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Evaluation and Updating of Ishihara’s (1985) Model for Liquefaction Surface Expression, 

with Insights from Machine and Deep Learning 
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Abstract: Liquefaction surface-manifestation is a popular proxy of damage potential for infrastructure. 

Models for predicting it are thus commonly used, and often codified, in earthquake engineering 

practice. One such model is that of Ishihara (1985) who proposed empirical “H1-H2” curves considering 

the influence of the non-liquefied crust on surface expression. Yet, while widely used and cited, these 

curves were trained on just ⁓300 data points from two earthquakes. Accordingly, this study evaluates 

and updates the Ishihara (1985) model using 14,400 data points from 24 earthquakes, while also 

comparing against three other manifestation models from the literature. In addition to retraining the 

H1-H2 model via traditional regression, new variants are developed via machine- and deep-learning. 

Each of the new H1-H2 models outperforms the original in unbiased testing and is suitable for 

application. Ultimately, however, this paper also explores the limits of H1-H2 models and the apparent 

inefficiency and/or insufficiency of their predictor variables. In this regard, the models developed 

herein may perform better than any other, yet new models are still needed to account for factors 

influential in producing surface manifestation in a more explicit and mechanistic manner.  

1. Introduction 

The surface manifestation of liquefaction in the free field is a practical, general proxy of damage 

potential for near-surface infrastructure (e.g., shallow foundations and lifelines). Using this proxy, 

manifestation models have been proposed to link the safety factor against liquefaction triggering (FSliq) 

at depth within a profile to damage potential at the surface, such that asset damage is more likely when 

liquefaction manifestation (e.g., ejecta) is expected. Towards this end, Ishihara (1985) recognized the 

influence of the non-liquefied capping layer, or crust, on surface expression. Plotting observations from 

the 1983 Nihonkai-Chubu earthquake using the thicknesses of the crust, H1, and liquefied strata, H2, 

Ishihara (1985) proposed boundary curves for predicting surface manifestation as a function of H1, H2, 

and peak ground acceleration (PGA). Ishihara (1985) originally developed a single curve, shown in 

Fig. 1a, using data from sites that experienced a PGA of 200 gal (note: 980.7 gal = 1 g). Reinterpreting 

data compiled by Gao et al. (1983) from the 1976 Tangshan earthquake, a second curve corresponding 
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to ⁓400-500 gal was added, as shown in Fig. 1b. Ishihara then proposed a third curve (300 gal) by 

interpolation. Collectively, these curves suggest that for a given PGA, there is a limiting H1 beyond 

which surface manifestations are not expected, regardless of H2. 

 

    
 

Fig. 1. (a) Conditions of subsurface soil stratification discriminating between the occurrence and 

non-occurrence of surficial liquefaction manifestation, given a PGA of 200 gal (~0.2g); and (b) 

boundary curves proposed for several different PGAs. After Ishihara (1985). 

 

Ishihara’s (1985) model, henceforth called the “H1-H2” model, has been widely cited since its 

inception and is programmed in popular software for modeling liquefaction hazards (e.g., CLiq by 

Geologismiki, 2020). However, it was derived from the limited data then-available (⁓300 data points 

from two earthquakes) and arguably has not been evaluated rigorously or calibrated since. In addition, 

alternative manifestation models have been proposed (e.g., Iwasaki et al., 1984; van Ballegooy et al., 

2014a; Maurer et al., 2015a) but a test of the H1-H2 model against others is absent from the literature. 

While van Ballegooy et al. (2015) looked for correlations between the H1-H2 model and others using 

hypothetical soil profiles, the predictive efficiencies of these models have not been quantified and 

compared using case-history data from the field. 

Meanwhile, recent events – in particular the 2010-2016 Canterbury, New Zealand, earthquakes – 

have significantly augmented the liquefaction case-history data available for model training and 
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testing. As an example, the cone-penetration-test (CPT) based datasets of Geyin et al. (2021) and Geyin 

and Maurer (2021a) collectively contain ~15,000 case histories from 24 events. These data provide a 

unique opportunity to advance the science of predicting liquefaction and its effects. Accordingly, the 

objective of this study is to rigorously evaluate and update the seminal H1-H2 model for liquefaction 

surface expression. As part of this effort, new H1-H2 models are developed using both traditional 

analytical functions as well as machine- and deep-learning algorithms. Lastly, using unbiased test data, 

the original H1-H2 model and several updates developed herein are tested against three manifestation 

models from the literature. In effect, this paper explores the bounds of predicting liquefaction 

manifestations using H1, H2, and PGA. However, this should not be interpreted as an endorsement of 

the efficiency or sufficiency of these variables. In the following, the creation of training and test 

datasets is first explained, followed by a description of the models and methods that will be 

subsequently utilized.  

2. Data 

14,440 liquefaction case histories compiled from 24 earthquakes will be studied, as summarized in 

Table 1. However, since most of these cases were compiled from three earthquakes in Canterbury, 

New Zealand, data from these and the remaining 21 earthquakes will initially be separated. These 

respective datasets are henceforth called the “Canterbury” and “global” datasets. Each case history 

includes estimates of PGA and groundwater depth during an earthquake, CPT data, and observations 

of the presence or absence of liquefaction manifestations at the ground surface. The case history data 

studied herein are publicly available in digital format. 

 

Table 1. Summary of Liquefaction Case-Histories Analyzed. 

Date Event Country 
Magnitude 

(Mw) 

Number of 

Case Histories 

16/6/1964 Niigata Japan 7.60 3 

9/2/1971 San Fernando USA 6.60 2 

4/2/1975 Haicheng China 7.00 2 

27/7/1976 Tangshan China 7.60 10 

15/10/1979 Imperial Valley USA 6.53 7 

9/6/1980 Victora (Mexicali) Mexico 6.33 5 

26/4/1981 Westmorland USA 5.90 9 

26/5/1983 Nihonkai-Chubu Japan 7.70 2 

28/10/1983 Borah Peak USA 6.88 3 

2/3/1987 Edgecumbe New Zealand 6.60 23 

24/11/1987 Elmore Ranch USA 6.22 2 

24/11/1987 Superstition Hills USA 6.54 8 
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18/10/1989 Loma Prieta USA 6.93 67 

17/1/1994 Northridge USA 6.69 3 

16/1/1995 Hyogoken-Nambu Japan 6.90 21 

17/8/1999 Kocaeli Turkey 7.51 16 

20/9/1999 Chi-Chi Taiwan 7.62 34 

8/6/2008 Achaia-Ilia Greece 6.40 2 

4/4/2010 Baja Mexico 7.20 3 

11/3/2011 Tohoku Japan 9.00 7 

20/5/2012 Emilia Italy 6.10 46 

4/10/2010 Darfield New Zealand 7.10 5371 

22/2/2011 Christchurch New Zealand 6.20 4806 

14/2/2016 Christchurch New Zealand 5.70 4771 

The Canterbury data was sourced from Geyin et al. (2020b, 2021), who used the New Zealand 

Geotechnical Database (2016) to compile liquefaction case-histories from the: (i) Mw7.1, 4 Sept. 2010 

Darfield; (ii) Mw6.2, 22 Feb. 2011 Christchurch; and (iii) Mw5.7, 14 Feb. 2016 Christchurch 

earthquakes. Of the 15,890 case histories compiled by Geyin et al. (2020b, 2021), 14,165 were 

ultimately analyzed in the present study. In reaching this number, cases were excluded if: (i) the depth 

at which the CPT began exceeded the depth of groundwater by at least 0.25 m, a situation that could 

arise when needing to bypass utilities; and (ii) the observed manifestation of liquefaction was lateral 

spreading, since the H1-H2 model is not intended to predict it (i.e., lateral spreading depends on factors 

not considered by the H1-H2 model). In addition, Geyin et al. (2020b, 2021) placed emphasis on 

compiling case histories from free-field level-ground sites, with the occurrence and severity of 

liquefaction defined primarily by liquefaction ejecta and ground cracking. Sites with other indications 

of liquefaction, such as foundation settlements or evidence from ground motions, were not considered. 

The definition of “surface manifestation” adopted herein is thus generally consistent with that used by 

Ishihara (1985) to develop the H1-H2 model. For the adopted case histories, the severity of 

manifestation was classified by Geyin et al. (2020b, 2021) as “none,” “minor,” “moderate,” or 

“severe.” To facilitate the evaluation of the H1-H2 model and others, these case histories are binomially 

reclassified as “No Manifestation” and “Manifestation,” where the latter classification includes sites 

where the observed manifestation was at least of minor severity, indicating the presence of sporadic 

features covering up to 5% of the ground surface within a 10 m radial sample. Of the 14,440 cases 

analyzed from Canterbury, ~65% are “No Manifestation” and ~35% are “Manifestation.” Additional 

details, and the digital data, may be found in Geyin et al. (2020b, 2021). 

The global data was obtained from Geyin and Maurer (2021a), who digitized and merged 275 CPT 

case histories from numerous publications into a dataset having the same structure as that from 
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Canterbury. Because many historic case histories are documented in less detail than the recent events 

in Canterbury, the exact nature and severity of surface manifestation is not always known. Accordingly, 

while Geyin and Maurer (2021a) binomially classified case histories following the scheme mentioned 

above, there is undoubtedly some uncertainty. Of the 275 global case histories compiled by Geyin and 

Maurer (2021a) and analyzed herein, 42% are “No Manifestation” and 58% are “Manifestation.” 

Additional details and the complete global dataset may be obtained from Geyin and Maurer (2021a). 

To properly recognize all sources of data used to compile the Canterbury and global datasets, a 

reference list appears in the Appendix for each of the 24 earthquakes. 

 

2.1 Training and Test Sets  

This study aims to evaluate and update the H1-H2 model using case-history data with diverse 

geology, geomorphology, seismology, climate, etc., to the degree possible. Towards this goal, the 

Canterbury data presents a unique opportunity, given its unprecedented size, but also a modeling 

challenge, given that it dominates the overall dataset. To mitigate sampling bias from source and class 

imbalance, new training and test sets were created wherein the Canterbury and global data are given 

equal weighting, and where the quantities of “Manifestation” and “No Manifestation” cases are the 

same. Each of these biases (i.e., source and class bias) would otherwise be present in the results and in 

the derived models. To create these datasets, case histories from Canterbury and from other global 

events were respectively undersampled and oversampled, as illustrated in Fig. 2. The data to be 

analyzed were first separated into the Canterbury and global datasets, and then again based on whether 

a case was classified as “Manifestation” or “No Manifestation.” These four data subsets were then each 

randomly split into training (70%) and test (30%) groups. Finally, from these eight subsets, random 

sampling with replacement was used to create a final dataset having the desired characteristics. This 

dataset consists of 70% training data (10,108 cases) and 30% test data (4,332 cases), where both are 

balanced with respect to source (i.e., 50% Canterbury, 50% global) and class (50% Manifestation; 50% 

No Manifestation).  
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Fig. 2.  Schematic illustrating the creation of the training and test sets analyzed herein.  

3. Methodology 

To evaluate and update the H1-H2 model, clear definitions of “H1” and “H2” are required. 

However, as previously discussed in the literature (e.g., van Ballegooy et al., 2015), the 

definitions originally used by Ishihara (1985) may be interpreted inconsistently, leading to 

different applications of the H1-H2 model. According to Ishihara (1985), H1 is the minimum 

depth at which liquefaction is expected (i.e., it is the thickness of the nonliquefied “crust” or 

“capping” layer) and H2 is the thickness of soil expected to liquefy. Ishihara (1985) predicted, 

for example, that a soil subjected to a PGA of ~0.2g would likely liquefy if it had a Standard 

Penetration Test (SPT) blow count less than 10. It is less clear, however, whether H2 was intended 

to be the thickness of the shallowest liquefied stratum or the cumulative thickness of all liquefied 

strata in a soil profile. While the selection of H2 is straightforward for a profile with one 

liquefiable stratum, different interpretations may arise for interbedded profiles with multiple such 

strata. Because Ishihara (1985) predominantly studied profiles consistent with the former, the 

need to define H2 in greater detail did not arise.  

Accordingly, two definitions of H2 are initially tested in this study and are demonstrated 

schematically in Fig. 3: (i) the thickness of the shallowest stratum predicted to liquefy, henceforth 

called “Case 1”; and (ii) the cumulative thickness of all strata predicted to liquefy, henceforth 

called “Case 2.” Modern implementations of the H1-H2 model typically define H2 in a manner 

consistent with “Case 2” (van Ballegooy et al., 2015; Geologismiki, 2020). A limiting depth of 

10 m is adopted within these definitions for several reasons. First, prior studies of the H1-H2 
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model have used this limiting depth (van Ballegooy et al., 2015). Second, it is widely observed 

that liquefaction is more likely to manifest at the surface if it occurs at shallow depth (e.g., 

Iwasaki et al., 1984), yet the H1-H2 model does not explicitly account for this behavior when 

multiple liquefiable strata are present. A 1-m thick liquefied stratum, for example, may be viewed 

as having the same potential to manifest at the surface whether it is 2 m or 20 m below ground, 

all else being equal. The use of a limiting depth thus excludes from consideration soils that may 

liquefy, but which are unlikely to manifest at the surface. Lastly, different limiting depths were 

provisionally selected and H1-H2 models were trained and tested. The performance of these 

models exhibited a small but systematic decline as the limiting depth increased from 10 m to 20 

m, which may be attributable to the shortcoming above. In addition to testing two definitions of 

H2, model performance will also be parsed based on how many liquefied strata a site is 

interpreted to have. Whereas Ishihara (1985) analyzed profiles interpreted to have one liquefied 

stratum, many of the profiles studied herein are interpreted to have multiple such strata. The 

Ishihara (1985) H1-H2 model might thus perform worse on highly interbedded soil profiles, as 

has been observed of liquefaction models more generally (e.g., Geyin and Maurer, 2021b). The 

criteria for categorizing profiles in this manner, and the results of these analyses, will be 

introduced later in the paper.  

 

Fig. 3. Schematic demonstrating alternative definitions of “H1” and “H2” adopted herein. 

To identify strata predicted to liquefy, the Boulanger and Idriss (2014) CPT-based triggering model 

was adopted, with liquefaction expected when the computed factor-of-safety against liquefaction 

(FSLIQ) is less than one. Prior to its use, the soil-behavior-type index (Ic) (Robertson and Wride 1998) 

was used to infer liquefaction susceptibility, such that soils with Ic > 2.50 were assumed not susceptible, 

per Maurer et al. (2019). Ultimately, the most salient results of this study were insensitive to the exact 

Ic threshold chosen. Additionally, to estimate fines content (FC), a required input to the Boulanger and 
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Idriss (2014) model, two Ic-FC correlations – one specific to Canterbury (Maurer et al. 2019) and one 

intended for global application (Boulanger and Idriss 2014) – were used.  

While the CPT has advantages over other in-situ tests used to predict liquefaction (e.g., the SPT) 

(National Research Council, 2016), its effectiveness is still potentially limited by the volume of soil 

mobilized around the cone. This mobilized zone can act as a low-pass filter, obscuring data from the 

high spatial frequencies (e.g., that defining a thin soil stratum or the boundary between two dissimilar 

materials). These filtering effects, often called “thin layer” effects, have been studied by many authors 

(e.g., Treadwell 1976; Ahmadi and Robertson 2005; van der Linden et al. 2018). Although chart-based 

correction procedures have been proposed, Boulanger and DeJong (2018) proposed what may be the 

first algorithmic solution. Termed an “inverse filtering and interface detection” procedure, it predicts 

“true” CPT data from measured values (i.e., it aims to remove thin layer effects via an inversion 

process). While current, limited studies do not suggest liquefaction models perform significantly better 

when using the Boulanger and DeJong (2018) procedure (Geyin and Maurer, 2021b; Yost et al., 2021), 

it: (i) may nonetheless become popular in practice; (ii) has never been tested in conjunction with the 

H1-H2 model; and (iii) was utilized by Geyin et al. (2021) and Geyin and Maurer (2021a) when 

compiling the Canterbury and global datasets, respectively, thereby allowing for its use to be easily 

evaluated. Accordingly, both measured and “true” CPT data will be analyzed and compared throughout 

this paper. While the reader is referred to Boulanger and DeJong (2018) for complete details, the 

procedure’s default parameters were used to predict “true” CPT data from measured values. These 

defaults can conceivably be calibrated via site-specific investigation to adjust the “aggression” of the 

inversion, but such calibrations were not undertaken in the present study and have yet to be 

demonstrated elsewhere in the literature. As part of their processing methodology, Geyin et al. (2021) 

and Geyin and Maurer (2021a) used cross-correlation (Buck et al., 2002) to ensure that CPT tip and 

sleeve measurements were properly aligned.   

When evaluating and updating the H1-H2 model, three existing, alternative manifestation models 

will also be implemented and analyzed for comparison. The first of these is the Liquefaction Potential 

Index (LPI) proposed by Iwasaki et al. (1984): 

𝐿𝑃𝐼 =  ∫ 𝐹(𝐹𝑆𝑙𝑖𝑞) ∙ 𝑤(𝑧) d𝑧
20 𝑚

0
                                                 (1) 

where: F(FSliq) = 1 – FSliq for FSliq ≤ 1 and F(FSliq) = 0 otherwise; and w(z) = 10 – 0.5𝑧, where z is 

depth. F(FSliq) and w(z) predict the respective influences of FSliq and z on surface manifestation, which 

is assumed by LPI to depend on the thickness of all liquefied strata within the upper 20 m, the amount 
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by which FSliq is less than 1.0 in each stratum, and the proximity of those strata to the ground surface. 

Given this definition, the LPI domain ranges from zero to 100.  

The second model is a modification of LPI proposed by Maurer et al. (2015a) and inspired by the 

H1-H2 model. Given its provenance, the result was named LPIISH and is defined by: 

𝐿𝑃𝐼𝐼𝑆𝐻 =  ∫ 𝐹(𝐹𝑆𝑙𝑖𝑞) ∙ 𝑤(𝑧) d𝑧
20 𝑚

𝐻1
                                                   (2) 

where: 

𝐹(𝐹𝑆𝑙𝑖𝑞) = {
1 − 𝐹𝑆𝑙𝑖𝑞   𝑖𝑓 𝐹𝑆𝑙𝑖𝑞 ≤ 1 ∩  𝐻1 ∙ 𝑚(𝐹𝑆𝑙𝑖𝑞) ≤ 3

0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                               (3) 

𝑚(𝐹𝑆𝑙𝑖𝑞) = exp (
5

25.56(1−𝐹𝑆𝑙𝑖𝑞)
) − 1                                                  (4) 

In Eqs. 3-4, F(FSliq) and w(z) serve the same objective as in LPI, but are defined differently, such that 

F(FSliq) accounts for H1 and w(z) is defined by w(z) = 25.56 ∙ z-1. Maurer et al. (2015a) recommended 

a minimum H1 of 0.4 m, even if liquefiable soils exist at shallower depths. Using this constraint, the 

LPIISH domain also ranges from zero to 100. 

The third is the Liquefaction Severity Number (LSN) proposed by (van Ballegooy et al., 2014a): 

𝐿𝑆𝑁 = ∫ 𝜀𝑣  ∙ 𝑤(𝑧) d𝑧
20 𝑚

0
                                                         (5) 

where 𝜀𝑣 is volumetric strain (%) and w(z) = 10 ∙ z-1. While various methods are available to estimate 

𝜀𝑣 (e.g., Geyin and Maurer 2019), van Ballegooy et al. (2014a) adopted the Zhang et al. (2002) method, 

which is thus also adopted herein. The LSN domain ranges from zero to ∞ (if liquefiable soils are near 

the surface) but is typically less than 100.    

4. Results and Discussion 

4.1 Evaluating the H1-H2 Model 

The H1-H2 model has several limiting traits that complicate its application and evaluation. In 

addition to the previously discussed interpretation of H2, which can be ambiguous, it: (i) is a graphical, 

rather than analytical, solution; and (ii) was defined only for three discrete values of PGA, as shown in 

Fig. 1. Because very few of the 14440 compiled case histories experienced one of these exact PGAs, 

it is advantageous to convert the H1-H2 model into a continuous analytical function, such that it may 

be applied under all circumstances.  

Accordingly, several simple functional forms were fit to the H1-H2 model (i.e., to the three curves 

proposed by Ishihara (1985)). Among these, a bilinear function defined by Eqs. 6-8 resulted in: (i) the 
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closest fit to Ishihara’s (1985) three curves, as measured by mean square error; (ii) heuristically 

sensible behavior when extrapolating beyond the curves (i.e., the resulting functions appear plausible 

at low and high PGA based on existing field observations); and (iii) the best prediction performance, 

as measured on case-history data and discussed subsequently. These equations thus represent a close 

approximation and plausible extrapolation of the original H1-H2 model, as shown in Fig. 4. While the 

equations are plotted for eight values of PGA, only the three curves proposed by Ishihara (1985) and 

digitized in Fig. 4 were used in the fitting process.  

 

𝐻2 =  {
𝑚 ∗ 𝐻1 

∞

𝑖𝑓 𝐻1 < 𝐻1,𝐿𝑖𝑚

𝑖𝑓 𝐻1 ≥ 𝐻1,𝐿𝑖𝑚
          (6) 

where:  

  𝑚 =  2.13 ∗ 𝑒−3.751∗𝑃𝐺𝐴                                                   (7)                                                    

𝐻1,𝐿𝑖𝑚 = 23.234 ∗ 𝑃𝐺𝐴 − 1.5                                              (8) 

 

In these equations, 𝑚 represents the initial slope of the H1-H2 model and 𝐻1,𝐿𝑖𝑚 is the limiting 

value of H1 beyond which surface manifestations are not expected, regardless of H2. In developing 

Eqs. 6-8, various univariate functions (e.g., linear, bilinear, exponential, power) were evaluated. 

While the adopted model fits the three Ishihara (1985) H1-H2 curves well, it is nonetheless one of 

many models that could be justified based on the curves. It should thus be emphasized that we herein 

evaluate a fit of the original H1-H2 model, rather than the original model itself (which does not lend 

itself well to evaluation).  
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Fig. 4. Comparison of the Ishihara (1985) H1-H2 model and the bilinear model fit to the Ishihara (1985) 

curves and defined by Equations 6-8. 

 

Using the bilinear model fit in Eqs. 6-8, the performance of the H1-H2 model was next evaluated 

using the test set of 4,332 case histories described previously and depicted in Fig. 2. The results, 

expressed in terms of overall accuracy (OA), are summarized in Table 2. OA describes the percentage 

of cases correctly classified as “Manifestation” or “No Manifestation.” It is the sum of “true positive” 

predictions (i.e., manifestations are predicted and observed) and “true negative” predictions (i.e., 

manifestations are not predicted and are not observed) divided by the total number of cases analyzed. 

It may be seen that: (i) the “Case 2” definition of H2 (i.e., the cumulative thickness of strata predicted 

to liquefy within the upper 10 m) results in a ~15% higher OA than the “Case 1” definition of H2 (i.e., 

the thickness of the most shallow, discrete stratum predicted to liquefy), for which the H1-H2 model 

performs akin to random guessing; and (ii) the Boulanger and DeJong (2018) CPT correction procedure 

increases OA 2.9% if the “Case 2” definition of H2 is used but decreases OA 3.7% if the “Case 1” 

definition of H2 is used. Considering these results, the “Case 2” definition will henceforth be 

exclusively adopted as the H1-H2 model is further tested and improved. Given the inconclusive results 

of the Boulanger and DeJong (2018) procedure, its use will continue to be evaluated throughout the 

paper. 
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Table 2. Performance of the H1-H2 model-fit on the test set compiled herein. 

Test Dataset 

Number of 

True 

Negatives 

Number of 

True 

Positives 

Total 

Number of 

Cases 

Overall 

Accuracy (OA) 

Case 1 H2 + Measured CPT Data 2087 493 4332 0.596 

Case 1 H2 + “True” CPT Data 2160 261 4332 0.559 

Case 2 H2 + Measured CPT Data 1612 1498 4332 0.718 

Case 2 H2 + “True” CPT Data 1637 1597 4332 0.747 

4.2 Re-Regressing an Analytical H1-H2 Model 

While the H1-H2 model provided relatively useful predictions in the prior test, its performance (OA 

≤ 0.75) was as near or nearer to random guessing (OA = 0.5) as to a perfect model (OA = 1.0). To 

evaluate whether the H1-H2 model could be improved if trained on a larger dataset than available to 

Ishihara (1985), the bilinear functional form in Eqs. 6-8 was next re-regressed using the newly 

compiled training set, both for measured and true CPT data, via optimization on OA. Because the 

dataset is balanced with respect to positive and negative observations, optimizing on OA produces a 

model without class bias (i.e., it is neither conservative nor unconservative, but seeks to minimize the 

total rate of mispredictions). The resulting model is defined by Eqs. 9-11:  

𝐻2 =  {
𝑚 ∗ 𝐻1 

∞

𝑖𝑓 𝐻1 < 𝐻1,𝐿𝑖𝑚

𝑖𝑓 𝐻1 ≥ 𝐻1,𝐿𝑖𝑚
          (9) 

where:  

  𝑚 =  𝑎 ∗ 𝑃𝐺𝐴𝑏                                                      (10) 

𝐻1,𝐿𝑖𝑚 = 𝑐 ∗ 𝑃𝐺𝐴𝑑                                                    (11) 

 

In Eqs. 10-11, 𝑚 and 𝐻1,𝐿𝑖𝑚 have the same meaning as in Eqs. 7-8 but use different functional forms. 

When trained on measured CPT data, the model coefficients are a = 0.1436; b = -0.9321; c = 27.9483; 

and d = 1.0139. When trained on “true” CPT data, they are a = 0.1399; b = -0.9881; c = 31.1370; and 

d = 0.9908. Both models are plotted against the Ishihara (1985) curves in Fig. 5. In either case, it can 

be seen that retraining resulted in an outward shift of the H1-H2 functions relative to those proposed by 

Ishihara (1985). That is, the newly trained model predicts that a profile is more hazardous (i.e., more 

likely to produce surface manifestation) for a given combination of H1, H2, and PGA. Given that the 

H1-H2 curves of Ishihara (1985) were drawn to minimize the total rate of mispredictions (i.e., the curves 

were intended to be neither conservative nor unconservative) – mirroring the approach used herein – 
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it is unlikely that the shift in perceived hazard is due to the method of optimization. Other, more likely 

causes are discussed as follows. First, Ishihara (1985) studied data from just two earthquakes, each 

with relatively uncertain ground motions, and constructed one of the three H1-H2 curves via 

interpolation. That the resulting model performs as well as it does despite such limited data is 

impressive. Nonetheless, the data from these two earthquakes might not be representative of 

liquefaction data more generally and might therefore not produce a model optimal for global 

application. Second, the CPT-based triggering model used herein to identify liquefied strata (i.e., 

Boulanger and Idriss, 2014) may deviate from the SPT-based approach used by Ishihara (1985). 

Specifically, the observed shift in perceived hazard could result if the Boulanger and Idriss (2014) 

model tends to predict less liquefaction than the method of Ishihara (1985), resulting in a larger H1 and 

smaller H2 for the same profile. Third, while the definition of “manifestation” adopted in this work 

appears consistent with that of Ishihara (1985), it is possible the perceived shift in hazard could result 

from differing criteria. Specifically, if our threshold for classifying “manifestation” is less severe than 

that of Ishihara (1985), the resulting H1-H2 models would tend to predict that a profile is more 

hazardous (i.e., more likely to produce surface manifestation). Lastly, our definition of H2 might differ 

from that of Ishihara (1985), which is to say that Ishihara (1985) studied profiles interpreted to have 

one liquefied stratum, whereas most profiles in this study are interpreted to have multiple such strata.  

It can also be seen from Fig. 5b that use of “true” data results in an additional, minor outward shift 

of the H1-H2 functions. This is likely a consequence of the Boulanger and DeJong (2018) procedure’s 

average tendency to increase the computed FSliq, as studied in detail by Geyin and Maurer (2021b). 

All else being equal, an increase in FSliq increases H1 and decreases H2. Given that this is the most 

common outcome of the Boulanger and DeJong (2018) procedure, the optimal H1-H2 functions 

correspondingly shift in a similar fashion. Lastly, it may be observed that the re-regressed model is 

dependent upon PGA, even though the adopted functional form allows for a lack of dependence to 

occur, if statistically supported. This dependence occurs even though PGA is already considered within 

the liquefaction triggering model. The authors hypothesize that PGA provides confidence to an 

otherwise binomial prediction of liquefaction triggering, similar to how LPI and other models account 

for FSLIQ. LPI, for example, assumes that an FSLIQ of 0.1 is more likely to produce surface manifestation 

than an FSLIQ of 0.5, all else being equal, even though from a mechanistic or laboratory perspective 

(e.g., Yoshimine et al., 2006), the expected outcomes may be the same. The performance of these and 

other models yet to be developed will be discussed subsequently. 
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Fig. 5. Comparison of the Ishihara (1985) H1-H2 model and the optimized bilinear model defined by 

Equations 9-11, as trained on (a) measured CPT data; and (b) “true” CPT data. 
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While a bilinear model was found to best fit the Ishihara (1985) curves, other functional forms 

could potentially result in better predictions of liquefaction manifestations. In re-regressing an 

analytical H1-H2 model, a power-law relation was also developed as an alternative and is defined by 

Eqs. 12-13: 

𝐻2 =  𝑚 ∗ 𝐻1𝑐                                  (12) 

where:  

  𝑚 =  𝑎 ∗ 𝑃𝐺𝐴𝑏                                                           (13) 

 

When trained on measured CPT data, the model coefficients are a = 0.0217; b = -1.9481; and c = 

1.5688. When trained on “true” data, a = 0.1087; b = -1.0430; and c = 1.2162. Both models are plotted 

against the Ishihara (1985) curves in Fig. 6. Like the bilinear model in Fig. 5, the power-law model 

predicts that a profile is more hazardous (i.e., more likely to produce surface manifestation) for a given 

combination of H1, H2, and PGA, as compared to the Ishihara (1985) curves. It can also be seen that 

the Boulanger and DeJong (2018) CPT correction procedure most often results in an additional outward 

shift of the H1-H2 functions, as was also the case in the bilinear model. In comparing the new bilinear 

and power-law models, it is evident the models are in relative agreement when H1 and H2 are small 

(e.g., < 5 m), and particularly when PGA is also small, but tend to have large discrepancies otherwise. 

This can be attributed to the paucity of training data (i.e., case histories) with relatively large H1, H2, 

or PGA. Shown in Fig. 7 are the distributions of “no manifestation” and “manifestation” data binned 

on PGA. The lack of data within the aforementioned parameter space is readily apparent, particularly 

as PGA increases. As a result, models that are very different outside the limits of the empirical data 

can have the same prediction efficiency. While the proposed models are herein routinely shown beyond 

these limits to illustrate their extrapolation beyond the data, the models should not be relied on when 

H1 or H2 exceeds 10 m, or when PGA exceeds ~0.7 g. It follows that a more mechanistic-based 

approach (e.g., Cubrinovski et al., 2019; Bassal and Boulanger, 2021; Hutabarat and Bray, 2021) could 

be particularly beneficial for resolving predictions of liquefaction response in scenarios lacking prior 

empirical insights.  It can also be surmised from Fig. 7 that the prediction of surface manifestation via 

predictor variables H1, H2 and PGA is unlikely to be highly efficient (say, OA > 0.90), regardless of a 

model’s exact formulation. In other words, the “Manifestation” and “No Manifestation” data points 

have considerable overlap and are unlikely to be separated without a nontrivial rate of misprediction. 

Nonetheless, the possibility exists that algorithmic learning, which is not constrained to any functional 
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form, could provide more efficient predictions than the two analytical models proposed in Eqs. 9-13. 

This possibility is explored in the following section. 
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Fig. 6. Comparison of the Ishihara (1985) H1-H2 model and the re-regressed power-law model defined 

by Equations 12-13, as trained on (a) measured CPT data; and (b) “true” CPT data. 

 

 

 

Fig. 7. Distributions of “No Manifestation” and “Manifestation” data, binned on PGA. 

4.3 Improving the H1-H2 Model with Algorithmic Learning 

To assess whether algorithmic learning could produce a more effective classifier model via 

variables H1, H2 and PGA, various machine and deep learning (ML/DL) algorithms were explored. 

These included support vector machines (SVM) (e.g., Vapnik, 1995), decision trees (e.g., Rokach and 

Maimon, 2008) and tree ensembles with random forests, bagging, or gradient boosting (e.g., Breiman, 

1996; Piryonesi et al., 2021), Gaussian process models (e.g., Rasmussen and Williams, 2006), and 

neural networks (e.g., Glorot and Yoshua, 2010). In general, modeling techniques that are interpreted 

more easily (e.g., single decision trees) tend to have lesser prediction efficiency and are prone to 

overfitting, whereas those with higher efficiency and better transferability are often relatively 

complicated to interpret (e.g., ensembles of decision trees). Each technique has various internal 

options, or “hyperparameters,” that can be optimized via an automated search scheme once promising 

models are identified. Like the previously developed models, prospective ML/DL models were trained 

on the compiled training set, both for measured and “true” CPT data. Because ML/DL models are 

especially susceptible to overfitting, 5-fold cross-validation was used, wherein the training data is 

partitioned into five random subsets of equal size. One subset is used to validate the model trained on 
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the remaining four. This process is repeated five times, such that each subset is used once for validation. 

The result is a resampling-based ensemble of models trained on different subsets of the training data.  

Ultimately, two ML/DL models were selected for testing, with each separately trained on measured 

and “true” CPT data. The first is a bagged ensemble of decision trees, wherein multiple relatively weak 

learners are aggregated to form a stronger model. For brevity, we henceforth refer to it as the “ML 

model.” The theory underlying this approach – which is commonly included in machine learning 

toolkits (e.g., Scipy, TensorFlow) – is explained in detail by Breiman (1996). The growth of a decision 

tree involves the establishment of recursive binary splits, such that specific combinations of model 

inputs (i.e., H1, H2, or PGA) map to a predicted output – in this case, a binomial classification of 1 

(Manifestation) or 0 (No Manifestation). However, because a single tree tends not to be very accurate 

and is prone to overfitting, ensembles of decision trees are advantageous. In “bagging,” multiple 

versions of a training set are formed by bootstrap sampling, thereby generating multiple models. The 

predictions from those models are then ensembled, which for a classification problem is the majority 

vote (i.e., 0 or 1). Using this approach, the ML model was trained via optimization on OA, like the 

previously developed models. While a single decision tree could be elucidated in a schematic, simple 

interpretations of a tree ensemble are infeasible, given that its strength is derived from the aggregate 

of numerous models.  

The second model is a multilayer feed-forward artificial neural network (NN). For brevity, we 

henceforth refer to it as the “DL” model (although the defining characteristics of deep vs. shallow 

learning are debatable). Dating to the 1980’s (e.g., Hopfield, 1982), this now ubiquitous approach 

mimics the perceived structure of the human brain, with layers of interconnected nodes. At the most 

basic level, NNs have four components: inputs, weights, a threshold, and an output. Connections 

between nodes are modeled as weights, such that positive and negative weights indicate excitatory and 

inhibitory connections, respectively. During training, the weights are iteratively adjusted to optimize 

model performance. If the output from an individual node is above a specified threshold, the node is 

activated, sending data to the next layer of the network. An activation function then controls the 

amplitude of the output at each node. The above process is repeated multiple times, with each layer 

potentially passing information from the previous layer to the next. For this work, the NN was trained 

using the Levenberg-Marquardt algorithm (Hagan and Menhaj, 1999) which combines the classical 

gradient descent and Gauss-Newton minimization methods. In addition, a sigmoid function (e.g., Han 

and Morag, 1995) was adopted for the activation function of the output neuron. This results in output 

values that are estimates of the probability of the input belonging to a specified class. Thus, unlike the 

binomial ML model, the output from the DL model is the probability of a positive class (i.e., the 



19 

 

probability of surface manifestation). However, like the ML (bagged decision tree) model, NNs are 

quite convoluted, rendering comprehensive interpretations of the detailed inner workings difficult, 

since single node weights have little physical meaning, and since many thousands or millions of 

connections may be present.  

4.3.1 Model Availability and Implementation 

An obvious limitation of most models trained via algorithmic learning is the lack of a defined 

equation easily ported and executed via hard copy. Simple depictions of model structure and form are 

also generally absent. While these detractions can be significant, it is clear the use of algorithmic 

learning will only grow, given its demonstrated capabilities when provided with large datasets. It is 

critical, however, that trained ML/DL models be provided as code. Despite this necessity, enumerable 

ML/DL models have been published without code, meaning that while a model may be available for 

use by the respective developers, it is not easily accessed by the broader community, and is therefore 

not applied, tested, or improved upon by others. To facilitate user adoption and evaluation, the trained 

models are provided via an electronic supplement as Matlab code (i.e., in .m format). The only required 

inputs are values of H1, H2, and PGA in an l x 3 matrix, X, where l is the number of sites at which a 

prediction is requested. An example of matrix X is also provided in the electronic supplement as an 

excel file (i.e., in .xls format). The program “H1H2_Execute” requests this input file and makes 

predictions using any of the models developed in this paper (i.e., both the ML and DL models, as well 

as the analytical models developed previously). As part of this process, the user is prompted to specify 

whether they are studying CPT data processed via the Boulanger and DeJong (2018) correction 

procedure, in which case the models corresponding to its use are selected.  

4.4 Analysis and Discussion of Model Performance 

Following from the prior performance evaluation of the original H1-H2 model, all subsequently 

trained variants of the H1-H2 model were similarly evaluated in terms of OA using the compiled test 

set. It is worth restating that: (i) all H1-H2 models adopt the “Case 2” definition of H2 in training and 

testing; and (ii) the tests use data entirely separate from model training and are thus unbiased, to the 

degree possible (e.g., test and training data do come from the same earthquakes, so some “bias” may 

be present in that the geomorphic settings and seismic loadings where liquefaction occurs are similar).  

The results of these performance evaluations are summarized in Fig. 8.  
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Fig. 8. Model performance (OA) measured on the compiled test set. 

Notable findings from Fig. 8 are as follows. First, the bilinear and power-law H1-H2 models 

outperformed the original H1-H2 model (Ishihara, 1985), as fitted herein. Whereas the original model 

had an average OA of 0.732 (i.e., when averaging over the measured and “true” model variants) the 

bilinear and power models each had average OAs of 0.767. In the context of the compiled test set of 

4,332 case histories, this amounts to an additional 151 cases for which the predicted and observed 

responses agree. This improvement is likely attributable to having vastly more data for model training 

than was originally available when the H1-H2 model was devised. Second, none of the alternative 

manifestation models from the literature (i.e., LPI, LPIISH, or LSN) performed better on the test set than 

the newly trained analytical H1-H2 models. To compute an OA using LPI, LPIISH, or LSN, the 

classification threshold at which OA was maximized on the training set (say, LPI = 5) was applied to 

the test set to make forward predictions. With this approach, manifestations are expected for computed 

values above this threshold and are not expected otherwise. While the relative performance of these 

models might vary if a different test set were used, it is nonetheless notable that the H1-H2 concept 

performs as well or better than alternative models when quantified via OA. It should be emphasized, 

however, that as a binomial predictor, the H1-H2 concept (at least, as originally devised) is not well 

suited for predicting the severity of manifestation. In addition, the degree of misprediction cannot be 

judged, since all mispredictions are equally erroneous. For this reason, continuous index models like 
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LPI, LPIISH, or LSN may have advantages that cannot be quantified via OA. Moreover, the relative 

performance of LPI, LPIISH, and LSN might change if a different, more comprehensive metric of 

performance were used (Geyin et al., 2020a). 

Third, the ML and DL versions of the H1-H2 model showed further improvement, with average 

OAs of 0.798 and 0.832, respectively. Relative to the original H1-H2 model, this is an increase in OA 

upwards of 10%, meaning that liquefaction response was correctly predicted at 434 additional sites in 

the test set. Lastly, it can be seen in Fig. 8 that use of the Boulanger and DeJong (2018) CPT correction 

procedure was inconclusive with respect to improving prediction efficiency. In four of the eight models 

evaluated, the use of this procedure decreased OA, and in four other models, it increased OA. In general, 

these changes were relatively minor (±1.2% on average). It may thus be observed that this correction 

procedure is unlikely to significantly improve the performance of current liquefaction models, a 

conclusion similarly reached by Geyin and Maurer (2020; 2021b) using different methods. Although 

not shown in Fig. 8, it was found that inputting measured CPT data to a model trained on “true” data, 

or inputting “true” CPT data to a model trained on measured data, typically resulted in a more 

significant decline in performance. Accordingly, the authors recommend neither the use nor disuse of 

the Boulanger and DeJong (2018) procedure but do recommend that the H1-H2 models developed 

herein be used in a manner consistent with their training. Measured and “true” CPT data and models 

should not be mixed. 

To investigate the specific conditions under which some models perform better or worse, the OA 

of each model was next computed for various bins of H1 and H2 within the test set, as shown in Fig. 9 

for models trained and tested on measured CPT data. An analogous figure for models trained on “true” 

data is not shown because the results are very similar. Shown in Fig. 10 are the quantities of cases 

occupying each bin, where it can be seen that relatively few cases have H1 or H2 exceeding 5 m; the 

most populous bin is that with 2.5 m < H1 < 5 m and H2 < 2.5 m. The OA results in Fig. 9 should thus 

be viewed in the context of Fig. 10 since each bin contributes differently to overall model performance. 

Notable findings from Figs. 9 and 10 are as follows. 

First, all models perform relatively better when either H1 or H2 is relatively large. In these 

situations, the predicted liquefied stratum is either thin and at large depth, or thick and at shallow depth. 

The presence or absence of surface manifestation is more easily predicted in either case. In contrast, 

all models perform relatively worse when H1 and H2 are relatively small (but nonzero). In this situation, 

a relatively thin liquefied stratum is predicted at relatively shallow depth, in which case it is more 

difficult to predict whether surface manifestations will, or will not, be observed. In fact, all models are 

nearer to random guessing than to a perfect model when H1 and H2 are between 0 m and 2.5 m. This is 
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a significant finding, given that many such cases are encountered in practice (and represent ~20% of 

the test set in this study). In such cases, a more advanced, asset-specific assessment of liquefaction 

hazard may be particularly useful. Ultimately, this points to the apparent inefficiency and/or 

insufficiency of predictor variables H1, H2, and PGA for predicting surface manifestation. It is known, 

for example, that low permeability soils interbedded within a profile may complicate that profile’s 

expected response by altering the triggering of liquefaction and/or the morphology of surface 

expression (e.g., Maurer et al., 2015b; Cubrinovski et al., 2019; Bassal and Boulanger, 2021; Hutabarat 

and Bray, 2021). Yet, while the presence and sequencing of low permeability soils are known to affect 

pore pressure generation and transmission, these variables are not explicitly included in the H1-H2 

concept nor in LPI, LPIISH, or LSN. Moreover, these methods implicitly assume that liquefiable 

strata are independent entities, and that liquefaction is concurrent throughout a profile, when in 

reality a profile’s system response may give rise to time-varying values of H1 and H2 (e.g., 

Cubrinovski et al., 2019; Hutabarat and Bray, 2021). 

Second, it can be seen for the newly developed models that improvement is relatively uniform 

across the parameter domain. That is, when OA increases, it tends to increase similarly across a range 

of H1 and H2 values. As such, we do not recommend that a model be selected on the specific basis of 

H1 and H2. With very few exceptions, the four newly trained H1-H2 models are more efficient than the 

original model across all H1 and H2. These new models could be ensembled (e.g., averaged), however, 

as is common in the prediction of other hazards (e.g., ground motions and storm tracks). The 

ensembling of models with different forms can have the effect of stabilizing predictions (i.e., minimize 

large swings on account of which model is chosen), and potentially, provide benefits unrealized during 

testing. Accordingly, the aforementioned “H1H2_Execute” program provides the option to average 

predictions from all newly proposed models.  
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Fig. 9. Model performance (OA) on the compiled test set, binned on H1 and H2 values. All models are 

trained and tested on measured CPT data. The value within each bin is the OA. 

 
Fig. 10. Distribution of data in the compiled test set, binned on H1 and H2 values. 

Finally, to investigate whether the H1-H2 models perform relatively better on some types of profiles 

than on others, model performance was parsed based on the number of strata with computed FSliq < 

1.0. The results are shown in Fig. 11 for models trained and tested on measured CPT data. An 

analogous figure for “true” data is not shown because the results demonstrate the same trends. All H1-

H2 models perform relatively worse when multiple liquefied strata are present, as has been observed 

of models more generally (e.g., Geyin and Maurer, 2021b), and which is also true of LPI, LPIISH, and 

LSN. Across all models evaluated in Fig. 11, the OA declines an average of 8.6% when the interpreted 
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quantity of liquefied strata exceeds one. Additionally, and as previously discussed, Ishihara (1985) 

analyzed profiles interpreted to have one such stratum, whereas in practice many profiles are 

interpreted to have multiple such strata. It can be seen in Fig. 11 when comparing the original H1-H2 

model to the newly trained analytical models (i.e., the bilinear and power-law models), that relatively 

more improvement is achieved on profiles with multiple liquefied strata. In other words, the original 

H1-H2 model performs nearly as well as others if applied only to the types of profiles studied by Ishihara 

(1985). The overall improvement of the bilinear and power-law models may thus be partly attributable 

to differences between the case histories available to Ishihara (1985) and those studied herein. 

However, it can also be seen that the ML and DL models improve OA not only on interbedded profiles, 

but across all profiles investigated.  Ultimately, regardless of which H1-H2 model is adopted, it can be 

expected that performance will degrade in highly interbedded profiles. 

 

Fig. 11. Model performance (OA) measured on the compiled test set (measured CPT data), parsed by 

the number of liquefied strata a profile is interpreted to have.  

4.5 Limitations and Uncertainties 

It should be emphasized that “surface manifestation” – the prediction target of the analyses 

presented herein – refers to free field surface ejecta, settlement, and cracking on ground that is 

generally level, consistent with the definition adopted by Ishihara (1985). While these effects are a 

popular and pragmatic proxy for the damage potential of infrastructure, such damage may not 
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necessarily occur. Similarly, liquefaction could trigger at depth and damage infrastructure without 

otherwise expressing in the free field. The limitations of the presented H1-H2 models for predicting 

damage to specific assets, or for predicting other manifestations of liquefaction (e.g., lateral spreading) 

should be understood by users. It should also be understood that our evaluation of the original H1-H2 

model is that of a model fit to the three curves proposed by Ishihara (1985). While this fit is plausible, 

it is nonetheless one of many models that could be justified from the three curves. In addition, the 

models and findings presented herein are dependent on the data available for analysis. Due to the 

relative paucity of case histories available outside of Canterbury, New Zealand, the global and 

Canterbury datasets were respectively upsampled and downsampled to mitigate source and class bias. 

Inherent to these datasets, it should also be noted that the relative timing of in-situ testing varies (i.e., 

in some cases it was performed before an earthquake while in others it was performed after). Also 

present are cases in which a site subjected to multiple earthquakes was used to develop multiple case 

histories. As discussed in detail by Geyin et al. (2021), this practice is consistent with past precedent 

but also worthy of further investigation, given that variations in the relative timing of in-situ testing 

could introduce uncertainty to the models. Invariably, any changes to the training or test sets could 

result in changes to the models and model performance. The applicability of the findings presented 

herein to other datasets or other earthquakes elsewhere, especially in regions unrepresented in model 

training, is thus unknown. Similarly, all analyses were performed using the Boulanger and Idriss (2014) 

CPT-based triggering model, from which H1 and H2 were computed. While this model is popular and 

has been shown to be at least as effective as all others (Geyin et al., 2020a), adoption of a different 

model would invariably change the results, albeit any change would likely be inconsequential to the 

overall conclusions of the work. The use of SPT-based models to compute H1 and H2 for input to the 

proposed models would likewise introduce uncertainty. While it has been suggested that CPT-based 

characterizations may result in higher hazards than those based on the SPT (Lenz and Baise, 2007), 

such investigations are rare, and the issue remains unresolved. Thus, while the proposed H1-H2 

manifestation models could be used with triggering models other than Boulanger and Idriss (2014), the 

appropriateness of doing so is unknown and subject to further evaluation. Ideally, and as expanded 

upon below, the H1-H2 models would be applied in a manner consistent with their training to mitigate 

potential bias.  

5. Conclusions 

While the H1-H2 model (Ishihara, 1985) for predicting surficial manifestations of liquefaction has 

been widely used since its inception, it has arguably not been rigorously evaluated or calibrated since. 
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Accordingly, this study evaluated and updated the seminal H1-H2 model using a large database of CPT-

based liquefaction case histories compiled from global earthquakes. Some of these data were omitted 

from model training to perform unbiased testing. Using this test set, a fit of the original H1-H2 model 

had relatively similar (albeit lesser) OA when compared to other, often newer manifestation models 

from the literature. Benefiting from the large increase in liquefaction case histories available for model 

training, four new H1-H2 models were developed using the same predictor variables as Ishihara (1985). 

Two were trained via traditional regression and are provided in Eqs. 9-13. Two others were trained via 

ML/DL algorithms and are provided as simple-to-use codes. Relative to the original H1-H2 model, 

these new variants all increased OA on the unbiased test set, especially on profiles with multiple 

liquefied strata, with the ML and DL models performing best. Two versions of each model were 

developed to allow for either measured or “true” CPT data to be used, where the latter is data processed 

using the Boulanger and DeJong (2018) thin layer and interface correction procedure. While the results 

do not indicate a consistent performance improvement using this procedure, it is important that the H1-

H2 models be employed in a manner consistent with their development. That is, measured CPT data 

should not be input to a model trained on “true” data, or vice versa. Similarly, the models should be 

used in conjunction with the Boulanger and Idriss (2014) triggering model and the definitions of H1 

and H2 adopted herein. Given these definitions, and considering the limits of the empirical data, the 

models should not be relied on when H1 or H2 exceeds 10 m, or when PGA exceeds ~0.7 g. Ultimately, 

while this paper proposed manifestation models that appear, based on OA, to outperform existing 

models, it also explored the limits of predictor variables H1, H2, and PGA. As seen in Fig. 7, sites with 

and without manifestations cannot be separated in a highly efficient manner using these predictors, no 

matter how complex a modeling technique is used. In the short term, this paper provides updated H1-

H2 models suitable for application. In the long term, new manifestation models are needed to account 

for influential factors in a more explicit and mechanistic manner (e.g., the effects of strata permeability, 

sequencing, depth, and thickness on pore pressure gradients and transmission). 
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Appendix: Data Attribution 

The curated Canterbury and global datasets are available in digital format, as cited within the text. 

These datasets were compiled from the following sources, parsed by event:  

1964 Mw7.6 Niigata, JPN - Ishihara & Koga (1981), Farrar (1990), Moss et al. (2003);  1971 Mw6.6 

San Fernando, USA - Bennett et al., 1998, Toprak and Holzer (2003); 1975 Mw7.0 Haicheng, CHN 

- Arulanandan et al. (1986), Shengcong & Tatsuoka (1984); 1976 Mw7.6 Tangshan, CHN - Shibata 

& Teparaska (1988), Moss et al. (2009; 2011); 1979 Mw6.53 Imperial Valley, USA - Diaz-Rodriguez 

(1984), Diaz-Rodriguez and Armijo-Palaio (1991), Moss et al. (2003); 1981 Mw5.9 Westmoreland, 

USA - Bennett et al. (1984), Seed et al. (1984), Cetin et al. (2000), Moss et al. (2005); 1983 Mw7.7 

Nihonkai-Chubu, JPN - Farrar (1990); 1983 Mw6.88 Borah Peak, USA - Andrus (1986), Andrus & 

Youd (1987), Moss et al. (2003); 1987 Mw6.6 Edgecumbe, NZ - Christensen (1995), Moss et al. 

(2003); 1987 Mw6.54 Superstition Hills, USA - Bennett et al. (1984), Cetin et al. (2000), Toprak & 

Holzer (2003), Moss et al. (2005), Holzer & Youd (2007); 1989 Mw6.93 Loma Prieta, USA - Mitchell 

et al. (1994), Pass (1994), Bennett & Tinsely (1995), Boulanger et al. (1995; 1997), Kayen et al. (1998), 

Toprak & Holzer (2003), Youd & Carter (2005); 1994 Mw6.69 Northridge, USA - Abdel-Haq & 

Hryciw (1998), Bennett et al., 1998, Holzer et al. (1999), Moss et al. (2003); 1995 Mw6.9 Hyogoken-

Nambu, JPN - Suzuki et al. (2003); 1999 Mw7.51 Kocaeli, TUR - PEER (2000a), Youd et al. (2009); 

1999 Mw7.62 Chi-Chi, TWN - Lee et al. (2000), PEER (2000b); 2008 Mw6.4 Achaia-Ilia, GRC - 

Batilas et al. (2014); 2008 Mw7.2 El Mayor-Cucapah, MEX - Moss et al. (2005); CESMD (2016), 

Turner et al. (2016); 2011 Mw9 Tohoku, JPN - Cox et al. (2013), Boulanger & Idriss (2014); 2012 

Mw6.1 Emilia, ITA - Papathanassiou et al. (2015), Facciorusso et al. (2015), Servizio Geologico 

(2016); 2010 Mw7.1, 2011 Mw6.2, and 2016 Mw5.7 Canterbury, NZ - Bradley (2013); Green et al. 

(2014); Maurer et al. (2014); van Ballegooy et al. (2014b); Maurer et al. (2015c); New Zealand 

Geotechnical Database (2016); Quigley et al. (2016). 
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