Evaluation and Updating of Ishihara’s (1985) Model for Liquefaction Surface Expression,
with Insights from Machine and Deep Learning

Rateria, G.! and Maurer, B.W.2

Abstract: Liquefaction surface-manifestation is a popular proxy of damage potential for infrastructure.
Models for predicting it are thus commonly used, and often codified, in earthquake engineering
practice. One such model is that of Ishihara (1985) who proposed empirical “H;-H>” curves considering
the influence of the non-liquefied crust on surface expression. Yet, while widely used and cited, these
curves were trained on just ~300 data points from two earthquakes. Accordingly, this study evaluates
and updates the Ishihara (1985) model using 14,400 data points from 24 earthquakes, while also
comparing against three other manifestation models from the literature. In addition to retraining the
H;-H> model via traditional regression, new variants are developed via machine- and deep-learning.
Each of the new H;-H> models outperforms the original in unbiased testing and is suitable for
application. Ultimately, however, this paper also explores the limits of H;-H> models and the apparent
inefficiency and/or insufficiency of their predictor variables. In this regard, the models developed
herein may perform better than any other, yet new models are still needed to account for factors

influential in producing surface manifestation in a more explicit and mechanistic manner.

1. Introduction

The surface manifestation of liquefaction in the free field is a practical, general proxy of damage
potential for near-surface infrastructure (e.g., shallow foundations and lifelines). Using this proxy,
manifestation models have been proposed to link the safety factor against liquefaction triggering (FSiiy)
at depth within a profile to damage potential at the surface, such that asset damage is more likely when
liquefaction manifestation (e.g., ejecta) is expected. Towards this end, Ishihara (1985) recognized the
influence of the non-liquefied capping layer, or crust, on surface expression. Plotting observations from
the 1983 Nihonkai-Chubu earthquake using the thicknesses of the crust, H;, and liquefied strata, H>,
Ishihara (1985) proposed boundary curves for predicting surface manifestation as a function of H;, H>,
and peak ground acceleration (PGA). Ishihara (1985) originally developed a single curve, shown in
Fig. 1a, using data from sites that experienced a PGA of 200 gal (note: 980.7 gal = 1 g). Reinterpreting
data compiled by Gao et al. (1983) from the 1976 Tangshan earthquake, a second curve corresponding
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to ~400-500 gal was added, as shown in Fig. 1b. Ishihara then proposed a third curve (300 gal) by
interpolation. Collectively, these curves suggest that for a given PGA, there is a limiting H; beyond

which surface manifestations are not expected, regardless of H..
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Fig. 1. (a) Conditions of subsurface soil stratification discriminating between the occurrence and
non-occurrence of surficial liquefaction manifestation, given a PGA of 200 gal (~0.2g); and (b)
boundary curves proposed for several different PGAs. After Ishihara (1985).

Ishihara’s (1985) model, henceforth called the “H;-H>” model, has been widely cited since its
inception and is programmed in popular software for modeling liquefaction hazards (e.g., CLig by
Geologismiki, 2020). However, it was derived from the limited data then-available (~300 data points
from two earthquakes) and arguably has not been evaluated rigorously or calibrated since. In addition,
alternative manifestation models have been proposed (e.g., Iwasaki et al., 1984; van Ballegooy et al.,
2014a; Maurer et al., 2015a) but a test of the H;-H> model against others is absent from the literature.
While van Ballegooy et al. (2015) looked for correlations between the H;-H> model and others using
hypothetical soil profiles, the predictive efficiencies of these models have not been quantified and

compared using case-history data from the field.

Meanwhile, recent events — in particular the 2010-2016 Canterbury, New Zealand, earthquakes —

have significantly augmented the liquefaction case-history data available for model training and
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testing. As an example, the cone-penetration-test (CPT) based datasets of Geyin et al. (2021) and Geyin
and Maurer (2021a) collectively contain ~15,000 case histories from 24 events. These data provide a
unique opportunity to advance the science of predicting liquefaction and its effects. Accordingly, the
objective of this study is to rigorously evaluate and update the seminal H;-H> model for liquefaction
surface expression. As part of this effort, new H;-H> models are developed using both traditional
analytical functions as well as machine- and deep-learning algorithms. Lastly, using unbiased test data,
the original H;-H> model and several updates developed herein are tested against three manifestation
models from the literature. In effect, this paper explores the bounds of predicting liquefaction
manifestations using H;, H>, and PGA. However, this should not be interpreted as an endorsement of
the efficiency or sufficiency of these variables. In the following, the creation of training and test
datasets is first explained, followed by a description of the models and methods that will be

subsequently utilized.

2. Data

14,440 liquefaction case histories compiled from 24 earthquakes will be studied, as summarized in
Table 1. However, since most of these cases were compiled from three earthquakes in Canterbury,
New Zealand, data from these and the remaining 21 earthquakes will initially be separated. These
respective datasets are henceforth called the “Canterbury” and “global” datasets. Each case history
includes estimates of PGA and groundwater depth during an earthquake, CPT data, and observations
of the presence or absence of liquefaction manifestations at the ground surface. The case history data

studied herein are publicly available in digital format.

Table 1. Summary of Liquefaction Case-Histories Analyzed.

Magnitude Number of

Date Event Country (M) Case Histories
16/6/1964 Niigata Japan 7.60 3
9/2/1971 San Fernando USA 6.60 2
4/2/1975 Haicheng China 7.00 2
27/7/1976 Tangshan China 7.60 10

15/10/1979 Imperial Valley USA 6.53 7
9/6/1980 Victora (Mexicali) Mexico 6.33 5
26/4/1981 Westmorland USA 5.90 9
26/5/1983 Nihonkai-Chubu Japan 7.70 2
28/10/1983 Borah Peak USA 6.88 3
2/3/1987 Edgecumbe New Zealand 6.60 23
24/11/1987 Elmore Ranch USA 6.22 2
24/11/1987 Superstition Hills USA 6.54 8




18/10/1989 Loma Prieta USA 6.93 67
17/1/1994 Northridge USA 6.69 3
16/1/1995 Hyogoken-Nambu Japan 6.90 21
17/8/1999 Kocaeli Turkey 7.51 16
20/9/1999 Chi-Chi Taiwan 7.62 34

8/6/2008 Achaia-Ilia Greece 6.40 2
4/4/2010 Baja Mexico 7.20 3
11/3/2011 Tohoku Japan 9.00 7

20/5/2012 Emilia Italy 6.10 46
4/10/2010 Darfield New Zealand 7.10 5371
22/2/2011 Christchurch New Zealand 6.20 4806
14/2/2016 Christchurch New Zealand 5.70 4771

The Canterbury data was sourced from Geyin et al. (2020b, 2021), who used the New Zealand
Geotechnical Database (2016) to compile liquefaction case-histories from the: (i) My 7.1, 4 Sept. 2010
Darfield; (ii)) My6.2, 22 Feb. 2011 Christchurch; and (iii)) My5.7, 14 Feb. 2016 Christchurch
earthquakes. Of the 15,890 case histories compiled by Geyin et al. (2020b, 2021), 14,165 were
ultimately analyzed in the present study. In reaching this number, cases were excluded if: (i) the depth
at which the CPT began exceeded the depth of groundwater by at least 0.25 m, a situation that could
arise when needing to bypass utilities; and (i1) the observed manifestation of liquefaction was lateral
spreading, since the H;-H> model is not intended to predict it (i.e., lateral spreading depends on factors
not considered by the H;-H> model). In addition, Geyin et al. (2020b, 2021) placed emphasis on
compiling case histories from free-field level-ground sites, with the occurrence and severity of
liquefaction defined primarily by liquefaction ejecta and ground cracking. Sites with other indications
of liquefaction, such as foundation settlements or evidence from ground motions, were not considered.
The definition of “surface manifestation” adopted herein is thus generally consistent with that used by

Ishihara (1985) to develop the H;-H> model. For the adopted case histories, the severity of
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manifestation was classified by Geyin et al. (2020b, 2021) as “none,” “minor,” “moderate,” or
“severe.” To facilitate the evaluation of the /;-H> model and others, these case histories are binomially
reclassified as “No Manifestation” and “Manifestation,” where the latter classification includes sites
where the observed manifestation was at least of minor severity, indicating the presence of sporadic
features covering up to 5% of the ground surface within a 10 m radial sample. Of the 14,440 cases
analyzed from Canterbury, ~65% are “No Manifestation” and ~35% are “Manifestation.” Additional
details, and the digital data, may be found in Geyin et al. (2020b, 2021).

The global data was obtained from Geyin and Maurer (2021a), who digitized and merged 275 CPT

case histories from numerous publications into a dataset having the same structure as that from



Canterbury. Because many historic case histories are documented in less detail than the recent events
in Canterbury, the exact nature and severity of surface manifestation is not always known. Accordingly,
while Geyin and Maurer (2021a) binomially classified case histories following the scheme mentioned
above, there is undoubtedly some uncertainty. Of the 275 global case histories compiled by Geyin and
Maurer (2021a) and analyzed herein, 42% are “No Manifestation” and 58% are “Manifestation.”
Additional details and the complete global dataset may be obtained from Geyin and Maurer (2021a).
To properly recognize all sources of data used to compile the Canterbury and global datasets, a

reference list appears in the Appendix for each of the 24 earthquakes.

2.1 Training and Test Sets

This study aims to evaluate and update the H;-H> model using case-history data with diverse
geology, geomorphology, seismology, climate, etc., to the degree possible. Towards this goal, the
Canterbury data presents a unique opportunity, given its unprecedented size, but also a modeling
challenge, given that it dominates the overall dataset. To mitigate sampling bias from source and class
imbalance, new training and test sets were created wherein the Canterbury and global data are given
equal weighting, and where the quantities of “Manifestation” and “No Manifestation” cases are the
same. Each of these biases (i.e., source and class bias) would otherwise be present in the results and in
the derived models. To create these datasets, case histories from Canterbury and from other global
events were respectively undersampled and oversampled, as illustrated in Fig. 2. The data to be
analyzed were first separated into the Canterbury and global datasets, and then again based on whether
a case was classified as “Manifestation” or “No Manifestation.” These four data subsets were then each
randomly split into training (70%) and test (30%) groups. Finally, from these eight subsets, random
sampling with replacement was used to create a final dataset having the desired characteristics. This
dataset consists of 70% training data (10,108 cases) and 30% test data (4,332 cases), where both are
balanced with respect to source (i.e., 50% Canterbury, 50% global) and class (50% Manifestation; 50%
No Manifestation).
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Fig. 2.  Schematic illustrating the creation of the training and test sets analyzed herein.

3. Methodology

To evaluate and update the H;-H> model, clear definitions of “H;” and “H,” are required.
However, as previously discussed in the literature (e.g., van Ballegooy et al., 2015), the
definitions originally used by Ishihara (1985) may be interpreted inconsistently, leading to
different applications of the H;-H> model. According to Ishihara (1985), H; is the minimum
depth at which liquefaction is expected (i.e., it is the thickness of the nonliquefied “crust” or
“capping” layer) and H: is the thickness of soil expected to liquefy. Ishihara (1985) predicted,
for example, that a soil subjected to a PGA of ~0.2g would likely liquefy if it had a Standard
Penetration Test (SPT) blow count less than 10. It is less clear, however, whether H> was intended
to be the thickness of the shallowest liquefied stratum or the cumulative thickness of all liquefied
strata in a soil profile. While the selection of H: is straightforward for a profile with one
liquefiable stratum, different interpretations may arise for interbedded profiles with multiple such
strata. Because Ishihara (1985) predominantly studied profiles consistent with the former, the
need to define H> in greater detail did not arise.

Accordingly, two definitions of /> are initially tested in this study and are demonstrated
schematically in Fig. 3: (i) the thickness of the shallowest stratum predicted to liquefy, henceforth
called “Case 17; and (i1) the cumulative thickness of all strata predicted to liquefy, henceforth
called “Case 2.” Modern implementations of the H;-H> model typically define /> in a manner
consistent with “Case 2” (van Ballegooy et al., 2015; Geologismiki, 2020). A limiting depth of

10 m is adopted within these definitions for several reasons. First, prior studies of the H;-H>



model have used this limiting depth (van Ballegooy et al., 2015). Second, it is widely observed
that liquefaction is more likely to manifest at the surface if it occurs at shallow depth (e.g.,
Iwasaki et al., 1984), yet the H;-H> model does not explicitly account for this behavior when
multiple liquefiable strata are present. A 1-m thick liquefied stratum, for example, may be viewed
as having the same potential to manifest at the surface whether it is 2 m or 20 m below ground,
all else being equal. The use of a limiting depth thus excludes from consideration soils that may
liquefy, but which are unlikely to manifest at the surface. Lastly, different limiting depths were
provisionally selected and H;-H> models were trained and tested. The performance of these
models exhibited a small but systematic decline as the limiting depth increased from 10 m to 20
m, which may be attributable to the shortcoming above. In addition to testing two definitions of
H>, model performance will also be parsed based on how many liquefied strata a site is
interpreted to have. Whereas Ishihara (1985) analyzed profiles interpreted to have one liquefied
stratum, many of the profiles studied herein are interpreted to have multiple such strata. The
Ishihara (1985) H;-H> model might thus perform worse on highly interbedded soil profiles, as
has been observed of liquefaction models more generally (e.g., Geyin and Maurer, 2021b). The
criteria for categorizing profiles in this manner, and the results of these analyses, will be

introduced later in the paper.
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Fig. 3. Schematic demonstrating alternative definitions of “/H;” and “H>” adopted herein.

To identify strata predicted to liquefy, the Boulanger and Idriss (2014) CPT-based triggering model
was adopted, with liquefaction expected when the computed factor-of-safety against liquefaction
(FSiip) 1s less than one. Prior to its use, the soil-behavior-type index () (Robertson and Wride 1998)
was used to infer liquefaction susceptibility, such that soils with /. > 2.50 were assumed not susceptible,
per Maurer et al. (2019). Ultimately, the most salient results of this study were insensitive to the exact

L. threshold chosen. Additionally, to estimate fines content (F'C), a required input to the Boulanger and



Idriss (2014) model, two I.-FC correlations — one specific to Canterbury (Maurer et al. 2019) and one
intended for global application (Boulanger and Idriss 2014) — were used.

While the CPT has advantages over other in-situ tests used to predict liquefaction (e.g., the SPT)
(National Research Council, 2016), its effectiveness is still potentially limited by the volume of soil
mobilized around the cone. This mobilized zone can act as a low-pass filter, obscuring data from the
high spatial frequencies (e.g., that defining a thin soil stratum or the boundary between two dissimilar
materials). These filtering effects, often called “thin layer” effects, have been studied by many authors
(e.g., Treadwell 1976; Ahmadi and Robertson 2005; van der Linden et al. 2018). Although chart-based
correction procedures have been proposed, Boulanger and DeJong (2018) proposed what may be the
first algorithmic solution. Termed an “inverse filtering and interface detection” procedure, it predicts
“true” CPT data from measured values (i.e., it aims to remove thin layer effects via an inversion
process). While current, limited studies do not suggest liquefaction models perform significantly better
when using the Boulanger and DeJong (2018) procedure (Geyin and Maurer, 2021b; Yost et al., 2021),
it: (1) may nonetheless become popular in practice; (ii) has never been tested in conjunction with the
H;-H> model; and (iii) was utilized by Geyin et al. (2021) and Geyin and Maurer (2021a) when
compiling the Canterbury and global datasets, respectively, thereby allowing for its use to be easily
evaluated. Accordingly, both measured and “true” CPT data will be analyzed and compared throughout
this paper. While the reader is referred to Boulanger and DeJong (2018) for complete details, the
procedure’s default parameters were used to predict “true” CPT data from measured values. These
defaults can conceivably be calibrated via site-specific investigation to adjust the “aggression” of the
inversion, but such calibrations were not undertaken in the present study and have yet to be
demonstrated elsewhere in the literature. As part of their processing methodology, Geyin et al. (2021)
and Geyin and Maurer (2021a) used cross-correlation (Buck et al., 2002) to ensure that CPT tip and
sleeve measurements were properly aligned.

When evaluating and updating the H;-H> model, three existing, alternative manifestation models
will also be implemented and analyzed for comparison. The first of these is the Liquefaction Potential

Index (LPI) proposed by Iwasaki et al. (1984):

LPI = foz" m

F(FSyq) - w(z) dz (1)
where: F(FSiq) = 1 — FSiiy for FSiiy < 1 and F(FSiy) = 0 otherwise; and w(z) = 10 — 0.5z, where z is
depth. F(FSi,) and w(z) predict the respective influences of FS; and z on surface manifestation, which

is assumed by LP/ to depend on the thickness of all liquefied strata within the upper 20 m, the amount



by which FSj, is less than 1.0 in each stratum, and the proximity of those strata to the ground surface.
Given this definition, the LPI domain ranges from zero to 100.
The second model is a modification of LPI proposed by Maurer et al. (2015a) and inspired by the

H;-H> model. Given its provenance, the result was named LPIsy and is defined by:

LPl,gy = f;" ™R (FSyg) - w(2) dz o

where:
-SSR Ss
m(FSq) = exp (M) -1 @)

In Egs. 3-4, F(FSiiy) and w(z) serve the same objective as in LPI, but are defined differently, such that
F(FSiiy) accounts for H; and w(z) is defined by w(z) = 25.56 - z'!. Maurer et al. (2015a) recommended
a minimum H; of 0.4 m, even if liquefiable soils exist at shallower depths. Using this constraint, the
LPI;sy domain also ranges from zero to 100.

The third is the Liquefaction Severity Number (LSN) proposed by (van Ballegooy et al., 2014a):

. & w(2)dz (5)

where g, is volumetric strain (%) and w(z) = 10 - z'. While various methods are available to estimate
&, (e.g., Geyin and Maurer 2019), van Ballegooy et al. (2014a) adopted the Zhang et al. (2002) method,
which is thus also adopted herein. The LSN domain ranges from zero to oo (if liquefiable soils are near

the surface) but is typically less than 100.

4. Results and Discussion

4.1 Evaluating the H;-H>; Model

The H;-H: model has several limiting traits that complicate its application and evaluation. In
addition to the previously discussed interpretation of A, which can be ambiguous, it: (i) is a graphical,
rather than analytical, solution; and (ii) was defined only for three discrete values of PG4, as shown in
Fig. 1. Because very few of the 14440 compiled case histories experienced one of these exact PGAs,
it is advantageous to convert the H;-H> model into a continuous analytical function, such that it may
be applied under all circumstances.

Accordingly, several simple functional forms were fit to the H;-H> model (i.e., to the three curves

proposed by Ishihara (1985)). Among these, a bilinear function defined by Eqs. 6-8 resulted in: (i) the
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closest fit to Ishihara’s (1985) three curves, as measured by mean square error; (ii) heuristically
sensible behavior when extrapolating beyond the curves (i.e., the resulting functions appear plausible
at low and high PGA based on existing field observations); and (iii) the best prediction performance,
as measured on case-history data and discussed subsequently. These equations thus represent a close
approximation and plausible extrapolation of the original H;-H> model, as shown in Fig. 4. While the
equations are plotted for eight values of PGA, only the three curves proposed by Ishihara (1985) and

digitized in Fig. 4 were used in the fitting process.

= (L S ©

where:
m = 2.13 x g~3751+PGA (7)
Hy 1im = 23.234 x PGA — 1.5 ®)

In these equations, m represents the initial slope of the /;-H> model and H; ;;,, is the limiting
value of H; beyond which surface manifestations are not expected, regardless of H>. In developing
Egs. 6-8, various univariate functions (e.g., linear, bilinear, exponential, power) were evaluated.
While the adopted model fits the three Ishihara (1985) H;-H> curves well, it is nonetheless one of
many models that could be justified based on the curves. It should thus be emphasized that we herein
evaluate a fit of the original H;-H> model, rather than the original model itself (which does not lend

itself well to evaluation).
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Fig. 4. Comparison of the Ishihara (1985) H;-H> model and the bilinear model fit to the Ishihara (1985)
curves and defined by Equations 6-8.

Using the bilinear model fit in Egs. 6-8, the performance of the /;-H> model was next evaluated
using the test set of 4,332 case histories described previously and depicted in Fig. 2. The results,
expressed in terms of overall accuracy (OA4), are summarized in Table 2. OA describes the percentage
of cases correctly classified as “Manifestation” or “No Manifestation.” It is the sum of “true positive”
predictions (i.e., manifestations are predicted and observed) and “true negative” predictions (i.e.,
manifestations are not predicted and are not observed) divided by the total number of cases analyzed.
It may be seen that: (i) the “Case 2” definition of H> (i.e., the cumulative thickness of strata predicted
to liquefy within the upper 10 m) results in a ~15% higher O4 than the “Case 1” definition of A (i.e.,
the thickness of the most shallow, discrete stratum predicted to liquefy), for which the H;-H> model
performs akin to random guessing; and (ii) the Boulanger and DeJong (2018) CPT correction procedure
increases OA4 2.9% if the “Case 2” definition of H> is used but decreases OA4 3.7% if the “Case 17
definition of H> is used. Considering these results, the “Case 2” definition will henceforth be
exclusively adopted as the H;-H> model is further tested and improved. Given the inconclusive results

of the Boulanger and DeJong (2018) procedure, its use will continue to be evaluated throughout the

paper.
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Table 2. Performance of the H;-H> model-fit on the test set compiled herein.

Number of Number of Total

Test Dataset True True Number of Accgr\:;r;ﬂ(lO 4)
Negatives Positives Cases
Case 1 H, + Measured CPT Data 2087 493 4332 0.596
Case 1 H, + “True” CPT Data 2160 261 4332 0.559
Case 2 H> + Measured CPT Data 1612 1498 4332 0.718
Case 2 H> + “True” CPT Data 1637 1597 4332 0.747

4.2 Re-Regressing an Analytical H;-H> Model

While the H;-H> model provided relatively useful predictions in the prior test, its performance (OA4
< 0.75) was as near or nearer to random guessing (OA4 = 0.5) as to a perfect model (04 = 1.0). To
evaluate whether the H;-H> model could be improved if trained on a larger dataset than available to
Ishihara (1985), the bilinear functional form in Eqs. 6-8 was next re-regressed using the newly
compiled training set, both for measured and true CPT data, via optimization on OA. Because the
dataset is balanced with respect to positive and negative observations, optimizing on OA produces a
model without class bias (i.e., it is neither conservative nor unconservative, but seeks to minimize the

total rate of mispredictions). The resulting model is defined by Eqgs. 9-11:

if H Hiy;
R i 0
where:
m = ax PGAP (10)
Hy im = € * PGAC (11)

In Egs. 10-11, m and H, ;;,,, have the same meaning as in Eqs. 7-8 but use different functional forms.
When trained on measured CPT data, the model coefficients are a = 0.1436; b =-0.9321; ¢ = 27.9483;
and d = 1.0139. When trained on “true” CPT data, they are a = 0.1399; b =-0.9881; ¢ = 31.1370; and
d =0.9908. Both models are plotted against the Ishihara (1985) curves in Fig. 5. In either case, it can
be seen that retraining resulted in an outward shift of the H;-H> functions relative to those proposed by
Ishihara (1985). That is, the newly trained model predicts that a profile is more hazardous (i.e., more
likely to produce surface manifestation) for a given combination of H;, H>, and PGA. Given that the
H;-H> curves of Ishihara (1985) were drawn to minimize the total rate of mispredictions (i.e., the curves

were intended to be neither conservative nor unconservative) — mirroring the approach used herein —
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it is unlikely that the shift in perceived hazard is due to the method of optimization. Other, more likely
causes are discussed as follows. First, Ishihara (1985) studied data from just two earthquakes, each
with relatively uncertain ground motions, and constructed one of the three H;-H: curves via
interpolation. That the resulting model performs as well as it does despite such limited data is
impressive. Nonetheless, the data from these two earthquakes might not be representative of
liquefaction data more generally and might therefore not produce a model optimal for global
application. Second, the CPT-based triggering model used herein to identify liquefied strata (i.e.,
Boulanger and Idriss, 2014) may deviate from the SPT-based approach used by Ishihara (1985).
Specifically, the observed shift in perceived hazard could result if the Boulanger and Idriss (2014)
model tends to predict less liquefaction than the method of Ishihara (1985), resulting in a larger H; and
smaller > for the same profile. Third, while the definition of “manifestation” adopted in this work
appears consistent with that of Ishihara (1985), it is possible the perceived shift in hazard could result
from differing criteria. Specifically, if our threshold for classifying “manifestation” is less severe than
that of Ishihara (1985), the resulting H;-H> models would tend to predict that a profile is more
hazardous (i.e., more likely to produce surface manifestation). Lastly, our definition of H> might differ
from that of Ishihara (1985), which is to say that Ishihara (1985) studied profiles interpreted to have
one liquefied stratum, whereas most profiles in this study are interpreted to have multiple such strata.
It can also be seen from Fig. 5b that use of “true” data results in an additional, minor outward shift
of the H;-H, functions. This is likely a consequence of the Boulanger and DeJong (2018) procedure’s
average tendency to increase the computed FS, as studied in detail by Geyin and Maurer (2021b).
All else being equal, an increase in FSj, increases H; and decreases H>. Given that this is the most
common outcome of the Boulanger and DeJong (2018) procedure, the optimal H;-H> functions
correspondingly shift in a similar fashion. Lastly, it may be observed that the re-regressed model is
dependent upon PGA, even though the adopted functional form allows for a lack of dependence to
occur, if statistically supported. This dependence occurs even though PG4 is already considered within
the liquefaction triggering model. The authors hypothesize that PGA provides confidence to an
otherwise binomial prediction of liquefaction triggering, similar to how LPI and other models account
for FSiio. LPI, for example, assumes that an F:Sz;0 of 0.1 is more likely to produce surface manifestation
than an FSzip of 0.5, all else being equal, even though from a mechanistic or laboratory perspective
(e.g., Yoshimine et al., 2006), the expected outcomes may be the same. The performance of these and

other models yet to be developed will be discussed subsequently.
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Fig. 5. Comparison of the Ishihara (1985) H;-H> model and the optimized bilinear model defined by
Equations 9-11, as trained on (a) measured CPT data; and (b) “true” CPT data.
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While a bilinear model was found to best fit the Ishihara (1985) curves, other functional forms
could potentially result in better predictions of liquefaction manifestations. In re-regressing an
analytical H;-H> model, a power-law relation was also developed as an alternative and is defined by
Egs. 12-13:

H, = m=x H1¢ (12)
where:

m = ax* PGAP (13)

When trained on measured CPT data, the model coefficients are a = 0.0217; b =-1.9481; and ¢ =
1.5688. When trained on “true” data, a = 0.1087; b =-1.0430; and ¢ = 1.2162. Both models are plotted
against the Ishihara (1985) curves in Fig. 6. Like the bilinear model in Fig. 5, the power-law model
predicts that a profile is more hazardous (i.e., more likely to produce surface manifestation) for a given
combination of H;, H>, and PGA, as compared to the Ishihara (1985) curves. It can also be seen that
the Boulanger and DeJong (2018) CPT correction procedure most often results in an additional outward
shift of the H;-H. functions, as was also the case in the bilinear model. In comparing the new bilinear
and power-law models, it is evident the models are in relative agreement when H; and H> are small
(e.g., <5 m), and particularly when PG4 is also small, but tend to have large discrepancies otherwise.
This can be attributed to the paucity of training data (i.e., case histories) with relatively large H;, H>,
or PGA. Shown in Fig. 7 are the distributions of “no manifestation” and “manifestation” data binned
on PGA. The lack of data within the aforementioned parameter space is readily apparent, particularly
as PGA increases. As a result, models that are very different outside the limits of the empirical data
can have the same prediction efficiency. While the proposed models are herein routinely shown beyond
these limits to illustrate their extrapolation beyond the data, the models should not be relied on when
H; or H> exceeds 10 m, or when PGA exceeds ~0.7 g. It follows that a more mechanistic-based
approach (e.g., Cubrinovski et al., 2019; Bassal and Boulanger, 2021; Hutabarat and Bray, 2021) could
be particularly beneficial for resolving predictions of liquefaction response in scenarios lacking prior
empirical insights. It can also be surmised from Fig. 7 that the prediction of surface manifestation via
predictor variables H;, H> and PGA is unlikely to be highly efficient (say, O4 > 0.90), regardless of a
model’s exact formulation. In other words, the “Manifestation” and “No Manifestation” data points
have considerable overlap and are unlikely to be separated without a nontrivial rate of misprediction.

Nonetheless, the possibility exists that algorithmic learning, which is not constrained to any functional
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form, could provide more efficient predictions than the two analytical models proposed in Egs. 9-13.

This possibility is explored in the following section.
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Fig. 6. Comparison of the Ishihara (1985) H;-H> model and the re-regressed power-law model defined
by Equations 12-13, as trained on (a) measured CPT data; and (b) “true” CPT data.
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Fig. 7. Distributions of “No Manifestation” and “Manifestation” data, binned on PGA.

4.3 Improving the H;-H; Model with Algorithmic Learning

To assess whether algorithmic learning could produce a more effective classifier model via
variables H;, H> and PGA, various machine and deep learning (ML/DL) algorithms were explored.
These included support vector machines (SVM) (e.g., Vapnik, 1995), decision trees (e.g., Rokach and
Maimon, 2008) and tree ensembles with random forests, bagging, or gradient boosting (e.g., Breiman,
1996; Piryonesi et al., 2021), Gaussian process models (e.g., Rasmussen and Williams, 2006), and
neural networks (e.g., Glorot and Yoshua, 2010). In general, modeling techniques that are interpreted
more easily (e.g., single decision trees) tend to have lesser prediction efficiency and are prone to
overfitting, whereas those with higher efficiency and better transferability are often relatively
complicated to interpret (e.g., ensembles of decision trees). Each technique has various internal
options, or “hyperparameters,” that can be optimized via an automated search scheme once promising
models are identified. Like the previously developed models, prospective ML/DL models were trained
on the compiled training set, both for measured and “true” CPT data. Because ML/DL models are
especially susceptible to overfitting, 5-fold cross-validation was used, wherein the training data is

partitioned into five random subsets of equal size. One subset is used to validate the model trained on
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the remaining four. This process is repeated five times, such that each subset is used once for validation.
The result is a resampling-based ensemble of models trained on different subsets of the training data.

Ultimately, two ML/DL models were selected for testing, with each separately trained on measured
and “true” CPT data. The first is a bagged ensemble of decision trees, wherein multiple relatively weak
learners are aggregated to form a stronger model. For brevity, we henceforth refer to it as the “ML
model.” The theory underlying this approach — which is commonly included in machine learning
toolkits (e.g., Scipy, TensorFlow) — is explained in detail by Breiman (1996). The growth of a decision
tree involves the establishment of recursive binary splits, such that specific combinations of model
inputs (i.e., H;, H2, or PGA) map to a predicted output — in this case, a binomial classification of 1
(Manifestation) or 0 (No Manifestation). However, because a single tree tends not to be very accurate
and is prone to overfitting, ensembles of decision trees are advantageous. In “bagging,” multiple
versions of a training set are formed by bootstrap sampling, thereby generating multiple models. The
predictions from those models are then ensembled, which for a classification problem is the majority
vote (i.e., 0 or 1). Using this approach, the ML model was trained via optimization on OA4, like the
previously developed models. While a single decision tree could be elucidated in a schematic, simple
interpretations of a tree ensemble are infeasible, given that its strength is derived from the aggregate
of numerous models.

The second model is a multilayer feed-forward artificial neural network (NN). For brevity, we
henceforth refer to it as the “DL” model (although the defining characteristics of deep vs. shallow
learning are debatable). Dating to the 1980’s (e.g., Hopfield, 1982), this now ubiquitous approach
mimics the perceived structure of the human brain, with layers of interconnected nodes. At the most
basic level, NNs have four components: inputs, weights, a threshold, and an output. Connections
between nodes are modeled as weights, such that positive and negative weights indicate excitatory and
inhibitory connections, respectively. During training, the weights are iteratively adjusted to optimize
model performance. If the output from an individual node is above a specified threshold, the node is
activated, sending data to the next layer of the network. An activation function then controls the
amplitude of the output at each node. The above process is repeated multiple times, with each layer
potentially passing information from the previous layer to the next. For this work, the NN was trained
using the Levenberg-Marquardt algorithm (Hagan and Menhaj, 1999) which combines the classical
gradient descent and Gauss-Newton minimization methods. In addition, a sigmoid function (e.g., Han
and Morag, 1995) was adopted for the activation function of the output neuron. This results in output
values that are estimates of the probability of the input belonging to a specified class. Thus, unlike the

binomial ML model, the output from the DL model is the probability of a positive class (i.e., the
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probability of surface manifestation). However, like the ML (bagged decision tree) model, NNs are
quite convoluted, rendering comprehensive interpretations of the detailed inner workings difficult,
since single node weights have little physical meaning, and since many thousands or millions of

connections may be present.

4.3.1 Model Availability and Implementation

An obvious limitation of most models trained via algorithmic learning is the lack of a defined
equation easily ported and executed via hard copy. Simple depictions of model structure and form are
also generally absent. While these detractions can be significant, it is clear the use of algorithmic
learning will only grow, given its demonstrated capabilities when provided with large datasets. It is
critical, however, that trained ML/DL models be provided as code. Despite this necessity, enumerable
ML/DL models have been published without code, meaning that while a model may be available for
use by the respective developers, it is not easily accessed by the broader community, and is therefore
not applied, tested, or improved upon by others. To facilitate user adoption and evaluation, the trained
models are provided via an electronic supplement as Matlab code (i.e., in .m format). The only required
inputs are values of H;, H>, and PGA in an [ X 3 matrix, X, where / is the number of sites at which a
prediction is requested. An example of matrix X is also provided in the electronic supplement as an
excel file (i.e., in .xIs format). The program “HIH2 Execute” requests this input file and makes
predictions using any of the models developed in this paper (i.e., both the ML and DL models, as well
as the analytical models developed previously). As part of this process, the user is prompted to specify
whether they are studying CPT data processed via the Boulanger and DelJong (2018) correction

procedure, in which case the models corresponding to its use are selected.

4.4 Analysis and Discussion of Model Performance

Following from the prior performance evaluation of the original H;-H> model, all subsequently
trained variants of the H;-H> model were similarly evaluated in terms of OA using the compiled test
set. It is worth restating that: (i) all H;-H> models adopt the “Case 2” definition of H> in training and
testing; and (i1) the tests use data entirely separate from model training and are thus unbiased, to the
degree possible (e.g., test and training data do come from the same earthquakes, so some “bias” may
be present in that the geomorphic settings and seismic loadings where liquefaction occurs are similar).

The results of these performance evaluations are summarized in Fig. 8.

19



@ Trained and Tested using Measured Data OTrained and Tested using "True" Data

1.00 \_

Perfect Model
0.95
0.90
0.85
0.80 —
0.75 — ]

0.70

Overall Accuracy
|
|

0.65

0.60

0.55

Random Guessing
/ mi mi
\“\k\m W Aty LS8 a\x\z e‘“‘.\h

) X
ov'\%‘“g 3‘\\'\"‘?"‘l pov

0.50

Ry Y

\'\‘1 0\)\\‘

¥
Fig. 8. Model performance (O4) measured on the compiled test set.

Notable findings from Fig. 8 are as follows. First, the bilinear and power-law H;-H> models
outperformed the original H;-H> model (Ishihara, 1985), as fitted herein. Whereas the original model
had an average OA of 0.732 (i.e., when averaging over the measured and “true” model variants) the
bilinear and power models each had average OAs of 0.767. In the context of the compiled test set of
4,332 case histories, this amounts to an additional 151 cases for which the predicted and observed
responses agree. This improvement is likely attributable to having vastly more data for model training
than was originally available when the H;-H> model was devised. Second, none of the alternative
manifestation models from the literature (i.e., LPI, LPIsy, or LSN) performed better on the test set than
the newly trained analytical H;-H> models. To compute an OA using LPI, LPlisy, or LSN, the
classification threshold at which O4 was maximized on the training set (say, LP/ = 5) was applied to
the test set to make forward predictions. With this approach, manifestations are expected for computed
values above this threshold and are not expected otherwise. While the relative performance of these
models might vary if a different test set were used, it is nonetheless notable that the H;-H> concept
performs as well or better than alternative models when quantified via OA. It should be emphasized,
however, that as a binomial predictor, the H;-H> concept (at least, as originally devised) is not well
suited for predicting the severity of manifestation. In addition, the degree of misprediction cannot be

judged, since all mispredictions are equally erroneous. For this reason, continuous index models like
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LPI, LPI;sy, or LSN may have advantages that cannot be quantified via OA. Moreover, the relative
performance of LPI, LPIisy, and LSN might change if a different, more comprehensive metric of
performance were used (Geyin et al., 2020a).

Third, the ML and DL versions of the H;-H> model showed further improvement, with average
OAs of 0.798 and 0.832, respectively. Relative to the original H;-H> model, this is an increase in OA
upwards of 10%, meaning that liquefaction response was correctly predicted at 434 additional sites in
the test set. Lastly, it can be seen in Fig. 8 that use of the Boulanger and DeJong (2018) CPT correction
procedure was inconclusive with respect to improving prediction efficiency. In four of the eight models
evaluated, the use of this procedure decreased OA4, and in four other models, it increased OA. In general,
these changes were relatively minor (£1.2% on average). It may thus be observed that this correction
procedure is unlikely to significantly improve the performance of current liquefaction models, a
conclusion similarly reached by Geyin and Maurer (2020; 2021b) using different methods. Although
not shown in Fig. 8, it was found that inputting measured CPT data to a model trained on “true” data,
or inputting “true” CPT data to a model trained on measured data, typically resulted in a more
significant decline in performance. Accordingly, the authors recommend neither the use nor disuse of
the Boulanger and DeJong (2018) procedure but do recommend that the H;-H> models developed
herein be used in a manner consistent with their training. Measured and “true” CPT data and models
should not be mixed.

To investigate the specific conditions under which some models perform better or worse, the O4
of each model was next computed for various bins of H; and H> within the test set, as shown in Fig. 9
for models trained and tested on measured CPT data. An analogous figure for models trained on “true”
data is not shown because the results are very similar. Shown in Fig. 10 are the quantities of cases
occupying each bin, where it can be seen that relatively few cases have H; or H> exceeding 5 m; the
most populous bin is that with 2.5 m < H; <5 m and H><2.5 m. The OA4 results in Fig. 9 should thus
be viewed in the context of Fig. 10 since each bin contributes differently to overall model performance.
Notable findings from Figs. 9 and 10 are as follows.

First, all models perform relatively better when either H; or H> is relatively large. In these
situations, the predicted liquefied stratum is either thin and at large depth, or thick and at shallow depth.
The presence or absence of surface manifestation is more easily predicted in either case. In contrast,
all models perform relatively worse when H; and H: are relatively small (but nonzero). In this situation,
a relatively thin liquefied stratum is predicted at relatively shallow depth, in which case it is more
difficult to predict whether surface manifestations will, or will not, be observed. In fact, all models are

nearer to random guessing than to a perfect model when H; and H; are between 0 m and 2.5 m. This is
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a significant finding, given that many such cases are encountered in practice (and represent ~20% of
the test set in this study). In such cases, a more advanced, asset-specific assessment of liquefaction
hazard may be particularly useful. Ultimately, this points to the apparent inefficiency and/or
insufficiency of predictor variables H;, H>, and PGA for predicting surface manifestation. It is known,
for example, that low permeability soils interbedded within a profile may complicate that profile’s
expected response by altering the triggering of liquefaction and/or the morphology of surface
expression (e.g., Maurer et al., 2015b; Cubrinovski et al., 2019; Bassal and Boulanger, 2021; Hutabarat
and Bray, 2021). Yet, while the presence and sequencing of low permeability soils are known to affect
pore pressure generation and transmission, these variables are not explicitly included in the H;-H>
concept nor in LPI, LPI;su, or LSN. Moreover, these methods implicitly assume that liquefiable
strata are independent entities, and that liquefaction is concurrent throughout a profile, when in
reality a profile’s system response may give rise to time-varying values of H; and H (e.g.,
Cubrinovski et al., 2019; Hutabarat and Bray, 2021).

Second, it can be seen for the newly developed models that improvement is relatively uniform
across the parameter domain. That is, when OA increases, it tends to increase similarly across a range
of H; and H values. As such, we do not recommend that a model be selected on the specific basis of
H; and H>. With very few exceptions, the four newly trained H;-H> models are more efficient than the
original model across all H; and H>. These new models could be ensembled (e.g., averaged), however,
as is common in the prediction of other hazards (e.g., ground motions and storm tracks). The
ensembling of models with different forms can have the effect of stabilizing predictions (i.e., minimize
large swings on account of which model is chosen), and potentially, provide benefits unrealized during
testing. Accordingly, the aforementioned “H1H2_ Execute” program provides the option to average

predictions from all newly proposed models.
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Fig. 9. Model performance (OA) on the compiled test set, binned on H; and H> values. All models are
trained and tested on measured CPT data. The value within each bin is the OA.
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Fig. 10. Distribution of data in the compiled test set, binned on /; and H> values.

Finally, to investigate whether the H;-H> models perform relatively better on some types of profiles
than on others, model performance was parsed based on the number of strata with computed FSji; <
1.0. The results are shown in Fig. 11 for models trained and tested on measured CPT data. An
analogous figure for “true” data is not shown because the results demonstrate the same trends. All H;-
H> models perform relatively worse when multiple liquefied strata are present, as has been observed
of models more generally (e.g., Geyin and Maurer, 2021b), and which is also true of LPI, LPIsu, and
LSN. Across all models evaluated in Fig. 11, the OA4 declines an average of 8.6% when the interpreted
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quantity of liquefied strata exceeds one. Additionally, and as previously discussed, Ishihara (1985)
analyzed profiles interpreted to have one such stratum, whereas in practice many profiles are
interpreted to have multiple such strata. It can be seen in Fig. 11 when comparing the original H;-H>
model to the newly trained analytical models (i.e., the bilinear and power-law models), that relatively
more improvement is achieved on profiles with multiple liquefied strata. In other words, the original
H;-H> model performs nearly as well as others if applied only to the types of profiles studied by Ishihara
(1985). The overall improvement of the bilinear and power-law models may thus be partly attributable
to differences between the case histories available to Ishihara (1985) and those studied herein.
However, it can also be seen that the ML and DL models improve OA4 not only on interbedded profiles,
but across all profiles investigated. Ultimately, regardless of which H;-H> model is adopted, it can be

expected that performance will degrade in highly interbedded profiles.
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Fig. 11. Model performance (OA4) measured on the compiled test set (measured CPT data), parsed by
the number of liquefied strata a profile is interpreted to have.

4.5 Limitations and Uncertainties

It should be emphasized that “surface manifestation” — the prediction target of the analyses
presented herein — refers to free field surface ejecta, settlement, and cracking on ground that is
generally level, consistent with the definition adopted by Ishihara (1985). While these effects are a

popular and pragmatic proxy for the damage potential of infrastructure, such damage may not
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necessarily occur. Similarly, liquefaction could trigger at depth and damage infrastructure without
otherwise expressing in the free field. The limitations of the presented H;-H> models for predicting
damage to specific assets, or for predicting other manifestations of liquefaction (e.g., lateral spreading)
should be understood by users. It should also be understood that our evaluation of the original H;-H>
model is that of a model fit to the three curves proposed by Ishihara (1985). While this fit is plausible,
it is nonetheless one of many models that could be justified from the three curves. In addition, the
models and findings presented herein are dependent on the data available for analysis. Due to the
relative paucity of case histories available outside of Canterbury, New Zealand, the global and
Canterbury datasets were respectively upsampled and downsampled to mitigate source and class bias.
Inherent to these datasets, it should also be noted that the relative timing of in-situ testing varies (i.e.,
in some cases it was performed before an earthquake while in others it was performed after). Also
present are cases in which a site subjected to multiple earthquakes was used to develop multiple case
histories. As discussed in detail by Geyin et al. (2021), this practice is consistent with past precedent
but also worthy of further investigation, given that variations in the relative timing of in-situ testing
could introduce uncertainty to the models. Invariably, any changes to the training or test sets could
result in changes to the models and model performance. The applicability of the findings presented
herein to other datasets or other earthquakes elsewhere, especially in regions unrepresented in model
training, is thus unknown. Similarly, all analyses were performed using the Boulanger and Idriss (2014)
CPT-based triggering model, from which H; and H> were computed. While this model is popular and
has been shown to be at least as effective as all others (Geyin et al., 2020a), adoption of a different
model would invariably change the results, albeit any change would likely be inconsequential to the
overall conclusions of the work. The use of SPT-based models to compute H; and H> for input to the
proposed models would likewise introduce uncertainty. While it has been suggested that CPT-based
characterizations may result in higher hazards than those based on the SPT (Lenz and Baise, 2007),
such investigations are rare, and the issue remains unresolved. Thus, while the proposed H;-H>
manifestation models could be used with triggering models other than Boulanger and Idriss (2014), the
appropriateness of doing so is unknown and subject to further evaluation. Ideally, and as expanded
upon below, the H;-H> models would be applied in a manner consistent with their training to mitigate

potential bias.

5. Conclusions
While the H;-H> model (Ishihara, 1985) for predicting surficial manifestations of liquefaction has

been widely used since its inception, it has arguably not been rigorously evaluated or calibrated since.
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Accordingly, this study evaluated and updated the seminal H;-H> model using a large database of CPT-
based liquefaction case histories compiled from global earthquakes. Some of these data were omitted
from model training to perform unbiased testing. Using this test set, a fit of the original H;-H> model
had relatively similar (albeit lesser) O4 when compared to other, often newer manifestation models
from the literature. Benefiting from the large increase in liquefaction case histories available for model
training, four new H;-H> models were developed using the same predictor variables as Ishihara (1985).
Two were trained via traditional regression and are provided in Egs. 9-13. Two others were trained via
ML/DL algorithms and are provided as simple-to-use codes. Relative to the original H;-H> model,
these new variants all increased OA4 on the unbiased test set, especially on profiles with multiple
liquefied strata, with the ML and DL models performing best. Two versions of each model were
developed to allow for either measured or “true” CPT data to be used, where the latter is data processed
using the Boulanger and DeJong (2018) thin layer and interface correction procedure. While the results
do not indicate a consistent performance improvement using this procedure, it is important that the H-
H> models be employed in a manner consistent with their development. That is, measured CPT data
should not be input to a model trained on “true” data, or vice versa. Similarly, the models should be
used in conjunction with the Boulanger and Idriss (2014) triggering model and the definitions of H;
and H> adopted herein. Given these definitions, and considering the limits of the empirical data, the
models should not be relied on when H; or H> exceeds 10 m, or when PGA exceeds ~0.7 g. Ultimately,
while this paper proposed manifestation models that appear, based on OA, to outperform existing
models, it also explored the limits of predictor variables H;, H>, and PGA. As seen in Fig. 7, sites with
and without manifestations cannot be separated in a highly efficient manner using these predictors, no
matter how complex a modeling technique is used. In the short term, this paper provides updated H;-
H> models suitable for application. In the long term, new manifestation models are needed to account
for influential factors in a more explicit and mechanistic manner (e.g., the effects of strata permeability,

sequencing, depth, and thickness on pore pressure gradients and transmission).
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Appendix: Data Attribution
The curated Canterbury and global datasets are available in digital format, as cited within the text.

These datasets were compiled from the following sources, parsed by event:

1964 M,,7.6 Niigata, JPN - Ishihara & Koga (1981), Farrar (1990), Moss et al. (2003); 1971 Mw6.6
San Fernando, USA - Bennett et al., 1998, Toprak and Holzer (2003); 1975 M7.0 Haicheng, CHN
- Arulanandan et al. (1986), Shengcong & Tatsuoka (1984); 1976 M,7.6 Tangshan, CHN - Shibata
& Teparaska (1988), Moss et al. (2009; 2011); 1979 My6.53 Imperial Valley, USA - Diaz-Rodriguez
(1984), Diaz-Rodriguez and Armijo-Palaio (1991), Moss et al. (2003); 1981 M,5.9 Westmoreland,
USA - Bennett et al. (1984), Seed et al. (1984), Cetin et al. (2000), Moss et al. (2005); 1983 My7.7
Nihonkai-Chubu, JPN - Farrar (1990); 1983 M6.88 Borah Peak, USA - Andrus (1986), Andrus &
Youd (1987), Moss et al. (2003); 1987 My6.6 Edgecumbe, NZ - Christensen (1995), Moss et al.
(2003); 1987 M6.54 Superstition Hills, USA - Bennett et al. (1984), Cetin et al. (2000), Toprak &
Holzer (2003), Moss et al. (2005), Holzer & Youd (2007); 1989 M,6.93 Loma Prieta, USA - Mitchell
etal. (1994), Pass (1994), Bennett & Tinsely (1995), Boulanger et al. (1995; 1997), Kayen et al. (1998),
Toprak & Holzer (2003), Youd & Carter (2005); 1994 My6.69 Northridge, USA - Abdel-Haq &
Hryciw (1998), Bennett et al., 1998, Holzer et al. (1999), Moss et al. (2003); 1995 Mw6.9 Hyogoken-
Nambu, JPN - Suzuki et al. (2003); 1999 M7.51 Kocaeli, TUR - PEER (2000a), Youd et al. (2009);
1999 My7.62 Chi-Chi, TWN - Lee et al. (2000), PEER (2000b); 2008 My6.4 Achaia-Ilia, GRC -
Batilas et al. (2014); 2008 M,,7.2 El Mayor-Cucapah, MEX - Moss et al. (2005); CESMD (2016),
Turner et al. (2016); 2011 My9 Tohoku, JPN - Cox et al. (2013), Boulanger & Idriss (2014); 2012
M 6.1 Emilia, ITA - Papathanassiou et al. (2015), Facciorusso et al. (2015), Servizio Geologico
(2016); 2010 My7.1, 2011 Mw6.2, and 2016 MS5.7 Canterbury, NZ - Bradley (2013); Green et al.
(2014); Maurer et al. (2014); van Ballegooy et al. (2014b); Maurer et al. (2015c); New Zealand
Geotechnical Database (2016); Quigley et al. (2016).
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