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An Al Driven, Mechanistically Grounded Geospatial Liquefaction Model
for Rapid Response and Scenario Planning

Geyin, M.!, Maurer, B.W.2, and Christofferson, K.?

Abstract: Geospatial models for predicting soil liquefaction infer subsurface traits via satellite remote sensing
and mapped information, rather than directly measure them with subsurface tests. Field tests of such models
have demonstrated both promising potential and severe shortcomings. Informed by these tests, this paper
develops geospatial models that are driven by algorithmic learning but pinned to a physical framework, thereby
benefiting both from machine and deep learning, or ML/DL, and the knowledge of liquefaction mechanics
developed over the last 50 years. With this approach, subsurface cone penetration test (CPT) measurements
are predicted remotely within the framing of a popular CPT model for predicting ground failure. This has three
potential advantages: (i) a mechanistic underpinning; (ii) a significantly larger training set, with the model
principally trained on in-situ test data, rather than on ground failures; and (iii) insights from ML/DL, with
greater potential for geospatial data to be exploited. While liquefaction is a phenomenon best predicted by
mechanics, subsurface traits lack theoretical links to above-ground parameters, but correlate in complex,
interconnected ways - a prime problem for ML/DL. Preliminary models are trained using ML/DL and a modest
U.S. dataset of CPTs to predict liquefaction-potential-index values via 12 geospatial variables. The models are
tested on recent earthquakes and are shown — to a statistically significant degree — to perform as well as, or
better than, the current leading geospatial model. The models are coded in free, simple-to-use Windows
software. The only input is a ground-motion raster, downloadable minutes after an earthquake or available for
countless future scenarios. Ultimately, the proposed approach and models, which warrant further application
and evaluation, could be improved upon using additional training data and new predictor variables. Users of

the models should understand key limitations, as discussed in detail herein.

Keywords: soil liquefaction; geospatial modeling; artificial intelligence; software

1. Introduction

As evidenced by earthquakes occurring globally each year, reliable predictions of soil liquefaction are
needed both prior to an earthquake for efficient planning and mitigation, and immediately after an earthquake
for informing response, reconnaissance, and recovery. Such predictions would thus ideally have the capability

of being made: (i) rapidly (e.g., in near-real-time after an event); (ii) at high resolution (e.g., consistent with
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the scale of individual assets); and (iii) over the regional extents impacted by large earthquakes (e.g., that of a
metropolis or transportation system). Problematically, state-of-practice liquefaction models require relatively
costly geotechnical data, such as that from the cone-penetration-test (CPT). Given the infeasibility of in-situ
testing across vast areas, regional-scale predictions of liquefaction have traditionally relied on geologic maps,
from which generic areal classifications of liquefaction susceptibility may be assumed (e.g., Youd and Hoose,
1977). Such an approach is simple, but also unacceptably uncertain for most intents. Alternatively, statistical
distributions of geotechnical data within geologic units may be developed and used to predict liquefaction
(e.g., Holzer et al., 2011). This is more data-driven and likely to be more accurate, but many in-situ tests are
still required within each mapped unit of interest. Moreover, predictions using this approach have the coarse
resolution of geologic maps and assume intra-unit uniformity (i.e., local conditions are not considered),
meaning an entire city could potentially receive the same prediction. It thus remains a persistent challenge to
model liquefaction (or any geohazard) in a manner that is regional and rapid, yet high resolution and accurate.
The existence of a model having these traits is conceivable, however, given the growth of community
geotechnical datasets, remote sensing, and algorithmic learning (i.e., machine and deep learning, or ML/ML)).
Towards that end, interest has grown in prediction models that use inputs readily available from satellite
remote-sensing and existing mapped information. In contrast to geotechnical methods, “geospatial” models
can predict liquefaction rapidly, at infinitely many locations. This is made possible using geospatial proxies of
soil properties relevant to liquefaction (i.e., above-ground inferences of below-ground conditions). While the
concept of such a model is not new (e.g., Kramer, 2008; FEMA, 2013), the model of Zhu et al. (2017), lightly
modified by Rashidian and Baise (2020), is arguably the most rigorously formulated and widely accepted. It
is also implemented in the United States Geological Survey (USGS) “PAGER” system, which provides content
on possible earthquake impacts (Wald et al., 2008). In a recent study, Geyin et al. (2020) tested the Zhu et al.
(2017) model against 18 CPT-based models using ~15,000 liquefaction case histories (essentially all CPT-
based case histories globally available to date). These analyses elucidated both the promising potential of
geospatial data, as well as significant room, and potential means, for improving existing geospatial models.
Informed by these analyses, this paper aims to develop an improved geospatial model driven by
algorithmic learning (benefiting from ML/DL insights) but pinned to a physical framework (benefiting from
mechanics and the knowledge of regression modelers). In the following, the typology of liquefaction models
is succinctly summarized (to place this paper, and the methods it will utilize, in context). Next, tests of the Zhu
et al. (2017) model are summarized and lessons for improvement are discussed, as are the potential advantages
of the proposed approach. This approach is then used to develop ML/DL models that predict the probability
of liquefaction-induced ground failure. Finally, these models are tested using unbiased data and implemented

in RapidLigq, a new Windows software program.
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1.1 A Succinct Overview of Geotechnical and Geospatial Liquefaction Models

The typology of models for predicting liquefaction roughly consists of three tiers: (Tier 1) fully-empirical
models that require only geospatial or geologic information (e.g., Rashidian and Baise, 2020); (Tier 2) semi-
mechanistic “stress-based” models that require in-situ test data and are widely used in engineering practice
(e.g. Boulanger and Idriss, 2014; Green et al., 2019); and (Tier 3) numerical constitutive models, which require
many material and model parameters (e.g., Cubrinovski and Ishihara, 1998; Ziotopoulou and Boulanger,
2016). While improvements to computational throughput have grown the use of “Tier 3” models, their
application is still limited to specific sites and special projects, given the required inputs and operator skill.
Given the rapid and regional scale aims of the proposed work, “Tier 3” models will not be used herein, which
is not to say that such models could not conceivably be implemented at regional scale.

Many “Tier 2” models are popular in engineering practice. These include, among others, Robertson and
Wride (1998), Moss et al. (2006), Idriss and Boulanger (2008), Kayen et al. (2013), and Green et al. (2019),
which all use subsurface measurements to predict liquefaction as a function of earthquake magnitude (M) and
peak ground acceleration (PGA). However, because these models predict the factor of safety against
liquefaction “triggering” (FSi,) at-depth within a profile, the outputs are often used cooperatively with other
models that predict manifestations of liquefaction at the surface (i.e., “ground failure”). One popular
manifestation model is the liquefaction potential index (LPI) proposed by Iwasaki et al. (1978):

LI = [°T

o F(FSug) w(z)dz (1)

where F(FSi;) and w(z) weight the respective influences of FSj, and depth, z, on surface manifestation.
Specifically, F(FSig) = 1 — FSiig for FSiig < 1 and F(FSi4) = 0 otherwise; w(z) = 10 — 0.5z. LP[ thus assumes
that surface manifestation depends on the thickness of all liquefied strata in the upper 20 m, the degree to
which FSj;, in each stratum is less than 1.0, and how near those strata are to the surface. LPI can range from
zero to 100, with surface manifestations becoming more likely as LPI increases (e.g., Maurer et al., 2014;
Geyin and Maurer, 2020a). Other similar manifestation models include those of van Ballegooy et al. (2014)
and Maurer et al. (2015a).

“Tier 1” geospatial models, which aim to predict liquefaction via readily available predictor variables,
have recently received renewed attention. Like “Tier 2” models, geospatial models characterize liquefaction
demand via ground-motion intensity measures (IMs). But, instead of quantifying liquefaction resistance with
in-situ measurements, geospatial models predict below-ground conditions using above-ground information.
Examples of such predictors include (among many) the slope and roughness of the surface; the distance to
rivers and coasts; and compound-topographic-index, which can be derived from satellite data or existing
prediction maps. Geospatial models are well suited for regional scale applications such as: (i) loss estimation

and disaster simulation; (ii) city planning and policy development; (iii) emergency response; and (iv) post-
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event reconnaissance (e.g., to remotely identify sites of interest). Given these many uses, geospatial models
have recently been explored by government agencies in the European Union, United States, and New Zealand
for simulation, planning, and response purposes (e.g., MBIE, 2017; Lai et al., 2019; Allstadt et al., 2021).
The geospatial model originally proposed by Zhu et al. (2017) is a logistic regression model of the form
P(X) = (1 + )" where X is a sequence of predictor variables and coefficients, and P(X) is the likelihood of
ground failure (i.e., surface manifestation). The model, which was trained on observations of ground failure,
takes on two forms depending on a site’s vicinity to a coastline. The equations for model parameter X are in
Table 1. The variables are: PGV = peak ground velocity (cm/s); Vs3= shear-wave velocity of the upper 30-m
(m/s) predicted from topography (Wald and Allen, 2007); dr = closest distance to a river (km) in the Lehner
et al. (2006) dataset; dc = distance to coast (km); dw = the lesser of dr and dc (km); precip = mean annual
precipitation (mm) (Fick and Hijmans, 2017); and wtd = predicted water table depth (m) (Fan and Miguez-
Macho, 2013). Following additional testing, Rashidian and Baise (2020) proposed two minor modifications to
mitigate false positive predictions: (i) the model’s output should be reassigned as zero below a PGA of 0.1 g;

and (ii) the precip input should be capped at 1700 mm/yr.

Table 1. Geospatial Liquefaction Model Equations (Zhu et al., 2017; Rashidian and Baise, 2020).
Model Model Parameter X

(Coastal) | 12.435+0.301-In(PGV) — 2.615-In(Vs30) + 5.556 x 10 - precip — 0.0287-(de)>S + 0.0666-d, — 0.0369 - dy - (de)*S

(Inland) 8.801 +0.334-In(PGV) — 1.918 In(Vs30) + 5.408 x 10 - precip — 0.2054-d\ — 0.0333-wid

1.2 A Test of Geospatial Liquefaction-Model Performance

Using approximately 15,000 liquefaction case histories compiled from 23 earthquakes by Geyin et al.
(2021) and Geyin and Maurer (2021a), Geyin et al., 2020 tested the Zhu et al. (2017) geospatial model against
18 different CPT methods for predicting liquefaction surface manifestation. These were comprised of six
different triggering models used in series with three different manifestation models. Because most of the case
histories were sourced from three events in Canterbury, New Zealand, test cases were parsed into the
“Canterbury” and “Global” datasets. Performance was quantified via receiver-operating-characteristic (ROC)
analyses — specifically the area under the ROC curve, or AUC — which is a popular metric of prediction
efficiency (e.g., Fawcett, 2006). Using this metric, a perfectly efficient model achieves an AUC of 1.0 whereas
a model on par with random guessing achieves an AUC of 0.5. ROC analyses are also attractive in that they
are insensitive to changes in class distribution. If the proportion of negative to positive instances in a test set
changes, the AUC results will not change (Fawcett, 2006). P-values were computed per the method of DeLong

et al. (1988) to determine whether measured differences in A UC could have arisen by chance (i.e., due to finite-
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sample uncertainty) and not because one model is more efficient than another. While the reader is referred to
Geyin et al. (2020) for complete details, the most salient results are summarized as follows. First, on the
“Canterbury” dataset, the geospatial model performed significantly better than 16 out of 18 CPT models, with
a measured AUC of 0.84. Against the top two CPT models, it was statistically indifferent, and thus either
outperformed or matched all 18 CPT models. This is a surprising result, given the relative costs of the required
model inputs. Second, on the “Global” dataset, all geotechnical models performed significantly better than the
Zhu et al. (2017) model, with the latter performing only somewhat better than random guessing with an AUC
of 0.55. This might be expected, given: (i) the variation of geomorphic, topographic, and climatic environs in
a global dataset; and (ii) the challenge, given this variation, of accurately predicting below-ground conditions
from above-ground parameters. Inherently, the CPT models - being based on subsurface tests - should be more
portable across environments. Nonetheless, the strong performance of the seminal Zhu et al. (2017) model in
Canterbury demonstrates the promising potential of geospatial data for regional-scale purposes, a conclusion

similarly reached by Lin et al. (2021a).

1.3 Limitations of Existing Geospatial Modelling Approaches

By way of the study above, possible shortcomings of the Zhu et al. (2017) and Rashidian and Baise (2020)
geospatial model, henceforth referred to as RB20, were identified. It should be emphasized that this model has
transformed the perception of geospatial modeling for geohazards. Nonetheless, like all models it has
shortcomings that could be improved upon. First, RB20 was trained directly on outcomes (i.e., observations
of ground failure) rather than on the mechanistic causes of those outcomes (i.e., subsurface engineering
properties). While this lack of a mechanistic underpinning can be overcome with vast training data (e.g., how
voice transcription apps predict words without understanding language), current ground failure inventories are
arguably too sparse. Specifically, both “positive” and “negative” cases (i.e., sites with and without observed
liquefaction) are needed in which predictor variables span the range of possible values. That is, the parameter
space of all predictor variables should be fully populated. Yet, while liquefaction is common in earthquakes,
ground failure inventories are slow to grow (relative, for example, to those of in-situ test data). Given the
adopted approach, inadequate training data can result in a divergence from mechanistic principles (e.g.,
prediction of liquefaction given shaking too weak, from a mechanistic perspective, to induce liquefaction).

Second, RB20 uses just 5-variables. Four represent capacity (distance to surface water; precipitation; and
mapped Vszp and groundwater depth) and one represents demand (PGV). Notably, none of these variables are
likely to correlate to the type of soil, or by corollary, to the susceptibility of the soil to liquefaction. This was
a common cause of mispredictions identified in the Geyin et al. (2020) study, with RB20 expecting
susceptibility if the ground is flat, saturated, and near water. However, such profiles can consist mostly of soils

less- or un-susceptible to liquefaction (e.g., clays, peats, or gravels). Moreover, we find in many such cases
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that geologic maps accurately predict the presence of such soils. An improved model might thus use mapped
geologic data, when available, and/or other yet unidentified proxies of soil type. Third, and following from the
above, RB20 is a traditional regression equation. This method of modeling inherently requires hypotheses of
what is believed to matter and how (beliefs that are unnecessary with ML/DL). The efficient prediction of
subsurface traits likely requires more than four geospatial variables, yet regression limits the number easily
modeled. Algorithmic learning would allow more geospatial predictor variables to be used, with greater

potential for those variables/data to be exploited fully.

1.4 The Proposed Modelling Approach and its Potential Benefits

This paper proposes a new geospatial modeling approach that is driven by algorithmic learning but pinned
to an established mechanistic framework. Specifically, ML/DL models will be trained to predict LP/ values in
the absence of subsurface test data. Prior to model training, LP/ values are computed from a national database
of in-situ geotechnical tests subjected to a range of hypothetical ground motions. During model training, the
ML/DL models will learn to predict these LPI values using twelve predictor variables. These variables consist
of PGA and M,,, which are “demand” variables, and ten geospatial parameters from the geotechnical test site,
which are “capacity” variables. The goal of these ten geospatial variables, in effect, is to predict the relationship
between LPI and seismic loading in the absence of subsurface data. Multiple models will be developed and
ensembled, thereby avoiding large “swings” on account of which model is chosen (as is common in prediction
of ground motions, hurricane tracks, etc.). When used in the forward direction, the trained models predict LP/
at sites without geotechnical testing, given PGA, M,,, and geospatial variables sampled at the coordinates of
the sites. To complete the prediction of ground failure, the predicted LPI values will be input to existing
fragility functions (Geyin and Maurer, 2020a) that predict the probability of liquefaction manifestation (i.e.,
“ground failure”) as a function of LPI. These functions were trained on a large database of well-documented
liquefaction case histories compiled from 24 global earthquakes. Thus, the ultimate output is a predicted

probability of ground failure (the same as RB20). A synopsis of the proposed approach is shown in Fig. 1.

1
Input Geospatial Variables ShakeMap Target g Output
CPT Data RN
(Model Training) =+ IR
XY, Coordinates ‘ NS LPI PGF
(Forward \\\
Application) ¢

0
[] 10 20 30 40 50 60
Liquefaction Potential Index, LPT

Fig 1. Synopsis of the proposed modeling approach to predict the probability of ground failure (Pgr).
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This approach has several potential advantages:

e The principal prediction target is transferred from ground failure (with relatively sparse training data) to
subsurface measurements (for which the potential training set is vast). Because the location of in-situ tests
need not have experienced an earthquake (i.e., be a liquefaction case history), significantly more training
data is available. Given the rise of community geotechnical datasets — both internationally and in the U.S.
— the gap between the number of subsurface tests and the number of liquefaction case histories will likely
grow. We hypothesize this larger training set will be advantageous, both now and in the future.

e Liquefaction is a physical phenomenon best predicted by mechanics. Much has been learned about
liquefaction over the last 50 years. This knowledge is embedded in current state-of-practice liquefaction
triggering and manifestation models. We hypothesize that anchoring to these models, which provide a
mechanistic foundation, will be advantageous, given their validated ability to model liquefaction response
as a function of soil and profile traits (e.g., subsurface stratigraphy, soil density, fines-content, plasticity,
saturation, and ground motion duration and intensity).

e Whereas liquefaction is best predicted by mechanics, subsurface traits lack theoretical links to above-
ground parameters (i.e., geospatial data), but surely correlate to them in complex, interconnected ways.
This is a prime problem for ML/DL, which can provide learning insights that are unlikely, if not infeasible,
with traditional regression approaches. We hypothesize that ML/DL provides the potential for geospatial
data to be exploited more fully.

o The models are updated easily as additional training data (in-situ tests) become available. In the short term,
some geospatial variables could be viewed by the learning algorithms as relatively unimportant, either
because they truly are unimportant, or because there is insufficient training data to elucidate their
predictive value. Existing geospatial models are also retrainable, but we hypothesize that meaningful
growth in the ground-failure datasets that they are trained upon will take place at a slower pace (e.g., with
data from a few events annually that impact a small fraction of earth), whereas growth in community

geotechnical datasets will proceed more quickly.

2. Data and Methodology

In the current effort, two models will be developed using relatively modest sets of training data and
predictor variables compiled in the United States (US). As will be discussed, the proposed approach could be
extended using additional training data and new predictor variables at regional, national, or global scales.
Nonetheless, the developed models, which are applicable to the US, will be shown to be at least as efficient as
other geospatial models and thus warrant application and further evaluation, even if preliminary in nature.

While several in-situ geotechnical tests could be used within the proposed approach, we choose CPT data

given that: (i) it has inherent advantages over other tests upon which liquefaction models have been based
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(NRC, 2016); (ii) the Geyin and Maurer (2020a) fragility functions were trained on CPT-based case histories;
and (iii) a US national CPT database is readily available in native digital format. Specifically, the USGS
national database of 1,712 CPTs (USGS, 2021) was adopted for analysis. This dataset provides somewhat
well-distributed measurements, as mapped in Fig. 2, in a range of environments, generally in high-seismicity
regions. Approximately 5% are from sites where liquefaction case histories were compiled following modern
earthquakes. Given the limited dataset, some regions of the US are unrepresented in model development, as
shown in Fig. 2. Ultimately, however, tests of the derivative geospatial models are not clearly suggestive of
regional bias (i.e., the models perform well in regions with no training data). Nevertheless, it stands to reason
that an expanded dataset would result in better models. Of the 1,712 CPTs, 20% were randomly selected and

reserved for model testing, while the remaining 80% were used for model training.
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Fig. 2. Spatial distribution of CPT training and test data.

Next, each CPT was subjected to 152 combinations of PGA and M,,, with PGA ranging from 0.0 g to 1.0
g and M,, ranging from 4.5 to 9.0. These represent loadings that could hypothetically impact a site and for
which it would be of interest to predict liquefaction. We exclude M,, <4.5 events based on Green and Bommer
(2019). With the proposed approach, however, it is irrelevant whether the CPT sites ever experienced an
earthquake or whether a specific combination of PGA and M,, could feasibly occur in the future. In other
words, we assume that subsurface conditions are generally independent of the seismic hazard (i.e., saturated,
loose, cohesionless soils are equally present in high seismicity regions as in low seismicity regions). As such,
it is not necessary that CPTs be subjected to site-specific combinations of PG4 and M,, that are more likely to

occur (e.g., according to a probabilistic seismic hazard analysis). For each combination of PG4 and M,,, the
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Idriss and Boulanger (2008) CPT liquefaction model was used to predict FSi, versus depth. These predictions
were then input to the LP/ manifestation model, as defined in Eq. 1. All CPT processing and calculations were
performed using the software Horizon (Geyin and Maurer, 2020b). While different, or additional, triggering
and/or manifestation models could be used, the Idriss and Boulanger (2008) triggering model - when used in
conjunction with LP[ - demonstrated an efficiency that was never bested, to a statistically significant degree,
by any other model when tested on global case-history data (Geyin et al., 2020). In addition, the magnitude-
scaling factor (MSF) inherent to Idriss and Boulanger (2008) is soil-independent, whereas other triggering
models (Boulanger and Idriss, 2014; Green et al., 2019) have MSF’s that vary with depth depending on the
inferred relative density. The more predictable scaling of computed LP/ with increasing M,, was deemed
advantageous for modeling, given the limited training data utilized herein. A subsequent study could explore
the use of other CPT models, although prior testing of such models (Geyin et al., 2020) suggests the efficacy
of the resulting product would be very similar.

Given the 1,712 CPTs and 152 combinations of seismic loading, a total of 260,224 LPI values were
computed. These values are plotted in Fig. 3 as a function of magnitude-scaled PGA (PGAu75), as computed
by Idriss and Boulanger (2008), and form the primary prediction target of the proposed modeling approach.
At sites of high liquefaction hazard (i.e., thick deposits of saturated, loose sand), LPI increases rapidly with
PGAuz s, whereas at sites of low hazard (i.e., sites devoid of soil susceptible to liquefaction), LPI may remain
near zero for all PGAus. The goal of the geospatial modeling, in effect, is to predict the relationship between

LPI and seismic loading (PGA, M,,) in the absence of subsurface data.
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Fig. 3. LPI versus PGAuys. Plotted are 260,224 LPI values computed from 1,712 CPTs subjected to 152

different levels of seismic loading.

Ten geospatial predictor variables were next compiled at the coordinates of each CPT. The goal of these

ten variables is to correlate to the subsurface conditions which give rise to low or high LPI. These consisted
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of: predicted V39 (Heath et al., 2020); predicted ground water depth (Fan and Miguez-Macho, 2020); measured
distance to river (Lehner et al., 2006) and measured distance to coast (NASA, 2012); predicted depth to
bedrock (Shangguan et al. 2017); measured annual precipitation (Fick and Hijmans, 2017); and the predicted
(binomial) presence of unconsolidated soil, sandy soil, clayey soil, and silty soil, as obtained from the USGS
National Geologic Map compilation (Horton et al. 2017). The intention of the latter four variables is to predict
whether soil is present, and if so, whether it has one of these three predominant soil types. Additional mapped
soil types were ultimately found not to be useful, as will be further discussed. The range of predictor variables
in the dataset and their spatial resolutions are given in Table 2. In lieu of predicted V39, we also explored the
use of measured topographic slope, which ultimately produced models with nearly identical performance. This
is unsurprising, given that Vs3 is most often predicted solely from topographic slope in the Heath et al. (2020)
compilation, which merges several regional Vg3 maps with a general slope-based V3o model. We adopted the
predicted Vssp from Heath et al. (2020), however, given that it includes region-specific insights into the
relationship between topographic slope and subsurface conditions. While the potential benefits of using V3o
from Heath et al. (2020) (i.e., versus topographic slope) were not realized during model training and testing,
such benefits could conceivably be observed in future, forward applications elsewhere. Notably, models
developed without either parameter performed significantly worse. The importance of each predictor variable

will be further discussed later in the paper.

Table 2. Range of predictor variables in the dataset and their spatial resolutions.

q q Range in Spatial
VeI (e Dataset Resolution
Earthquake Magnitude (M) 45t09 N/A
Peak Ground Acceleration (g) Oto1 N/A

~1000 m
Ground Water Table Depth (m) 0to 216 (30 arc-sec)
Distance to River (m) 2 t0 6,220 ~90m
(3 arc-sec)
Distance to Coastline (km) 0to 1,210 ~90m
(3 arc-sec)
Depth to Bedrock (cm) 379 t0 21,717 250 m
o ~1000 m
Annual Precipitation (mm) 68 to 1,389 (30 arc-sec)
~1000 m
Vs30 (m/s) 92 to 713 (30 arc-sec)
Unconsolidated Soil (binomial) Oorl
Dominant Clay (binomial) Oorl 25501)11 to
m
Dominant Silt (binomial) Oorl (varies)
Dominant Sand (binomial) Oorl

Using the training set (80% of CPTs), models were next developed to remotely predict LP/ as a function

of PGA and M,,, which may be viewed as “demand” variables, and of the ten geospatial variables, which may

10
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be viewed as “capacity” variables. The latter can be compiled at national scale in advance of model application.
The former are available at regional scale minutes after an earthquake (e.g., via a single “ShakeMap” file
(Wald et al., 2005)) or for various future earthquake scenarios. Like other geospatial models, this gives the
model near-real-time functionality, such that ground failure can be predicted at regional scale minutes after an
event. Various ML/DL techniques were explored, including Gaussian process models (e.g., Rasmussen and
Williams, 2006), support vector machines (SVM) (e.g., Vapnik, 1995), decision trees (e.g., Rokach and
Maimon, 2008), model ensembles with bagging, gradient boosting, or random forests (e.g., Breiman, 1996;
Piryonesi et al., 2021; Ho, 1998) and neural networks (e.g., Glorot et al., 2010). In general, modeling
approaches that are easier to interpret tend to have lower predictive accuracy (e.g., single decision trees,
support vector machines), while those with higher accuracy (e.g., neural networks, or ensembles of decision
trees) are typically very complex to interpret. Each approach has numerous options and internal parameters
(i.e., “hyperparameters”) (e.g., neural net optimization algorithm, activation function, and layer quantity and
size; regression tree leaf size; Gaussian basis and kernel functions; SVM kernel scale and box constraint).
Once promising models were identified, hyperparameter optimization was employed, such that the
hyperparameter values that minimized the model error were identified via an automated optimization scheme.
5-fold cross-validation was used to control overfitting, as is common in model development. Additionally,
training and test performance metrics were compared for signs of overfitting (i.e., better training performance
than test performance), which was inferred when performance metrics from the training and test sets differed
by at least 4%. In this regard, models with slightly lower accuracy but without overfitting were favored over
models that achieved the highest training accuracy but with suspicion of overfitting. Because many ML/DL
algorithms either require or perform better when variables have a Gaussian distribution, all predictors were
BoxCox transformed (Box and Cox, 1964) and normalized to have values between 0 and 1. Ultimately, the
software in which the prediction models are implemented performs all necessary computations, and as such,

no pre-processing of data is required (e.g., predictor variables are input in their native format).

3. Results and Discussion

Using the aforementioned methodology with relatively modest sets of training data and predictor variables,
several dozen preliminary models were trained. Of these, two were ultimately adopted for further
implementation and testing. The first model is a boosted ensemble of decision trees, wherein numerous
relatively weak models are coalesced to form one high-quality model. For brevity, we henceforth refer to it as
the “ML model.” The theory and algorithm underlying this approach — which is commonly included in machine
learning toolkits (e.g., Scipy, TensorFlow) — is explained in detail by Friedman (2001). An excellent overview
of its practical implementation is provided by Elith et al. (2008). The growth of a decision tree involves

establishment of recursive binary splits, such that specific combinations of model inputs map to a predicted
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output. However, because a single tree is prone to overfitting and tends not to be very accurate, models that
ensemble many decision trees are preferred. In “gradient boosting”, a strong learner is sequentially built from
weak learners, wherein each tree attempts to diminish the errors of the previous tree by gradually increasing
emphasis on observations poorly predicted by the ensemble. While gradient boosting is slow, it generally
produces a more accurate model compared to other assembling algorithms (e.g., bagging or random forests)
(Piryonesi et al., 2021). With respect to performance, the ML model achieved a mean absolute error (MAE)
(LPI units) of 3.58 and 3.72 on the training and test sets, respectively, as summarized in Table 3. As discussed
previously, the unbiased test set consists of LPI data from CPT sites unknown to the model during training.
The second model is a deep (7-layer) artificial neural network, which we henceforth refer to as the “DL
model.” With roots in the 1980’s (e.g., Hopfield, 1982), this now ubiquitous approach mimics the perceived
structure of the human brain, with layers of interconnected nodes. At the most basic level, DL models have
four components: inputs, weights, a threshold, and an output. Connections between nodes are modelled as
weights, such that positive and negative weights indicate excitatory and inhibitory connections, respectively.
If the output from an individual node is above a specified threshold, the node is activated, sending data to the
next layer of the network. An activation function then controls the amplitude of the output at each node. As
DL models have multiple layers, the above process is repeated multiple times, with each layer potentially
passing information from the previous layer to the next. During training, the weights are iteratively adjusted
to optimize model performance. Like the ML model, DL models are quite convoluted, rendering simple
interpretations of the inner workings infeasible, since single node weights have little physical meaning, and
since millions of connections may be present in a model. As shown in Table 3, the DL model achieved a MAE
of 4.13 and 4.20 on the same respective datasets (i.e., it performed slightly worse than the ML model). Given
the limited training set and preliminary nature of the ML and DL models, we also create a third “Ensemble
model" by averaging the outputs of the ML and DL models. The merging of two models with different
structures could have the effect of “stabilizing” predictions and, conceivably, provide benefits unrealized
during testing. As shown in Table 3, the ensemble performs better than the DL model and worse than the ML
model, although all are similarly efficient when considering the range of the LPI/ domain (i.e., zero to 100).

The performance of these models, and other results in Table 3, will be further discussed momentarily.

Table 3. Summary of model performance (mean absolute error) on the training, test, and overall datasets.

Model Mean Absolute Error (LPI Units) Mean Absolute Error (Probability Units)
Training Test Overall Training Test Overall
ML 3.5814 3.7237 3.6642 7.1691 7.6482 7.3698
DL 4.1329 4.2097 4.175 8.6918 8.9609 8.7894
Ensemble 3.743 3.8499 3.8039 7.6491 8.0338 7.7967
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While the convoluted nature of ML/DL models tends to obscure simple interpretations of model function
(e.g., relative to traditional regression), insights into the ML decision-tree ensemble can be gained via predictor
importance (e.g., Auret and Aldrich, 2011), which may be interpreted as the relative contribution of each
variable to model accuracy. Accordingly, the relative importance of each variable was computed and is plotted
in Fig. 4, where variables are sorted from most to least important. This approach and presentation mirrors that
of Durante and Rathje (2021), who explored the ML prediction of lateral spreads using geospatial data. As
could be expected, the magnitude-scaled PGA and predicted groundwater depth had the largest importance,
given the mechanistic relationship between these inputs and computed LP/. Also of relatively large importance
were the measured distance to river and predicted depth to bedrock, which correlate to the expected thickness
and geomorphology of deposits. Bedrock at shallow depth limits LP/ while bedrock at very large depth
suggests the presence of a sedimentary basin, which tends to collect sands and silts in a low-velocity flow
regime. The presence of a nearby river, particularly in combination with flat topography, suggests a similar
geomorphology, while also indicating that the deposits are likely young and saturated. Of the compiled
geologic data, the predicted predominance of clay was most important, whereas the predicted predominance
of silt was least important. This aligns with expectations, given the established use of plasticity index to infer
liquefaction susceptibility within mechanistic models. Whereas soils classifying as clay are rarely susceptible,
silts are an intermediate soil whose liquefaction response is difficult to predict from name alone. We
hypothesize that the overall importance of mapped soil type could increase if the set of training sites was larger
and more diverse, given that the set used herein does not span the full range of geologic conditions that may
be encountered. While the computed predictor importance gives insights into decision-tree models, we are
unaware of any analogous tool for studying neural networks, which thus remain relatively more convoluted.

Following prediction of LPI via the ML, DL, or Ensemble models, probabilities of ground failure were
computed using the Geyin and Maurer (2020a) fragility functions, which are conditioned on LPI. As an
example, the test and training set performance is shown in Fig. 5 for the ML model. Here, the “predicted
probability” is the output when LP/ is predicted via the geospatial ML model, whereas the “actual probability”
is that when LPI is computed from the CPT data. Also shown in Fig. 5 are linear trendlines (green dotted lines),
from which assessments of overall prediction bias may be made. The ML model’s MAEs of 3.58 and 3.72
(LPI units) on the training and test sets translate to MAEs of 7.17% and 7.65% in probability units (Table 3).
These comparisons (i.e., predicted vs actual probabilities of ground failure) provide the clearest context of
model performance, given that the consequences of an LP/ error vary widely depending on the LP/ value. A
prediction of LP/ =17, for example, is relatively erroneous if the actual LP/ is 2, since this translates to a ~65%
overprediction of ground-failure probability (Geyin and Maurer, 2020). In contrast, a prediction of LPI = 87
is very accurate if the actual LPI is 72, given that the probability of ground failure is nearly identical whether

LPI is 87 or 72. For this reason, direct comparison between predicted and actual LP/ values is arguably less
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362  meaningful. As seen in Fig. 5, the model is generally unbiased on the training and test sets, but it does exhibit
363  relatively more bias on the latter, such that the predicted probability of ground failure has an average tendency
364  to be 2% greater than actual. This might be attributable to the dataset’s modest size, such that the test set has

365  features unrepresented in the training set.

Relative Predictor Importance (%)
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Fig. 5. Probability of ground failure: ML prediction vs. actual for the (a) training dataset; and (b) test dataset.

Green dotted lines = linear trendlines, from which prediction bias may be judged.
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3.1 Field Application and Testing

To demonstrate and test forward predictions at regional scale, the ML, DL, and Ensemble models were
next used to predict ground failure in eleven U.S. earthquakes across two types of datasets. Performance was
assessed using field observations and compared against the Rashidian and Baise (2020) model in all events.
Due to the paucity of recent, well documented U.S. earthquakes outside of California, these tests cover a
relatively narrow geographic range. Further testing on future events in other U.S. regions is thus needed. In
the first series of tests, regional scale predictions are compared to mapped observations of ground failure in
six events: (1) 1989 M,,6.9 Loma Prieta, California; (ii) 1994 M,,6.7 Northridge, California; (iii) 2001 M,,6.8
Nisqually, Washington; (iv) 2003 ,,6.5 San Simeon, California; (v) 2011 M,,5.8 Mineral, Virginia and (vi)
2016 M, 7.1 Ridgecrest, California. In these events, mapped observations of liquefaction-induced ground
failure were obtained from the USGS Ground Failure Database (Schmitt et al., 2017a,b), except for
observations in the 2011 Mineral and 2016 Ridgecrest events, which were respectively obtained from Green
et al. (2015) and Zimmaro et al. (2020). The quantities of mapped observations in these six events are
respectively 129, 41, 44, 12, 35, and 2. In these datasets, mapped observations are exclusively “positive” (i.e.,
a lack of liquefaction is not explicitly mapped). It was therefore assumed that liquefaction did not manifest if
none was documented, as has been previously assumed in the development of geospatial hazard models (e.g.,
Zhu et al., 2017). While this assumption may at times be invalid and inevitably introduces uncertainty, it
facilitates rapid, regional-scale testing across a variety of topographic and geomorphic environments. In this
regard, we view performance in the context of model comparisons and not as an absolute measure of efficacy.
Later, a separate dataset containing positive and negative observations at discrete sites will be studied.

For each earthquake, a USGS ShakeMap file with all requisite seismic data (i.e., M,, and mapped PGA and
PGYV) was obtained in .xml format. The adopted geospatial predictor variables were then compiled across the
ShakeMap extents (i.e., the area of perceptible shaking). As an example, these inputs are mapped in Fig. 6 for
the 1989 Loma Prieta earthquake. It can be seen in the final two panels of Fig. 6 that while unconsolidated soil
covers ~40% of the study area, the dominant soil type is infrequently mapped as either sand, silt, or clay.
Although soil lithology is always defined in the Horton et al. (2017) compilation, it is not always used by the
models developed herein for one of two reasons. First, not all dominant soil types were found to be useful in
the early stages of modelling. Some mapped soil types (e.g., marl, gravel, peat) have insufficient in-situ test
data to elucidate and quantify the relationship between soil type and liquefaction hazard. Second, the mapped
lithology is sometimes not predicted to a useful degree of specificity (e.g., as “sand” or “clay”), but rather, is
defined only as “coarse detrital” or “fine detrital.” These broad classifications were similarly found not to be
useful, which might be expected given that particle gradation is generally not efficient or sufficient for
classifying liquefaction hazard. Accordingly, the model benefits from knowledge of the mapped soil type when

it is clay, sand, or silt, whereas if the mapped soil type is not one of these classifications, it is inherently treated
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as having a general unconsolidated character. It is likely that additional geologic descriptors would be useful
to future models that use larger and more diverse sets of training data. Following compilation of the adopted
geospatial predictor variables, probabilities of ground failure were computed using the three models developed
herein and RB20. These probabilities are mapped in Fig. 7 for the 1989 Loma Prieta earthquake, along with

observations of ground failure.
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Fig. 6. ML/DL model predictor variables mapped across the area effected by the 1989 Loma Prieta earthquake.
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Fig. 7. Probabilities of ground failure in the 1989 Loma Prieta earthquake, as computed by the: (a) RB20; (b)
ML; (c) DL; and (d) Ensemble models. Black dots are observed ground failures.

Model performance was quantified using ROC AUC values, as is common for binomial classifiers, and
which give equal weighting to false positive and false negative predictions. Samples were collected on a 100

m by 100 m grid across the ShakeMap extents. Grids wherein ground failures were observed were classified
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as “positive” and those without any documented evidence as “negative.” This resulted in several million data
points per event, although the exact quantity depended on the event’s area of influence. While the method of
geospatial sampling has been shown to influence computed 4UC values (Lin et al., 2021b) (e.g., if an equal
number of positive and negative points were sampled instead), we found that relative performance was
insensitive to this decision (i.e., the best and worst models were the same in each event across a range of
sampling techniques). Plotted in Fig. 8 are ROC curves for each model in the 1989 Loma Prieta earthquake
from which AUC values were computed. Arranged by AUC, the best performing models were RB20 (4UC =
0.949), Ensemble (AUC = 0.945), DL (AUC = 0.944), and ML (4AUC = 0.931). The four models thus exhibited
very similar efficiencies, with the Ensemble model slightly outperforming the individual ML and DL models.
Following the same methodology, analyses were performed for the 1994 Northridge and 2001 Nisqually
events, as mapped in Fig. 9, and for the 2011 Mineral and 2016 Northridge events, as mapped in Fig. 10. A
summary of model performance — as quantified by AUC — is presented in Table 4 for these events and others
yet to be discussed. It can be seen that RB20 outperformed the Ensemble model in three of the six events.
Specifically, in Loma Prieta by 0.4%, in Northridge by 3.5%, and in Nisqually by 1.3%. Conversely, the
Ensemble model outperformed RB20 in San Simeon by 0.3%, in Mineral by 2.9%, and in Ridgecrest by 1.4%.
The models proposed herein thus demonstrate efficacies similar to RB20 for these specific events. While these
measured differences in performance fluctuate with different sampling techniques, the overall conclusion of
apparently similar performance remains the same. In subsequent analyses, it will be determined whether these

measured differences in performance are statistically significant.
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Fig. 8. Receiver Operating Characteristic (ROC) curves for the RB20, DL, ML, and Ensemble models.
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model. Black dots are observed ground failures.
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model. Black dots are observed ground failures.

Table 4. Summary of AUC values for events and datasets described in the text, as computed for the ML, DL,
and Ensemble models developed herein, and for the RB20 model.

Dataset 1 Dataset 2

Vodel 11;;);;: Northridge | Nisqually Sifl?e:)n Mineral Ridgecrest ;-101: toC:;::
DL 0.944 0.803 0.931 0.665 0.655 0.992 0.682
ML 0.931 0.812 0.920 0.980 0.733 0.945 0.765
Ensemble 0.945 0.813 0.933 0.979 0.732 0.992 0.734
RB20 0.949 0.848 0.946 0.976 0.703 0.978 0.504
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Additional observations from Figs. 7-10 and Table 4 are as follows. First, with respect to model bias, the
RB20 model was either originally trained (by Zhu et al., 2017) or later calibrated (by Rashidian and Baise,
2020) using the same observational data adopted herein for testing, except for the Ridgecrest earthquake data
which postdated Rashidian and Baise (2020). In contrast, the ML/DL models were trained on CPTs from areas
affected by the Loma Prieta, Northridge, and San Simeon events, but not directly on the field observations
adopted for testing. Moreover, the Nisqually, Mineral, and Ridgecrest earthquakes provide completely blind
tests of the ML/DL models since no data from these events/regions were included in training. While a more
rigorous analysis of bias is not undertaken, nor critical to the thesis of this study, we nonetheless note that the
preceding tests were generally biased in favor of RB20.

Second, it was observed that the DL model is relatively sensitive to predicted water table depth, as
compared to the ML and RB20 models. In this regard, erroneous predictions by the DL and Ensemble models
were often associated with erroneous expectations of the groundwater depth. As an example, predictions in
the 2003 San Simeon earthquake by the DL and RB20 models are mapped in Fig. 11. Specifically, an area
near the towns of Oceano and Grover Beach, California is shown, where numerous ground failures were
observed as mapped in Fig. 11. Because the Fan and Miguez-Macho (2020) model predicts a groundwater
depth of ~20 m beneath the northernmost features, the DL model predicts a near-zero probability of ground
failure, whereas RB20 generally predicts a probability of 5-15%. Due largely to this behavior, the DL and
RB20 models had respective AUCs of 0.665 and 0.976 for this event. To assess the influence of more accurate
inputs, nearby well measurements were obtained from the California Department of Water Resources (DWR,
2020), indicating that groundwater is shallower in this area than expected by Fan and Miguez-Macho (2020).
Using this more accurate input, the models were rerun, as mapped in Fig. 11. While the RB20 and ML models
correspondingly displayed slight improvements (~1% increase in 4 UC), the DL model’s AUC increased nearly
30% to 0.990. Similar behavior could be observed in other events at a lesser scale, from which we conclude
that the performance of the DL model would likely improve with more accurate groundwater maps.

Third, considering the three models developed herein, the Ensemble model outperformed both the ML and
DL models in three events. The ML model performed best in two other events, and in the last event the DL
and Ensemble models tied for best performance. Considering all tests (i.e., both the blind prediction of LP/
and now the regional-scale prediction of ground failure), the DL model lacks statistical support for individual
use. Accordingly, and in conjunction with the DL model’s sensitivity to groundwater data, we recommend
adoption of the ML or Ensemble models. Ultimately, additional tests in other events, and ideally additional

model training and improvements, are needed before one model is recommended over another.
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Fig. 11. Probabilities of ground failure in the 2003 San Simeon earthquake, with and without correction of
measured ground water table (GWT) depths: (a) RB20 before GWT correction; (b) RB20 after GWT
correction; (c) DL model before GWT correction; and (d) DL model after GWT correction. Black dots are

observed ground failures.

Towards that end, a second dataset of 101 well-documented liquefaction case histories was also used to
test performance. These cases, which consist of both positive and negative observations, were sourced from
Geyin and Maurer (2021a), who compiled from the literature all CPT-based case histories from all earthquakes
in the U.S. to-date. Namely, the: (i) 1971 M,, 7.6 San Fernando; (ii) 1979 M,,7.6 Imperial Valley; (iii) 1981
M,5.9 Westmoreland; (iv) 1983 M,6.9 Borah Peak; (v) 1987 M,6.2 Elmore Ranch; (vi) 1987 M,6.5
Superstition Hills; (vii) 1989 M,,7.6 Imperial Valley; and (viii) 1994 M,,6.9 Northridge earthquakes. In the

resulting compilation, liquefaction manifestations were observed in 57% of cases and were not observed in the
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remaining 43%. The four geospatial models were applied to each event and 4UC values were computed for
the composite dataset, as given in Table 4. In this analysis, the ML/DL models performed much better than
RB20, which had an AUC near 0.5, an efficiency akin to random guessing. Of the models developed in this
study, the ML model performed best (AUC = 0.765). In contrast to the initial series of tests, however, those
using this second dataset might be biased in favor of the ML/DL models, since some of the 101 sites held
CPTs included in the dataset of 1,712 used in model development. While these tests provide another datapoint
for consideration, wherein it is known with confidence that the field observations are correctly classified, we
prefer not to glean definitive new conclusions, given the possibility of bias and small size of the dataset.
Lastly, to assess whether the findings presented thus far might change with consideration of finite-sample
uncertainty, P-values were computed using the nonparametric method of DeLong et al. (1988) to assess
whether differences in AUC could result by chance (i.e., due to limited field data) and not because one model
is more efficient than another. The P-values computed by this approach are probabilities that two A UC samples
could have come from the same distribution. Since this approach requires 4UC normality, Anderson-Darling
and Lilliefors tests (Anderson and Darling 1952; Lilliefors 1967) were used to confirm that all samples came
from a normal distribution. P-values were computed to compare each model to all others in the six regional
analyses, and in the dataset of CPT case histories. These values, which indicate whether differences in model
performance are statistically significant, are presented in Table 5. A significance level of 0.05 was adopted,
such that P-values below 0.05 were deemed significant. All else being equal, small P-values can be expected
when: (i) differences between two AUC values are large; or (ii) the uncertainties of AUC values are small; or
(ii1) distributions have high correlation. Using this criterion, Table 5 compares all model pairs and identifies
which is significantly better. The model with better AUC, as reported in Table 4, is indicated in Table 5 via
the cell shading. If the cell is shaded orange, the model in the left column is better, whereas if the model in the
top row is better, the cell is shaded grey. The values given in each cell are the P-values; those less than 0.05
are highlighted via bold font and a red border. Table 5 can thus be used to determine whether differences in
model performance, as first presented in Table 4, are statistically significant. Notable observations from Table
5 are: (i) in the initial series of six events at regional scale, the Ensemble model was significantly better than
RB20 in two events (Mineral and Ridgecrest), RB20 was significantly better than the Ensemble model in one
event (Northridge), and the two models were statistically indifferent in the remaining three (Loma Prieta,
Nisqually, and San Simeon); and (ii) in the analysis of CPT case history sites, the Ensemble, ML, and DL
models were significantly better than RB20. Collectively, these results suggest that the ML/DL models, which
were trained on a modest dataset, predict ground failure with similar or better efficiency as RB20 and thus
warrant further application, evaluation, and development. And, as is common in the prediction of ground
motions, storm tracks, and other natural hazards, the proposed prediction models could be ensembled with

other geospatial liquefaction models, thereby capturing the epistemic uncertainty of model development.
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Table 5. [Color] P-value matrix to compare model performance. ML = machine learning model; DL = deep learning model; RB20 = Rashidian and

Baise (2020); and ENS = ensemble of ML and DL models, as described in the text.

Statistically

Bett Nisqually Loma Prieta San Simeon Northridge Ridgecrest Mineral CPT Case Histories
etter

DL RB20 | ENS DL RB20 | ENS DL RB20 | ENS DL RB20 | ENS DL RB20 | ENS DL RB20 | ENS DL RB20 | ENS

0.484 | 0.285 | 0.405

0.221 | 0.473

- =

| 0.004 | 0.002 | 0.000

0.138 | 0.596

0.613

0.279

0.001 | 0.017 | 0.002
0.341

0.016

0.396 | 0.121

0.002

0.004

0.000

*Cell values are the P-values (i.e., probabilities) that 4UC samples from two prediction models could have come from the same parent distribution (i.e., be statistically indifferent). The model with
better AUC, as reported in Table 4, is indicated via the cell shading. Values less than 0.05 are deemed “significant” and are highlighted via bold font and a red border.
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3.2 Software Implementation

Arguably, a limitation of any ML/DL model is the lack of a defined analytical expression easily ported
and executed via hard copy. By corollary, simple interpretations of model structure and form are also generally
lacking. While these detractions may be significant to traditionalists, it is clear the use of algorithmic learning
will only grow in the field of geotechnics and geohazards, given its demonstrated capabilities when provided
with large datasets. It is critical, however, that trained ML/DL models be provided as code, ideally in a format
accessible to a broad userbase. Despite this necessity, enumerable ML/DL models have been published without
code, meaning that while a model may be available for use by the respective developers, it is not easily accessed

by the broader community, and is therefore not readily applied, tested, or improved upon by others.

@ Rapidliqv.1.0 - O X

Raster Tabular

Input ShakeMap

Extract Model Parameters

38.933

34.967

32.983
-126.6 -124.096 -121.592 -119.087 -116.583

Run RAPID [lI§

-

Fig. 12. User interface of RapidLig (Geyin and Maurer, 2021b), which runs the ML, DL, Ensemble, and RB20
models. RapidLig may be downloaded from: https://doi.org/10.17603/ds2-4bka-y039.

To facilitate user adoption and evaluation, the ML, DL, Ensemble, and RB20 models were programmed
into RapidLig (Geyin and Maurer, 2021b), a new Windows software program with a simple-to-use interface

(Fig. 12). While the Rashidian and Baise (2020) model is widely referenced, it is not commonly implemented
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by individual users, owing to the predictor variables that must first be compiled. These variables, and those of
the proposed models, are compiled within RapidLig, making user implementation trivial. The only required
input is a ShakeMap of ground-motion parameters (i.e., PGA, PGV, M,,), either in Extensible Markup
Language (.xml) or Geotagged Image File (.tiff) format. The first is easily downloaded from the USGS
earthquake catalog (https://earthquake.usgs.gov/earthquakes/search/) minutes after an earthquake, or for
numerous future scenario events. The second is a more general, flexible format, allowing for motions from
various sources to be analyzed. The software then extracts predictor variables across the ShakeMap extents
and outputs geotiff files mapping the probabilities of liquefaction-induced ground failure. These files may be
viewed within the software or explored in greater detail using GIS or one of many free geotiff web explorers
(e.g., http://app.geotiff.io/). The software also allows for tabular input, should a user wish to enter specific sites
of interest and ground-motion parameters at those sites, rather than study the regional effects of an earthquake.

At present, RapidLig operates in the contiguous U.S. and completes predictions within 10 s for most events.

3.3 Limitations and Uncertainties

The geospatial models developed and tested herein are best suited for regional-scale applications where
subsurface testing is infeasible (e.g., disaster simulation and loss estimation; planning and policy development;
and emergency response and reconnaissance) or for preliminary site assessment in advance of subsurface
testing. While such models have recently been adopted for a variety of uses, they are not intended to guide
engineering design and do not replace the need for rigorous site-specific analyses of liquefaction hazard. In
this regard, the proposed models predict liquefaction at a relatively coarse spatial resolution, given the
resolutions of the geospatial predictor variables (see Table 2), and can thus easily fail to capture more localized,
small-scale features that correlate to higher or lower liquefaction hazard.

Inherently, the findings presented herein are tied to the data analyzed. The applicability of these findings
to other earthquakes elsewhere — particularly in regions underrepresented in model training — is unknown.
Similarly, using the models beyond the range of the predictor variables studied herein (Table 2) could likewise
introduce greater uncertainty. In addition, it should be emphasized that “ground failure,” the ultimate
prediction target, refers to free field liquefaction-induced surface settlement, cracking, and ejecta on ground
that is generally level. Users should understand limitations of the LPI manifestation model to predict lateral
spreading, which is a distinctly damaging expression influenced by complex subsurface and topographic
features. Given that LPI and other similar manifestation models may be poor predictors of lateral spreading
(e.g., Maurer et al., 2015b; Rashidian and Gillins, 2018), the proposed models may likewise predict it poorly.
In this regard, the ground-failure datasets on which the models were tested might include lateral spreads, which
could have the effect of reducing the measured model efficiency. Moreover, the proposed models do not

explicitly predict damage to specific infrastructure types or assets, which would require detailed site and asset-
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specific modeling. In this respect, liquefaction could trigger at depth and damage infrastructure without
otherwise manifesting or could manifest without otherwise causing damage.

As discussed herein, the performance of any geospatial model is inherently tied to the resolution and
accuracy of predictor variables, some of which are themselves predictions rather than measurements (e.g., the
depth of groundwater). Inherently, the accuracy of liquefaction predictions is related to the accuracy of inputs,
with some models having greater sensitivity to specific inputs. In the present effort, measurement and modeling
uncertainties were not considered, and as such, the model outputs should be considered as median probabilities
of ground failure. This should not be interpreted to mean that uncertainties do not exist. Among other
uncertainties that could be considered in the future, ShakeMap IMs are uncertain; the prediction of LPI via
geospatial variables is uncertain; and LP/ is an uncertain predictor of ground failure. In the future, ML/DL
techniques (e.g., Gaussian Process Regression) could be used to account for these uncertainties and make
probabilistic predictions. Additionally, the most efficient geotechnical models for predicting liquefaction will
inevitably change over time. In this regard, the proposed approach could be conditioned on models other than
LPI, to include emergent mechanistic methods that may better capture the system-level response of soil profiles
(e.g., Cubrinovski et al., 2019; Bassal and Boulanger, 2021; Hutabarat and Bray, 2021). For the present
moment, the models proposed herein appear to perform as well as, and potentially better than, the current state-
of-practice geospatial model (i.e., RB20), but were developed using an altogether different approach, and thus
warrant further application. Ultimately, additional tests in past or future events are needed to confirm the

findings presented herein and summarized below.

4. Conclusions

This paper presented a new approach to geospatial modeling of soil liquefaction that is driven by
algorithmic learning but pinned to a mechanistic framework. In effect, subsurface measurements are predicted
remotely within the framing of a popular model for probabilistically predicting ground failure. This merges a
body of knowledge built over the last 50 years with the potential of machine and deep learning to predict
subsurface conditions remotely. As hypothesized herein, this modeling approach has potential advantages over
others used to date. Using this approach, three models termed ML, DL, and Ensemble were trained to predict
LPI values in the absence of subsurface test data. This training utilized a modest dataset of 1,712 CPTs
distributed across the US and a similarly modest set of twelve predictor variables. These consisted of two
demand variables (i.e., PGA and M,,) and ten capacity variables (i.e., predicted ground water depth, measured
distance to river and measured distance to coast, predicted depth to bedrock, measured annual precipitation,
predicted Vsso, and the predicted (binomial) presence of unconsolidated soil, sandy soil, clayey soil, and silty
soil). The capacity variables can be compiled at national scale in advance of model application. The demand

variables are available at regional scale minutes after an earthquake or for various future earthquake scenarios.
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Lastly, the predicted LPI values are transformed to probabilities of ground failure using an existing fragility
function trained on all globally available liquefaction case histories.

The developed models were shown to provide efficient predictions in unbiased, forward application and
were tested against the RB20 geospatial model. Collectively, these tests indicate that the proposed models
warrant application and further evaluation. The proposed and RB20 models are available in RapidLiq, a free
Windows program. Ultimately, significantly more in-situ geotechnical tests are available for model training,
both in the U.S. and globally. Whereas ground-failure inventories are likely to grow slowly, the subsurface
data needed to train the proposed approach exist in massive quantities. These data require compilation across
different formats (some requiring digitization) and test types (e.g., CPTs and SPTs), as well as access from
various entities, both public and private. However, community geotechnical datasets in New Zealand, Austria
and Germany, Italy, and Washington State, for example, currently contain more than 40,000 CPTs. Similar
datasets are likely to be created elsewhere. Likewise, the quantity of prospective geospatial predictor variables
far exceeds that utilized in this study. As additional variables that more efficiently and sufficiently correlate to
subsurface conditions are identified, the merits of the proposed modeling approach may be further realized.
Expanding upon this approach, improved geospatial liquefaction models could thus potentially be developed
for regional, national, or global applications. The limitations of geospatial models (e.g., the uncertainty, spatial

resolution, and non-mechanistic nature of geospatial inputs) should be well understood by potential users.
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