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Abstract

We formulate gradient-based Markov chain Monte Carlo (MCMC) sampling as optimization on the
space of probability measures, with Kullback-Leibler (KL) divergence as the objective functional. We
show that an underdamped form of the Langevin algorithm performs accelerated gradient descent in this
metric. To characterize the convergence of the algorithm, we construct a Lyapunov functional and exploit
hypocoercivity of the underdamped Langevin algorithm. As an application, we show that accelerated
rates can be obtained for a class of nonconvex functions with the Langevin algorithm.

1 Introduction

While optimization methodology has provided much of the underlying algorithmic machinery that has driven
the theory and practice of machine learning in recent years, sampling-based methodology, in particular
Markov chain Monte Carlo (MCMC), remains of critical importance, given its role in linking algorithms
to statistical inference and, in particular, its ability to provide notions of confidence that are lacking in
optimization-based methodology. However, the classical theory of MCMC is largely asymptotic and the
theory has not developed as rapidly in recent years as the theory of optimization.

Recently, however, a literature has emerged that derives nonasymptotic rates for MCMC algorithms [see,
e.g., 9,12, 10, 8, 6, 14, 27, 28, 2, 5]. This work has explicitly aimed at making use of ideas from optimization;
in particular, whereas the classical literature on MCMC focused on reversible Markov chains, the recent
literature has focused on non-reversible stochastic processes that are built on gradients [see, e.g., 24, 26, 3, 1].
In particular, the gradient-based Langevin algorithm [39, 38, 13| has been shown to be a form of gradient
descent on the space of probabilities [see, e.g., 19, 44].

What has not yet emerged is an analog of acceleration. Recall that the notion of acceleration has played a
key role in gradient-based optimization methods [32]. In particular, Nesterov’s accelerated gradient descent
(AGD) method, an instance of the general family of “momentum methods,” provably achieves a faster con-
vergence rate than gradient descent (GD) in a variety of settings [31]. Moreover, it achieves the optimal
convergence rate under an oracle model of optimization complexity in the convex setting [30].
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This motivates us to ask: Is there an analog of Nesterov acceleration for gradient-based MCMC algorithms?
And does it provably accelerate the convergence rate of these algorithms?

This paper answers these questions in the affirmative by showing that an underdamped form of the Langevin
algorithm performs accelerated gradient descent. Critically, our work is based on the use of Kullback-Leibler
(KL) divergence as the metric. We build on previous work that has studied the underdamped Langevin
algorithm and has used coupling methods to establish convergence of the algorithm in the Wasserstein
distance [see, e.g., 8, 7, 11]. Our work establishes a direct linkage between the underdamped Langevin
algorithm and Nesterov acceleration by working directly in the objective functional, the KL divergence.
Combining ideas from optimization theory and diffusion processes, we construct a Lyapunov functional
that couples the convergence in the momentum and the original variables. We then prove the overall
convergence rate by leveraging the hypocoercivity structure of the underdamped Langevin algorithm [42]. For
target distributions satisfying a log-Sobolev inequality, we find that the underdamped Langevin algorithm
accelerates the convergence rate of the classical Langevin algorithm from d/e to m in terms of KL
divergence (See Theorem 1 for formal statement).

2 Preliminaries

We start by laying out the problem setting, including our assumptions on the target distribution that we
sample from, properties of the KL divergence with respect to other measure of differences between probability
distributions, and the notion of gradient on the space of probabilities.

2.1 Problem setting

Assume that we wish to sample from a target (posterior) probability density, p*(6), where § € R?. Consider

the KL divergence to this target:
p(9)
KL (p||p* —/p91n< >d9.
plp) = [ pO)m (25

We use this KL divergence as an objective functional in an optimization-theoretic formulation of convergence
to p*(0).

We assume that p* satisfies the following conditions.

A1l The target density p* satisfies a log-Sobolev inequality with constant p [18, 34]. That is, for any
smooth function ¢ : R — R, we have

[ o®mg)-p* @100 - [ 4(6) )26 1n < [o® p*<9>d9) <o/ %p*ww.

A2 For p* e~ Y, the potential function U is Lg-gradient Lipschitz and is Lp-Hessian Lipschitz; that is,
for U € C?*(R%) and for all 6,9 € R4:1

[VU(0) = VUW)| < La |10 =95
|V2U(0) — V2UW@)||, < Li |10 — 9.

11t is worth noting that this definition of Hessian Lipschitzness with respect to the Frobenius norm is stronger than that
with respect to the spectral norm. We postulate here that the requirement of a Hessian Lipschitz condition is an artifact of our
particular choice of Lyapunov functional £ and can possibly be removed in future work.




A3 Without loss of generality, for p*(6) oc e=V(®) let VU (0) = 0 and U(0) = 0 (which can be achieved
by shifting the potential function U). Further assume that the normalization constant for e U g

bounded and scales at most exponentially with dimension d: In ( / exp(—U (9))d9) <Cn-d+Cy.

As a concrete example, these assumptions are satisfied in the “locally nonconvex” case studied by [25], with
nonconvex region of radius R and strong convexity m; see also Assumption (a)—(c) in Appendix A. Note
that [25] instantiates both the log-Sobolev constant p and the normalization constants Cy in terms of the
smoothness and conditioning of U, showing that p > %6_16L0R2. Here we additionally establish (see Fact 1)

that Ciy < 1In 4% and Cy < 326 Lo R?.

2.2 KL divergence and relation to other metrics

Our convergence result is expressed in terms of the KL Divergence. In this section, we recall that KL (p||p*)
upper bounds a number of other metrics of interest.

1. By Pinsker’s inequality, we can upper bound the total variation distance by the KL divergence:
TV (p,p") < v2KL(p|[p*).

2. Since p* satisfies the log-Sobolev inequality (A1) with constant p and has a Lipschitz smoothness
property, by the Talagrand inequality (Theorem 1 of [34]), we can upper bound the Wasserstein-2
distance (defined in Eq. (2)) by the KL divergence:

Wa(p,p*) < W- (1)

2.3 Gradients on the space of probabilities

Given an iterative algorithm that generates a random vector 8(*) at each step k, we are interested in the
convergence of the law of (9(7“), 71'(’“)) to the measure 7* associated with the target density p*. In this paper,
we consider the space of probability measures that are absolutely continuous with respect to the Lebesgue
measure (have density functions) and have finite second moments, Py(R9). It will become clear later in
the paper (in Theorem 1) that when the target density p* satisfies Assumptions A1-A3, the measure k)
belongs to P, for any k& > 0. For this reason, we can always analyze behaviors of the distributions in terms
of their density functions.

In order to define a notion of “gradient” for accelerated gradient descent on the space of probabilities, Py(R%),
we first need to equip Po(R?) with a metric. To this end, we use the Wasserstein-2 distance, defined in terms
of couplings as follows [43]. For a pair of distributions p and q on R%, a coupling ~ is a joint measure over
the product space R? x R that has p and q as its two marginal densities. We let T'(p, q) denote the space
of all possible couplings of p and q. With this notation, the Wasserstein-2 distance is given by

Wimpa) =5 inf [ o= il3ave.0), )
X

1
2 ver(p,q)
where the set of v that attains the infimum above is denoted I'qpy.

On the space of Py(R?) with Wasserstein-2 metric, there is also an optimal transport picture of the coupling.
Namely, for the measures g and v corresponding to the densities p and q, there exists a transport map t :
RY — R9, so that (t x id) ¥ € Topt(p, q), where the push-forward operator # is defined as txv(0) = v (t(0)).
With this notion, we can make use of the underlying L? Hilbert space to define strong subdifferentials.



Letting £ : P, — R be a proper functional, define £ € 0L as the strong subdifferential of £ (taken at density
p associated with measure ) if, for any transport map t, we have:

Lltpm) — £(n) > /

Rd

(€0).60) - 0 au(®) +0 ([ 166) - 8l,0000) )

See [23, Definition 10.1.1] for more details. This strong subdifferential provides us the proper notion of
“gradient.” In particular, for functionals with enough regularity, the strong subdifferential of £ taken at p
can be expressed as Vgg—ﬁ, where % is the functional derivative taken at p and Vjy is the ordinary gradient

operator in the space of 6 [23, Lemma 10.4.1].

3 Underdamped Langevin Algorithm as Accelerated Gradient De-
scent

A recent trend in optimization theory involves casting the analysis of algorithms into a continuous dynamical
systems framework [41, 45, 47, 40]. This approach involves two steps: (1) a continuous-time system is specified
and a convergence rate is obtained for the continuous dynamics; (2) the continuous dynamics is discretized,
yielding a discrete-time algorithm, and the discretization error is analyzed, yielding an overall convergence
rate. Our work follows in this vein. We first study a continuous-time stochastic dynamical system that can
be interpreted as an accelerated gradient flow with respect to the KL divergence KL (p:||p*). We then derive
the underdamped Langevin algorithm as a discretization of the accelerated gradient flow. We show that this
discretization is precisely accelerated gradient descent with respect to KL (p:|/p*).

3.1 Gradient descent dynamics with respect to KL divergence

We start by defining the dynamics of gradient descent via a consideration of the gradient flow associated with
the KL divergence KL (p¢||p*). We first formulate the “vector flow” associated with the following stochastic
differential equation with Lipschitz continuous drift b : R¢ — R<:

df, = b(6,)dt + V2dB;, (3)

where B, is a standard Brownian motion. The evolution of the probability density function p; of the random
variable 6; follows the transport of probability mass along a vector flow v; in the state space:

2 pu(0) + T (00 (0)) = 0, ()

where the vector flow can be calculated as: v,(6) = b(6) —V Inp,(6). This can be compared with the following
Liouville equation:

Ef)t(e) + VT (p:(0)b(9)) =0,
which describes the evolution of the probability along a deterministic vector field, %ét = b(6;).

On the other hand, we formulate the “gradient” of the KL divergence corresponding to the vector flow point
of view. For the objective functional F[p;], its time change when 6, follows Eq. (3) is:

5-7:[Pt]
opt

L Flp] = o, Kv (6),b(6) — V1n ptﬂ ,

where V(;](;—g:t] (0) is the strong subdifferential of F[p;] associated with the 2-Wasserstein metric (See Sec. 2.3).
Therefore, we can consider the gradient-descent dynamics with respect to the functional F[p;| as taking the



vector flow v; in Eq. (4) as v (0) = —V‘S}—I[)It’t] (#). When the functional is the KL divergence, F[p:] =

KL (p¢||p*), the gradient descent flow v&? involves taking
5KL (pellp™) p:(0)
GD
v (0) = ———— () =-Vn ,
o 0= opt ©) p*(0)

or, equivalently, b4P(0) = —VU(f) in Eq. (3).

Along this gradient descent flow, v&P, the time evolution of the KL divergence is
2
‘| = —ngpt

2]
If p*(0) satisfies Assumption A1 then taking g = Bt in the log-Sobolev inequality yields:

eI

JKL (p¢||p*)
) o

d 0
TKL(pi]lp") = ~Eonp, ;’iie))

" (©)

I¥

HVln

o [ (210)] < 0

Note the resemblance of this bound to the Polyak-F.ojasiewicz condition [37] used in optimization theory
for studying the convergence of gradient methods—in both cases the difference in objective value from the
current iterate to the optimum is upper bounded by the squared norm of the gradient of the objective. With
the log-Sobolev inequality, we obtain that

DO

d
ZKL *) = —Eqy.,
o (pellp™) 0~p:

’vm gi% m < —2pKL (pt[lp"),

which implies the linear convergence of KL (p:||p*) along the gradient descent flow.

3.2 Accelerated gradient descent in KL divergence: A continuous perspective

We now introduce an accelerated dynamics in the space of probabilities via the incorporation of a momen-
tum variable r € R%. Denote x = (#,7) and let the joint target distribution be p*(x) = p*(8)p*(r) =

exp (—U 0) — %||r||%) 2 To design the accelerated gradient descent dynamics with respect to the KL diver-

gence, we leverage the acceleration phenomenon in optimization, which uses the gradient of the expanded
objective function to guide the algorithm (see the discussion in Sec. 3.2.2). We expand the KL divergence
(in both the § and r coordinates) to obtain:

pt(9 T)
KL (p:(0,7)[Ip* (¢ //pt 0,7) oSG )ded
= KL (p:(9)[Ip* (0 ))+1Ee~pf<e> (KL (pe(r]0)[[p*(r))] .

and form the vector field:

SKL(p:|lp*)
vf‘GD(x):_((I) _%)(Vm> ?
Y Ve—bp

- < V, Inpy(6,r) + &r )

~Volnpy(0,7) — VU(0) — 4V, In BLE2)

(7)

2We will use p*(9) and p¢(8) to denote marginal distributions of p*(8, ) and p:(6,r), respectively, after integration over 7.



The corresponding continuity equation defined by this vector field is

0= th(e, r) + VT (pe(0,7)0* P (0, 7))

ot
_ 0 T oT &r
_pt(9= ) + (v(-) ) vr) pt(evr) < —VU(@) — 4V, In p:(0,r) >‘| :

This implies that the vector field can be implemented via the following stochastic differential equation
d6‘t = g’f‘tdt (8)
d?‘t = —VU(Ht)dt - ’7§Ttdt + 4/ 2’7dBt,

which is the underdamped Langevin dynamics [20].

3.2.1 Convergence of the accelerated gradient-descent dynamics

If we consider the time derivative of the KL divergence, we have: KL (p:|/p*),

d .o OKL (p¢llPp*)  agp
L) = [ (7.2 606,00 ) s

oKL (Pt”P*) 0 -I Pt
= Vypm——————= — Veln— d
/< opy I ~I 1 p* p: dx

2
] : 9)

This only demonstrates the contractive property in the r coordinates (note that the gradient is only in r in
Line (9)) and does not directly provide a linear convergence rate over time. To quantify the convergence
rate for this accelerated gradient descent dynamics with respect to the KL divergence objective, we need to
couple the convergence in 6 coordinates to that in r. To this end, we follow recent work in the optimization
literature [45] and design a Lyapunov functional which makes use of a quadratic form of the gradient of the
distance D between the current iteration p; and the stationary solution p*:

opt ’ “ opy

Hvrlnp—i
p

= _’YEpt

£lpd = KL (pip) + B, | V.
—E,, [m L2 <vm m 25V, n &>} , (10)
p p p

where we take the distance measure between p; and p* as the KL divergence itself: D[p:, p*] = KL (p:||p*) =

Ep, {ln %}. Here we set the positive definite matrix in the quadratic form to be

1 1/4 Tgxa 1/2 Iixa >
S =_ . 11
Le ( 1/2 Igxa 2 Igxd (11)

Interestingly, similar forms appear in the analyses of both accelerated gradient descent dynamics [31, 45]
and hypocoercive diffusion operators [42, 4].

We then make use of this Lyapunov functional to obtain a linear convergence rate for the accelerated gradient
descent dynamics with respect to the KL divergence.

Proposition 1. Under Assumptions A1-A3, the time evolution of the Lyapunov functional £ with respect
to the continuous time vector flow vfGD in Eq. (7) with v =2 and £ = 2L¢ is upper bounded as:

d P
_ < = .
dt E[Pt] =770 E[Pt]

This establishes linear convergence of the continuous process with a rate of 1%.



3.2.2 Accelerated gradient descent dynamics for optimization

It is worth noting that the derivation in the previous subsection has a close correspondence to recent analyses
of the accelerated gradient descent dynamics in convex optimization [41, 45]. Indeed, when optimizing a
strongly convex function U(f) on a Euclidean space with the accelerated gradient descent dynamics, the
continuous limit of the algorithm is expressed as an ordinary differential equation [45]:

d2e, dé;

— +Y—+EVU(6,) = 0.

e 843 T EVU(0¢)
We can expand the space of interest via introducing a “momentum” variable, r; = %%, to obtain a vector
field point of view on the joint space of z; = (6, 74):

{ d—ef =¢&re
% = —VU(Ht) — yEry.

We also extend the original objective function U (6) to H(z) = U(0) + % [I7]|3 to capture the overall dynamical
behavior in the space of x. With the definition of this extended objective function H, we can simplify the

expression of the dynamics:
d_:T _ 0 -I VQH(I) (12)
at I Al ViH(z) )

To quantify convergence for the strongly convex objective U, [45] considers a Lyapunov function of the form
l(z) = H(0) + (VIDy(x), SVoDp(x)), where Dy(x) = 316 — 0% || + 3 [7]|* is the squared distance from
(0,7) to the optimum of H, (6*,0).

Comparing the dynamics of Eq. (12) versus Eq. (6) and the convergence analyses for them, we observe that
the underdamped Langevin diffusion defined in Eq. (8) is precisely accelerated gradient descent with respect
to the KL divergence.

3.3 Underdamped Langevin via second-order discretization

While the continuous-time perspective yields insight into the convergence rates achievable by acceleration, for
these insights to apply to discrete-time algorithms it is necessary to understand the effects of discretization.
In optimization, an emerging literature has begun to show how to design discretization procedures that retain
accelerated rates from continuous time [45, 47, 40]. The literature in MCMC has not yet formalized lower
bounds on convergence rates that allow characterizations of acceleration, in either continuous time or discrete
time, but there are results that exhibit the importance of discretization for convergence. In particular, higher
order (and more accurate) discretization schemes are found to accelerate convergence [29, 21, 8, 11, 27, 28§].

In this section we show how to design a discretization for the an underdamped Langevin algorithm that
yields accelerated rates. Following [8], we discretize the time dimension underlying Eq. (8) into intervals of
equal length h (at the end of the k-th iteration, we have ¢ = kh). Then in the (k + 1)-th step, we define a
continuous dynamics in the interval of 7 € [kh, (k + 1)h] by conditioning on the initial value of xyp:

d6‘7— = 57”7—(317' (13)
dr; = —vér.dr — VU (0kp)d7 + /27dB;.

In Appendix B we derive explicit formulas for , given xgj,. These are used to generate the (k+ 1)-th iterate.
In particular, define the hyperparameters v = 2, £ = 2L, and set the step size as follows:

1 1

. 1 p Lgp . — —1/2\/? €
h= — 7 : 2 €= 14
56 VLo mm{zug’ I (ON+) '\ [ (14)




Algorithm 1: Underdamped Langevin Algorithm

Let zg = (0o, 70), where 0g,79 ~ N (O, ﬁI)
for k=0,---, K —1do

Sample 241y ~ N (1 (zrn) , X), where p (zgn) and ¥ are defined in Eq. (35) and (36).
end for

where E'E =CnN+ % In g—fr The discretized vector field is

GAGD _ &rr , _( &rr
T ~VU (0n) =7V In Bl VU (Ok) —~Err =4V, Inp(,,71,) )

(15)

This leads to a high-order discretization scheme that is defined explicitly in Appendix B and summarized in
Algorithm 1.

By way of comparison, the Euler-Maruyama discretization scheme corresponds to:

oE-M _ Erin
4 —VU(Okn) — ¥Erkn — YV Inp(0,77) )
After integration, we obtain that for 7 € [kh, (k + 1)h]:

{ 0, = O + (T — kh)&rin,
T = (1 — (7’ — kh)”yf) Tekh — (7’ — kh)VU(@kh) + \/ﬂBTfkh,

where the Brownian motion is defined as B, _gn, ~ N (0, (7 — kh)Igxq). This low-order integration scheme
does not grant accelerated convergence guarantees.

There are other higher-order discretization schemes that can be considered in addition to our scheme in
Eq. (15). In particular, note that v/*¢” decomposes into two parts:

AGD __ §r 0
= (Su )+ (Lo )

where each part preserves p* as the invariant distribution. This inspires a splitting scheme for integrat-
ing vA¢P. The first part is a Hamiltonian vector flow, which can be integrated via symplectic integra-
tion schemes such as the leapfrog method. The second part can be explicitly integrated to yield r,_xp ~

N (e—wm-kh)m, L(1— e 1).

Taking (7 — kh) — oo, r is resampled as: 7 ~ N (O, %I) according to the stationary distribution p*(r).
This recovers the Hamiltonian Monte Carlo (HMC) method [29]. Relating to concepts in optimization, this
“momentum resampling” step corresponds to a “momentum restart” method in optimization: one periodically
restarts the momentum from the stationary point [33]. In optimization this has a theoretical justification in
terms of increasing convergence rate; for HMC it has been observed empirically that not taking (7 —kh) — oo
at every step increases mixing [35].

4 Convergence of the Underdamped Langevin Algorithm

From Fig. 1, we see that the underdamped Langevin algorithm, Eq. (34), seems to have a similar profile to
accelerated gradient descent; it uses oscillatory behavior to increase the convergence rate. In this section, we
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Figure 1: Acceleration phenomenon in optimization and sampling. Left: The (accelerated) gradient descent
algorithms minimize the objective function value |U(6;) — U(6*)|. Right: The (underdamped) Langevin
algorithms minimize the KL divergence KL (p;(6)||p*(#)), where p*(f) o« e~V . In both cases, U is a
quadratic function in 100 dimensions with condition number L/m = 100.

rigorously establish acceleration, by proving that the convergence of the underdamped Langevin algorithm
is of order O (\/d/e) in terms of KL divergence.

Let the KL divergence from p¢(#) to p*(#) be the target functional to minimize:
KL (p:(6)[p*(0)) < KL (pe(6,7)[[p"(0)p" (7)) -

We have the following theorem.
Theorem 1. Assume p*(0) e~V satisfies Assumptions A1-A8. We use p to denote the minimum of
the log-Sobolev constant and 1. Then if we iterate the underdamped Langevin algorithm (34) with initial

condition 6y ~ N (0, iI) for
k20 ( 7, (cz))
€ €

steps, we have KL (prn(9)||p*(0)) < KL (prr (0, 7)||p*(0)p* (1)) < €, Ve < 2d.

If we further assume that the function U is locally nonconver with radius R and has global strong convexity
m (Assumption (a)—(c)), we obtain an explicit dependence of the convergence time K on other constants:

3/2
K =0 | max La L—H \/Eln(—i
p? 7 p? e €]’

. _ 2
where p = mln{%e 16Lc R ,1}.

We devote the remainder of Section 4 to the proof of Theorem 1. As advertised, the proof decomposes
into a continuous-time analysis and a discretization analysis. We first establish the convergence rate of
the continuous underdamped Langevin dynamics in Proposition 1 to quantify the instantaneous contraction
provided by the dynamics. We then study the discretization error of the underdamped Langevin algorithm
in each step. Combining these two results and integrating over the time steps leads us to the final conclusion.

We begin by formulating the instantaneous change of the probability density p(z,) within each step of the
underdamped Langevin algorithm. The time evolution of p(z,|xg,) following the discretized vector flow



VACD for 1 € [kh, (k + 1)h] is as follows:

aP(ZCT |£Ckh)

or = _VE(p($T|$kh) '@fGD)

= Vi (p(xr|zrn) - v2P) = VI (P(zr|zpn) - (8797 — 02 9P))
Therefore, for the unconditioned probability density p(z;) = E,,, ~p(ewn) [P(Tr]Zrn)];

op(zr)
or

= —V;F (p('rT) : 'UfGD) - Ewkhfvp(;vkh) [VE(({};L‘GD - UfGD)p(xHIkh))] . (16)

We have thus separated the time evolution of p(z,) into two parts: the continuous component and the
discretization error component.

Recall the Lyapunov functional, £L(p;) = Ep, {hl % + <Vz In %, SV, In %> , that we defined in Sec. 3.2).

We use this Lyapunov functional to analyze the convergence of the underdamped Langevin algorithm. Note
that the instantaneous change of the Lyapunov functional £ follows the overall vector flow 9/'¢P and derives
from the continuous vector flow v/*“? and the discretization error 5/¢P — vAGD:

e e L | <vx oL @AGD>p<xT> da,

op(xr) op(z-)” 7
oL
:/ <VI5p(x )’UfGD>p(xT) der )
oL ~ AGD AGD
+/ me,Exkth(mh) [(’UT — v )p(:vT|:vkh)} dz,. (17b)

We now analyze term (17a) and term (17b) separately, returning later to combine the analyses and obtain
the overall convergence rate.

We use Lemma 7 in the Appendix to expand term (17a) and quantify the convergence of £ with respect to

the continuous vector flow vA¢P:

/<v1§—;(:c), v:‘GD(:c)> p-(z) dz = —4E,, Kvmvr In (%) ,SV,V, In (%) >J
@@

where M is defined in Eq. (39). The two terms on the right-hand side of Eq. (18) are both less than or
equal to zero. We will use the first term to cancel similar terms in the discretization error and use the second
term to drive the convergence of the process (by way of the log-Sobolev inequality).

4.1 Discretization error

For term (17b) capturing the discretization error, we provide an upper bound in the following proposition.
Proposition 2. Under Assumption A2, when T — kh < ﬁ, v =2, and £ = 2L¢, term (17b) is upper

10



bounded as:

oL .
/ <VzmaEmkh~p(uh) [(02GP — 026D P(Ir|$khﬂ> dz,
2‘|

<4Ep (x,) [<Vm P oy g PrE) > ]
F
2 1 L%I 2 4 4 2 2
+ (68LE + = Ep(@pn,er) [IIHT — O || } + 18eLedmax { L (T — kh)*, L (T — kh)* } .

1
32 p-r

9
—E
+ 16 Pr

pr(zr)
p*(z;)

Pr (:ET)

3 p* ()

e

HVT In

p*(z.) p*(x‘r)
8 Lg

Roughly speaking, Proposition 2 upper bounds the instantaneous contribution of the discretization error
by the terms appearing in Eq. (18) (the contraction of the continuous process), the variance of 6, — Oy,
(the progress of 6 within one step), and constant terms that depend on the step size. After combining
Proposition 2 with Proposition 1, the only nonnegative terms that remain are the variance of 6, — 6y, and
other constant terms.

We devote the rest of this subsection to the proof of Proposition 2. We first expand term (17b) using the
definitions of the functlonal L as well as the discrete and continuous vector flows vAGD and vAGD
Lemma 3. For7—kh < the time evolution of the Lyapunov functional £ wzth respect to the discretiza-

tion error 9AGP — pAGD zgsL ,
5L .
/<V1W’EIMNP(IM) [(vfGD - vfGD) p(IT|xkhﬂ> dz,
:2/<v91 Pfgj,zawwp ) [(VU(0;) - VU(ekh))p(xT|xkh)}>F da, (192)
+9/<v In pTgi;’E“"Np (i) [(VU(oT)—VU(ekh))p(xT|xkh)}> dz, (19b)
2/<vxv In E:Ei:i,sv B (@n2e) [VU(HT)—VU(Gkh)]>FpT(a:T) dx.. (19¢)

It can be observed that of the three terms (19a)—(19c) in Lemma 3, there are two types of term: Terms (19a)

and (19b) only involve first-order derivatives, V4 In *E (for # labeling 6 or r); while term (19¢) involves

a second-order derivative, V.V, In p*Ewig

For terms (19a) and (19b), we make use of Young’s inequality to obtain upper bounds:

/<V In pTEITi Eoppmp(awm) [(VU(0:) — VU(9kh))P($T|$kh)}> dz,
<5 [ [

/<V " pT( ) oy, op(oin) [(VU(@T)—VU(okh))p($T|Ikh)]> dz,

3w

The main difficulty is in bounding term (19c¢), which is the object of the following lemma.

2
‘ Pr(27) Aoy + 16L8Ep (e, 2y [ 107 = O] (20a)

2
‘ pr(27) dor + 4L2Ep(0 o1 [HeT - ethQ] . (20b)
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Lemma 4. Under Assumption A2, we provide an explicit bound for term (19¢). When 7—kh < ﬁ, v =2,
and & = 2Lg,

T\ Lr
/ <vzvr1n p*E ) SV, By, opton o [VU(@T)—VU(Qkh)]> b (z,) dz
P CL‘T) F

<2E, [<V v, In PTEIrijgvmlen I;Ei:§>p]

112,
+9eLodmax {L(r — kh)', L (7~ kn)*} + 56 T2 Eptiny e o (o) (167 = unl] -

In the proof of Lemma 4, we first upper bound the Frobenius inner product in term (19c¢) by the (weighted)
Frobenius norms of V,V, In g:gi:g and Vg Eg, . ~p(ainlz,) [VU(0r) — VU(Ogr)]. We then use a synchronous

coupling technique to calculate Vi E,,, <p(arn|z,) [VU(07) — VU (0kn)] and provide an upper bound of its
Frobenius norm. We defer the complete proof to Appendix D.

Applying Eq. (20a)-(20b) and Lemma 4 to Eq. (19a)-(19¢), we bound the overall discretization error and
finish the proof of Proposition 2 as follows:

oL .
/ <vmmu Exkhwp(l‘kh) [(vfGD - UfGD) p(‘rET|‘rEkhﬂ > de

( ) p(x»
Ly p-(z-)|*] , 9 p-(z-) ||’
e Hve pran) | | T 16 ’v " b en) ]

112
<68LG + §L_G) Ep(oun.n) [||9T - 9kh||2} + 18eLadmax { L (1 — kh)*, L%(7 — kh)?} .

4.2 Convergence of the underdamped Langevin algorithm
Combining Propositions 1 and 2, which establish the convergence rates of the continuous underdamped

Langevin dynamics and the discretization error, we find that the overall time evolution of the Lyapunov
functional £ within each step of the underdamped Langevin algorithm can be upper bounded as follows:

dL(p:) _ 0L acp
dt _/<V6t’t pe dz

oL
+ / <vw5_pt’Emh~p(zkh,) [( o7 P — AG p CL'7—|$Ckh }>pt e

< —Ep, [<v In (p ) MV, ln( >> } (21a)
l}
h?},

11%

2
(68L + §L_) Eop(on.o.) [|9 — O] (21b)
+ 18eLgdmax { L (1 — kh)*, (21c)
where
2
o %Idxd 4-Tgxa — %—VLUG(Q)
- 2 2
4-Igxa — %VLUG(Q) 2 ga — %VLUG(Q)

12



In this section, we will further analyze terms (21a)—(21c) to obtain the overall convergence rate of the
underdamped Langevin algorithm. We will need to quantify the convergence contributed by term (21a) and
upper bound the extra discretization error in terms (21b)—(21c) as the algorithm progresses. After these two
steps, choosing a suitable step size will finish the proof of Theorem 1.

We begin by using the log-Sobolev inequality to relate term (21a) to the Lyapunov functional £(p:). A key
step is lower bounding matrix M which is done in the following Lemma 5 (the proof of which is deferred to
Appendix E).

Lemma 5. Under Assumption A2, for any Lg > 2p, M = & (S’ + Igdxgd)

We can thus upper bound term (21a) using this lower bound on M in conjunction with the log-Sobolev
inequality, Eq. (5):

(e () e ()
o (o (o () ()] 5

p*(x)
b [ (22) o (32)] o5 [ (22)
< —% Llpi. .

Consequently, Eq. (21a)—(21c) simplify to:

dL(pe) p
< I 2
S “3gfe) (23a)
, 1LY 2
+ (6828 + 572 ) Botonen) [0 — Oral”] (23b)
+18eLgdmax { L (1 — kh)*, LE (1 — kh)*} . (23c)

This implies that without the extra discretization error of terms (23b)—(23c), the Markov process converges
exponentially (similarly as for the continuous dynamics) with a rate of p/30, proportional to the log-Sobolev
constant.

We now focus on the second task of upper bounding terms (23b)—(23c). The crux of the argument is to
upper bound the variance of 8, — 0y, as the algorithm progresses. In the following lemma we show that for
a suitable choice of step size, gy, 2.) [||6‘T — 9%”2} is uniformly upper bounded by a term that scales as
O(h2d).

Lemma 6. Assume that function U satisfies Assumption A1-A8, where p denotes the minimum of the
log-Sobolev constant and 1. Assume that we take v =2, £ = 2L¢q, and

—iLmin ip Gp - min C +2 1/2\/7
" 56 Ig 24L¢’ LH N

where € < 2d. Then for 0, following Eq. (13), Yn € N* and V7 € [kh, (k + 1)h

2 — La 9 La 9
— < —
Ep(zen.zr) {HeT Oron | } ((24CN+26) p cd+24Cy =5 ; )h o ; “Cd-n

To establish this uniform upper bound, we use an inductive argument—we prove that if the above bound
holds for ¢ < kh, then, given the effect of contraction and the discretization error in [kh, 7], the bound will
still hold for any 7 € [kh, (k + 1)h]. We defer the complete proof of Lemma 6 to Appendix E.
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Given this uniform bound for Eg,,, «.) [HHT —Hkh”z] across the entire interval, we can upper bound

term (23b) using our choice of the parameters v = 2, £ = 2L, and the step size h:

112 )
(68L% + gL_H> Ep(ﬂﬂkmxf) [He‘r - Hth }

2 —
(68L2 + 1L—> ((24CN T 26) Lo 44 24CM—> B2
8 L p p

G
Le 1 1% - L L
< p- Lcmax 136—G - -max{ (48Cy +52) =£.d,48C =< \ p2
"4 L2 p p
49 L%, L% -
< i Lcmax{242 G T 2} -max{(CN +2) d,CM} h?
GP
p €
<2 .= 24
=30 4 (24a)
For term (23c), we obtain that
L
18eLadmax { L (1 — kh)t, LE (T — kh)?} < 3_’; - 540e =< d max{LLh*, LA}
p
p €
<P.° 24b
=30 4 (24b)

Plugging Eqgs. (24a)—(24b) into Egs. (23b)—(23c), we obtain the following upper bound for ép'):

s g (ewo ).

Applying Gronwall’s lemma, we arrive at a bound for the Lyapunov functional at every step:

€ _ P € € _ P
Lprn] — 5Se a0 (E[P(kq)h] - 5) < e dohk (ﬁ[PO] - 5) < e %" Llpy].

Therefore, for any k > K = 2_2 In (2“ ]) we have KL (pin||p*) < Lprn] < €

We now use the definition of the step size h and the upper bound on the initial value £[pg] from Lemma 12
to obtain the number of iterations for Algorithm 1 to converge to within € of the target distribution p*:

3/2
K—168Omax{24LC; L—H} max{\/CN+2\/> OM} In <4max{(ON+1)d OM})
p \
=0 (\/Elné>
€ €

If the function U further satisfies assumptions A1—A3 (that U is nonconvex inside a region of radius R and
m-strongly convex outside of it), we can instantiate the constants p > % e~ 16LGR? ,Cn =Cn + %ln g—fr <

2
%ln QLTG, and Cpy < 32%[4@]‘22, and study the computational complex1ty in more detail. The number of
iterations required becomes:

L¥? L L d Lo [T
K:4800632LGR2maX{24 G I max{ \/In =< 45,/ 2 8R=E, [ ZC
m m m € m €
L d L2 L
-1n<2max{<1n—c+4>—64R2 : G})
m m €
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Emphasizing the dimension dependency, we have:
3/2
K =0 | max LL L—H \/Elngl .
p? p? € €

5 Discussion

We have shown that there is an analog of Nesterov accelerated gradient method for MCMC—it is the
underdamped Langevin algorithm. We demonstrated this by adopting a view of sampling algorithms as
optimizing over the space of probability measures, with KL divergence as the objective functional. By
constructing an appropriate Lyapunov functional, we were able to prove that the underdamped Langevin
algorithm has an accelerated convergence rate compared to the classical overdamped Langevin algorithm.

A line of recent results leverage richer stochastic dynamics to obtain better pre-conditioning and employ
higher-order discretization schemes [17, 22, 21]. They observe that in practice such dynamics increase
stability and in turn results in faster convergence of the algorithm.

Our particular approach involves multiplying the strong sub-differential of the KL divergence by a symplectic
matrix and a positive semidefinite matrix. An interesting direction for future research would be to consider
other, more general choices. Indeed, a general construction of underdamped stochastic processes would
involve taking a vector field v; to have the following form:

pi(z)

o= ~(D(&) + Qu)Vin (B4, (25)
p*(7)

where D(x) is a positive semidefinite diffusion matrix, and Q(x) is a skew-symmetric curl matrix. This has

the form of a generic dynamics for smooth optimization. It can be checked that when p;(z) = p*(x), v, = 0.

Therefore, p* is a stationary distribution when p; follows the vector flow wv;:

Op(z)
ot

==V (pu() - ve)

=9 (e (D) + Q) (242 )). (26)

It has been previously proved [24, 26] that any continuous Markov process with the stationary distribution
p* which satisfies an integrability condition can be represented in the form of Eq. (26).

To simulate the dynamics of v; on the state space of x, we can realize it as a stochastic process with an Ito6
diffusion:

ap(;ix) —V. (pt(x) (D(z) + Q(x)) Vn (gi((g ))

=S g @)D @) = 7+ (o) (D) + Q) V() + 7)) ). (21)

where I';(z) = >, a%j [D(z) + Q(z)]; ;- Eq. (27) corresponds to the probability density of z; following a

stochastic differential equation:

dz; = (D(z) + Q(2))VIn (p*(z)) + T'(x)) dt + /2D (x)dB;. (28)
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To study convergence of this process, denote the first variation of a functional G[p;] as (;S—Ii[pt] ‘R -5 R.If
the vector flow v; satisfies the continuity equation for p¢, Eq. (26), then

S0t = [ 52 pie) i)
N / 5_pt[Pt](I)(—V - (pe(z)ve(7)))d

= [ (V5 ) i) ) piajas

=B, (VAL b)) ) )]

0G p:(7)
= —Ep, |[{ V—|p¢)(z), (D(z) + Q(z Vln( . 29
o (V22 @), (D) + @)V (24D (20)
Using notation from statistical mechanics, we can represent Eq. (29) in a more compact form using a
(Ginzburg-Landau) dissipative bracket and a generalized Poisson bracket to generate the stochastic process
4 p,(z) with Vg—li. Define the dissipative bracket {-,-} as

(o, Flpl) = By | (VRS pioyw 2R}, (30)
and the generalized Poisson bracket [, ] as
610, ] = B | { VA, ()9 22U (31)
Then
0lb) = ~Ep, | (V52 b)), (D) + Q) Vin (2 )
= —{G[p:), Flpt]} — [G[p:], Flpe]]. (32)
By taking G = F as the KL-divergence, we can calculate its time derivative as:
R e
B S

where we know from the positive semidefiniteness of D(z) that KL (p||p*) is monotonically non-increasing.
If D(z) were to be positive definite, we can directly obtain a linear convergence rate for the continuous
process using the log-Sobolev inequality. However if D(z) is just positive semidefinite (as is the case for
the diffusion matrix that we encountered while analyzing the underdamped Langevin algorithm) we need to
choose a well-designed Lyapunov functional to prove convergence (if the process indeed converges).

Some attempts have been made in this direction in the stochastic optimization literature for a class of
constant D and @) matrices [16]. For the generic case, [15] explores an approach based on Stein factors; this
seems like a particularly promising avenue to explore further.
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A Local Nonconvexity Assumption

For p*(f) e V) we call a function U : R — R locally nonconvezr with radius R and global strong
convexity m if it satisfies the following assumptions:

(a) U(0) is m-strongly convex for ||6] > R.
That is: V(0) = U(G)—% ||9||§ is convex on Q = R¥\B(0, R)3. We then follow the definition of convexity

on nonconvex domains [36, 46] to require that V6 € €2, any convex combination of § = A161+- - -+ A\iOkp
with 61, --- ,0kn € Q satisfies:

V(0) < MV (61) + -+ AV (Okn).

(b) U(#) is Lg-Lipschitz smooth and Hessian L g-Lipschitz.

That is: U € C2(R?); V0,0 € R, |[VU(0) — VU(@)|| < L |0 — 9| and ||V2U(0) — V2U©W)|, <
Ly |0 =9

(c) For convenience, let VU (0) = 0 (i.e., zero is a local extremum).

m
From [25], we know that p > —e~16L¢R* We prove that the constants in Assumption A3 are also upper

bounded by functions of m, Lg, and R.
Fact 1. If p*(0) oc e~V satisfy Assumptions (a)-(c), then the normalization constant /exp(—U(G))d@ is
upper bounded as follows:

d

4 L2
= I 327G LR
2" m m?2

ln/exp (=U(9))dé

) ) 1. 4r L2G 9

In other words, constants in Assumption A8 are bounded as: Cn < 3 In—, and Cy; < 32— Lo R*.
m m

B Explicit Iteration Rule for Algorithm 1

We provide an explicit iteration formula for x, given xy, in Eq. (13). Given x;, at the previous iteration,
z, can be calculated as:

1 — e—n€(r—kh) 1 1 — e &(r—Fkn)
0, = O, + fﬁch ——((r—kh) - T) VU (On) + Wo
1 — ¢—v&(T—kh) 7 (34
r, = e—'yf(r—kh),r.kh _ —é_VU(ekh) + Wr
Y

where

( %’ > ~N(0,%,).

R2d x2d is

o ( Y11(7) Lixa  $1,2(7) Taxa >

The covariance matrix > €

Y12(7) Lixa  X2,2(7) Iaxa

3Here we let B(0, R) denote the closed ball of radius R centered at 0.
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where

1 3 4 1
Lia(r) = = (2 T—kh)— = + —e 0Tk _ —e—M(T—’Ch)) ;
™ ol ( ) & E 7€
1 4 e~ 2€(r—=kh) _ 9p—7&(T—kh)
Yia(r) = ;
7€
1— e—2’y£(r—kh)
¥2,2(7) e

Therefore, the update rule in Algorithm 1 can be expressed as:

Trryn ~ N (1 (zrn) ,X)

where
1 —e¢h 1 1 _ e—éh
Oun + ———7wn = - (h - 75) VU (61)
: (Ikh) B &h 1-— 6775]1 K v , (35)
e Sy, — ————VU (0
e (Oxn)
and
—27véh _ 9,—7Eh
1 (2h 3 A e ie—?yfh) L., L*e 20,
v=| 7 v§ € 7€ ~ .
1+ e 278 — 2778k 1 — o-21¢h
Laxa ———luxa
7E 3

In Algorithm 1, the hyperparameters are set to be: v =2, £ =2Lq, and

11 (1 p Lgp . — 1/2\/? €
= e s mm{24LG’ 77 (CN+2) a\Cw [’ (37)
Lg

— 1
h = —In=—=.
where Cy CN+2n27r

C Convergence of the Continuous Process

1 1 2
To simplify the notations in the proofs, we let a = —, b = ——, and ¢ = —, so that
L¢ 4L¢ L¢
g 1 V4laxa 1/21axa ) _ blixa a/21lixa
Lo \ 1/214xa 2 lixa a/2 Igxa ¢lixa '

Proof of Proposition 1 We first compute the time evolution of the Lyapunov function £ with respect to
the continuous time vector flow v*¢? in Eq. (7).

Lemma 7. The time derivative of the Lyapunov functional £ with respect to the continuous time vector flow
vAGP in Eq. (7) with v =2 and &€ = 2L¢ is:

&E[Pt] = / <Vm 5ptavt >Pt dz

(e (2) e (2)
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where

c+ ay b

Ye1 €-1— 2V2U(6)
Mo | 2 . 2 2
szg 1= oVRU(O) (266 + 1)1~ gVQU(H)
1V2U(0
Taxa 4-Igxa — 3 ©)
= 8 La (38)
R 1V2U(6) 18 Lo 1V2U@6) |
dxd S LG dxd 2 LG

We then upper bound the time derivative of £ by a negative factor times itself to obtain linear convergence
rate.
Lemma 8. For Lg-Lipschitz smooth U, matrix Mc defined in Eq. (38) satisfy:

p 1
Mo = — —I .
=10 <S+ % 2d><2d) (39)

Since the matrix S is positive definite, we can directly bound the evolution of the Lyapunov functional £ as
4 rpd < —E,, [<vm In (&> MV, In (&)> }
dt p* p* F
p P P 1 ?
—— | E Veln (= ],5V,In | — —E,, .
(o [( (52) 5o (), + 35 )

Using the log-Sobolev inequality in Assumption A1, we directly obtain:

IN

IN

p

Hvz n 2t

d p Pt Pt 1 p: ||”
— <—-—|E | =—],SV,In|— —E zIn—
at P = 71 < o Kv n(p*) i n(p* AT Vol o
p Pt Pt Pt
<——1Ep, [(Voln | — ,valn(—>> }—I—E,[ln—})
10 ( . K (p*) ") /el L P
__r
- 10£[pt]7
which implies the linear convergence of the continuous process with a rate of l_p() |

Proof of Lemma 7 Denote h(p;) = , /%. Then

Llp] =Ep, 2Inh+4(V,yInh, SV, Inh)] = 2E;, [Inh] + 4Ep- [(Vh, SV h)].
The variational derivative of L£[p;] can be thus calculated as:

5£[Pt]
0Pt

4

where the adjoint operator of V, is with respect to the inner product: Ep« [(-,)]. Since:

Ep: [(Vof, V)] =Epe [(-VEV = Vi Inp*()¥) f] 4,

Svs
4Here we define the VI operator over a vector field ¥ (z) as its divergence: VI ¥ (z) = > gzx(l‘) .
K3

22



the adjoint operator can be expressed as:

(Vo) ==V; =V, Inp*(z) = (-Vy +V'U(@#), -V, + &)

The vector flow v; can also be expressed in terms of h(p;) as

D) + Q@) Ve Inh = —= (D(x) + Q&) Vh.

Vy = —2(
Therefore,
B (5 >}
= —4E,- [<Vm (D Q(2))Vah)] (40)
— 8y [{Va( Vz) SV h, (D(z) + Q(x))Vah)] (41)
+ 8, [ Vah, (D(x) + Q) V) M] | (42)
For Line (40),
2
4By (V21 (D(&) + Q)T :)] = =48y [I9,17] = ~Ep, |70 22 ] ,
same as in Eq. (9).
For Line (42),
SEy- | (V. (D) + Qo)) V) LT
— 84E,- E (Y11, Vb (Vw)*Sth}
_ 8yE,- Klvm IV, % — % IV, th,Sth>]
V.h V.h v h
e [(Somsn) | (s |
Next we focus on Line (41).
Lemma 9.
—8Ep [(Va(V2)"SVah, (D(z) + Q(2))Vh)]
= —8yE, [(VaV,h, SV, V,h) ] (44)
— 4aEy- [|[Vohl]
—4Ep+ [(V,h, (2c9€1 — aV2U(0)) Vh)]
— 4B, [(Voh, ((c€ — av€) — 2bV2U(0)) V,.h)] . (45)
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Then Line (44) combines with Eq. (43):
—8yEp- (Vo Vrh, SV V. .h) p]

+ 167E,- {<Vzhv3h,5vmvrh> ]
F

V.h V.h
— 8K, [< VFrh, S v;fh> }
F

h h

«h «h
= —8YE,- [< (vvaTh - Vh Vrh) .S (vvaTh - Vh Vrh)> }
F

Therefore, Lines (40)—(42) sum up to be:

oL
E vw_u
" K op: Ut>}
Vih

2h
= —89E,- V.V,.h— VIn),S(V.V.h— v Vrn
h h »

Voh Voh
“ome () e ()

— —84Ep, [(V.V, Inh, SV,V, Inh) 5] — 4By, (Vo In b, McV, Inh) ]

= —2E,, Kvm In (E)  SV,V, In (&>> }
P p F
—E,, sz In <&> MoV, In <&>> } ,
p p F

where
Se1 e - Porpp)
My = 2 , 2 2
CJ;‘Wg 1- SV2U(6) 7y (2e6+ 1)1~ ng(a)
2
I 4-1— E ue)
_ 8 Lg (46)
4 I_EV2U(6‘) 18 I_1V2U(9)
8 Lg 2 Lg
|
Proof of Lemma 8 We aim to prove that
a c+ay _é 9
25 I 5 -1 2V U(6)

M =
© c+ ay

2

€1 ng(e) v (2c€ + 1)1 — ng(a)
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1 1 2
for a = I b= i’ c= Io v=2,6=2Lg,and \ = 1—% That is equivalent to having:
Ce_(p+ 1)1 crare_ay\1- Yy
— 2 2p 2 2 2
Me = + ay a b 1 a
c
— A I-=V? — —
( 5 13 2/\) 2V U() (7(2054—1) (C+2p>/\) 2V U(6)

to be positive semidefinite.

1 1
Denoteazgf— b+— |\ 8= c—l—avg_g)\, and 0 = v(2¢€+1) — [c+ — | \. We analyze the
2 2p 2 2 2p
b
al B1- ZV2U ()

eigenvalues of j/[\c = and ask when they will all be nonnegative. We

b
B1- SV2U(0) ol - gVQU(H)

write the characteristic equation for M:

' b

_ | 1— 2v2U(h

det [Mc—l-l] — det (a b) o=y a( )
BL=3VU() (0= D1 ZV2U(0)

=det |(a—1)(c —)I— g(a —DV2U () — (m - gv2U(9)ﬂ -0,

b
since A1 — §V2U(9) and (o — )T — gVQU(H) commute. Diagonalizing V2U () = V1AV, we obtain a set of

independent equations based on each eigenvalue A; of V2U(6):
2 aA b2 A2 a A 2
l +(§ j—oz—a)l— 1 j+(§a—b[3) i+ B —ac) =0.
To guarantee that { > 0, we need that VA; € [-Lg, Lg],
gA]‘ —Q—0 S 0

1:2 2 a 2
__ A4 v — . _ <
AJ—i-( « bﬂ) Aj+8 ac <0

2

a b a
Since the linear function —Aj;—a—o of A; is increasing; the quadratic function ZA?-i— (ia — bﬂ) Aj+B%—ao
of A; is convex, we simply need the inequality to be satisfied at the end points:

ng—a—USO

b2 a
ZL%—(gO&—bB)LG+ﬁ2—O&USO
b2 a

ZL2G+(§a—bB)LG+BQ—aU§O

1 2
b= —,v=2,&=2Lg, and

We verify these inequalities by plugging in the setting of a = —, —,c= ,
L¢ 4L¢ Lg
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A= 1—% in the definition of «, 3, and 0. We obtain:

a 92 9
Lo —a—g = —Z
T T = T T 0L =
b2 a 819 191p p?
_Lz_(_ —b)L 2 _ o0 =— - <0
pho—\go ) La 57— a0 = g5+ 50T e ~ M00L8, =
b2 a 2499 191p p?
iy (— —b )L 2 _qo=— - <0
plet(ga—00) et 5" a0 =—1a0+ S0Le ~ 10013 =
1 1 1 2 Lo
Therefore, Mc: = A (S + —I fora=— b=— c=— ~y=2¢=2Lg and A\ = - m
erefore, Mc = ( + % 2d><2d> or a Io’ e ¢ LG,W 3 G, an 0

C.1 Supporting Proof for Lemma 7

Proof of Lemma 9 First note that —8E,- [(V4(V4)*SV.h, (D(z) + Q(x))Vh)] separates into three terms:
—8Ep- [(Va(V2)"SVah, (D(2) + Q(z))Vah)]

= —4aE,- [(Vo((Vo) Vil + (V1) Voh), (D + Q)Vsh)] (47)
— 8bE,+ [(Vo(Vo)*Voh, (D + Q)V.h)] (48)
— 8By [(V4(V,)*V,h, (D + Q)V.h)] . (49)

We then deal with the three terms one by one.
1. For the cross term —4aE,- [(V4((Vg)*Vih + (V,)*Veh), (D + Q)Vh)] in Line 47,
—E,- [<Vm ((V@)*Vrh + (VT)*Vgh), (D + Q)thﬂ

= —E,- {<< gi > ((Ve)*vrh+ (VT)*veh),(D+Q)< gfz )>]
= By [(V((Vo)* Vih+ (V) Vgh), V.h)] (50)

_E, K( gi > ((vg)*vrm(vr)*veh),cg( gfz >>] (51)

Here, Vy commutes with V,. and (V,.)*.
e Hence Line (50) equals:
—YEp- (Vr(V)*Vih, Vi h) + (V. (V,)"Voh, V.,.h)]
= —YEp- [V, Vo(V,)*V,h) + (Voh,V.(V,)*V,.h)]
= —Ep- (V,h, (V2)*V,.Voh) + (Voh, V. (V) Vb)) ®
= —Ep [(Voh, (V1) Vy + Vo (V)" ) Vih)] .
We make use of the commutator of V. and (V,.)*, [V, (V,)*] ¥ = V(V,.)* ¥ (2)—(V,)*V, ¥ (z) =
—V, VIV + £V + VIV, 7, and simplify Line (50):
—VEp+ (Vi (Vo) Vb, Vih) + (V. (V,.)*"Vgh, V,.h)]
=By [(Voh, (29,)°V, + V1, (V0)°]) V)]
= —Ep [(Voh,2(V,)*V,V,h + £V, h)]
= — 2B, [(V,Voh, V.V, 1) ] — vEE,- [(Voh, V)],

o \* 9 o
SHere (V,)*V,Vgh is a column vector with its elements defined as: ((V;)*V,Vgh) =3, (—) — —h.
v T\ Or; or; 00;
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where we have used (-, ) to also denote Frobenius inner product between matrices.

e Line (51) can be simplified by using the representation of the vector flow in Eq. (7):

(5 e srena( )
= -E, K( gf ) ((Vo)"Vrh + (W"WWQ( vg;@) ) gﬂ

— —%IEP* [<( g;" )h, < g; > (&rTVoh — VTU(e)vrh)H . (52)

Denote B[h] = &rTVyh — VIU(0)V, h, then B is an anti-symmetric operator: B*[h] = —BIh].
Then Eq. (52) can be further simplified:

~3E K< o >h( v ) (§TTV9h—VTU(9)VTh)>]

~ e [(( 3 (5 ) )]

= — 3By [(Voh, V. BH]) + (V,h, Vo BIA])]

= 3By [(Voh, V. BIH) + (V,h, BYG[A]) + (9,h, Ve, BI[h])
1

= 1B, [(Voh. ¥, BIA]) ~ (B, Volh]) + (V,h. Vo, B]IH))
= 3By [(Voh, [V, BI[b]) + (¥, h, [V, BIH])] (53)

Since V.., B][h] = £Vgh and [V, B][h] = —V2U(0)V.,.h, Eq. (53) becomes
3By [(Voh, [V, B} + (V.. [V, BI[A])]
_ _%]E,,* (€ (Voh, Vsh) — (V,h, V2U(0)V, )] .
Therefore, Line (51) is

E, [<( v ) (Vo) V,h + (Vr)*Veh),Q< o )>]

_ —%EP* [€ (Voh, Vsh) — (V,h, V2U(0)V,1)] .

Summing up Lines (50) and (51),

—Epe [(Vo((Ve)* Vol + (V)" Voh), (D + Q)V,h)]
= —29E,- [(VoV,h, V.V, h)p]

— YEE,- [(Voh, V,h)] — gEP* [[IVoh|?] + %Ep* [(V.h, VU (0)V )] .

27



2. For —8bE,~ [(VI(V(;)*Vgh (D + Q)Vh)] in Line 48,

—2IE,,«

(%)

= —29E,-
= —27E,~
= —29E,-

(Vv
(v
(v

3. For —8cEp+« (V4(V;)*V,h, (D +

—9E,-

(Vv

—2F,.

= —27E,- [(
= —27Ep- [{(

)*Voh, (D + Q)Vh)]

+(Vg)*Veh, V,.h)]
+(Vo)*Voh,V,h)] —

oVi-h,VoV,.h) ]—|—Ep*

Q

|

)Vzh)] in Line 49,
(Vr)*Vrh, (D + Q)

(v

V,)*V,h, V,h

)*Voh, (D + Q) ( o m

—E,- [(Voh, VeB[h])]
Ep- [(Voh, BVoh + [V, B][h])]

[(Voh,V?U(0)V.h)] .

Vih)]

5 ) wp+@>(§32)>]

)| = Ep- [(Vih, V. BIR])]

») Ve + [V, (V)])Vth>]

(v
—Eyp [(V,h, BV,h + [V, B][h])]

= —2’}/Ep*

— 27EE,

Summing everything up,

For Lines (54)—(56),

Therefore,

—8E

(V,V.h,V,.V.h) ]
* [<vrh= vrh>] - gEP*

e [(Va(V2)"S9,h, (D(x)
= —8ayE,+ [(VoV,h, V.V, .h)
— 8bYE,-
— 8cyEy-
— 2a€E,,-

(VoV,h, VoV, h)
(V,V,h, V. V.h)p
[1IVoh||?]

]
]

[(Voh, V.h)].

+ Q(x))Vah)]

F]

—4E,. erh, (20751 - gV2U(9)) Vrh>]
4E,.

—8E,

—G/]Ep*

[(Voh, ((c& + ar€)l -

bV2U(0)) V.h)] .

VoV, h, V, V.5 ]
— bE,- [(VeV,h, VoV,
By (Vo Vyh, V.V,

h
h

= —AEp [(VaVih, SV,V, ) .

[(Ve(Vz)"SVh, (D(z)

= —84E,- [(VoV,h, SV, V, h

— 2a€E,-

[[1Vohl[?]

+ Q(x))Vah)]
) F]

—4E,. erh, (20751 - gVQU(Q)) Vrh>]
4E,.

[<V9h, ((c{ + ay&)l —
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=
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D Discretization Error

Proof of Lemma 3 As in the continuous case, define h = pT(xT), and denote a = i, b = L,
p*(zr) G 4L¢g
c= l First note that
Lg
oL
Vré.—pt, Ezkh,’vp(ﬂckh) [(VU(@-,—) — VU(ekh))P(iU-rlxkh)] dx-,—
ViSV.h
= /<vr (2lnh+4zT) Epppmp(ann) [(VU(0:) — VU(ekh))p($r|xkh)}> dz-.
We prove in the following that
VrSVih
(7 (5T ) Bt [(V00,) = TU Gl )] ) (59)
E., . ~p(z vU(6,)—-VU(0 r
:/ Vzvr lnh, va kh p( kh) [( ( ) ( kh))p('r |xkh)} pT(.IT) dI‘T
p(zr) F
+ 5/ <gV9 Inh+cV,Inh, Ewkth(wkh) [(VU(@T) — VU(Hkh)) p(x7.|a:kh)]> dz,.
Similar to the continuous case, the term in Line (59) separates into four terms:
ViSVih
/<V (T) EIMNP Ikh) [(VU(@ ) VU(@kh)) ($T|$kh)}> dCL'T
V;iVoh
< < A > ,Ewkth Zin) [(VU(@T) — VU(Gkh $T|Ikh > de (60)
< ( > 7Ewkh~p Tin) [(VU(9 ) VU(Gkh x7.|:17kh > d:ZL,- (61)
<VT ( ) 7E$kh~p($kh [(VU(@ ) VU(@kh $T|$kh > dx-,— (62)
< ( ) Zin~P(Tkn) [(VU(9 ) VU(ekh x"’l‘rkh > dz-. (63)

We first simplify Lines (60) and (61) and then deal with Lines (62) and (63).
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1. For Lines (60) and (61):

/<Vr (V;Z#h) Eepnmp(arn) (VU(0-) — VU(9kh))P(fCT|CCkh)}> dz,

EIMNP(IM) [(VU(QT) - VU(Hkh))P(xfkfkhﬂ p*(x ) dz

EIM ~p(Tkn) [(VU(Q ) VU(ekh))p(xTukh)}
’ p(z;)

EIMNP(Ikh) [(VU(QT) - VU(ekh))p('rTerhﬂ
’ p(zr)

Elﬂkh"’p(mkh) [(VU(QT) - VU(okh))p('rTerhﬂ ) > p* (I ) du
F

V;rh> p*(z;) dz,
F

v§h> p*(z,) dz,
F

p(z-)
EIM ~p(Zkn) [(VU(Q ) VU(ekh))p(‘%"xkh)}
’ p(z,)
Esy~pan) [(VU(O7) = VU(Okn))p(ar |z5n)]
’ p(z;)

Eouy oot [(VU0) = VUG)plrda)] |\
p(I‘F) F o h

v’gh> p*(z,) dz,
F

V£h> p*(z;) dz,
F

J{
<
(
<
(
=

J (7 (TE) Eavspionn [(FUr) = VU@ )plarlon] )

_ / <VTVQ Inh, Vg <EIM W ~P(Tkn) [(VU(QP)(I )VU(ekh))p(‘%"xkh)} ) > PT(«TT) dz..
T F

When # =r,

/<V <V 0V h) Esppp(enn) [(VU(07) _VU(ekh))p(IT|xkh)}> dx,
/ < B opann) [(VU(07) = VU (0)) P (a7 |z1n)]

Vih) p*(z,) de,
p(xT) 0 >F ( )

VoV, h IkhNP(Ikh) [(VU(GT) - VU(ekh))p(ITh?kh)} vTh p*(ar ) da
p(x‘r) r . T T

v2 lnh v CEkth(mkh) [(VU(QT) - VU(okh))p('rT|xkh)] pr (5177-) dz..
p(z-) -

+
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2. For Lines (62) and (63):

/ <Vr (%) Ermp(ann) [(VU(0r) = VU<9kh>)p<xT|xkh>]> da,

ExkhNP(zkh,) [(VU(QT) - VU(ekh))p(‘L"xkh)}
p(z-)

_ / <hVTViV#h VAV 4h, > p*(2,) dz,

= 5/ <VT#h’E$khNP($kh) [(VU(QT) N VU(okh))p(xTerhﬂ >F dIT

+/<Vrv#h, Eepn~p(ain) [(VU(e;)(;T)VU(%h))p(xT|“’khﬂ v}h> p*(z,) dz;
F

-/ <V2h Evpnpam) [(VU(6:) = VU (Bn))plarlaw)]
o p(ar)

v§h> p*(z,) dz,
F

Exkh"’p(xkh) [(VU(QT) - VU(Hkh))P(xfkfkhﬂ p* (,T ) da

+ / <hvrv#h — V,hV4h,V, <

=¢ / <V# In h, Exk}LNP(Ikh,) [(VU(@T) — VU(@kh))p(mekh)} >F dx,

N / <Vrv#h, Esppmp(orn) (VU (07) = VU (0r1)) przin)]

p(zr)
. / <v2h ExkhNP(zkh,) [(VU(QT) - VU(ekh))p(‘%"xkh)}
’ p(z-)

+ / <V7«V# Inh,V, <E$kh"’p(mkh) [(VU(QTP)(; )VU(ekh))P(er’Ckhﬂ >> pT(:CT) de. .
T F

V,?h> p*(z;) dz,
F

V£h> p*(z;) dz,
F

When # =0,
/<vr (v:zeh) uExkth(ackh) [(VU(OT) - VU(ekh))p(xT|xkh)}> dxr
= 5/ <V9 111 h7E1kh~P(Ikh) [(VU(@T) — VU(@kh))p(IT|Ikh)] >F d:ZL,-

+ / <VTVeh, Ea~porn) [(VU(G;)(; )VU(9kh))p(~’CT|xkh)]

-/ <V2h Espnpam) [(VU(6r) = VU Brn)) Pl i)
o p(a;)

+ / <VTVQ Inh,V, (Ezkh,Np(xk)z) [(VU(HT) — VU(ekh))p(lexkh)] >> pT(xT) de, .
F

v;fh> p*(z,) dz,
F

v’gh> p*(z,) dz,
F

p(z-)
When # =r,

/<v7‘ (@) 7Exkh~p(zkh,) [(VU(HT) - VU(ekh))p(xT|xkh)}> de
= §/<vr lnhuExkth(ackh) [(VU(OT) - VU(ekh))p(x‘rlxkh)}>F d,T.,.

. /<v3mh7vr (Ewpw [(VUwT)—wwkw)p(mwkhﬂ>> oo (2) das.
F

p(zr)

31



Therefore, Lines (60)—(63) combines to be:

<Vr (w) Eapnop(arn) [(VU(0-) — VU(9kh))P(fCT|$kh)}> dz,

_ Ezkth(Ik}z [(VU(HT) - VU(ekh))p(‘rTlxkhﬂ
= b/<VTV9 Inh, Vg < () >>Fp7(x7) dz,
2 n EIMNP (zkn) [(VU(@ ) VU(ekh))p(xTukh)} r r
+2/<v1hv < N >>pr( o) da,
a n EIMNP(IM) [(VU(GT) B VU(ekh))p(ITerhﬂ " .
+ 2/<vrv91 h vr< s >>Fp7( ) da,
/ lnh V EﬂﬂkhNP(Ikh) [(VU(GT) - VU(ekh))p(ITukhﬂ pT(xT) d:ZL,-
p(z-) -

+ 5/ §V(.) Inh +cV,Inh, Eopn~p(@en) [(VU(QT) - VU(okh))p(xkah)} >F dzr

_ / V.V, In h, SV, Elﬂkh"’p(mkh) [(VU(QT) - VU(okh))p('rTerhﬂ pT(:CT) dz.,
p(z-) .

+€/ <gV9 Inh+cV,In h’EikhNP(wkh) [(VU(@T) — VU(Gkh))p(xJ:ckh)} >F dz..

Hence
oL
(92 ety [(F0(02) = VU @)l fia)] )

ViSV.h
= / <VT (2 1Hh+4mT> 7E$kh~P(Ikh) [(VU( VU Gkh))p 5177-|517kh ]> dz,

\Lr
:/<VTlnp ( ),Ezkhywp(xkh) [(VU(6,) — VU (0kn)) P~ |24n) > Az,

p*(zr)
p‘r('rT) EwkhNP(Ikh) [(VU(GT) - VU(ekh))p(IT|Ikh)] . .
+2/<v V., In (xT),sz< @) >>pr( 7)) dz,  (64)
+2¢ / <g Voln ‘; EZ; +¢V, In I‘;: E;’:;,Eum(uh) [(VU(HT)—VU(Hkh))p(:cT|xkh)]>F dz,.

It can be seen that the expectation in Line (64) can be rewritten as x; conditioning on x.:

/<V v, In p- () Sv <Ewkh~P(Ikh) [(VU(QT)_VU(okh))p(I"'|Ikh)]>> pr(z,) dz
F

p*(zr) pr(z7)
/ <V Vi, ln E:Ei:; ) SVITEIkh,NP(zkh,\IT) [VU(QT) - VU(Hkh)]>F p-,—(I-,—) dz-.
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Therefore,

/ <V,~§—li,Ezkth(xkh) [(VU(@-,—) — VU(ekh))P(iU-rlxkhﬂ> dx-,—

:/<VT In E:Ei:; Ezkth (Trn) [(VU(9 ) VU(ekh))p(lexkh)]> dz-

+2/<vzvr In PTEQJT;,SVITEMM(MWT) VU (0,) —VU(Hkh)]>FpT(xT) dz,
+2§/< Vyln B Eii + eV, In I‘;Ez:;,ﬁuhw(m) [(VU(6,) _VU(ekh))p(xT|xkh)}> dz,

F

—a§/<v In pT T§7Ezkh,’\’p(xkh) [(VU(HT)_VU(ekh))p(le‘rkhﬂ> dz;

F

+(2c€+1) / <vr In E:Ei;’&kh”"(““ [(VU(6,) - VU(Hkh))p(xT|xkh)]> dz,

(Tr
2/<vsz In p*E ),vaTEEWP(mM [VU(@T)—VU(HM)]> pr(z,) da,.
p*(zr) F

Proof of Lemma 4 We first explicitly calculate Vi, E,,  <p@unlz,) [VU(0r) — VU(0kp)] in the following
Lemma 10. To obtain the expression, we use synchronous coupling of the trajectories of underdamped
Langevin algorithm with infinitesimally different initial conditions.

Lemma 10. Denote v =7 —kh < h and

1 [ err=kh) (1 — g=r8(r—ki)? 1 — e—&(r—kh) ,
== —-((r=kh)— ——— | | ~O :
! < 7€ <(T ) 7€ ) (&)

v
1
Then for v < —— (and v =2, and £ = 2Lg),
8L¢

vaExkth(zkh,‘fﬂr) [VU(HT) - VU(Hkh)]
(V2U(0,) — V2U (61)) + V2U (O1) ((1 VR (k) — 1)

=Ko ~p(apn|zr vE(T—kh) _ | _ : (65)
kh~P(Tkn|Tr) —efijwkh) (I+nv2U(9kh)) 1

Taking Lemma 10 as given, we can separate Term (19c¢) into two:

/ <v v, In pTE T§ SV B op (oo [VU(05) — VU(Hkh)]> pr(z,) da,
Lr F

//<SV v, In PTE T; < V32U (6,) _OV2U(9kh) )>Fp(xkh|IT)pT(IT) deppde, (66a)

V2U (Orn) (1 +nV2U (Or)) ' =1
+//<Svmvrm pT(xT), evf(f—kh)k_h 1(( ! kh) ) -1 >
PHIr) |~ = VR UOn) (14 192U (1)
F

-p(zn|zr)pr () dogpde,. (66D)

We then make use of the properties of Frobenius inner product to upper bound Terms (66a) and (66b) by
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the Frobenius norms:

<Sv;ﬂvr In p:(xT) ) A2d><d>
F

p*(7r)

= <\/§vwvr n Pr (@) \/§A2dxd>
pP* (517 ) F

pr( ‘r) p‘r(xT) 1
x 7"1 ) In — (4 ’ A
a<V Vv np @) SV.V., p*(z,) F—I— 4a< 2dxds S 2d><d>F

As a result, we obtain that for Term (66a),

<sv V.l 1;293( VZU(oT)—OWU(ekh) >>

F

’Y p-(z7) p‘r(xT)> b 2 2
—(V,V,In ,SV.V,1In + — (|V2U (0 v=U(8 ;
2< p*(zr) P () /p 27 ViU en - alF

and for Term (66b),

po(22) VQU(okh)((I+nv2U(9kh))7l—I)
SV.V,In : , eV&(r—kh) _q 1
< p*(z) —fV%](okh) (I+77V2U(9kh)) >
F
1 p‘r(xT) pT( T)
<5 <V V,In p*(xT)’szv In - (UCT)>F

V2U (B41) ((1 + V2 (Orn)) " — 1)

+_< PR .
2y _fvzljwkh) (I4+nV2U (Okn))

O 92y (Gy) (14 V20U ()

V2U (841 ((1 + VU (Orn)) " — 1)
S vé(r—kh) _ 1 .
—fsz(ekh) (I + nVQU(Qkh)) F
<7 <vxvr w2 69 v, p*(x7)>
2 p*(z,) p*(z,) F
-1
(bt o) XQUM(L?M) ((I TV I) (67)
— vE(T—kh) _ 1 3 .
2y —%WU(%) (1+nV2U (0rn))
2
To obtain the final bound, we simplify Eq. (67) by demonstrating the following fact.
1
Fact 2. For 0 <v < min
{”Yﬁ V2eLg§ }
Hkh) ((I + nv2U(9kh))71 — I)
e'vf(f kh) _ . < demax{L%&v?, Lotv}.

2

1 1 1
Since v < 3Ln < min{— }, and | V2U(0,) — V2U (0kn)|| p < L 107 — Oall, we plug the above
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inequalities into Terms (66a) and (66b) and arrive at our conclusion:

T+
/ <var In p*E )aSVmTEIMNP(IkMIT) [VU(@T) — VU(Hkh)]> Pr (I-,—) dx,
p*(zr) F

<AEp. (o) |[( VaV,In Pr(tr) o3 g, 1 Pr(@r)
T p*(zr) p*(z,) F

bL?
max{ L I} + 5 H Bty o) (167 = O]

2e(b + c)d
4 2elbto)d

Proof of Lemma 10 We study the following term with an arbitrary vector v € R?? (and denote &, =
(én,fn) € R?%):

UvarEzkth(IkHrf) [VU(HT) - VU(ekh)]
1 .
= lm =E 4y, ~p(enler) {(VU(@T +hv) = VU(6,)) — (VU (6,) — VU(@kh))}
Tp~p(En|xr+hv)
.1 N
= i B )~ (0 (wanl20) p(En 2o +ho)) [(VU@T + hv) = VU(6,)) = (VU (0n) — VU(ekh))} ,
where T (p(zkh|zr), P(&n |2 + hv)) is any joint distribution of 2, and &, with marginal distributions being
p(zkn|zr) and p(&y, |z, + hv) — any coupling between the two random variables.

Recall from (34) that the relation between x, and xgy, is:

1 — e~ 8(T—kh) 1

1 — ¢~ 8(r—kh)
6‘7— = ekh + — 7y — ; ((T— kh) —

) VU(@kh) + Wy
073 (68)
1 — e—8(r—kh) ,
—VU(@kh) + W,

vE

gl

re=rpn — (1= e 6O =F) gy —

1
where W.I' = (WGT ,wr ) is the Gaussian random variable. It can be proven that for step size v < h < 3L
G
Tk is uniquely determined given x, and W,. Here we take the parallel coupling between x, and &,,. Namely,

we take:

. 1 — e Y&(T—Fkh) 1 1 — e &(T—Fkh) .
0, + hvg =0, + ————————— i — — ((T—kh)— )VU(en)JrWe
¥ Y 7é
1 — ¢~ Y&(T—kh) . ’
rr4hvp =7y — (1—e 80— )3 — — ——VU(0,) + W,

843

where the Gaussian random variable W, takes the same value as that in Eq. (68). Then we get that for any
pair of (zp, &) following this joint law,

én — Opp, = hvg + hA(é),

where we define

eé(r—kh) _ 1

AG) = ((T+0v2U@) " =1) vy - (I+9v2U0) " v,

6 a convex combination of 8y, and 6,,, and

1 [ =k (1 — g=é(r—hi)? ( 1— e'yE(Tkh))
- —((r—kh) = ————— ] | ~O(&?).
=5 ( vE ( ) vE &)
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Therefore,
E(win,80)~T(0(@rnl22),p(Enler+h0)) {(VU((’T +hv) = VU(0,)) — (VU (0n) — VU(t%h))}
= Ewun #)~T(0(knles) pl@nlar+ho)) [VQU(é)hve — V2U(0) (9n - (m)}
— Er [(V2U(é) - v2U(é)) hog + w?me’m@} ,
where 6 is a convex combination of §, and 6, + hv. Taking the limit A — 0, we have:
V'V, Bappmpernle,) VU (07) = VU (O1n)]

1 A
= lim ) [(VU(GT +ho) = VU(6,)) — (VU(8,) — VU(Hkh))]
T ~p(Tn|zr+ho

= ExkhNP(zkh,\zr) [(v U(HT) - V2U(9/€h)) v + V2U(6‘kh)A(9khﬂ .
Therefore,
Vx-rEIkhNP(Ikh\wr) [VU(GT) - VU(ekh)]

(V2U(0;) — V2U (01)) + V2U (O1) ((I + VU (Grn)) ' - I)

in~p(@in |zn y§(r—kh) _q -
onparle) VU O) (1 VU 0)

=E

E Overall Convergence of the Underdamped Langevin Algorithm

Proof of Lemma 5 We aim to prove that

L crave y_byey
v | 64 2 2
ctav, _bye 31 _ Oy
S & L= SVRU() Ty (26 + 1)1 - SV2U(6)

1
X (b+ 2—)1 gI
=a(5+551) = ' Y, |
4 (c—l— —)I
2 2p
1 1 2
fora=—,b=—,c= ,v=2,6£=2Lg,and A = 30 That is equivalent to having:

Io' ' i ‘T Ig
<—a§ ( )A)I <C+mg——x)1—gv2U(9)
M

1
B 2p
c+ ay a 31 1 a
( _§> - gV (m (2eC+1) = (O+Z>01_5WU@

to be positive semidefinite.

31 1 31 1
Denote o = —af — <b+ —) A B= et a’yg_ E)\ and o = 337 (2¢€+1) — (c—i— 2_p) A. Then we analyze

64 2p 2
b
. ol Bl — 5V2U(t9)
the eigenvalues of M = and ask when they will all be nonnegative. We

B — ng(e) ol — ng(e)
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write the characteristic equation for M:
([ @-n o1 - 2v20(9)
. o— -5
det [M 11| = det ) 27
Bl — §V2U(6‘) (e —DI— §V2U(9)

=det |(a —1)(c — )T — g(a - )VU(9) — (ﬂl - gVQU(9)> ] =0,

b
since I — §V2U(6‘) and (o — I — gV2U(6‘) commute. Diagonalizing V2U (0) = V1AV, we obtain a set of

independent equations based on each eigenvalue A; of V2U(6):

z2+(gAj—a—a)z— (%A?Jr(ga—bﬂ)/\ﬁﬂ%aa) —0.

To guarantee that { > 0, we need that VA; € [-Lg, Lg],
gAj —a—0<0
b a 2
ZAj+ (—a—bﬂ)Aj—l-ﬂ —ac <0

2

b2
Since the linear function EAj —a—o of A; is increasing; the quadratic function ZA?—%— (ga — bﬂ) Aj+B%—ac

of A; is convex, we simply need the inequality to satisfy at the end points:

ng—a—JSO

2
b, a 2
~IE- (ga—bB)LCH—B — a0 <0
b, a 2
ZLG+ (ga—bﬁ)Lg—l—ﬂ —ac <0

. . - L . 1 1 2

We verify these inequalities by plugging in the setting of a = —, b= —, c= —, vy =2, £ = 2L¢, and
L¢ 4L¢ Lg

A= %, in the definition of «, 8, and . Then for Lg > 2p, we obtain that

a 8579 3p
2 7¢I T TR0 T A0Lg
b2 a 5357 241p 02
_L2_(_ _b)L 2 _ o0 =— - <0
pho—\go =) La+ 57— a0 = 11 T Sa00Lg 360025 =
b? a 126077 241p p?
2 (_ b ) L 2 _qo=— - <0
plot\go =) La+ 57— a0 =~ T 53000~ 360025 =
1 1 1 2
Therefore, M = A [ S+ —Ia4x2q4 | when we take a = —, b= —,¢c= —, v =2, and £ = 2L, where
2p Lg 4L¢g Lg

the contraction rate \ is A = %
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Proof of Lemma 6 For the expectation of |6, — 0j]|> taken over the joint distribution of (z,,zxs), we
use the definition of 2, in our Equation (13) to expand it (by way of Jensen’s inequality):

T 2
/ reds
kh
i 2
<én [ B[] as
kh

<¢h?  sup  E, op, [HTsHQ}
s€lkh, (k+1)h]

Epn,zr) “\6‘7 — 6‘1@}1”2} =¢R U

=2Lgh? sup  E, p, [||7°SH2] . (69)
s€lkh,(k+1)h]

d
In the following Lemma 11, we uniformly upper bound E [||7’S||2} by O (—)
p

Lemma 11. Assume that function U satisfies Assumption A1-A8, where p denotes the minimum of the
log-Sobolev constant and 1. If we take v =2, £ = 2L¢g, and

1 1 . 1 p Lgp . — —1/2\/? €
h=e ——— Sl . 2 A
56 VLo mm{zug’ P (ON+) '\ Cu [

L
where ¢ < d=S. Then for rs following Equation (13), Vs > 0,
p

E [HxSIIQ] < (12/C‘J§+ 13) % + 12071” =0 (%) .

We defer the proof of Lemma 11 to Sec. E.1.
Taking Lemma 11 as given, we can find that E, p, |:||’I”SH2:| in Eq. (69) is upper bounded as:

— d C
sup Erp, [||rs|ﬂ < sup  Egp. [Hxs||2] < (120N + 13) & 41T
s€[kh,(k+1)h] s€[kh,(k+1)h] p P

resulting in the final bound for Ep (s, .o.) WT - 9kh|\2} to be:
__ L L L
Ep(Ik}uIT) {Her - ethﬂ < ((24CN + 26) =< -d+ 24CM_G> h2 =0 <_Gd : h2) .
p p p

Lemma 12. Let po(z) = po(f)po(r), where

La\*Y? L
pol6) = (52) e (< 101°).

o) = (&) e (S 7).

and

For p*(x) « (—U(H) - g |r|2>, if U(B) follows Assumptions A1-A3, then we can define Cy = Cy +
1
—1In Le and obtain that
2 27
KL (o) = [ poCo)tn (B0 ) do < Gy -+ o, (70)
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and

L[po] = KL (po[|p*) + Ep, [<vw In %, SV, In %ﬂ
< (/6];+1)d+CM. (71)
With the setting of £ = 2Lg, we can also obtain that

6’7\7/ 51 Cum
Epmpe |27 < (4= 42— | -d+4=2 2
phﬂﬂ_< p+2h> 4= (72)

Proof of Lemma 12 We want to bound KL (po||p*) = /po(x) In <p2—2$§) dz = /pO(G) In <p0(6‘)> do,
p*(z

L\ L
where p*(8) o< e~V and py(6) = (2—G> exp <—7G ||9||2> First note that
7T

p*(0) :eXP(—U(Q))//exp(—U(b’))de.

L
By Assumptions A2 and A3, U(f) < §||9H2, V6 € R We also know that: In [exp(—U(6))df <
Cn-d+Cyy.

Therefore,
—Inp*(9) =U(H) + 1n/exp (=U(0))do (73)
La, .2
< THGH +Cn-d+Cuy.
Hence
. d
—/po(é’) Inp*(0)do < 3 +Cn -d+Cuy.

We can also calculate that

Therefore,
Kumwﬂ:/m@mm@w—/m@mw@w

1. L
<(Cy+-mZE) . d+Cy
2 2

= Cn -d+Chr.
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For By, [<v In 20 o 9§V, In i >} since U is La-Lipschitz smooth, ||V Inp*(z)||> < L2 [|0]|%, and thus

Ep, Kvm m 22 9V, In @>]
P p

1 2
4L

HV9 ln—
p*

< 57— Ep, [IVe npoll” + | Vo In p| I’
2L

< LaEp, [10]°]
=d.

Consequently,

£Ipo] = KL (polp*) + Ep, [<v 2 59,1 i—ﬂ

< (/6];+1)d+CM. (74)

For Ep«p [Hx* Hﬂ , we bound it using Wa(p*, po). We choose an auxiliary random variable 6 following the

law of po(#) and couples optimally with 8* ~ p*(0): (6*,6p) ~ v € Topi(p*, Po). We then have

* 2 * 2 * 2
Epenpr [18°17] = Erenpery [I7*17] + Eor e oy [16°1]

_ g E gy 1600+ 0 = 80)]]
g + 2Egy~po {HHOH } + 2E(g* 05)~ry [H@* - 90H2}

Q.

2d
= 2W2(p*, po).
g + — L + 2(p 7p0)

We further expand this inequality by using the extended Talagrand inequality, Eq. (1), which applies to the

joint density function p*(6,r) o exp (—U(G) - g ||7°||2) with log-Sobolev constant greater than or equal to

p and Lipschitz smoothness of U + g |7]|* less than or equal to 4Lg:

* 2 *
W3(ps,p*) < ;KL (psllp*).

Therefore, for £ =2Lg,

Epenpr [[l07]] <
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It is worth noting that the choice of the initial condition py can be flexible. For example, if we choose

L 1 1
zo ~ N (0,1), then KL (po||p*) < (C’N + TG ~373 ln(27r)> -d 4 C) (resulting in merely an extra In Lg

term in the overall computation complexity). |

E.1 Supporting Proof for Lemma 6

Proof of Lemma 11 In what follows, we will prove that:

1. E [H:voﬂz} < (125§+ 13) % n 12071”.

__ d _ C
2. If Vs < kh, E [||x5|\2] < (120N + 13) S+ 12%, then Vs € [kh, (k + 1)),

E[llz)*] < (12Cx +13) g + 1207M.

By induction, this will prove Lemma 11.

d — d
For claim 1, we can calculate that E;,~p, [||:1:0||2] = 3 T < (120N + 13) ~ + 120_M.
G

2 p p
We prove claim 2 in a two step procedure: we first prove in the following Lemma 13 that if E {kahﬂﬂ is

bounded, then E [Hxsﬂﬂ remains bounded for s € [kh, (k + 1)h]. We then provide a specific bound of it.

Lemma 13. Assume the step size h <

E 1] < 2 [Joual?] + 1=

and let v = 2 and & = 2Lg. Then Vs € [kh,(k + 1)h],
G

1
It can be verified that for ¢ < 2d and p < 1, h is indeed smaller than T Thus Lemma 13, in conjunction

el
with the induction hypothesis, gives us a rough bound that Vs € [kh, (k + 1)h],

E|llzl] < 2E [Jlowl’] + % < (24C +26) ‘;f + 24% + %
< (24Cn +27) ‘;f + 24%. (75)

Then to accurately bound E |:||.’L's ||2} , we use Egx p [H:E* ||2} as an anchor point and bound the Wasserstein-2

distance between ps and p*. To this end, we choose an auxiliary random variable z* following the law of p*
and couples optimally with p(zs): (zs,2*) ~ ( € Top(p(xs), p*(z*)). Then using Young’s inequality and
Eq. (72) in Lemma 12,

E [l l*] = B, oryne [l + (@0 — 2]

* (12 * 112
< 2By [ 1] + 2B vy [l — 2 ]

Cy 1 c
< <8—N + 5—) -d+ 822 4+ 2WZ(p.,p*).
p Lg p
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Applying the extended Talagrand inequality, Eq. (1), we obtain that

Cy 1 Cu 4
E|||lze]*] < [8=% 45— | -d+ 82 + —KL (ps|p*).
[ ||]_<8 ; +5LG> +870 4 KL (py][p") (76)

On the other hand, we can use dissipation of the Lyapunov functional to bound the growth of the KL-
divergence, and in turn the growth of E [||a:5|\2] in Eq. (76). This is the thesis of the following Lemma 14.

Lemma 14. Let x4 follow the underdamped Langevin algorithm 1 with parameters € = 2Lg, v = 2, and the
step size h = (k 4+ 1)h — kh given in Eq. (37). Also let ps be the probability distribution of xs. Assume that
Eq. (75) (given by the induction hypothesis in conjunction with Lemma 13) holds for any s € [kh, (k + 1)h].
Then for e <2d and p <1, Vs € [kh, (k + 1)h],

g (el g) )

Applying Gronwall’s Lemma in Eq. (77), we obtain that the objective functional £ will not increase by more
than €/2 throughout the progress of the algorithm:

< e~ do(s—kh) (C[pkh] _ E) < e~ dokh—do (s—kh) (E[po] _ %

2 ) < L[po],

‘C[ps] -

[N e

where £[p,] = KL (p,|[p*) + Ep, {<vx lnp—i,SVx In p—i>] Therefore, we can bound KL (ps||p*) using
p p

initial conditions

KL (ps|lp*) < L[ps] < L[po] + %

From Lemma 12, we know that L[pg] < (E'E + 1) d + Cypy. Therefore, for € < 2d,

KL (p[[p*) < (Civ +1) d+Cas + 5
< (6\];+2)d+CM. (78)
Plugging Eq. (78) into Eq. (76), we obtain our final result that

Cy 1 Cu 4
E|llz]?] < (8= +5— | d+ 8= + ~KL (p,|p")
p L¢g PP

< 1Y gl s L) g0
p p  Lc p

__ d C
< (120N + 13) &M
P P

since p < Lg. |
Proof of Lemma 13 We begin from the discretized dynamics of underdamped Langevin diffusion Eq. (15)
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to calculate that Vs € [kh, (k + 1)h],

B [llral] = SE 16l + )]

= 2E <( ﬁz > ; ( VU (G _ggsrs — 4V, Inps )>}

<2E §<957T5> - <T5a9kh> -7 ”7"5”2} - 27/d <T5a Vi lnps> psdzs
- R

[ 2
< 2E [¢ 64 |+ L 100all Il = € ] + 214
< 2LGE (10617 + ll*] + 2LGE [101n 1 + llrinl*] +2vd, (79)

where the last step follows from plugging in the setting of v = 2 and £ = 2L and using Young’s inequality.
Multiplying e=2¢¢ > 0 on both ends of Eq. (79), we obtain that Vs,

d

= (e—2LGS1E {||xs||2]> < e~2Las (2LG1E {kahuﬂ + 27d) . (80)

Applying the fundamental theorem of calculus and multiplying €267 > 0 on both sides, we have that
E {”‘TTHQ} < e2Lc;~r/ 672LGS (QLGE [”IthQ} + 27d) ds + €2LG(Tfkh)]E [kah”ﬂ
kh

1
o (e2Lg(Tfkh) _ 1) (2L0E [kath} i 27d> 4 e2Lalr—kh)g {kahnz} '
G

1 1
It can then be checked that when 7 — kh < h < 3L the factor (e2LG(T-kh) — 1) < 3’ and that
G

E [HxTH?} < 9E [||xkh|\2] N RUER]

Lg
]
Proof of Lemma 14 Applying the result of Eq. (69) that:
2 2 2
Epeanen) [0 = Onll’] <2Lah? sup  Brp, [Inl’]
s€[kh,(k+1)R]
to Eq. (23a)—(23c), we obtain that for £ = 2Lg, v =2, and V7 € [kh, (k + 1)h],
dL(p-) p
< 2
ar = 3ot
112
+ (68L2G + éL_g) Ep(one.) [||9T - 9kh||2} + 18eLadmax { L& (1 — kh)*, L% (7 — kh)*}
p Le , 1 Li,) ) y
<L zp, —60—<68L FoZH) B2 up Ems[rs }
30< () p ¢ 8Lg s€[kh, (k+1)h] pe [[Irs
L
— 540e=Z dmax {LERY, LER?) )
p
p Lg ) 1Lz} ) )
<L (cp. —60—max{136L it 7 T DN { ro }
30< (br) p 4 Lg s€[kh,(k+1)h] pe [
L
- 15007deax {LERY, LER?) > (81)
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1 1 1 VL — —1/2 /
Using the definition of h = %\/T_G min {ﬂi7 L;p} - min { (CN + 2) \/g, ﬁ} in Eq. (37),

we know that

2o Lo L pte
7 T 60000y +2 Lod

Plugging this setting into the last term of Eq. (81), we obtain that for € < 2d and p < 1,

L
1500=2 dmax { LERY, LER?)

€
< -
P 4

We can similarly combine this setting of the step size h with the premise of this Lemma, Eq. (75), that
— d C
SUDse [k, (k+1)h] Eromp. [Hrsllﬂ < (24CN + 27) S+ 247M, and obtain:

L 112
60=< max {136L2 —H} h* - sup  E, ~p, {||7°S||2]
p

« Z Lq s€lkh,(k+1)h]
L 112 __ d
< 60=S max {144/:2@ ——H} : <(24CN + 27) e, 24C_M> B2
p 4 Lg p p
2 QLQG L%{ ~ 2 €
< 282 max { 242G | ~max{(C’N+2)d,CM}h <&
p? " Lap? 4

Consequently, the time derivative of the Lyapunov functional £ is bounded as:

LR < (e - 5). (52)

F Proofs for Auxiliary Facts

L
Proof of Fact 1 By Assumptions (b) and (c), U(0) < §||9H2, VO € R%. We also prove in the following
that

o UO)> T 0]7, v e R\ B (0, 8L—GR);
m

L L
o UB) > —=516|2, Vo € B <o, 8—GR>.
2 m

L
The latter case follows directly from Assumptions (b) and (c). For the former case where ||6] > 8—GR,
m

define ¥ = ﬁﬁ. Since ||¥]| = R,
(VU(@®),9) > —LaR*.
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Because any convex combination of § and 9 belongs to the set R? \ B(0, R), where U is m-strongly convex,

U0) = U(0) = (VU(9).0 = 9) + 30 9]

- (% - 1) (VU(9),9) + % (% - 1)2

[l 2, m (9] ’
(1)L S
(R 5\ R

m
0 + Lo R?,

v

Y

8L L
since ||6]| > “=%R. Again, using Assumptions (b) and (¢), U(¥) > —TGRQ, which leads to the result that
m

m
U) > "6

m L2
Therefore, U(0) > —|0]|> — 32—§LgR2 and

4 m

g2 Lt 2
In [ exp(=U(0))df <In [ exp _ZHHH +32—5LaR™ | do
m
d. 4rm

L2
=—In— 4+ 32=C LR
2 "m m?2

1. 4 L2
Hence Cy < =1In — and Cyy < 32=C Lo R2. m
27" m m?2

Proof of Fact 2 We begin with the definition of

1 [ e6(r=kh) (1 — o=vE(r—kh))? 1 — e—&(r—kh)
n==" (- ) —<(T—kh)—e—) ,
7€ 7E

v

1 1
and provide bound for it when 0 < (7 — kh) < min {—, T —— }
( ) Y€ v2eLg

First note that for 0 < (7 — kh) <

1
s

1—yév < e VTR <1 4 ye(r — kh).
Then we obtain that

073 843

(r—kh) _ _
n= l (M (v&(r — kh))2 — (r—kh) + M)
T — kh)2erS(r—kh)

(

— kh)2.
We then prove Fact 2 by separating the following term:

V2U(9kh) ((I + 77V2U(9kh))_1 — I)
eYé(T—kh) _ 1 1

IR () (L4 VU (01)
2

< 2max{ HVQU(Hkh) ((1 VR (Ok)) ' — 1) H2 ,
H 1 — Y&(r—kh)

S VQU(Hkh) (I+’I7V2U(9kh))_l

S
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Since HnVQU (Okn) H < efv? HVZU (Okn) H < eLgér? < 1forv < mm{7§ \/m} (I+77V2U(9kh))71

admits the following series expansion:

o0

(I + nV2 Hkh Z nv2 ekh )
n=0
Consequently,
_ > 1
I+ 9V2U(0 1H< L) = —— <2
H(+77 (Okn)) 2_;(77 ) T
and OO
n o 77LG _ 2
H( +0V2U(0kn))  — IH > (Le)" = ——=— < 2nL¢ = 2eLaév”.
— 1 -nLg

Therefore, for the first term,
HV2U Oun) ((I+ NV2U () — 1) H2
< VU@, |1+ 92U 6m) " — 1,
< 2el? {V

For the second term,

1 — eY&(r—kh) _
H7V2U(9kh) I+ VU (kn)) !

v 2
< & |V2U (61) H(1+ nv2U(9,€h))*1H2
S ZLGgV.
Therefore,
2 2 -1
V2U (On) ((14+0V2U (Bn) ™" = 1)
eVE(T—kh) _ . < demax{Li&v? Lgév}.
—fv‘m(ekh) I+ VU (Orn))
2
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