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Abstract
Looijenga–Lunts and Verbitsky showed that the cohomology of a compact hyper-
Kähler manifold X admits a natural action by the Lie algebra so(4, b2(X) − 2),
generalizing the Hard Lefschetz decomposition for compact Kähler manifolds. In
this paper, we determine the Looijenga–Lunts–Verbitsky (LLV) decomposition for all
knownexamples of compact hyper-Kählermanifolds, and propose a general conjecture
on the weights occurring in the LLV decomposition, which in particular determines
strong bounds on the second Betti number b2(X) of hyper-Kähler manifolds (see Kim
and Laza in Bull Soc Math Fr 148(3):467–480, 2020). Specifically, in the K3[n] and
Kumn cases, we give generating series for the formal characters of the associated LLV
representations, which generalize the well-known Göttsche formulas for the Euler
numbers, Betti numbers, and Hodge numbers for these series of hyper-Kähler mani-
folds. For the two exceptional cases of O’Grady (OG6 and OG10) we refine the known
results on their cohomology. In particular, we note that the LLV decomposition leads
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to a simple proof for the Hodge numbers of hyper-Kähler manifolds of OG10 type. In
a different direction, for all known examples of hyper-Kähler manifolds, we establish
the so-called Nagai’s conjecture on the monodromy of degenerations of hyper-Kähler
manifolds. More consequentially, we note that Nagai’s conjecture is a first step
towards a more general and more natural conjecture, that we state here. Finally,
we prove that this new conjecture is satisfied by the known types of hyper-Kähler
manifolds.

1 Introduction

The compact hyper-Kähler manifolds are one of the most interesting building blocks
in algebraic and complex geometry, as they are the most likely case to admit a good
general classification. Indeed, they are K -trivial varieties, and among the three possible
irreducible pieces for K -trivial varieties, they occupy the middle ground between
complex tori (trivial classification) and Calabi–Yau manifolds (already too varied in
dimension 3). Unfortunately, all that is known so far is a small list of examples of
hyper-Kähler manifolds: two infinite series, K3[n] and Kumn in dimension 2n, due
to Beauville [1], and two exotic examples, OG10 and OG6 in dimension 10 and 6
respectively, due to O’Grady [40,41]. Not only it is not known if this list is essentially
complete, but even the finiteness of the deformation types in any dimension 2n(> 2)
is a wide open question.

Verbitsky’s Global Torelli Theorem [20,55] says that a hyper-Kähler manifold X
is essentially determined by the Hodge structure on the second cohomology H2(X).
While this is similar to saying that a complex torus A is determined by H1(A), in con-
trast to the case of tori, the reconstruction of X from its second cohomology H2(X)

is very mysterious. In this paper, as a more tangible goal, we focus on reconstruct-
ing the entire cohomology H∗(X) from the second cohomology H2(X) (at least for
the known examples mentioned above). Our starting point is the work of Verbitsky
[52–54] and Looijenga–Lunts [26] who have noted that, for hyper-Kähler manifolds,
H∗(X) admits a natural representation by the Lie algebra g = so(4, b2(X) − 2),
generalizing the usual sl(2) representation that occurs in the Hard Lefschetz Theo-
rem. We call this Lie algebra g the Looijenga–Lunts–Verbitsky (LLV) algebra of X .
The LLV algebra g is determined by the second cohomology. Namely, g is the spe-
cial orthogonal algebra associated to the quadratic space V := (H2(X , R), qX ) ⊕ U ,
where qX is the Beauville–Bogomolov–Fujiki quadratic form on H2(X), and U is the
standard hyperbolic plane (V is the Mukai completion of H2(X)). By construction,
the resulting decomposition, referred throughout as the LLV decomposition, of H∗(X)

into irreducible g representations is a diffeomorphism invariant of X , and thus only
depends on the deformation class of X . Furthermore, all natural decompositions of the
cohomology H∗(X) factor through the LLV decomposition. Here, examples of such
decompositions include the Hodge decomposition once a complex structure is fixed,
the usual sl(2)-Lefschetz decomposition once a Kähler form is fixed, and Verbitsky’s
so(4, 1)-decomposition once a hyper-Kähler metric is fixed.

123
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Notation 1.1 The irreducible g-representations are indexed by their highest weights,
and the latter are (non-negative) integral linear combinations of the fundamental
weights {� j }. An irreducible g-module with highest weight μ will be denoted by
Vμ. Sometimes we can describe Vμ explicitly. For example, an irreducible g-module
V�1 with highest weight �1 is the standard representation V = H2(X) ⊕ R

2. Simi-
larly, an irreducible g-module Vk�1 with highest weight k�1 is the largest irreducible
g-submodule of Symk V (more precisely, Vk�1 is the kernel of the contraction map
Symk V → Symk−2 V with respect to the quadratic form, an element of Sym2 V ∗,
defining g).

The existence of the LLV decomposition has strong consequences on the cohomol-
ogy of hyper-Kähler manifolds. For instance, Verbitsky and Bogomolov described
explicitly the subalgebra of H∗(X) generated by H2(X) (see [54] and [4]), and
for many questions this knowledge suffices. From our perspective, we interpret this
result as saying that for a 2n-dimensional hyper-Kähler manifold X , the irreducible
g-submodule of H∗(X) containing the second cohomology is the unique irreducible
component isomorphic to Vn�1(⊂ Symn V ). We call it the Verbitsky component. The
Verbitsky component Vn�1 is always present (with multiplicity 1) in the LLV decom-
position of H∗(X). The remaining question is what other representations occur in
the LLV decomposition of a hyper-Kähler manifold X , and what restrictions do they
satisfy. While some general results are established, our paper is primarily concerned
with the study of the known cases of hyper-Kähler manifolds X , by which we mean X
is of K3[n], Kumn , OG6, or OG10 type. By extrapolating from these known cases, we
arrive to a general Conjecture 1.19 on the structure of LLV decomposition for general
hyper-Kähler manifolds (see [21] for some important consequences).

1.1 The LLV decomposition for the known cases

The Betti and Hodge numbers of all the known cases of hyper-Kähler manifolds
were previously worked out by other authors. Specifically, Göttsche and Soergel [12,
14] have studied the Hodge structure H∗(X) for the two infinite series K3[n] and
Kumn . More recently, the two exceptional O’Grady cases were settled by Mongardi–
Rapagnetta–Saccà [35] for OG6 type, and by de Cataldo–Rapagnetta–Saccà [6] for
OG10 type.While these previous results are closely related to the LLV decomposition,
surprisingly the question of actually describing the LLV decomposition does not seem
to have been addressed previously (except some low dimensional [≤ 6] cases). Our
first result does exactly this.

Theorem 1.2 The LLV decompositions of the known classes of hyper-Kähler manifolds
are as follows:

(i) The generating series of the formal characters of the so(4, 21)-modules H∗(K3[n])
is

1 +
(

11∑
i=0

(xi + x−1
i )

)
q +

∞∑
n=2

ch
(

H∗(K3[n])
)

qn
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=
∞∏

m=1

11∏
i=0

1

(1 − xi qm)(1 − x−1
i qm)

. (1.3)

(The identity should be understood in the formal power series ring A[[q]], where

A = Z[x±1
0 , . . . , x±1

11 , (x0 · · · x11)
± 1

2 ]W

is the complex representation ring of so(4, 21), and W indicates the Weyl group
of B12.)

(ii) Define the formal power series

B(q) =
∞∏

m=1

⎡
⎣ 3∏

i=0

1

(1 − xi qm)(1 − x−1
i qm)

∏
j

(1 + x j0
0 x j1

1 x j2
2 x j3

3 qm)

⎤
⎦ ,

with j = ( j0, . . . , j3) ∈ {− 1
2 ,

1
2 }×4 and j0 + · · · + j3 ∈ 2Z. Let b1 be the degree

1 coefficient of B(q) = 1+ b1 · q + b2 · q2 + · · · , and J4(d) = d4 ·∏p|d(1− 1
p4

)

be the fourth Jordan totient function. With these notations, the generating series
of the formal characters of the so(4, 5)-modules H∗(Kumn) is

1 +
(

3∑
i=0

(xi + x−1
i ) + 16

)
q +

∞∑
n=2

ch(H∗(Kumn))qn =
∞∑

d=1

J4(d)
B(qd) − 1

b1 · q
.

(1.4)
(Again, the identity holds in A[[q]] where A = Z[x±1

0 , . . . , x±1
3 , (x0 · · · x3)±

1
2 ]W

is the complex representation ring of so(4, 5).)
(iii) As a so(4, 6)-module,

H∗(OG6) = V3�1 ⊕ V�3 ⊕ V ⊕135 ⊕ R
⊕240, (1.5)

where V is the standard representation, V�3 is isomorphic to ∧3V , and R
⊕240

stands for 240 copies of the trivial representation.
(iv) As a so(4, 22)-module,

H∗(OG10) = V5�1 ⊕ V2�2 , (1.6)

where V2�2 is the largest irreducible submodule of Sym2(∧2V ).

While our result relies heavily on the previous work on the cohomology of
hyper-Kähler manifolds (in particular, [5,12,14,35], and [6]), the structure of H∗(X)

described in Theorem 1.2 is more refined. This is especially clear in the case of hyper-
Kähler manifolds of exceptional types OG6 and OG10 (see however also Remark 1.9
below for K3[n] and Kumn). In particular, we note that the arguments of Sect. 3.4
together with [8] give an independent and conceptually easier proof of the main result
of [6] (see Remark 3.30). In a different direction, we note that the “functorial” nature
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of the LLV decomposition can be used to extract geometric information. Specifically,
frequently there are natural subalgebras g′ ⊂ g (for instance g′ = gN S , the Neron–
Severi algebra; see [26, (1.11)]) and one might be interested in the g′-module structure
of H∗(X); this is easily determined from the LLV decomposition by applying the
restriction functor. Concretely, this idea is used in a forthcoming paper of the third
author with G. Pearlstein and Z. Zhang to study some special class of OG10 manifolds
with a symplectic involution (see [24] and [25] for some related work).

Remark 1.7 A more compact version of (1.3) is

∞∑
n=0

ch(H∗(K3[n]))qn =
∞∏

m=1

11∏
i=0

1

(1 − xi qm)(1 − x−1
i qm)

, (1.8)

by noting that formally

ch(H∗(K3[0])) = 1, ch(H∗(K3[1])) =
11∑

i=0

(xi + x−1
i ).

The reason for using (1.3) above is that H∗(K3[1]) does not have a structure of
so(4, 21)-module. Similar discussion applies also to the second identity (1.4) forKumn

hyper-Kähler manifolds.

Remark 1.9 As is often the case for infinite families, it is more convenient to work
with the generating series (1.3) and (1.4) to encode the LLV module structure of the
cohomology of K3[n] and Kumn types. However, one can also determine their explicit
LLV decompositions.We refer to Corollaries 3.2 and 3.6 for these explicit descriptions
when dim X ≤ 10. Furthermore, the two generating series can be easily specialized
to the generating series for the Hodge–Deligne polynomials, Poincaré polynomials,
signatures of the middle cohomology, or the Euler numbers.We recover this way some
well known formulas of Göttsche [12,13] (see Corollaries 3.8 and 3.9 for the K3[n]
and Kumn case respectively). In particular, as a specialization of (1.3), one gets

∞∑
n=0

e(H∗(K3[n]))qn =
∞∏

m=1

1

(1 − qm)24
= q

�(q)
(1.10)

(with �(q) the weight 12 modular form), which is equivalent to the Yau–Zaslow
formula on the number of rational curves on a K3 (see [2]). On the other hand, note
that since the Kumn construction involves both the Hilbert scheme of (n+1) points on
an abelian surface A, and taking the fiber of the sum map A[n+1] → A, the associated
formulas are automatically more involved. Nonetheless, we believe that our formula
(1.4) and its specializations are improvements over the existing literature. In particular,
the role played by J4(n + 1) in controlling the trivial representations in H∗(Kumn)

(and thus universal Hodge cycles of middle dimension) seems new.
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Remark 1.11 After the completion of our manuscript, we have learned that Letao
Zhang [57] computed the generating series for the characters of H∗(K3[n]), viewed
as modules with respect to the generic Mumford–Tate algebra, a subalgebra of the
LLV algebra g (see Sect. 2.3). The results and methods involved are similar to those
of Theorem 1.1 (1).

Remark 1.12 While the work of Verbitsky [52–54] and Looijenga–Lunts [26] is now
more than two decade old, we are not aware of a serious exploration of the full power
of the LLV decomposition for hyper-Kähler manifolds until recently (see however
Moonen [34] for the case of abelian varieties). For instance, to our knowledge, the
only cases where the LLV decomposition was previously described were K3[n] for
n ≤ 3 (n = 3 due to Markman [28]) and Kum2 (cf. [26]). In contrast, in the past year
there seem to have been a flurry of applications related to the LLV decomposition.
Perhaps the most spectacular application is Oberdieck’s simplification [39] (see also
[38]) of Maulik–Negut [29] proof of Beauville’s conjecture [3] for Hilbert scheme of
points of K3 surfaces. Essentially, by lifting the action of the Neron-Severi algebra
gNS from H∗(X) to the Chow groups CH∗(X), one gets Beauville’s conjecture as
a corollary of Schur’s lemma (N.B. the same idea was used by Moonen [34] for
abelian varieties). Some other recent applications (in various directions) of the LLV
decomposition include [17,47,50], and [8].

1.2 Nagai’s conjecture

The original motivation for our paper was the seemingly unrelated study of degen-
erations of hyper-Kähler manifolds and specifically the so-called Nagai conjecture
[37]. LetX/� be a one-parameter projective degeneration of hyper-Kähler manifolds.
Similar to the K3 case, it is natural to define the Type of the degeneration to be I,
II, or III, in accordance to the index of nilpotence ν2 of the log monodromy opera-
tor N2 = log(T2)u on H2(X). However, in contrast to the case of K3 surfaces, the
hyper-Kähler manifolds X of dimension 2n > 2 have interesting higher cohomology
Hk(X), and thus, it is natural to investigate the behavior of Hk(X) under degenera-
tions. In particular, it is natural to ask how the monodromies on various cohomologies
are related to each other. As the hyper-Kähler manifolds are controlled by their second
cohomology, onemight expect some tight connection between the secondmonodromy
and higher monodromies. For instance, as a consequence of the fact that the Verbitsky
component Vn�1 ⊂ H∗(X) controls the holomorphic part of the cohomology, one
sees (e.g. [22, §6.2]) that Type III degenerations of hyper-Kähler manifolds (defined
in terms of H2) are equivalent to maximal unipotent monodromy (MUM) degenera-
tions (defined in terms of the middle cohomology H2n). More generally, it is natural
to expect that the index of nilpotency ν2k of log monodromy N2k on H2k(Xt ) satisfies

ν2k = k · ν2 for k = 1, . . . , n. (1.13)

We refer to (1.13) as Nagai’s conjecture, as Nagai [37] was the first to investigate
this question. In particular, he established (1.13) for K3[n] type degenerations and
partially for Kumn type degenerations. Nagai’s conjecture was also verified for Type
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I and III degenerations of any hyper-Kähler manifolds in [22], leaving only the Type
II case open. Here we establish Nagai’s conjecture in full for all known examples of
hyper-Kähler manifolds.

Theorem 1.14 Let X/� be a one-parameter degeneration of hyper-Kähler manifolds
such that the general fiber Xt is of K3[n], Kumn, OG6, or OG10 type. Then Nagai’s
conjecture (1.13) holds (with dim Xt = 2n).

The approach in [22] to Nagai’s conjecture is based on studying Kulikov type
normalizations of the degeneration X/�, using both general results from the minimal
model program and specific results on hyper-Kähler geometry. The approach here
is essentially orthogonal, focusing exclusively on the cohomological behavior (in
particular, our results will say little about the geometric shape of the degeneration).

To start, we consider the interplay between the LLV decomposition of the cohomol-
ogy H∗(X) and the period map. First, it is known that H2(X) determines the Hodge
structure on H∗(X) by means of LLV g-representation (see Sect. 2 below; cf. also
[49]).We realize this fact again, using the language of periodmaps and period domains.
Specifically, we prove that for families of hyper-Kähler manifolds, the period map on
the second cohomology H2(X) determines the period map on the entire cohomology
H∗(X) (Theorem 4.1). It then follows that the log monodromy Nk on the kth coho-
mology is determined by N2 via the LLV representation, a result previously noticed
by Soldatenkov [48, Proposition 3.4] (by a different method). In conclusion, Nagai’s
conjecture reduces to a representation theoretic question. Namely, the given data is
the nilpotency index of N2 ∈ ḡ acting on the standard ḡ-module V̄ = H2(X). We are
interested in the nilpotency index of N2k = ρk(N2) where ρ2k : ḡ → End(H2k(X))

is the degree 2k restriction of the LLV representation. Using a representation theoretic
computation we conclude that Nagai’s condition (1.13) is equivalent to the following
condition on the dominant g-weights occurring in the LLV decomposition. For the
purpose of stating the precise result, it is convenient to break with convention (see
Notation 1.1) and use instead the following notation.1

Notation 1.15 The highest weight μ of an irreducible g-representation Vμ can be
written as a linear combination

μ = (μ0, μ1, . . . , μr ) =
r∑

i=0

μi εi ,

with {±εi } the nonzero weights of the standard representation V . We refer the reader
to (A.1) and (A.5) of the appendix for the precise relationship between {�i } and {εi }.
Here we note that the Verbitsky component Vn�1 is denoted V(n) in this notation.

Proposition 1.16 Let X be a compact hyper-Kähler manifold of dimension 2n with
b2(X) ≥ 5. Let g = so(4, b2 − 2) be the associated LLV algebra, and

H∗(X) ∼=
⊕

μ∈S
Vμ

⊕mμ, (1.17)

1 The reason for preferring the notation μ = (μ0, μ1, . . . , μr ) for indexing the representations is Hodge
theoretic. Namely, each Vμ carries its own Hodge structure, and this can be more naturally captured in
terms of the notation μi (e.g., see (2.31)).
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be the decomposition of the cohomology of X into irreducible g-representations (where
μ = (μ0, . . . , μr ) indicates a dominant integral weight of g, r = 
b2(X)/2�, and Vμ

the irreducible g-module of highest weight μ). Then Nagai’s condition (1.13) holds if
all the highest weights μ ∈ S in (1.17) contributing to even cohomology satisfy

μ0 + μ1 + μ2 ≤ n. (1.18)

We note that a converse statement holds under mild conditions (likely to be true in
general). For a more detailed discussion, see Theorem 5.2 and the remark following
it. Using this criterion and our computation of the LLV decomposition for the known
cases (Theorem 1.2), we can conclude that Nagai’s conjecture holds in all known
examples of hyper-Kähler manifolds (Theorem 1.14).

1.3 A conjecture on the cohomology of hyper-Kähler manifolds

We now take a closer look at the representation theoretic formulation (1.18) of Nagai’s
conjecture. While we are able to check (1.18) holds under some strong assumptions
(e.g. dim (X) ≤ 8), we were not able to able to verify (1.18) in general. We expect
(1.18) to be a new condition on the cohomology of hyper-Kähler manifolds (it holds
for the known cases, but we believe it to be an open question in general). In fact, trying
to prove (1.18) in general, we have arrived to a heuristic of motivic nature which gives
the stronger and natural condition (1.20) below. Informally, condition (1.20) says that
the Verbitsky’s component V(n) is the dominant component of the LLV representation
of H∗(X) (see also Remark 6.3).

Conjecture 1.19 Let X be a compact hyper-Kähler manifold of dimension 2n. Then
the weights μ = (μ0, . . . , μr ) occurring in the LLV decomposition (1.17) of H∗(X)

satisfy
μ0 + · · · + μr−1 + |μr | ≤ n. (1.20)

Remark 1.21 Since the Hodge decomposition on H∗(X) factors through the LLV
decomposition (see the discussion of Sect. 2.2), the LLV decomposition (1.17) can
be also interpreted as a Hodge structure decomposition. More precisely, the (Mukai)
Hodge structure on the standard g-representation V induces a Hodge structure on any
representation Vμ. Taking into account the Hodge weights, the LLV decomposition
(1.17) reads

H∗(X) ∼=
⊕

μ∈S
Vμ (μ0 + · · · + μr−1 + |μr | − n)⊕mμ , (1.22)

where as usual, the notation W (k)means the Tate twist byQ(k) of the Hodge structure
W (N.B. the Tate twist lowers the weights by 2k, or more precisely W (k)p,q =
W p+k,q+k). In other words, Conjecture 1.19 means that H∗(X) is obtained from the
Mukai completion of a weight 2 Hodge structure of K3 type in an effective way,
allowing only positive twists by the Lefschetz motives L

l (with l = n − (μ0 + · · · +
μr−1 + |μr |) ≥ 0). For instance, the Hodge structure on the Hilbert scheme S[n] of
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points on a K3 surface is obtained by considering various symmetric powers S(a) of
S and blow-ups with center S(a) (see (3.15) for a precise formula).

As evidence for this conjecture, we note that it holds for all known types of hyper-
Kähler manifolds.

Theorem 1.23 Conjecture 1.19 holds for hyper-Kähler manifolds of K3[n], Kumn,
OG6, or OG10 type.

Conjecture 1.19 has immediate consequences on the boundedness of the second
Betti number for hyper-Kähler manifolds (a first step towards the boundedness of
hyper-Kähler manifolds). This is discussed in detail in [21], which generalizes the
Beauville–Guan [16] bound: b2(X) ≤ 23 for hyper-Kähler fourfolds (N.B. Conjec-
ture 1.19 holds for fourfolds). Here, we only note the following consequence of the
conjecture.

Corollary 1.24 Let X be a hyper-Kähler manifold of dimension 2n for which Conjec-
ture 1.19 holds. Assume that b2(X) ≥ 4n, then X has no odd cohomology.

In particular, a posteriori, we see that Theorem 1.23 implies the vanishing of odd
cohomology for OG10, which then determines the Hodge diamond for OG10 from
little geometric data (see Theorem 3.26).

1.4 Structure of the paper

We start in Sect. 2 with a discussion of the LLV algebra g and its action on the
cohomology H∗(X). While this is mostly standard material, we make some small but
important observations. For instance, we note the LLV algebra g is defined over Q

and describe its Q-algebra structure. This allows us to relate the LLV algebra g to the
special Mumford–Tate (MT) algebra m̄. Note that g is a diffeomorphism invariant,
while on the other hand m̄ varies in moduli (it depends on the Hodge structure). For
hyper-Kähler manifolds, one can enlarge the Lie algebra m̄ to its Mukai completion
m. We note that m ⊂ g, and thus it acts on the cohomology of X . Typically, by
construction, one understands the Hodge structure on H∗(X), or equivalently the
decomposition of H∗(X) with respect to m. One of our main tools for the proof of
Theorem 1.2 (in Sect. 3) is to use representation theory to lift thism-representation to
a g-representation.

For concreteness, let us briefly discuss this procedure for a K3[n] type hyper-Kähler
manifold X . By definition, we can specialize X to the one isomorphic to S[n] for a K3
surface S. Then the formula of Göttsche–Soergel expresses the cohomology of H∗(X)

in terms of the cohomology of H∗(S) as Hodge structures. From our perspective, these
results express the cohomology of H∗(X) as a representation of the Mumford–Tate
algebra m̄. Moreover, taking S as a very general non-projective K3 surface (which
is allowed by [5]), we can further assume m̄ ∼= so(3, 19). Then, one can can easily
construct the Mukai completion, which means, that, using the natural degree grading
on cohomology, one can lift the m̄(∼= so(3, 19))-module structure of H∗(X) to a
m(∼= so(4, 20))-module structure. However, we are still not done, as this Lie algebra
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is still slightly smaller than the LLV algebra g ∼= so(4, 21) for K3[n]. We now use
a representation theory fact on restriction representations. Namely, the Lie algebras
so(4, 20) and so(4, 21) are of type D12 and B12 respectively, in particular are of the
same rank. It follows that the restriction representation functor Rep(B12) → Rep(D12)

is injective on the level of objects. Thus, there is a unique lift of them-module structure
on H∗(X) to a g-module structure. In otherwords, we have lifted theGöttsche–Soergel
presentation of H∗(X) as a Hodge structure to the LLV decomposition of H∗(X).

The Kumn case is similar but more complicated as it contains nonvanishing odd
cohomology and many trivial representations. For example, to get a flavor of this
phenomenon of an excessive amount of trivial representations, the reader can consider
the Kummer surface S; it has 16 independent Hodge cycles in H2(S), which in turn
will lead to trivial representations. More generally, we notice that the Jordan totient
function J4(n + 1) = O(n4) governs the number of trivial representations for Kumn .
The exceptional O’Grady’s 10-dimensional example is surprisingly easier to handle.
The reason for this is that the LLV algebra so(4, 22) is large compared to the Euler
number e(X). Once one knows that the odd cohomology vanishes (cf. [6,8]), there
is not much space remaining for the complement of the Verbitsky component in the
LLV decomposition of H∗(X). On the other hand, O’Grady’s 6-dimensional example
is harder, as there are two combinatorial solutions matching the Hodge diamond of
[35]. In order to find the right choice for the LLV representation in the OG6 case, we
need to revisit the geometric construction of OG6 used in [43] and [35].

The second part of the paper is concerned with Nagai’s conjecture (1.13). First, in
Sect. 4, we discuss the relationship between higher period maps and the LLV algebra.
We note that, except some overlap with the work of Soldatenkov [48,49], the material
here is new and possibly of independent interest2.

Our main representation theoretic criterion (Proposition 1.16) is established in
Sect. 5. Using our computation of the LLV decomposition for the known cases (The-
orem 1.2), we prove Theorem 1.23 in Sect. 6. As noted, this is a stronger version of
Theorem 1.14, concluding the proof of Nagai’s conjecture for all known examples of
hyper-Kähler manifolds.

For reader’s convenience, we briefly review some relevant representation theory
facts in the Appendix.

2 The Looijenga–Lunts–Verbitsky algebra for hyper-Kähler manifolds

Acompact hyper-Kähler manifold (aka irreducible holomorphic symplectic manifold)
X is a simply connected compact Kähler manifold such that H0(X ,�2

X ) is generated
by a global holomorphic symplectic 2-formσ . To fix the notation, X will denote a com-
pact hyper-Kähler manifold (not necessarily projective) of dimension 2n. Throughout
the paper, we will use

V̄ = H2(X , Q), q̄ : V̄ → Q

2 (Note added in proof) We refer also to Looijenga [27, Sect. 4] (which appeared after a first version of our
manuscript) for some further discussion of higher period maps.
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for the second cohomology endowed with the (rational) Beauville-Bogomolov
quadratic form q̄ of X (i.e. q̄(x)n = c · x2n , for some constant c). Note that the
quadratic space (V̄ , q̄) (and the associated Lie algebra so(V̄ , q̄)) are diffeomorphism
invariants of X . The purpose of this section is to introduce, following Verbitsky [53]
and Looijenga–Lunts [26], the Looijenga–Lunts–Verbitsky (LLV) algebra g, which
enhances so(V̄ , q̄). The LLV algebra g acts naturally on the cohomology algebra
H∗(X), giving rise to a more refined diffeomorphism invariant of X , the LLV decom-
position of the cohomology. After reviewing the basic structure and properties of g and
its action on cohomology, we discuss the interplay between g and the natural Hodge
structure on H∗(X) (assuming a complex structure on X was fixed) and the associated
Mumford–Tate algebra m̄ (an analytic invariant).

2.1 Looijenga–Lunts–Verbitsky algebra

The LLV algebra g and the associated LLV decomposition of H∗(X) generalize the
usual hard Lefschetz sl(2)-decomposition of the cohomology in the presence of aKäh-
ler classω on X (for themoment X can be any compact Kähler manifold). Specifically,
recall that ω defines two operators, the Lefschetz operator Lω = ω∪ , and the inverse
Lefschetz operator
ω(= �−1Lω�). Then, Lω and
ω generate an sl(2) ⊂ gl(H∗(X))

acting on H∗(X). Hard Lefschetz is equivalent to the resulting sl(2)-decomposition
of the cohomology. Looijenga–Lunts [26] have formalized this process and avoided
the use of the Hodge star operator �. To start, note that

[Lω,
ω] = h,

where h is the degree operator

h : H∗(X , Q) → H∗(Y , Q),

x �→ (k − dim X)x for x ∈ Hk(X , Q).
(2.1)

It follows that {Lω, h,
ω} is an sl(2)-triple. The operator Lx = x ∪ is well defined
for any cohomology class x ∈ H2(X), while h is independent of any choice. The key
observation now is that, due to the Jacobson–Morozov Theorem, the existence of an
operator (automatically unique) 
x completing {Lx , h} to an sl(2)-triple is an open
algebraic condition on the classes x ∈ H2(X). Thus, the dual Lefschetz operator 
x

can be defined for almost all classes x , independent of being a Kähler class, or even of
the complex structure of X . This allows to define a Lie algebra g (clearly definable over
Q) containing all these operators. By construction, g is a diffeomorphism invariant of
X , g acts on H∗(X), and any sl(2) Lefschetz decomposition factors through g. The
Kähler assumption is needed only to conclude that the set of x ∈ H2(X) for which

x is defined is a non-empty (and thus dense) open Zariski set.

Definition 2.2 [26] Let X be a compact Kähler manifold (not necessarily hyper-
Kähler). The Looijenga–Lunts–Verbitsky (LLV) algebra3 g(X) of X is the Lie

3 g(X) is called the total Lie algebra of X in [26], and denoted by gtot (X). Another natural algebra
considered by [26] is the LLV Neron–Severi algebra gNS(X) which is generated by Lefschetz Lx and
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subalgebra of gl(H∗(X , Q)) generated by all formal Lefschetz and dual Lefschetz
operators Lx ,
x ∈ gl(H∗(X , Q)) associated to almost all elements x ∈ H2(X , Q).

The LLV algebra g(X) is a semisimple Lie algebra defined over Q (cf. [26, (1.9)]).
We are interested in its structure and action on cohomology when X is a compact
hyper-Kähler manifold (which we assume from now on). For notational simplicity,
we write

g = g(X)

if no confusion is likely occur.

2.1.1 The structure of the LLV algebra (overQ) for hyper-Kähler manifolds

The semisimple degree operator h ∈ g induces an eigenspace decomposition of g. In
the case of hyper-Kähler manifolds, only degrees 2, 0, and −2 occur4 and thus we
have an eigenspace decomposition

g = g2 ⊕ g0 ⊕ g−2 (2.3)

with respect to h acting on g by the adjoint action. The 0-eigenspace g0 is a reductive
subalgebra of g, which can be then decomposed as

g0 = ḡ ⊕ Q · h, (2.4)

where ḡ is the semisimple part (ḡ = [g0, g0]), and the 1-dimensional center z(g0) is
spanned by the degree operator h. We refer to ḡ as the reduced LLV algebra of X .
Since ḡ ⊂ g0 consists of degree 0 operators, the induced ḡ-action on H∗(X) preserves
the degree. That is, we have a representation

ρk : ḡ → End(Hk(X , Q)). (2.5)

In particular, ḡ acts on H2(X). On the other hand, it preserves the cup product as a
derivation:

e.(x ∪ y) = (e.x) ∪ y + x ∪ (e.y) for e ∈ ḡ, x, y ∈ H∗(X , Q). (2.6)

Together with the Fujiki relation q̄(x)n = cx2n , one concludes that it also respects the
Beauville–Bogomolov form q̄ on H2(X). That is, we have

ḡ ⊂ so(V̄ , q̄),

inverse Lefschetz 
x operators for x ∈ NS(X). Obviously, gNS ⊂ g(= gtot ). We do not discuss gNS in
this paper.
4 In general, the Lefschetz operators Lη commute, but the dual Lefschetz operators 
η do not. For hyper-
Kähler manifolds and abelian varieties, 
η do commute, resulting in the restricted range of weights.
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where q̄ is the Beauville–Bogomolov form on the second cohomology V̄ = H2(X , Q)

as before. In fact, the equality holds, and V̄ is the standard representation of ḡ. More
precisely, g and ḡ can be described as follows:

Theorem 2.7 (Looijenga–Lunts, Verbitsky). Let X be a compact hyper-Kähler mani-
fold. Then the LLV and reduced LLV algebras of X are described by

ḡ ∼= so(V̄ , q̄), (2.8)

g ∼= so
(

V̄ ⊕ Q
2, q̄ ⊕ ( 0 1

1 0 )
)

(2.9)

In particular,

ḡR ∼= so(3, b2(X) − 3) and gR ∼= so(4, b2(X) − 2). (2.10)

Proof The isomorphism over R is [26, Proposition 4.5] (also [53]). The isomorphism
over Q is not clearly addressed in the literature, so we provide the details here. For
the reduced LLV algebra ḡ, since g ⊂ so(V̄ , q̄) (both defined over Q), the equality
follows by dimension reasons.

For the identification of g we use the description from [23, Lemma 3.9] of g in
terms of the subalgebra ḡ. Starting from the decomposition

g = g−2 ⊕ (ḡ ⊕ Qh) ⊕ g2,

one sees that ḡ ∼= so(V̄ , q̄) ∼= ∧2V̄ , and g±2 ∼= V̄ as ḡ-representations (e.g. g2 is
generated by commuting Lefschetz operators Lx for x ∈ H2(X) = V̄ ). Identifying
g±2 with V̄ , and ḡ with ∧2V̄ by the rule

a ∧ b �→ 1

2
(q̄(a,−) ⊗ b − q̄(b,−) ⊗ a)

(recall a, b ∈ V̄ = H2(X , Q)), we have the following bracket rules (which determine
g starting from ḡ):

(1) The obvious grading relations:

• [h, a] = −2a, [h, b] = 2b, [h, e] = 0 for a ∈ g−2, b ∈ g2, e ∈ ḡ;
• [a, a′] = 0 for a, a′ ∈ g−2. [b, b′] = 0 for b, b′ ∈ g2.

(2) The identifications g = ∧2V̄ and g±2 = V̄ are as ḡ-representations, i.e.

• [e, e′] for e, e′ ∈ ḡ is defined by the Lie bracket operation on ḡ;
• [e, a] = e.a ∈ g−2, [e, b] = e.b ∈ g2 for a ∈ g−2, b ∈ g2, e ∈ ḡ.

(3) Finally, the interesting cross-term relation:

• [a, b] = a ∧ b + q̄(a, b)h ∈ g0 for a ∈ g−2, b ∈ g2.

All of these bracket relations are defined over Q. On the other hand, we note that
the bracket relations above are exactly the same as those for so

(
V̄ ⊕ Q

2, q̄ ⊕ ( 0 1
1 0 )

)
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described in terms of so(V̄ , q̄). (Recall, in particular, that as so(V̄ , q̄)-representation
it holds ∧2(V̄ ⊕ Q

2) = V̄ ⊕ (∧2V̄ ⊕ Q) ⊕ V̄ .) ��
Example 2.11 If X is a K3 surface, H∗(X) is naturally endowed with the Mukai
pairing H∗(X , Q) ∼= H2(X , Q)⊕U , even defined overZ. In terms of representations,
H2(X , Q) is the standard representation of ḡ (whose real form is so(3, 19)), and
H∗(X , Q) is the standard representation of g (whose real form is so(4, 20)). Note that
ḡ is achieved by the generic special Mumford–Tate algebra of a K3 surface.

Interesting things happen for the case ofKummer surfaces, which can be considered
as the case n = 1 in the series Kumn . A Kummer surface is a K3 surface, so it has
ḡR = so(3, 19) as above. However, by construction it always contains 16 independent
(−2)-curves. Due to this fact, its generic specialMumford–Tate algebra has a real form
so(3, 3). As a result, letting V̄ be its standard representation, we have H∗(X , Q) =
H0 ⊕ (V̄ ⊕ Q

16) ⊕ H4. This explains the meaning of the degree 1 term in Theorem
1.2(2).

Motivated by Theorem 2.7 above, we would rather like to consider the Mukai
completion

V = V̄ ⊕ Q
2, q = q̄ ⊕ ( 0 1

1 0 )

of V̄ (= H2(X , Q)) as a more natural object associated to the cohomology of X .
Theorem 2.7 says that V̄ is the standard representation of the reduced LLV algebra ḡ,
while the Mukai completion V is the standard representation of g (N.B. only for K3
surfaces, H∗(X , Q) ∼= V ).

Corollary 2.12 Let X be a hyper-Kähler manifold, and r = 
b2(X)/2�. The LLV
algebra g is a simple Lie algebra of type Br+1 or Dr+1, depending on the parity of
b2(X). Its reduced form ḡ is a simple Lie algebra of type Br or Dr . ��

2.1.2 The LLV decomposition

The Looijenga–Lunts–Verbitsky algebra g is by definition a subalgebra of gl(H∗(X ,

Q)) – it acts on the full cohomology H∗(X , Q). Since g consists of only even degree
operators (2.3), this action preserves the even and odd cohomology; that is, the action
of g preserves the direct sum

H∗(X , Q) = H∗
even(X , Q) ⊕ H∗

odd(X , Q). (2.13)

Since g is semisimple, the decomposition (2.13) may be further refined. We have

H∗(X , Q) =
⊕

μ
V

⊕mμ
μ , (2.14)

with Vμ the irreducible gmodule of highest weight μ. We call (2.14) the LLV decom-
position; it is a basic diffeomorphism invariant of X .

With the notation of Appendix A, we write μ = (μ0, . . . , μr ) to indicate that
μ = ∑

i μiεi . (Here ε are weights of the standard representation V .) For example,
V(n) is the “largest” irreducible subrepresentation of Symn V .
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Theorem 2.15 (Verbitsky). Let X be a compact hyper-Kähler manifold X of dimension
2n. Then the subalgebra SH2(X , Q) ⊂ H∗(X , Q) generated by H2(X , Q) is an
irreducible g–module V(n) ⊂ Symn V of highest weight μ = (n).

Proof By definition SH2(X , Q) is the subalgebra generated by the second cohomol-
ogy. Hence, every element in this subalgebra can be expressed by a linear combination
of the product x1 · · · xk of elements in the second cohomology xi ∈ H2(X , Q). Now
from (2.6), one directly sees that SH2(X , Q) is ḡ-invariant. Let us further show that
it is in fact invariant under the full g-action.

Recall the decomposition g = g−2⊕(ḡ⊕Qh)⊕g2 in (2.3). The algebra SH2(X , Q)

is clearly h-invariant. Thus it is enough to show SH2(X , Q) is closed under the g2-
action and g−2-action. Any element in g2 is of the form Lx for x ∈ H2(X , Q), the
multiplication operator by x . Hence SH2(X , Q) is closed under Lx by definition.
The vector space g−2 is generated by the operators 
x for x ∈ H2(X , Q). To prove
SH2(X , Q) is closed under
x , we need the following standard trick in representation
theory. For any x1, . . . , xk ∈ H2(X , Q), we have


x (x1x2 · · · xk) = 
x (Lx1(x2 · · · xk)) = [Lx1,
x ](x2 · · · xk) − Lx1(
x (x2 · · · xk)).

Since [Lx1,
x ] ∈ g0 = ḡ ⊕ Qh, we know the first component is contained in
SH2(X , Q). Hence to prove 
x (x1x2 · · · xk) ∈ SH2(X , Q), it is enough to prove
prove 
x (x2 · · · xk) is contained in SH2(X , Q). Now use the induction on k. This
proves SH2(X , Q) is closed under 
x , and hence closed under the full g-action.

By restricting to ḡ ⊂ g, we may regard SH2(X , Q) as a ḡ–representation. From
that perspective, Verbitsky [54] showed that

SH2(X , Q)2k =
{
Symk H2(X , Q) if 0 ≤ k ≤ n

Sym2n−k H2(X , Q) if n < k ≤ 2n
. (2.16)

In particular,

SH2(X , Q) = Symn V̄ ⊕ (Symn−1 V̄ )⊕2 ⊕ · · · ⊕ Q
⊕2

as a ḡ-module. Then the branching rules for ḡ ⊂ g (§B.2) force SH2(X , Q) = V(n)

as a g–representation. ��
Remark 2.17 Bogomolov [4] showed that

SH2(X , Q) ∼= Sym∗(H2(X , Q))/(xn+1 : x ∈ H2(X , Q), q̄(x) = 0) (2.18)

as algebras.

Definition 2.19 We call SH2(X , Q) ∼= V(n) the Verbitsky component of H(X , Q).

Since g is semisimple, the cohomology admits a g–module decomposition

H∗(X , Q) = V(n) ⊕ V ′. (2.20)
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One of our goals in the paper is to describe the complement V ′ for the known cases of
compact hyper-Kähler manifolds X (cf. Sect. 3). For arbitrary hyper-Kähler manifolds
X we will see that the multiplicity of V(n) in H∗(X , Q) is one (Proposition 2.32);
equivalently, V ′ does not contain an irreducible g–module of highest weight μ = (n).

Remark 2.21 As the proof of Theorem 2.15 indicates it is sometimes convenient to
restrict the g-action on H∗(X) to a ḡ-action (2.5), and apply branching rules. This
argument will reappear again throughout the paper. Often, this restricted action is
easier to understand. However, one of our main conclusions here is that it is better
to consider the action of the larger algebra g ⊃ ḡ. This is essentially because the
larger algebra encodes more symmetries; as a g–module, the cohomology admits
fewer irreducible subrepresentations.

2.2 Further decompositions of the cohomology

We now discuss some finer decompositions of the cohomology which are obtained
once certain choices have been made. For instance, the choice of complex structure
determines a Hodge structure on H∗(X) (which can be regarded as a decomposition
with respect to the Deligne torus S := ResC/R(Gm)). Similarly, the choice of a twistor
family (or equivalently a hyper-Kähler metric) determines an so(4, 1)-decomposition
of the cohomology H∗(X), originally discovered by Verbitsky [52,53]. Either of these
finer decompositions factor through the LLV algebra, and in a certain sense the LLV
algebra is the smallest subalgebra of gl(H∗(X , R)) containing all these decomposi-
tions. More precisely, the LLV algebra g is generated by the (generic) Mumford–Tate
algebra m̄ (see Sect. 2.3) and Verbitsky’s algebra so(4, 1) (see Sect. 2.2.2). Further-
more, the LLV algebra has the advantage of being defined over Q.

2.2.1 Complex structures and Looijenga–Lunts–Verbitsky algebra

So far, the complex structure on X was not used in our discussion. In this subsection,we
would like to take the complex structure into account and understand how it interacts
with theLLValgebrag. Verbitsky’sGlobalTorelli for compact hyper-Kählermanifolds
implies that the complex structure on X is captured by the Hodge structure on the
cohomology H∗(X , Q), and in fact H2(X , Q), up to some finite ambiguity.

Given a 2n-dimensional hyper-Kähler manifold X , we have a degree operator h ∈
g0 ⊂ g

h : H∗(X , Q) → H∗(X , Q), x �→ (k − 2n)x for x ∈ Hk(X , Q). (2.22)

Assuming a complex structure on X was fixed, we obtain a second operator f ∈
gl(H∗(X , R)) defined by

f : H∗(X , R) → H∗(X , R),

x �→ (q − p)
√−1x for x ∈ H p,q(X),

(2.23)
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capturing the Hodge structure of the cohomology. While h and g are defined over Q,
f is in general only defined over R. One sees that f ∈ gR ⊂ gl(H∗(X , R)), and, in
fact, a stronger statement holds.

Proposition 2.24 The operator f ∈ gl(H∗(X , R)) in (2.23) is contained in ḡR as a
semisimple element.

Proof Fix a hyper-Kähler metric g on X inducing the twistor complex structures
I , J , K with I being the original complex structure of X . We can associate to the
complex structures I , J , K the Kähler classes ωI = g(I−,−), ωJ = g(J−,−) and
ωK = g(K−,−) (with ωI , ωJ , ωK ∈ H2(X , R)). Let L I , L J , L K be the Lefschetz
operators and 
I ,
J ,
K the dual Lefschetz operators associated to them.

Let f ∈ gl(H∗(X , R)) be the Hodge operator as in (2.23). Verbitsky [52] showed
that

f = −[L J ,
K ] = −[L K ,
J ] on H∗(X , R).

Thus, f is contained in gR by Definition 2.2. Since f is a degree 0 operator, we
have in fact f ∈ g0,R. One can similarly define the operators f J , fK ∈ g0,R for
the Hodge structures of other complex structures J and K , with Verbitsky’s relations
f J = −[L K ,
I ] and fK = −[L I ,
J ]. By symmetry, we get f J , fK ∈ g0,R. Now
using the Jacobi identities and the relations above, we get

[ f J , fK ] = [[L K ,
I ], [L I ,
J ]]
= [L K , [
I , [L I ,
J ]]] − [
I , [L K , [L I ,
J ]]]
= [L K , [[
I , L I ],
J ]] + [L K , [L I , [
I ,
J ]]] − [
I , [[L K , L I ],
J ]]

− [
I , [L I , [L K ,
J ]]]
= [L K , [−h,
J ]] + [L K , [L I , 0]] − [
I , [0,
J ]] − [
I , [L I ,− f ]]
= 2[L K ,
J ] − [
I , 0] = −2 f .

We conclude f ∈ [g0,R, g0,R] = ḡR. Finally, f is a semisimple element of ḡR since
f acts diagonalizably on the faithful ḡR-representation H2(X , R). ��
Now we have two operators h ∈ g and f ∈ gR. The action h ∈ g on the standard

g-module V induces an h-eigenspace decomposition

V = V−2 ⊕ V0 ⊕ V2, dim V±2 = 1, V0 = V̄ . (2.25)

Here the lower indexes indicate the eigenvalues of h. Similarly, the action f ∈ gC on
VC induces a f -eigenspace decomposition

VC = V
C,−2

√−1 ⊕ VC,0 ⊕ V
C,2

√−1, dim V
C,±2

√−1 = 1. (2.26)

Since h, f ∈ gC are commuting semisimple elements, there exists a Cartan subalgebra
h ⊂ gC containing both h and f . Recall that g is a simple Lie algebra of rank r + 1,
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so its Cartan subalgebra h has dimension r + 1. We will use the notation ε0, . . . , εr

to denote our preferred choice of a basis of h in Appendix A. Note that we start the
index from 0. Now the h and f -eigenspace decompositions above have the following
interpretation. This was already appeared in the discussion of [48, §3.4]

Lemma 2.27 Let h ⊂ gC be a Cartan subalgebra containing both h and f . Then we
must have

h = ±ε∨
i ,

√−1 f = ±ε∨
j for some i �= j .

Proof The idea here is essentially the same as in Deligne’s approach to the classifica-
tion ofHermitian symmetric domains (see, e.g.,Milne’s note [31, p.12]). By definition,
the weights ε0, . . . , εr are obtained by the weight decomposition of the standard g-
module V (see Appendix A). More specifically, we have a weight decomposition with
respect to the chosen Cartan subalgebra h ⊂ gC

VC = V (±ε0) ⊕ · · · ⊕ V (±εr ) or V (0)

⊕V (±ε0) ⊕ · · · ⊕ V (±εr ), depending on the parity of dim V ,

where V (θ) denotes the weight θ subspace of VC. As an element in h, h acts on the
weight space V (θ) by multiplication 〈θ, h〉. Now by (2.25), this implies 〈θ, h〉 =
0,−2, 2 for θ = ±ε0, . . . ,±εr and there is only one εi with 〈εi , h〉 = ±2. This forces
h = ±ε∨

i for some i = 0, . . . , r .
Same idea applies to f , but this time we need a coefficient

√−1 as the eigenvalues
of f are 0,±2

√−1 in (2.26). Hencewe deduce
√−1 f = ±ε∨

j for some j = 0, . . . , r .
Here i and j cannot be the same, as certainly h and f are linearly independent. ��

Thanks to this lemma, after choosing an appropriate positive Weyl chamber, we
may assume

h = ε∨
0 ,

√−1 f = ε∨
1 . (2.28)

From now on, we fix an appropriate positive Weyl chamber so that we can use this
condition freely.

Having discussed the complex structure, we may now consider the Hodge diamond
of H∗(X). Note that the Hodge diamond is in fact derived from a Hodge structure,
which is again captured by the action of the operators h = ε∨

0 and f = 1√−1
ε∨
1 .

An interesting conclusion is that any g-module, or ḡ-module if we ignore the weight,
possesses its own Hodge structure and hence its own Hodge diamond. Let us elaborate
this fact a bit more precisely.

Consider the weight decomposition of a g-module Vμ. It is of the form

Vμ,C =
⊕

θ
Vμ(θ),

where Vμ(θ) denotes the weight θ vector subspace of Vμ,C. The Hodge decomposition
is obtained by the (h, f )-eigenspace decomposition. Namely, the Hodge decomposi-
tion of Vμ is

Vμ,C =
⊕

p,q
V p,q

μ , (2.29)
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where V p,q
μ is the (h, f )-eigenspace on which h acts by multiplication p + q − 2n

and f acts by multiplication
√−1(q − p). This Hodge decomposition of Vμ,C can

be easily deduced from the weight decomposition above. The operators h and f act
on the weight subspace Vμ(θ) by the multiplication 〈θ, h〉 and 〈θ, f 〉, respectively.
Hence the Hodge (p, q)-component V p,q

μ is just a direct sum of weight subspaces
Vμ(θ) with 〈θ, h〉 = p + q − 2n and 〈θ, f 〉 = √−1(q − p).

Recalling (2.28), if we denote the weight by θ = θ0ε0 + · · · + θrεr , then we have

〈θ, h〉 = 〈θ, ε∨
0 〉 = 2θ0, 〈θ, f 〉 = 1√−1

〈θ, ε∨
1 〉 = −2

√−1θ1. (2.30)

This expresses p and q in terms of θ0 and θ1:

p = θ0 + θ1 + n, q = θ0 − θ1 + n. (2.31)

Since θi are always mutually integers or half-integers (see (A.2) and (A.6)), both p
and q are integers as we expect. There are several direct consequences of this simple
observation.

Proposition 2.32 The Hodge numbers h p,q
(n) = dimV p,q

(n) of the Verbitsky component

V(n) ⊂ H∗(X , Q) satisfy h2p,0 = 1 and h2p+1,0 = 0 for all 0 ≤ p ≤ n. In particular,
the Verbitsky component occurs with multiplicity one (m(n) = 1) in H∗(X , Q).

Proof Since the Verbitsky component V(n) ⊂ H∗(X , Q) is a g-submodule, it is also a
sub-Hodge structure. Ignoring the notion of weight for simplicity, the Hodge decom-
position of V̄ = H2(X , Q) is simply the f -eigenspace decomposition

V̄C = V̄ 1,−1 ⊕ V̄ 0,0 ⊕ V̄ −1,1,

where dim V̄ 1,−1 = dim V̄ −1,1 = 1. Now using the description (2.16) of the Verbit-
sky component, the ḡ-module structures of each degrees of V(n) are Symk V̄ , which
from the above Hodge structure on V̄ has the outermost Hodge numbers 1. Since the
boundary Hodge numbers are h2k,0 = h0,2k = h2k,2n = h2n,2k = 1 for compact
hyper-Kähler manifolds X , the Verbitsky component already exhausts the boundary
Hodge numbers 1. ��

The existence of the Hodge structure on g-modules also allows us to put more
restrictions on the LLV components arising on the cohomology of X . Note that, even
without the complex structure, the fact that h = ε∨

0 captures the degree of the coho-
mology implies every irreducible component Vμ ⊂ H∗(X , Q) satisfies

〈μ, h〉 = 〈μ, ε∨
0 〉 = 2μ0 ≤ 2n. (2.33)

Thus, we obtainμ0 ≤ n. Taking into account also the Hodge structure, or equivalently
f , we get a stronger inequality.

Proposition 2.34 Every irreducible g-module Vμ contained in the full cohomology
H∗(X) satisfies either μ = (n) or μ0 + μ1 ≤ n − 1.
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Proof By Proposition 2.32, the Verbitsky component V(n) always exhausts all the
boundary Hodge numbers of X . Thus, if μ �= (n) occurs as a highest weight in
the LLV decomposition, then all the nonzero (p, q)-component arising in Vμ satisfy
1 ≤ p ≤ 2n − 1. The highest g-module Vμ always contains the weight μ. By (2.31),
all nonzero (p, q)-component in Vμ satisfy p = μ0 + μ1 + n and q = μ0 − μ1 + n.
Hence μ0 + μ1 = p − n ≤ n − 1, as needed. ��

Similarly, we obtain the following easy restriction on the possible irreducible com-
ponents of the LLV decomposition on the even and odd cohomology respectively.

Proposition 2.35 Let X be a hyper-Kähler manifold, and g its LLV algebra.

(i) Every irreducible g-module component Vμ ⊂ H∗
even(X) has integer coefficients

μi ∈ Z. Similarly, every irreducible g-module component Vμ ⊂ H∗
odd(X) has

half-integer coefficients μi ∈ 1
2Z \ Z.

(ii) Every irreducible ḡ-module component V̄λ ⊂ H2k(X) has integer coefficients
λi ∈ Z, while every irreducible V̄λ ⊂ H2k+1(X) has half-integer coefficients
λi ∈ 1

2Z \ Z.

Proof Applying (2.31) to the highest weight μ of Vμ, we have p = μ0 + μ1 + n and
q = μ0−μ1+n. Ifwe assumeVμ ∈ H∗

even(X), thenwehave an even p+q = 2μ0+2n.
This provesμ0 ∈ Z, and hence by (A.2) and (A.6) all theμi are integers. If we assume
Vμ ∈ H∗

odd(X), then similar argument implies μ0 is a half-integer and hence all μi

are half-integers.
For the second statement, we cannot use the the operator h /∈ ḡ, so we need to

go back to (2.30). From it, we have p − q = 2λ1. If V̄λ ⊂ H2k(X) lives in an even
cohomology, then p − q is even so λ1 is integer. Hence all λi are integers. Similar
argument proves the case V̄λ ⊂ H2k+1(X). ��

As an immediate corollary, we see that all reduced LLVmodules Hk(X) are faithful
ḡ-modules.

Corollary 2.36 If 0 < k < 4n and Hk(X) �= 0, then the map ρk : ḡ → End(Hk(X))

is injective.

Proof Since ḡ is simple by Proposition 2.12, ρk : ḡ → gl(Hk(X)) is injective unless
Hk(X) is a trivial ḡ-module. For hyper-Kähler manifolds this cannot happen, since if
k is odd then we can use Proposition 2.35, and if k is even then Symk/2 V̄ ⊂ Hk(X)

because of the Verbitsky component V(n). ��

2.2.2 Hyper-Kähler metrics and twistor families

Hyper-Kähler manifolds admit twistor families. Let X = (M, I ) be a hyper-Kähler
manifold, where M is the underlying real manifold and I a complex structure on M . A
twistor family is a pencil of hyper-Kählermanifolds (M, aI +bJ +cK ) parameterized
by {ai + bj + ck ∈ H : a, b, c ∈ R, a2 + b2 + c2 = 1} ∼= P

1.
More precisely, let M be a compact real manifold of real dimension 4n, admitting at

least one hyper-Kähler metric g. That is, g is a Riemannian metric with the Holonomy
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group isomorphic to Sp(n) ⊂ SO(R4n, g). Then there exists a family of complex
structures on M , the twistor family, {aI + bJ + cK : a, b, c ∈ R, a2 + b2 + c2 = 1}
such that any of these complex structure with (M, g) consists of a Kähler structure.
Moreover, if we had two hyper-Kähler metrics g and g′ inducing the same twistor
family, then g = g′ by the uniqueness part of Calabi–Yau theorem. This means the
choice of a hyper-Kähler metric g on M induces a twistor family and vice versa. For
more details, see, e.g., [19, §24.2].

Now suppose we have a twistor family (M, I , J , K ) (with X = (M, I )) corre-
sponding to a hyper-Kähler metric g on M . There exist three distinguished Kähler
forms ωI = g(I−,−), ωJ = g(J−,−) and ωK = g(K−,−) associated to this situ-
ation. These give us a distinguished choice of Kähler classesωI , ωJ , ωK ∈ H2(X , R).
Hence, we have three Lefschetz and three dual Lefschetz operators associated to them

L I , L J , L K ,
I ,
J ,
K ∈ gl(H∗(X , R)).

Now Verbitsky’s Lie algebra gg in [52,53] is a real Lie subalgebra of gl(H∗(X , R))

generated by these six operators. It is shown in loc. cit. that gg ∼= so(4, 1). By definition
of Looijenga–Lunts–Verbitsky algebra, we have an inclusion

so(4, 1) ∼= gg ⊂ gR.

Hence, the choice of a hyper-Kähler metric g on M induces the Verbitsky algebra gg .
If we vary a hyper-Kähler metric g on M , then gg moves inside of the Looijenga–
Lunts–Verbitsky algebra gR.

Finally, let us discuss the relationship between the Verbitsky algebra so(4, 1) and
Fujiki’s work [10]. Once a hyper-Kähler metric g was fixed, Fujiki constructed an
Sp(1)-action on each cohomology Hk(X , R) by purely differential geometric meth-
ods. He studied the Sp(1)-representation theory on the cohomology H∗(X , R) and
as a result, obtained Hodge decomposition-type and hard Lefschetz-type theorems.
In fact, the associated Sp(1)-decomposition essentially coincides with the decom-
position associated to Verbitsky’s gg ∼= so(4, 1)-decomposition (and in particular,
factors through the LLV decomposition). The decomposition (2.3) of the LLV algebra
g induces a degree decomposition for Verbitsky’s algebra gg ∼= so(4, 1):

gg = gg,−2 ⊕ gg,0 ⊕ gg,2, gg,0 = ḡg ⊕ Rh,

with ḡg ∼= so(3, R). Lifting the Lie algebra so(3, R) to the level of Lie group gives
us a simply connected real Lie group Spin(3, R), which is isomorphic to Sp(1) by an
exceptional isomorphism (corresponding to B1 ≡ C1).

2.3 TheMumford–Tate algebra

The Looijenga–Lunts–Verbitsky algebra is a diffeomorphism invariant of a compact
hyper-Kählermanifold X . A complex structure on X is encoded by theHodge structure
on the cohomology H∗(X , Q). This Hodge structure is in turn given by a semisimple
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element f ∈ ḡR (Proposition 2.24). To the Hodge structure is associated a (special)
Mumford–Tate group. Here, we discuss the relationship between the Mumford–Tate
algebra and the Looijenga–Lunts–Verbitsky algebra.

Definition 2.37 Let W be a Q-Hodge structure. Define the operators h ∈ gl(W ) and
f ∈ gl(W )R by

h : W → W , x �→ (p + q)x for x ∈ W p,q

f : WR → WR, x �→ (q − p)
√−1x for x ∈ W p,q ,

as in our previous notation (2.22) and (2.23). The special Mumford–Tate algebra of W
is the smallest Q-algebraic Lie subalgebra mt(W ) of gl(W ) such that f ∈ mt(W )R.
The Mumford–Tate algebra of W is mt0(W ) = mt(W ) ⊕ Qh.

The Mumford–Tate algebra of W is usually defined as the associated Lie algebra
of the Mumford–Tate group of W . Our definition coincides with this definition by the
discussion in [56, §0.3.3]. The correspondence is as follows. LetS be theDeligne torus,
a nonsplit R-algebraic tours of rank 2. According to Deligne, a Q-Hodge structure W
is a finite dimensional Q-vector space W equipped with an appropriate S-module
structure on WR (e.g. see [33]). That is, we have a morphism of R-algebraic groups

ϕ : S → GL(W )R,

with Gm,R ⊂ S → GL(W )R defined over Q. By definition, the Mumford–Tate
group MT(W ) of W is the smallest Q-algebraic subgroup of GL(W ) such that
ϕ(S) ⊂ MT(W )R. Now take the differential of ϕ. We obtain a homomorphism of
R-Lie algebras

ϕ∗ : u(1) ⊕ R → gl(W )R.

The images the generators of u(1) and R are precisely f and h as above, giving the
equivalence of the two definitions.

Returning to the hyper-Kähler geometry, we can consider the Hodge structures of
degree k on Hk(X , Q), and also of the full cohomology H∗(X , Q). We will simply
write

m̄ = mt(H∗(X , Q))

for the special Mumford–Tate algebra associated to the full cohomology of X . It is
the Q-algebraic Lie algebra closure of the one-dimensional real Lie algebra R f ⊂
gl(H∗(X , R)). There is a close relationship between m̄, theMumford–Tate algebras of
the individual cohomologies Hk(X , Q), and the Looijenga–Lunts–Verbitsky algebra
g of X .

Proposition 2.38 Let X be a compact hyper-Kähler manifold of dimension 2n.

(i) There exists an inclusion m̄ ⊂ ḡ. Equality holds for very general X.
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(ii) If 0 < k < 4n and Hk(X , Q) �= 0, then mt(Hk(X , Q)) = m̄.

In particular, while Mumford–Tate algebras vary with the choice of complex structure
on X , they remain subalgebras of the LLV algebra. In other words, all the Mumford–
Tate algebras factor through g (which is a diffeomorphism invariant).

Proof The first statement of (i) is a direct consequence of Proposition 2.24. By defini-
tion, the special Mumford–Tate algebra m̄ ⊂ gl(H∗(X , Q)) is the smallest Lie algebra
with f ∈ m̄R. By Proposition 2.24, f ∈ ḡR. Hence m̄ ⊂ ḡ.

Before proving the equality assertion of (i), let us first prove (ii). The ḡ-module
structure (2.5) on Hk(X , Q) is the composition

ρk : ḡ ⊂ gl(H∗(X , Q))
πk−→ gl(Hk(X , Q)).

Thismap ρk is injective (Corollary 2.36). The paragraph above shows that m̄ is a poste-
riori the Q-algebraic Lie algebra closure of f in ḡR. Note that πk( f ) ∈ gl(Hk(X , R))

is the operator encoding the Hodge structure of Hk(X , Q). Thus mt(Hk(X , Q)) is
the Q-algebraic Lie algebra closure of πk( f ) in gl(Hk(X , R)). But we already have
πk( f ) ∈ πk(ḡ)R, so by the same reason, mt(Hk(X , Q)) is the Q-algebraic Lie alge-
bra closure of πk( f ) in πk(ḡ)R. But since ρk is injective, πk induces an isomorphism
between ḡ and πk(ḡ). Thus πk : m̄ → mt(Hk(X , Q)) is an isomorphism.

It remains to prove the equality assertion of (i). It is a general fact in the theory of
Mumford–Tate groups that the special Mumford–Tate group of the Hodge structure
V̄ = H2(X , Q) of K3 type is SO(V̄ , q̄) outside of the Noether–Lefschetz locus in the
period domain of V̄ (see [15]). Since compact hyper-Kähler manifolds satisfy local
Torelli theoremon second cohomology (or, evenmore, global Torelli theorem [20,55]),
this meansmt(H2(X , Q)) ∼= so(V̄ , q̄) for very general X . Sincemt(H2(X , Q)) = m̄,
the equality assertion follows. ��

By Proposition 2.38, the full Hodge structure on H∗(X , Q) has the same degree
of transcendence as the Hodge structure on H2(X , Q) over the special Mumford–
Tate algebra mt(H2(X , Q)) = m̄. This was anticipated by the Torelli principle for
the second cohomology of hyper-Kähler manifolds (e.g., [19, Cor. 24.5] or [49]). As
a byproduct of this proposition, following Zarhin [56], one can classify the special
Mumford–Tate algebra of projective hyper-Kähler manifolds.

3 The LLV decomposition for the known examples of hyper-Kähler
manifolds

In this section, we determine the LLV decomposition for all known examples of
hyper-Kähler manifolds (Theorem 1.2). We begin with a review of what is known
about these cohomology groups. From our perspective these results are equivalent to
describing the structure of H∗(X) as m̄ = so(3, b2 − 4) module (Sect. 2.3). This
structure is the restriction of an m ∼= so(4, b2 − 3) module structure (as in the proof
of Theorem 2.7). We then show that this second structure is in turn the restriction to
m of a g ∼= so(4, b2 − 2)–representation. This argument works for both the K3[n]
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types and the Kumn types as the necessarily initial module structure is known [14],
even in the non-projective cases [5]. For the OG6 and OG10 types, we do not have
the full m̄–module structures, only the Hodge numbers (cf. [35] and [6]). For OG10
this suffices, as we are dealing with a big algebra g ∼= so(4, 22), and a relatively
small Euler number e(X) = 176, 904. For OG6, these considerations reduce us to
two possible LLVmodule structures. To identify the correct g-representation, we need
to delve deeper into the geometric construction of [35]. The proof of Theorem 1.2 is
presented case by case in Sects. 3.2–3.5.

Remark 3.1 Since our arguments make use of the special Mumford–Tate algebra m̄, it
is important that the LLV algebra g is defined over Q. However, it is more convenient
to work over R; we will do so throughout (unless Q coefficients are needed). For
instance, this allows us to write

g = so(4, b2(X) − 2), ḡ = so(3, b2(X) − 3)

ignoring the rational quadratic structure. Similarly, we write H∗(X) = H∗(X , R).
Everything is however defined over Q, and the discussion can be easily adapted to Q

coefficients.

To our knowledge, very little was previously known on the LLV decomposition
for the known cases. The K3 surface and the Kummer surface are clear (Ex. 2.11).
Recall that, for any hyper-Kähler manifold X , the Verbitsky component V(n) occurs
with multiplicity 1 in the LLV decomposition (Proposition 2.32). Dimension counts
force H∗(K3[2]) = V(2). The only other LLV decompositions that we are aware of
are the next simplest cases, Kum2 (see [26, Ex 4.6]) and K3[3] (see [28, Example
14]). The main result of the section is stated as Theorem 1.2 in the introduction. For
reader’s convenience we state two corollaries of this result, namely the explicit LLV
decompositions for hyper-Kähler manifolds of type K3[n] and Kumn respectively for
small values of n.

Corollary 3.2 Let g ∼= so(4, 21) be the LLV algebra for hyper-Kähler manifolds of
K3[n] type (with n ≥ 2). Then, for n ∈ {2, . . . , 7}, the associated LLV decomposition
of the cohomology is as follows:

H∗(K3[2]) = V(2)

H∗(K3[3]) = V(3) ⊕ V(1,1)

H∗(K3[4]) = V(4) ⊕ V(2,1) ⊕ V(2) ⊕ R

H∗(K3[5]) = V(5) ⊕ V(3,1) ⊕ V(3) ⊕ V(2,1) ⊕ V(1,1) ⊕ V

H∗(K3[6]) = V(6) ⊕ V(4,1) ⊕ V(4) ⊕ V(3,1) ⊕ V(3) ⊕ V(2,2)

⊕ V(2,1) ⊕ V(2)
⊕2 ⊕ V(1,1,1) ⊕ V ⊕ R

H∗(K3[7]) = V(7) ⊕ V(5,1) ⊕ V(5) ⊕ V(4,1) ⊕ V(4) ⊕ V(3,2)

⊕ V(3,1)
⊕2 ⊕ V(3)

⊕2 ⊕ V(2,1,1)

⊕ V(2,1)
⊕2 ⊕ V(2) ⊕ V(1,1)

⊕2 ⊕ V ⊕2
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Remark 3.3 As an illustration, let us discuss the case of hyper-Kähler manifold X
of K3[3] type. The LLV algebra of X is g ∼= so(4, 21), and the above result says
H∗(X) = V(3) ⊕ V(1,1) as g-modules, or equivalently

H∗(X) = V3�1 ⊕ V�2 (3.4)

in terms of the fundamental weights. Further decomposing (3.4) as a module of the
reduced LLValgebra ḡ = so(3, 20) accounts for disassembling theMukai completion.
By definition, the standard g-module V decomposes as V = R(1)⊕ V̄ ⊕R(−1)when
viewed as ḡ-module. Here R(±1) indicates the degree ∓2 parts of V ; V̄ has degree
0. The branching rules (see Appendix B) give

H∗(X) = R(3) ⊕ V̄ (2) ⊕ (Sym2 V̄ ⊕ V̄ )(1)

⊕(Sym3 V̄ ⊕ ∧2V̄ ⊕ R) ⊕ (Sym2 V̄ ⊕ V̄ )(−1)

⊕V̄ (−2) ⊕ R(−3), (3.5)

which the reader will notice is much more involved than (3.4). The decomposition
(3.5) yields H0(X) = R, H2(X) = V̄ , H4(X) = Sym2 V̄ ⊕ V̄ , and so on, recovering
Markman’s computation [28, Ex. 14]. Finally, specializing X to X = S[3] for some K3
surface S, the generic Mumford–Tate algebra m̄ of X in this locus becomes slightly
smaller than ḡ (see Proposition 2.38). More specifically, we have m̄ = so(3, 19)
contained in ḡ = so(3, 20). Restricting the above identity further to m̄, we recover
the Göttsche–Soergel’s formula on Hodge structures [14], which is equivalent to the
m̄-module structure.

Similarly, we have the following formulas for the low dimensional Kumn cases.

Corollary 3.6 Let g ∼= so(4, 5) be the LLV algebra for hyper-Kähler manifolds of
Kumn type (with n ≥ 2). Then, for n ∈ {2, . . . , 5}, the associated LLV decomposition
of the cohomology is as follows:

H∗(Kum2) = V(2) ⊕ R
⊕80 ⊕ V( 12 , 12 , 12 , 12 )

H∗(Kum3) = V(3) ⊕ V(1,1) ⊕ V ⊕16 ⊕ R
⊕240 ⊕ V( 32 , 12 , 12 , 12 )

H∗(Kum4) = V(4) ⊕ V(2,1) ⊕ V(2) ⊕ V(1,1,1) ⊕ V(1,1) ⊕ R
⊕625 ⊕ V

( 52 , 12 , 12 , 12 )

⊕ V( 32 , 12 , 12 , 12 ) ⊕ V( 12 , 12 , 12 , 12 )

H∗(Kum5) = V(5) ⊕ V(3,1) ⊕ V(3) ⊕ V(2,1,1) ⊕ V(2,1)
⊕2

⊕ V(2)
⊕16 ⊕ V(1,1,1,1) ⊕ V(1,1)

⊕ V ⊕82 ⊕ R
⊕1200 ⊕ V( 72 , 12 , 12 , 12 ) ⊕ V

( 52 , 12 , 12 , 12 )
⊕ V( 32 , 32 , 12 , 12 )

⊕ V( 32 , 12 , 12 , 12 )
⊕2 ⊕ V( 12 , 12 , 12 , 12 )

⊕17

Remark 3.7 We do not have closed formulas for the irreducible LLV decompositions
of the general case K3[n] and Kumn , but as one can see, the cohomology of Kumn is
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fairly complicated.Note in particular, the presence of several spin type representations,
and the large number of trivial representations. The number of trivial representations
is controlled by the fourth Jordan totient function J4(n + 1) ∼ (n + 1)4. Specifically
note that in the range that we have worked out the representations explicitly (n ∈
{1, . . . , 5}), the values of of J4(n+1) are 15, 80, 240, 624, and 1, 200,while the number
of trivial representations is 16, 80, 240, 625, and 1, 200 respectively. Geometrically,
this means that a variety of Kumn type contains many Hodge cycles (of order n4) even
if it is non-projective.

Other consequences of Theorem 1.2 are formulas for the generating series for the
Euler numbers, the Poincaré polynomials, and Hodge–Deligne polynomials for the
two series K3[n] and Kumn . In the case of K3[n], we recover the formulas of Göttsche
(see esp. [13, Thm 2.3.10] and [13, Rem 2.3.12]).

Corollary 3.8 The generating series for K3[n] are as follows.

(i) The generating series for the Euler numbers of K3[n] is

∞∑
n=0

e
(
K3[n]) qn =

∞∏
m=1

1

(1 − qm)24
= q

�(q)
,

where �(q) is the weight 12 modular form.
(ii) The generating series for the Poincaré polynomials of K3[n] is

∞∑
n=0

b
(

K3[n], t
)

qn

=
∞∏

m=1

1

(1 − t2qm)(1 − t−2qm)(1 − qm)22
,

where b
(
K3[n], t

)
indicates the Poincaré polynomial with the Betti numbers

bk(K3[n]) encoded in the coefficient of tk−2n.
(iii) The generating series for the Hodge–Deligne polynomials of K3[n] is

∞∑
n=0

h
(

K3[n], s, t
)

qn

=
∞∏

m=1

1

(1 − stqm)(1 − st−1qm)(1 − s−1tqm)(1 − s−1t−1qm)(1 − qm)20
,

where h
(
K3[n], s, t

)
indicates the Hodge–Deligne polynomial with the Hodge

numbers h p,q(K3[n]) encoded in the coefficient of s p−ntq−n.

Proof Recall the discussion in §2.2 that the Hodge structure is captured by the g-
module structure. Specifically, the Hodge component W p,q of a g-module W is the
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direct sum of the weight spaces W (θ), for the weights θ = θ0ε0 + · · · + θ11ε11 such
that

p = θ0 + θ1 + n, q = θ0 − θ1 + n ,

cf. (2.29) and (2.31). Note that the dimension of W (θ) is captured by the coefficient of
xθ0
0 · · · xθ11

11 in the formal character. Setting x0 = st , x1 = st−1, x2 = · · · = x11 = 1
gives us the transformation

xθ0
0 · · · xθ11

11 = sθ0+θ1 tθ0−θ1 = s p−ntq−n,

whose coefficient contributes to the Hodge number h p,q of W . This means setting
x0 = st , x1 = st−1, x2 = · · · = x11 = 1 in (1.3) of Theorem 1.2 gives us the
generating series of the Hodge–Deligne polynomial of them. This proves (iii).

A similar argument implies that setting x0 = t2, x1 = x2 = · · · = x11 = 1
yields (ii). Finally, for (i), note that the Euler number is an alternating sum of the Betti
numbers. This amounts to setting t = −1. ��

For the Kumn case, specializing the generating series of Theorem 1.2(2), we obtain
the following formula for the Hodge–Deligne polynomials. This formula seems new
and slightly simpler than those existing in the literature, but still not as neat as in the
K3[n] case.

Corollary 3.9 The generating series of Hodge–Deligne polynomials of Kumn is

∞∑
n=0

h (Kumn, s, t) qn =
∞∑

d=1

J4(d)
st(B(qd) − 1)

(s + 1)2(t + 1)2q

as in (1.4), but with the formal power series B(q) in this case defined by

B(q) =
∞∏

m=1

(1 + sqm)2(1 + s−1qm)2(1 + tqm)2(1 + t−1qm)2

(1 − stqm)(1 − st−1qm)(1 − s−1tqm)(1 − s−1t−1qm)(1 − qm)4
.

Proof The proof is the same as that of Corollary 3.8. Setting x0 = st , x1 = st−1 and
x2 = x3 = 1 gives us the desired result. One can also observe the first coefficient b1
of B(q) is b1 = 1

st (s + 1)2(t + 1)2. ��

3.1 TheMukai completion

In this subsection, we assume X to be an arbitrary compact hyper-Kähler manifold. Let
m̄ andm0 = m̄⊕Qh be the specialMumford–Tate algebra andMumford–Tate algebra
of X respectively (see Sect. 2). By Proposition 2.38, the Mumford–Tate algebra m̄ is
contained in ḡ. If we assume S is projective, then we further have a classification of the
special Mumford–Tate algebra m̄ by Zarhin [56]; either m̄ ∼= soE (T̄ , q̄) or uE0(T̄ , q̄)

for a totally real or CM number field E (where E is determined by the endomorphisms
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of the Hodge structure). In particular, if E = Q then we have m̄ = so(T̄ , q̄). The
assumption E = Q holds when X is a very general projective hyper-Kähler manifold.

Now, assume we had m̄ ∼= so(T̄ , q̄) for some sub-Hodge structure T̄ ⊂ V̄ . This
assumption is satisfied in the following two cases:

(A) If X is a very general projective hyper-Kähler manifold with a fixed polarization,
then the assumption is satisfied with T̄ the transcendental Hodge structure of V̄
with dim T̄ = dim V̄ − 1, by the above discussion.

(B) If X is a very general non-projective hyper-Kähler manifold, then the assumption
is again satisfied with T̄ = V̄ , by Proposition 2.38(1).

Recall the relation between the two Lie algebras ḡ and g in Theorem 2.7. In these cases,
we can formally imitate this relation to enlarge the Lie algebra m̄ to a new Lie algebra
m. This process is often used in the theory of moduli of sheaves on K3 surfaces, and
called Mukai extension or Mukai completion of the second cohomology.

Definition 3.10 Let (T̄ , q̄) be a quadratic space over Q and m̄ = so(T̄ , q̄) a Q-Lie
algebra. We call (T , q) = (T̄ ⊕ Q

2, q̄ ⊕ ( 0 1
1 0 )) the Mukai completion of (T̄ , q̄), and

m = so(T , q) the Mukai completion of m̄.

The proof of Theorem 2.7 can be interpreted as saying that one can recover the
Lie algebra g as the Mukai completion of the smaller Lie algebra ḡ. Now consider the
specialMumford–Tate algebra m̄ of X . It is contained in ḡ. If we apply theMukai com-
pletion to m̄, then get an abstract Lie algebram. Since g is also the Mukai completion
of ḡ, one can easily conclude

m = m−2 ⊕ m0 ⊕ m2 ⊂ g, m0 = m̄ ⊕ Qh, m±2 = m ∩ g±2. (3.11)

Lemma 3.12 Assume the special Mumford–Tate algebra m̄ of X is isomorphic to
so(T̄ , q̄), e.g., assume X satisfies either (A) or (B) above. Then its formal Mukai
completion m is contained in g, and respects the degree of g in the sense of (3.11). ��

3.2 Cohomology of Hilbert schemes of K3 surfaces

The main result of this subsection is the proof of Theorem 1.2(1) concerning the
generating series for K3[n]. Specifically, we establish:

Theorem 3.13 Let g be the Looijenga–Lunts–Verbitksy algebra of a hyper-Kähler
manifold of K3[n] type with n ≥ 2. Then the generating series of the formal characters
of g-modules H∗(K3[n]) is

1 +
(

11∑
i=0

(xi + x−1
i )

)
q +

∞∑
n=2

ch(H∗(K3[n]))qn =
∞∏

m=1

11∏
i=0

1

(1 − xi qm)(1 − x−1
i qm)

.

Let X be a K3[n] type hyper-Kähler manifold. Since the g-module structure on
H∗(X) is a diffeomorphism invariant, we may specialize X to S[n] with S a complex
K3 surface. Since the statement is a diffeomorphism invariant, we may also vary the
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complex structure of S at our convenience. The Looijenga–Lunts–Verbitsky algebras
for S and X are different, and we indicate them by g(S) and g(X) respectively. As
discussed, g(S) = so(H∗(S, Q), qS) where qS is the Mukai completion of the inter-
section pairing on the second cohomology of S. On the other hand, g(X) = so(V , q)

where (V , q) is the Mukai completion of the second cohomology (V̄ = H2(X), q̄)

of X endowed with the Beauville–Bogomolov form. The relationship between (V̄ , q̄)

and H2(S) is well understood. Specifically,

(V̄ , q̄) = (H2(S, Q), q̄S) ⊕ 〈−2(n − 1)〉.
This implies the inclusion ḡ(S) ⊂ ḡ(X), whence the inclusion of Looijenga–Lunts–
Verbitsky algebras

g(S) ⊂ g(X).

The Hodge structure of the hyper-Kähler manifold S[n] was determined by
Göttsche–Soergel [14]. We interpret this as giving the decomposition of S[n] as a
representation of the Mumford–Tate algebra m̄ ∼= so(3, 19)(= ḡ(S)). By considering
the grading operator h, we can lift this decomposition of H∗(S[n]) to a decomposition
as a g(S) ∼= so(4, 20)-module. Since g(S) ∼= so(4, 20) and g(X) ∼= so(4, 21) have
the same rank (type D12 and B12 respectively), there exists a unique g(X)-module
structure compatible (by restriction) to the g(S)-module structure that we have deter-
mined. We conclude that essentially formally starting from Göttsche–Soergel results,
we recover the LLV decomposition for K3[n].
Theorem 3.14 Let S be a K3 surface and X = S[n]. Denote W = H∗(S) by the stan-
dard g(S)-module. Then the g(X)-module structure on H∗(X) is uniquely determined
by the isomorphism of g(S)-modules

H∗(X) ∼=
⊕
α�n

(
n⊗

i=1

Symai W

)
.

Here α = (1a1 , . . . , nan ) runs through all the partitions of n = ∑n
i=1 iai .

Proof The main result of Göttsche–Soergel [14] is the existence of a canonical iso-
morphism of Q-Hodge structures:

H∗(X)(n) =
⊕
α�n

H∗ (S(a1) × · · · × S(an)
)

(a1 + · · · + an). (3.15)

Here S(a) = Sa/Sa denotes the a-th symmetric power of S, and the additional paren-
theses indicate Tate twistings byQ(n) andQ(a1+· · ·+an) respectively. For notational
simplicity, we omit the Tate twists5 henceforth. Now using the Hodge structure iso-

5 The Tate twisting has the effect of centering the Hodge weights at 0, instead instead of the natural 2n
center for H∗(X). This type of shifting is customary in Hodge theory, and the reason for it is to align the
weights arising geometrically (centered at 2n) to the weight arising from representation theory (centered at
0).
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morphism H∗(S(ai )) = Symai W , we see that the desired identity holds at the level
of Hodge structures.

In [14], S is assumed to be a polarized K3 surface. The algebraicity on S is not
necessary as shown by de Cataldo–Migliorini [5]. This allows us to assume that the
Mumford–Tate algebra of S is as big as possible, i.e., m̄(S) ∼= so(3, 19).

This isomorphism (3.15) gives that the Mumford–Tate algebras m̄(S) = m̄(X)

coincide. Indeed, the Hodge structure of H∗(X) is obtained from a suitable tensor
construction applied to the Hodge structure W = H∗(S). By [33, Rem 1.8], the
special Mumford–Tate algebra of a tensor construction of W is an image of the special
Mumford–Tate algebra of W . This means we have a surjection m̄(S) � m̄(X). On the
other hand, choosing α = (a1 = 0, . . . , an−1 = 0, an = 1), we have a component L
on the right hand side. This means m̄(S) ⊂ m̄(X). Thus we must have m̄(X) = m̄(S)

by dimension reasons. We write m̄ for both m̄(S) and m̄(X), and we understand them
as identified via (3.15).

If follows that the identity [14] can be interpreted as an m̄-module isomorphism.
As discussed, we can assume m̄ is as large as possible, i.e. m̄ = ḡ(S) ∼= so(3, 19).
Recall that it holds

g(S)0 = ḡ(S) ⊕ Rh

where h is the grading operator. Since the isomorphism (3.15) respects the natural
grading (when the Tate twists are taken into account), we lift (3.15) to an isomorphism
of g(S)0-modules. Since the weight lattices of g(S)0 and g(S) are the same, this is
enough to conclude the both hand sides are isomorphic as g(S)-modules. (Here the left
hand side has a structure of g(X)-module, which by restriction gives the structure of a
g(S)-module. While the right hand side only has a natural structure of g(S)-module.)

Finally, the g(X)-module structure on H∗(X) is in fact uniquely determined by its
g(S)-module structure. Note that g(S) = so(W , qS) and g(X) = so(V , q) are type
D12 and B12 simple Lie algebras. Hence we can apply Proposition B.6. ��

The above Theorem 3.14 gives us a tool to compute the g(X)-module structure of
H∗(X), because we can determine its formal character by computing the right hand
side of the equality. Thismethod is already very useful to compute the formal character
and hence the g(X)-module structure of the cohomology of K3[n] type hyper-Kähler
manifold.We canmake the formula even better by taking care of them all; we consider
the generating function of the formal characters of K3[n] hyper-Kähler manifolds. The
advantage of this is that we can get rid of the delicate part of partitions in the formula.

Proof of Theorem 3.13 For simplicity, let us write si = ch(Symi W ) for the formal
character of the symmetric power of the standard g(S)-module W . By Theorem 3.14,
we can write down the generating function by

∞∑
n=0

ch(K3[n])qn =
∞∑

n=0

∑
α�n

sa1sa2 · · · san qn

=
∑
α

sa1qa1 · sa2q2a2 · · · · · san qnan ,
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where α = (1a1 , . . . , nan ) runs through all the partitions of n = a1 + 2a2 + · · · + nan

for all nonnegative integers n. Hence, forgetting about the partition α and just thinking
about ai , we can simply rewrite the last expression by

∑
α

sa1qa1 · sa2q2a2 · · · · · san qnan

=
⎛
⎝ ∞∑

a1=0

sa1qa1

⎞
⎠
⎛
⎝ ∞∑

a2=0

sa2q2a2

⎞
⎠
⎛
⎝ ∞∑

a3=0

sa3q3a3

⎞
⎠ · · · . (3.16)

Now setting A(q) = ∑∞
i=0 si qi , this value is just A(q)A(q2)A(q3) · · · =∏∞

m=1 A(qm). Moreover, the expression A(q) can be further simplified into

A(q) =
∞∑

i=0

si q
i

= 1 + ch Wq + ch(Sym2 W )q2 + · · ·
= 1 + (x0 + · · · + x11 + x−1

0 + · · · + x−1
11 )q + (x20 + x0x1 + · · · + x−2

11 )q2 + · · ·

=
11∏

i=0

(1 + xi q + x2i q2 + · · · )(1 + x−1
i q + x−2

i q2 + · · · )

=
11∏

i=0

1

(1 − xi q)(1 − x−1
i q)

.

The theorem follows. ��

3.3 Cohomology of generalized Kummer varieties

In this subsection, we prove Theorem 1.2(2).

Theorem 3.17 Let g be the Looijenga–Lunts–Verbitsky algebra of a hyper-Kähler
manifold of Kumn type. Let us define the formal power series

B(q) =
∞∏

m=1

⎡
⎣ 3∏

i=0

1

(1 − xi qm)(1 − x−1
i qm)

∏
j

(1 + x j0
0 x j1

1 x j2
2 x j3

3 qm)

⎤
⎦ , (3.18)

with j = ( j0, . . . , j3) ∈ {− 1
2 ,

1
2 }×4 and j0 + · · · + j3 ∈ 2Z. Let b1 be the degree 1

coefficient of B(q) = 1+ b1 · q + b2 · q2 +· · · , and J4(d) be the fourth Jordan totient
function. With these notations, the generating series of the formal characters of the
g-modules H∗(Kumn) is

1 +
(

3∑
i=0

(xi + x−1
i ) + 16

)
q +

∞∑
n=2

ch(H∗(Kumn))qn =
∞∑

d=1

J4(d)
B(qd) − 1

b1 · q
.

(3.19)
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Remark 3.20 Considering the degree n terms of the identity (3.19), we obtain

ch(H∗(Kumn)) = 1

b1

∑
d|n+1

J4

(
n + 1

d

)
· bd ,

where bd are the coefficients of B(q) = 1 + b1q + b2q2 + · · · given by (3.18). In
particular, if n + 1 = p is prime, then

ch(H∗(Kum p−1)) = bp

b1
+ J4(p) = bp

b1
+ (p4 − 1)

has a simple expression. As previously mentioned, the constant term p4 − 1 is an
indicator of the trivial representations in H∗(Kum p−1).

For the proof of Theorem 3.17, we follow the same strategy as for K3[n]. The only
difference here is that the Hodge structure of the generalized Kummer varieties is
much more complicated than that of the Hilbert scheme of K3 surfaces, essentially
because of the existence of the odd cohomology. Fortunately, the first step, interpreting
the Göttsche–Soergel [14] result in our language, is fairly straightforward.

Theorem 3.21 Let A be a complex torus of dimension 2 and X be the generalized
Kummer variety associated to A. Write W = H∗

even(A) and U = H∗
odd(A) as the

standard and semi-spin g(A)-modules. Then the g(X)-module structure on H∗(X) is
uniquely determined by the g(A)-module isomorphism

H∗(X) ⊗ (W ⊕ U ) =
⊕

α�n+1

⎡
⎣n+1⊗

i=1

⎛
⎝ ai⊕

j=0

Symai − j W ⊗ ∧ jU

⎞
⎠
⎤
⎦

⊕g(α)4

,

where α = (1a1 , . . . , (n+1)an+1) runs through all the partitions of n+1 = ∑n+1
i=1 iai ,

and g(α) is defined by

g(α) = gcd{k : 1 ≤ k ≤ n + 1, ak �= 0}.

Proof Again, the following isomorphism is proved in [14] on the level of Q-Hodge
structures (ignoring Tate twists as in Theorem 3.14).

H∗(X × A) =
⊕

α�n+1

H∗(A(a1) × · · · × A(an+1))⊕g(α)4 .

Here A(a) = Aa/Sa indicates the symmetric power of A. Since A in this case has an
odd cohomology, the Hodge structure of A(a) has a more complicated form

H∗(A(a)) =
a⊕

j=0

Syma− j W ⊗ ∧ jU .
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The proof of it can be found, for example, in [30].
In Theorem 3.14, as K3 surfaces are also hyper-Kähler manifolds, we could avoid

the discussion of Looijenga–Lunts–Verbitsky algebra and Mumford–Tate algebra of
them. In this case, since A is not a hyper-Kähler manifold, we first need to (1) compute
the Looijenga–Lunts–Verbitsky algebra of A and (2) compute the special Mumford–
Tate algebra of A. Fortunately, both issues can be handled without much difficulty.
First, Looijenga and Lunts [26] already computed the Looijenga–Lunts–Verbitsky
algebra for an arbitrary complex torus:

g(A) ∼= so(H1(A, Q) ⊕ (H1(A, Q))∨, (, ))

where (, ) is the canonical pairing. For dimension 2, this coincides with so(U⊕4) =
so(H2(A, Q) ⊕ Q

2, qA ⊕ ( 0 1
1 0 )). Hence, the theory of Looijenga–Lunts–Verbitsky

algebra of complex tori of dimension 2 coincides with that of hyper-Kahäler manifolds
(with b2 = 6). Second, the special Mumford–Tate Lie algebra of H∗(A, Q) is that of
H1(A, Q) because H∗(A, Q) = ∧∗ H1(A, Q). This also coincides with the special
Mumford–Tate algebra of H2(X , Q) = ∧2H1(A, Q), which is a Hodge structure of
K3 type, so we can also apply the same argument for complex tori of dimension 2.

Now lifting the Hodge structure isomorphism to anm-module isomorphism can be
done as in the proof of Theorem 3.14. Also, using the Torelli theorem for complex tori,
we can vary the complex structure of A to enhance this isomorphism to a g(A)-module
isomorphism. (Again, we have made use of [5] to be able to work with non-projective
complex tori.) ��

The second part of the theorem requires a new idea. This is because of the additional
wedge product terms appearing in Theorem 3.21, and also because of the delicate term
g(α)4.

Proof of Theorem 3.17 Write si = ch(Symi W ) and wi = ch(∧iU ). Observe that U
is of dimension 8, so we have only w1, . . . , w8. By Theorem 3.21, we can directly
compute

∞∑
n=0

ch(H∗(Kumn))(s1 + w1)q
n+1

=
∞∑

n=0

∑
α�n+1

g(α)4(sa1 + sa1−1w1 + sa1−2w2 + · · · )

· · · (san+1 + san+1−1w1 + san+1−2w2 + · · · )qn+1

=
∑
α �=0

g(α)4(sa1 + sa1−1w1 + · · · )qa1(sa2

+ sa2−1w1 + · · · )q2a2(sa3 + sa3−1w1 + · · · )q3a3 · · · .

Here in the last expression, α = (1a1 , 2a2 , . . .) runs through all nonempty partition
and we used n +1 = a1+2a2 +· · · . Now, as we did in the proof of Theorem 3.13, we
would like to transform the expression without involving the partition α. This cannot
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be in the same way because of the problematic term g(α)4. Let us introduce a set
K = {k : ak �= 0} associated to the partition α. This set is nonempty because α cannot
be an empty partition. Now running α through all nonempty partition corresponds to
running K for all nonempty finite subset of Z, and varying the multiplicity ak ∈ Z≥1
for all elements k ∈ K . Moreover, the notation g(α) is converted simply to gcd(K ).
Hence, we can convert the last expression by

∑
α �=0

g(α)4(sa1 + sa1−1w1 + · · · )qa1(sa2

+ sa2−1w1 + · · · )q2a2(sa3 + sa3−1w1 + · · · )q3a3 · · ·
=
∑

K

∑
(ak )k∈K

∏
k∈K

gcd(K )4(sak + sak−1w1 + · · · )qkak

=
∑

K

gcd(K )4
∑
(ak )

∏
k∈K

(sak + sak−1w1 + · · · )qkak , (3.22)

where the tuple (ak)k∈K runs through all the possible functions K → Z≥1. Now
one can apply the same factorization technique we used in (3.16) to simplify the last
expression into

∑
(ak )

∏
k∈K

(sak + sak−1w1 + · · · )qkak

=
∏
k∈K

(
(s1 + w1)q

k + (s2 + s1w1 + w2)q
2k + · · ·

)
.

For simplicity, let us define A(q) = (s1 + w1)q + (s2 + s1w1 + w2)q2 + · · · . Then
we can write down the last expression in (3.22) simply by

∑
K

gcd(K )4
∏
k∈K

A(qk).

It is surprising to observe this expression admits a further simplification. ��

Lemma 3.23 Let A(q) be an arbitrary formal power series on q. Then we have an
identity

∑
K

gcd(K )4
∏
k∈K

A(qk) =
∞∑

d=1

J4(d)(B(qd) − 1),

where K runs through all the nonempty finite subset of Z, J4(d) denotes the fourth
Jordan totient function and B(q) = (1 + A(q))(1 + A(q2))(1 + A(q3)) · · · .
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Proof of Lemma 3.23 Let S1 = R/Z be the circle group and T 4 = (S1)4 the 4-torus.
We define the following character function δk : T 4 → {0, 1} of the k4-lattice on T 4

δk(x, y, z, w) =
{
1 if x, y, z, w ∈ ( 1k Z

)
/Z

0 otherwise
.

Let dμ be the counting measure on T 4. The idea is to capture the nuisance term
gcd(K )4 by the integration of a multiplication of the character functions

gcd(K )4 =
∫

T 4

(∏
k∈K

δk

)
dμ.

Using this, the left hand side of the identity can be transformed in the following way.

∑
K �=∅

gcd(K )4
∏
k∈K

A(qk) =
∫

T 4

⎡
⎣∑

K �=∅

(∏
k∈K

A(qk)δk

)⎤
⎦ dμ

=
∫

T 4

[−1 + (1 + A(q)δ1)(1 + A(q2)δ2)(1 + A(q3)δ3) · · · ] dμ.

Let us compute this last expression by evaluating the integral at the d4-lattice
points (( 1d Z)/Z)4 ⊂ T 4, inductively starting from the lower values of d. At
the point ( c1

d , . . . , c4
d ) ∈ T 4, if gcd(c1, c2, c3, c4, d) > 1, then this point was

already counted when we considered the (d ′)4-lattice points with d ′ < d. When
gcd(c1, c2, c3, c4, d) = 1, the evaluation of the integral at this point gives precisely
the formal power series

−1 + (1 + A(qd))(1 + A(q2d)(1 + A(q3d)) · · · = B(qd) − 1.

The number of points ( c1
d , . . . , c4

d ) with gcd(c1, c2, c3, c4, d) = 1 is by definition the
fourth Jordan totient function value J4(d). This proves the lemma. ��

Returning to the proof of Theorem 3.17, we now have

∞∑
n=0

ch(H∗(Kumn))(s1 + w1)q
n+1 =

∞∑
d=1

J4(d)(B(qd) − 1).

In our case, we have the further identities

1 + A(q) = 1 + (s1 + w1)q + (s2 + s1w1 + w2)q
2 + (s3 + s2w1 + s1w2 + w3)q

3 + · · ·
= (1 + s1q + s2q2 + · · · )(1 + w1q + · · · + w8q8)

=
3∏

i=0

1

(1 − xi q)(q − x−1
i q)

·
∏

j

(1 + x j0
0 x j1

1 x j2
2 x j3

3 q).
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We finally note A(q) = 1 + (s1 + w1)q + · · · , so that B(q) = (1 + A(q))(1 +
A(q2)) · · · = 1+ (s1 +w1)q +· · · . Hence we can set s1 +w1 = b1, where b1 denotes
the first q-coefficient of B(q). This completes the proof of the theorem. ��

3.4 Cohomology of O’Grady’s 10-dimensional example

The case of hyper-Kählermanifolds ofOG10 type is in some sense themost interesting
case, as it shows the power of the LLV decomposition of the cohomology. To start,
we recall the very recent result of de Cataldo–Rapagnetta–Saccà [6].

Theorem 3.24 (de Cataldo–Rapagnetta–Saccà [6]) Let X be a hyper-Kähler manifold
of OG10 type. Then

(i) There is no odd cohomology (H∗
odd(X) = 0).

(ii) The Hodge numbers of H∗
even(X) are as follows (we list only the first quadrant):

1
22 1
254 22 1
2,299 276 23 1
16,490 2,531 276 22 1
88,024 16,490 2,299 254 22 1

(3.25)

While in the other cases we have made heavy use of the knowledge of the Hodge
numbers, it turns out that in the OG10 case the existence of the LLV decomposition
with respect to so(4, 22) is a very constraining condition. In fact, all that we need to
prove Theorem 1.2(4) is the vanishing of the odd cohomology. In particular, we obtain
that item (ii) of Theorem 3.24 is a corollary of item (i). To emphasize this fact, we
state the following somewhat artificial result:

Theorem 3.26 Let X be a 10-dimensional hyper-Kähler manifold. Assume the follow-
ing

(1) b2(X) = 24.
(2) e(X) = 176, 904.
(3) There is no odd cohomology (H∗

odd(X) = 0).

Then X has the following LLV decomposition as a g = so(4, 22)-module:

H∗(X) = V(5) ⊕ V(2,2). (3.27)

In particular, the Hodge numbers are as in (3.25).

Remark 3.28 An alternative notation for this result, the one written in the introduction,
is H∗(X) = V5�1⊕V2�2 .Here�1 is the fundamentalweight associated to the standard
representation V (and thus V5�1 is the leading representation in Sym5 V ), and �2 is
the fundamental weight associated to the irreducible g-module ∧2V .
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Corollary 3.29 If X is a hyper-Kähler manifold of OG10 type, then its LLV decompo-
sition is given by (3.27) and the Hodge numbers are as in (3.25).

Proof The three conditions of Theorem 3.26 were established by Rapagnetta [44],
Mozgovoy [36] (see also [18]), and de Cataldo–Rapagnetta–Saccá [6] (Theorem
3.24(i)) respectively. ��
Remark 3.30 Lie Fu noted that the arguments of [8] (especially Theorem 1.3 in loc.
cit.) directly imply the vanishing of the odd cohomology for hyper-Kähler manifolds
of OG10 type. Essentially, if one follows O’Grady’s original geometric construction
[40] for an OG10 hyper-Kähler manifold X starting from a projective K3 surface S, it
can be shown that the Hodge structure H∗(X) can be realized by a tensor construction
starting from the Hodge structure H2(S). It follows that X has no odd cohomology.
Combined with Theorem 3.26, one obtains an independent proof of Theorem 3.24.

Remark 3.31 It is interesting to note that in the OG10 case, the vanishing of the odd
cohomology is equivalent to Theorem 1.23. Specifically, assuming no odd cohomol-
ogy, we obtain the LLV decomposition (3.27), which obviously satisfies the condition
(1.20) of Conjecture 1.19. Conversely, assuming (1.20), we conclude that there is no
odd cohomology. Namely, for OG10, the rank of the LLV algebra g is 13. Any irre-
ducible g-module occurring in the odd cohomology Vμ ⊂ H∗

odd(X , Q) has all the
coefficients of μ = (μ0, . . . , μ12) half-integers. But then,

μ0 + · · · + μ11 + |μ12| ≥ 13

2
> 5,

violating the the inequality (1.20). The same argument appliesmore generally.Namely,
the condition (1.20) forces thevanishingof oddcohomology for 2n-dimensional hyper-
Kähler manifolds satisfying

b2(X) ≥ 4n. (3.32)

The rest of the section is concerned with the proof of Theorem 3.26. In addition to
the numerical assumptions of the theorem, we are using the following three general
facts about the cohomology of hyper-Kähler manifolds.

(A) H∗(X) admits an action by the LLV algebra g ∼= so(4, b2 − 2). In this situation,
the assumptions of Theorem 3.26 give g ∼= so(4, 22) and H∗(X) = H∗

even(X)

has dimension 176, 904. The main point here is that this dimension is relatively
small with respect to g.

(B) The Verbitsky component V(5) occurs in H∗(X). Since dim V(5) = 139, 230, we
obtain that the other irreducible g-representations occurring in H∗(X) have total
dimension 37, 674.

(C) A 2n-dimensional hyper-Kähler manifold satisfies Salamon’s relation:

2
2n∑

i=1

(−1)i (3i2 − n)b2n−i = nb2n,
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which we find convenient to rewrite as
∑2n

i=1(−1)i i2b2n−i = n
6 ·e(X). Assuming

no odd cohomology, this gives us

n∑
k=0

(n − k)2b2k = n

24
· e(X) (3.33)

(e.g. in dimension 2 = 2n, this reads b0 = e(X)
24 , which is equivalent to Noether’s

formula for hyper-Kähler[≡ K3] surfaces).

In the particular case considered here, we obtain the following four equations for
the six even Betti numbers:

b0 = 1, b2 = 24

25b0 + 16b2 + 9b4 + 4b6 + b8 = 36, 855

2b0 + 2b2 + 2b4 + 2b6 + 2b8 + b10 = 176, 904

There are finitely many non-negative integer solutions b2i to the above equations. It
turns out that there is a unique solution compatiblewith the LLV structure. Specifically,
we have

H∗
even(X) = V(5) ⊕ V ′, (3.34)

for some so(4, 22)-module V ′. The dimension bound discussed above greatly limits
the possibilities for the irreducible summands of V ′.

Lemma 3.35 The possible dominant integral so(4, 22)-weights μ such that Vμ can be
contained in V ′ are

S = {(4), (3), (2, 2), (2, 1), (2), (1, 1, 1, 1), (1, 1, 1), (1, 1), (1), (0)}.

Proof As discussed, dim V ′ = 37, 674. On the other hand, by Proposition 2.35, μ =
(μ0, . . . , μ12) has integer coefficientsμi . UsingWeyl dimension formula and Lemma
A.9, one can check that S is the complete list of dominant integral weights for the
so(4, 22)-modules satisfying these constraints. ��

As discussed in Sect. 2, each of the so(4, 22)-modules Vμ carry a Hodge structure
(induced by h, f ∈ g = so(4, 22)), and hence each Vμ admits its own Betti numbers.
We list the relevant Betti numbers in Table 1. Writing

V ′ =
⊕
μ∈S

V
⊕mμ
μ

for the irreducible decomposition of V ′, and using Table 1, we obtain the following
constraints:

(i) The betti number b2 = 24 forces m(4) = 0.
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Table 1 The relevant irreducible so(4, 22)-modules for OG10

b0 b2 b4 b6 b8 b10 Dimension
∑

(5 − i)2b2i

V(5) 1 24 300 2600 17,550 98,280 139,230 31,059

V(4) 1 24 300 2600 17,550 23,400 4032

V(3) 1 24 300 2600 3250 405

V(2,2) 299 4600 27,876 37,674 5796

V(2,1) 24 576 4624 5824 672

V(2) 1 24 300 350 28

V(1,1,1,1) 2024 10,902 14,950 2024

V(1,1,1) 276 2048 2600 276

V(1,1) 24 277 325 24

V(1) 1 24 26 1

V(0) 1 1 0

(ii) The Euler characteristic yields

3, 250m(3) + 37, 674m(2,2) + 5, 824m(2,1) + 350m(2) + 14, 950m(1,1,1,1)

+2, 600m(1,1,1) + 325m(1,1) + 26m(1) + m(0) = 37, 674. (3.36)

iii) Salamon’s relation gives us

405m(3) + 5, 796m(2,2) + 672m(2,1) + 28m(2) + 2, 024m(1,1,1,1)

+276m(1,1,1) + 24m(1,1) + m(1) = 5, 796. (3.37)

It turns out that this system of equations has a unique (obvious) solution.

Lemma 3.38 The above equations admit a unique nonnegative integer solution

m(2,2) = 1, m(4) = m(3) = m(2,1) = · · · = m(0) = 0.

Proof By dimension reasons, m(2,2) ≥ 1 forces the solution listed in the lemma. Thus,
we can assume m(2,2) = 0. Rescaling the Euler characteristic equation (3.36) by 2

13 ,
we get

500m(3) + 896m(2,1) + (
53 + 11

13

)
m(2) + 2, 300m(1,1,1,1)

+400m(1,1,1) + 50m(1,1) + 4m(1) + 2
13m(0) = 5, 796.

Notice that the coefficients of this equation are all larger than the corresponding ones in
the Salamon’s relation (3.37) (while the value on the right-hand-side stays the same).
We conclude that there is no non-negative solution with m(2,2) = 0. The lemma
follows. ��

This concludes the proof of Theorem 3.26 (and thus Theorem 1.2(4)).
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Table 2 The Hodge diamond of OG6, the component V(3), and the residual component V ′

1 − 1 = 0

6 1 6 1 0 0

173 12 1 22 6 1 151 6 0

1,144 173 6 1 62 22 6 1 1,082 151 0 0

3.5 Cohomology of O’Grady’s 6-dimensional example

We now prove the OG6 case of Theorem 1.2. Specifically, we prove:

Theorem 3.39 Let X be a hyper-Kähler manifold of OG6 type and g ∼= so(4, 6) its
Looijenga–Lunts–Verbitsky algebra. Then the g-module irreducible decomposition of
the cohomology of X is

H∗(X) = V(3) ⊕ V(1,1,1) ⊕ V ⊕135 ⊕ R
⊕240.

Remark 3.40 An alternative notation for this result, the one written in the introduction,
is H∗(X) = V3�1 ⊕ V�3 ⊕ V ⊕135 ⊕R

⊕240. Here �1 is the fundamental weight asso-
ciated to the standard representation V and �3 is the fundamental weight associated
to the irreducible g-module ∧3V .

The starting point of our result is the Hodge numbers computed by Mongardi–
Rapagnetta–Saccà [35]. Again, there is no odd cohomology, and the relevant Hodge
numbers are given in Table 2.

Splitting off the Verbitsky component from the cohomology of OG6 hyper-Kähler
manifold X

H∗(X) = V(3) ⊕ V ′,

it remains to understand the residual component V ′ (see Table 2 for the numerics). We
proceed as for the OG10 case. Unfortunately, it turns out that there are two possible
solutions to the numerical constraints satisfied byOG6 (evenwhen theHodge numbers
are taken into account).

Proposition 3.41 The LLV decomposition of H∗(OG6) as a so(4, 6)-module is either

H∗(X) = V(3)⊕V(1,1,1)⊕V ⊕135⊕R
⊕240 or V(3)⊕V ⊕6

(1,1)⊕V ⊕115⊕R
⊕290. (3.42)

Proof Straight-forward manipulations of the Hodge numbers, similar to the OG10
case (see Sect. 3.4). We omit the details. ��

In order to decide which of the two possibilities of (3.42) actually occurs in the
LLV decomposition of the OG6 example, we need to investigate further the geometric
construction of [35]. First, it is not hard to lift the computations of Hodge numbers in
loc. cit. to a statement about Hodge structures (Proposition 3.45). This allows us to
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understand the decomposition with respect to the Mumford–Tate algebra m̄ of H4(X)

(Proposition 3.47). Finally, we complete the proof in Sect. 3.5.3, by considering the
possible restriction representations of the two cases in (3.42) from g-representations
to m̄-representations (recall m̄ ⊂ ḡ ⊂ g).

Remark 3.43 There are two heuristic reasons why the situation is more complicated
in the OG6 case versus the OG10 case. First the LLV algebra is much smaller in
this case so(4, 6) (vs. so(4, 22)). Secondly, OG6 is an exceptional case of the Kumn

series, meaning that multiple trivial representations will occur, which in turn means
less rigidity for the numerical constraints.

3.5.1 Review of [35] construction

Let X be a hyper-Kähler manifold of OG6 type. The basic topological invariants of X
were found by Rapagnetta [43] by realizing X as the resolution of the quotient of some
companion K3[3] hyper-Kähler manifold Y by a birational involution ι. This model
was then used by Mongardi–Rapagnetta–Sacca [35] for the computation of Hodge
numbers. We review their construction, and extract some further consequences.

Let X = Ỹ/ι as above (N.B. since the involution is only birational, the equality
should be understand as contacting Y to a singular model on which the involution is
regular, followed by a symplectic resolution of the quotient). To avoid working with
birational involutions and singular models, one considers a blow-up Ŷ of Y on which
the involution lifts to a regular involution ι̂. The quotient X̃ = Ŷ/ι̂ is a blow-up of the
OG6 manifold X . More specifically, one has the following diagram:

Ŷ

Ỹ X̃

Y X

blowup �
/ι̂

blowup 256 P
3 blowdown 256 quadrics

/ι

(3.44)

The following facts (cf. [35,43]) will be needed in our arguments:

(0) Let A be a very general principally polarized abelian surface. Let S = S(A) =
Ã/±1 be the Kummer K3 surface associated to A (it contains 16 disjoint P1). The
K3[3] hyper-Kähler manifold Y is birational to S[3], and it contains 256 disjointP3.
The OG6 manifold X is obtained as a moduli of sheaves on A and resolving (as in
[41]). By construction there is a birational involution ι on Y such that birationally
Y/ι ∼=bir X .

(1) The blow-up Ŷ → Y is the composition of the blow-up Ỹ of the 256 copies of P
3

in Y , followed by the blow-up of the strict transform � ⊂ Ỹ of a certain diagonal
locus.

(2) The center � of the blow-up Ŷ → Ỹ is smooth and isomorphic to the blow-up of
256 nodes of (A × A∨)/±1. In particular, the exceptional divisor �̂ ⊂ Ŷ is a P

1

bundle over �.
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(3) The involution ι lifts to a regular involution ι̂ on Ŷ . The quotient variety X̃ = Ŷ/ι̂

is smooth, and the divisor �̂ ⊂ Ŷ is ι̂-invariant.
(4) The OG6 manifold X is obtained from X̃ by contracting 256 disjoint smooth

threefolds, each isomorphic to a quadric threefold.

In [35], the Hodge numbers of X are obtained from the knowledge of the Hodge
numbers of Y and tracing through the diagram (3.44) using the above mentioned facts.
While not explicitly mentioned in loc. cit., a careful reading of [35, Sect. 6] gives the
following statement about the relationship between the Hodge structures on X and
Y . The key fact to notice here is the factor A × A∨ arising from the blow-up of the
diagonal divisor �. For the following discussion about the Q-Hodge structures and
Mumford–Tate algebras, it is necessary to work with the field Q.

Proposition 3.45 There exists an isomorphism of Q-Hodge structures

H∗(X , Q) = H∗(Y , Q)σ ⊕ H∗
even(A × A∨, Q)(−1) ⊕ 256Q(−3).

Here H∗(Y , Q)σ indicates the invariant cohomology of H∗(Y , Q) with respect to an
appropriate involution σ .

Proof This follows from Section 6 of [35]. Their statements are formulated in terms
of Hodge numbers, but in fact all their proofs apply at the level of Hodge structures.
First, by [35, Lemma 6.2(1)] we get

H∗(X̃ , Q) = H∗(X , Q) ⊕ 256Q(−1) ⊕ 512Q(−2)

⊕512Q(−3) ⊕ 512Q(−4) ⊕ 256Q(−5).

Lemmas 6.2(2) and 6.3 in [35] give the Hodge structure isomorphism

H∗(X̃ , Q) = H∗(Ỹ , Q)ι ⊕ H∗
even(A × A∨, Q)(−1)

⊕256Q(−2) ⊕ 256Q(−3) ⊕ 256Q(−4).

Finally, [35, Lemma 6.5(2)] states the Hodge structure isomorphism

H∗(Ỹ , Q)ι = H∗(Y , Q)σ ⊕ 256Q(−1)

⊕256Q(−2) ⊕ 512Q(−3) ⊕ 256Q(−4) ⊕ 256Q(−5).

Combining the three isomorphisms, we get the desired identification. ��

3.5.2 The Mumford–Tate decomposition

Recall that A was a very general principally polarized abelian surface. Hence, the
Mumford–Tate algebra of A is

m̄ = so(T̄ , q̄A),
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where T̄ ⊂ H2(A, Q) is the transcendental Hodge structure of the second cohomology
of A and q̄A is the intersection form. Note that dim QT̄ = 5 and the signature of q̄A is
(2, 3). This implies the real form of m̄ is isomorphic to so(2, 3).

Lemma 3.46 The special Mumford–Tate algebras of X and Y are both isomorphic to
m̄.

Proof Since Y is obtained from the Kummer surface S = A/±1, the statement is
standard. Using Proposition 3.45, the statement follows also for X . We omit further
details. ��

Using Lemma 3.46 and amore careful inspection of the involution σ from [35, Sect.
6], we obtain the decomposition of the cohomology of H4(X , Q) as a m̄-module.

Proposition 3.47 Let W̄ be the standard m̄-module. Then the fourth cohomology of X
has the m̄-module decomposition

H4(X , Q) = W̄(2) ⊕ W̄(1,1) ⊕ 6W̄ ⊕ 145Q.

Proof Proposition 3.45 gives

H4(X , Q) = H4(Y , Q)σ ⊕ H2(A × A∨, Q)(−1).

Let us first compute the second component. Applying Künneth and standard repre-
sentation theory, we obtain

H2(A × A∨, Q) = H2(A, Q) ⊕ H2(A∨, Q) ⊕
[

H1(A, Q) ⊗ H1(A, Q)
]

= 2W̄ ⊕ 2Q ⊕ (W̄( 12 , 12 ))
⊗2

= W̄(1,1) ⊕ 3W̄ ⊕ 3Q. (3.48)

Next, we need to compute H4(Y , Q)σ . To do so, we imitate the trick used in the
proof of [35, Lem 6.6]. We first compare the second cohomology of the identification
of Proposition 3.45. This gives us the Hodge structure isomorphism

H2(X , Q) = H2(Y , Q)σ ⊕ Q(−1).

But we already know what the Hodge structure of H2(X , Q) is by Lemma 3.46 with
our old Proposition 2.38(2). Both H2(X , Q) and W̄ are m̄-modules and their Hodge
numbers are (1, 6, 1) and (1, 3, 1), respectively. This forces an m̄-module isomorphism
H2(X , Q) = W̄ ⊕ 3Q. Hence, we get

H2(Y , Q)σ = W̄ ⊕ 2Q

as m̄-modules. By similar Hodge number argument, we have H2(Y , Q) = W̄ ⊕
18Q. Writing H2+(Y , Q) = H2(Y , Q)σ and H2−(Y , Q) by the ±1 eigenspaces of the
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involution σ on H2(Y , Q), we have m̄-module isomorphisms

H2+(Y , Q) = H2(Y , Q)σ = W̄ ⊕ 2Q, H2−(Y , Q) = 16Q.

The involution σ was constructed as a monodromy operator on the space Y (see [35,
§6]). Since the monodromy action respects the (reduced) Looijenga–Lunts–Verbitsky
algebra ḡ-structure on each cohomology (cf. [28]), it follows that

H4(Y , Q) = Sym2 H2(Y , Q) ⊕ H2(Y , Q)

as ḡ(Y )-modules by the computation in Remark 3.3. This means H4(Y , Q)σ is pre-
cisely

H4(Y , Q)σ = Sym2 H2+(Y , Q) ⊕ Sym2 H2−(Y , Q) ⊕ H2+(Y , Q)

= Sym2(W̄ ⊕ 2Q) ⊕ Sym2(16Q) ⊕ W̄ ⊕ 2Q = W̄(2) ⊕ 3W̄ ⊕ 142Q.

(3.49)
Combining (3.48) and (3.49), we deduce the result. ��

3.5.3 Completion of the proof of Theorem 3.5

We complete the computations of the LLV decomposition in the OG6 case by
studying the possible restrictions of the g-representations occurring in (3.42) to
m̄-representations. For reader’s convenience let’s recall the inclusions of algebras
m̄ ⊂ ḡ ⊂ g, with g ∼= so(4, 6) the LLV algebra, ḡ ∼= so(3, 5) the reduced LLV
algebra, and finally m̄ ∼= so(2, 3) the Mumford–Tate algebra.

m̄ ⊂ ḡ ⊂ g
‖ ‖ ‖

so(2, 3) ⊂ so(3, 5) ⊂ so(4, 6)

We also recall that ḡ (and thus also m̄) respect the cohomological degree. We focus
on degree 4 cohomology H4(X) as the first non-obvious piece for the ḡ-action. First
we investigate the restriction of the two cases of (3.42) from g to ḡ-modules.

Lemma 3.50 Let X be a hyper-Kähler 6-fold with b2(X) = 8.

(i) Assume that the LLV decomposition of H∗(X) is

H∗(X) = V(3) ⊕ V(1,1,1) ⊕ 135V ⊕ 240R

as g ∼= so(4, 6)-modules. Then

H4(X) = V̄(2) ⊕ V̄(1,1) ⊕ 136R. (3.51)

as ḡ ∼= so(3, 5)-modules.
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(ii) Assume that the LLV decomposition of H∗(X) is

H∗(X) = V(3) ⊕ 6V(1,1) ⊕ 115V ⊕ 290R

as g ∼= so(4, 6)-modules. Then

H4(X) = V̄(2) ⊕ 6V̄ ⊕ 116R. (3.52)

as ḡ ∼= so(3, 5)-modules.

Proof We proceed as in Remark 3.3 (see also Appendix B). Recall that the standard
representation V of g is the Mukai completion of the standard representation V̄ of ḡ.
Regarding V as a ḡ module gives

V = R(1) ⊕ V̄ ⊕ R(−1),

where we indicate the twist to keep track of the cohomological degree. It is immediate
to see

V(3) = R(3) ⊕ V̄ (2) ⊕ Sym2 V̄ (1) ⊕ Sym3 V̄ ⊕ Sym2 V̄ (−1) ⊕ V̄ (−2) ⊕ R(−3),

V(1,1,1) = ∧2V̄ (1) ⊕ [∧3V̄ ⊕ V̄
]⊕ ∧2V̄ (−1),

V(1,1) = V̄ (1) ⊕ [∧2V̄ ⊕ R
]⊕ V̄ (−1).

It follows that

H∗(X) = R(3) ⊕ V̄ (2) ⊕
[
Sym2 V̄ ⊕ ∧2V̄ ⊕ 135R

]
(1)

⊕
[
Sym3 V̄ ⊕ ∧3V̄ ⊕ 136V̄ ⊕ 240R

]
⊕ · · · ,

for the first case, and

H∗(X) = R(3) ⊕ V̄ (2) ⊕
[
Sym2 V̄ ⊕ 6V̄ ⊕ 115R

]
(1)

⊕
[
Sym3 V̄ ⊕ 6 ∧2 V̄ ⊕ 116V̄ ⊕ 296R

]
⊕ · · · ,

for the second case. The lemma follows. ��
Finally, we restrict from ḡ-representation on H4(X) to a m̄-representation.

Proposition 3.53 With notations and assumptions as in Lemma 3.50

(i) If (3.51) holds, then

H4(X) = W̄(2) ⊕ W̄(1,1) ⊕ 6W̄ ⊕ 145R

as m̄ ∼= so(2, 3)-modules.
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(ii) If (3.52) holds, then

H4(X) = W̄(2) ⊕ 9W̄ ⊕ 140R.

as m̄ ∼= so(2, 3)-modules.

Proof This follows directly from the result of Lemma 3.50 with the decomposition
V̄ = W̄ ⊕ 3R. The latter fact follows from the comparison of the Hodge diamond of
V̄ and W̄ , which are (1, 6, 1) and (1, 3, 1) respectively. ��
Proof Theorem 3.39 Using the numerical restrictions onOG6 type,wehavedetermined
two compatible LLV g = so(4, 6)-decompositions of the cohomology (Proposition
3.41). In Proposition 3.53, we have determined the restrictions of these two cases as
representations of theMumford–Tate algebra m̄ = so(2, 3). Only one of themmatches
the geometric possibility identified in Proposition 3.47. The claim follows. ��

4 Periodmaps, monodromy, and the LLV algebra

As discussed in Sect. 2.2.1, the Hodge structure of the cohomology of X is determined
by two operators h, f contained in the LLV algebra g. The purpose of this section is
to discuss the behavior of the Hodge structure of hyper-Kähler manifolds in families,
and more precisely to discuss the higher degree period maps. Given that the Torelli
theorem holds for the second cohomology of hyper-Kähler manifolds, it is no surprise
that the higher degree period maps and monodromy operators are determined by
those for H2(X). Our main results (Theorems 4.1 and 4.9) of this section achieve
precisely these.Wenote the recent papers of Soldatenkov [48,49] cover similar ground.
Theorem 4.9 is already proved in [48, Prop. 3.4], and here we provide its alternative
Hodge theoretic proof, more related to the spirit of Torelli theorem and our discussion
on LLV decomposition. We also note that many of the discussions here are already
conceptually treated in [15, Ch. III–IV], though our two main results about higher
period maps of hyper-Kähler manifolds are not discussed there.

4.1 Higher degree periodmaps

Throughout this subsection6, we fix a compact hyper-Kähler manifold X . Consider
any smooth proper familyX/S of hyper-Kähler manifolds over a complex manifold S,
whose fiber at 0 ∈ S is isomorphic to X . For each degree 0 ≤ k ≤ 4n, one associates
the period map

�k : S̃ → Dk

from the universal cover S̃ of S to the classifying space Dk of Hodge structures
with specified Hodge numbers, matching those of Hk(X). Verbitsky’s global Torelli

6 The arguments in this section follow a suggestion by an anonymous referee. They replace our original
infinitesimal approach.
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theorem [20,55] says that a compact hyper-Kähler manifold is essentially recovered
from its second Hodge structure. Thus, one expects that the k-th period map �k is
recovered from the second period map �2. Here, we make this more precise.

To start, we define the k-th period variety (for k > 2) to be the symmetric space
parameterizing Hodge flags with specified Hodge numbers

Ďk = Flag(Hk(X , C), ( f •)),

where ( f •) indicates the dimensions of the Hodge filtration of the k-th cohomology of
X . It is a smooth projective variety, on which the general linear group GL(Hk(X , C))

acts transitively. Let us fix a reference point ok ∈ Ďk corresponding to the Hodge
structure of the original hyper-Kähler manifold X . Then we have an identification

Ďk = GL(Hk(X , C))/Pk,

where Pk ⊂ GL(Hk(X , C)) is the stabilizer at ok . The case k = 2 is special as we
take into account theBeauville–Bogomolov form (giving a polarization). The structure
group reduces to the special orthogonal group, and we can define the second period
variety, or the second compact dual (of the period domain) by Ď2 = SO(V̄ , q̄)C/P2.
For our purpose, it will be convenient to replace the group SO(V̄ , q̄) by its degree
2 universal cover Spin(V̄ , q̄) and represent the compact dual period domain by the
quotient of a Spin group

Ď2 = Spin(V̄ , q̄)C/P2.

The second period domain D2 can be realized by an open subdomain in Ď2 as
a Spin(V̄ , q̄)R-orbit. In the absence of a polarization on Hk(X), k ≥ 3, there is no
naturally defined period domain Dk ⊂ Ďk . Nevertheless,we still have the holomorphic
period map �k : S̃ → Ďk .

With these preliminaries, we can state our first main result of this section:

Theorem 4.1 For each k, there exists a morphism ψk : Ď2 → Ďk with the following
property. Let X/S be a smooth proper family of hyper-Kähler manifolds whose fiber
at 0 ∈ S is isomorphic to X. Let S̃ be the universal covering of S, and �2 : S̃ → Ď2
and �k : S̃ → Ďk the second and k-th period maps associated to the family. Then we
have a factorization �k = ψk ◦ �2.

S̃ Ď2 Ďk
�2

�k

ψk (4.2)

The only nontrivial part of the theorem is the construction of such a morphism
ψk . After it, the proof will be a formal consequence of our discussions in Sect. 2. As
one can expect, the essential point is the existence of the reduced LLV representation
ρk : ḡ → gl(Hk(X , Q)) in (2.5). Throughout, we will abuse the notation and denote
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its algebraic group version by the same symbol

ρk : Spin(V̄ , q̄) → GL(Hk(X , Q)).

Recall that we have fixed the base points ok of the period varieties Ďk that correspond
to the original hyper-Kähler manifold X . Note that the theorem claims (when S is a
point) ψk(o2) = ok .

Proposition 4.3 There exists a unique equivariant morphism ψk : Ď2 → Ďk with
ψk(o2) = ok.

Proof Recall from above that the period varieties can be described as Ď2 =
Spin(V̄ , q̄)C/P2 and Ďk = GL(Hk(X , C))/Pk . We would like to construct a mor-

phism ψk by a quotient of ρk :

Spin(V̄ , q̄)C GL(Hk(X,C))

Ď2 Ďk

ρk

ψk

.

Here the identity elements in the first row are sent to o2 and ok respectively, giving
ψk(o2) = ok . To descend to a quotient map as desired, we need to prove ρk(P2) ⊂ Pk .
By the Lie algebra–algebraic group correspondence, it suffices to prove its Lie algebra
version ρk(p2) ⊂ pk .

Let f ∈ ḡR be the Hodge operator associated to the complex structure of X .
The Lie algebra homomorphism ρk : ḡR → gl(Hk(X , R)) sends the operator f to
ρk( f ), the operator defining the Hodge structure of Hk(X). Since ρk is a Lie algebra
homomorphism, it in particular respects the (adjoint) f -action. In other words, ρk is
a Hodge structure homomorphism. By standard Hodge theory, the Lie algebras of the
stabilizers p2 and pk admit their own Hodge decompositions

p2 = ḡ1,−1 ⊕ ḡ0,0, pk = gl(Hk(X))k,−k ⊕ · · · ⊕ gl(Hk(X))0,0.

Hence ρk sends p2 into pk and the claim follows. Here one can further prove ψk is
a horizontal map, but we omit its proof as we will not need this fact in our future
discussion. ��

Our definition of the morphism ψk is formal. In order to prove the more geometric
Theorem 4.1, we need to understand it more concretely. Let σ ∈ D2 ⊂ Ď2. This
corresponds to a Hodge structure on H2(X , Q) with H2,0 = Cσ , H0,2 = Cσ̄ and
H1,1 = C{σ, σ̄ }⊥. This gives rise to a Hodge operator fσ ∈ ḡR by our discussion in
Sect. 2. Now consider the element ρk( fσ ) ∈ gl(Hk(X , R)) given by the reduced LLV
representation. Its eigenspaces define a Hodge structure on Hk(X , Q).

Lemma 4.4 Let σ ∈ D2, and fσ ∈ ḡR be as above. Then ψk(σ ) ∈ Ďk defines a Hodge
structure corresponding to the Hodge operator ρk( fσ ) ∈ gl(Hk(X , R)).

Proof The idea is to use the equivariance of the morphism ψk in Proposition 4.3.
Note that Spin(V̄ , q̄)R acts on the period domain D2 transitively, so we may assume
σ = g.o2 for some g ∈ Spin(V̄ , q̄)R. Now use the equivariance of ψk to write
ψk(σ ) = ρk(g).ψk(o2) = ρk(g).ok .
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Let F•
2 and F•

k be the reference Hodge filtrations associated to the base points
o2 and ok . The Hodge operators corresponding to them are f ∈ ḡR and ρk( f ) ∈
gl(Hk(X , R)). Hence the Hodge filtrations associated to g.o2 and ρk(g).ok are g.F•

2
and ρk(g).F•

k . Their associated Hodge operators are fσ = g. f and ρk(g).ρk( f ),
where the actions here are the adjoint actions (conjugations). The claim follows from
ρk(g).ρk( f ) = ρk(g. f ) = ρk( fσ ). ��

The remaining step is to relate our formal construction to the definition of period
maps.

Proof of Theorem 4.1 Let s ∈ S̃ be any point. Let us first review the definition of the
period mappings �2(s) and �k(s). First, fix any path connecting 0 and s. Diffeomor-
phically trivialize the given family X/S along the path, so that we have a “parallel
transport” identification between the fibers PT : X = X0 → Xs . The map PT is a
diffeomorphism. Hence, (1) it induces an isomorphism of LLV algebras g(Xs) and
g(X); and (2) the pullback PT∗ : H∗(Xs, Q) → X∗(X , Q) becomes an LLV module
isomorphism. However, PT∗ is not a Hodge structure isomorphism as it is not biholo-
morphic.We define�k(s) ∈ Ďk by theHodge structure of Hk(Xs, Q) transported into
the vector space Hk(X , Q) under the identification PT∗. For hyper-Kähler manifolds,
theHodge structure on Hk(Xs, Q) is captured by theHodge operatorρk( fs) ∈ ḡ(Xs)R
by discussions in Sect. 2. Hence �k(s) is captured by PT∗(ρk( fs)) ∈ ḡ(X)R.

Note that PT∗ is an LLVmodule isomorphism. Hence PT∗(ρk( fs)) = ρk(PT∗( fs)).
By definition of �2 (in the previous paragraph), PT∗( fs) ∈ ḡR is the Hodge oper-
ator associated to �2(s). Hence by Lemma 4.4, the Hodge operator ρk(PT∗( fs)) is
associated to ψk(�2(s)). This proves �k(s) = ψk(�2(s)). ��

So far, we did not assume the family X/S is projective and everything was proved
without the projectivity assumption. Now if we further assume the family is projective,
then we can restrict our commutative diagram (4.2) further to the period domains. This
can be donewith the aid of the theory ofMumford–Tate subdomains of period varieties
[15]. Let us assume X is a projective hyper-Kähler manifold and fix a polarization

l ∈ H2(X , Z). (4.5)

Set Dl
2 ⊂ Ď2 and Dl

k ⊂ Ďk by the period domain associated to the primitive Hodge
structures H2

prim(X , Q) and Hk
prim(X , Q) with respect to the polarization l.

Corollary 4.6 Assume further in Theorem 4.1 that X/S is a smooth projective family of
hyper-Kähler manifolds with a polarization l. Then the following diagram commutes.

S̃ Dl
2 Dl

k
�2

�k

ψk (4.7)

Proof It is enough to show ψk(Dl
2) ⊂ Dl

k . Let MT2 = SO(H2
prim(X , Q), q̄) be the

generic special Mumford–Tate group of the Hodge structures H2(X , Q) with l ∈
H2(X , Q) ∩ H1,1(X). The period domain Dl

2 can be obtained as a Mumford–Tate
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subdomain of Ď2, the MT2,R-orbit of a point �2(s0) ∈ Ď2. By Proposition 2.38, the
k-th generic special Mumford–Tate group is

MTk = ρk(MT
∼
2 ),

where MT
∼
2 is the inverse image of MT2 by the degree 2 isogeny Spin(V̄ , q̄) →

SO(V̄ , q̄). Hence the k-th Mumford–Tate subdomain in Ďk is the orbit of ρk(MT
∼
2 )R,

which is just ψk(Dl
2) as ψk is an equivariant map by construction. This proves

ψk(Dl
2) ⊂ Dl

k . ��

4.2 Higher degreemonodromy operators

Let us now consider a one-parameter projective degeneration X/� of a hyper-Kähler
manifold X . By this, we mean a flat projective morphismX → � over the unit disk�

such that its restrictionX∗ → �∗ to the punctured disk�∗ is smooth. In this situation,
one gets a monodromy operator Tk ∈ GL(Hk(X)) associated to the smooth family
X∗/�∗ for each cohomological degree 0 ≤ k ≤ 4n. Since each Tk is a quasi-unipotent
operator by themonodromy theorem (e.g. [45]), we can define the k-th log monodromy
operator by its logarithm

Nk = 1
m log

(
(Tk)

m) ∈ End(Hk(X)), (4.8)

where m ∈ Z>0 is such that (Tk)
m is unipotent.

Any diffeomorphism of X respects the Beauville–Bogomolov form on H2(X).
Thus, for the second monodromy we can further say T2 ∈ SO(V̄ , q̄) and hence N2 ∈
so(V̄ , q̄) = ḡ. Recall we had the reduced LLV representation ρk : ḡ → End(Hk(X)),
so we have two elements Nk and ρk(N2) in End(Hk(X)). It was already observed by
Soldatenkov that these two elements coincide. Here we recover his result using our
results on the relation between the second and higher degree period maps (Theorem
4.1 and Corollary 4.6); this is the second main theorem of this section.

Theorem 4.9 (Soldatenkov [48]). For any one-parameter projective degeneration
X/� of hyper-Kähler manifolds, the k-th log monodromy is determined by the second
log monodromy by the relation

Nk = ρk(N2) for all 0 ≤ k ≤ 4n.

In fact, wewill prove a slightly stronger result over an arbitrary complexmanifold S.
For its statement, consider the degree 2 universal covering Spin(V̄ , q̄) → SO(V̄ , q̄).
Among the two preimages of T2 ∈ SO(V̄ , q̄), let us make a choice and denote it by

T̃2 ∈ Spin(V̄ , q̄). (4.10)

The choice will be not a big issue because the square of the two preimages are the
same; our result is about sufficient powers of the monodromies.
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Theorem 4.11 Let X/S be a smooth projective family of hyper-Kähler manifolds with
a fixed polarization l. Let γ ∈ π1(S, s0) and Tk the image of γ by the monodromy
representation π1(S, s0) → GL(Hk(X)). Let T̃2 ∈ Spin(V̄ , q̄) be the lifting of T2 as
in (4.10). Then there exists a positive integer d = d(l) ∈ Z>0, solely depending on l,
such that

(Tk)
d = ρk(T̃2)

d for all 0 ≤ k ≤ 4n.

Theorem 4.9 follows directly from Theorem 4.11 by letting S = �∗ and taking the
logarithm of the equality. For the proof of Theorem 4.11, the following simple lemma
is crucial.

Lemma 4.12 Let D be a real homogeneous space on which a semisimple real Lie group
GR is acting transitively. Fix any point o ∈ D and assume its stabilizer K ⊂ GR is
a compact subgroup. Let GZ ⊂ GR be an arithmetic subgroup, and suppose we have
two elements T , T ′ ∈ GZ with the property

T m .o = (T ′)m .o for all m ∈ Z.

Then there exists a positive integer 0 < d ≤ |GZ ∩ K | such that T d = (T ′)d .

Proof Since K ⊂ GR is compact and GZ ⊂ GR is discrete, GZ ∩ K is a finite group.
From the given assumption, we obtain (T −m(T ′)m).o = o and hence T −m(T ′)m ∈
GZ ∩ K for all m. Since GZ ∩ K is finite, by pigeonhole principle there exist two
distinct integers 0 ≤ m1 < m2 ≤ |GZ ∩ K | so that T −m1(T ′)m1 = T −m2(T ′)m2 . This
implies T m2−m1 = (T ′)m2−m1 . ��
Proof of Theorem 4.11 Consider the diagram (4.7) in Corollary 4.6. By construction,
the period maps certainly satisfy the following relations for all s ∈ S̃:

�k(γ.s) = Tk .�k(s), �2(γ.s) = T2.�2(s) = T̃2.�2(s).

Now from the commutativity �k = ψk ◦ �2 of the diagram, we have a sequence of
identities

�k(γ.s) = ψk(�2(γ.s)) = ψk(T̃2.�2(s)) = ρk(T̃2).ψk(�2(s)) = ρk(T̃2).�k(s).

This gives us the condition

(Tk)
m .�k(s) = �k(γ

m .s) = ρ2(T̃2)
m .�k(s) for all m ∈ Z.

Nowwe can apply Lemma 4.12 to Tk and ρk(T̃2). It follows (Tk)
d = ρk(T̃2)d for some

0 < d ≤ A, where A denotes the cardinality of the finite set GL(Hk
prim(X , Z)) ∩ Kk .

Hence (Tk)
A! = ρk(T̃2)A! and A! does not depend on the degeneration and γ .

Refining the argument gives us a smaller constant.We can replace the period domain
Dl

k in Corollary 4.6 by the Mumford–Tate subdomain ψk(Dl
2). Note that we can still
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apply Lemma 4.12 in this situation, because the monodromy Tk is contained in the
Mumford–Tate group MTk = ρk(MT

∼
2 ). Hence we can replace the constant A by

the cardinality of GL(H2(X , Z)) ∩ K2, which is much smaller than the previous one.
Also, one can replace A! by lcm{d : 1 ≤ d ≤ A}. ��

5 Nagai’s conjecture and the Looijenga–Lunts–Verbitsky
decomposition

LetX /� be a projective one-parameter degeneration of hyper-Kähler manifolds. Con-
sider the associated monodromy operators Nk on the degree k-cohomology (cf. (4.8)),
and let νk be their nilpotency indices. Nagai [37] conjectured that ν2 determines the
higher nilpotency indices by

ν2k = k · ν2 for k = 1, . . . , n (1.13 (restated))

(see [48] for a partial discussion of the odd cohomology case). The purpose of this
section is to show that the equation above is in fact equivalent to a non-trivial condition
on the LLV decomposition of hyper-Kähler manifolds. Specifically, let us write the
LLV decomposition on the even cohomology part:

H∗
even(X) ∼=

⊕
μ∈S

V
⊕mμ
μ , (5.1)

where μ = (μ0, . . . , μr ) indicates a dominant integral weight of g and Vμ its associ-
ated highest weight module.

Also, recall that the Type of the degeneration is I, II and III, depending on the
nilpotency index ν2 ∈ {0, 1, 2} of the second log monodromy. Nagai’s conjecture was
already established for the Type I and III cases by geometric methods in [22]. Hence,
the Type II degeneration is the remaining interest. With these preliminaries, we can
state the main result of the section.

Theorem 5.2 Let X be a projective hyper-Kähler manifold with b2(X) ≥ 5. Sup-
pose that every irreducible g-module component Vμ appearing in (5.1) satisfies the
inequality

μ0 + μ1 + μ2 ≤ n. (5.3)

Then Nagai’s conjecture (1.13) holds for any one-parameter projective degeneration
of X. Conversely, if Nagai’s conjecture holds for a single Type II degeneration of X
then the inequality (5.3) holds.

Remark 5.4 In otherwords,Nagai’s conjecture is essentially equivalent to the condition
(5.3), except for the hypothetical situation when there is no Type II degeneration
(in which case, Nagai’s conjecture would be trivially true). To understand this case,
let us recall that the moduli space of polarized hyper-Kähler manifolds is a locally
symmetric variety D/�, with D a Type IV Hermitian symmetric domain and � an
arithmetic group. In this set-up, the existence of a Type II degeneration is equivalent
to the existence of a rank 2 totally isotropic sublattice in the Beauville–Bogomolov
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lattice H2(X , Z). For signature reasons, such an isotropic sublattice can not exist if
b2(X) ≤ 4. On the other hand, for b2(X) ≥ 7, general lattice theory guarantees the
existence of rank 2 totally isotropic sublattices, and thus the equivalence of Nagai’s
conjecture to condition (5.3). Hence, the only ambiguous cases (where the existence
of Type II degenerations is unclear) are b2(X) = 5 or 6. Of course, at this point, no
such examples of hyper-Kähler manifolds are known. Note also that the condition
b2(X) ≥ 7 occurs naturally in [51].

The rest of this section will be devoted to the proof of Theorem 5.2. We divide
the proof into three cases depending on the Type of the degeneration. As mentioned,
Nagai’s conjecture for the Type I and III cases were already established in [22]. From
our perspective, Type I is trivial as N2k is determined (see Sect. 4) via the LLV decom-
position from N2(= 0 for Type I). The argument for Type III is similar to that in
[22] (essentially the Verbitsky component V(n) is always present in the LLV decom-
position). Finally, the Type II case requires a more delicate representation theoretic
argument.

5.1 Type I and III degenerations

In Sect. 4 we have discussed the interplay between the LLV decomposition and the
periodmap. In particular,wehave seen inTheorem4.9 that in the case of one-parameter
degenerations, the second monodromy operator N = N2 ∈ ḡ determines (for simplic-
ity, we write N instead of N2 from now on) all the monodromy operators Nk by

Nk = ρk(N )

where ρk : ḡ → End(Hk(X)) is the representation of the reduced LLV algebra. As
an immediate consequence we obtain the Type I and III cases of Nagai’s conjecture
without any further restrictions.

Proposition 5.5 Nagai’s conjecture (1.13) holds for type I and III degenerations of
projective hyper-Kähler manifolds.

Proof Type I degeneration is equivalent to ν2 = 0, i.e. N = 0. Since Nk = ρk(N ), we
conclude Nk = 0 for all k (compare [22, Cor. 3.2]). In particular, ν2k = 0 as needed.

For Type III degenerations (ν2 = 2), on one hand, we have the general bound on the
index on nilpotency on H2n by themonodromy theorem, i.e. ν2k ≤ 2k. Conversely, we
recall that the LLV decomposition of H∗(X) always contains theVerbitsky component
V(n). From Appendix B, Verbitsky component splits as a direct sum of Symk V̄ ⊂
H2k(X) as a ḡ-module. Hence we have a ḡ-module decomposition

H2k(X) = Symk V̄ ⊕ V̄ ′
2k,

or equivalently ρ2k splits as Symk ρ2 ⊕ρ′
2k , where Sym

k ρ2 : ḡ → End(Symk V̄ ) and
ρ′
2k is some residual representation. Since N2k = ρ2k(N ), and the nilpotency index

on Symk ρ2 is 2k (cf. Lemma 5.6), the claim follows. ��
The following lemma is standard. For completeness, we include the proof.
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Lemma 5.6 Let Symk ρ2 : ḡ → End(Symk V̄ ) be the ḡ-module structure on Symk V̄ .
Then Symk ρ2(N ) has nilpotency index k · ν2.

Proof The operator Symk ρ2(N ) acts on Symk V̄ as follows:

(Symk ρ2(N ))(x1 · · · xk) =
k∑

i=1

x1 · · · xi−1N (xi )xi+1 · · · xk .

Here we considered N ∈ End(V̄ ) as a linear operator on V̄ . Recall by definition of
the nilpotency index ν2, we have N ν2+1 = 0 but N ν2 �= 0. One computes

(Symk ρ2(N ))kν2(xk) = (const.)(N ν2(x))k, (Symk ρ2(N ))kν2+1 = 0,

which establishes the claim. ��

5.2 Type II degeneration

Consider the reduced LLV decomposition the 2k-th cohomology

H2k(X) ∼=
⊕

λ
V̄ ⊕nλ

λ . (5.7)

Here λ = (λ1, . . . , λr ) denotes a dominant integral weight of ḡ and V̄λ denotes a high-
est ḡ-module of weight λ. Proposition 2.35 tells us that every λ in this decomposition
has integer coefficients λi . For each of such components V̄λ’s, we can in fact compute
the nilpotency index of the log monodromy N2k on this component. This is the content
of the next lemma, which is the core computation used in the proof of Theorem 5.2.

Lemma 5.8 Assume b2(X) ≥ 5. Let λ = (λ1, . . . , λr ) be a dominant integral weight
of ḡ with λi ∈ Z and ρλ : ḡ → End(V̄λ) the highest ḡ-module associated to it.

(i) If ν2 = 1, then ρλ(N ) has nilpotency index λ1 + λ2.
(ii) If ν2 = 2, then ρλ(N ) has nilpotency index 2λ1.

We note that the proof of this lemma is not purely representation theoretic. The fact
that N is obtained from a degeneration of Hodge structure, and hence associated to a
limit mixed Hodge structure of the Hodge structure V̄ of K3 type, will be crucially
used. For an arbitrary choice of an element N ∈ ḡ, the lemma would not hold.

The proof of Lemma 5.8 is quite lengthy, so we would like to devote the rest of
this subsection for its proof. The proof of Theorem 5.2 is then completed in Sect. 5.3.
Before getting into the proof, note that the statement of the lemma does not depend
on the base field. Hence, it is enough to prove the lemma over C. For simplicity, let us
omit the base change index C and assume everything is complexified from now on.

The first step is to give a normalization of the monodromy action on V̄ = H2(X).
Since we are working over C, we can assume that the quadratic space (V̄ , q̄) has one
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of the following standard form:

⎛
⎝ 0 idr×r 0
idr×r 0 0
0 0 1

⎞
⎠ or

(
0 idr×r

idr×r 0

)
(5.9)

depending on the parity of the dimension of V̄ . The content of the followingproposition
is to say that both N and q̄ can be suitably normalized.

Lemma 5.10 Assume b2(X) = dim V̄ ≥ 5. Let N = N2 ∈ End(V̄ ) be the second log
monodromy and ν2 its nilpotency index.

(i) If ν2 = 1, then dim (im N ) = 2. Moreover, there exists a basis

{e1, . . . , er , e′
1, . . . , e′

r (, er+1)}

of V̄ such that q̄ with respect to it has a matrix form (5.9), and

N

(
r∑

i=1

ai ei +
r∑

i=1

a′
i e

′
i (+ar+1er+1)

)
= −a2e′

1 + a1e′
2. (5.11)

(ii) If ν2 = 2, then dim (im N ) = 2 and dim (im N 2) = 1. Moreover, there exists a
basis

{e1, . . . , er , e′
1, . . . , e′

r (, er+1)}

of V̄ such that q̄ with respect to it has a matrix form (5.9), and

N

(
r∑

i=1

ai ei +
r∑

i=1

a′
i e

′
i (+ar+1er+1)

)
= a1e2 − (a2 + a′

2)e
′
1 + a1e′

2. (5.12)

Proof Our arguments follow closely [46, Prop 4.1] (they go back to the study of
degenerations of K3 surface, e.g. in [9] even a normalization over Z is given). For
completeness and notational consistency, we give a proof here.

Assume first that we have a Type II degeneration. The one-parameter degeneration
produces a limit mixed Hodge structure V̄lim. It is a degeneration of the second coho-
mology V̄ of K3 type. The nilpotency index is ν2 = 1, so we have the monodromy
weight filtration

0 ⊂ W1 ⊂ W2 ⊂ W3 = V̄lim

with W1 = im N and W2 = ker N . Since it is a degeneration of a K3 type Hodge
structure, there is only one possibility of theHodge diamond of V̄lim as in Table 3. From
it, we deduce dim W1 = 2 and dim W2 = b2(X) − 2. This proves dim (im N ) = 2.
Next, we choose two elements x, y ∈ V̄ in as follows:
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Table 3 The limit mixed Hodge
structure V̄lim for ν2 = 1 and 2
respectively

0 1

1 1 0 0

0 b2 − 4 0 0 b2 − 2 0

1 1 0 0

0 1

(i) Choose any x /∈ ker N . Choose any y ∈ x⊥ \ (N x)⊥. Since N x ∈ ker N , x and
N x are linearly independent.

(ii) Adjust y so that q̄|C{y,N x} = ( 0 1
1 0 ). This is possible because q̄(N x) =

−(x, N 2x) = 0.
(iii) Adjust x so that q̄|C{x,−N y} = ( 0 1

1 0 ). This is possible because q̄(N y) =
−(y, N 2y) = 0, (x,−N y) = (N x, y) = 1, and we can replace the original
x by x − q(x)

2 N y (this doesn’t change the value of N x , preserving (ii) above).

We define e1 = x , e2 = y, e′
1 = −N y, and e′

2 = N x . By construction, the inter-
section pairing on the subspace spanned by {e1, e2, e′

1, e′
2} is U⊕2 as needed. For the

orthogonal space 〈e1, e2, e′
1, e′

2〉⊥ we choose a basis {e3, . . . , er , e′
3, . . . , e′

r , er+1} as
needed in needed in the normal form (5.9) (since working over C, this can be accom-
plished). Finally note that since e3, . . . , er , e′

3, . . . , e′
r , er+1 are all perpendicular to e′

1
and e′

2, they are perpendicular to im N , and thus contained in ker N = (im N )⊥. The
formula (5.11) for N follows.

The Type III case is similar (and standard). We omit the details. ��
Once a choice of basis as in the lemma above has been made, we can further adjust

the Cartan subalgebra and simple roots of ḡ so that it becomes compatible with this
choice of basis. (N.B. this choice of a Cartan subalgebra is only for this situation, and
unrelated to the previous one containing the operator f in (2.23).)

Lemma 5.13 We can chose a Cartan subalgebra h̄ ⊂ ḡ and simple roots of ḡ so that
the basis elements e1, . . . , er , e′

1, . . . , e′
r (and er+1) in Lemma 5.10 are the weight

vectors associated to the weights ε1, . . . , εr ,−ε1, . . . ,−εr (and 0) of the standard
ḡ-module V̄ . ��

The normalizations above allow us to compute explicitly the nilpotency index as
stated in Lemma 5.8. First, we have the following special case of Lemma 5.8.

Lemma 5.14 Assume b2(X) = dim V̄ ≥ 5. Consider the ḡ-module ρ : ḡ →
End(∧i V̄ ) with 2 ≤ i ≤ r .

(i) If ν2 = 1, then ρ(N ) has nilpotency index 2.
(ii) If ν2 = 2, then ρ(N ) also has nilpotency index 2.

Proof Note that

(ρ(N ))(x1 ∧ · · · ∧ xi ) =
i∑

j=1

x1 ∧ · · · ∧ N (x j ) ∧ · · · ∧ xi .
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Assume ν2 = 1. From Lemma 5.10, we have dim (im N ) = 2 and N 2 = 0. Hence

(ρ(N ))2(x1 ∧ · · · ∧ xi ) = 2
∑

N (x1) ∧ N (x2) ∧ x3 ∧ · · · ∧ xi ,

(ρ(N ))3(x1 ∧ · · · ∧ xi ) = 0.

This proves the nilpotency index of ρ(N ) is at most 2. Using the basis of Lemma 5.10,
we get

(ρ(N ))2(e1 ∧ · · · ∧ ei ) = 2e′
1 ∧ e′

2 ∧ e3 ∧ · · · ∧ ei �= 0.

This proves the nilpotency index of ρ(N ) is precisely 2.
Assume ν2 = 2. Again from Lemma 5.10, we have dim (im N ) = 2,

dim (im N 2) = 1 and N 3 = 0. Thus

(ρ(N ))2(x1 ∧ · · · ∧ xi ) =
∑

N 2(x1) ∧ x2 ∧ · · · ∧ xi

+ 2
∑

N (x1) ∧ N (x2) ∧ x3 ∧ · · · ∧ xi ,

(ρ(N ))3(x1 ∧ · · · ∧ xi ) = 3
∑

N 2(x1) ∧ N (x2) ∧ x3 ∧ · · · ∧ xi .

Now using the preferred basis, we can further compute

(ρ(N ))2(e1 ∧ · · · ∧ ei ) = 2e′
1 ∧ e′

2 ∧ e3 ∧ · · · ∧ ei �= 0,

ρ(N )3 = 0.

(We have been unable to see the last identity without working with a suitable basis).
The lemma follows. ��

One subtlety that needs an attention is that ∧r V̄ is not an irreducible ḡ-module
for b2(X) = dim V̄ even. In fact, in that case, it holds ∧r V̄ = V̄2�r−1 ⊕ V̄2�r . See
Appendix A. With this in mind, we complete the proof of Lemma 5.8.

Proof of Lemma 5.8 Set

ai = λi − λi+1 for 1 ≤ i ≤ r − 1, ar = λr .

Consider a ḡ-module

W = Syma1 V̄ ⊗ Syma2(∧2V̄ ) ⊗ · · · ⊗ Symar (∧r V̄ ).

The highest weight of this module becomes exactly λ (there are two highest weights
when b2(X) is even and λr �= 0, the other one being (λ1, . . . , λr−1,−λr )). Hence V̄λ

should be contained in W . Using Lemma 5.14, This proves the nilpotency index of
ρλ(N ) is at most a1+2a2+· · ·+2ar = λ1+λ2 for ν2 = 1, and 2a1+· · ·+2ar = 2λ1
for ν2 = 2.
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To prove the nilpotency index is precisely the desired value, we need Lemma 5.10
with Lemma 5.13. Using these results, one can see that ∧i V has a unique highest
weight vector e1 ∧ · · · ∧ ei up to scalar (there are two when b2(X) is even and i = r ,
the other one being e1 ∧ · · · ∧ er−1 ∧ e′

r ). Hence W has a unique (two) highest weight
vector, up to scalar,

x := ea1
1 ⊗ (e1 ∧ e2)

a2 ⊗ · · · ⊗ (e1 ∧ · · · ∧ er )
ar ,

and this x is contained in V̄λ.
Assume ν2 = 1. Then the computations in the proof of Lemma 5.14 shows

(ρ(N ))a1+2a2+···+2ar (x) = (e′
1)

a1 ⊗ (2e′
1 ∧ e′

2)
a2

⊗ · · · ⊗ (2e′
1 ∧ e′

2 ∧ e3 ∧ · · · ∧ er )
ar �= 0.

Assume ν2 = 2. Then again, computations in Lemma 5.14 shows

(ρ(N ))2a1+2a2+···+2ar (x) = (−2e′
1)

a1 ⊗ (2e′
1 ∧ e′

2)
a2

⊗ · · · ⊗ (
2e′

1 ∧ e′
2 ∧ e3 ∧ · · · ∧ er

)ar �= 0.

This proves the nilpotency indexes are precisely as stated. ��

5.3 Completion of the proof of Theorem 5.2

Now that we know Lemma 5.8 holds, we can compute the nilpotency index ν2k explic-
itly.

Proposition 5.15 Assume b2(X) ≥ 5 and ν2 = 1. Let H2k(X) = ⊕
λ∈S V̄ ⊕nλ

λ be a
ḡ-module irreducible decomposition of the 2k-th cohomology. Then

ν2k = max{λ1 + λ2 : λ = (λ1, . . . , λr ) ∈ S}.

Proof The representation ρ2k : ḡ → End(H2k(X)) decomposes into

ρ2k : ḡ →
⊕

λ∈S
End(V̄λ)

⊕nλ ⊂ End(H2k(X)).

Henceρ2k(N ) is the direct sumof eachρλ(N ), and its nilpotency index is themaximum
of those of ρλ(N ). Thus the statement follows from Lemma 5.8. ��

By Lemma 5.6, if ν2 = 1 then we always have ν2k ≥ k. Thus, it is enough to show
every irreducible ḡ-module component V̄λ of H2k(X) satisfies λ1 + λ2 ≤ k.

Corollary 5.16 Assume b2(X) ≥ 5 and ν2 = 1. Then ν2k = k for all 0 ≤ k ≤ n if and
only if every highest ḡ-weight λ appearing in (5.7) satisfies the inequality λ1 +λ2 ≤ k
for all 0 ≤ k ≤ n. ��
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The final step now is to lift the condition λ1 + λ2 ≤ k (in terms of the ḡ-module
structure on Hk(X)) to a condition in terms of the g-module structure on H∗

even(X).
Recall that the ḡ-module structure on H2k(X) was induced from a more rigid g-
module structure on H∗

even(X). The g-module irreducible decomposition of the full
even cohomology was

H∗
even(X) ∼=

⊕
μ∈S

V
⊕mμ
μ , (5.1 (restated))

where μ = (μ0, . . . , μr ) indicates a dominant integral weight of g and Vμ indicates
the associated g-module.

Let us start from the lifting of ḡ-module structure to the g0-module structure. Recall
the definition g0 = ḡ ⊕ Rh in (2.4). Assume 0 ≤ k ≤ n. The ḡ-module V̄λ contained
in H2k(X) can be think of an irreducible g0-module of highest weight (k − n)ε0 + λ

contained in H∗
even(X). This is because the operator h = ε∨

0 acts on H2k(X) by the
multiplication 2k − 2n, whence giving us the coefficient (k − n)ε0. We abuse our
notation and write this g0-module as

V̄(k−n)ε0+λ.

Note that the Cartan subalgebra and weight lattices of g and g0 are exactly the same.
The difference between their representation theory comes from their Weyl group.
The Weyl group W0 of g0 is strictly smaller than the Weyl group W of g; the Weyl
groupW0 loses all the symmetries coming from the weight ε0. This explains why Vμ

decomposes further as a g0-module.
Fix a Cartan subalgebra h ⊂ gC of g. The weights of g live in the space h∨

R
. We

define the weight polytopeWP(Vμ) of Vμ as the smallest convex hull in h∨
R
containing

all the weights of Vμ. The following simple lemma about the weight polytope will be
useful.

Lemma 5.17 Let us define a subset of h∨
R

by

K = {
r∑

i=0

tiεi ∈ h∨
R

: ti ∈ R for 0 ≤ i ≤ r , |t0| + |t1| + |t2| ≤ n}.

If a dominant integral weight μ of g is contained in K , then the whole weight polytope
WP(Vμ) is contained in K .

Proof Note that a dominant integral weight μ = ∑r
i=0 μiεi satisfies μ0 ≥ · · · ≥

μr−1 ≥ |μr | ≥ 0. Thus, |μ0| + |μ1| + |μ2| ≤ n implies |μi | + |μ j | + |μk | ≤ n
for all different i, j, k. Now, a Weyl group action w ∈ W of type BD acts on μ by
permutation of coefficients μi and changing their signs. Hence the sum of absolute
value of the first three coefficients ofw.μ is always |μi |+|μ j |+|μk | ≤ n. This proves
all the vertices of WP(Vμ) is contained in P . Since the weight polytope WP(Vμ) is a
convex hull generated by its vertices and K is a convex set, we conclude the statement.

��
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We now conclude the proof of Theorem 5.2.

Proof of Theorem 5.2 Assume μ0 + μ1 + μ2 ≤ n for all μ ∈ S. Consider any
V̄λ ⊂ H2k(X). We lift it to a g0-module V̄(k−n)ε0+λ ⊂ H∗

even(X). Then there
exists a unique irreducible g-submodule Vμ ⊂ H∗

even(X) containing V̄(k−n)ε0+λ.
For such μ, we certainly have (k − n)ε0 + λ ∈ WP(Vμ). Now Lemma 5.17 says
(n − k)+λ1 +λ2 ≤ n. Hence λ1 +λ2 ≤ k, and now Nagai’s conjecture follows from
Corollary 5.16.

Conversely, assume there exists μ ∈ S with μ0 +μ1 +μ2 > n. Define a dominant
integral weight λ of ḡ by

λ =
{

μ1ε1 + · · · + μrεr if b2(X) is odd,

μ1ε1 + · · · + μr−1εr−1 − μrεr if b2(X) is even.

Consider a dominant integral g0-weight −μ0ε0 + λ. It is also a g-weight since the
weight lattices of g0 and g are the same. Let us define the Weyl group action w ∈ W
as follows: if b2(X) is odd then w changes the sign of ε0, and if b2(X) is even then
w changes the sign of both ε0 and εr . Regardless of the parity of b2(X), we always
have −μ0ε0 + λ = w.μ. Since μ ∈ WP(Vμ), we have −μ0ε0 + λ ∈ WP(Vμ) as one
of the vertices. This forces V̄−μ0ε0+λ ⊂ Vμ ⊂ H∗

even(X) as g0-submodules. But then
by the discussion above, we have V̄λ ⊂ H2k(X) for k = −μ0 + n with the property
λ1 + λ2 = μ1 + μ2 > −μ0 + n = k. Again by Corollary 5.16, this proves Nagai’s
conjecture fails for any Type II degeneration. ��

6 Nagai’s conjecture for the known examples of hyper-Kähler
manifolds

At this point, we conclude with the proof of Nagai’s conjecture (Theorem 1.14) for
the known cases of hyper-Kähler manifolds. In fact, as announced in the introduction,
a stronger representation theoretic condition holds for all known cases. Specifically,
the following holds (also stated as Theorem 1.23 in the introduction):

Theorem 6.1 Let X be a2n-dimensional hyper-Kähler manifold ofK3[n],Kumn,OG6,
or OG10 type. Then any irreducible g-module component Vμ occurring in the LLV
decomposition of H∗(X) satisfies

μ0 + · · · + μr−1 + |μr | ≤ n. (6.2)

Remark 6.3 There are at least two other equivalent ways to state the condition (6.2).
The first one is in terms of weight polytopes. The condition (6.2) is equivalent to the
weight polytope of Vμ being contained in that of the Verbitsky component V(n):

WP(Vμ) ⊂ WP(V(n)).

This can be easily seen as follows. The weight polytope of the Verbitsky component
V(n) has vertices±nε0, . . . ,±nεr , obtained by applying theWeyl group actions to the
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highest weight nε0. From it, one shows its weight polytope is

WP(V(n)) = {θ = θ0ε0 + · · · + θrεr ∈ h∗
R

: |θ0| + · · · + |θr | ≤ n}.

In our case, μ is a dominant integral weight so we have an assumption μ0 ≥ · · · ≥
μr−1 ≥ |μr | ≥ 0. Hence (6.2) is equivalent to μ ∈ WP(V(n)), which is again equiv-
alent to our condition on the weight polytopes. In this sense, the condition (6.2) in
some sense means that the Verbitsky component is the dominant component among
the LLV components arising in H∗(X).

The second equivalent way to state the condition (6.2) is to use the notion of
a cocharacter. Assume dim V = 2r + 3 is odd. Let us denote �r the fundamental
weight associated to the spin representationV�r . Thenone can consider the cocharacter
�∨

r := 2(�r ,−)
(�r ,�r )

associated to it. Then the inequality (6.2) is equivalent to the inequality

〈μ,�∨
r 〉 ≤ 〈nε0,�

∨
r 〉.

That is, the highest weight μ is again dominated in terms of the pairing with the
cocharacter �∨

r associated to the spin representation. If dim V = 2r + 2 is even,
then we have to take care of the case μr < 0, so (6.2) is in fact equivalent to two
inequalities μ0 + · · · + μr−1 − μr ≤ n and μ0 + · · · + μr−1 + μr ≤ n. This
case, we have two half-spin representations associated to the fundamental weights
�r−1 = 1

2 (ε0 + · · · + εr−1 − εr ) and �r = 1
2 (ε0 + · · · + εr ). Hence the condition

(6.2) is equivalent to

〈μ,�∨
r−1〉 ≤ 〈nε0,�

∨
r−1〉 and 〈μ,�∨

r 〉 ≤ 〈nε0,�
∨
r 〉.

This can be again interpreted as the highest weight μ is dominated in terms of the
pairing with the cocharacters associated to the two half-spin representations.

Proof of Theorem 6.1 The inequality for OG6 and OG10 follows directly from the
irreducible LLV decomposition in Theorem 1.2 items (3) and (4) respectively. Assume
now that X is a hyper-Kähler manifold of K3[n] type. We will in fact prove that every
weight μ associated to H∗(X) satisfies the desired inequality above. In this situation,
we have the following generating series for the formal character (cf. Theorem 1.2(1)):

∞∑
n=0

ch(H∗(K3[n], R))qn =
∞∏

m=1

11∏
i=0

1

(1 − xi qm)(1 − x−1
i qm)

.

By definition, the coefficient of qn gives all the g-weights of H∗(X). The weight μ =
μ0ε0+· · ·+μ11ε11 corresponds to themonomial xμ0

0 xμ1
1 · · · xμ11

11 in the representation
ring. Hence, the desired inequality μ0 + · · · + μ11 ≤ n is equivalent to saying that
the xi -degree of the coefficient of qn is ≤ n. This is obvious from the form of the
right hand side; whenever we increase the degree of q by m > 0, then the degree of xi

increases at most by 1(≤ m). Thus, for every monomial in the generating series, the
xi -degree is at most the q-degree. The claim follows.
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For a Kumn type hyper-Kähler manifold X , the same argument applies. In this case,
the generating series of the formal character of H∗(X) is (cf. Theorem 1.2(2)):

∞∑
n=0

ch(H∗(Kumn, R))qn =
∞∑

d=1

J4(d)
B(qd) − 1

b1q
,

where B(q) is defined by

B(q) =
∞∏

m=1

⎡
⎣ 3∏

i=0

1

(1 − xi qm)(1 − x−1
i qm)

∏
j

(1 + x j0
0 x j1

1 x j2
2 x j3

3 qm)

⎤
⎦ .

Note that in the denominator we have

b1 = x0 + · · · + x3 + x−1
0 + · · · + x−1

3 + √
x0x1x2x3 + · · · + √

x0x1x2x3
−1

.

Assume on the contrary that there exists some monomial xμ0
0 · · · xμ3

3 qn in the gen-
erating series such that μ0 + · · · + μ3 ≥ n + 1

2 . After multiplying b1q, it follows

that some B(qd) contains a monomial x
μ0+ 1

2
0 · · · x

μ3+ 1
2

3 qn+1. This means that B(q)

contains a monomial with xi -degree at least 3
2 bigger than the q-degree. One can see

without difficulty this cannot happen in B(q) defined as above. ��

Combining Theorem 6.1 with the representation theoretic formulation of Nagai’s
conjecture (Theorem 5.2), we conclude Nagai’s conjecture holds for all currently
known examples of hyper-Kähler manifolds.

Corollary 6.4 Nagai’s conjecture (1.13) holds for all one-parameter degenerations of
projective hyper-Kähler manifolds of K3[n], Kumn, OG6, or OG10 type. ��

It is natural to speculate that Nagai’s conjecture (or even the stronger inequality
(6.2)) holds for any hyper-Kähler manifold. We do not have much to say in this
direction. However, for completeness, we note Nagai’s conjecture holds in general for
low (≤ 8) dimensional cases.

Proposition 6.5 Nagai’s conjecture (1.13) holds when dim X ≤ 8.

Proof If b2(X) ≤ 4 then Remark 5.4 shows Nagai’s conjecture is always true. If
b2(X) ≥ 5 then we may apply Theorem 5.2. From Proposition 2.34, every highest
weight μ in the LLV decomposition of the even cohomology H∗

even(X) = ⊕
μ V

⊕mμ
μ

satisfies either μ0 + μ1 ≤ n − 1 or μ = (n). The case μ = (n) clearly satisfies
μ0 + μ1 + μ2 ≤ n. If n ≤ 4, we get μ0 + μ1 ≤ 3 and hence μ2 ≤ μ1 ≤ 1. This
proves μ0 + μ1 + μ2 ≤ n. ��
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Appendix A: Representation theory of simple Lie algebras of type BD

We present a short review and fix notation for finite dimensional representation the-
ory of simple Lie algebras of type BD. Throughout this section, we fix the notation
g = so(V , q) for a special orthogonal Lie algebra associated to an arbitrary nonde-
generate quadratic space (V , q) over Q. Over the complex numbers C, there is only
one quadratic space of dimension n up to isomorphism, so every type BD simple Lie
algebra over C is isomorphic to so(n, C). Over the real numbers R, by Sylvester’s
classification, quadratic forms on R

n is classified by its signature (a, b), so every Lie
algebra so(V , q) over R is isomorphic to so(a, b). (N.B. not every type BD simple
Lie algebra over R is of the form so(V , q).) Over the rational numbers Q, the case of
interest here, the classification of quadratic forms on Q

n is well understood, but more
subtle (e.g., [42]).

The LLV algebra of a hyper-Kähler manifold is of the form g = so(V , q) (see
Theorem2.7) for a rational quadratic space (V , q).Wewill review some representation
theory facts in this simplest case of type BD Lie algebra. We will do the representation
theory over Q as much as possible. By definition, a finite dimensional Q-vector space
W is called a g-module, or a g-representation, if it is equipped with a Lie algebra
homomorphism g → gl(W ). Our main references for this appendix are [11] for
representation theory over C, and Milne [32] for that over Q.

A.1 Type B

Assume (V , q) is a rational quadratic space of odd dimension 2r + 1 ≥ 3.
Fix any Cartan subalgebra h ⊂ gC. Let 0,±ε1, . . . ,±εr be the associated weights

of the standard representation VC with respect to h. We can choose a positive Weyl
chamber appropriately so that it is generated by the fundamental weights

�i = ε1 + · · · + εi for 1 ≤ i ≤ r − 1, �r = 1
2 (ε1 + · · · + εr ). (A.1)

Let 
 ⊂ h∨
R
be the weight lattice of g. It is a rank r lattice in the Euclidean space h∨

R

generated by the above fundamental weights. The intersection of the positive Weyl
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chamber and 
 is the monoid of dominant integral weights


+ = {λ =
r∑

i=1

λiεi : λ1 ≥ · · · ≥ λr ≥ 0, λi ∈ 1
2Z, λi − λ j ∈ Z}. (A.2)

We will often denote a dominant integral weight λ = ∑r
i=1 λiεi simply as λ =

(λ1, . . . , λr ), and omit the zeros in the end for simplicity. Whenever we use this
notation, we assume λ is a dominant integral weight and the conditions on λi above
(A.2) are tacitly assumed.

Let λ be a dominant integral weight of g. Over C, we always have a unique irre-
ducible gC-module Vλ,C with highest weight λ. We call this a highest gC-module of
weight λ. Over Q, this is not always possible. However, in our case of g = so(V , q),
we have a strong condition that the standard g-module V is defined over Q. This
implies that many of the modules relevant to us are in fact defined over Q.

Proposition A.3 Let λ = (λ1, . . . , λr ) be a dominant integral weight of g. If λi are
integers, then there exists a unique irreducible g-module Vλ such that its complexifi-
cation (Vλ)C is isomorphic to the highest gC-module Vλ,C. We call this Vλ the highest
g-module of weight λ.

Proof The orthogonal Schur-Weyl construction [11, Thm 19.22] realizes the highest
gC-module Vλ,C as an explicit tensor construction starting from the standard module
VC. This construction works over Q, and hence one can apply it to the rational g-
module V and end up with a rational g-module Vλ. This proves Vλ,C is in fact defined
over Q. Uniqueness is a general fact in representation theory over an arbitrary field
(see, e.g., [32, Thm 25.34]). ��

The highest g-modules associated to the fundamental weights (A.1) are most easily
described. For 1 ≤ i ≤ r −1, the highest g-module of weight�i is isomorphic to∧i V ,
the i-th wedge power of the standard module V . The highest module associated to the
weight �r is exceptional; it is the spin g-module V�r ,C. Note that Proposition A.3
does not guarantee V�r ,C is defined over Q. Indeed, it is completely possible that the
spin module is not even defined over R (see, e.g., [7]). However, one should be aware
that V2�r is defined over Q and isomorphic to ∧r V . It is an irreducible g-module.

Anyg-moduleW overQ admits an associatedSpin(V , q)-module structure andvice
versa [32, Thm 22.53]. The existence of a degree 2 isogeny Spin(V , q) → SO(V , q)

says there are exactly half the irreducible SO(V , q)-modules than that of Spin(V , q)-
modules. More specifically, Vλ admits an associated SO(V , q)-module structure if
and only if λ is contained in the following submonoid of 
+:


+
SO =

{
λ =

r∑
i=1

λiεi : λ1 ≥ · · · ≥ λr ≥ 0, λi ∈ Z

}
.

Note that this consists of precisely the dominant integral weights stated in Proposition
A.3. Hence, every SO(V , q)-module is defined over Q.
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The Weyl group W of g is the symmetry group of its root system consisting of
permutations of the weights ε1, . . . , εr and their sign changes. More specifically,
W ∼= Sr � (Z/2)×r where Sr is the symmetric group of order r and the semidirect
product is defined in terms of the group Sr acting on (Z/2)×r by permuting factors.
For every highest weight λ, the set of weights of Vλ,C isW-invariant as a subset in the
Euclidean space h∨

R
. Moreover, if we consider the convex hull in h∨

R
generated by all

of the weights of Vλ,C, then we have a weight polytope WP(Vλ). The vertices of this
polytope are exactly the points w.λ where w ∈ W varies through all the Weyl group
actions. Some of them can coincide.

TheWeyl dimension formula provides a convenient way to compute the dimension
of the highest weight modules Vλ,C. The formula is as follows.

dim Vλ,C =
∏

1≤i< j≤r

(λ + ρ, εi + ε j ) · (λ + ρ, εi − ε j )

(ρ, εi + ε j ) · (ρ, εi − ε j )
·

r∏
i=1

(ρ + λ, εi )

(ρ, εi )
. (A.4)

Here ρ = ∑r
i=1(r − i + 1

2 )εi is half the sum of the positive roots and (, ) is the
standard Euclidean inner product on h∨

R
with respect to the basis εi , the Killing form.

Of course, if Vλ,C is defined over Q with its Q-form Vλ, then the Q-dimension of Vλ

can be computed by exactly the same formula.

A.2 Type D

Assume (V , q) is a rational quadratic space of even dimension 2r ≥ 4. There is an
analogue but slightly different story in this case. Again, start with fixing any Cartan
subalgebra h ⊂ gC. We have ±ε1, . . . ,±εr as the weights associated to the standard
gC-module VC with respect to h. Taking an appropriate positive Weyl chamber, we
can choose the fundamental weights by

�i = ε1 + · · · + εi for 1 ≤ i ≤ r − 2, �r−1 = 1
2 (ε1 + · · · + εr−1 − εr ),

�r = 1
2 (ε1 + · · · + εr ). (A.5)

The monoid of dominant integral weights is


+ =
{

λ =
r∑

i=1

λiεi : λ1 ≥ · · · ≥ λr−1 ≥ |λr | ≥ 0, λi ∈ 1
2Z, λi − λ j ∈ Z

}
.

(A.6)
We often denote λ = (λ1, . . . , λr ) for a dominant integral weight λ = ∑r

i=1 λiεi ,
satisfying the condition (A.6).

We denote Vλ,C the highest gC-module of weight λ. A similar proposition on their
field of definition holds for Vλ,C, but this time a bit more complicated than the previous
one.

Proposition A.7 Let λ = (λ1, . . . , λr ) be a dominant integral weight of g. If λr = 0
then there exists a unique irreducible g-module Vλ such that its base change over C

is the highest module Vλ,C.
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Proof The proof is the same as above. Notice the conditions on λ are different for type
B and type D. ��

Note that the orthogonal Schur–Weyl construction argument [11, Thm 19.22] still
says Vλ,C⊕Vλ′,C is defined overQ for λr ∈ Z\{0}, where λ′ = (λ1, . . . , λr−1,−λr ).
Hence one cannot say the highest gC-module Vλ,C is always defined over Q when
λr ∈ Z \ {0}. However, only two cases can possibly arise:

(i) There do exist irreducible g-modules Vλ and Vλ′ , whose complexification are the
highest gC-modules Vλ,C and Vλ′,C.

(ii) There does not exist any irreducible g-module whose complexification is the high-
est gC-module Vλ,C (resp. Vλ′,C). Nonetheless, there exists a unique irreducible
g-module Vλ = Vλ′ whose complexification is Vλ,C ⊕ Vλ′,C.

The highest g-modules associated to the fundamental weights (A.5) are V�i = ∧i V
for 1 ≤ i ≤ r−2. For i = r−1, r , we get the two half-spin representationsV�r−1,C and
V�r ,C. Again, it is totally possible these half-spin representations are not defined over
Q [7].We also note the isomorphisms∧r−1V = V�r−1+�r and∧r V = V2�r−1⊕V2�r .
In particular, ∧r−1V is an irreducible g-module whereas ∧r V is not.

Any g-module W over Q admits an associated Spin(V , q)-module structure and
vice versa. There exists a degree 2 isogeny Spin(V , q) → SO(V , q). This says Vλ

admits an associated SO(V , q)-module structure if and only if λ is contained in


+
SO =

{
λ =

r∑
i=1

λiεi : λ1 ≥ · · · ≥ λr−1 ≥ |λr | ≥ 0, λi ∈ Z

}
.

In this case, the center of Spin(V , q) is isomorphic to (Z/2)×2 and hence there exists
a further degree 2 isogeny SO(V , q) → PSO(V , q). Therefore, there are more possi-
bility of Q-algebraic groups with the associated Lie algebra g.

TheWeyl groupW of g consists of permutations of the weights ε1, . . . , εr and even
number of their sign changes. The groupW is an index 2 subgroup ofSr � (Z/2)×r ,
consisting of elements of even number of 1’s in (Z/2)×r . The set of weights of Vλ

is W-invariant, and generates a convex hull WP(Vλ), the weight polytope of Vλ. The
vertices of WP(Vλ) are exactly the points w.λ where w ∈ W varies through all the
Weyl group actions.

For any dominant integral weight λ, the Weyl dimension formula for this case has
the following form:

dim Vλ,C =
∏

1≤i< j≤r

(λ + ρ, εi + ε j ) · (λ + ρ, εi − ε j )

(ρ, εi + ε j ) · (ρ, εi − ε j )
. (A.8)

Here ρ = ∑r
i=1(r − i)εi denotes again half the sum of the positive roots and (, ) is the

standard Euclidean inner product on h∨
R
with respect to the basis εi . As an example, in

this paper, we have used the Weyl dimension formula to generate Table 1 for hyper-
Kähler manifolds of OG10 type. Since, in this case, the rank of g is r = 13, our
computations were computer-aided. Finally, we provide the following lemma about
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the dimension comparison of Vλ (cf. [11, Ex. 24.9]). It is used in Sect. 3.4 for the study
of the LLV decomposition of OG10 hyper-Kähler manifolds.

Lemma A.9 Let λ,μ be dominant integral weights of g. Then dim Vλ+μ,C ≥ dim Vλ,C.

Appendix B: Representation ring and restriction representations

Since many of our results involve several different Lie algebras and heavily depends
on the relation between their representation theory, we provide a separate section to
discuss this topic.

B.1 Representation ring and restriction representations

Let g be a reductive Lie algebra over Q. Recall that a (rational) g-module is a finite
dimensional rational vector space V equipped with a Lie algebra homomorphism
g → gl(V ). We define a complex g-module by a finite dimensional complex vector
space V equipped with a Lie algebra homomorphism gC → gl(V ). Notice that the
notion of a complex g-module is nothing but just a gC-module. If we have a rational
g-module VQ, then its complexification (VQ)C is clearly a complex g-module. On the
other hand, not every complex g-module can be obtained by the complexification of a
rational g-module.

Let Rep(g) and RepC(g) (= Rep(gC)) be the categories of finite dimensional
rational g-modules and complex g-modules, respectively. Since we have assumed
g is reductive, both categories are semisimple, i.e., every object in the category is
completely reducible. The discussion in the previous paragraph implies there exists a
complexification functor

Rep(g) → RepC(g).

Consider the Grothendieck ring K (g) and KC(g) of the categories Rep(g) and
RepC(g), respectively. These rings are called the representation ring (resp. complex
representation ring) of g. Since Rep(g) (resp. RepC(g)) is semisimple, the represen-
tation ring K (g) (resp. KC(g)) coincides with the abelianization of the monoid of
isomorphism classes of g-modules (resp. complex g-modules). Moreover, the above
complexification functor induces an injective ring homomorphism (see [32, §25.d])

K (g) ↪→ KC(g). (B.1)

Thus, to describe the structure of (rational or complex) g-modules up to isomorphism,
it is enough to describe them as elements in KC(g).

Proposition B.2 Let V be a g-module. Then the g-module structure of V is completely
determined by an element [VC] ∈ KC(g) in the complex representation ring.

The structure of the representation ring KC(g) for simple Lie algebras g is com-
pletely understood. It is related to the character theory and weights of g-modules. Fix
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a Cartan subalgebra of g and let 
 be the weight lattice of g. Consider its group ring
Z[
]. To use a multiplicative notation for the multiplication operation in Z[
], we
use a notation eμ ∈ Z[
] to represent μ ∈ 
 as an element in Z[
].
Definition B.3 Let V be any complex g-module. Consider its weight decomposition
V = ⊕

μ V (μ), where V (μ) indicates the weight μ subvector space of V . We define
the formal character map of g by a ring homomorphism

ch : KC(g) → Z[
], [V ] �→
∑
μ

dim V (μ)eμ.

We recall the following well known result (e.g. [11, §23]).

Theorem B.4 The formal character map ch is injective, and the image of it is the Weyl
group invariant ring Z[
]W. That is, ch : KC(g) → Z[
]W is a ring isomorphism.

B.1.1 Representation ring of type BD simple Lie algebras

Now let us specialize our discussion to the case of our primary interest, g = so(V , q)

for a rational quadratic space (V , q).
Assume dim V = 2r + 1 is odd for r ≥ 1 (Case Br ). The complexification of g is

gC = so(2r + 1, C). Recall from Sect. A that the weight lattice 
 of it is generated
by the fundamental weights

�1 = ε1, �2 = ε1 + ε2, . . . , �r−1 = ε1 + · · · + εr−1,

�r = 1
2 (ε1 + · · · + εr ).

Let us simply write xi = eεi for i = 1, . . . , r . Then we can describe the group ring
Z[
] explicitly as

Z[
] = Z[x±1
1 , . . . , x±1

r , (x1 · · · xr )
± 1

2 ]. (B.5)

Recall the Weyl group of g is isomorphic to W2r+1 ∼= Sr � (Z/2)×r . It acts

on Z[x±1
1 , . . . , x±1

r , (x1 · · · xr )
± 1

2 ] as follows: σ ∈ Sr acts as a permutation on
x1, . . . , xr , and 1 ∈ Z/2 in the i-th factor Z/2 acts as xi �→ x−1

i . Finally, Theo-
rem B.4 completes the explicit description of KC(g) by

ch : KC(g)
∼=−−→ Z[x±1

1 , . . . , x±1
r , (x1 · · · xr )

± 1
2 ]W2r+1 .

Now assume dim V = 2r is even for r ≥ 2 (Case Dr ). The complexification of g is
gC = so(2r , C). The weight lattice 
 of it is generated by the fundamental weights

�1 = ε1, · · · , �r−2 = ε1 + · · · + εr−2, �r−1 = 1
2 (ε1 + · · · + εr−1 − εr ),

�r = 1
2 (ε1 + · · · + εr ).
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Let us also write xi = eεi for i = 1, . . . , r . Then the group ring Z[
] becomes the
same as above:

Z[
] = Z[x±1
1 , . . . , x±1

r , (x1 · · · xr )
± 1

2 ].

However, the Weyl group becomes smaller. The Weyl group W2r in this case is an
order 2 subgroup of Sr � (Z/2)×r , consisting of elements of even number of 1’s in

(Z/2)×r . It acts onZ[x±1
1 , . . . , x±1

r , (x1 · · · xr )
± 1

2 ] in the sameway as above. Theorem
B.4 gives us the isomorphism

ch : KC(g)
∼=−−→ Z[x±1

1 , . . . , x±1
r , (x1 · · · xr )

± 1
2 ]W2r .

B.1.2 Restriction representations

A direct but interesting consequence of the above discussions is the following.

Proposition B.6 Let (V , q) be a rational quadratic space and T ⊂ V a nondegenerate
quadratic subspace with dim V = 2r + 1 and dim T = 2r . Set g = so(V , q) and
m = so(T , q). Then the restriction representation functor Res : Rep(g) → Rep(m)

induces an injective ring homomorphism on the level of representation rings. That is,
the following diagram commutes with all the horizontal arrows injective.

K (g) K (m)

KC(g) KC(m)

Z[x±1
1 , . . . , x±1

r , (x1 . . . xr )
± 1

2 ]W2r+1 Z[x±1
1 , . . . , x±1

r , (x1 . . . xr )
± 1

2 ]W2r

Res

Res

∼=ch ∼=ch

Proof The statement follows almost directly from the previous discussions. Observe
that W2r � W2r+1. This implies the bottom map is injective. Since the character
homomorphisms are isomorphisms by Theorem B.4, the middle restriction map on
the complex representation ring is also injective. It follows the restriction map on
the first row is also injective, because the two vertical maps K (g) → KC(g) and
K (m) → KC(m) are both injective by (B.1). ��

That is, in the set-up of the proposition, if W is a g-module then the m-module
structure on W by restriction representation determines its g-module structure. In
particular, since b2 is even for K3 surfaces, notice that this applies to case of the
(Mukai completed) MT algebramR = so(4, 20) for K3 surfaces and the LLV algebra
gR = so(4, 21) for K3[n] (and similarly, for the Kumn series). This fact plays a key
role in Sect. 3.
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B.2 Some explicit examples of branching rules

A branching rule is simply a combinatorial rule describing how the restriction rep-
resentation of the two Lie algebras m ⊂ g behave. Although we discussed above
the theoretical framework of restriction representations, more explicit combinatorial
descriptions are often easier to deal with. We collect a few branching rules for type
BD Lie algebras, which are useful for us.

B.2.1 The branching rule of so(n,C) ⊂ so(n + 1,C)

Let us consider the branching rule of so(n, C) ⊂ so(n+1, C). We temporarily assume
everything is over C for this discussion. However, applying (B.1), one also concludes
exactly the same branching rule for rational Lie algebras. Denote V = C

n+1 and
W = C

n for the standard representations of so(n + 1) and so(n). In [11, §25.3], there
is an explicit branching rule describing how the highest so(n+1)-module Vλ of weight
λ splits as a direct sum of irreducible so(n)-modules. The description is as follows.

Assume n = 2r and let λ = (λ1, . . . , λr ) be a dominant integral weight of so(2r +
1). Then we have an so(2r)-module irreducible decomposition of the highest so(2r +
1)-module

Vλ =
⊕

λ′ Wλ′ ,

where λ′ = (λ′
1, . . . , λ

′
r ) runs through all the so(2r)-dominant integral weights with

λ1 ≥ λ′
1 ≥ λ2 ≥ λ′

2 ≥ · · · ≥ λ′
r−1 ≥ λr ≥ |λ′

r | ≥ 0,

and λi and λ′
i are simultaneously all integers or half-integers.

Assume n = 2r − 1 and let λ = (λ1, . . . , λr ) be a dominant integral weight of
so(2r). Then we have an so(2r − 1)-module irreducible decomposition of the highest
so(2r)-module

Vλ =
⊕

λ′ Wλ′ ,

where λ′ = (λ′
1, . . . , λ

′
r−1) runs through all the so(2r − 1)-dominant integral weights

with

λ1 ≥ λ′
1 ≥ λ2 ≥ λ′

2 ≥ · · · ≥ λ′
r−1 ≥ |λr | ≥ 0,

and λi and λ′
i are simultaneously all integers or half-integers.

B.2.2 Some special branching rules form ⊂ g

Let (V , q) be a rational quadratic space and W ⊂ V be a nondegenerate quadratic
subspace. Set g = so(V , q) and m = so(W , q) be rational Lie algebras. Since any
nondegenerate subspace W ⊂ V has its orthogonal complement, evidently we have an
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inclusion m ⊂ g. Applying the above discussion on the branching rule of so(n, C) ⊂
so(n + 1, C) several times (with the aid of (B.1)), we can get an explicit branching
rule for m ⊂ g.

However, in the two special cases V(k) and V(1,...,1), there is another easier way to
obtain a branching rule. Let us first consider the case of the g-module V(k). This is
precisely the case for the Verbitsky component in the cohomology of compact hyper-
Kähler manifold. Classically, this component is viewed as a “symmetric power” of the
second cohomology as its 2k-th degree part is isomorphic to the k-th symmetric power
of the second degree part. We can recover this fact in the following way. Assume that
we are in the standard set-up of the Mukai completion, i.e.

(V , q) = (V̄ , q̄) ⊕ U ,

where U is the 2-dimensional hyperbolic quadratic space, and denote ḡ = so(V̄ , q̄).
Then we have an equality V = V̄ ⊕ Q

2 (since we are interested in the so(V̄ , q̄)-
structure, the precise structure on the second component Q2 does not matter). One can
compute

Symk V = Symk(V̄ ⊕ Q
2) = Symk V̄ ⊕ 2 Symk−1 V̄

⊕3 Symk−2 V̄ ⊕ · · · ⊕ kV̄ ⊕ (k + 1)Q

as a ḡ-module decomposition. Now it is well known Symk V = Symk−2 V ⊕ V(k) as
g-modules, so this leads us to the identity

V(k) = Symk V̄ ⊕ 2 Symk−1 V̄ ⊕ 2 Symk−2 V̄ ⊕ · · · ⊕ 2V̄ ⊕ 2Q.

In particular, this recovers the symmetric power description of the Verbitsky compo-
nent V(k). If one also wants to capture the degree of the components, then one can
consider the decomposition V = Q(−1)⊕ V ⊕Q(1) instead, where Q(−1) and Q(1)
denote the ±2 eigenspaces of the “grading operator” h (see Sect. 2, esp. (2.1)).

The branching rule for the g-module V(1,...,1) = V(1k ) (k times of 1’s) will be used
when we discuss the LLV decomposition of hyper-Kähler manifolds of OG6 type.
Here we assume m = so(W , q) with dim V − dim W = m. Thus, we can write
V = W ⊕ Q

m and get

V(1k ) = ∧k V = ∧k(W ⊕ Q
m)

= ∧k W ⊕ m ∧k−1 W ⊕
(

m

2

)
∧k−2 W ⊕ · · · ⊕

(
m

k − 1

)
W ⊕

(
m

k

)
Q

= W(1k ) ⊕ mW(1k−1) ⊕ · · · ⊕
(

m

k − 1

)
W ⊕

(
m

k

)
Q.

This gives us the decomposition of V(1k ) into a direct sum of irreducible m-modules.
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