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Abstract
Cooperative adaptive cruise control (CACC) is one of the popular connected and automated vehicle (CAV) applications for
cooperative driving automation with combined connectivity and automation technologies to improve string stability. This
study aimed to derive the string stability conditions of a CACC controller and analyze the impacts of CACC on string stabi-
lity for both a fleet of homogeneous CAVs and for heterogeneous traffic with human-driven vehicles (HDVs), connected vehi-
cles (CVs) with connectivity technologies only, and autonomous vehicles (AVs) with automation technologies only. We
mathematically analyzed the impact of CACC on string stability for both homogeneous and heterogeneous traffic flow. We
adopted parameters from literature for HDVs, CVs, and AVs for the heterogeneous traffic case. We found there was a mini-
mum constant time headway required for each parameter design to ensure stability in homogeneous CACC traffic. In addi-
tion, the constant time headway and the length of control time interval had positive correlation with stability, but the control
parameter had a negative correlation with stability. The numerical analysis also showed that CACC vehicles could maintain
string stability better than CVs and AVs under low HDV market penetration rates for the mixed traffic case.
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Cooperative adaptive cruise control (CACC), Connected and automated vehicles (CAV), Cooperative driving automation,
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Connectivity and automation technologies in connected and
automated vehicles (CAVs) have the potential to improve
safety, mobility, and the environment in transportation sys-
tems. Cooperative adaptive cruise control (CACC) is one of
the popular CAV applications for cooperative driving auto-
mation with combined connectivity and automation technol-
ogies that can improve string stability (1, 2). String stability
is concerned with how a fluctuation in motion is propagated
through a platoon of vehicles (3, 4). Based on the stability
function by Ward (5), Talebpour and Mahmassani studied
the impact of connected vehicles (CVs, i.e., with connectivity
technology only) and autonomous vehicles (AVs, i.e., with
automation technology only) in mixed traffic with human-
driven vehicles (HDVs) on string stability (6). However,
quantifying the impact of cooperative driving automation in
CAVs (i.e., with combined connectivity and automation
technologies such as CACC) on string stability has yet to be
explored. Therefore, the objective of this study was to derive
the string stability conditions of a CACC controller and ana-
lyze the impacts of CAVs on string stability for both a fleet
of homogeneous CAVs and on heterogeneous traffic with
HDVs, CVs, AVs, and CAVs.

String stability has been analyzed to evaluate CAV
controllers’ performance (7–13). Sun et al. comprehen-
sively reviewed four methods for string stability in car-
following models (14). Feng et al. reviewed and presented
the relationships of the original and several modified
string stability definitions (15). For homogeneous traffic
flow, several CACC controller designs have been pro-
posed with string stability to ensure oscillations are not
amplified to upstream traffic flows (16–23). However, in
the heterogeneous driving environment, although the sta-
bility of mixed CACC traffic flow has been investigated
by Li and Wang (24) and Qin and Li (25), neither studies
simultaneously compared the stability improvements of
CACC vehicles in relation to different market penetra-
tion rates (MPRs) and more vehicle types. In this paper,
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HDVs, CVs, AVs, and CAVs are discussed and com-
pared under different MPRs.

This study focused on the impact of CAVs (with
CACC controllers) on string stability for both homoge-
neous and heterogeneous traffic flow. We first derived
the stability condition for a CACC controller from
research by Milanés and Shladover (26) based on the
transfer function method in a homogeneous CAV traffic
environment. We also conducted a stability analysis of
control parameters based on the stability conditions. To
investigate the impact of CACC on string stability under
heterogeneous traffic, we explicitly defined string stable
and partially stable conditions by applying the stability
function (5) and the critical speed concept developed in
research by Talebpour and Mahmassani (6). The speed
threshold (i.e., critical speed) in which traffic becomes
unstable was used as a stability indicator to define three
stability regions in control parameter analysis: absolutely
stable-, conditionally stable-, and absolutely unstable
regions. The numerical analysis showed that CAVs could
maintain string stability better than CVs and AVs under
low HDV MPRs.

This study makes two significant contributions. First,
we derived the stability condition for the CACC model
proposed by Milanés and Shladover (26) in a homoge-
neous CAV driving environment. The stability conditions
provided a mathematically theoretical foundation for
controller parameter design and stability analysis. We
found a minimum constant time headway was required
for each parameter design to ensure stability. In addition,
the constant time headway and the length of the control
time interval had a positive correlations with stability,
but the control parameter had a negative correlation with
stability. Second, using the stability function proposed by
Ward (5) and the stability analysis presented in research
by Talebpour and Mahmassani for heterogeneous traffic
(6), we explicitly quantified the impact of CACC on
string stability in heterogeneous traffic with HDVs, CVs,
and AVs. The numerical analysis showed that CACC
vehicles could maintain string stability better than CVs
and AVs under low HDVMPRs.

The remainder of this paper is organized as follows:
the next section introduces the acceleration models we
adopted to model HDVs, CVs, AVs, and CAVs. The sta-
bility condition for a fleet of homogeneous CACC vehi-
cles is then derived, and a stability analysis is conducted.
This is followed by a stability analysis of heterogeneous
traffic flow with HDVs, CVs, AVs, and CAVs. Finally,
we present our conclusions.

Model Formulations

In this section, we introduce four acceleration model for-
mulations for HDVs, CVs, AVs, and CAVs, respectively.

We adopted the same HDV, CV, and AV models as
Talebpour and Mahmassani (6). We choose a CACC
model by Milanés and Shladover (26) for CAVs.

Human-Driven Vehicles

Considering that decision making is a cognitive behavior
based on selecting an action from several alternatives,
Hamdar et al. presented an acceleration framework that
adapted prospect theory (PT) to model car-following
behavior (27). PT postulates editing and evaluating in
two phases (28). In the first phase, the model assigns the
utility values to the effective alternatives and then evalu-
ates the alternatives in the second phase. The following
PT value function, UPT anð Þ, is used to transform the
‘‘objective’’ utility into a perceived ‘‘subjective’’ value:

UPT anð Þ=
wm + 1� wmð Þ tanh an

a0

� �
+ 1

� �h i
2

an

1+ anð Þ
g�1
2ð Þ

" # ð1Þ

where
an is the acceleration decision for driver n;
exponent of the PT utility, g.0, and weighting factor,
wm, are parameters; and
a0 normalizes the acceleration.
At each evaluation stage, a driver determines the beha-
vior based on evaluating candidate acceleration alterna-
tives. It assumes that drivers optimally choose the
acceleration
function with the higher value. The total utility function
of acceleration then has the following form:

U anð Þ= 1� pn, ið ÞUPT anð Þ � pn, iwck(v,Dv) ð2Þ

where
pn,i = crash probability of acceleration instance, i, for
driver n;
wc = crash weighting parameters; and
k(v,Dv) = crash seriousness term, respectively.
To reflect the stochastic response adopted by the drivers,
Hamdar calculated the probability density function (29),

f anð Þ=
ebPTU (an)Ð amax

amin
ebPTU (a

0
)da

0 , amin\an\amax

0, otherwise

8><
>: ð3Þ

where bPT reflects the sensitivity of choice to the utility
U anð Þ, and amin and amax are the minimum and maximum
accelerations, respectively. We used this model for
HDVs with the same parameter values as employed by
Talebpour and Mahmassani (6).
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Connected Vehicles

Assuming that CVs can share information with other
vehicles and infrastructure, drivers can determine their
driving behavior from receiving information in this con-
nected environment. Based on capturing more realistic
congestion dynamics than other acceleration modeling
frameworks, the intelligent driver model (IDM) (30, 31)
was used to model the CVs with the same vehicle-to-
vehicle and vehicle-to-infrastructure communication
assumptions as in Talebpour and Mahmassani (6),

anIDM sn, vn, Dvnð Þ= �an 1� vn

vn0

� �dn

� s�(vn,Dvn)

sn

� �2
" #

ð4Þ

s� vn, Dvnð Þ= sn0 + Tnvn+
vnDvn

2
ffiffiffiffiffiffiffiffiffi
�an�bn

p ð5Þ

where
anIDM = acceleration,
sn = actual gap,
s� = desired minimum gap,
vn = velocity, and
Dvn = velocity difference for vehicle n.

Free acceleration exponent, dn, the desired time gap, Tn,
jam distance, sn0, maximum acceleration, �an, desired
deceleration, �bn, and desired velocity, vn0, are parameters
for vehicle n. The improved CV models, which consider
the impacts of driver compliance or communication
topology between vehicles (32–35), are not included in
this paper because our focus is on the impact of CACC
vehicles on traffic stability. Future studies could consider
these improvements and use real-world CV data to cali-
brate model parameters to simulate more realistic cases.

Autonomous Vehicles

By capturing other drivers’ behavior via the on-board
sensors, AVs are assumed to have the capability of react-
ing almost instantaneously to any changes in the driving
environment. We adopted Talebpour and Mahmassani’s
(6) modified microscopic traffic simulation model,
MIXIC, based on research by Van Arem et al. (36). This
model considers sensor characteristics in the modeling
process and assumes that all AVs are equipped with simi-
lar sensors. It is also reasonable to assume that the speed
of the AVs should be low enough to allow them to stop
within the sensor detection range because AVs only can
observe vehicles within their sensors’ detection range.
Desired acceleration, considering safety constraints, is
calculated as

adn tð Þ= ka �an�1 t � tð Þ+ kv � (vn�1 t � tð Þ � vn(t � t))

+ ks �(sn(t � t)� sref )

ð6Þ

where
n and n� 1 represent the AV and its preceding vehicle,
adn is the desired acceleration of vehicle n,
t is the reaction time of the vehicle,
ka, kv, and ks are parameters,
sn is the spacing obtained by the sensor,
sref is the maximum among safe following distances
(ssafe), which is based on the reaction time t (ssystem), and
minimum distance (smin= 2m in this paper).

sref =maxfssafe, ssystem, sming ð7Þ

ssafe =
v2n�1

2
(

1

adeccn

� 1

adeccn�1

) ð8Þ

ssystem = vnt ð9Þ

where
vn = speed of vehicle n,
vn�1 = speed of preceding vehicle, and
adeccn = maximum deceleration of vehicle n.

The maximum safe speed is calculated to consider the
maximum possible deceleration for the AVs as follows:

Dxn = xn�1 � xn � ln�1ð Þ+ vnt+
v2n�1

2adeccn�1

ð10Þ

Dx=minfSensor detection range,Dxng ð11Þ

vmax=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2adeccn Dx

q
ð12Þ

where
xn = position of vehicle n,
ln = length of vehicle n,
Dx = distance within the sensor detection range, and
vmax = maximum safe speed.

Finally, the acceleration of the AVs can be calculated as

an(t)=minfadn tð Þ, k vmax � vn tð Þð Þg ð13Þ

where k is a parameter.

Connected and Automated Vehicles Under Cooperative
and Adaptive Cruise Control

CAVs are considered to interact with other CVs and
infrastructure via sharing information, receiving infor-
mation, or both, and reacting instantly to any changes.
Based on the characteristic of CAVs for cooperative
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driving automation, we selected the CACC model by
Milanés and Shladover (26) as follows:

en = xn�1 � xn � thvn ð14Þ

vn = vnprev + kpen + kd _en ð15Þ

where
en and _en are the spacing error and its first derivative of
vehicle n,
xn and xn�1 are the current positions of vehicle n and its
preceding vehicle,
th is the constant time headway,
vn and vnprev are the speed in the current and previous time
of vehicle n,
kp is the control parameter of spacing error of vehicle n,
and
kd is the control parameter of the first derivative of spac-
ing error (i.e., speed error) of vehicle n.

Stability Analysis for Homogeneous CAV
Traffic Flow

To understand the stability of the selected CACC model
for CAV cooperative driving automation, we derived the
stability conditions under homogeneous CAV traffic
flow. The stability conditions provide a theoretical criter-
ion with which to set control parameters for the CACC
model to guarantee stability.

Stability Conditions

To find the stability conditions, we used the spacing
sn = xn�1 � xn to rewrite the model in Equations 14 and
15 as in Equations 16 and 17,

en= sn � thvn ð16Þ

vn = vnprev + kp sn � thvnð Þ+ kd _sn � th _vnð Þ ð17Þ

where _sn =Dv is the speed difference. In addition, there
is a relationship between vn and vnprev based on the velo-
city formula vn = vnprev + _vnDt, where Dt is the control
time interval. The acceleration of vehicle n can then be
described as

an = _vn =
kpsn � kpthvn + kdDv

kdth +Dt
ð18Þ

Thus, it is easy to identify that the acceleration can be
written as the function of spacing, speed, and speed
difference:

an =
kp

kdth +Dt
sn +

kd

kdth +Dt
Dv+

�kpth

kdth +Dt
vn ð19Þ

Substitute f CAVs =
kp

kd th +Dt
, f CAVDv = kd

kd th +Dt
and

f CAVv =
�kpth

kd th +Dt
into Equation 19 to give

an = f CAVs sn + f CAVDv vn�1 +( f CAVv � f CAVDv )vn ð20Þ

where the derivative of spacing _sn = vn�1 � vn =Dv.
Following the review of stability conditions for car-

following models in the study by Sun et al. (14), we
applied the direct transfer function method to analyze
stability in Proposition 1. The basic idea of the approach
is to focus on the frequency response between the input
and output of a system, which means considering two
consecutive vehicles as a system by which to view pertur-
bation propagation (37).

Proposition 1. For any feasible control parameter, kd ,
Milanés and Shladover’s (26) CACC model is string
stable if Equation 21 is held,

kp.
2Dt

t2h
ð21Þ

where
kp = control parameter,
Dt = control time interval, and
th = constant time headway.

Proof. We used the transfer function, G ivð Þ, between the
input and the output of a system to find the string stabi-
lity criterion. Note that we assumed the perturbation of
the leading vehicle was a steady oscillation, v0 tð Þ= eivt,
and then vn tð Þ=Gn ivð Þeivt (iv is commonly used in con-
trol theory to initialize a steady signal in the frequency
domain).

First, based on this assumption, we can ascertain that

G ivð Þ= fs + ivfDv

fs � v2 � iv fv � fDvð Þ ð22Þ

It is easy to show that the perturbation in the traffic
stream will not be amplified to the upstream traffic if

G ivð Þk k‘ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2s +v2f 2

Dv

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fs � v2ð Þ2+v2 fv � fDvð Þ2

q \1 ð23Þ

Then,

2fs � f 2v + 2fvfDv\v2 ð24Þ

We assumed v ! 0 would place the strongest constraint
on the inequality, which also implies long-wavelength
instability occurs first. Thus, from Equation 24, the string
stability criterion is calculated as
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f 2v
2
� fs � fvfDv.0ø � v2 ð25Þ

Substitute fs =
kp

kd th +Dt
, fDv =

kd
kd th +Dt

and fv =
�kpth

kd th +Dt
,

which can be obtained from Equation 19:

1

2

�kpth

kdth +Dt

� �2

� kp

kdth +Dt
� �kd

kdth +Dt

kpth

kdth +Dt
.0

ð26Þ

In this case, we found the relationship among control
parameter kp, control time interval Dt, and constant time
headway th to gurantee stable traffic. The stability condi-
tion is described as

kp.
2Dt

t2h
ð27Þ

Therefore, kp should be larger than 2Dt=t2h to achieve
string stability in a homogeneous CAV environment.

Based on the stability conditions in Proposition 1, the
following sections focus on the boundary condition of
the traffic state among three factors: the control para-
meter, kp; the constant time headway, th; and the control
time interval, Dt.

The Minimum Constant Time Headway to Guarantee
String Stability

In this section, we will discuss how the minimum con-
stant time headway, tminh , can affect string stability.
According to Equation 27, the perturbation will damp

rather than amplify if the product of the control para-
meter, kp, and the constant time headway, th, is greater
than 2Dt. In general, the time interval, Dt, is set as the
constant value with some physical limitations of the vehi-
cle and communication systems. One example is shown
in Figure 1, which indicates the state relationship
between kp and th. Under a scenario of 0.01 s control
time interval setting, the frontier line of the boundary
conditions for guaranteeing stability shows that tminh gra-
dually decreases when kp increases from 0.1 to 0.9. For
kp = 0:1, tminh is near 0.45 s; in contrast tminh is about 0.15 s
for kp = 0:9. This result indicates that a greater kp needs
a shorter th to guarantee a stable traffic state. In other
words, if th is set as greater than 0.45 s, all possible values
of kp located between 0.1 and 0.9 could be selected to
achieve string stability.

The Impact of the Length of the Control Time Interval
on String Stability

As in Proposition 1, the length of the control time inter-
val, Dt, also influenced string stability. To reveal the rela-
tionship between kp and its corresponding minimum
constant time headway, tminh , under different lengths of
control time interval settings, Figure 2 shows the trends
among Dt= 0:01, 0:02, 0:05, and 0:1 s. In each case, the
results were consistent with the finding relating to the
inversely increasing relationship between kp and tminh (i.e.,
tminh decreases while kp increases). Moreover, the shorter
control time interval setting led to a shorter th. For exam-
ple, for kp = 0:3, tminh was about 0.25 s, 0.35 s, 0.6 s, and

Figure 1. Stability conditions of parameter kp and minimum
constant time headway tmin

h .
Figure 2. Stability conditions of kp and tmin

h under different
control time intervals.
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0.8 s, which corresponded to Dt= 0:01 s, 0:02 s, 0:05 s,
and 0:1 s, respectively. It was clear that Dt= 0:01 s could
guarantee string stability with the shortest minimum con-
stant time headway, tminh .

Therefore, to guarantee stable traffic flow, we found
there was a minimum constant time headway for each
control parameter and time interval setting. The stability
conditions provided a theoretical criterion with which to
select control parameters for the selected CACC control-
ler under homogenous CAV traffic.

Stability Analysis for Heterogeneous Traffic
Flow

The stability conditions of the CACC controller under
homogeneous CAV traffic in the previous section
revealed the criterion with which to select parameter val-
ues to guarantee string stability. This section analyzes
the impact of the cooperative driving automation of the
CACC controller under heterogeneous traffic flow mixed
with HDVs, CVs, and AVs.

Stability Function and Definitions

In general, the acceleration function, an, represents the
driver’s response in a time-continuous model in relation
to the spacing, sn, the speed difference , Dvn, to the pre-
ceding vehicle, and the driver’s speed , vn. Thus, a car-
following model could be simply formulated as follows
(39):

_xn = vn ð28Þ
_vn = f s, Dv, vð Þ ð29Þ

As indicated previously, string stability is a significant
constraint to ensuring perturbations will not be amplified
to upstream traffic. Considering small perturbations in
headway and equilibrium speed of a vehicle in a platoon
of infinite length and linearizing Equations 28 and 29,
Ward (5) presented a simple formula for a heterogeneous
traffic flow to calculate the stability condition. It implies
that the perturbation in the traffic stream will not be
amplified to the upstream traffic in this condition.
Therefore, the traffic flow is regarded as being stable
when the following stability function is positive:

X
n

f n
2

v

2
� f nDvf

n
v � f ns

" # Y
m 6¼n

f ms

" #
.0 ð30Þ

where n denotes the vehicle types and

f ns = ∂f s, Dv, vð Þ
∂s

, f nDv =
∂f s, Dv, vð Þ

∂Dv
, and f nv = ∂f s, Dv, vð Þ

∂v
are

the partial derivatives of the spacing, speed difference,
and speed, respectively. Following Equation 30, this sec-
tion explores the stable regime and the influence of

CAVs in mixed traffic flow composed of HDVs, CVs,
AVs, and CAVs.

Definitions. To clearly describe and compare various traf-
fic conditions, the following definitions were used in this
study. Figure 3 illustrates these definitions graphically.

Definition 1. Free-flow speed, vf. The average speed
of vehicles over an urban street segment without sig-
nalized intersections, or over a basic freeway or multi-
lane highway segment, under conditions of low
volume. (HCM 2000, (38))
In this paper, the free-flow speed vf is set as the speed
limit 30 m=s (= 67:1 mph).
Definition 2. Equilibrium speed, ve. A speed at which
traffic flow is in complete equilibrium and platoon
perturbations do not tend to amplify to upstream
traffic.
From empirical observations, there exists an equili-
brium spacing s� and equilibrium speed ve so that
f s�, 0, veð Þ= 0 (30).
Definition 3. String stable. Traffic flow is string stable
if local perturbations dissipate everywhere, even in
arbitrarily long vehicle platoons (39).
Based on work by Ward (5), when all calculated val-
ues of the stability function (Equation 30) at any equi-
librium speed (ve ł vf ) are greater than 0 (i.e., stable),
the current traffic condition is defined as string stable.
Figure 3 shows the string stable line (blue line), which
is above 0 for the equilibrium speed from 0 to free-
flow speed.
Definition 4. Partially stable. In contrast to string sta-
ble, the partially stable condition means that the val-
ues of the stability function (Equation 30) are not

Figure 3. Stability conditions.
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always greater than 0 and become negative (i.e.,
unstable) at certain equilibrium speeds.
Figure 3 shows an example of a partially stable condi-
tion (red line) that crosses the 0 line for equilibrium
speed from 0 to free-flow speed.
Definition 5. Critical speed, vc. The speed threshold at
which traffic becomes unstable.

With the expansion of the above definitions, this study
followed the definition of critical speed, vc, used by
Talebpour and Mahmassani (6) to define the speed
threshold at which traffic becomes unstable. In other
words, the stability function value firstly becomes nega-
tive at the critical speed, where the critical speed in a
string stable traffic condition is larger than vf and there-
fore defined as vf in this paper. Figure 3 shows the critical
speed, vc, for the partially stable line, where 0ł vc ł vf .
Since the stability function never becomes negative or vc
is greater than vf for a string stable line, we defined
vc ø vf under the string stable condition.

Acceleration Function Derivatives. To determine the stability
condition in Equation 30 (5), we derive the acceleration
function derivatives for HDVs, CVs, AVs, and CAVs in
this subsection.

Acceleration Derivatives for Human-Driven Vehicles. This study
used the PT-based acceleration model by Hamdar et al.
(27) to model HDVs. This model calculates the prospect
index to determine the driver’s behavior choice.
Adopting the Wiener process, Talebpour and
Mahmassani (6) calculated the partial derivatives as in
Equations 31 to 33:

f HDVs =
2

t2max
ð31Þ

f HDVDv =
�2

tmax
ð32Þ

f HDVv =
2a

tmax

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ln

wctmax

2
ffiffiffiffiffiffi
2p

p
ave

� �s

+
2ave

tmax

1ffiffiffi
2

p
ve

ln
wctmax

2
ffiffiffiffiffiffi
2p

p
ave

� �� ��1
2

" # ð33Þ

where
velocity uncertainty variation coefficient a= 0:08,
weighing factor for accidents wc = 10000:0, and
maximum anticipation time horizon tmax= 4:0 s.

Acceleration Derivatives for Connected Vehicles. In the case of
CVs, the partial derivatives of the IDM are described in
Equations 34 to 36:

f CVs =
2�a

s

s0 + Tve

s

� �2

ð34Þ

f CVDv = � ve

s2

ffiffiffi
�a
�b

r
(s0 + Tve) ð35Þ

f CVv = � �ad

v0

ve

v0

� �d�1

� 2�aT

s2
(s0 + Tve) ð36Þ

where
d= 4:0,
T = 2:0 s,
�a= 4:0 m=s2,
�b= 2:0 m=s2, and
s0 = 2:0 m are used in this paper.

Acceleration Derivatives for Autonomous Vehicles. Based on
Talebpour and Mahmassani (6), we assumed that the
acceleration of the leader would be 0 during the estima-
tion time. Thus, the partial derivatives are constant as in
Equations 37 to 39:

f AVs = ks ð37Þ

f AVDv = kv ð38Þ

f AVv = � kst ð39Þ

This study used t= 2:0 s, k= 1:0, ka = 1:0, kv = 0:58,
and ks = 0:1 (36).

Acceleration Derivatives for Connected and Automated Vehicles
With CACC Controllers. In the previous section, we derived
the acceleration model (Equation 19) of Milanés and
Shladover’s (26) CACC controller in relation to spacing,
speed, and speed difference. Then, the partial derivatives
can be easily calculated as in Equations 40 to 42:

f CAVs =
kp

kdth +Dt
ð40Þ

f CAVDv =
kd

kdth +Dt
ð41Þ

f CAVv =
�kpth

kdth +Dt
ð42Þ

Stability Analysis for Mixed HDV and CAV Traffic Flow

The driving environment consisting of HDVs and CAVs
(under CACC) is analyzed in this subsection. We focus
on the stability conditions and the corresponding impacts
of different parameter designs in the CACC model, espe-
cially the relationship among parameter kp, the constant
time headway, th, and the length of control time interval,
Dt. Then, we select the appropriate parameter values and
compare the stability with other vehicle types.
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Stability Conditions for Mixed HDVs and CAVs. Considering
the different compositions of traffic flows, we analyzed
the stability for different MPRs of each kind of vehicle
type. Following Equation 30 presented by Ward (5), the
stability condition for mixed HDVs and CAVs can be
written in Equation 43:

PHDV f CAVs

� � f HDV
2

v

2
� f HDVDv f HDVv � f HDVs

 !

+PCAV f HDVs

� � f CAV
2

v

2
� f CAVDv f CAVv � f CAVs

 !
.0

ð43Þ

where PHDV and PCAV denote the MPR of HDVs and
CAVs, respectively. Figure 4 shows the stability analysis
results of different MPRs of CAVs, where the model
parameters were assigned as in Milanés and Shladover
(26): kp = 0:45, kd = 0:25, th= 1:1 s, and Dt= 0:1 s:
This figure reveals that a higher CAV MPR improved
the stability of traffic flow and even guaranteed string
stability for all speeds from 0 m/s to 30 m/s (this study
set it as the free-flow speed) under the situation of 90%
CAVs.

The Impact of CAV Control Parameters (kp and th) on String
Stability. To further explore the influence of parameter
selection on the CACC controller in heterogeneous traf-
fic flow, this section studies the relationship between sta-
bility and constant time headway, th, for a given control
time interval (e.g., 0.1 s) as the stability condition in

Proposition 1. From the previous discussion, the stability
condition was derived to determine the speed threshold
(i.e., critical speed) of instability. Thus, the critical speed
can be described as

vc =V(kp, th, Dt) ð44Þ

where V is the function of the control parameter, kp, con-
stant time headway, th, and control time interval, Dt.
Furthermore, based on Equation 44 and using Figure 5d
as an example to illustrate the relationship, two indica-
tors, vminc and vmaxc , can be defined as follows:

Definition 6. Minimum critical speed, vmin
c . Given the

MPR of each vehicle type and control time interval,
for all control parameters, kp, and constant time head-
way, th, across from their corresponding lower bounds
and upper bounds, vminc is the minimum of all critical
speeds,

vminc = min vcf g, 8kp 2 ½Lkp , Ukp �, th 2 ½Lth , Uth � ð45Þ

where Lkp and Lth are the lower bounds of kp and th, and
Ukp and Uth are the upper bounds of kp and th. For exam-
ple, as shown in Figure 5d, vminc is the minimum critical
speed 0.3 m/s (marked in red), where
Lkp = 0:35, Ukp = 0:55, Lth = 0:6 s, and Uth = 3:0 s.

Definition 7. Maximum critical speed, vmax
c . Given the

MPR of each vehicle type and control time interval,
for all control parameters, kp, and constant time head-
way, th, across from their corresponding lower bounds
and upper bounds, vmaxc equals free-flow speed, vf , if
there exists a critical speed greater than vf (i.e., string
stable condition defined in Definition 5). Otherwise,
vmaxc is the maximum of all critical speeds.

vmaxc =
vf , if 9 vc.vf

max vcf g, 8 vc ł vf ,

	
8kp 2 ½Lkp , Ukp �, th 2 ½Lth , Uth �

ð46Þ

where Lkp and Lth are the lower bounds of kp and th, and
Ukp and Uth are the upper bounds of kp and th. In Figure 5d,
vmaxc = 30 m=s= vf (marked in dark blue), where
Lkp = 0:35, Ukp = 0:55, Lth = 0:6 s, and Uth = 3:0 s.

Thus, with the characteristic of critical speed, three
cases of stability regions by selecting kp and th can be
described as follows:

Case 1. Absolutely Stable Region. The absolutely stable region
is defined at v\vminc , and then any selection of kp and th
can reach string stable at this speed level. In addition,

Figure 4. Stability analysis of mixed human-driven vehicles
(HDVs) and connected and automated vehicles (CAVs) with
experimental parameter values.
Note: MPR = market penetration rate.
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vminc = vmaxc = vf also means the absolutely stable region
happens at any speed (less than free-flow speed).

Case 2. Conditionally Stable Region. The conditionally stable
region is defined at vminc ł vł vmaxc . At this speed level,
parts of the selection of kp and th can reach string stable
and the other parts of selection of kp and th result in
unstable traffic.

Case 3. Absolutely Unstable Region. The absolutely unstable
region is defined at v.vmaxc 6¼ vf . With the current speed
level, all possible selections of kp and th lead to unstable
traffic flow.

For example, as shown in Figure 5d, the corresponding
critical speed, vc, of each selection of kp and th with 75%

MPR of CAV, vminc = 0:3 m=s, and vmaxc = vf = 30 m=s.

It is clear from this figure that the critical speed grows

when th also increases. On the other hand, the trend for a

larger kp leading to a higher vc at the same th is also

revealed in Figure 5d, via the gradually changing color,

which implies the larger kp produces better stability.
In addition, the plane shape of the critical speed at 30

m/s presents the feasible selections to remain string stable

in the mixed traffic flow. Namely, the larger area of the

plane implies more stable selections of kp and th to choose

from. Therefore, the ideal condition would be the entire

Figure 5. Critical speed analysis of different kp and th with Dt= 0:1 s: (a) 10% connected and automated vehicle (CAV), (b) 25% CAV,
(c) 50% CAV, (d) 75% CAV, and (e) 90% CAV.
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plane at vf so that any selection of parameters will not
affect the stability (i.e., vminc = vmaxc = vf ), that is, the larg-
est absolutely stable region.

However, Figure 5a indicates the opposite of the ideal
condition. As the CAV MPR is 10%, the difference
between vminc and vmaxc is not clear. Both of them are less
than 20 m/s and the whole figure looks like a plane at a
low speed level. This result also implies that no matter
how large th is, the CAV cannot maintain stability as well
as in Figure 5d with the low (10%) MPR.

Figure 5, a to e , show the relationship between criti-
cal speed, kp, and th under 10%, 25%, 50%, 75%, and
90% CAV, respectively. Based on the above analysis, the
larger area at vf presents greater parameter choices that
will ensure string stability of the traffic flow. Comparing
the five scenarios, the 90% CAV scenario has the most
selections with vc = vf . String stable selections are only
evident in Figure 5, c to e (the others are partially stable
selections), which means that CAV has string stability at
a higher MPR. Also, comparing these three figures, the
critical speed of all selections at 90% CAV grows quickly
when th increases. In other words, it has the selection
with the shortest th in this case.

The Impact of the Length of the Control Time Interval on String
Stability. The examples in the above subsection used 0.1 s
as the control time interval for stability analysis. This
subsection studies the impact of the length of the control
time interval on string stability. Figure 6 indicates
Dt= 0:1 s, 0:05 s, 0.02 s, and 0.01 s under different
CAV MPRs. Among several scenarios, high CAV MPRs
(e.g., 75%) illustrate the trend. For example, Figure 6
Row d presents the relationship among kp, th, and critical
speed, vc, with different time intervals under 75% CAV.
Then, observing from Column 1 to Column 4 in Row d,
vc gradually increases. Similar observations can be found
in Rows c and e. This indicates that the smaller the length
of the control time interval, meaning a higher frequent
controller, the better the traffic stability in these cases.

Conversely, the cases of low CAV MPR do not have
such an obvious change among the different time interval
settings. In Figure 6 Rows a and b, the patterns are simi-
lar under different Dt. In other words, the influences of kp
and th on vc in the low CAVMPR cases are not as signifi-
cant as those in the high MPR of CAV cases.

Summarizing the above discussion, the selection of Dt
did not clearly affect critical speed, which implies the
capacity to maintain string stability in 10% and 25%
CAV cases. In contrast, the smaller Dt obviously
enhanced the stability with higher critical speeds in 50%,
75%, and 90% CAV cases.

CACC Control Parameter Selection Based on Stability
Analysis. From the above discussion, there is a minimum

constant time headway required for every control para-
meter selection, kp, under different control time interval
settings. From the previous finding and observations,
this section adopts parameter values composed of
kp = 0:55, kd = 0:25, the minimum time headway 1.8 s,
and a control time interval of 0.01 s to test the stability
conditions among different MPRs of CACC traffic flow.

Compared with Figure 4 that uses parameter values
from literature (26), the improvement in stability on all
MPRs of CAV in Figure 7 is obvious. In addition to
90% MPR in Figure 4, 50%, 75%, and 90% MPR in
Figure 7 show the capacity to guarantee string stability at
any equilibrium speed (i.e., vc ø vf ). Also, the critical
speeds of 10% and 25%MPR in Figure 7 are higher than
those in Figure 4. Therefore, based on this comparison,
these parameter values were used for further analysis.

Comparison of Mixed HDVs and CVs, and Mixed HDVs and
AVs. This section tests the performance of the current
CAV (under CACC) with other vehicle types. Figure 8
compares the stability of the same MPRs of CAVs, CVs,
and AVs under different MPRs of HDVs. As shown in
Figure 8, a and b, under high HDV levels, 10% AV and
25% AV perform better than the other two types of vehi-
cles and guarantee stability, which is greater but near 0.
In contrast, CVs and CAVs are partially stable in these
two cases.

Under low HDV levels, CAV clearly improves stabi-
lity performance in Figure 8, c to e. Although CV has a
higher stability function value in the beginning, it quickly

Figure 7. Stability analysis of mixed human-driven vehicles
(HDVs) and connected and automated vehicles (CAVs) with
selected parameter values.
Note: MPR = market penetration rate.
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drops to become negative, whereas AV and CAV are still
greater than 0. Specifically, the stability of CAV main-
tains the string better than AVs. This trend becomes even
more obvious when the HDV market penetration level
decreases from 50% to 10% (i.e., 50% CAV to 90%
CAV). This confirms that CAV can improve the stability

in mixed traffic flow. That is to say, under low HDV
situations, the higher CAV MPR has better performance
on the stability than the same MPR of the CV and AV.
The different spatial arrangement strategies, which may
lead to different magnitudes of oscillation for the vehi-
cles (40), may be investigated in future studies.

Figure 8. Stability comparisons of connected vehicles (CVs), autonomous vehicles (AVs), and connected and automated vehicles (CAVs)
under different market penetration rates (MPRs): (a) 90% human-driven vehicle (HDV), (b) 75% HDV, (c) 50% HDV, (d) 25% HDV, and (e)
10% HDV.
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Stability Analysis for Mixed HDVs, CVs, AVs, and CACC
Traffic Flow

With both connectivity and automation technologies,
CAVs (with CACC controllers) can share information,
receive information, or both, with other vehicles, so they
are expected to have the advantage of being more stable
in traffic flow. We designed scenarios composed of dif-
ferent MPRs of mixed HDVs, CVs, AVs, and CAVs. In
addition to the MPRs of CAVs, it was also critical to test
whether the amount of unconnected and unpredicted
driver behavior influenced MPR levels of HDVs.
Therefore, the low HDV market penetration level (25%)
and high HDV market penetration level (75%) were

explored. Based on Equation 30, all scenario settings and
calculated critical speed values were as in Table 1.

As shown in Table 1, all critical speed values were
markedly small, in the range of 2.2 m/s to 2.6 m/s,
although they performed better than CV and AV cases in
the previous study (6). As for the same 15% MPR of
CAV, the critical speeds were evidently different at 8.8 m/
s and 2.3 m/s under 25% and 75% HDV, respectively.
This result confirmed that the performance of CAV was
affected under the low MPR level. Due to the characteris-
tic of CAV, the high percentage of HDVs strongly influ-
enced the performance of CAV.

To extend the above discussion, we analyzed the sta-
bility function value under the lower HDV market pene-
tration level (i.e., 25%). Figure 9, a and b, present the
stability values of 15% and 25% MPR of CAV, which
are both under the low HDV market penetration level.
The gray colored region indicates the unstable regime,
whereas the region in white represents the stable regime.
Figure 9a shows the stability function value with a 15%
CAV quickly falls to become negative, resulting in the
critical speed at 8.8 m/s. In contrast, the critical speed of
25% CAV slows down to become negative at 9.7 m/s in
Figure 9b.

To observe the impact of the penetration rates of
CAV, Figure 10a presents the trends of stability among
15%, 25%, 35%, 45%, 55%, and 65% MPRs of CAV.
The higher MPR of CAV led to a larger stable regime,
which means the capability of maintaining string stability
at a higher equilibrium speed. Figure 10b illustrates how
values of critical speed positively correlate with MPRs of
CAVs under low HDV market penetration levels.The

Table 1. Designed Scenarios With Different Market Penetration
Rates (MPRs)

HDV CAV (%) AV (%) CV (%) Critical speed (m/s)

High
HDV–MPR
level (75%)

5 10 10 2.6
10 7.5 7.5 2.4
15 5 5 2.3
20 2.5 2.5 2.2

Low
HDV–MPR
level (25%)

15 30 30 8.8
25 25 25 9.7
35 20 20 11.0
45 15 15 13.0
55 10 10 16.1
65 5 5 21.1

Note: CV = connected vehicle; AV = autonomous vehicle; CAV =

connected and automated vehicle; HDV = human-driven vehicle.

Figure 9. Stability analysis under human-driven vehicle (HDV) 25%: (a) connected and automated vehicle (CAV) 15% and (b) CAV 25%.
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critical speed significantly improved from 8.8 m/s to 21.1
m/s when CAV increases the MPR from 15% to 65%.
That is, CAV under CACC has the advantage of improv-
ing stability especially the higher MPRs in a mixed traffic
flow.

Conclusions

In this paper, we derived the stability conditions for
Milanés and Shladover’s (26) CACC model for coopera-
tive driving automation of CAVs and presented stability
analyses for homogeneous and heterogeneous traffic. In
the homogeneous CAV traffic, a minimum constant time
headway with each parameter design of the CACC con-
troller was necessary to ensure stability. The larger the
control parameter and the smaller the length of the con-
trol time interval, the shorter the minimum constant time
headway required to guarantee string stability. In the
heterogeneous traffic with mixed HDVs and CAVs (with
CACC controllers), similar to the homogeneous CAV
traffic, the constant time headway and the length of the
control time interval had significantly positive correla-
tions with stability and the control parameter had a neg-
ative correlation with stability. Moreover, we also found
that different MPRs of CAVs had different impacts on
stability. The higher the MPRs of CAVs, such as 75%
and 90%, the better their capability to ensure string sta-
bility. We also studied the impact of combined connec-
tivity and automation technologies in CAVs on stability
in heterogeneous traffic by comparing CAVs (i.e., with
combined connectivity and automation technologies)
with CVs (i.e., with the connectivity technology only)
and AVs (i.e., with the automation technology only).

From the analysis, CACC vehicles performed better than

CVs and AVs with higher MPRs, which confirmed that

the cooperative driving automation of CACC vehicles

had the benefit of improving stability at a low MPR of

HDV traffic. Communication delays, data loss issues,

and lane-changing behaviors were not included in this

study. For example, considering both mandatory and

discretionary lane-changing behaviors can improve pre-

dictions (41). Future studies could be extended to relax

these limitations, such as the driver compliance and com-

munication topology, on string stability in the models.
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37. Åström, K. J., and R. M. Murray. Feedback Systems. Prin-

ceton University Press, Princeton, NJ, 2010.
38. HCM. Highway Capacity Manual. Transport Research

Board, Washington, D.C., 2000.
39. Treiber, M., and A. Kesting. Traffic Flow Dynamics: Data,

Models and Simulation. Springer-Verlag, Berlin, Heidel-

berg, 2013.

40. Sharma, A., Z. Zheng, J. Kim, A. Bhaskar, and M. M.

Haque. Assessing Traffic Disturbance, Efficiency, and

Safety of the Mixed Traffic Flow of Connected Vehicles

and Traditional Vehicles by Considering Human Factors.

Transportation Research Part C: Emerging Technologies,

Vol. 124, 2021, p. 102934.
41. Ali, Y., Z. Zheng, M. M. Haque, M. Yildirimoglu, and S.

Washington. CLACD: A Complete LAne-Changing Deci-

sion Modeling Framework for the Connected and Tradi-

tional Environments. Transportation Research Part C:

Emerging Technologies, Vol. 128, 2021, p. 103162.

The authors are solely responsible for the content of the paper.

16 Transportation Research Record 00(0)

https://doi.org/10.1109/TITS.2021.3052818
https://doi.org/10.1109/TITS.2021.3052818

