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Probabilistic Seismic Source Inversion from Regional Landslide Evidence 
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Abstract: In regions of infrequent but potentially damaging seismicity, modern earthquake inventories may be 

insufficient to provide inputs to seismic-hazard analyses (i.e., fault locations and magnitude-frequency relations). As 

a result, analysis of paleoseismic evidence, such as coseismic landsliding, is commonly used to help elucidate the 

seismic record, thereby reducing seismic-hazard uncertainty. However, while paleolandslides have been investigated 

widely, existing inverse-analysis techniques (i.e., to constrain the causative earthquake magnitude and/or ground 

motions) have several shortcomings. Namely, they: (i) require the location of the causative earthquake to be known; 

(ii) provide only a lower-bound estimate of seismic parameters; and (iii) are deterministic in nature.  Accordingly, this 

paper proposes a flexible inversion framework that probabilistically constrains seismic-source parameters from 

regional paleolandslide evidence. The outputs of this framework are: (i) a geospatial likelihood surface that constrains 

the location of fault rupture; and (ii) a probability distribution of the rupture magnitude. Simulated paleolandslide 

studies are performed on modern earthquakes with known parameters. These examples demonstrate the framework’s 

provocative potential as well as important lessons for implementation. The proposed framework has the potential to 

extract new insights from relic landslide evidence in seismic zones worldwide.   

1. Introduction 

In many seismic zones, the return period of potentially damaging earthquakes is longer than the duration of 

seismic observation. As a result, earthquake catalogs may be insufficient to inform the inputs requisite for seismic-

hazard analyses (i.e., the locations, magnitudes, and frequencies of fault ruptures). The uncertainties of these 

parameters are of significant interest, given that they influence the computed seismic hazard adopted by building codes 

and used by policy makers (e.g., Vidale et al., 2011). In such cases, paleoseismic relics (i.e., artifacts from pre-historic 

or pre-instrumental earthquakes) are commonly studied to elucidate the seismic hazard. This includes turbidites (e.g., 

Goldfinger et al. 2012), tsunami deposits (e.g., Peters et al. 2007), dendrochronology (e.g., Atwater et al. 1991), soil 

liquefaction (e.g., Maurer et al. 2015), microfossils (e.g., Engelhart et al. 2013), geochemical markers (e.g., O’Donnell 

et al. 2017), and seafloor morphology (e.g., Watt et al. 2017). Among the many types of such evidence that have been 

analyzed, paleolandslides are particularly valuable for their ability to “record” the intensity of prior ground motions. 

This distinction is owed to the fact models exist for predicting landslides as a function of ground motions (or at a 

minimum, ground-motion intensity measures, IMs). In forward hazard analyses, wherein the seismic loading is given, 

these models are widely used to predict future landslides. In paleoseismic studies, wherein the outcome is given (e.g., 

landslides were or were not observed), the models can be inverted to constrain the ground motions that likely would, 

and would not, produce the observation (e.g., Yagoda-Biran et al. 2010; Wang 2020). Although the date of an 

earthquake, and thus the recurrence rate, can be derived from many types of evidence, few have a quantifiable 

relationship with ground motion parameters (e.g., Rasanen et al. 2021). In this respect, paleolandslides are more than 

just a proxy of past shaking, given that they may quantitatively constrain the motions experienced.    

While paleoseismic studies have significant influence on computed seismic hazards in some regions (e.g., 

Petersen et al. 2008; 2014), paleolandslide research has to-date generally focused more on field investigations (i.e., 

identification, interpretation, and dating of landslides) and less on advancing the inversion procedures to constrain the 

causative seismic parameters. All phases of investigation are important, but the focus of this study is on the latter. 

Notably, existing paleolandslide analysis methods suffer from up to three shortcomings. First, existing methods are 

underpinned by the need to locate the earthquake that induced the observed field of evidence (e.g., earthquake 

magnitude cannot otherwise be constrained). This requires assumptions in many settings (e.g., where faults are blind 

or historically quiescent), and in turn, may lead to erroneous characterizations of the seismic hazard. Second, existing 

methods have traditionally analyzed slopes with observed landslides (i.e., positive observations) but not slopes without 

 
1 Graduate Research Assistant, University of Washington, Seattle; rrasanen@uw.edu 
2 Assistant Professor, University of Washington, Seattle; bwmaurer@uw.edu 



   
 

2 

 

observed landslides (i.e., negative observations). As a result, derivative estimates of shaking intensity and/or 

earthquake magnitude are inherently lower-bound estimates, even if this is not explicitly stated. Third, existing 

methods have been deterministic in nature, whereas paleolandslides involve multiple uncertainties that should be 

accounted for probabilistically to arrive at a transparent and useful characterization of the seismic hazard.  

Accordingly, the objective of this paper is to formulate and test a probabilistic framework for inverting seismic-

source parameters from ancient landslides. Analyzing regional evidence, this framework computes the likelihood of a 

rupture with given location, geometry, and magnitude producing a set of field observations, wherein various 

measurement and modelling uncertainties may be included. Repeating for a near-infinite number of possible faults 

results in a regional-scale understanding of the likely source parameters. The degree of successful constraint will be 

investigated using tests on modern earthquakes with known parameters. That is, simulated paleolandslide studies will 

be performed to assess the framework’s efficacy. In the following, existing paleolandslide analytics are briefly 

summarized, to include discussion of the aforementioned shortcomings. An overview of the framework proposed 

herein is then given, followed by specific implementation details. Lastly, tests of the framework on four modern 

earthquakes are presented, from which important lessons and caveats for forward use are gleaned.  

1.1 Existing Paleolandslide Analytics and Their Shortcomings 

Paleolandslide studies can potentially provide information about the dates, locations, and magnitudes of 

paleoearthquakes, as well as the resultant, regionally distributed ground motions. A complete study of paleolandslides 

is three phased: (i) field identification and interpretation; (ii) dating; and (iii) constraint of the earthquake magnitude 

and/or ground motion under which the field of evidence was formed. Interpreting whether a paleolandslide is of 

seismic origin is inherently challenging. Crozier (1992), for example, proposed six criteria for this purpose, as based 

on observations in New Zealand. In general, the most important markers of seismic origin are: (i) multiple 

spatiotemporally clustered landslides for which (ii) static slope-stability analyses predict stability even in saturated 

conditions; and where (iii) other paleoseismic evidence of the same age is also found. For overviews of field 

identification and interpretation, the reader is referred to Jibson (1996) and Clague (2014), which may be 

complimented with specific case studies that highlight the use of remote-sensing technology (e.g., Sutinen et al. 2014). 

Once identified, paleolandslides may be dated via radiocarbon (e.g., Stout 1977; Ojala et al. 2018); optically stimulated 

luminescence (e.g., Katz et al. 2011); dendrochronology (e.g., Hupp et al. 1987; Struble et al. 2020), cosmic ray 

exposure (e.g., Le Roux et al. 2009; Mackey and Quigley 2014), and several relative dating approaches (e.g., 

lichenometry – Bull et al. 1994), among others. Ideally, multiple dating methods are used to reduce uncertainty 

(Johnson 1987). A comprehensive overview of dating methods is given by Jibson (1996) and Panek (2015). Panek 

(2015) also provides a list of regions with well-established landslide chronologies. These regional chronologies – 

excellent examples of which include Chen et al. (2012) and Martino et al. (2014) – form both the basis of paleoseismic 

research and the landslide inventories required to train and test improved landslide prediction models. In some cases, 

these chronologies may provide more recent analog events that aide in the interpretation of older paleoearthquakes. 

Following field interpretation, dating, and inventorying, the techniques by which the causative earthquake 

magnitude and/or shaking intensity are quantitatively constrained are generally called back- or inverse-analysis 

methods. While several such methods have been used, we refer to the two most common and credible to-date as the 

“magnitude-bound” method (e.g., Keefer 1984; Rodriguez et al. 1999; Papadopoulos and Plessa 2000; Delgado et al. 

2011) and the “site-specific stability analysis,” or for brevity, the “site-specific” method (e.g., Jibson and Keefer 1993; 

Strasser et al. 2006; Yagoda-Biran et al. 2010; Wang 2020; Junquera-Torrado et al. 2021). 

The magnitude-bound method uses a correlation relating earthquake magnitude to the site-to-source distance of 

the most distal landslide observation (typically in terms of epicentral distance). Variants of this method relate 

earthquake magnitude to the area affected by landslides (e.g., Tanyas et al. 2018). Developed from observations in 

modern earthquakes, these correlations traditionally use empirical data from variable geologic-tectonic settings. As 

an example, Fig. 1 presents the magnitude-bound correlation developed by Keefer (1984) using data from 40 global 

earthquakes that occurred AD 1811-1980. This curve can be used to estimate the lower-bound magnitude required to 

induce landslides at a given site-to-source distance. Subsequent authors (e.g., Rodriguez et al. 1999; Delgado et al. 
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2011) have generally corroborated the Keefer (1984) curves for more recent earthquakes. The shape of any such curve 

is a function of seismic source, path, and site effects (e.g., rupture mechanism, ground motion attenuation, and site 

effects), as well as landslide susceptibility (e.g., strength parameters, slope angle, and water table location). Because 

these factors vary spatially, region-specific correlations may provide more accurate estimates than those developed 

from global data (e.g., Papadopoulos and Plessa 2000; Chen et al. 2012; Martino et al. 2014; Comerci et al. 2015). As 

evident from Fig. 1, application of this method results in constraint of a paleoearthquake’s magnitude, wherein the 

maximum site-to-source distance of landsliding is the only required input. Knowing or estimating the source location 

is thus critical, yet the magnitude-bound method provides little means to locate it. Additionally, as a lower-bound 

method, the actual magnitude is potentially much larger than predicted. But, despite the uncertainties inherent to 

magnitude-bound curves, probabilistic correlations have yet to be developed. Is it thus unclear what a “lower bound” 

prediction is in statistical terms.   

 

 

Fig. 1. Magnitude-bound curve proposed by Keefer (1984) for world-wide earthquakes, where site-to-source distance 

is quantified in terms of maximum epicentral distance to disrupted landslides. 

The second, more technical site-specific method uses a dynamic slope-stability analysis based on some 

combination of geospatial, geologic, and geotechnical measurements. Several approaches of differing sophistication 

are available to predict dynamic slope stability, depending on the degree to which site-specific profiling and 

measurements are available. These include empirical (e.g., Nowicki et al. 2018), limit equilibrium (e.g., Morgenstern 

and Price 1965), sliding block (e.g., Jibson 1993), and non-linear dynamic models (e.g., Boulanger 2019). In a 

paleoseismic analysis, wherein the outcome is given (i.e., landslides did or did not occur), any of these models can be 

used to determine ground motions that likely would, and would not, produce the observed outcome. While 

implementations have varied greatly with time and place (e.g., Jibson and Keefer 1993; Strasser et al. 2006; Yagoda-

Biran et al. 2010; Meunier et al. 2013; Wang 2020; Junquera-Torrado et al. 2021), the site-specific method can: (i) 

constrain ground-motion parameters likely to produce outcomes at individual sites; and (ii) by analyzing regional 

evidence, give an estimate of the causative earthquake magnitude. If, for example, a slope-stability model was adopted 

that characterized seismic demand in terms of earthquake magnitude (Mw) and some intensity measure (IM), then a 

limit-state condition could, for a given slope, be computed to separate combinations of Mw and IM sufficient to induce 

landsliding from combinations that are insufficient. This is shown conceptually in Fig. 2a. Because there are infinitely 

many such combinations, a ground-motion model (GMM) is used to determine credible combinations for a given site, 

as shown in Fig. 2b (dashed line), where the GMM predicts the IM as a function of Mw and site-to-source distance (R), 
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among other factors. As indicated in Fig. 2b, the portion of this line plotting above the defined limit state corresponds 

to credible Mw-IM combinations that could induce a landslide at the site, given a rupture at some distance R. The 

intersection of the GMM with the limit state thus defines the minimum Mw expected to induce a landslide.  

As evident from Fig. 2, site-to-source distance must be known to perform the site-specific method, as it presently 

exists. This can lead to inaccurate assumptions, and by corollary, erroneous results (e.g., where fault locations are 

unknown, or where prospective causative faults are plentiful). In addition, implementations of this method (e.g., Jibson 

and Keefer 1993; Strasser et al. 2006; Yagoda-Biran et al. 2010; Wang 2020; Junquera-Torrado et al. 2021) have 

ignored negative observations (i.e., slopes without landslides), the analysis of which would result in an upper-bound 

Mw-IM combination (i.e., had the seismic loading been larger, a landslide would be expected). Moreover, existing 

implementations have not considered the uncertainties inherent to ground-motion and landslide prediction. These 

implementations thus have the same shortcoming as the magnitude-bound method in that they provide a deterministic, 

lower-bound constraint on the causative earthquake magnitude.  

 

Fig. 2. (a) IM – Mw combinations required to induce a landslide for a hypothetical site; (b) Determination of credible 

lower-bound IM – Mw combination. GMM = ground motion model. 

2. Methodology 

The proposed framework is described in two parts. The first presents a conceptual overview and simple hypothetical 

application. The second provides implementation details to assist analysts in applying the framework, and to describe 

the validation tests that will be performed subsequently. 

2.1 Overview of Proposed Framework 

Analyzing regional paleolandslide evidence, the proposed framework aims to probabilistically constrain the causative 

seismic source from a near-infinite number of possibilities. This will be accomplished by assessing the likelihood that 

a rupture with given location, geometry, and magnitude would produce a series of field observations (sites with and 

without landslides) wherein uncertainties inherent to ground motion and landslide modelling may be considered. In 

general, the likelihood of a parameter having a value, given a set of observations, is the product of the probabilities of 

those observations, conditioned on the parameter value. The likelihood of a seismic source having some location (𝐿), 

geometry (𝐺), and magnitude (𝑀𝑤), given a set (x) of field observations at N different sites, can thus be computed as: 

𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 (𝐿, 𝐺, 𝑀𝑤|𝑥) = 𝑃(𝑋 = 𝑥|𝐿, 𝐺, 𝑀𝑤)  =  ∏  𝑃(𝑋𝑖 = 𝑥𝑖|𝐿, 𝐺, 𝑀𝑤)𝑁
𝑖=1                   (1)                   
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Where 𝑃(𝑋𝑖 = 𝑥𝑖|𝐿, 𝐺, 𝑀𝑤) is the probability of the observation at site i (landslide or no landslide) given an 

earthquake with parameters L, G, and Mw. By repeating for a near-infinite number of possibilities, the most likely, 

actual rupture parameters are probabilistically constrained via the likelihood function (product of the probabilities of 

N observations), such that different combinations of L, G, and Mw will be found more and less likely to produce the 

observed field evidence. In Eq. (1), the probability of a field observation, conditioned on all input variables, is 

computed at sites with and without landslides using Eqs. 2a and 2b, respectively:  

𝑃(Landslide|EQK: 𝐿, 𝐺, 𝑀𝑤) = ∫ 𝑃(Landslide|𝐼𝑀)
𝐼𝑀

𝑓(𝐼𝑀|𝐿, 𝐺, 𝑀𝑤) ∙ d𝐼𝑀                  (2a) 

𝑃(No Landslide|EQK: 𝐿, 𝐺, 𝑀𝑤) = 1 − ∫ 𝑃(Landslide|𝐼𝑀)
𝐼𝑀

𝑓(𝐼𝑀|𝐿, 𝐺, 𝑀𝑤) ∙ d𝐼𝑀             (2b) 

Where 𝑓(𝐼𝑀|𝐿, 𝐺, 𝑀𝑤) is a probability density function (PDF) computed by a ground motion model (GMM) 

considering site response, and conditioned on fault parameters L, G and Mw; and 𝑃(Landslide|𝐼𝑀) is the probability 

of observing a landslide, given ground-motion intensity measure IM, as computed by a landslide prediction model.  

The proposed framework is demonstrated conceptually in Fig. 3 considering four hypothetical field sites, where a 

landslide is observed at site numbers one and two, but not at site numbers three and four, and two possible source 

locations for the earthquake that produced the observations. In actual analyses, a near-infinite number of source 

locations may be considered. Fig. 4 illustrates how the relative likelihoods of locations one and two are assessed. 

Shown in Fig. 4a are the probabilities of individual field observations, given an earthquake at location one, as 

computed by Eq. 2 for varying Mw. At sites with a landslide, the probability of the field observation increases with 

increasing Mw, whereas at sites without a landslide, the opposite occurs. In Fig. 4b, this process is repeated considering 

an earthquake at source location two. In Fig. 4c, the likelihood of each source location is computed as a function of 

Mw, per Eq. 1 (the product of the black and gray curves). It can be seen that location one has a far greater peak 

likelihood, whereas an earthquake at location two is unlikely to produce the field observations, regardless of its Mw. 

Repeating this process at a near-infinite number of locations, a geospatial surface of peak likelihood can be developed, 

potentially constraining the location of fault-rupture. Moreover, for any location considered, the likelihood distribution 

of earthquake magnitude is computed, as shown in Fig. 4c. This can be interpreted as a PDF of the causative earthquake 

magnitude, conditioned on a seismic-source location. By aggregating PDFs from potential source locations across the 

study area, an overall PDF of earthquake magnitude, considering all possible source locations, is produced. In 

situations where the source location is well constrained, the overall PDF is similar to the PDF conditioned on a single, 

most likely source location. In contrast, when the source location is less well constrained (e.g., due to limited field 

evidence), the overall PDF is wider than that conditioned on the single most-likely location. Collectively, these 

products (i.e., probability distributions of rupture location and magnitude) are inputs to regional and national 

probabilistic seismic hazard analyses. 

 

Fig. 3. Hypothetical paleolandslide analysis consisting of four field sites, where a landslide was observed at sites one 

and two (black circles), but not at sites three and four (gray circles). Also shown are two possible sources for the 

earthquake that produced these observations. 
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Fig. 4. Conceptual illustration of the proposed framework for locating the source of the earthquake that produced the 

field observations depicted in Fig. 3: (a) probabilities of field observations, given an earthquake at location one of 

varying Mw; (b) probabilities of field observations, given an earthquake at location two of varying Mw; (c) likelihood 

vs. Mw for source locations one and two. 

 

2.2 Implementation Details 

The implementation of Eqs. 1 and 2 is next discussed in detail. This includes general concepts, as well as the specific 

methods and models adopted herein for application to four modern earthquakes. While further details will be provided 

later, the framework will be applied to four events in California, USA, from which landslide inventories are available 

in Schmitt et al. (2017): (i) 1971 Mw6.6 San Fernando; (ii) 1983 Mw6.7 Coalinga; (iii) 1989 Mw6.9 Loma Prieta; and 

(iv) 1994 Mw6.7 Northridge. Owing to the modular form of the proposed framework, in which ground motions and 

landslides are separately predicted in series, it is easily modified for alternative and future prediction methods. In this 

regard, the Nowicki et al. (2018) landslide model, which uses geospatial variables, will be adopted in the current study 

for its ease of application. Using this model, the probability of a landslide, P(x), is: 

𝑃(𝑥) =
1

1+𝑒−𝑥                                                                   (3) 

where   𝑥 = 𝑎 + 𝑏 × ln 𝑃𝐺𝑉 + 𝑐 × 𝑆𝑙𝑜𝑝𝑒 + 𝑑 × 𝐿𝑖𝑡ℎ𝑜𝑙𝑜𝑔𝑦 + 𝑒 × 𝐿𝑎𝑛𝑑 𝐶𝑜𝑣𝑒𝑟 + 𝑓 × 𝐶𝑇𝐼 + g × ln 𝑃𝐺𝑉 × 𝑆𝑙𝑜𝑝𝑒                                                     

In Eq. (3), coefficients a through 𝑓 are logistic regression coefficients trained on 23 landslide inventories. 𝑃𝐺𝑉 is peak 

ground velocity (cm/sec);  𝑆𝑙𝑜𝑝𝑒 is the ground slope (degrees) computed from the 7.5 arc-second resolution Global 

Multi-resolution Terrain Elevation Data (GMTED) (Danielson and Gesch, 2011); 𝐿𝑖𝑡ℎ𝑜𝑙𝑜𝑔𝑦 is obtained from the 

global lithology (GLiM) database of Hartmann and Moosdorf (2012); 𝐿𝑎𝑛𝑑 𝐶𝑜𝑣𝑒𝑟 is obtained from the global land 

cover (GlobCover) maps of Arino et al. (2012); and 𝐶𝑇𝐼 is the compound topographic index (a proxy for soil wetness) 

and is obtained from the Hydrologic Derivatives for Modeling and Analysis (HDMA) database (Verdin 2017). Per the 

recommendation of the U.S. Geological Survey (USGS 2021) who use the Nowicki et al. (2018) model in post-

earthquake data products, we: (i) exclude areas with slopes less than 5°; and (ii) revise the lithologic ‘𝑑’ coefficient 

for "unconsolidated sediments" from -3.22 to -1.36, which is the coefficient for "mixed sedimentary rocks" to better 

reflect that this unit is expected to be weak. Mapped in Fig. 5 for the Los Angeles metropolitan region, which will be 

studied herein, are the four “capacity” variables used by the Nowicki et al. (2018) model.   
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Fig. 5. Geospatial capacity variables used by the Nowicki et al. (2018) landslide model. 

While empirical hazard models like Nowicki et al. (2018) have outperformed mechanistic models in some settings 

(Geyin et al. 2020), we generally assume that the adopted model is not the most accurate available. However, this 

model allows for the proposed framework to be readily implemented on multiple events, each with numerous study 

sites. In a paleolandslide study, wherein site- or region-specific profiling and material shear-strengths may be 

available, an improved empirical or mechanistic landslide model could be employed (e.g., limit equilibrium, sliding 

block, or nonlinear dynamic analysis). In cases where the mode of landsliding may be discerned, mode-dependent 

models, which potentially offer improved prediction efficiency, could be used. The basic approach, however, would 

not otherwise be different. To implement the framework, an analyst must: 

(1) Create an array of possible source locations. In this paper, a 250 km by 250 km grid of surficial points, which will 

be treated as possible earthquake epicenters, was adopted and centered on the landslide field, such that the grid’s 

borders far exceed the extent of landslides. Within the grid area (62,500 km2 in this study), a finer point spacing 

gives greater spatial resolution while a coarser spacing allows for faster runtime. Balancing these ideals, a l km 

spacing was adopted for a 10,000 km2 area at the center of the grid, while a 10 km spacing was adopted for the 

remainder of the 62,500 km2 study area. In the event that points in the coarsely-spaced region are identified as likely 

sources, the grid can be recast at higher spatial resolution (i.e., to further constrain the likely source location, if 

possible).  

(2) Select N study sites where the presence or absence of landslides was observed. Ideally, and as implemented in this 

work, an equal number of sites with and without landslides is selected to limit sampling bias.  
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(3) Select an appropriate GMM for the parameters required by the landslide model. In this paper, the Chiou and Youngs 

(2014) GMM for crustal earthquakes in active tectonic settings was adopted to predict PGV in all events. 

(4) For each provisional seismic-source locale created in (1): 

(5) For each provisional seismic-source Mw being considered (a range of Mw5 to Mw9 was used in this paper, in 

increments of 0.1Mw, with the Mw5 lower limit chosen following Keefer (1984)): 

(6) For each of N study sites selected in (2), cycling from i = 1 to N: 

(7) Compute the site-to-source distance(s) required by the GMM chosen in (3), as measured from study site i to the 

provisional seismic sources. In this paper, the required metrics include Joyner-Boore distance (RJB) and the closest 

distance to fault rupture (RRUP). Since the seismic sources generated in (1) are epicenters, rather than 3-dimensional 

faults, the correlations of Scherbaum et al. (2004) were used to estimate RJB from epicentral distance (REPI), 

assuming a strike-slip fault with dip (δ) of 90°. The Scherbaum et al. (2004) correlations, which are magnitude 

dependent, effectively convert the point sources from (1) into a statistical realization of a 3-dimensional fault. RRUP 

was calculated per the Pythagorean theorem using estimates of RJB (computed as in the above) and the depth to top-

of-rupture (ZTOR). ZTOR was estimated using the correlation of Kaklamanos et al. (2011), which requires as inputs 

the: down-dip rupture width (W); hypocentral depth (ZHYP); and δ. Following the recommendation of Kaklamanos 

et al. (2011), W and ZHYP were respectively estimated per the methods of Wells and Coppersmith (1994) and 

Scherbaum et al. (2004). It should be noted that the Scherbaum et al. (2004) RJB correlation was used beyond the 

5.0 < Mw < 7.5 parameter space of the data used to train it. As a result, some adjustments to physically indefensible 

values were needed at very small and large Mw: (i) if RJB  > REPI, RJB  = REPI; (ii) if RJB  < 0, RJB  = 0. 

(8) Using the GMM selected in (3) and site-to-source distances from (7), compute the PDF of expected PGV at study 

site i, wherein the time-averaged shear wave velocity over the top 30 m (VS30) is consistent with site i. In this paper, 

the fault source was assumed to have strike-slip parameters (δ = 90° and rake, λ = 0°) and VS30 was estimated by the 

method of Heath et al. (2020). Topographic amplification was not considered but could be if incorporated into future 

GMMs. In general, the probability distribution of PGV is assumed to be a lognormal random variable defined by 

the median and lognormal standard deviation provided by the GMM. In this paper, PGV predictions beyond +/- 3 

standard deviations of the median are truncated, as is typical in ground-motion modeling (since such values may be 

physically impossible) and the PDF is scaled upwards such that the area under the truncated PDF is one. 

(9) For each possible PGV value at study site i, as computed in (8) for a given Mw and site-to-source distance pair (a 

PGV increment of 5 cm/s was adopted in this paper): 

(10) Compute the probability of a field observation using Eq. 2a or 2b, depending on whether landslides were or were 

not observed at study site i. Completing these equations (i.e., by summing over all PGV values) gives the probability 

of field observation at site i for a given provisional source location and Mw. Repeating steps 6-10 for each provisional 

Mw being considered results in a probability of field observation versus Mw curve for each study site, examples of 

which are shown in Figs. 4a and 4b.  

(11) Compute the likelihood of a provisional source locale, as a function of Mw, by multiplying the probabilities of field 

observations at all study sites (i.e., multiply the curves shown in Fig. 4a or 4b at each value of Mw). The result, an 

example of which is shown in Fig. 4c, is akin to a PDF of the causative earthquake magnitude, conditioned on a 

single seismic-source location. 

(12) Repeating steps 5-11 for all provisional seismic source locations created in (1) results in a likelihood distribution 

for each, as described in (11).  

(13) Following from (12), normalize the peak likelihood at each source location by the peak likelihood among all 

locations. This allows for the relative likelihoods of source locations to be assessed, with the most likely location 

having a normalized value of one. The Mw corresponding to the peak likelihood (see Fig. 4c) is the median Mw likely 

to produce the field observations, given that an earthquake at the source location occurs.  

(14) From the arrays of normalized likelihood and median Mw, create geospatial surfaces or contours to identify the most-

likely source location and median Mw, conditioned on that location.  

(15) Finally, by aggregating PDFs from all potential source locations across the study area, an overall PDF of earthquake 

magnitude, considering all possible source locations, is produced. While a single source location will always be 

deemed “most likely,” earthquakes at multiple other source locations have potential to produce the field of evidence, 
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albeit with lesser likelihood.  In general, this overall PDF will be wider (i.e., have greater uncertainty) than the PDF 

conditioned on the single most likely source, especially when the source zone is not well constrained (e.g., due to 

limited field evidence).  

3. Simulated Application 

The proposed framework, as outlined above, provides probabilistic constraint on both the location and Mw of a seismic 

event considering landslide evidence. To investigate the degree of successful constraint and glean lessons for future 

use, simulated paleolandslide studies are next performed on four modern events with known seismic sources. As in 

any paleolandslide analysis (and paleoseismic research in general), the need exists, where judicious, to classify sites 

as “positive” and “negative” (i.e., landslides are, or are not, present). Inherent to the subsequent applications, it is thus 

assumed that the presence or absence of landslides would be accurately interpreted in a paleoseismic investigation, 

and moreover, that landslides would be properly attributed to a causative earthquake. These assumptions are not 

intended to diminish the importance of interpreting and dating earthquake-induced landslides in the field, which is 

both difficult and uncertain. The objective herein is to advance seismic-source inversion techniques, rather than to 

discuss or simulate the field investigations prerequisite for all such analyses.  

In each event, the inverted, probabilistic source location and magnitude will be compared to the actual, known 

parameters. However, no prior knowledge of the seismic source is incorporated into the analyses. In addition, because 

the four earthquakes are modern, the number of study sites available from reconnaissance (i.e., slopes with and without 

observed landslides) is very large (e.g., 10,000+ in some events). Given that this far exceeds the number of field sites 

conceivable of a regional paleolandslide study, analyses will be performed on randomly selected samples of 100 study 

sites from each event (50 slopes with observed landslides, 50 slopes without). Because modern landslide inventories 

are comprised almost exclusively of positive observations, we assume slopes within a given survey area did not 

experience slides if none are mapped. While this inevitably introduces uncertainty, it facilitates rapid implementation 

of the proposed framework and is not dissimilar from a paleoseismic study, wherein an absence of evidence may not 

be evidence of absence. The preservation and sampling of evidence is further discussed later in the paper.   

3.1 San Fernando, California 

The 1971 Mw6.6 San Fernando, California earthquake occurred on the Sierra Madre Fault (Carena and Suppe 2002). 

An inventory of observed landslides was obtained from Morton (1971), as compiled by Schmitt et al. (2017), and is 

mapped in Fig. 6a. A representative example of the framework’s output is in Fig. 6 for an analysis using 100 randomly 

selected study sites; the surface projection of the 1971 fault rupture is also shown. Mapped in Fig. 6a are contours of 

relative likelihood, wherein values near one and zero respectively denote source locations most and least likely to 

produce the observed evidence. Mapped in Fig. 6b are contours of Mw, indicating the rupture magnitude most likely 

to produce the observed evidence, given an earthquake at that location (i.e., the median Mw, conditioned on location). 

As seen in Fig. 6a, the analysis identified a relatively well-constrained area as the likely source. This aligns with 

the actual rupture, such that the identified, most likely source falls within the surface projection of the fault that 

ruptured. In addition to this fault, other known faults in the region are mapped, such that their computed potential to 

produce the evidence field may be assessed. It can be seen that other potential seismic sources in the region are all 

judged unlikely to produce the observed evidence. As shown in Fig. 6b, the median magnitude corresponding to the 

most-likely source location was Mw6.6, matching the actual magnitude. Because Mw contours tend to map as 

concentric circles centered on the evidence field, as in Fig. 6b, these contours are provided in Appendix A for the 

remainder of events. In addition to the median Mw of Mw6.6, other Mw values at the most-likely source location could 

inevitably produce the evidence field (e.g., if ground motions were higher or lower than the median expectation). 

Shown in Fig. 7a is the full PDF of Mw, conditioned on the most likely source location, which is analogous to the 

conceptual PDFs shown in Fig. 4c. The 95% confidence interval (CI) is Mw6.25- Mw6.80. Moreover, as shown in Fig. 

6a, earthquakes elsewhere have potential to produce the evidence field, albeit with lesser likelihood. By aggregating 

individual PDFs from all locations across the 62,500 km2 study grid, an overall PDF that includes source-location 

uncertainty is produced. This PDF, which is also shown in Fig. 7a, has a median of Mw6.6 and 95% CI of Mw6.25- 
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Mw6.90. Unless the causative fault can be constrained via on-fault (or some other) evidence, this latter, more uncertain 

PDF would be the more appropriate product of a paleolandslide analysis.  

 
 

 

Fig. 6. Representative analysis of 100 study sites (50% positive, 50% negative) randomly selected from the 1971 

Mw6.6 San Fernando, California earthquake inventory: (a) contours showing the relative likelihood of earthquake 

source locations; and (b) corresponding Mw most likely to produce the field evidence, if the earthquake occurred at a 
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given location. Black rectangles = actual fault projection (Carena and Suppe 2002); faint purple lines = other mapped 

faults in the region (California Geological Survey 2014); blue polygons = complete inventory of mapped landslides.  

  

  
 

Fig. 7. PDFs of earthquake magnitude inverted from regional landslide evidence in the: (a) 1971 Mw6.6 San Fernando; 

(b) 1994 Mw6.7 Northridge; (c) 1989 Mw6.9 Loma Prieta; and (d) 1983 Mw6.7 Coalinga earthquakes. Shown are the 

PDFs conditioned on the most-likely source location (solid lines) as well as the aggregate PDFs considering source-

location uncertainty (dashed lines).  

For comparison, the magnitude-bound curve of Keefer (1984) (later corroborated by others) was used to predict 

the magnitude of the event, as has been employed in paleoseismic studies. To do so, the centroid of all mapped 

landslides was assumed to be the source location, from which the site-to-source distance of the most distal landslide 

was measured to obtain a minimum magnitude of Mw5.1 using Fig. 1. Applications of the “site-specific” approach, 

wherein a minimum ground-motion for sliding is established, would similarly result in a lower-bound magnitude. By 

contrast, the proposed framework allows for all uncertainties to be considered, resulting in a more meaningful, 
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probabilistic understanding of source location and magnitude. In general, as the number of field sites increases, the 

uncertainty bounds on location and magnitude decrease, and vice-a-versa.    

3.2 Northridge 

The 1994 Mw6.7 Northridge, California earthquake occurred on a deeply buried blind thrust fault (Updike et al. 1996) 

in proximity to the 1971 San Fernando event. Landslide inventories were obtained from Harp and Jibson (1995) and 

Townsend et al. (2020), as compiled by Schmitt et al. (2017), and are mapped in Fig. 8. A representative output is 

shown in Fig. 8 for an analysis using 100 random study sites; the surface projection of the 1994 fault rupture is also 

shown. Mapped in Fig. 8 are contours denoting source locations most and least likely to produce the observed 

evidence. The analysis again identified a relatively well-constrained area as the likely source, ~12 km NW of that 

predicted for the 1971 San Fernando event. It can also be seen that the source with greatest likelihood is ~5 km from 

the actual fault projection, but that locations within the projection do have up to 40% relative likelihood (i.e., they are 

not unlikely). The median Mw (See Appendix A) at the most-likely source was Mw6.8 with a 95% CI of Mw6.5- Mw7.0, 

versus the actual Mw6.7. As with the San Fernando earthquake, this PDF - conditioned on the most-likely source 

location - and the overall PDF reflecting source-location uncertainty, are computed and shown in Fig. 7b. In this 

analysis, the two PDFs provide essentially the same Mw distribution. For comparison, the Keefer (1984) magnitude-

bound curve was used to predict the magnitude as previously described. This resulted in a lower-bound estimate of 

Mw5.65. Thus, the proposed framework provides results that are informative, even if imperfect, especially when 

considering that an empirical landslide model using few site-specific parameters is being employed. 

 

Fig. 8. Representative analysis of 100 study sites (50% positive, 50% negative) randomly selected from the 1994 

Mw6.7 Northridge, California earthquake inventory: contours showing the relative likelihood of earthquake source 

locations. Black rectangles = actual fault projection (Updike et al. 1996); faint purple lines = other mapped faults in 

the region (California Geological Survey 2014); blue polygons = complete inventory of mapped landslides. 
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3.3 Loma Prieta 

The 1989 Mw6.9 Loma Prieta earthquake occurred on the San Andreas Fault (Wald et al. 1991). An inventory of 

observed landslides was obtained from Keefer and Manson (1998), as compiled by Schmitt et al. (2017), and is mapped 

in Fig. 9. The results of a representative analysis of 100 study sites are also shown. The inversion identified a most-

likely source approximately ~2 km from the actual fault projection, with some locations in the projection having up 

to 90% relative likelihood. The corresponding median magnitude was Mw7.1 (Appendix A), with a 95% CI of Mw6.8-

Mw7.3, as shown in Fig. 7c. Aggregating conditional PDFs from across the study area resulted in an overall PDF with 

median Mw7.1 and 95% CI of Mw6.8-Mw7.4, versus the actual Mw6.9. By contrast, the Keefer (1984) magnitude-bound 

curve gives a lower-bound estimate of Mw 5.5. Thus, similar to the 1994 Northridge earthquake, the actual source 

parameters (i.e., location and magnitude) fall within the inverted distributions, even if not precisely at the medians.  

 

 

Fig. 9. Representative analysis of 100 study sites randomly selected from the 1989 Mw6.9 Loma Prieta earthquake 

inventory: contours showing the relative likelihood of source locations. Black rectangles = actual fault projection 

(Wald et al. 1991); faint purple lines = other mapped faults in the region (California Geological Survey 2014); blue 

polygons = complete inventory of mapped landslides. 

 

3.4 Coalinga, California 

The 1983 Mw6.7 Coalinga earthquake occurred on a previously unknown fault along the structural boundary of the 

San Joaquin Valley (Wentworth and Zoback 1990). An inventory of observed landslides was obtained from Harp and 

Keefer (1990), as compiled by Schmitt et al. (2017). The result of a representative analysis of 100 study sites is shown 

in Fig. 10. The inversion accurately located the source, with the identified, most-likely grid point falling within the 

actual fault projection. However, the median inverted Mw here (See Appendix A) was Mw7.3 with 95% CI of Mw7.0-

Mw7.4, as shown in Fig. 7d. In contrast, the actual magnitude, Mw6.7, was deemed to have near-zero probability of 

producing the evidence field. Aggregating conditional PDFs resulted in a similar overall PDF with median Mw7.3 and 

95% CI of Mw6.9- Mw7.6, versus the actual Mw6.7. Thus, the inversion framework significantly overpredicted the 

rupture magnitude, despite accurately predicting its location.  
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This discrepancy could have one or more causes. First, while epicentral grid points were converted to fault 

realizations using site-to-source distance correlations, these realizations may differ from the true source (e.g., with 

respect to fault orientation or depth). This will be further discussed later in the paper. Second, it can be seen in Fig. 10 

that the fault ruptured beneath flat ground (i.e., on the edge of the San Joaquin Valley) and that this terrain extends a 

great distance east of the rupture location. As a result, very few landslides were observed at relatively short site-to-

source distances, and none were observed east of the fault rupture. Analogous to the geolocation of earthquakes using 

seismic-wave arrivals, which relies on distributed seismic instruments, the proposed framework relies on distributed 

study sites (i.e., slopes with and without landslides) to “record” the ground motion. Thus, in events such as this, where 

the evidence field is constrained by topography and/or far from the source, it may be more difficult to detect the 

direction and rate of ground-motion attenuation, and therefore more difficult to constrain the source parameters. Third, 

the inversion framework relies on accurate predictions of ground-motions and landslides. Discrepancies between true 

and inverted seismic parameters are likely whenever these phenomena differ from expectations. An overpredicted 

magnitude could result, for example, if regional ground motions are greater than those predicted by the GMM, given 

the event magnitude (i.e., due to source, path, or site effects like topographic amplification). This could also result 

from landslides occurring more readily than expected, given the predicted ground motions. This is certainly plausible, 

given that the Nowicki et al. (2018) model does not consider local or regional variations in slope stratigraphy and 

material shear strength. Nonetheless, had the analysis been based on the Keefer (1984) magnitude-bound curve, a 

lower-bound estimate of Mw5.4 would result, providing an equally poor constraint. 

 

 

Fig. 10. Representative analysis of 100 study sites randomly selected from the 1983 Mw6.7 Coalinga earthquake 

inventory: contours showing the relative likelihood of source locations. Black rectangles = actual fault projection 

(Wentworth and Zoback 1990); faint purple lines = other mapped faults in the region (California Geological Survey 

2014); blue polygons = complete inventory of mapped landslides. 

4. Discussion and Conclusions 

In regions where the modern earthquake catalog is poorly populated, analyses of paleolandslides may be used to infer 

information about the seismic hazard. However, existing analysis techniques: (i) require assumptions about the 
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causative earthquake’s location, which can lead to inaccurate results; (ii) generally use only “positive” observations, 

leading to lower-bound estimates of Mw; and (iii) have to-date been deterministic in nature, whereas paleolandslides 

involve multiple uncertainties. Accordingly, this paper proposed an approach by which seismic-source parameters are 

probabilistically constrained from regional landslide evidence, resulting in PDFs of rupture location and magnitude. 

Simulated paleoseismic studies were performed on four modern earthquakes in California, USA, wherein the analyses 

were blind to the actual source model (i.e., magnitude, location, geometry). While source parameters were accurately 

constrained in the 1971 San Fernando, 1989 Loma Prieta, and 1994 Northridge earthquakes, the analysis of the 1983 

Coalinga earthquake highlighted possible limitations and lessons for use.  

In these studies, provisional earthquake sources were modeled as epicenters and then converted to statistical fault 

realizations using empirical site-to-source distance correlations. For simplicity, and assuming the fault mechanism 

would be unknown in a paleoseismic study, an archetypical strike-slip fault was assumed, irrespective of the actual 

mechanism. However, because regional ground-motion patterns may be mechanism-dependent, the distribution of 

landslides can also vary, all else being equal (e.g., Tatard and Grasso 2013; Marc et al. 2017). The influence of fault 

mechanism might therefore be considered by repeating with other assumptions (i.e., normal, reverse) and coalescing 

the results via a logic tree. The branch weightings could be equal or informed by knowledge of the seismological 

setting (e.g., if one fault mechanism is believed to be more common). Alternatively, and while computationally 

demanding, the plausibility of 3-D source models could be directly evaluated with minimal modification. That is, the 

framework could quantify the likelihoods of faults with different strike, depth, mechanism, etc. producing an evidence 

field, so long as these faults result in different ground motions at landslide study sites. In this regard, because the 

framework relies on ground motions differing at different sites, it is generally best practice to compile spatially 

distributed study sites, given that multiple sites in proximity may provide little or no additional information. Given 

that the framework relies on predicting multiple phenomena in series, inaccuracies are likely whenever one or more 

of these phenomena differs from expectations. In the present study, the four application earthquakes were in California, 

USA, and were of relatively similar magnitude. Accordingly, these tests do not span the parameter space of geologic, 

seismologic, and climatic settings found on earth, nor do they include especially large- or small-magnitude events. 

However, because the framework is modular in nature, it can readily accommodate different ground-motion and 

landslide prediction models (e.g., region-specific models or models of differing complexity, depending on the 

availability of site-specific information). Above all, the framework remains conceptually valid for all earthquakes in 

all locations, so long as ground motions and landslides are predictable.  

Given its modularity, the framework will also likely improve over time, since better component models are 

continuously proposed. In this regard, the Nowicki et al. (2018) landslide model was adopted herein for its ease of 

implementation to multiple earthquakes. In a paleolandslide study, wherein site- or region-specific profiling and 

material shear-strengths may be available, a more advanced model would potentially improve performance. Finally, 

the inversion framework, as demonstrated in this paper, did not simulate the field interpretation, dating, and 

inventorying prerequisite for inverse-analysis. As an example, and as in any paleolandslide study, the need exists to 

classify field observations as “positive” or “negative” (i.e., landslides did, or did not, occur). In practice, this presents 

a challenge, given the uncertain spatiotemporal potential for landslide evidence to be preserved in the geologic record. 

Inevitably, nearly all evidence from a given event is eventually erased. In such cases, the erroneous classification of a 

“positive” site as “negative” could result in the inverted, causative earthquake magnitude being less than actual. 

Similarly, a field of landslides interpreted to have resulted from one event could be augmented by additional spatially 

distributed earthquakes, or by weather events spaced closely in time. In such cases, the erroneous classification of a 

“negative” site as “positive” could result in the inverted, causative earthquake magnitude being greater than actual. 

As a result, the difficulty of accurate interpretation and analysis is likely to increase for increasingly older events. 

Additionally, the demonstrations presented herein used 100 randomly selected study sites, given the premise that a 

larger quantity would be unlikely in a paleoseismic study. It stands to reason, however, that: (i) analyses using a larger 

quantity of data are likely to be more accurate than those using a smaller quantity of data; and (ii) larger earthquakes 

impacting a larger geographic area are likely to require more data for accurate inversion, as compared to smaller 

earthquakes impacting a smaller area. To evaluate the finite-sample uncertainty of results (i.e., the uncertainty owed 

to incomplete data), the inversion can be repeated multiple times using bootstrap sampling, resulting in a distribution 
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of PDFs. Inherently, this distribution would be wide when a small number of sites are studied (i.e., a different outcome 

could result from studying a different small number of sites) and narrow as the number of sites increases (i.e., the 

outcome would be relatively stable, regardless of which sites are studied). In this regard, uncertainties relating to field 

interpretation, evidence preservation, data selection, and temporal changes over long timescales were not present in 

the simulated studies of four modern earthquakes.  

However, these applications did demonstrate how significant, quantifiable uncertainties can be accounted for via 

the total probability theorem, resulting in a probabilistic understanding of rupture location and magnitude, as inverted 

from landslide evidence. While paleolandslides have been studied and reported widely, less effort has arguably 

focused on advancing the methods for inverting seismic sources from field evidence. Towards that end, the approach 

proposed herein has the potential to provide new insights in regions of persistent seismic-hazard uncertainty. 
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