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Abstract—Dynamical systems are mathematical descriptions 
of applications around our world. However, there are many 
challenges in control of dynamical systems, such as nonlinearity, 
uncertainty and high dimensionality. Recent research has revealed 
significant connections between neural networks and dynamical 
systems. Neural networks are powerful technologies that used for 
learning and predicting dynamical systems. Correspondingly, 
dynamical insights could be applied to neural networks. In this 
paper, we investigated neural network structures to learn high-
order dynamical systems. We proposed a continuous high-order 
neural network structure based on Neural Ordinary Differential 
Equations to model high-order planar dynamical systems. 

Keywords— dynamical systems, modeling, neural networks, 
high-order, approximation 

I. INTRODUCTION

Dynamical systems describe time-dependent states of 
different applications in real world, like ecology, fluid, and 
financial market. Nowadays, as the development of data science 
and machine learning, many data-driven technology has been 
applied in control, analysis, model of dynamical systems. [1] 
Using data-driven method to model dynamical system takes 
advantage of abundant data and reduce the difficulties to derive 
physical law.  

Neural networks are one of the most powerful data-driven 
tools to approximate functions using data. It is composed of 
hierarchical stacked layers with simple computation nodes 
which are used for modeling and prediction of dynamical 
systems. [2][3][4][5] investigated the dynamic behavior and 
stability properties of feedforward neural network models. In 
[9], a recurrent high-order neural network model is developed 
for dynamical systems identification, and it is capable of 
modeling a large class of dynamical systems. Deep residual 
neural networks have been one of the most successful 
architectures that are applied in computer vision [6][7] and 
natural language processing [8]. To explain the success of deep 
residual neural networks theoretically, a dynamical systems 
perspective decodes residual neural networks as discrete time 
equivalent of ordinary differential equations [10][11]. 

However, using a discrete layer-by-layer neural network to 
approximate a continuous high-order dynamical system is 
difficult. Recently, a continuous neural network structure called 
the neural ordinary differential equation (Neural ODE) has been 
proposed in [12]. It shows superior efficiency and accuracy in 
time-series modeling. By interpreting the neural networks as 
ordinary differential equation, enormous number of results in 
analysis, control and model dynamical systems can provide 
insights to build neural networks architectures.  

In this work, we proposed a new neural network structure 
based on Neural Ordinary Differential Equation and 
investigated its capabilities for learning high-order dynamical 
systems. We focus on modeling high-order planar systems (1).  

�
𝑥̇𝑥1 = 𝑐𝑐1𝑥𝑥1

𝑝𝑝1 + 𝑐𝑐2𝑥𝑥2
𝑝𝑝2

𝑥̇𝑥2 = 𝑐𝑐3𝑥𝑥1
𝑝𝑝3 + 𝑐𝑐4𝑥𝑥2

𝑝𝑝4 (1) 

There are two variables 𝑥𝑥1 , 𝑥𝑥2 ∈ ℝ  in this system. 
𝑐𝑐1, 𝑐𝑐2, 𝑐𝑐3, 𝑐𝑐4 ∈ ℝ  are constants, and 𝑝𝑝1,𝑝𝑝2,𝑝𝑝3,𝑝𝑝4 are positive 
numbers [13]. The high-order ordinary differential equation (1) 
is frequently used for modeling circuits systems, imaging 
processing and thermal processes. In [14], the stability problem 
of a class of system (1) has been extensively studied from a 
theoretical point of view, and it provides a necessary and 
sufficient condition for stability of a class of planar nonlinear 
systems.  

In approximation theory [15][16][17], a shallow neural 
network with finite neurons is sufficient to approximate a two-
dimensional function. However, guidelines of building neural 
network architectures to approximate different functions are 
lacking. In this paper, we investigate three different neural 
network architectures for planar dynamical systems described 
as high-order ordinary differential equations. We used the 
Neural ODE method to simulate the continuity and modified 
regular activation functions to high-order to model the high-
order property of the dynamical systems. The proposed neural 
network architectures are applied in two planar systems, one is 
a homogeneous cubic system, and another is a mixed-order 
system. The result shows that our proposed model using 
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modified high-order activation functions has substantially 
lower testing loss. 

II. NEURAL NETWORKS  

A. Shallow Neural Networks 
From the universal approximation theorem, any continuous 

function can be approximated by one-hidden layer shallow 
neural networks with indefinite number of units. Suppose we 
are approximate functions of 𝑛𝑛  variables. A shallow neural 
network with N units is described as below 

 
𝑋𝑋 ∈ ℝ𝑑𝑑 ⟼ ∑ 𝑎𝑎𝑘𝑘𝜎𝜎(𝑤𝑤𝑘𝑘𝑋𝑋 + 𝑏𝑏𝑘𝑘)𝑁𝑁

𝑘𝑘=1   (2) 

Where 𝑤𝑤𝑘𝑘 ∈ ℝ𝑛𝑛,𝑏𝑏𝑘𝑘,𝑎𝑎𝑘𝑘 ∈ ℝ . Let us denote with 𝑃𝑃𝑘𝑘𝑛𝑛  the 
linear space of polynomials of degree at most 𝑘𝑘 in 𝑛𝑛 variables. 
A function 𝑓𝑓 ∈ 𝑃𝑃𝑘𝑘𝑛𝑛  can be approximated with an arbitrary 
accuracy by a shallow neural network with 𝑟𝑟 units [18], 𝑟𝑟 =
�𝑛𝑛+𝑘𝑘𝑘𝑘 � ≈ 𝑘𝑘𝑛𝑛. As for a deep neural network, a function 𝑓𝑓 ∈ 𝑇𝑇𝑘𝑘𝑛𝑛 
where 𝑇𝑇𝑘𝑘𝑛𝑛 is subset of the space 𝑃𝑃𝑘𝑘𝑛𝑛 can be approximated with 
an arbitrary accuracy by deep neural network with a binary tree 
graph and 𝑟𝑟 units with 𝑟𝑟 = (𝑛𝑛 − 1)�𝑛𝑛+𝑘𝑘𝑘𝑘 � ≈ (𝑛𝑛 − 1)𝑘𝑘2. When 
the dimension of the target function is greater than two, shallow 
neural networks need more neurons than deep neural networks 
need to approximate the function. In this paper, we focus on the 
two-dimensional system, then the number of units we need 
when using a shallow neural network is 𝑘𝑘2, which is the same 
as the number of units we need with a deep binary tree neural 
network. So, we use shallow neural network structure to 
approximate the two-dimensional dynamical systems.  

B. Neural ODE 
Neural ODE is inspired by the similarities between the 

architecture of Residual neural network and Euler’s 
methods[19]. A residual neural network block can be 
represented by the equation below: 

𝑋𝑋𝑡𝑡+1 = 𝑋𝑋𝑡𝑡 + 𝑔𝑔(𝑋𝑋𝑡𝑡 ,𝜃𝜃𝑡𝑡) for  𝑡𝑡 = 0, … ,𝑇𝑇,  (3) 

Here, 𝑋𝑋𝑡𝑡 ∈ ℝ𝐷𝐷 , and  𝑋𝑋𝑡𝑡  is the hidden state of layer t. For 
example, 𝑋𝑋0 represent the state of the input layer, 𝑋𝑋𝑇𝑇 represent 
the state of the output layer. 𝜃𝜃𝑡𝑡  represents the network 
parameters in layer 𝑡𝑡, and 𝑔𝑔 represents a residual module. Let’s 
rewrite the function 𝑔𝑔 as 𝑎𝑎 ∙ 𝑓𝑓. Here 𝑎𝑎 is a parameter and 𝑓𝑓 is a 
function. Then (3) can be written as  

𝑋𝑋𝑡𝑡+1−𝑋𝑋𝑡𝑡
𝑎𝑎

= 𝑓𝑓(𝑋𝑋𝑡𝑡,𝜃𝜃𝑡𝑡)   (4) 

Fig. 1. Residual neural network block. 

The residual network (3) is very similar to the Euler’s 
method which is one of numerical solvers of ordinary 
differential equations. From a dynamical system perspective, 
residual networks can be interpreted as discretization of an 
ODE[20][21]. When 𝑎𝑎  is small enough, we can rewrite the 
neural network as an ordinary differential equation   

𝑋̇𝑋𝑡𝑡 = 𝑓𝑓(𝑋𝑋𝑡𝑡 ,𝜃𝜃𝑡𝑡)   (5) 

We are allowed to use any ordinary differential equation 
solvers to solve this neural network (5), and the outputs of neural 
networks are solutions of the ODE as shown in (6). This kind of 
neural network models with ODE solver are Neural ODE. Using 
advanced ODE solvers  in neural network structure makes neural 
network continuous. 

𝑋𝑋𝑇𝑇 = 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝑓𝑓(𝑋𝑋𝑡𝑡 ,𝜃𝜃𝑡𝑡),𝑋𝑋0) (6) 

III. NEURAL ODE STRUCTURE FOR TWO DIMENSIONAL 
HIGH-ORDER DYNAMICAL SYSTEMS 

To approximate the high-order planar systems (1), we use 
shallow neural network combined with ODE solvers to model 
the continuity of the ODE functions. In this section, we 
proposed three Neural ODE structures, the regular shallow 
neural ODE and two modified high-order neural ODEs based 
on the regular one.  

A. Regular Shallow Neural ODE 
The first model is a shallow Neural ODE with regular 

activation functions. As shown in Fig. 2, it consists of 
hierarchical layers. There are input layer, linear layer, 
activation layer and output layer. The regular shallow Neural 
ODE can be described by 

 
𝑋𝑋𝑇𝑇 = 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(∑ 𝑎𝑎𝑘𝑘𝜎𝜎(𝑤𝑤𝑘𝑘𝑋𝑋0 + 𝑏𝑏𝑘𝑘),𝑋𝑋0 𝑁𝑁

𝑘𝑘=1 ) (7) 

Activation layers 𝜎𝜎  are nonlinear, and they are used to 
approximate the nonlinearity of target function. In this paper, 
we use three different activation functions Tanh, Sigmoid and 
Hardswish in TABLE I. This structure is a basic shallow neural 
network interpreted as an ordinary differential equation with 
initial value 𝑋𝑋0  and the output of the neural network 𝑋𝑋𝑇𝑇  is 
derived by ODE solver. The difference between regular shallow 
Neural ODE and layer-by-layer shallow neural network is the 
continuity. 

B. Regular Shallow Neural ODE with High-Order Functions  
With the ODE solver, the regular shallow Neural ODE has 

the continuous depth in the structure, but it still lacks the high-
order property to approximate the high-order dynamical 
systems. In this model (Fig. 3), we add another high-order layer 
with high-order function 𝑓𝑓  in the hidden layer. The regular 
shallow neural ODE with high-order functions can be described 
as: 

𝑋𝑋𝑇𝑇 = 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝑓𝑓(∑ 𝑎𝑎𝑘𝑘𝜎𝜎(𝑤𝑤𝑘𝑘𝑋𝑋0 + 𝑏𝑏𝑘𝑘)),𝑋𝑋0 𝑁𝑁
𝑘𝑘=1 )     (8) 

The high-order function 𝑓𝑓 could be high-order terms like 𝑥𝑥3, 
𝑥𝑥5 or linear combination of high-order terms. This is a Neural 
ODE structure which has been applied in [12]. 
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C. Shallow Neural ODE with High-Order Activation 
Functions 
This structure is similar to the shallow neural ODE in Fig. 2, 

and the only difference is between the activation functions. In 
order to simulate the high-order property of the high-order 
system, we multiply the high-order functions 𝑓𝑓 to the original 
activation functions 𝜎𝜎 to change it to a high-order function ℎ  in 
the high-order layer in Fig. 4. The shallow neural ODE with 
high-order activation functions is shown as below: 

𝑋𝑋𝑇𝑇 = 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑟𝑟(∑ 𝑎𝑎𝑘𝑘ℎ(𝑤𝑤𝑘𝑘𝑋𝑋0 + 𝑏𝑏𝑘𝑘),𝑋𝑋0 𝑁𝑁
𝑘𝑘=1 ) (9) 

Here, the modified activation functions called high-order 
activation functions ℎ are shown in TABLE I.  The application 
of the high-order activation functions maintains the advantages 
of activation function and adds the high-order properties to the 
neural networks, making them be able to learn the high-order 
planar dynamical systems faster and more accurately. 

TABLE I.  HIGH-ORDER ACTIVATION FUNCTIONS IN NEURAL 
NETWORKS 

Activation 
Functions 

Original Activation 
Functions 𝝈𝝈(𝒙𝒙). 

High-Order Activation 
Functions 𝒉𝒉(𝒙𝒙). 

Tanh 
exp(𝑥𝑥) − exp (−𝑥𝑥)
exp(𝑥𝑥) + exp (−𝑥𝑥)

 f(x) ∙
exp(𝑥𝑥) − exp (−𝑥𝑥)
exp(𝑥𝑥) + exp (−𝑥𝑥)

 

Sigmoid 
1

1 + exp (−𝑥𝑥)
 

f(x)
1 + exp (−𝑥𝑥)

 

Hardswish �

0, 𝑖𝑖𝑖𝑖 𝑥𝑥 ≤ −3
𝑥𝑥, 𝑖𝑖𝑖𝑖 𝑥𝑥 ≥ +3

𝑥𝑥 ∙
𝑥𝑥 + 3

6
, 𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 f(x) ∙ �

0, 𝑖𝑖𝑖𝑖 𝑥𝑥 ≤ −3
𝑥𝑥, 𝑖𝑖𝑖𝑖 𝑥𝑥 ≥ +3

𝑥𝑥 ∙
𝑥𝑥 + 3

6
, 𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 

IV. EXPERIMENTS 
In this section, we investigate the capabilities of the 

proposed high-order neural ODE structure for learning a high-
order 2 dimensional dynamical systems. We compare three 
different neural ODE structure as in Fig. 2, 3 and 4. with three 
different types of activation function. There are 50 hidden unit 
in the first hidden layer. 

A. Cubic System 
1) Datasets 

� 𝑥̇𝑥1 =    −0.1𝑥𝑥13 + 2.0𝑥𝑥23 
𝑥̇𝑥2 = −2.0𝑥𝑥13 − 0.1𝑥𝑥23

  (10) 

The cubic system (10) is a homogeneous spiral system 
consists of two variables, and the dynamical behavior of the 
system is shown in Fig. 5. We generated 1000 2-dimensional 
solutions of system (10) start from initial value (1, 0). The 
training data are sampled randomly at 10-timestep size from the 
1000 solutions. And the testing data are the 200 time-series data 
after the last training data.  
 

 

 

 

Fig. 2. Regular shallow Neural ODE. 

Fig. 3. Regular shallow Neural ODE with high-order functions. 

 

Fig. 4. Shallow Neural ODE with high-order activation functions. 

 
 

  

 

 

496

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on July 19,2022 at 03:21:17 UTC from IEEE Xplore.  Restrictions apply. 



 
 
 
 
 
 
 

Fig. 5. Dynamical Behavior of the Cubic System  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. Dynamical Behavior of the Mixed-Order System 

 
2) Neural ODE Structure 
We used model in Fig. 2, 3 and 4 to learn this dynamical 

system. In the regular shallow Neural ODE model and regular 
shallow Neural ODE with high-order function model, we apply 
Tanh, Sigmoid and Hardswish as 𝜎𝜎(𝑥𝑥)  in the activation 
function layer respectively. In the shallow Neural ODE with 
Tanh, Sigmoid and Hardswish as 𝜎𝜎(𝑥𝑥)  in the activation 
function layer respectively. In the shallow Neural ODE with 
high-order activation function model, the high-order activation 
functions are ℎ(𝑥𝑥) =  𝜎𝜎(𝑥𝑥) ∙ 𝑓𝑓(𝑥𝑥). To simulate the high-order 
property of system (10), we set 𝑓𝑓(𝑥𝑥) = 𝑥𝑥3 when 𝜎𝜎(𝑥𝑥) is Tanh 
or Sigmoid, and 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2 when 𝜎𝜎(𝑥𝑥) is Hardswish. 

3) Results 
The results are shown in TABLE II. The regular shallow 

Neural ODE model with high-order function and the shallow 
Neural ODE with high-order activation function model both 
have small testing mean absolute error (MAE). It shows that 
applying high-order property to neural network model increase 
the performance for learning high-order dynamical systems. 

TABLE II.  TESTING MAE LOSS OF TRAINED MODEL FOR THE CUBIC 
SYSTEM 

Model 
Activation Function Used in Neural Networks 
Tanh Sigmoid Hardswish 

a 0.1629 0.1469 0.0860 

b 0.0068 0.0047 0.0053 

c 0.0048 0.0022 0.0022 

 

TABLE III.  TESTING MAE LOSS OF TRAINED MODEL FOR THE MIXED-
ORDER SYSTEM 

Model 
Activation Function Used in Neural Networks 
Tanh Sigmoid Hardswish 

a 0.7367 0.0585 0.0534 

b 0.4667 0.4756 0.4964 

c 0.0084 0.0061 0.0069 
a. Regular Neural ODE.  

b. Regular Neural ODE with high-order functions. 
c. Neural ODE with high-order activation functions. 

 

B. Mixed-Order System 
1) Datasets 

�
𝑥̇𝑥1 =     𝑥𝑥2
𝑥̇𝑥2 = −𝑥𝑥13

   (11) 

 
System (11) has both linear term and cubic term, the phase 

portrait and the time trajectories are shown in Fig. 6. It’s 
obviously an oscillating system which is widely used in 
describing pendulum systems, electrical systems, biological 
systems and quantum mechanical systems. The mixed orders in 
system (11) makes it more complex than the homogeneous cubic 
systems to be learned by the regular shallow Neural ODE. In the 
experiment, we generated 1000 2-dimensional solutions of the 
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system start from initial value (1, 0). The batch size is 20, and 
each batch are sampled randomly at 10-timestep size from the 
1000 solutions.  

2) Neural ODE Structure 
We used model in Fig. 2, 3 and 4 as in previous case. In the 

shallow Neural ODE with high-order activation function model, 
the high-order activation functions are ℎ(𝑥𝑥) =  𝜎𝜎(𝑥𝑥) ∙ 𝑓𝑓(𝑥𝑥). To 
simulate the high-order property of system (11), we set 𝑓𝑓(𝑥𝑥) =
𝑥𝑥 − 𝑥𝑥3  when 𝜎𝜎(𝑥𝑥)  is Tanh or Sigmoid, and 𝑓𝑓(𝑥𝑥) = 1 − 𝑥𝑥2 
when 𝜎𝜎(𝑥𝑥) is Hardswish. 

3) Results 
The results are shown in TABLE III. Both the regular Neural 

ODE and regular neural ODE with high-order functions fail in 
this case. The Neural ODE model with high-order activation 
functions has the smallest mean absolute error loss of trained 
model. It shows that, our shallow Neural ODE with high-order 
activation function model has superior performances in 
numerical precision for learning high-order planar systems. 

V. CONCLUSIONS AND FUTURE WORK 
This paper proposed Neural ODE based high-order neural 

network structures for learning high-order planar systems. By 
modifying the regular activation functions to high-order 
activation functions, the proposed shallow Neural ODE with 
the high-order activation functions has the continuous-depth 
and high-order property. The experimental result has shown 
that the proposed high-order neural network structure can learn 
the high-order planar system with substantially lower testing 
loss. 

Future work will focus on the analysis of the shallow Neural 
ODE with high-order activation functions. Also, due to the lack 
of scalability if nonlinear systems, we need to grid the initial 
conditions to much higher resolutions for better accuracy. 
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