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Abstract—Dynamical systems are mathematical descriptions
of applications around our world. However, there are many
challenges in control of dynamical systems, such as nonlinearity,
uncertainty and high dimensionality. Recent research has revealed
significant connections between neural networks and dynamical
systems. Neural networks are powerful technologies that used for
learning and predicting dynamical systems. Correspondingly,
dynamical insights could be applied to neural networks. In this
paper, we investigated neural network structures to learn high-
order dynamical systems. We proposed a continuous high-order
neural network structure based on Neural Ordinary Differential
Equations to model high-order planar dynamical systems.
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I. INTRODUCTION

Dynamical systems describe time-dependent states of
different applications in real world, like ecology, fluid, and
financial market. Nowadays, as the development of data science
and machine learning, many data-driven technology has been
applied in control, analysis, model of dynamical systems. [1]
Using data-driven method to model dynamical system takes
advantage of abundant data and reduce the difficulties to derive
physical law.

Neural networks are one of the most powerful data-driven
tools to approximate functions using data. It is composed of
hierarchical stacked layers with simple computation nodes
which are used for modeling and prediction of dynamical
systems. [2][3][4][5] investigated the dynamic behavior and
stability properties of feedforward neural network models. In
[9], a recurrent high-order neural network model is developed
for dynamical systems identification, and it is capable of
modeling a large class of dynamical systems. Deep residual
neural networks have been one of the most successful
architectures that are applied in computer vision [6][7] and
natural language processing [8]. To explain the success of deep
residual neural networks theoretically, a dynamical systems
perspective decodes residual neural networks as discrete time
equivalent of ordinary differential equations [10][11].
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However, using a discrete layer-by-layer neural network to
approximate a continuous high-order dynamical system is
difficult. Recently, a continuous neural network structure called
the neural ordinary differential equation (Neural ODE) has been
proposed in [12]. It shows superior efficiency and accuracy in
time-series modeling. By interpreting the neural networks as
ordinary differential equation, enormous number of results in
analysis, control and model dynamical systems can provide
insights to build neural networks architectures.

In this work, we proposed a new neural network structure
based on Neural Ordinary Differential Equation and
investigated its capabilities for learning high-order dynamical
systems. We focus on modeling high-order planar systems (1).

Xq
X2

There are two variables x; , x, € R in this system.
€1,C,C3,C4 € R are constants, and p,, p,, p3, P4 are positive
numbers [13]. The high-order ordinary differential equation (1)
is frequently used for modeling circuits systems, imaging
processing and thermal processes. In [14], the stability problem
of a class of system (1) has been extensively studied from a
theoretical point of view, and it provides a necessary and
sufficient condition for stability of a class of planar nonlinear
systems.
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In approximation theory [15][16][17], a shallow neural
network with finite neurons is sufficient to approximate a two-
dimensional function. However, guidelines of building neural
network architectures to approximate different functions are
lacking. In this paper, we investigate three different neural
network architectures for planar dynamical systems described
as high-order ordinary differential equations. We used the
Neural ODE method to simulate the continuity and modified
regular activation functions to high-order to model the high-
order property of the dynamical systems. The proposed neural
network architectures are applied in two planar systems, one is
a homogeneous cubic system, and another is a mixed-order
system. The result shows that our proposed model using
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modified high-order activation functions has substantially
lower testing loss.

II.

A. Shallow Neural Networks

From the universal approximation theorem, any continuous
function can be approximated by one-hidden layer shallow
neural networks with indefinite number of units. Suppose we
are approximate functions of n variables. A shallow neural
network with V units is described as below

NEURAL NETWORKS

X € R? — Yi_; aro(wiX + by) (2)

Where w;, € R™, by, a, € R. Let us denote with P the
linear space of polynomials of degree at most k in n variables.
A function f € P} can be approximated with an arbitrary
accuracy by a shallow neural network with r units [18], r =
(n;k) ~ k™. As for a deep neural network, a function f € T}
where T} is subset of the space Py can be approximated with
an arbitrary accuracy by deep neural network with a binary tree
graph and 7 units withr = (n — 1) (n;k) ~ (n — 1)k?. When
the dimension of the target function is greater than two, shallow
neural networks need more neurons than deep neural networks
need to approximate the function. In this paper, we focus on the
two-dimensional system, then the number of units we need
when using a shallow neural network is k2, which is the same
as the number of units we need with a deep binary tree neural
network. So, we use shallow neural network structure to
approximate the two-dimensional dynamical systems.

B. Neural ODE

Neural ODE is inspired by the similarities between the
architecture of Residual neural network and Euler’s
methods[19]. A residual neural network block can be
represented by the equation below:

Xt+1 = Xt + g(Xt' gt) fOI‘ t= 0, ...,T, (3)

Here, X, € RP, and X, is the hidden state of layer ¢. For
example, X, represent the state of the input layer, X, represent
the state of the output layer. 6, represents the network
parameters in layer t, and g represents a residual module. Let’s
rewrite the function g as a - f. Here a is a parameter and f is a
function. Then (3) can be written as

P = £(X,,00) @)

X +9(X,,6,)
+

+

g(xtr et)

Fig. 1. Residual neural network block.
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The residual network (3) is very similar to the Euler’s
method which is one of numerical solvers of ordinary
differential equations. From a dynamical system perspective,
residual networks can be interpreted as discretization of an
ODEJ[20][21]. When a is small enough, we can rewrite the
neural network as an ordinary differential equation

Xt = f(X, 6,) %)

We are allowed to use any ordinary differential equation
solvers to solve this neural network (5), and the outputs of neural
networks are solutions of the ODE as shown in (6). This kind of
neural network models with ODE solver are Neural ODE. Using
advanced ODE solvers in neural network structure makes neural
network continuous.

X; = ODESolver(f (X, 0.),X,) 6)

III. NEURAL ODE STRUCTURE FOR TWO DIMENSIONAL
HIGH-ORDER DYNAMICAL SYSTEMS

To approximate the high-order planar systems (1), we use
shallow neural network combined with ODE solvers to model
the continuity of the ODE functions. In this section, we
proposed three Neural ODE structures, the regular shallow
neural ODE and two modified high-order neural ODEs based
on the regular one.

A. Regular Shallow Neural ODE

The first model is a shallow Neural ODE with regular
activation functions. As shown in Fig. 2, it consists of
hierarchical layers. There are input layer, linear layer,
activation layer and output layer. The regular shallow Neural
ODE can be described by

Xr = ODESolver(Xh_, axo(wi X + b)), Xo )  (7)

Activation layers o are nonlinear, and they are used to
approximate the nonlinearity of target function. In this paper,
we use three different activation functions Tanh, Sigmoid and
Hardswish in TABLE I. This structure is a basic shallow neural
network interpreted as an ordinary differential equation with
initial value X, and the output of the neural network X is
derived by ODE solver. The difference between regular shallow
Neural ODE and layer-by-layer shallow neural network is the
continuity.

B. Regular Shallow Neural ODE with High-Order Functions

With the ODE solver, the regular shallow Neural ODE has
the continuous depth in the structure, but it still lacks the high-
order property to approximate the high-order dynamical
systems. In this model (Fig. 3), we add another high-order layer
with high-order function f in the hidden layer. The regular
shallow neural ODE with high-order functions can be described

as:
®)

The high-order function f could be high-order terms like x3,
x> or linear combination of high-order terms. This is a Neural
ODE structure which has been applied in [12].

Xr = ODESolver(f (Xh-1 aro(wi X, + b)), X, )
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C. Shallow Neural ODE with High-Order Activation
Functions

This structure is similar to the shallow neural ODE in Fig. 2,
and the only difference is between the activation functions. In
order to simulate the high-order property of the high-order
system, we multiply the high-order functions f to the original
activation functions o to change it to a high-order function h in
the high-order layer in Fig. 4. The shallow neural ODE with
high-order activation functions is shown as below:

Xr = ODESolver(Xh_, axh(wi Xy + bi), Xo)  (9)

Here, the modified activation functions called high-order
activation functions h are shown in TABLE 1. The application
of the high-order activation functions maintains the advantages
of activation function and adds the high-order properties to the
neural networks, making them be able to learn the high-order
planar dynamical systems faster and more accurately.

TABLE I. HIGH-ORDER ACTIVATION FUNCTIONS IN NEURAL
NETWORKS
Activation Original Activation High-Order Activation
Functions Functions o(x). Functions h(x).
exp(x) — exp(—x) exp(x) — exp(—x)
Tanh T f(x) 2
exp(x) + exp(—x) exp(x) + exp(—x)
1 f(x)
Sigmoid _— —_—
1gmot 1+ exp(—x) 1 + exp(—x)
0, ifx<-3 0, ifx<-3
if x> if x >
Hardswish Yoo fx=A3 gy ) % ifx =243
x+3 . x+3 .
X ,otherwise X ,otherwise

IV. EXPERIMENTS

In this section, we investigate the capabilities of the
proposed high-order neural ODE structure for learning a high-
order 2 dimensional dynamical systems. We compare three
different neural ODE structure as in Fig. 2, 3 and 4. with three
different types of activation function. There are 50 hidden unit
in the first hidden layer.

A. Cubic System
1) Datasets

{

The cubic system (10) is a homogeneous spiral system
consists of two variables, and the dynamical behavior of the
system is shown in Fig. 5. We generated 1000 2-dimensional
solutions of system (10) start from initial value (1, 0). The
training data are sampled randomly at 10-timestep size from the
1000 solutions. And the testing data are the 200 time-series data
after the last training data.

% = —0.1x3 +2.0x3
X, = —2.0x3 — 0.1x3

(10)
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Fig. 4. Shallow Neural ODE with high-order activation functions.
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Fig. 5. Dynamical Behavior of the Cubic System
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Fig. 6. Dynamical Behavior of the Mixed-Order System

2) Neural ODE Structure

We used model in Fig. 2, 3 and 4 to learn this dynamical
system. In the regular shallow Neural ODE model and regular
shallow Neural ODE with high-order function model, we apply
Tanh, Sigmoid and Hardswish as o(x) in the activation
function layer respectively. In the shallow Neural ODE with
Tanh, Sigmoid and Hardswish as o(x) in the activation
function layer respectively. In the shallow Neural ODE with
high-order activation function model, the high-order activation
functions are h(x) = o(x) - f(x). To simulate the high-order
property of system (10), we set f(x) = x3 when o (x) is Tanh
or Sigmoid, and f (x) = x? when o (x) is Hardswish.

3) Results

The results are shown in TABLE II. The regular shallow
Neural ODE model with high-order function and the shallow
Neural ODE with high-order activation function model both
have small testing mean absolute error (MAE). It shows that
applying high-order property to neural network model increase
the performance for learning high-order dynamical systems.

TABLE II. TESTING MAE LOSS OF TRAINED MODEL FOR THE CUBIC
SYSTEM
Activation Function Used in Neural Networks
Model
Tanh Sigmoid Hardswish
a 0.1629 0.1469 0.0860
b 0.0068 0.0047 0.0053
c 0.0048 0.0022 0.0022

TABLE III. TESTING MAE LOSS OF TRAINED MODEL FOR THE MIXED-

ORDER SYSTEM
Activation Function Used in Neural Networks
Model
Tanh Sigmoid Hardswish
a 0.7367 0.0585 0.0534
b 0.4667 0.4756 0.4964
c 0.0084 0.0061 0.0069

& Regular Neural ODE.
b. Regular Neural ODE with high-order functions.

¢ Neural ODE with high-order activation functions.

B. Mixed-Order System

1) Datasets
{J'Cl = xz
322 _xf

(11)

System (11) has both linear term and cubic term, the phase
portrait and the time trajectories are shown in Fig. 6. It’s
obviously an oscillating system which is widely used in
describing pendulum systems, electrical systems, biological
systems and quantum mechanical systems. The mixed orders in
system (11) makes it more complex than the homogeneous cubic
systems to be learned by the regular shallow Neural ODE. In the
experiment, we generated 1000 2-dimensional solutions of the
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system start from initial value (1, 0). The batch size is 20, and
each batch are sampled randomly at 10-timestep size from the
1000 solutions.

2) Neural ODE Structure

We used model in Fig. 2, 3 and 4 as in previous case. In the
shallow Neural ODE with high-order activation function model,
the high-order activation functions are h(x) = o(x) - f(x). To
simulate the high-order property of system (11), we set f(x) =
x — x3 when o(x) is Tanh or Sigmoid, and f(x) = 1 — x?
when o(x) is Hardswish.

3) Results

The results are shown in TABLE III. Both the regular Neural
ODE and regular neural ODE with high-order functions fail in
this case. The Neural ODE model with high-order activation
functions has the smallest mean absolute error loss of trained
model. It shows that, our shallow Neural ODE with high-order
activation function model has superior performances in
numerical precision for learning high-order planar systems.

V. CONCLUSIONS AND FUTURE WORK

This paper proposed Neural ODE based high-order neural
network structures for learning high-order planar systems. By
modifying the regular activation functions to high-order
activation functions, the proposed shallow Neural ODE with
the high-order activation functions has the continuous-depth
and high-order property. The experimental result has shown
that the proposed high-order neural network structure can learn
the high-order planar system with substantially lower testing
loss.

Future work will focus on the analysis of the shallow Neural
ODE with high-order activation functions. Also, due to the lack
of scalability if nonlinear systems, we need to grid the initial
conditions to much higher resolutions for better accuracy.
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