prior to model training, LPI values are computed from a national database 162 

of in-situ geotechnical tests subjected to a range of hypothetical ground motions. During model training, the 163 

ML/DL models will learn to predict these LPI values using twelve predictor variables. These variables consist 164 

of PGA and Mw, which are “demand” variables, and ten geospatial parameters from the geotechnical test site, 165 

which are “capacity” variables. The goal of these ten geospatial variables, in effect, is to predict the relationship 166 

between LPI and seismic loading in the absence of subsurface data. Multiple models will be developed and 167 

ensembled, thereby avoiding large “swings” on account of which model is chosen (as is common in prediction 168 

of ground motions, hurricane tracks, etc.). When used in the forward direction, the trained models predict LPI 169 

at sites without geotechnical testing, given PGA, Mw, and geospatial variables sampled at the coordinates of 170 

the sites. To complete the prediction of ground failure, the predicted LPI values will be input to existing 171 

fragility functions (Geyin and Maurer, 2020a) that predict the probability of liquefaction manifestation (i.e., 172 

“ground failure”) as a function of LPI. These functions were trained on a large database of well-documented 173 

liquefaction case histories compiled from 24 global earthquakes. Thus, the ultimate output is a predicted 174 

probability of ground failure (the same as RB20). A synopsis of the proposed approach is shown in Fig. 1.   175 

 

 

Fig 1. Synopsis of the proposed modeling approach to predict the probability of ground failure (PGF). 
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This approach has several potential advantages: 176 

• The principal prediction target is transferred from ground failure (with relatively sparse training data) to 177 

subsurface measurements (for which the potential training set is vast). Because the location of in-situ tests 178 

need not have experienced an earthquake (i.e., be a liquefaction case history), significantly more training 179 

data is available. Given the rise of community geotechnical datasets – both internationally and in the U.S. 180 

– the gap between the number of subsurface tests and the number of liquefaction case histories will likely 181 

grow. We hypothesize this larger training set will be advantageous, both now and in the future. 182 

• Liquefaction is a physical phenomenon best predicted by mechanics. Much has been learned about 183 

liquefaction over the last 50 years. This knowledge is embedded in current state-of-practice liquefaction 184 

triggering and manifestation models. We hypothesize that anchoring to these models, which provide a 185 

mechanistic foundation, will be advantageous, given their validated ability to model liquefaction response 186 

as a function of soil and profile traits (e.g., subsurface stratigraphy, soil density, fines-content, plasticity, 187 

saturation, and ground motion duration and intensity).  188 

• Whereas liquefaction is best predicted by mechanics, subsurface traits lack theoretical links to above-189 

ground parameters (i.e., geospatial data), but surely correlate to them in complex, interconnected ways. 190 

This is a prime problem for ML/DL, which can provide learning insights that are unlikely, if not infeasible, 191 

with traditional regression approaches. We hypothesize that ML/DL provides the potential for geospatial 192 

data to be exploited more fully.  193 

• The models are updated easily as additional training data (in-situ tests) become available. In the short term, 194 

some geospatial variables could be viewed by the learning algorithms as relatively unimportant, either 195 

because they truly are unimportant, or because there is insufficient training data to elucidate their 196 

predictive value. Existing geospatial models are also retrainable, but we hypothesize that meaningful 197 

growth in the ground-failure datasets that they are trained upon will take place at a slower pace (e.g., with 198 

data from a few events annually that impact a small fraction of earth), whereas growth in community 199 

geotechnical datasets will proceed more quickly.   200 

2. Data and Methodology 201 

In the current effort, two models will be developed using relatively modest sets of training data and 202 

predictor variables compiled in the United States (US). As will be discussed, the proposed approach could be 203 

extended using additional training data and new predictor variables at regional, national, or global scales. 204 

Nonetheless, the developed models, which are applicable to the US, will be shown to be at least as efficient as 205 

other geospatial models and thus warrant application and further evaluation, even if preliminary in nature.  206 

While several in-situ geotechnical tests could be used within the proposed approach, we choose CPT data 207 

given that: (i) it has inherent advantages over other tests upon which liquefaction models have been based 208 
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(NRC, 2016); (ii) the Geyin and Maurer (2020a) fragility functions were trained on CPT-based case histories; 209 

and (iii) a US national CPT database is readily available in native digital format. Specifically, the USGS 210 

national database of 1,712 CPTs (USGS, 2021) was adopted for analysis. This dataset provides somewhat 211 

well-distributed measurements, as mapped in Fig. 2, in a range of environments, generally in high-seismicity 212 

regions. Approximately 5% are from sites where liquefaction case histories were compiled following modern 213 

earthquakes. Given the limited dataset, some regions of the US are unrepresented in model development, as 214 

shown in Fig. 2. Ultimately, however, tests of the derivative geospatial models are not clearly suggestive of 215 

regional bias (i.e., the models perform well in regions with no training data). Nevertheless, it stands to reason 216 

that an expanded dataset would result in better models. Of the 1,712 CPTs, 20% were randomly selected and 217 

reserved for model testing, while the remaining 80% were used for model training.  218 

 

Fig. 2. Spatial distribution of CPT training and test data. 

 

Next, each CPT was subjected to 152 combinations of PGA and Mw, with PGA ranging from 0.0 g to 1.0 219 

g and Mw ranging from 4.5 to 9.0. These represent loadings that could hypothetically impact a site and for 220 

which it would be of interest to predict liquefaction. We exclude Mw < 4.5 events based on Green and Bommer 221 

(2019). With the proposed approach, however, it is irrelevant whether the CPT sites ever experienced an 222 

earthquake or whether a specific combination of PGA and Mw could feasibly occur in the future. In other 223 

words, we assume that subsurface conditions are generally independent of the seismic hazard (i.e., saturated, 224 

loose, cohesionless soils are equally present in high seismicity regions as in low seismicity regions). As such, 225 

it is not necessary that CPTs be subjected to site-specific combinations of PGA and Mw that are more likely to 226 

occur (e.g., according to a probabilistic seismic hazard analysis). For each combination of PGA and Mw, the 227 
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Idriss and Boulanger (2008) CPT liquefaction model was used to predict FSliq versus depth. These predictions 228 

were then input to the LPI manifestation model, as defined in Eq. 1. All CPT processing and calculations were 229 

performed using the software Horizon (Geyin and Maurer, 2020b). While different, or additional, triggering 230 

and/or manifestation models could be used, the Idriss and Boulanger (2008) triggering model - when used in 231 

conjunction with LPI - demonstrated an efficiency that was never bested, to a statistically significant degree, 232 

by any other model when tested on global case-history data (Geyin et al., 2020). In addition, the magnitude-233 

scaling factor (MSF) inherent to Idriss and Boulanger (2008) is soil-independent, whereas other triggering 234 

models (Boulanger and Idriss, 2014; Green et al., 2019) have MSF’s that vary with depth depending on the 235 

inferred relative density. The more predictable scaling of computed LPI with increasing Mw was deemed 236 

advantageous for modeling, given the limited training data utilized herein. A subsequent study could explore 237 

the use of other CPT models, although prior testing of such models (Geyin et al., 2020) suggests the efficacy 238 

of the resulting product would be very similar.  239 

Given the 1,712 CPTs and 152 combinations of seismic loading, a total of 260,224 LPI values were 240 

computed. These values are plotted in Fig. 3 as a function of magnitude-scaled PGA (PGAM7.5), as computed 241 

by Idriss and Boulanger (2008), and form the primary prediction target of the proposed modeling approach. 242 

At sites of high liquefaction hazard (i.e., thick deposits of saturated, loose sand), LPI increases rapidly with 243 

PGAM7.5, whereas at sites of low hazard (i.e., sites devoid of soil susceptible to liquefaction), LPI may remain 244 

near zero for all PGAM7.5. The goal of the geospatial modeling, in effect, is to predict the relationship between 245 

LPI and seismic loading (PGA, Mw) in the absence of subsurface data.  246 

 

Fig. 3. LPI versus PGAM7.5. Plotted are 260,224 LPI values computed from 1,712 CPTs subjected to 152 

different levels of seismic loading. 

Ten geospatial predictor variables were next compiled at the coordinates of each CPT. The goal of these 247 

ten variables is to correlate to the subsurface conditions which give rise to low or high LPI. These consisted 248 
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of: predicted VS30 (Heath et al., 2020); predicted ground water depth (Fan and Miguez-Macho, 2020); measured 249 

distance to river (Lehner et al., 2006) and measured distance to coast (NASA, 2012); predicted depth to 250 

bedrock (Shangguan et al. 2017); measured annual precipitation (Fick and Hijmans, 2017); and the predicted 251 

(binomial) presence of unconsolidated soil, sandy soil, clayey soil, and silty soil, as obtained from the USGS 252 

National Geologic Map compilation (Horton et al. 2017). The intention of the latter four variables is to predict 253 

whether soil is present, and if so, whether it has one of these three predominant soil types. Additional mapped 254 

soil types were ultimately found not to be useful, as will be further discussed. The range of predictor variables 255 

in the dataset and their spatial resolutions are given in Table 2. In lieu of predicted VS30, we also explored the 256 

use of measured topographic slope, which ultimately produced models with nearly identical performance. This 257 

is unsurprising, given that VS30 is most often predicted solely from topographic slope in the Heath et al. (2020) 258 

compilation, which merges several regional VS30 maps with a general slope-based VS30 model. We adopted the 259 

predicted VS30 from Heath et al. (2020), however, given that it includes region-specific insights into the 260 

relationship between topographic slope and subsurface conditions. While the potential benefits of using VS30 261 

from Heath et al. (2020) (i.e., versus topographic slope) were not realized during model training and testing, 262 

such benefits could conceivably be observed in future, forward applications elsewhere. Notably, models 263 

developed without either parameter performed significantly worse. The importance of each predictor variable 264 

will be further discussed later in the paper.   265 

Table 2. Range of predictor variables in the dataset and their spatial resolutions. 

Variable (Units) 
Range in 

Dataset 

Spatial 

Resolution 

Earthquake Magnitude (Mw) 4.5 to 9 N/A 

Peak Ground Acceleration (g) 0 to 1 N/A 

Ground Water Table Depth (m) 0 to 216 
~1000 m 

(30 arc-sec) 

Distance to River (m) 2 to 6,220 
~90 m  

(3 arc-sec) 

Distance to Coastline (km) 0 to 1,210 
~90 m  

(3 arc-sec) 

Depth to Bedrock (cm) 379 to 21,717 250 m 

Annual Precipitation (mm) 68 to 1,389 
~1000 m 

(30 arc-sec) 

VS30 (m/s) 92 to 713 
~1000 m 

(30 arc-sec) 

Unconsolidated Soil (binomial) 0 or 1 
25 m to 

500 m 

(varies) 

Dominant Clay (binomial) 0 or 1 

Dominant Silt (binomial) 0 or 1 

Dominant Sand (binomial) 0 or 1 

Using the training set (80% of CPTs), models were next developed to remotely predict LPI as a function 266 

of PGA and Mw, which may be viewed as “demand” variables, and of the ten geospatial variables, which may 267 
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be viewed as “capacity” variables. The latter can be compiled at national scale in advance of model application. 268 

The former are available at regional scale minutes after an earthquake (e.g., via a single “ShakeMap” file 269 

(Wald et al., 2005)) or for various future earthquake scenarios. Like other geospatial models, this gives the 270 

model near-real-time functionality, such that ground failure can be predicted at regional scale minutes after an 271 

event. Various ML/DL techniques were explored, including Gaussian process models (e.g., Rasmussen and 272 

Williams, 2006), support vector machines (SVM) (e.g., Vapnik, 1995), decision trees (e.g., Rokach and 273 

Maimon, 2008), model ensembles with bagging, gradient boosting, or random forests (e.g., Breiman, 1996; 274 

Piryonesi et al., 2021; Ho, 1998) and neural networks (e.g., Glorot et al., 2010). In general, modeling 275 

approaches that are easier to interpret tend to have lower predictive accuracy (e.g., single decision trees, 276 

support vector machines), while those with higher accuracy (e.g., neural networks, or ensembles of decision 277 

trees) are typically very complex to interpret. Each approach has numerous options and internal parameters 278 

(i.e., “hyperparameters”) (e.g., neural net optimization algorithm, activation function, and layer quantity and 279 

size; regression tree leaf size; Gaussian basis and kernel functions; SVM kernel scale and box constraint). 280 

Once promising models were identified, hyperparameter optimization was employed, such that the 281 

hyperparameter values that minimized the model error were identified via an automated optimization scheme. 282 

5-fold cross-validation was used to control overfitting, as is common in model development. Additionally, 283 

training and test performance metrics were compared for signs of overfitting (i.e., better training performance 284 

than test performance), which was inferred when performance metrics from the training and test sets differed 285 

by at least 4%. In this regard, models with slightly lower accuracy but without overfitting were favored over 286 

models that achieved the highest training accuracy but with suspicion of overfitting. Because many ML/DL 287 

algorithms either require or perform better when variables have a Gaussian distribution, all predictors were 288 

BoxCox transformed (Box and Cox, 1964) and normalized to have values between 0 and 1. Ultimately, the 289 

software in which the prediction models are implemented performs all necessary computations, and as such, 290 

no pre-processing of data is required (e.g., predictor variables are input in their native format).  291 

3. Results and Discussion 292 

Using the aforementioned methodology with relatively modest sets of training data and predictor variables, 293 

several dozen preliminary models were trained. Of these, two were ultimately adopted for further 294 

implementation and testing. The first model is a boosted ensemble of decision trees, wherein numerous 295 

relatively weak models are coalesced to form one high-quality model. For brevity, we henceforth refer to it as 296 

the “ML model.” The theory and algorithm underlying this approach – which is commonly included in machine 297 

learning toolkits (e.g., Scipy, TensorFlow) – is explained in detail by Friedman (2001). An excellent overview 298 

of its practical implementation is provided by Elith et al. (2008). The growth of a decision tree involves 299 

establishment of recursive binary splits, such that specific combinations of model inputs map to a predicted 300 
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output. However, because a single tree is prone to overfitting and tends not to be very accurate, models that 301 

ensemble many decision trees are preferred. In “gradient boosting”, a strong learner is sequentially built from 302 

weak learners, wherein each tree attempts to diminish the errors of the previous tree by gradually increasing 303 

emphasis on observations poorly predicted by the ensemble. While gradient boosting is slow, it generally 304 

produces a more accurate model compared to other assembling algorithms (e.g., bagging or random forests) 305 

(Piryonesi et al., 2021). With respect to performance, the ML model achieved a mean absolute error (MAE) 306 

(LPI units) of 3.58 and 3.72 on the training and test sets, respectively, as summarized in Table 3. As discussed 307 

previously, the unbiased test set consists of LPI data from CPT sites unknown to the model during training.  308 

The second model is a deep (7-layer) artificial neural network, which we henceforth refer to as the “DL 309 

model.” With roots in the 1980’s (e.g., Hopfield, 1982), this now ubiquitous approach mimics the perceived 310 

structure of the human brain, with layers of interconnected nodes. At the most basic level, DL models have 311 

four components: inputs, weights, a threshold, and an output. Connections between nodes are modelled as 312 

weights, such that positive and negative weights indicate excitatory and inhibitory connections, respectively. 313 

If the output from an individual node is above a specified threshold, the node is activated, sending data to the 314 

next layer of the network. An activation function then controls the amplitude of the output at each node. As 315 

DL models have multiple layers, the above process is repeated multiple times, with each layer potentially 316 

passing information from the previous layer to the next. During training, the weights are iteratively adjusted 317 

to optimize model performance. Like the ML model, DL models are quite convoluted, rendering simple 318 

interpretations of the inner workings infeasible, since single node weights have little physical meaning, and 319 

since millions of connections may be present in a model. As shown in Table 3, the DL model achieved a MAE 320 

of 4.13 and 4.20 on the same respective datasets (i.e., it performed slightly worse than the ML model). Given 321 

the limited training set and preliminary nature of the ML and DL models, we also create a third “Ensemble 322 

model" by averaging the outputs of the ML and DL models. The merging of two models with different 323 

structures could have the effect of “stabilizing” predictions and, conceivably, provide benefits unrealized 324 

during testing. As shown in Table 3, the ensemble performs better than the DL model and worse than the ML 325 

model, although all are similarly efficient when considering the range of the LPI domain (i.e., zero to 100). 326 

The performance of these models, and other results in Table 3, will be further discussed momentarily.   327 

Table 3. Summary of model performance (mean absolute error) on the training, test, and overall datasets. 

Model 
Mean Absolute Error (LPI Units) Mean Absolute Error (Probability Units) 

Training Test Overall Training Test Overall 

ML 3.5814 3.7237 3.6642 7.1691 7.6482 7.3698 

DL 4.1329 4.2097 4.175 8.6918 8.9609 8.7894 

Ensemble 3.743 3.8499 3.8039 7.6491 8.0338 7.7967 
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While the convoluted nature of ML/DL models tends to obscure simple interpretations of model function 328 

(e.g., relative to traditional regression), insights into the ML decision-tree ensemble can be gained via predictor 329 

importance (e.g., Auret and Aldrich, 2011), which may be interpreted as the relative contribution of each 330 

variable to model accuracy. Accordingly, the relative importance of each variable was computed and is plotted 331 

in Fig. 4, where variables are sorted from most to least important. This approach and presentation mirrors that 332 

of Durante and Rathje (2021), who explored the ML prediction of lateral spreads using geospatial data. As 333 

could be expected, the magnitude-scaled PGA and predicted groundwater depth had the largest importance, 334 

given the mechanistic relationship between these inputs and computed LPI. Also of relatively large importance 335 

were the measured distance to river and predicted depth to bedrock, which correlate to the expected thickness 336 

and geomorphology of deposits. Bedrock at shallow depth limits LPI while bedrock at very large depth 337 

suggests the presence of a sedimentary basin, which tends to collect sands and silts in a low-velocity flow 338 

regime. The presence of a nearby river, particularly in combination with flat topography, suggests a similar 339 

geomorphology, while also indicating that the deposits are likely young and saturated. Of the compiled 340 

geologic data, the predicted predominance of clay was most important, whereas the predicted predominance 341 

of silt was least important. This aligns with expectations, given the established use of plasticity index to infer 342 

liquefaction susceptibility within mechanistic models. Whereas soils classifying as clay are rarely susceptible, 343 

silts are an intermediate soil whose liquefaction response is difficult to predict from name alone. We 344 

hypothesize that the overall importance of mapped soil type could increase if the set of training sites was larger 345 

and more diverse, given that the set used herein does not span the full range of geologic conditions that may 346 

be encountered. While the computed predictor importance gives insights into decision-tree models, we are 347 

unaware of any analogous tool for studying neural networks, which thus remain relatively more convoluted.  348 

Following prediction of LPI via the ML, DL, or Ensemble models, probabilities of ground failure were 349 

computed using the Geyin and Maurer (2020a) fragility functions, which are conditioned on LPI. As an 350 

example, the test and training set performance is shown in Fig. 5 for the ML model. Here, the “predicted 351 

probability” is the output when LPI is predicted via the geospatial ML model, whereas the “actual probability” 352 

is that when LPI is computed from the CPT data. Also shown in Fig. 5 are linear trendlines (green dotted lines), 353 

from which assessments of overall prediction bias may be made. The ML model’s MAEs of 3.58 and 3.72 354 

(LPI units) on the training and test sets translate to MAEs of 7.17% and 7.65% in probability units (Table 3). 355 

These comparisons (i.e., predicted vs actual probabilities of ground failure) provide the clearest context of 356 

model performance, given that the consequences of an LPI error vary widely depending on the LPI value. A 357 

prediction of LPI = 17, for example, is relatively erroneous if the actual LPI is 2, since this translates to a ~65% 358 

overprediction of ground-failure probability (Geyin and Maurer, 2020). In contrast, a prediction of LPI = 87 359 

is very accurate if the actual LPI is 72, given that the probability of ground failure is nearly identical whether 360 

LPI is 87 or 72. For this reason, direct comparison between predicted and actual LPI values is arguably less 361 
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meaningful. As seen in Fig. 5, the model is generally unbiased on the training and test sets, but it does exhibit 362 

relatively more bias on the latter, such that the predicted probability of ground failure has an average tendency 363 

to be 2% greater than actual. This might be attributable to the dataset’s modest size, such that the test set has 364 

features unrepresented in the training set.  365 

 
Fig. 4. Relative predictor importance ranking for the ML model. 

 
Fig. 5. Probability of ground failure: ML prediction vs. actual for the (a) training dataset; and (b) test dataset. 

Green dotted lines = linear trendlines, from which prediction bias may be judged.   



15 

 

3.1 Field Application and Testing 366 

To demonstrate and test forward predictions at regional scale, the ML, DL, and Ensemble models were 367 

next used to predict ground failure in eleven U.S. earthquakes across two types of datasets. Performance was 368 

assessed using field observations and compared against the Rashidian and Baise (2020) model in all events. 369 

Due to the paucity of recent, well documented U.S. earthquakes outside of California, these tests cover a 370 

relatively narrow geographic range. Further testing on future events in other U.S. regions is thus needed. In 371 

the first series of tests, regional scale predictions are compared to mapped observations of ground failure in 372 

six events: (i) 1989 Mw6.9 Loma Prieta, California; (ii) 1994 Mw6.7 Northridge, California; (iii) 2001 Mw6.8 373 

Nisqually, Washington; (iv) 2003 Mw6.5 San Simeon, California; (v) 2011 Mw5.8 Mineral, Virginia and (vi) 374 

2016 Mw7.1 Ridgecrest, California. In these events, mapped observations of liquefaction-induced ground 375 

failure were obtained from the USGS Ground Failure Database (Schmitt et al., 2017a,b), except for 376 

observations in the 2011 Mineral and 2016 Ridgecrest events, which were respectively obtained from Green 377 

et al. (2015) and Zimmaro et al. (2020). The quantities of mapped observations in these six events are 378 

respectively 129, 41, 44, 12, 35, and 2. In these datasets, mapped observations are exclusively “positive” (i.e., 379 

a lack of liquefaction is not explicitly mapped). It was therefore assumed that liquefaction did not manifest if 380 

none was documented, as has been previously assumed in the development of geospatial hazard models (e.g., 381 

Zhu et al., 2017). While this assumption may at times be invalid and inevitably introduces uncertainty, it 382 

facilitates rapid, regional-scale testing across a variety of topographic and geomorphic environments. In this 383 

regard, we view performance in the context of model comparisons and not as an absolute measure of efficacy. 384 

Later, a separate dataset containing positive and negative observations at discrete sites will be studied.  385 

For each earthquake, a USGS ShakeMap file with all requisite seismic data (i.e., Mw and mapped PGA and 386 

PGV) was obtained in .xml format. The adopted geospatial predictor variables were then compiled across the 387 

ShakeMap extents (i.e., the area of perceptible shaking). As an example, these inputs are mapped in Fig. 6 for 388 

the 1989 Loma Prieta earthquake. It can be seen in the final two panels of Fig. 6 that while unconsolidated soil 389 

covers ~40% of the study area, the dominant soil type is infrequently mapped as either sand, silt, or clay. 390 

Although soil lithology is always defined in the Horton et al. (2017) compilation, it is not always used by the 391 

models developed herein for one of two reasons. First, not all dominant soil types were found to be useful in 392 

the early stages of modelling. Some mapped soil types (e.g., marl, gravel, peat) have insufficient in-situ test 393 

data to elucidate and quantify the relationship between soil type and liquefaction hazard. Second, the mapped 394 

lithology is sometimes not predicted to a useful degree of specificity (e.g., as “sand” or “clay”), but rather, is 395 

defined only as “coarse detrital” or “fine detrital.” These broad classifications were similarly found not to be 396 

useful, which might be expected given that particle gradation is generally not efficient or sufficient for 397 

classifying liquefaction hazard. Accordingly, the model benefits from knowledge of the mapped soil type when 398 

it is clay, sand, or silt, whereas if the mapped soil type is not one of these classifications, it is inherently treated 399 
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as having a general unconsolidated character. It is likely that additional geologic descriptors would be useful 400 

to future models that use larger and more diverse sets of training data. Following compilation of the adopted 401 

geospatial predictor variables, probabilities of ground failure were computed using the three models developed 402 

herein and RB20. These probabilities are mapped in Fig. 7 for the 1989 Loma Prieta earthquake, along with 403 

observations of ground failure.  404 

 

Fig. 6.  ML/DL model predictor variables mapped across the area effected by the 1989 Loma Prieta earthquake. 
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Fig. 7.  Probabilities of ground failure in the 1989 Loma Prieta earthquake, as computed by the: (a) RB20; (b) 

ML; (c) DL; and (d) Ensemble models. Black dots are observed ground failures.  

Model performance was quantified using ROC AUC values, as is common for binomial classifiers, and 405 

which give equal weighting to false positive and false negative predictions. Samples were collected on a 100 406 

m by 100 m grid across the ShakeMap extents. Grids wherein ground failures were observed were classified 407 
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as “positive” and those without any documented evidence as “negative.” This resulted in several million data 408 

points per event, although the exact quantity depended on the event’s area of influence. While the method of 409 

geospatial sampling has been shown to influence computed AUC values (Lin et al., 2021b) (e.g., if an equal 410 

number of positive and negative points were sampled instead), we found that relative performance was 411 

insensitive to this decision (i.e., the best and worst models were the same in each event across a range of 412 

sampling techniques). Plotted in Fig. 8 are ROC curves for each model in the 1989 Loma Prieta earthquake 413 

from which AUC values were computed. Arranged by AUC, the best performing models were RB20 (AUC = 414 

0.949), Ensemble (AUC = 0.945), DL (AUC = 0.944), and ML (AUC = 0.931). The four models thus exhibited 415 

very similar efficiencies, with the Ensemble model slightly outperforming the individual ML and DL models. 416 

Following the same methodology, analyses were performed for the 1994 Northridge and 2001 Nisqually 417 

events, as mapped in Fig. 9, and for the 2011 Mineral and 2016 Northridge events, as mapped in Fig. 10. A 418 

summary of model performance – as quantified by AUC – is presented in Table 4 for these events and others 419 

yet to be discussed. It can be seen that RB20 outperformed the Ensemble model in three of the six events. 420 

Specifically, in Loma Prieta by 0.4%, in Northridge by 3.5%, and in Nisqually by 1.3%. Conversely, the 421 

Ensemble model outperformed RB20 in San Simeon by 0.3%, in Mineral by 2.9%, and in Ridgecrest by 1.4%. 422 

The models proposed herein thus demonstrate efficacies similar to RB20 for these specific events. While these 423 

measured differences in performance fluctuate with different sampling techniques, the overall conclusion of 424 

apparently similar performance remains the same. In subsequent analyses, it will be determined whether these 425 

measured differences in performance are statistically significant.  426 

 

Fig. 8.  Receiver Operating Characteristic (ROC) curves for the RB20, DL, ML, and Ensemble models. 
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Fig. 9.  Probabilities of ground failure in the 2001 Nisqually earthquake, as computed by (a) RB20; and (b) 

the Ensemble model; and in the 1994 Northridge earthquake, as computed by (c) RB20; and (d) the Ensemble 

model. Black dots are observed ground failures.   
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Fig. 10.  Probabilities of ground failure in the 2011 Mineral earthquake, as computed by (a) RB20 and (b) the 

Ensemble model; and in the 2016 Ridgecrest earthquake, as computed by (c) RB20; and (d) the Ensemble 

model. Black dots are observed ground failures.   

Table 4. Summary of AUC values for events and datasets described in the text, as computed for the ML, DL, 

and Ensemble models developed herein, and for the RB20 model. 

Model 

Dataset 1 Dataset 2 

Loma 

Prieta 
Northridge Nisqually 

San 

Simeon 
Mineral Ridgecrest 

101 Case 

Histories 

DL 0.944 0.803 0.931 0.665 0.655 0.992 0.682 

ML 0.931 0.812 0.920 0.980 0.733 0.945 0.765 

Ensemble 0.945 0.813 0.933 0.979 0.732 0.992 0.734 

RB20 0.949 0.848 0.946 0.976 0.703 0.978 0.504 
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Additional observations from Figs. 7-10 and Table 4 are as follows. First, with respect to model bias, the 427 

RB20 model was either originally trained (by Zhu et al., 2017) or later calibrated (by Rashidian and Baise, 428 

2020) using the same observational data adopted herein for testing, except for the Ridgecrest earthquake data 429 

which postdated Rashidian and Baise (2020). In contrast, the ML/DL models were trained on CPTs from areas 430 

affected by the Loma Prieta, Northridge, and San Simeon events, but not directly on the field observations 431 

adopted for testing. Moreover, the Nisqually, Mineral, and Ridgecrest earthquakes provide completely blind 432 

tests of the ML/DL models since no data from these events/regions were included in training. While a more 433 

rigorous analysis of bias is not undertaken, nor critical to the thesis of this study, we nonetheless note that the 434 

preceding tests were generally biased in favor of RB20.  435 

Second, it was observed that the DL model is relatively sensitive to predicted water table depth, as 436 

compared to the ML and RB20 models. In this regard, erroneous predictions by the DL and Ensemble models 437 

were often associated with erroneous expectations of the groundwater depth. As an example, predictions in 438 

the 2003 San Simeon earthquake by the DL and RB20 models are mapped in Fig. 11. Specifically, an area 439 

near the towns of Oceano and Grover Beach, California is shown, where numerous ground failures were 440 

observed as mapped in Fig. 11. Because the Fan and Miguez-Macho (2020) model predicts a groundwater 441 

depth of ~20 m beneath the northernmost features, the DL model predicts a near-zero probability of ground 442 

failure, whereas RB20 generally predicts a probability of 5-15%. Due largely to this behavior, the DL and 443 

RB20 models had respective AUCs of 0.665 and 0.976 for this event. To assess the influence of more accurate 444 

inputs, nearby well measurements were obtained from the California Department of Water Resources (DWR, 445 

2020), indicating that groundwater is shallower in this area than expected by Fan and Miguez-Macho (2020). 446 

Using this more accurate input, the models were rerun, as mapped in Fig. 11. While the RB20 and ML models 447 

correspondingly displayed slight improvements (~1% increase in AUC), the DL model’s AUC increased nearly 448 

30% to 0.990. Similar behavior could be observed in other events at a lesser scale, from which we conclude 449 

that the performance of the DL model would likely improve with more accurate groundwater maps.   450 

Third, considering the three models developed herein, the Ensemble model outperformed both the ML and 451 

DL models in three events. The ML model performed best in two other events, and in the last event the DL 452 

and Ensemble models tied for best performance. Considering all tests (i.e., both the blind prediction of LPI 453 

and now the regional-scale prediction of ground failure), the DL model lacks statistical support for individual 454 

use. Accordingly, and in conjunction with the DL model’s sensitivity to groundwater data, we recommend 455 

adoption of the ML or Ensemble models. Ultimately, additional tests in other events, and ideally additional 456 

model training and improvements, are needed before one model is recommended over another. 457 
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Fig. 11.  Probabilities of ground failure in the 2003 San Simeon earthquake, with and without correction of 

measured ground water table (GWT) depths: (a) RB20 before GWT correction; (b) RB20 after GWT 

correction; (c) DL model before GWT correction; and (d) DL model after GWT correction. Black dots are 

observed ground failures.   

Towards that end, a second dataset of 101 well-documented liquefaction case histories was also used to 458 

test performance. These cases, which consist of both positive and negative observations, were sourced from 459 

Geyin and Maurer (2021a), who compiled from the literature all CPT-based case histories from all earthquakes 460 

in the U.S. to-date. Namely, the: (i) 1971 Mw7.6 San Fernando; (ii) 1979 Mw7.6 Imperial Valley; (iii) 1981 461 

Mw5.9 Westmoreland; (iv) 1983 Mw6.9 Borah Peak; (v) 1987 Mw6.2 Elmore Ranch; (vi) 1987 Mw6.5 462 

Superstition Hills; (vii) 1989 Mw7.6 Imperial Valley; and (viii) 1994 Mw6.9 Northridge earthquakes. In the 463 

resulting compilation, liquefaction manifestations were observed in 57% of cases and were not observed in the 464 
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remaining 43%. The four geospatial models were applied to each event and AUC values were computed for 465 

the composite dataset, as given in Table 4. In this analysis, the ML/DL models performed much better than 466 

RB20, which had an AUC near 0.5, an efficiency akin to random guessing. Of the models developed in this 467 

study, the ML model performed best (AUC = 0.765). In contrast to the initial series of tests, however, those 468 

using this second dataset might be biased in favor of the ML/DL models, since some of the 101 sites held 469 

CPTs included in the dataset of 1,712 used in model development. While these tests provide another datapoint 470 

for consideration, wherein it is known with confidence that the field observations are correctly classified, we 471 

prefer not to glean definitive new conclusions, given the possibility of bias and small size of the dataset.  472 

Lastly, to assess whether the findings presented thus far might change with consideration of finite-sample 473 

uncertainty, P-values were computed using the nonparametric method of DeLong et al. (1988) to assess 474 

whether differences in AUC could result by chance (i.e., due to limited field data) and not because one model 475 

is more efficient than another. The P-values computed by this approach are probabilities that two AUC samples 476 

could have come from the same distribution. Since this approach requires AUC normality, Anderson-Darling 477 

and Lilliefors tests (Anderson and Darling 1952; Lilliefors 1967) were used to confirm that all samples came 478 

from a normal distribution. P-values were computed to compare each model to all others in the six regional 479 

analyses, and in the dataset of CPT case histories. These values, which indicate whether differences in model 480 

performance are statistically significant, are presented in Table 5. A significance level of 0.05 was adopted, 481 

such that P-values below 0.05 were deemed significant. All else being equal, small P-values can be expected 482 

when: (i) differences between two AUC values are large; or (ii) the uncertainties of AUC values are small; or 483 

(iii) distributions have high correlation. Using this criterion, Table 5 compares all model pairs and identifies 484 

which is significantly better. The model with better AUC, as reported in Table 4, is indicated in Table 5 via 485 

the cell shading. If the cell is shaded orange, the model in the left column is better, whereas if the model in the 486 

top row is better, the cell is shaded grey. The values given in each cell are the P-values; those less than 0.05 487 

are highlighted via bold font and a red border. Table 5 can thus be used to determine whether differences in 488 

model performance, as first presented in Table 4, are statistically significant. Notable observations from Table 489 

5 are: (i) in the initial series of six events at regional scale, the Ensemble model was significantly better than 490 

RB20 in two events (Mineral and Ridgecrest), RB20 was significantly better than the Ensemble model in one 491 

event (Northridge), and the two models were statistically indifferent in the remaining three (Loma Prieta, 492 

Nisqually, and San Simeon); and (ii) in the analysis of CPT case history sites, the Ensemble, ML, and DL 493 

models were significantly better than RB20. Collectively, these results suggest that the ML/DL models, which 494 

were trained on a modest dataset, predict ground failure with similar or better efficiency as RB20 and thus 495 

warrant further application, evaluation, and development. And, as is common in the prediction of ground 496 

motions, storm tracks, and other natural hazards, the proposed prediction models could be ensembled with 497 

other geospatial liquefaction models, thereby capturing the epistemic uncertainty of model development. 498 
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Table 5. [Color] P-value matrix to compare model performance. ML = machine learning model; DL = deep learning model; RB20 = Rashidian and 

Baise (2020); and ENS = ensemble of ML and DL models, as described in the text.  

Statistically 

Better ↑ Nisqually Loma Prieta San Simeon Northridge Ridgecrest Mineral CPT Case Histories 

 ←   DL RB20 ENS DL RB20 ENS DL RB20 ENS DL RB20 ENS DL RB20 ENS DL RB20 ENS DL RB20 ENS 
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ML 0.484 0.285 0.405                                     

DL   0.221 0.473   
 

 
   

 
 

       
    

RB20     0.334   
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ML 
     

0.004 0.002 0.000 
                 

DL     
  0.138 0.596                  

RB20 
    

   0.278 
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ML 
        

0.000 0.370 0.341 
              

DL 
       

  0.000 0.000 
              

RB20        
   0.321                 

N
o
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g
e ML 

           
0.440 0.055 0.613 

           

DL 
          

  0.003 0.279 
           

RB20 
          

   0.036 
             

R
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g
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ML 
              

0.001 0.017 0.002 
        

DL 
               

0.015 0.341 
        

RB20 
                

0.016 
          

M
in

e
ra

l ML 
                 

0.124 0.001 0.666 
     

DL 
                  

0.396 0.121 
     

RB20 
                   

0.002 
      

C
P

T
 C

a
se

 

H
is

to
r
ie

s ML 
                    

0.009 0.000 0.057 

DL                    
  0.000 0.004 

RB20                                         0.000 

*Cell values are the P-values (i.e., probabilities) that AUC samples from two prediction models could have come from the same parent distribution (i.e., be statistically indifferent). The model with 

better AUC, as reported in Table 4, is indicated via the cell shading. Values less than 0.05 are deemed “significant” and are highlighted via bold font and a red border.  
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3.2 Software Implementation 499 

Arguably, a limitation of any ML/DL model is the lack of a defined analytical expression easily ported 500 

and executed via hard copy. By corollary, simple interpretations of model structure and form are also generally 501 

lacking. While these detractions may be significant to traditionalists, it is clear the use of algorithmic learning 502 

will only grow in the field of geotechnics and geohazards, given its demonstrated capabilities when provided 503 

with large datasets. It is critical, however, that trained ML/DL models be provided as code, ideally in a format 504 

accessible to a broad userbase. Despite this necessity, enumerable ML/DL models have been published without 505 

code, meaning that while a model may be available for use by the respective developers, it is not easily accessed 506 

by the broader community, and is therefore not readily applied, tested, or improved upon by others.  507 

 

Fig. 12.  User interface of RapidLiq (Geyin and Maurer, 2021b), which runs the ML, DL, Ensemble, and RB20 

models.  RapidLiq may be downloaded from: https://doi.org/10.17603/ds2-4bka-y039. 

To facilitate user adoption and evaluation, the ML, DL, Ensemble, and RB20 models were programmed 508 

into RapidLiq (Geyin and Maurer, 2021b), a new Windows software program with a simple-to-use interface 509 

(Fig. 12). While the Rashidian and Baise (2020) model is widely referenced, it is not commonly implemented 510 

https://doi.org/10.17603/ds2-4bka-y039
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by individual users, owing to the predictor variables that must first be compiled. These variables, and those of 511 

the proposed models, are compiled within RapidLiq, making user implementation trivial. The only required 512 

input is a ShakeMap of ground-motion parameters (i.e., PGA, PGV, Mw), either in Extensible Markup 513 

Language (.xml) or Geotagged Image File (.tiff) format. The first is easily downloaded from the USGS 514 

earthquake catalog (https://earthquake.usgs.gov/earthquakes/search/) minutes after an earthquake, or for 515 

numerous future scenario events. The second is a more general, flexible format, allowing for motions from 516 

various sources to be analyzed. The software then extracts predictor variables across the ShakeMap extents 517 

and outputs geotiff files mapping the probabilities of liquefaction-induced ground failure. These files may be 518 

viewed within the software or explored in greater detail using GIS or one of many free geotiff web explorers 519 

(e.g., http://app.geotiff.io/). The software also allows for tabular input, should a user wish to enter specific sites 520 

of interest and ground-motion parameters at those sites, rather than study the regional effects of an earthquake. 521 

At present, RapidLiq operates in the contiguous U.S. and completes predictions within 10 s for most events. 522 

3.3 Limitations and Uncertainties 523 

The geospatial models developed and tested herein are best suited for regional-scale applications where 524 

subsurface testing is infeasible (e.g., disaster simulation and loss estimation; planning and policy development; 525 

and emergency response and reconnaissance) or for preliminary site assessment in advance of subsurface 526 

testing. While such models have recently been adopted for a variety of uses, they are not intended to guide 527 

engineering design and do not replace the need for rigorous site-specific analyses of liquefaction hazard. In 528 

this regard, the proposed models predict liquefaction at a relatively coarse spatial resolution, given the 529 

resolutions of the geospatial predictor variables (see Table 2), and can thus easily fail to capture more localized, 530 

small-scale features that correlate to higher or lower liquefaction hazard. 531 

Inherently, the findings presented herein are tied to the data analyzed. The applicability of these findings 532 

to other earthquakes elsewhere – particularly in regions underrepresented in model training – is unknown. 533 

Similarly, using the models beyond the range of the predictor variables studied herein (Table 2) could likewise 534 

introduce greater uncertainty. In addition, it should be emphasized that “ground failure,” the ultimate 535 

prediction target, refers to free field liquefaction-induced surface settlement, cracking, and ejecta on ground 536 

that is generally level. Users should understand limitations of the LPI manifestation model to predict lateral 537 

spreading, which is a distinctly damaging expression influenced by complex subsurface and topographic 538 

features. Given that LPI and other similar manifestation models may be poor predictors of lateral spreading 539 

(e.g., Maurer et al., 2015b; Rashidian and Gillins, 2018), the proposed models may likewise predict it poorly. 540 

In this regard, the ground-failure datasets on which the models were tested might include lateral spreads, which 541 

could have the effect of reducing the measured model efficiency. Moreover, the proposed models do not 542 

explicitly predict damage to specific infrastructure types or assets, which would require detailed site and asset-543 
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specific modeling. In this respect, liquefaction could trigger at depth and damage infrastructure without 544 

otherwise manifesting or could manifest without otherwise causing damage.  545 

As discussed herein, the performance of any geospatial model is inherently tied to the resolution and 546 

accuracy of predictor variables, some of which are themselves predictions rather than measurements (e.g., the 547 

depth of groundwater). Inherently, the accuracy of liquefaction predictions is related to the accuracy of inputs, 548 

with some models having greater sensitivity to specific inputs. In the present effort, measurement and modeling 549 

uncertainties were not considered, and as such, the model outputs should be considered as median probabilities 550 

of ground failure. This should not be interpreted to mean that uncertainties do not exist. Among other 551 

uncertainties that could be considered in the future, ShakeMap IMs are uncertain; the prediction of LPI via 552 

geospatial variables is uncertain; and LPI is an uncertain predictor of ground failure. In the future, ML/DL 553 

techniques (e.g., Gaussian Process Regression) could be used to account for these uncertainties and make 554 

probabilistic predictions. Additionally, the most efficient geotechnical models for predicting liquefaction will 555 

inevitably change over time. In this regard, the proposed approach could be conditioned on models other than 556 

LPI, to include emergent mechanistic methods that may better capture the system-level response of soil profiles 557 

(e.g., Cubrinovski et al., 2019; Bassal and Boulanger, 2021; Hutabarat and Bray, 2021). For the present 558 

moment, the models proposed herein appear to perform as well as, and potentially better than, the current state-559 

of-practice geospatial model (i.e., RB20), but were developed using an altogether different approach, and thus 560 

warrant further application. Ultimately, additional tests in past or future events are needed to confirm the 561 

findings presented herein and summarized below.     562 

4. Conclusions 563 

This paper presented a new approach to geospatial modeling of soil liquefaction that is driven by 564 

algorithmic learning but pinned to a mechanistic framework. In effect, subsurface measurements are predicted 565 

remotely within the framing of a popular model for probabilistically predicting ground failure. This merges a 566 

body of knowledge built over the last 50 years with the potential of machine and deep learning to predict 567 

subsurface conditions remotely. As hypothesized herein, this modeling approach has potential advantages over 568 

others used to date. Using this approach, three models termed ML, DL, and Ensemble were trained to predict 569 

LPI values in the absence of subsurface test data. This training utilized a modest dataset of 1,712 CPTs 570 

distributed across the US and a similarly modest set of twelve predictor variables. These consisted of two 571 

demand variables (i.e., PGA and Mw) and ten capacity variables (i.e., predicted ground water depth, measured 572 

distance to river and measured distance to coast, predicted depth to bedrock, measured annual precipitation, 573 

predicted VS30, and the predicted (binomial) presence of unconsolidated soil, sandy soil, clayey soil, and silty 574 

soil). The capacity variables can be compiled at national scale in advance of model application. The demand 575 

variables are available at regional scale minutes after an earthquake or for various future earthquake scenarios. 576 
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Lastly, the predicted LPI values are transformed to probabilities of ground failure using an existing fragility 577 

function trained on all globally available liquefaction case histories. 578 

The developed models were shown to provide efficient predictions in unbiased, forward application and 579 

were tested against the RB20 geospatial model. Collectively, these tests indicate that the proposed models 580 

warrant application and further evaluation. The proposed and RB20 models are available in RapidLiq, a free 581 

Windows program. Ultimately, significantly more in-situ geotechnical tests are available for model training, 582 

both in the U.S. and globally. Whereas ground-failure inventories are likely to grow slowly, the subsurface 583 

data needed to train the proposed approach exist in massive quantities. These data require compilation across 584 

different formats (some requiring digitization) and test types (e.g., CPTs and SPTs), as well as access from 585 

various entities, both public and private. However, community geotechnical datasets in New Zealand, Austria 586 

and Germany, Italy, and Washington State, for example, currently contain more than 40,000 CPTs. Similar 587 

datasets are likely to be created elsewhere. Likewise, the quantity of prospective geospatial predictor variables 588 

far exceeds that utilized in this study. As additional variables that more efficiently and sufficiently correlate to 589 

subsurface conditions are identified, the merits of the proposed modeling approach may be further realized. 590 

Expanding upon this approach, improved geospatial liquefaction models could thus potentially be developed 591 

for regional, national, or global applications. The limitations of geospatial models (e.g., the uncertainty, spatial 592 

resolution, and non-mechanistic nature of geospatial inputs) should be well understood by potential users.   593 

5. Acknowledgements 594 

This study is based on work supported by the National Science Foundation (NSF), US Geological Survey 595 

(USGS), Pacific Northwest Transportation Consortium (PacTrans), and Washington State Dept. of 596 

Transportation (WSDOT) under Grant Nos. CMMI-1751216, G18AP-00006, 69A3551747110, and T1461-597 

74, respectively. However, any opinions, findings, and conclusions or recommendations expressed herein are 598 

those of the authors and may not reflect the views of NSF, USGS, PacTrans, or WSDOT. In addition, we thank 599 

Janset Geyin of the Hacettepe University Interior Architecture and Environmental Design Program for their 600 

contributions toward design of the RapidLiq logos and user interface.  601 

6. Data Availability 602 

All data analyzed in this study is publicly available, as described and referenced in the text. RapidLiq, the 603 

software program developed to implement the models proposed herein, is available from the DesignSafe data 604 

depot at: https://doi.org/10.17603/ds2-4bka-y039. 605 

7. References 606 

Allstadt KE, Thompson EM, Jibson RW, Wald DJ, Hearne M, Hunter EJ, Fee J, Schovanec H, Slosky D, and Haynie KL 607 
(2021). The US Geological Survey ground failure product: Near-real-time estimates of earthquake-triggered landslides 608 
and liquefaction. Earthquake Spectra, 87552930211032685. 609 

https://doi.org/10.17603/ds2-4bka-y039


29 

 

Anderson TW and Darling DA (1952) Asymptotic theory of certain" goodness of fit" criteria based on stochastic 610 
processes. The annals of mathematical statistics 23(2): 193-212. 611 

Auret L and Aldrich C (2011) Empirical comparison of tree ensemble variable importance measures. Chemometrics and 612 
Intelligent Laboratory Systems 105(2): 157-170.  613 

Bassal PC, and Boulanger RW (2021). System response of an interlayered deposit with spatially preferential liquefaction 614 
manifestations. Journal of Geotechnical and Geoenvironmental Engineering, 147(12): 05021013. 615 

Boulanger RW and Idriss IM (2014) CPT and SPT Based Liquefaction Triggering Procedures, Report No. UCD/CGM-616 
14/01, Center for Geotechnical Modeling, University of California, Davis, CA.  617 

Box, GEP and Cox, DR (1964) An analysis of transformations. Journal of the Royal Statistical Society, Series B. 26 (2): 618 
211–252.  619 

Breiman, L (1996) Bagging predictors. Machine Learning 24 (2): 123–140. 620 
Cubrinovski M and Ishihara K (1998). State concept and modified elastoplasticity for sand modeling, Soils and 621 

Foundations 38(4): 213-225. 622 
Cubrinovski M, Rhodes A, Ntritsos N, and Van Ballegooy S (2019) System response of liquefiable deposits. Soil 623 

Dynamics and Earthquake Engineering, 124: 212-229.  624 

DeLong ER, DeLong DM and Clarke-Pearson DL (1988) Comparing the areas under two or more correlated receiver 625 
operating characteristic curves: a nonparametric approach. Biometrics 44: 837-845. 626 

Durante MG and Rathje EM (2021) An exploration of the use of machine learning to predict lateral spreading. Earthquake 627 
Spectra, 37(4): 2288–2314. 628 

DWR (2020) Periodic groundwater measurements. California Department of Water Resources, 629 
<https://sgma.water.ca.gov/webgis/?appid=SGMADataViewer#gwlevels> last accessed June 2020.  630 

Elith J, Leathwick JR, & Hastie T (2008) A working guide to boosted regression trees. Journal of animal ecology 77(4): 631 
802-813. 632 

Fan Y, Li H, Miguez-Macho G (2013) Global patterns of groundwater table depth. Science 339 (6122): 940-943, 633 
doi:10.1126/science.1229881 634 

Fan Y, Li H, Miguez-Macho G (2020) Updated dataset for global patterns of groundwater table depth. <http://thredds-635 
gfnl.usc.es/thredds/catalog/GLOBALWTDFTP/catalog.html> last accessed July 2021. 636 

Fawcett T (2006) An introduction to ROC analysis. Pattern Recognition Letters 27(8): 861–874. 637 
Federal Emergency Management Agency (FEMA) (2013). Earthquake Model HAZUS-MH 2.1 Technical Manual, 638 

Washington, D.C. 639 
Fick SE and Hijmans RJ (2017). WorldClim 2: new 1‐km spatial resolution climate surfaces for global land 640 

areas. International Journal of Climatology 37(12): 4302-4315. 641 
Friedman JH (2001) Greedy function approximation: a gradient boosting machine. Annals of statistics: 1189-1232. 642 
Geyin M and Maurer BW (2020a). Fragility Functions for Liquefaction-Induced Ground Failure. Journal of Geotechnical 643 

and Geoenvironmental Engineering 146(12): 04020142. 644 
Geyin M and Maurer BW (2020b) Horizon: CPT-based liquefaction risk assessment and decision software. DesignSafe-645 

CI, doi: 10.17603/ds2-2fky-tm46. 646 
Geyin M and Maurer BW (2021a) CPT-Based Liquefaction Case Histories from Global Earthquakes: A Digital Dataset 647 

(Version 1). DesignSafe-CI.  https://doi.org/10.17603/ds2-wftt-mv37. 648 
Geyin M and Maurer BW (2021b) “RapidLiq: Software for Near-Real-Time Prediction of Soil Liquefaction.” 649 

DesignSafe-CI. https://doi.org/10.17603/ds2-4bka-y039. 650 
Geyin M, Baird AJ and Maurer BW (2020) Field assessment of liquefaction prediction models based on geotechnical vs. 651 

geospatial data, with lessons for each. Earthquake Spectra 36(3): 1386–1411. 652 
Geyin M, Maurer BW, Bradley BA, Green RA, and van Ballegooy S. (2021). CPT-based liquefaction case histories 653 

compiled from three earthquakes in Canterbury, New Zealand. Earthquake Spectra: 10.1177/8755293021996367. 654 
Glorot, X. and Yoshua B. (2010) Understanding the difficulty of training deep feedforward neural networks. Proceedings 655 

of the thirteenth international conference on artificial intelligence and statistics: 249–256. 656 

https://en.wikipedia.org/wiki/David_Cox_(statistician)
https://en.wikipedia.org/wiki/Journal_of_the_Royal_Statistical_Society,_Series_B
https://en.wikipedia.org/wiki/Machine_Learning_(journal)
https://sgma.water.ca.gov/webgis/?appid=SGMADataViewer#gwlevels
https://doi.org/10.17603/ds2-wftt-mv37
https://doi.org/10.17603/ds2-4bka-y039


30 

 

Green RA and Bommer JJ (2019) What is the smallest earthquake magnitude that needs to be considered in assessing 657 
liquefaction hazard? Earthquake Spectra 35(3): 1441-1464.  658 

Green RA, Lasley S, Carter MW, Munsey JW, Maurer BW, & Tuttle MP (2015) Geotechnical aspects in the epicentral 659 
region of the 2011 Mw 5.8 Mineral, Virginia, earthquake. Geological Society of America, Special Paper 509: 151-660 
172. 661 

Green RA, Bommer JJ, Rodriguez-Marek A, Maurer BW, Stafford PJ, Edwards B, Kruiver PP, De Lange G. and Van Elk, 662 
J, (2019). Addressing limitations in existing ‘simplified’ liquefaction triggering evaluation procedures: application to 663 
induced seismicity in the Groningen gas field. Bulletin of Earthquake Eng 17(8): 4539-4557. 664 

Heath DC, Wald DJ, Worden CB, Thompson EM, & Smoczyk GM (2020) A global hybrid VS30 map with a topographic 665 
slope–based default and regional map insets. Earthquake Spectra 36(3): 1570-1584. 666 

Ho TK (1998) The random subspace method for constructing decision forests. IEEE Transactions on Pattern Analysis 667 
and Machine Intelligence 20(8): 832–844. 668 

Holzer TL, Noce TE, & Bennett MJ (2011). Liquefaction probability curves for surficial geologic 669 
deposits. Environmental & Engineering Geoscience 17(1): 1-21. 670 

Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. 671 
Acad. Sci. U.S.A. 79(8): 2554–2558.  672 

Horton JD, San Juan CA, and Stoeser DB (2017) The State Geologic Map Compilation (SGMC) geodatabase of the 673 
conterminous United States (ver. 1.1). USGS Data Series 1052, 46 p. 674 

Hutabarat D and Bray JD (2021). Effective stress analysis of liquefiable sites to estimate the severity of sediment 675 
ejecta. Journal of Geotechnical and Geoenvironmental Engineering 147(5): 04021024. 676 

 677 
Idriss IM, and Boulanger RW (2008) Soil liquefaction during earthquakes. Monograph MNO-12 2008; Earthquake 678 

Engineering Research Institute, Oakland, CA, 261 pp. 679 
Iwasaki T, Tatsuoka F, Tokida K, and Yasuda S. (1978) A practical method for assessing soil liquefaction potential based 680 

on case studies at various sites in Japan. 2nd Intl Conf. Microzonation. 681 
Kayen R, Moss RES, Thompson EM, Seed RB, Cetin KO, Der Kiureghian A, Tanaka Y, and Tokimatsu K (2013) Shear-682 

wave velocity–based probabilistic and deterministic assessment of seismic soil liquefaction potential. Journal of 683 
Geotechnical and Geoenvironmental Engineering 139(3): 407-419. 684 

Kramer SL (2008). Evaluation of Liquefaction Hazards in Washington State, Report No. WA-RD 668.1, Washington State 685 
Transportation Center, Seattle, Washington.  686 

Lai CG, Conca D, Famà A, Özcebe AG, Zuccolo E, Bozzoni F, Meisina C, Bonì R, Poggi V, and Cosentini RM (2019) 687 
Mapping the liquefaction hazard at different geographical scales. In Earthquake Geotechnical Engineering for 688 
Protection and Development of Environment and Constructions: 691-704, CRC Press. 689 

Lehner B, Verdin K, and Jarvis A (2006) HydroSHEDS Technical Documentation. World Wildlife Fund US, Washington, 690 
D.C. 691 

Lin A, Wotherspoon L, Bradley B, and Motha J (2021a). Evaluation and modification of geospatial liquefaction models 692 
using land damage observational data from the 2010–2011 Canterbury Earthquake Sequence. Engineering Geology, 693 
287: 106099. 694 

Lin A, Wotherspoon L, and Motha J (2021b) Evaluation of a geospatial liquefaction model using land damage data 695 
from the 2016 Kaikoura earthquake. Bulletin of the New Zealand Society for Earthquake Engineering. In Review. 696 

Maurer BW, Green RA, Cubrinovski M, and Bradley BA (2014). Evaluation of the liquefaction potential index for 697 
assessing liquefaction hazard in Christchurch, New Zealand. Journal of Geotechnical and Geoenvironmental 698 
Engineering 140(7): 04014032 699 

Maurer BW, Green RA and Taylor ODS (2015a) Moving towards an improved index for assessing liquefaction hazard: 700 
lessons from historical data. Soils and Foundations 55(4): 778-787. 701 

Maurer BW, Green RA, Cubrinovski M, and Bradley B (2015b) Assessment of CPT-based methods for liquefaction 702 
evaluation in a liquefaction potential index framework. Géotechnique 65(5): 328-336. 703 



31 

 

MBIE (2017) Planning and engineering guidance for potentially liquefaction-prone land. New Zealand Ministry of 704 
Business, Innovation, and Employment (MBIE), Building System Performance Branch, ISBN 978-1-98-851770-4. 705 

Moss RES, Seed RB, Kayen RE, Stewart JP, Der Kiureghian A, and Cetin KO (2006) CPT-based probabilistic and 706 
deterministic assessment of in situ seismic soil liquefaction potential. Journal of Geotechnical and Geoenvironmental 707 
Engineering 132(8):1032-1051. 708 

NASA (2020) Distance to nearest coastline. NASA Ocean Biology Processing Group (OBPG). < 709 
https://oceancolor.gsfc.nasa.gov/docs/distfromcoast/> last ccessed July 2021.  710 

National Research Council (NRC) (2016). State of the Art and Practice in the Assessment of Earthquake-Induced Soil 711 
Liquefaction and its Consequences, Committee on Earthquake Induced Soil Liquefaction Assessment (Edward 712 
Kavazanjian, Jr., Chair, Jose E. Andrade, Kandian “Arul” Arulmoli, Brian F. Atwater, John T. Christian, Russell A. 713 
Green, Steven L. Kramer, Lelio Mejia, James K. Mitchell, Ellen Rathje, James R. Rice, and Yumie Wang), The 714 
National Academies Press, Washington, DC. 715 

Piryonesi SM & El-Diraby TE (2021) Using machine learning to examine impact of type of performance indicator on 716 
flexible pavement deterioration modeling. Journal of Infrastructure Systems 27(2): 04021005. 717 

Rashidian V and Gillins DT (2018) Modification of the liquefaction potential index to consider the topography in 718 
Christchurch, New Zealand. Engineering Geology 232: 68-81. 719 

Rashidian V and Baise LG (2020) Regional efficacy of a global geospatial liquefaction model. Engineering Geology, 720 
105644. 721 

Rasmussen CE and Williams CKI (2006) Gaussian Processes for Machine Learning. MIT Press. Cambridge, 722 
Massachusetts, 2006. 723 

Robertson PK and Wride CE (1998) Evaluating cyclic liquefaction potential using cone penetration test. Canadian 724 
Geotechnical Journal 35(3): 442-459. 725 

Rokach L and Maimon O (2008) Data mining with decision trees: theory and applications. World Scientific Pub Co 726 
Inc. ISBN 978-9812771711. 727 

Schmitt RG, Tanyas H, Jessee MAN, Zhu J, Biegel KM, Allstadt KE, ... & Knudsen KL (2017a) An open repository of 728 
earthquake-triggered ground-failure inventories (No. 1064). US Geological Survey. 729 

Schmitt RG, Tanyas H, Jessee MAN, Zhu J, Biegel KM, Allstadt KE, ... & Knudsen KL (2017b) An open repository of 730 
earthquake-triggered ground-failure inventories (ver 2.0, September 2020), US Geological Survey data release 731 
collection, accessed Jan 1, 2021, at https://doi.org/10.5066/F7H70DB4. 732 

Shangguan W, Hengl T, de Jesus JM, Yuan H, & Dai Y (2017) Mapping the global depth to bedrock for land surface 733 
modeling. Journal of Advances in Modeling Earth Systems 9(1): 65-88. 734 

USGS (2021). “Map of CPT Data.” United States Geological Survey. < https://earthquake.usgs.gov/research/cpt/data/> 735 
Accessed July 2021.  736 

Van Ballegooy S, Malan P, Lacrosse V, Jacka ME, Cubrinovski M, Bray JD, O’Rourke TD, Crawford SA, and Cowan H 737 
(2014) Assessment of liquefaction-induced land damage for residential Christchurch. Earthquake Spectra 30(1): 31-55. 738 

Vapnik V (1995) The Nature of Statistical Learning Theory. Springer, New York. 739 
Wald DJ, Worden BC, Quitoriano V, & Pankow KL (2005) ShakeMap manual: technical manual, user's guide, and 740 

software guide (No. 12-A1).  741 
Wald DJ and Allen TI (2007). Topographic slope as a proxy for seismic site conditions and amplification. Bulletin of the 742 

Seismological Society of America 97: 1379–1395. 743 
Wald DJ, Earle PS, Allen TI, Jaiswal K, Porter K, and Hearne M (2008) Development of the U.S. Geological Survey's 744 

PAGER system (Prompt Assessment of Global Earthquakes for Response). Proc. 14th World Conf. Earthq. Eng., 745 
Beijing, China, 8 pp. 746 

Youd TL and Hoose SN (1977) Liquefaction Susceptibility and Geologic Setting. Proceedings of the Sixth World 747 
Conference on Earthquake Engineering 3, 2189-2194. 748 

Zhu J, Baise LG, and Thompson EM (2017) An updated geospatial liquefaction model for global application. Bulletin of 749 
the Seismological Society of America 107(3): 1365-1385. 750 

https://oceancolor.gsfc.nasa.gov/docs/distfromcoast/
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-9812771711


32 

 

Zimmaro P, Nweke CC, Hernandez JL, Hudson KS, Hudson MB, Ahdi SK, ... & Stewart JP (2020) Liquefaction and 751 
related ground failure from July 2019 Ridgecrest earthquake sequence. Bulletin of the Seismological Society of 752 
America 110(4): 1549-1566. 753 

Ziotopoulou K and Boulanger RW (2016) Plasticity modeling of liquefaction effects under sloping ground and irregular 754 
cyclic loading conditions. Soil Dynamics and Earthquake Eng 84: 269-283. 755 


