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Abstract

We formulate gradient-based Markov chain Monte Carlo (MCMC) sampling as optimization on the
space of probability measures, with Kullback-Leibler (KL) divergence as the objective functional. We
show that an underdamped form of the Langevin algorithm performs accelerated gradient descent in this
metric. To characterize the convergence of the algorithm, we construct a Lyapunov functional and exploit
hypocoercivity of the underdamped Langevin algorithm. As an application, we show that accelerated
rates can be obtained for a class of nonconvex functions with the Langevin algorithm.

1 Introduction

While optimization methodology has provided much of the underlying algorithmic machinery that has driven
the theory and practice of machine learning in recent years, sampling-based methodology, in particular
Markov chain Monte Carlo (MCMC), remains of critical importance, given its role in linking algorithms
to statistical inference and, in particular, its ability to provide notions of confidence that are lacking in
optimization-based methodology. However, the classical theory of MCMC is largely asymptotic and the
theory has not developed as rapidly in recent years as the theory of optimization.

Recently, however, a literature has emerged that derives nonasymptotic rates for MCMC algorithms [see,
e.g., 9, 12, 10, 8, 6, 14, 27, 28, 2, 5]. This work has explicitly aimed at making use of ideas from optimization;
in particular, whereas the classical literature on MCMC focused on reversible Markov chains, the recent
literature has focused on non-reversible stochastic processes that are built on gradients [see, e.g., 24, 26, 3, 1].
In particular, the gradient-based Langevin algorithm [39, 38, 13] has been shown to be a form of gradient
descent on the space of probabilities [see, e.g., 19, 44].

What has not yet emerged is an analog of acceleration. Recall that the notion of acceleration has played a
key role in gradient-based optimization methods [32]. In particular, Nesterov’s accelerated gradient descent
(AGD) method, an instance of the general family of “momentum methods,” provably achieves a faster con-
vergence rate than gradient descent (GD) in a variety of settings [31]. Moreover, it achieves the optimal
convergence rate under an oracle model of optimization complexity in the convex setting [30].
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This motivates us to ask: Is there an analog of Nesterov acceleration for gradient-based MCMC algorithms?
And does it provably accelerate the convergence rate of these algorithms?

This paper answers these questions in the affirmative by showing that an underdamped form of the Langevin
algorithm performs accelerated gradient descent. Critically, our work is based on the use of Kullback-Leibler
(KL) divergence as the metric. We build on previous work that has studied the underdamped Langevin
algorithm and has used coupling methods to establish convergence of the algorithm in the Wasserstein
distance [see, e.g., 8, 7, 11]. Our work establishes a direct linkage between the underdamped Langevin
algorithm and Nesterov acceleration by working directly in the objective functional, the KL divergence.
Combining ideas from optimization theory and diffusion processes, we construct a Lyapunov functional
that couples the convergence in the momentum and the original variables. We then prove the overall
convergence rate by leveraging the hypocoercivity structure of the underdamped Langevin algorithm [42]. For
target distributions satisfying a log-Sobolev inequality, we find that the underdamped Langevin algorithm
accelerates the convergence rate of the classical Langevin algorithm from d/ǫ to

√
d/ǫ in terms of KL

divergence (See Theorem 1 for formal statement).

2 Preliminaries

We start by laying out the problem setting, including our assumptions on the target distribution that we
sample from, properties of the KL divergence with respect to other measure of differences between probability
distributions, and the notion of gradient on the space of probabilities.

2.1 Problem setting

Assume that we wish to sample from a target (posterior) probability density, p∗(θ), where θ ∈ R
d. Consider

the KL divergence to this target:

KL (p‖p∗) =

∫
p(θ) ln

(
p(θ)

p∗(θ)

)
dθ.

We use this KL divergence as an objective functional in an optimization-theoretic formulation of convergence
to p

∗(θ).

We assume that p
∗ satisfies the following conditions.

A1 The target density p
∗ satisfies a log-Sobolev inequality with constant ρ [18, 34]. That is, for any

smooth function g : Rd → R, we have

∫
g(θ) ln g(θ) · p∗(θ)dθ −

∫
g(θ) p∗(θ)dθ · ln

(∫
g(θ) p∗(θ)dθ

)
≤ 1

2ρ

∫ ||∇g(θ)||2
g(θ)

p
∗(θ)dθ.

A2 For p
∗ ∝ e−U , the potential function U is LG-gradient Lipschitz and is LH -Hessian Lipschitz; that is,

for U ∈ C2(Rd) and for all θ, ϑ ∈ R
d:1

‖∇U(θ)−∇U(ϑ)‖ ≤ LG ‖θ − ϑ‖ ;
∥∥∇2U(θ)−∇2U(ϑ)

∥∥
F
≤ LH ‖θ − ϑ‖ .

1It is worth noting that this definition of Hessian Lipschitzness with respect to the Frobenius norm is stronger than that

with respect to the spectral norm. We postulate here that the requirement of a Hessian Lipschitz condition is an artifact of our

particular choice of Lyapunov functional L and can possibly be removed in future work.
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A3 Without loss of generality, for p
∗(θ) ∝ e−U(θ), let ∇U(0) = 0 and U(0) = 0 (which can be achieved

by shifting the potential function U). Further assume that the normalization constant for e−U(θ) is

bounded and scales at most exponentially with dimension d: ln

(∫
exp(−U(θ))dθ

)
≤ CN · d+ CM .

As a concrete example, these assumptions are satisfied in the “locally nonconvex” case studied by [25], with
nonconvex region of radius R and strong convexity m; see also Assumption (a)–(c) in Appendix A. Note
that [25] instantiates both the log-Sobolev constant ρ and the normalization constants CN in terms of the

smoothness and conditioning of U , showing that ρ ≥ m
2 e

−16LGR2

. Here we additionally establish (see Fact 1)

that CN ≤ 1
2 ln

4π
m , and CM ≤ 32

L2

G

m2 LGR
2.

2.2 KL divergence and relation to other metrics

Our convergence result is expressed in terms of the KL Divergence. In this section, we recall that KL(p‖p∗)
upper bounds a number of other metrics of interest.

1. By Pinsker’s inequality, we can upper bound the total variation distance by the KL divergence:

TV (p,p∗) ≤
√

2KL(p‖p∗).

2. Since p
∗ satisfies the log-Sobolev inequality (A1) with constant ρ and has a Lipschitz smoothness

property, by the Talagrand inequality (Theorem 1 of [34]), we can upper bound the Wasserstein-2
distance (defined in Eq. (2)) by the KL divergence:

W2(p,p
∗) ≤

√
2KL (p‖p∗)

ρ
. (1)

2.3 Gradients on the space of probabilities

Given an iterative algorithm that generates a random vector θ(k) at each step k, we are interested in the
convergence of the law of (θ(k), π(k)) to the measure π

∗ associated with the target density p
∗. In this paper,

we consider the space of probability measures that are absolutely continuous with respect to the Lebesgue
measure (have density functions) and have finite second moments, P2(R

d). It will become clear later in
the paper (in Theorem 1) that when the target density p

∗ satisfies Assumptions A1–A3, the measure π
(k)

belongs to P2, for any k > 0. For this reason, we can always analyze behaviors of the distributions in terms
of their density functions.

In order to define a notion of “gradient” for accelerated gradient descent on the space of probabilities, P2(R
d),

we first need to equip P2(R
d) with a metric. To this end, we use the Wasserstein-2 distance, defined in terms

of couplings as follows [43]. For a pair of distributions p and q on R
d, a coupling γ is a joint measure over

the product space R
d × R

d that has p and q as its two marginal densities. We let Γ(p,q) denote the space
of all possible couplings of p and q. With this notation, the Wasserstein-2 distance is given by

W 2
2 (p,q) :=

1

2
inf

γ∈Γ(p,q)

∫

Rd×Rd

‖θ − ϑ‖22 dγ(θ, ϑ), (2)

where the set of γ that attains the infimum above is denoted Γopt.

On the space of P2(R
d) with Wasserstein-2 metric, there is also an optimal transport picture of the coupling.

Namely, for the measures µ and ν corresponding to the densities p and q, there exists a transport map t :
R

d → R
d, so that (t× id)#ν ∈ Γopt(p,q), where the push-forward operator # is defined as t#ν(θ) = ν(t(θ)).

With this notion, we can make use of the underlying L2 Hilbert space to define strong subdifferentials.

3



Letting L : P2 → R be a proper functional, define ξ ∈ ∂L as the strong subdifferential of L (taken at density
p associated with measure µ) if, for any transport map t, we have:

L(t#µ)− L(µ) ≥
∫

Rd

〈ξ(θ), t(θ) − θ〉 dµ(θ) + o

(∫

Rd

‖t(θ)− θ‖2 dµ(θ)
)
.

See [23, Definition 10.1.1] for more details. This strong subdifferential provides us the proper notion of
“gradient.” In particular, for functionals with enough regularity, the strong subdifferential of L taken at p

can be expressed as ∇θ
δL
δp , where δ

δp is the functional derivative taken at p and ∇θ is the ordinary gradient

operator in the space of θ [23, Lemma 10.4.1].

3 Underdamped Langevin Algorithm as Accelerated Gradient De-

scent

A recent trend in optimization theory involves casting the analysis of algorithms into a continuous dynamical
systems framework [41, 45, 47, 40]. This approach involves two steps: (1) a continuous-time system is specified
and a convergence rate is obtained for the continuous dynamics; (2) the continuous dynamics is discretized,
yielding a discrete-time algorithm, and the discretization error is analyzed, yielding an overall convergence
rate. Our work follows in this vein. We first study a continuous-time stochastic dynamical system that can
be interpreted as an accelerated gradient flow with respect to the KL divergence KL(pt‖p∗). We then derive
the underdamped Langevin algorithm as a discretization of the accelerated gradient flow. We show that this
discretization is precisely accelerated gradient descent with respect to KL(pt‖p∗).

3.1 Gradient descent dynamics with respect to KL divergence

We start by defining the dynamics of gradient descent via a consideration of the gradient flow associated with
the KL divergence KL (pt‖p∗). We first formulate the “vector flow” associated with the following stochastic
differential equation with Lipschitz continuous drift b : Rd → R

d:

dθt = b(θt)dt+
√
2dBt, (3)

where Bt is a standard Brownian motion. The evolution of the probability density function pt of the random
variable θt follows the transport of probability mass along a vector flow vt in the state space:

∂

∂t
pt(θ) +∇T (pt(θ)vt(θ)) = 0, (4)

where the vector flow can be calculated as: vt(θ) = b(θ)−∇ lnpt(θ). This can be compared with the following
Liouville equation:

∂

∂t
p̄t(θ) +∇T (p̄t(θ)b(θ)) = 0,

which describes the evolution of the probability along a deterministic vector field, d
dt θ̄t = b(θ̄t).

On the other hand, we formulate the “gradient” of the KL divergence corresponding to the vector flow point
of view. For the objective functional F [pt], its time change when θt follows Eq. (3) is:

d

dt
F [pt] = Eθ∼pt

[〈
∇δF [pt]

δpt
(θ), b(θ)−∇ lnpt

〉]
,

where ∇ δF [pt]
δpt

(θ) is the strong subdifferential of F [pt] associated with the 2-Wasserstein metric (See Sec. 2.3).

Therefore, we can consider the gradient-descent dynamics with respect to the functional F [pt] as taking the

4



vector flow vt in Eq. (4) as vt(θ) = −∇ δF [pt]
δpt

(θ). When the functional is the KL divergence, F [pt] =

KL (pt‖p∗), the gradient descent flow vGD
t involves taking

vGD
t (θ) = −∇δKL(pt‖p∗)

δpt
(θ) = −∇ ln

pt(θ)

p∗(θ)
,

or, equivalently, bGD(θ) = −∇U(θ) in Eq. (3).

Along this gradient descent flow, vGD
t , the time evolution of the KL divergence is

d

dt
KL(pt‖p∗) = −Eθ∼pt

[∥∥∥∥∇
δKL(pt‖p∗)

δpt
(θ)

∥∥∥∥
2
]
= −Eθ∼pt

[∥∥∥∥∇ ln
pt(θ)

p∗(θ)

∥∥∥∥
2
]
.

If p∗(θ) satisfies Assumption A1 then taking g = pt

p∗
in the log-Sobolev inequality yields:

Eθ∼pt

[
ln

(
pt(θ)

p∗(θ)

)]
≤ 1

2ρ
Eθ∼pt

[∣∣∣∣
∣∣∣∣∇ ln

(
pt(θ)

p∗(θ)

)∣∣∣∣
∣∣∣∣
2
]
. (5)

Note the resemblance of this bound to the Polyak-Łojasiewicz condition [37] used in optimization theory
for studying the convergence of gradient methods—in both cases the difference in objective value from the
current iterate to the optimum is upper bounded by the squared norm of the gradient of the objective. With
the log-Sobolev inequality, we obtain that

d

dt
KL(pt‖p∗) = −Eθ∼pt

[∥∥∥∥∇ ln
pt(θ)

p∗(θ)

∥∥∥∥
2
]
≤ −2ρKL(pt‖p∗) ,

which implies the linear convergence of KL(pt‖p∗) along the gradient descent flow.

3.2 Accelerated gradient descent in KL divergence: A continuous perspective

We now introduce an accelerated dynamics in the space of probabilities via the incorporation of a momen-
tum variable r ∈ R

d. Denote x = (θ, r) and let the joint target distribution be p
∗(x) = p

∗(θ)p∗(r) =

exp
(
−U(θ)− ξ

2 ||r||22
)
.2 To design the accelerated gradient descent dynamics with respect to the KL diver-

gence, we leverage the acceleration phenomenon in optimization, which uses the gradient of the expanded
objective function to guide the algorithm (see the discussion in Sec. 3.2.2). We expand the KL divergence
(in both the θ and r coordinates) to obtain:

KL(pt(θ, r)‖p∗(θ)p∗(r)) =

∫ ∫
pt(θ, r) ln

pt(θ, r)

p∗(θ)p∗(r)
dθdr

= KL(pt(θ)‖p∗(θ)) + Eθ∼pt(θ) [KL (pt(r|θ)‖p∗(r))] ,

and form the vector field:

vAGD
t (x) = −

(
0 −I
I γI

)( ∇θ
δKL(pt‖p

∗)
δpt

∇r
δKL(pt‖p

∗)
δpt

)
(6)

=

(
∇r lnpt(θ, r) + ξr

−∇θ lnpt(θ, r) −∇U(θ)− γ∇r ln
pt(θ,r)
p∗(r)

)
. (7)

2We will use p
∗(θ) and pt(θ) to denote marginal distributions of p∗(θ, r) and pt(θ, r), respectively, after integration over r.
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The corresponding continuity equation defined by this vector field is

0 =
∂

∂t
pt(θ, r) +∇T

(
pt(θ, r)v

AGD
t (θ, r)

)

=
∂

∂t
pt(θ, r) +

(
∇T

θ ,∇T
r

)
[
pt(θ, r)

(
ξr

−∇U(θ)− γ∇r ln
pt(θ,r)
p∗(r)

)]
.

This implies that the vector field can be implemented via the following stochastic differential equation
{

dθt = ξrtdt
drt = −∇U(θt)dt− γξrtdt+

√
2γdBt,

(8)

which is the underdamped Langevin dynamics [20].

3.2.1 Convergence of the accelerated gradient-descent dynamics

If we consider the time derivative of the KL divergence, we have: KL(pt‖p∗),

d

dt
KL(pt‖p∗) =

∫ 〈
∇x

δKL (pt‖p∗)

δpt
, vAGD

t (θ, r)

〉
pt dx

=

∫ 〈
∇x

δKL (pt‖p∗)

δpt
,−
(

0 −I
I γI

)
∇x ln

pt

p∗

〉
pt dx

= −γEpt

[∥∥∥∥∇r ln
pt

p∗

∥∥∥∥
2
]
. (9)

This only demonstrates the contractive property in the r coordinates (note that the gradient is only in r in
Line (9)) and does not directly provide a linear convergence rate over time. To quantify the convergence
rate for this accelerated gradient descent dynamics with respect to the KL divergence objective, we need to
couple the convergence in θ coordinates to that in r. To this end, we follow recent work in the optimization
literature [45] and design a Lyapunov functional which makes use of a quadratic form of the gradient of the
distance D between the current iteration pt and the stationary solution p

∗:

L[pt] = KL (pt‖p∗) + Ept

[〈
∇x

δD[pt,p
∗]

δpt
, S∇x

δD[pt,p
∗]

δpt

〉]

= Ept

[
ln

pt

p∗
+

〈
∇x ln

pt

p∗
, S∇x ln

pt

p∗

〉]
, (10)

where we take the distance measure between pt and p
∗ as the KL divergence itself: D[pt,p

∗] = KL (pt‖p∗) =

Ept

[
ln pt

p∗

]
. Here we set the positive definite matrix in the quadratic form to be

S =
1

LG

(
1/4 Id×d 1/2 Id×d

1/2 Id×d 2 Id×d

)
. (11)

Interestingly, similar forms appear in the analyses of both accelerated gradient descent dynamics [31, 45]
and hypocoercive diffusion operators [42, 4].

We then make use of this Lyapunov functional to obtain a linear convergence rate for the accelerated gradient
descent dynamics with respect to the KL divergence.
Proposition 1. Under Assumptions A1–A3, the time evolution of the Lyapunov functional L with respect
to the continuous time vector flow vAGD

t in Eq. (7) with γ = 2 and ξ = 2LG is upper bounded as:

d

dt
L[pt] ≤ − ρ

10
L[pt].

This establishes linear convergence of the continuous process with a rate of ρ
10 .

6



3.2.2 Accelerated gradient descent dynamics for optimization

It is worth noting that the derivation in the previous subsection has a close correspondence to recent analyses
of the accelerated gradient descent dynamics in convex optimization [41, 45]. Indeed, when optimizing a
strongly convex function U(θ) on a Euclidean space with the accelerated gradient descent dynamics, the
continuous limit of the algorithm is expressed as an ordinary differential equation [45]:

d2θt
dt2

+ γξ
dθt
dt

+ ξ∇U(θt) = 0.

We can expand the space of interest via introducing a “momentum” variable, rt =
1
ξ
dθt
dt , to obtain a vector

field point of view on the joint space of xt = (θt, rt):

{
dθt
dt = ξrt
drt
dt = −∇U(θt)− γξrt.

We also extend the original objective function U(θ) to H(x) = U(θ)+ ξ
2‖r‖22 to capture the overall dynamical

behavior in the space of x. With the definition of this extended objective function H , we can simplify the
expression of the dynamics:

dx

dt
= −

(
0 −I
I γI

)(
∇θH(x)
∇rH(x)

)
. (12)

To quantify convergence for the strongly convex objective U , [45] considers a Lyapunov function of the form

l(x) = H(θ) +
〈
∇T

xDh(x), S∇xDh(x)
〉
, where Dh(x) = 1

2 ‖θ − θ∗‖2 + 1
2 ‖r‖

2 is the squared distance from
(θ, r) to the optimum of H , (θ∗, 0).

Comparing the dynamics of Eq. (12) versus Eq. (6) and the convergence analyses for them, we observe that
the underdamped Langevin diffusion defined in Eq. (8) is precisely accelerated gradient descent with respect
to the KL divergence.

3.3 Underdamped Langevin via second-order discretization

While the continuous-time perspective yields insight into the convergence rates achievable by acceleration, for
these insights to apply to discrete-time algorithms it is necessary to understand the effects of discretization.
In optimization, an emerging literature has begun to show how to design discretization procedures that retain
accelerated rates from continuous time [45, 47, 40]. The literature in MCMC has not yet formalized lower
bounds on convergence rates that allow characterizations of acceleration, in either continuous time or discrete
time, but there are results that exhibit the importance of discretization for convergence. In particular, higher
order (and more accurate) discretization schemes are found to accelerate convergence [29, 21, 8, 11, 27, 28].

In this section we show how to design a discretization for the an underdamped Langevin algorithm that
yields accelerated rates. Following [8], we discretize the time dimension underlying Eq. (8) into intervals of
equal length h (at the end of the k-th iteration, we have t = kh). Then in the (k + 1)-th step, we define a
continuous dynamics in the interval of τ ∈ [kh, (k + 1)h] by conditioning on the initial value of xkh:

{
dθτ = ξrτdτ
drτ = −γξrτdτ −∇U(θkh)dτ +

√
2γdBτ .

(13)

In Appendix B we derive explicit formulas for xτ given xkh. These are used to generate the (k+1)-th iterate.
In particular, define the hyperparameters γ = 2, ξ = 2LG, and set the step size as follows:

h =
1

56

1√
LG

min

{
1

24

ρ

LG
,

√
LGρ

LH

}
·min

{(
C̃N + 2

)−1/2
√

ǫ

d
,

√
ǫ

CM

}
, (14)

7



Algorithm 1: Underdamped Langevin Algorithm

Let x0 = (θ0, r0), where θ0, r0 ∼ N
(
0, 1

LG
I
)
.

for k = 0, · · · ,K − 1 do

Sample x(k+1)h ∼ N (µ (xkh) ,Σ), where µ (xkh) and Σ are defined in Eq. (35) and (36).
end for

where C̃N = CN + 1
2 ln

LG

2π . The discretized vector field is

v̂AGD
τ =

(
ξrτ
−∇U(θkh)−γ∇r ln

p(θτ ,rτ)
p∗(rτ )

)
=

(
ξrτ
−∇U(θkh)−γξrτ−γ∇r lnp(θτ , rτ )

)
. (15)

This leads to a high-order discretization scheme that is defined explicitly in Appendix B and summarized in
Algorithm 1.

By way of comparison, the Euler-Maruyama discretization scheme corresponds to:

v̂E−M
τ =

(
ξrkh
−∇U(θkh)− γξrkh − γ∇r lnp(θτ , rτ )

)
.

After integration, we obtain that for τ ∈ [kh, (k + 1)h]:

{
θτ = θkh + (τ − kh)ξrkh
rτ = (1− (τ − kh)γξ) rkh − (τ − kh)∇U(θkh) +

√
2γBτ−kh,

where the Brownian motion is defined as Bτ−kh ∼ N (0, (τ − kh)Id×d). This low-order integration scheme
does not grant accelerated convergence guarantees.

There are other higher-order discretization schemes that can be considered in addition to our scheme in
Eq. (15). In particular, note that vAGD

t decomposes into two parts:

vAGD
t =

(
ξrt
−∇U(θt)

)
+

(
0

−γ∇r ln
p(θt,rt)
p∗(rt)

)
,

where each part preserves p∗ as the invariant distribution. This inspires a splitting scheme for integrat-
ing vAGD

t . The first part is a Hamiltonian vector flow, which can be integrated via symplectic integra-
tion schemes such as the leapfrog method. The second part can be explicitly integrated to yield rτ−kh ∼
N
(
e−γξ(τ−kh)rkh,

1
ξ

(
1− e−2γξ(τ−kh)

)
I
)
.

Taking (τ − kh) → ∞, r is resampled as: r ∼ N
(
0, 1ξ I

)
according to the stationary distribution p

∗(r).

This recovers the Hamiltonian Monte Carlo (HMC) method [29]. Relating to concepts in optimization, this
“momentum resampling” step corresponds to a “momentum restart” method in optimization: one periodically
restarts the momentum from the stationary point [33]. In optimization this has a theoretical justification in
terms of increasing convergence rate; for HMC it has been observed empirically that not taking (τ−kh) → ∞
at every step increases mixing [35].

4 Convergence of the Underdamped Langevin Algorithm

From Fig. 1, we see that the underdamped Langevin algorithm, Eq. (34), seems to have a similar profile to
accelerated gradient descent; it uses oscillatory behavior to increase the convergence rate. In this section, we

8
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Figure 1: Acceleration phenomenon in optimization and sampling. Left: The (accelerated) gradient descent
algorithms minimize the objective function value |U(θt)− U(θ∗)|. Right: The (underdamped) Langevin
algorithms minimize the KL divergence KL(pt(θ)‖p∗(θ)), where p

∗(θ) ∝ e−U(θ). In both cases, U is a
quadratic function in 100 dimensions with condition number L/m = 100.

rigorously establish acceleration, by proving that the convergence of the underdamped Langevin algorithm

is of order O
(√

d/ǫ
)

in terms of KL divergence.

Let the KL divergence from pt(θ) to p
∗(θ) be the target functional to minimize:

KL(pt(θ)‖p∗(θ)) ≤ KL(pt(θ, r)‖p∗(θ)p∗(r)) .

We have the following theorem.
Theorem 1. Assume p

∗(θ) ∝ e−U(θ) satisfies Assumptions A1–A3. We use ρ to denote the minimum of
the log-Sobolev constant and 1. Then if we iterate the underdamped Langevin algorithm (34) with initial

condition θ0 ∼ N
(
0, 1

LG
I
)

for

k ≥ O
(√

d

ǫ
ln

(
d

ǫ

))

steps, we have KL(pkh(θ)‖p∗(θ)) ≤ KL (pkh(θ, r)‖p∗(θ)p∗(r)) < ǫ, ∀ǫ ≤ 2d.

If we further assume that the function U is locally nonconvex with radius R and has global strong convexity
m (Assumption (a)–(c)), we obtain an explicit dependence of the convergence time K on other constants:

K = O
(
max

{
L
3/2
G

ρ2
,
LH

ρ2

}√
d

ǫ
ln

d

ǫ

)
,

where ρ = min
{

m
2 e

−16LGR2

, 1
}
.

We devote the remainder of Section 4 to the proof of Theorem 1. As advertised, the proof decomposes
into a continuous-time analysis and a discretization analysis. We first establish the convergence rate of
the continuous underdamped Langevin dynamics in Proposition 1 to quantify the instantaneous contraction
provided by the dynamics. We then study the discretization error of the underdamped Langevin algorithm
in each step. Combining these two results and integrating over the time steps leads us to the final conclusion.

We begin by formulating the instantaneous change of the probability density p(xτ ) within each step of the
underdamped Langevin algorithm. The time evolution of p(xτ |xkh) following the discretized vector flow

9



v̂AGD
τ for τ ∈ [kh, (k + 1)h] is as follows:

∂p(xτ |xkh)

∂τ
= −∇T

x

(
p(xτ |xkh) · v̂AGD

τ

)

= −∇T
x

(
p(xτ |xkh) · vAGD

τ

)
−∇T

x

(
p(xτ |xkh) · (v̂AGD

τ − vAGD
τ )

)
.

Therefore, for the unconditioned probability density p(xτ ) = Exkh∼p(xkh) [p(xτ |xkh)],

∂p(xτ )

∂τ
= −∇T

x

(
p(xτ ) · vAGD

τ

)
− Exkh∼p(xkh)

[
∇T

x

(
(v̂AGD

τ − vAGD
τ )p(xτ |xkh)

)]
. (16)

We have thus separated the time evolution of p(xτ ) into two parts: the continuous component and the
discretization error component.

Recall the Lyapunov functional, L(pt) = Ept

[
ln pt

p∗
+
〈
∇x ln

pt

p∗
, S∇x ln

pt

p∗

〉]
, that we defined in Sec. 3.2).

We use this Lyapunov functional to analyze the convergence of the underdamped Langevin algorithm. Note
that the instantaneous change of the Lyapunov functional L follows the overall vector flow v̂AGD

t , and derives
from the continuous vector flow vAGD

t and the discretization error v̂AGD
t − vAGD

t :

d

dt
L[p(xτ )] =

∫
δL

δp(xτ )

∂p(xτ )

∂t
dxτ =

∫ 〈
∇x

δL
δp(xτ )

, v̂AGD
τ

〉
p(xτ ) dxτ

=

∫ 〈
∇x

δL
δp(xτ )

, vAGD
τ

〉
p(xτ ) dxτ (17a)

+

∫ 〈
∇x

δL
δp(xτ )

,Exkh∼p(xkh)

[(
v̂AGD
τ − vAGD

τ

)
p(xτ |xkh)

]〉
dxτ . (17b)

We now analyze term (17a) and term (17b) separately, returning later to combine the analyses and obtain
the overall convergence rate.

We use Lemma 7 in the Appendix to expand term (17a) and quantify the convergence of L with respect to
the continuous vector flow vAGD

τ :

∫ 〈
∇x

δL
δpt

(x), vAGD
τ (x)

〉
pτ (x) dx = −4Ept

[〈
∇x∇r ln

(
pt

p∗

)
, S∇x∇r ln

(
pt

p∗

)〉

F

]

− Ept

[〈
∇x ln

(
pt

p∗

)
,MC∇x ln

(
pt

p∗

)〉]
, (18)

where MC is defined in Eq. (39). The two terms on the right-hand side of Eq. (18) are both less than or
equal to zero. We will use the first term to cancel similar terms in the discretization error and use the second
term to drive the convergence of the process (by way of the log-Sobolev inequality).

4.1 Discretization error

For term (17b) capturing the discretization error, we provide an upper bound in the following proposition.
Proposition 2. Under Assumption A2, when τ − kh ≤ 1

8LG
, γ = 2, and ξ = 2LG, term (17b) is upper

10



bounded as:
∫ 〈

∇x
δL

δp(xτ )
,Exkh∼p(xkh)

[(
v̂AGD
τ − vAGD

τ

)
p(xτ |xkh)

]〉
dxτ

≤ 4Epτ (xτ)

[〈
∇x∇r ln

pτ (xτ )

p∗(xτ )
, S∇x∇r ln

pτ (xτ )

p∗(xτ )

〉

F

]

+
1

32
Epτ

[∥∥∥∥∇θ ln
pτ (xτ )

p∗(xτ )

∥∥∥∥
2
]
+

9

16
Epτ

[∥∥∥∥∇r ln
pτ (xτ )

p∗(xτ )

∥∥∥∥
2
]

+

(
68L2

G +
1

8

L2
H

LG

)
Ep(xkh,xτ)

[
‖θτ − θkh‖2

]
+ 18eLGdmax

{
L4
G(τ − kh)4, L2

G(τ − kh)2
}
.

Roughly speaking, Proposition 2 upper bounds the instantaneous contribution of the discretization error
by the terms appearing in Eq. (18) (the contraction of the continuous process), the variance of θτ − θkh
(the progress of θ within one step), and constant terms that depend on the step size. After combining
Proposition 2 with Proposition 1, the only nonnegative terms that remain are the variance of θτ − θkh and
other constant terms.

We devote the rest of this subsection to the proof of Proposition 2. We first expand term (17b) using the
definitions of the functional L as well as the discrete and continuous vector flows v̂AGD

τ and vAGD
τ .

Lemma 3. For τ−kh ≤ 1
8LG

, the time evolution of the Lyapunov functional L with respect to the discretiza-

tion error v̂AGD
τ − vAGD

τ is:

∫ 〈
∇x

δL
δp(xτ )

,Exkh∼p(xkh)

[(
v̂AGD
τ − vAGD

τ

)
p(xτ |xkh)

]〉
dxτ

= 2

∫ 〈
∇θ ln

pτ (xτ )

p∗(xτ )
,Exkh∼p(xkh)

[(
∇U(θτ )−∇U(θkh)

)
p(xτ |xkh)

]〉

F

dxτ (19a)

+ 9

∫ 〈
∇r ln

pτ (xτ )

p∗(xτ )
,Exkh∼p(xkh)

[(
∇U(θτ )−∇U(θkh)

)
p(xτ |xkh)

]〉
dxτ (19b)

+ 2

∫ 〈
∇x∇r ln

pτ (xτ )

p∗(xτ )
, S∇xτ

Exkh∼p(xkh|xτ ) [∇U(θτ )−∇U(θkh)]

〉

F

pτ (xτ ) dxτ . (19c)

It can be observed that of the three terms (19a)–(19c) in Lemma 3, there are two types of term: Terms (19a)

and (19b) only involve first-order derivatives, ∇# ln pτ (xτ )
p∗(xτ )

(for # labeling θ or r); while term (19c) involves

a second-order derivative, ∇x∇r ln
pτ (xτ )
p∗(xτ )

.

For terms (19a) and (19b), we make use of Young’s inequality to obtain upper bounds:

∫ 〈
∇θ ln

pτ (xτ )

p∗(xτ )
,Exkh∼p(xkh)

[(
∇U(θτ )−∇U(θkh)

)
p(xτ |xkh)

]〉
dxτ

≤ 1

64

∫ ∥∥∥∥∇θ ln
pτ (xτ )

p∗(xτ )

∥∥∥∥
2

pτ (xτ ) dxτ + 16L2
GEp(xτ ,xkh)

[
‖θτ − θkh‖2

]
. (20a)

∫ 〈
∇r ln

pτ (xτ )

p∗(xτ )
,Exkh∼p(xkh)

[(
∇U(θτ )−∇U(θkh)

)
p(xτ |xkh)

]〉
dxτ

≤ 1

16

∫ ∥∥∥∥∇r ln
pτ (xτ )

p∗(xτ )

∥∥∥∥
2

pτ (xτ ) dxτ + 4L2
GEp(xτ ,xkh)

[
‖θτ − θkh‖2

]
. (20b)

The main difficulty is in bounding term (19c), which is the object of the following lemma.
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Lemma 4. Under Assumption A2, we provide an explicit bound for term (19c). When τ−kh ≤ 1
8LG

, γ = 2,
and ξ = 2LG,

∫ 〈
∇x∇r ln

pτ (xτ )

p∗(xτ )
, S∇xτ

Exkh∼p(xkh|xτ) [∇U(θτ )−∇U(θkh)]

〉

F

pτ (xτ ) dxτ

≤ 2Epτ (xτ )

[〈
∇x∇r ln

pτ (xτ )

p∗(xτ )
, S∇x∇r ln

pτ (xτ )

p∗(xτ )

〉

F

]

+ 9eLGdmax
{
L4
G(τ − kh)4, L2

G(τ − kh)2
}
+

1

16

L2
H

LG
Ep(xkh|xτ)pτ (xτ )

[
‖θτ − θkh‖2

]
.

In the proof of Lemma 4, we first upper bound the Frobenius inner product in term (19c) by the (weighted)

Frobenius norms of ∇x∇r ln
pτ (xτ )
p∗(xτ )

and ∇xτ
Exkh∼p(xkh|xτ ) [∇U(θτ )−∇U(θkh)]. We then use a synchronous

coupling technique to calculate ∇xτ
Exkh∼p(xkh|xτ) [∇U(θτ )−∇U(θkh)] and provide an upper bound of its

Frobenius norm. We defer the complete proof to Appendix D.

Applying Eq. (20a)–(20b) and Lemma 4 to Eq. (19a)–(19c), we bound the overall discretization error and
finish the proof of Proposition 2 as follows:

∫ 〈
∇x

δL
δp(xτ )

,Exkh∼p(xkh)

[(
v̂AGD
τ − vAGD

τ

)
p(xτ |xkh)

]〉
dxτ

≤ 4Epτ (xτ)

[〈
∇x∇r ln

pτ (xτ )

p∗(xτ )
, S∇x∇r ln

pτ (xτ )

p∗(xτ )

〉

F

]

+
1

32
Epτ

[∥∥∥∥∇θ ln
pτ (xτ )

p∗(xτ )

∥∥∥∥
2
]
+

9

16
Epτ

[∥∥∥∥∇r ln
pτ (xτ )

p∗(xτ )

∥∥∥∥
2
]

+

(
68L2

G +
1

8

L2
H

LG

)
Ep(xkh,xτ)

[
‖θτ − θkh‖2

]
+ 18eLGdmax

{
L4
G(τ − kh)4, L2

G(τ − kh)2
}
.

4.2 Convergence of the underdamped Langevin algorithm

Combining Propositions 1 and 2, which establish the convergence rates of the continuous underdamped
Langevin dynamics and the discretization error, we find that the overall time evolution of the Lyapunov
functional L within each step of the underdamped Langevin algorithm can be upper bounded as follows:

dL(pt)

dt
=

∫ 〈
∇x

δL
δpt

, vAGD
t

〉
pt dx

+

∫ 〈
∇x

δL
δpt

,Exkh∼p(xkh)

[(
v̂AGD
τ − vAGD

τ

)
p(xτ |xkh)

]〉
pt dx

≤ −Ept

[〈
∇x ln

(
pt

p∗

)
,M∇x ln

(
pt

p∗

)〉

F

]
(21a)

+

(
68L2

G +
1

8

L2
H

LG

)
Ep(xkh,xτ )

[
‖θτ − θkh‖2

]
(21b)

+ 18eLGdmax
{
L4
G(τ − kh)4, L2

G(τ − kh)2
}
, (21c)

where

M =




31
32 Id×d 4 · Id×d − 1

8
∇2U(θ)

LG

4 · Id×d − 1
8
∇2U(θ)

LG

279
16 Id×d − 1

2
∇2U(θ)

LG


 .

12



In this section, we will further analyze terms (21a)–(21c) to obtain the overall convergence rate of the
underdamped Langevin algorithm. We will need to quantify the convergence contributed by term (21a) and
upper bound the extra discretization error in terms (21b)–(21c) as the algorithm progresses. After these two
steps, choosing a suitable step size will finish the proof of Theorem 1.

We begin by using the log-Sobolev inequality to relate term (21a) to the Lyapunov functional L(pt). A key
step is lower bounding matrix M which is done in the following Lemma 5 (the proof of which is deferred to
Appendix E).

Lemma 5. Under Assumption A2, for any LG ≥ 2ρ, M � ρ
30

(
S + 1

2ρ I2d×2d

)
.

We can thus upper bound term (21a) using this lower bound on M in conjunction with the log-Sobolev
inequality, Eq. (5):

−Ept

[〈
∇x ln

(
pt

p∗

)
,M∇x ln

(
pt

p∗

)〉

F

]

≤ − ρ

30

(
Ept

[〈
∇x ln

(
pt(x)

p∗(x)

)
, S∇x ln

(
pt(x)

p∗(x)

)〉]
+

1

2ρ
Ept

[∥∥∥∥∇x ln

(
pt(x)

p∗(x)

)∥∥∥∥
2
])

≤ − ρ

30

(
Ept

[〈
∇x ln

(
pt(x)

p∗(x)

)
, S∇x ln

(
pt(x)

p∗(x)

)〉]
+ Ept

[
ln

(
pt(x)

p∗(x)

)])

≤ − ρ

30
· L[pt]. (22)

Consequently, Eq. (21a)–(21c) simplify to:

dL(pt)

dt
≤ − ρ

30
L(pt) (23a)

+

(
68L2

G +
1

8

L2
H

LG

)
Ep(xkh,xτ)

[
‖θτ − θkh‖2

]
(23b)

+ 18eLGdmax
{
L4
G(τ − kh)4, L2

G(τ − kh)2
}
. (23c)

This implies that without the extra discretization error of terms (23b)–(23c), the Markov process converges
exponentially (similarly as for the continuous dynamics) with a rate of ρ/30, proportional to the log-Sobolev
constant.

We now focus on the second task of upper bounding terms (23b)–(23c). The crux of the argument is to
upper bound the variance of θτ − θkh as the algorithm progresses. In the following lemma we show that for

a suitable choice of step size, Ep(xkh,xτ )

[
‖θτ − θkh‖2

]
is uniformly upper bounded by a term that scales as

O(h2d).
Lemma 6. Assume that function U satisfies Assumption A1–A3, where ρ denotes the minimum of the
log-Sobolev constant and 1. Assume that we take γ = 2, ξ = 2LG, and

h =
1

56

1√
LG

min

{
1

24

ρ

LG
,

√
LGρ

LH

}
·min

{(
C̃N + 2

)−1/2
√

ǫ

d
,

√
ǫ

CM

}
,

where ǫ ≤ 2d. Then for θτ following Eq. (13), ∀n ∈ N
+ and ∀τ ∈ [kh, (k + 1)h],

Ep(xkh,xτ)

[
‖θτ − θkh‖2

]
≤
((

24C̃N + 26
) LG

ρ
· d+ 24CM

LG

ρ

)
h2 = O

(
LG

ρ
d · h2

)
.

To establish this uniform upper bound, we use an inductive argument—we prove that if the above bound
holds for t ≤ kh, then, given the effect of contraction and the discretization error in [kh, τ ], the bound will
still hold for any τ ∈ [kh, (k + 1)h]. We defer the complete proof of Lemma 6 to Appendix E.
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Given this uniform bound for Ep(xkh,xτ)

[
‖θτ − θkh‖2

]
across the entire interval, we can upper bound

term (23b) using our choice of the parameters γ = 2, ξ = 2LG, and the step size h:

(
68L2

G +
1

8

L2
H

LG

)
Ep(xkh,xτ )

[
‖θτ − θkh‖2

]

=

(
68L2

G +
1

8

L2
H

LG

)((
24C̃N + 26

) LG

ρ
· d+ 24CM

LG

ρ

)
h2

≤ ρ · LG max

{
136

LG

ρ
,
1

4

L2
H

L2
Gρ

}
·max

{(
48C̃N + 52

) LG

ρ
d, 48CM

LG

ρ

}
h2

≤ 49

4
ρ · LG max

{
242

L2
G

ρ2
,
L2
H

LGρ2

}
·max

{(
C̃N + 2

)
d, CM

}
h2

≤ ρ

30
· ǫ
4
. (24a)

For term (23c), we obtain that

18eLGdmax
{
L4
G(τ − kh)4, L2

G(τ − kh)2
}
≤ ρ

30
· 540eLG

ρ
dmax{L4

Gh
4, L2

Gh
2}

≤ ρ

30
· ǫ
4
. (24b)

Plugging Eqs. (24a)–(24b) into Eqs. (23b)–(23c), we obtain the following upper bound for dL(pt)
dt :

dL(pt)

dt
≤ − ρ

30
·
(
L(pt)−

ǫ

2

)
.

Applying Grönwall’s lemma, we arrive at a bound for the Lyapunov functional at every step:

L[pkh]−
ǫ

2
≤ e−

ρ
30

h
(
L[p(k−1)h]−

ǫ

2

)
≤ e−

ρ
30

hk
(
L[p0]−

ǫ

2

)
< e−

ρ
30

hkL[p0].

Therefore, for any k ≥ K = 30
ρh ln

(
2L[p0]

ǫ

)
, we have KL(pkh‖p∗) ≤ L[pkh] ≤ ǫ.

We now use the definition of the step size h and the upper bound on the initial value L[p0] from Lemma 12
to obtain the number of iterations for Algorithm 1 to converge to within ǫ of the target distribution p

∗:

K = 1680max

{
24

L
3/2
G

ρ2
,
LH

ρ2

}
·max

{√
C̃N + 2

√
d

ǫ
,

√
CM

ǫ

}
· ln
(
4max

{(
C̃N + 1

) d

ǫ
,
CM

ǫ

})

= O
(√

d

ǫ
ln

d

ǫ

)
.

If the function U further satisfies assumptions A1—A3 (that U is nonconvex inside a region of radius R and

m-strongly convex outside of it), we can instantiate the constants ρ ≥ m
2 e

−16LGR2

, C̃N = CN + 1
2 ln

LG

2π ≤
1
2 ln

2LG

m , and CM ≤ 32
L2

G

m2 LGR
2, and study the computational complexity in more detail. The number of

iterations required becomes:

K = 4800e32LGR2

max

{
24

L
3/2
G

m2
,
LH

m2

}
·max

{√
ln

LG

m
+ 5

√
d

ǫ
, 8R

LG

m

√
LG

ǫ

}

· ln
(
2max

{(
ln

LG

m
+ 4

)
d

ǫ
, 64R2L

2
G

m2

LG

ǫ

})
.
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Emphasizing the dimension dependency, we have:

K = O
(
max

{
L
3/2
G

ρ2
,
LH

ρ2

}√
d

ǫ
ln

d

ǫ

)
.

5 Discussion

We have shown that there is an analog of Nesterov accelerated gradient method for MCMC—it is the
underdamped Langevin algorithm. We demonstrated this by adopting a view of sampling algorithms as
optimizing over the space of probability measures, with KL divergence as the objective functional. By
constructing an appropriate Lyapunov functional, we were able to prove that the underdamped Langevin
algorithm has an accelerated convergence rate compared to the classical overdamped Langevin algorithm.

A line of recent results leverage richer stochastic dynamics to obtain better pre-conditioning and employ
higher-order discretization schemes [17, 22, 21]. They observe that in practice such dynamics increase
stability and in turn results in faster convergence of the algorithm.

Our particular approach involves multiplying the strong sub-differential of the KL divergence by a symplectic
matrix and a positive semidefinite matrix. An interesting direction for future research would be to consider
other, more general choices. Indeed, a general construction of underdamped stochastic processes would
involve taking a vector field vt to have the following form:

vt = −(D(x) +Q(x))∇ ln

(
pt(x)

p∗(x)

)
, (25)

where D(x) is a positive semidefinite diffusion matrix, and Q(x) is a skew-symmetric curl matrix. This has
the form of a generic dynamics for smooth optimization. It can be checked that when pt(x) = p

∗(x), vt = 0.
Therefore, p∗ is a stationary distribution when pt follows the vector flow vt:

∂pt(x)

∂t
=−∇ · (pt(x) · vt)

=∇ ·
(
pt(x) · (D(x) +Q(x))∇ ln

(
pt(x)

p∗(x)

))
. (26)

It has been previously proved [24, 26] that any continuous Markov process with the stationary distribution
p
∗ which satisfies an integrability condition can be represented in the form of Eq. (26).

To simulate the dynamics of vt on the state space of x, we can realize it as a stochastic process with an Itô
diffusion:

∂pt(x)

∂t
=∇ ·

(
pt(x)

(
D(x) +Q(x)

)
∇ ln

(
pt(x)

p∗(x)

))

=
∑

i

∑

j

∂2

∂xi∂xj

(
pt(x)Di,j(x)

)
−∇ ·

(
pt(x)

((
D(x) +Q(x)

)
∇ lnp∗(x) + Γ(x)

))
, (27)

where Γi(x) =
∑

j
∂

∂xj
[D(x) +Q(x)]i,j . Eq. (27) corresponds to the probability density of xt following a

stochastic differential equation:

dxt = ((D(x) +Q(x))∇ ln (p∗(x)) + Γ(x)) dt+
√
2D(x)dBt. (28)
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To study convergence of this process, denote the first variation of a functional G[pt] as δG
δpt

[pt] : R
d → R. If

the vector flow vt satisfies the continuity equation for pt, Eq. (26), then

d

dt
G[pt] =

∫
δG
δpt

[pt](x)
d

dt
pt(x)dx

=

∫
δG
δpt

[pt](x)(−∇ · (pt(x)vt(x)))dx

=

∫ 〈
∇ δG
δpt

[pt](x), vt(x)

〉
pt(x)dx

= Ept

[〈
∇ δG
δpt

[pt](x), vt(x)

〉]

= −Ept

[〈
∇ δG
δpt

[pt](x), (D(x) +Q(x))∇ ln

(
pt(x)

p∗(x)

)〉]
. (29)

Using notation from statistical mechanics, we can represent Eq. (29) in a more compact form using a
(Ginzburg-Landau) dissipative bracket and a generalized Poisson bracket to generate the stochastic process
d
dtpt(x) with ∇ δF

δpt
. Define the dissipative bracket {·, ·} as

{G[pt],F [pt]} = Ept(x)

[〈
∇δG[pt](x)

δpt(y)
, D(x)∇δF [pt](x)

δpt(y)

〉]
; (30)

and the generalized Poisson bracket [·, ·] as

[G[pt],F [pt]] = Ept(x)

[〈
∇δG[pt](x)

δpt(y)
, Q(x)∇δF [pt](x)

δpt(y)

〉]
. (31)

Then

d

dt
G[pt] = −Ept

[〈
∇ δG
δpt

[pt](x), (D(x) +Q(x))∇ ln

(
pt(x)

p∗(x)

)〉]

= −{G[pt],F [pt]} − [G[pt],F [pt]]. (32)

By taking G = F as the KL-divergence, we can calculate its time derivative as:

d

dt
KL (pt‖p∗) = Ept

[〈
∇ ln

(
pt(x)

p∗(x)

)
,−(D(x) +Q(x))∇ ln

(
pt(x)

p∗(x)

)〉]

= −Ept

[〈
∇ ln

(
pt(x)

p∗(x)

)
, D(x)∇ ln

(
pt(x)

p∗(x)

)〉]
≤ 0, (33)

where we know from the positive semidefiniteness of D(x) that KL(pt‖p∗) is monotonically non-increasing.
If D(x) were to be positive definite, we can directly obtain a linear convergence rate for the continuous
process using the log-Sobolev inequality. However if D(x) is just positive semidefinite (as is the case for
the diffusion matrix that we encountered while analyzing the underdamped Langevin algorithm) we need to
choose a well-designed Lyapunov functional to prove convergence (if the process indeed converges).

Some attempts have been made in this direction in the stochastic optimization literature for a class of
constant D and Q matrices [16]. For the generic case, [15] explores an approach based on Stein factors; this
seems like a particularly promising avenue to explore further.

6 Acknowledgements

We would like to thank Jianfeng Lu, Chi Jin, and Nilesh Tripuraneni for many helpful discussions and insights.
This work was partially supported by Army Research Office grant W911NF-17-1-0304, and National Science
Foundation Grant NSF-IIS-1740855, NSF-IIS-1909365, and NSF-IIS-1619362.

16



References

[1] J. Bierkens, P. Fearnhead, and G. Roberts. The Zig-Zag process and super-efficient sampling for Bayesian
analysis of big data. Ann. Statist., 47(3):1288–1320, 2019.

[2] N. Bou-Rabee, A. Eberle, and R. Zimmer. Coupling and convergence for Hamiltonian Monte Carlo.
arXiv:1805.00452, 2018.

[3] A. Bouchard-Côté, S. J. Vollmer, and A. Doucet. The bouncy particle sampler: A nonreversible rejection-
free Markov chain Monte Carlo method. J. Am. Stat. Assoc., 113(522):855–867, 2018.

[4] S. Calogero. Exponential convergence to equilibrium for kinetic Fokker-Planck equations. Comm. Part.
Differ. Equat., 37(8):1357–1390, 2012.

[5] N. Chatterji, N. Flammarion, Y.-A. Ma, P. Bartlett, and M. Jordan. On the theory of variance reduction
for stochastic gradient Monte Carlo. In Proceedings of the 35th International Conference on Machine
Learning, volume 80, pages 764–773, 2018.

[6] X. Cheng and P. L. Bartlett. Convergence of Langevin MCMC in KL-divergence. In Proceedings of the
29th International Conference on Algorithmic Learning Theory (ALT), pages 186–211, 2018.

[7] X. Cheng, N. S. Chatterji, Y. Abbasi-Yadkori, P. L. Bartlett, and M. I. Jordan. Sharp convergence
rates for Langevin dynamics in the nonconvex setting. arXiv:1805.01648, 2018.

[8] X. Cheng, N. S. Chatterji, P. L. Bartlett, and M. I. Jordan. Underdamped Langevin MCMC: A non-
asymptotic analysis. In Proceedings of the 31st Conference on Learning Theory (COLT), pages 300–323,
2018.

[9] A. S. Dalalyan. Theoretical guarantees for approximate sampling from smooth and log-concave densities.
J. Royal Stat. Soc. B, 79(3):651–676, 2017.

[10] A. S. Dalalyan and A. G. Karagulyan. User-friendly guarantees for the Langevin Monte Carlo with
inaccurate gradient. arXiv:1710.00095, 2017.

[11] A. S. Dalalyan and L. Riou-Durand. On sampling from a log-concave density using kinetic Langevin
diffusions. arXiv:1807.09382, 2018.

[12] A. Durmus and E. Moulines. Sampling from strongly log-concave distributions with the Unadjusted
Langevin Algorithm. arXiv:1605.01559, 2016.

[13] A. Durmus and E. Moulines. Nonasymptotic convergence analysis for the unadjusted Langevin algorithm.
Ann. Appl. Probab., 27(3):1551–1587, 06 2017.

[14] R. Dwivedi, Y. Chen, M. J. Wainwright, and B. Yu. Log-concave sampling: Metropolis-Hastings
algorithms are fast! arXiv:1801.02309, 2018.

[15] M. A. Erdogdu, L. Mackey, and O. Shamir. Global non-convex optimization with discretized diffusions.
In Advances in Neural Information Processing Systems 31, pages 9671–9680. 2018.

[16] X. Gao, M. Gurbuzbalaban, and L. Zhu. Breaking reversibility accelerates Langevin dynamics for global
non-convex optimization. arXiv:1812.07725, 2019.

[17] M. Girolami and B. Calderhead. Riemann manifold Langevin and Hamiltonian Monte Carlo methods.
J. Royal Stat. Soc. B, 73(2):123–214, 2011.

[18] L. Gross. Logarithmic Sobolev inequalities. Amer. J. Math, 97(4):1061–1083, 1975.

[19] R. Jordan, D. Kinderlehrer, and F. Otto. The variational formulation of the Fokker-Planck equation.
SIAM J. Math. Anal., 29(1):1–17, January 1998.

17



[20] P. Langevin. On the theory of Brownian motion (sur la théorie du mouvement brownien). C. R. Acad.
Sci. (Paris), 146:530–533, 1908.

[21] B. Leimkuhler and X. Shang. Adaptive thermostats for noisy gradient systems. SIAM J. Sci. Comput.,
38(2):A712–A736, 2016.

[22] C. Liu, J. Zhu, and Y. Song. Stochastic gradient geodesic MCMC methods. In Advances in Neural
Information Processing Systems (NIPS) 29, pages 642–651. 2016.

[23] A. Luigi, N. Gigli, and G. Savaré. Gradient Flows: In Metric Spaces and in the Space of Probability
Measures. Springer Science & Business Media, 2nd edition, 2008.

[24] Y.-A Ma, T. Chen, and E. Fox. A complete recipe for stochastic gradient MCMC. In Advances in
Neural Information Processing Systems (NIPS) 28, pages 2899–2907. 2015.

[25] Y.-A. Ma, Y. Chen, C. Jin, N. Flammarion, and M. I. Jordan. Sampling can be faster than optimization.
Proc. Natl. Acad. Sci. U.S.A., 116:20881–20885, 2019.

[26] Y.-A Ma, E. B. Fox, T. Chen, and L. Wu. Irreversible samplers from jump and continuous Markov
processes. Stat. Comput., pages 1–26, 2018.

[27] O. Mangoubi and A. Smith. Rapid mixing of Hamiltonian Monte Carlo on strongly log-concave distri-
butions. arXiv:1708.07114, 2017.

[28] O. Mangoubi and N. K. Vishnoi. Dimensionally tight running time bounds for second-order Hamiltonian
Monte Carlo. arXiv:1802.08898, 2018.

[29] R. M. Neal. MCMC using Hamiltonian dynamics. Handbook of Markov Chain Monte Carlo, 54:113–162,
2010.

[30] A. Nemirovskii and D. Yudin. Problem Complexity and Method Efficiency in Optimization. Wiley, 1983.

[31] Y. Nesterov. A method of solving a convex programming problem with convergence rate o(1/k2). Soviet
Mathematics Doklady, 27(2):372–376, 1983.

[32] Y. Nesterov. Introductory Lectures on Convex Optimization: A Basic Course. Kluwer, Boston, 2004.

[33] B. O’donoghue and E. Candès. Adaptive restart for accelerated gradient schemes. Found. Comput.
Math., 15(3):715–732, 2015.

[34] F. Otto and C. Villani. Generalization of an inequality by Talagrand and links with the logarithmic
Sobolev inequality. J. Funct. Anal., 173(2):361–400, 2000.

[35] M. Ottobre, N. S. Pillai, F. J. Pinski, and A. M. Stuart. A function space HMC algorithm with second
order Langevin diffusion limit. Bernoulli, 22(1):60–106, 02 2016.

[36] H. J. M. Peters and P. P. Wakker. Convex functions on non-convex domains. Econ. Lett., 22(2):251–255,
1986.

[37] B. T. Polyak. Gradient methods for minimizing functionals. Zh. Vychisl. Mat. Mat. Fiz., 3(4):643–653,
1963.

[38] G. O. Roberts and O. Stramer. Langevin diffusions and Metropolis-Hastings algorithms. Methodol.
Comput. Appl. Probab., 4:337–357, 2002.

[39] P. J. Rossky, J. D. Doll, and H. L. Friedman. Brownian dynamics as smart Monte Carlo simulation. J.
Chem. Phys., 69(10):4628, 1978.

18



[40] B. Shi, S. S. Du, W. J. Su, and M. I. Jordan. Acceleration via Symplectic Discretization of High-
Resolution Differential Equations. arXiv:1902.03694, 2019.

[41] W. Su, S. Boyd, and E. Candes. A differential equation for modeling Nesterov’s accelerated gradient
method: Theory and insights. In Advances in Neural Information Processing Systems (NIPS) 27, pages
2510–2518. 2014.

[42] C. Villani. Hypocoercivity. Mem. Am. Math. Soc., 202(950), 2009.

[43] C. Villani. Optimal Transport: Old and New. Wissenschaften. Springer, Berlin, 2009.

[44] A. Wibisono. Sampling as optimization in the space of measures: The Langevin dynamics as a composite
optimization problem. arXiv:1802.08089, 2018.

[45] A. Wilson, B. Recht, and M. I. Jordan. A Lyapunov analysis of momentum methods in optimization.
arXiv:1611.02635, 2016.

[46] M. Yan. Extension of convex function. J. Convex. Anal., 21(4):965–987, 2014.

[47] J. Zhang, A. Mokhtari, S. Sra, and A. Jadbabaie. Direct Runge-Kutta discretization achieves accelera-
tion. In Advances in Neural Information Processing Systems (NeuIPS) 31, pages 3900–3909. 2018.

19



A Local Nonconvexity Assumption

For p
∗(θ) ∝ e−U(θ), we call a function U : Rd → R locally nonconvex with radius R and global strong

convexity m if it satisfies the following assumptions:

(a) U(θ) is m-strongly convex for ‖θ‖ > R.

That is: V (θ) = U(θ)−m

2
‖θ‖22 is convex on Ω = R

d\B(0, R)3. We then follow the definition of convexity

on nonconvex domains [36, 46] to require that ∀θ ∈ Ω, any convex combination of θ = λ1θ1+· · ·+λkθkh
with θ1, · · · , θkh ∈ Ω satisfies:

V (θ) ≤ λ1V (θ1) + · · ·+ λkV (θkh).

(b) U(θ) is LG-Lipschitz smooth and Hessian LH -Lipschitz.

That is: U ∈ C2(Rd); ∀θ, ϑ ∈ R
d, ‖∇U(θ)−∇U(ϑ)‖ ≤ LG ‖θ − ϑ‖ and

∥∥∇2U(θ)−∇2U(ϑ)
∥∥
F

≤
LH ‖θ − ϑ‖.

(c) For convenience, let ∇U(0) = 0 (i.e., zero is a local extremum).

From [25], we know that ρ ≥ m

2
e−16LGR2

. We prove that the constants in Assumption A3 are also upper

bounded by functions of m, LG, and R.

Fact 1. If p∗(θ) ∝ e−U(θ) satisfy Assumptions (a)–(c), then the normalization constant

∫
exp(−U(θ))dθ is

upper bounded as follows:

ln

∫
exp (−U(θ)) dθ =

d

2
ln

4π

m
+ 32

L2
G

m2
LGR

2.

In other words, constants in Assumption A3 are bounded as: CN ≤ 1

2
ln

4π

m
, and CM ≤ 32

L2
G

m2
LGR

2.

B Explicit Iteration Rule for Algorithm 1

We provide an explicit iteration formula for xτ given xkh in Eq. (13). Given xkh at the previous iteration,
xτ can be calculated as:





θτ = θkh +
1− e−γξ(τ−kh)

γ
rkh − 1

γ

(
(τ − kh)− 1− e−γξ(τ−kh)

γξ

)
∇U(θkh) +Wθ

rτ = e−γξ(τ−kh)rkh − 1− e−γξ(τ−kh)

γξ
∇U(θkh) +Wr

, (34)

where
(

Wθ

Wr

)
∼ N (0,Στ ) .

The covariance matrix Σ ∈ R
2d×2d is

Στ =

(
Σ1,1(τ) Id×d Σ1,2(τ) Id×d

Σ1,2(τ) Id×d Σ2,2(τ) Id×d

)
,

3Here we let B(0, R) denote the closed ball of radius R centered at 0.
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where

Σ1,1(τ) =
1

γ

(
2(τ − kh)− 3

γξ
+

4

γξ
e−γξ(τ−kh) − 1

γξ
e−2γξ(τ−kh)

)
;

Σ1,2(τ) =
1 + e−2γξ(τ−kh) − 2e−γξ(τ−kh)

γξ
;

Σ2,2(τ) =
1− e−2γξ(τ−kh)

ξ
.

Therefore, the update rule in Algorithm 1 can be expressed as:

x(k+1)h ∼ N (µ (xkh) ,Σ) ,

where

µ (xkh) =




θkh +
1− e−γξh

γ
rkh − 1

γ

(
h− 1− e−γξh

γξ

)
∇U(θkh)

e−γξhrkh − 1− e−γξh

γξ
∇U(θkh)


 , (35)

and

Σ =




1

γ

(
2h− 3

γξ
+

4

γξ
e−γξh − 1

γξ
e−2γξh

)
Id×d

1 + e−2γξh − 2e−γξh

γξ
Id×d

1 + e−2γξh − 2e−γξh

γξ
Id×d

1− e−2γξh

ξ
Id×d


 . (36)

In Algorithm 1, the hyperparameters are set to be: γ = 2, ξ = 2LG, and

h =
1

56

1√
LG

min

{
1

24

ρ

LG
,

√
LGρ

LH

}
·min

{(
C̃N + 2

)−1/2
√

ǫ

d
,

√
ǫ

CM

}
, (37)

where C̃N = CN +
1

2
ln

LG

2π
.

C Convergence of the Continuous Process

To simplify the notations in the proofs, we let a =
1

LG
, b =

1

4LG
, and c =

2

LG
, so that

S =
1

LG

(
1/4 Id×d 1/2 Id×d

1/2 Id×d 2 Id×d

)
=

(
b Id×d a/2 Id×d

a/2 Id×d c Id×d

)
.

Proof of Proposition 1 We first compute the time evolution of the Lyapunov function L with respect to
the continuous time vector flow vAGD

t in Eq. (7).
Lemma 7. The time derivative of the Lyapunov functional L with respect to the continuous time vector flow
vAGD
t in Eq. (7) with γ = 2 and ξ = 2LG is:

d

dt
L[pt] =

∫ 〈
∇x

δL
δpt

, vAGD
t

〉
pt dx

= −Ept

[〈
∇x ln

(
pt

p∗

)
,MC∇x ln

(
pt

p∗

)〉

F

]

− 4Ept

[〈
∇x∇r ln

(
pt

p∗

)
, S∇x∇r ln

(
pt

p∗

)〉

F

]
,

21



where

MC =




a

2
ξ · I c+ aγ

2
ξ · I− b

2
∇2U(θ)

c+ aγ

2
ξ · I− b

2
∇2U(θ) γ (2cξ + 1) I− a

2
∇2U(θ)




=




Id×d 4 · Id×d −
1

8

∇2U(θ)

LG

4 · Id×d −
1

8

∇2U(θ)

LG
18 · Id×d −

1

2

∇2U(θ)

LG


 . (38)

We then upper bound the time derivative of L by a negative factor times itself to obtain linear convergence
rate.
Lemma 8. For LG-Lipschitz smooth U , matrix MC defined in Eq. (38) satisfy:

MC � ρ

10

(
S +

1

2ρ
I2d×2d

)
. (39)

Since the matrix S is positive definite, we can directly bound the evolution of the Lyapunov functional L as

d

dt
L[pt] ≤ −Ept

[〈
∇x ln

(
pt

p∗

)
,MC∇x ln

(
pt

p∗

)〉

F

]

≤ − ρ

10

(
Ept

[〈
∇x ln

(
pt

p∗

)
, S∇x ln

(
pt

p∗

)〉

F

]
+

1

2ρ
Ept

[∥∥∥∥∇x ln
pt

p∗

∥∥∥∥
2
])

.

Using the log-Sobolev inequality in Assumption A1, we directly obtain:

d

dt
L[pt] ≤ − ρ

10

(
Ept

[〈
∇x ln

(
pt

p∗

)
, S∇x ln

(
pt

p∗

)〉

F

]
+

1

2ρ
Ept

[∥∥∥∥∇x ln
pt

p∗

∥∥∥∥
2
])

≤ − ρ

10

(
Ept

[〈
∇x ln

(
pt

p∗

)
, S∇x ln

(
pt

p∗

)〉

F

]
+ Ept

[
ln

pt

p∗

])

= − ρ

10
L[pt],

which implies the linear convergence of the continuous process with a rate of
ρ

10
. �

Proof of Lemma 7 Denote h(pt) =

√
pt

p∗
. Then

L[pt] = Ept
[2 lnh+ 4 〈∇x lnh, S∇x lnh〉] = 2Ept

[lnh] + 4Ep∗ [〈∇xh, S∇xh〉] .

The variational derivative of L[pt] can be thus calculated as:

δL[pt]

δpt
= 2 lnh+ 1 +

4

h
(∇x)

∗S∇xh,

where the adjoint operator of ∇x is with respect to the inner product: Ep∗ [〈·, ·〉]. Since:

Ep∗ [〈∇xf,
−→v 〉] = Ep∗

[(
−∇T

x
−→v −∇T

x lnp∗(x)−→v
)
f
]

4,

4Here we define the ∇T
x operator over a vector field −→v (x) as its divergence: ∇T

x
−→v (x) =

∑

i

∂vi(x)

∂xi

.
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the adjoint operator can be expressed as:

(∇x)
∗ = −∇T

x −∇T
x lnp∗(x) =

(
−∇T

θ +∇TU(θ),−∇T
r + ξrT

)
.

The vector flow vt can also be expressed in terms of h(pt) as:

vt = −2(D(x) +Q(x))∇x lnh = − 2

h
(D(x) +Q(x))∇xh.

Therefore,

Ept

[〈
∇x

δL
δpt

, vt

〉]

= −4Ep∗ [〈∇xh, (D(x) +Q(x))∇xh〉] (40)

− 8Ep∗ [〈∇x(∇x)
∗S∇xh, (D(x) +Q(x))∇xh〉] (41)

+ 8Ep∗

[
〈∇xh, (D(x) +Q(x))∇xh〉

(∇x)
∗S∇xh

h

]
. (42)

For Line (40),

−4Ep∗ [〈∇xh, (D(x) +Q(x))∇xh〉] = −4γEp∗

[
‖∇rh‖2

]
= −γEpt

[∥∥∥∥∇r ln
pt

p∗

∥∥∥∥
2
]
,

same as in Eq. (9).

For Line (42),

8Ep∗

[
〈∇xh, (D(x) +Q(x))∇xh〉

(∇x)
∗S∇xh

h

]

= 8γEp∗

[
1

h
〈∇rh,∇rh〉 (∇x)

∗S∇xh

]

= 8γEp∗

[〈
1

h
∇x ‖∇rh‖2 −

1

h2
‖∇rh‖2 ∇xh, S∇xh

〉]

= 16γEp∗

[〈∇xh

h
∇T

r h, S∇x∇T
r h

〉

F

]
− 8γEp∗

[〈∇xh

h
∇T

r h, S
∇xh

h
∇T

r h

〉

F

]
. (43)

Next we focus on Line (41).
Lemma 9.

−8Ep∗ [〈∇x(∇x)
∗S∇xh, (D(x) +Q(x))∇xh〉]

= −8γEp∗ [〈∇x∇rh, S∇x∇rh〉F ] (44)

− 4aξEp∗

[
||∇θh||2

]

− 4Ep∗

[〈
∇rh,

(
2cγξI− a∇2U(θ)

)
∇rh

〉]

− 4Ep∗

[〈
∇θh,

(
(cξ − aγξ)I− 2b∇2U(θ)

)
∇rh

〉]
. (45)
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Then Line (44) combines with Eq. (43):

−8γEp∗ [〈∇x∇rh, S∇x∇rh〉F ]

+ 16γEp∗

[〈∇xh

h
∇T

r h, S∇x∇rh

〉

F

]

− 8γEp∗

[〈∇xh

h
∇T

r h, S
∇xh

h
∇T

r h

〉

F

]

= −8γEp∗

[〈(
∇x∇T

r h− ∇xh

h
∇rh

)
, S

(
∇x∇T

r h− ∇xh

h
∇rh

)〉

F

]

Therefore, Lines (40)–(42) sum up to be:

Ept

[〈
∇x

δL

δpt
, vt

〉]

= −8γEp∗

[〈(
∇x∇rh− ∇xh

h
∇T

r h

)
, S

(
∇x∇rh− ∇xh

h
∇T

r h

)〉

F

]

− 4Ep∗

〈(
∇θh
∇rh

)
,MC

(
∇θh
∇rh

)〉

= −8γEpt
[〈∇x∇r lnh, S∇x∇r lnh〉F ]− 4Ept

[〈∇x lnh,MC∇x lnh〉F ]

= −2γEpt

[〈
∇x∇r ln

(
pt

p∗

)
, S∇x∇r ln

(
pt

p∗

)〉

F

]

− Ept

[〈
∇x ln

(
pt

p∗

)
,MC∇x ln

(
pt

p∗

)〉

F

]
,

where

MC =




a

2
ξ · I c+ aγ

2
ξ · I− b

2
∇2U(θ)

c+ aγ

2
ξ · I− b

2
∇2U(θ) γ (2cξ + 1) I− a

2
∇2U(θ)




=




I 4 · I− 1

8

∇2U(θ)

LG

4 · I− 1

8

∇2U(θ)

LG
18 · I− 1

2

∇2U(θ)

LG


 . (46)

�

Proof of Lemma 8 We aim to prove that

MC =




a

2
ξ · I c+ aγ

2
ξ · I− b

2
∇2U(θ)

c+ aγ

2
ξ · I− b

2
∇2U(θ) γ (2cξ + 1) I− a

2
∇2U(θ)




� λ

(
S +

1

2ρ
I

)
= λ




(
b+

1

2ρ

)
I

a

2
I

a

2
I

(
c+

1

2ρ

)
I


 ,

24



for a =
1

LG
, b =

1

4LG
, c =

2

LG
, γ = 2, ξ = 2LG, and λ =

ρ

10
. That is equivalent to having:

M̂C =




(
a

2
ξ −

(
b+

1

2ρ

)
λ

)
I

(
c+ aγ

2
ξ − a

2
λ

)
I− b

2
∇2U(θ)

(
c+ aγ

2
ξ − a

2
λ

)
I− b

2
∇2U(θ)

(
γ (2cξ + 1)−

(
c+

1

2ρ

)
λ

)
I− a

2
∇2U(θ)




to be positive semidefinite.

Denote α =
a

2
ξ −

(
b+

1

2ρ

)
λ, β =

c+ aγ

2
ξ − a

2
λ, and σ = γ (2cξ + 1) −

(
c+

1

2ρ

)
λ. We analyze the

eigenvalues of M̂C =




αI βI− b

2
∇2U(θ)

βI− b

2
∇2U(θ) σI− a

2
∇2U(θ)


 and ask when they will all be nonnegative. We

write the characteristic equation for M̂ :

det
[
M̂C − l · I

]
= det







(α− l)I βI− b

2
∇2U(θ)

βI− b

2
∇2U(θ) (σ − l)I− a

2
∇2U(θ)







= det

[
(α− l)(σ − l)I− a

2
(α− l)∇2U(θ)−

(
βI− b

2
∇2U(θ)

)2
]
= 0,

since βI− b

2
∇2U(θ) and (σ− l)I− a

2
∇2U(θ) commute. Diagonalizing ∇2U(θ) = V −1ΛV , we obtain a set of

independent equations based on each eigenvalue Λj of ∇2U(θ):

l2 +
(a
2
Λj − α− σ

)
l −
(
b2

4
Λ2
j +

(a
2
α− bβ

)
Λj + β2 − ασ

)
= 0.

To guarantee that l ≥ 0, we need that ∀Λj ∈ [−LG, LG],





a

2
Λj − α− σ ≤ 0

b2

4
Λ2
j +

(a
2
α− bβ

)
Λj + β2 − ασ ≤ 0

.

Since the linear function
a

2
Λj−α−σ of Λj is increasing; the quadratic function

b2

4
Λ2
j+
(a
2
α− bβ

)
Λj+β2−ασ

of Λj is convex, we simply need the inequality to be satisfied at the end points:





a

2
LG − α− σ ≤ 0

b2

4
L2
G −

(a
2
α− bβ

)
LG + β2 − ασ ≤ 0

b2

4
L2
G +

(a
2
α− bβ

)
LG + β2 − ασ ≤ 0

.

We verify these inequalities by plugging in the setting of a =
1

LG
, b =

1

4LG
, c =

2

LG
, γ = 2, ξ = 2LG, and
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λ =
ρ

10
in the definition of α, β, and σ. We obtain:





a

2
LG − α− σ = −92

5
+

9ρ

40LG
≤ 0

b2

4
L2
G −

(a
2
α− bβ

)
LG + β2 − ασ = − 819

1600
+

191ρ

800LG
− ρ2

400L2
G

≤ 0

b2

4
L2
G +

(a
2
α− bβ

)
LG + β2 − ασ = −2499

1600
+

191ρ

800LG
− ρ2

400L2
G

≤ 0

.

Therefore, MC � λ

(
S +

1

2ρ
I2d×2d

)
for a =

1

LG
, b =

1

4LG
, c =

2

LG
, γ = 2, ξ = 2LG, and λ =

LG

10
. �

C.1 Supporting Proof for Lemma 7

Proof of Lemma 9 First note that −8Ep∗ [〈∇x(∇x)
∗S∇xh, (D(x) +Q(x))∇xh〉] separates into three terms:

−8Ep∗ [〈∇x(∇x)
∗S∇xh, (D(x) +Q(x))∇xh〉]

= −4aEp∗

[〈
∇x

(
(∇θ)

∗∇rh+ (∇r)
∗∇θh

)
, (D +Q)∇xh

〉]
(47)

− 8bEp∗ [〈∇x(∇θ)
∗∇θh, (D +Q)∇xh〉] (48)

− 8cEp∗ [〈∇x(∇r)
∗∇rh, (D +Q)∇xh〉] . (49)

We then deal with the three terms one by one.

1. For the cross term −4aEp∗

[〈
∇x

(
(∇θ)

∗∇rh+ (∇r)
∗∇θh

)
, (D +Q)∇xh

〉]
in Line 47,

−Ep∗

[〈
∇x

(
(∇θ)

∗∇rh+ (∇r)
∗∇θh

)
, (D +Q)∇xh

〉]

= −Ep∗

[〈(
∇θ

∇r

)(
(∇θ)

∗∇rh+ (∇r)
∗∇θh

)
, (D +Q)

(
∇θh
∇rh

)〉]

= −γEp∗

[〈
∇r

(
(∇θ)

∗∇rh+ (∇r)
∗∇θh

)
,∇rh

〉]
(50)

− Ep∗

[〈(
∇θ

∇r

)(
(∇θ)

∗∇rh+ (∇r)
∗∇θh

)
, Q

(
∇θh
∇rh

)〉]
. (51)

Here, ∇θ commutes with ∇r and (∇r)
∗.

• Hence Line (50) equals:

−γEp∗ [〈∇r(∇θ)
∗∇rh,∇rh〉+ 〈∇r(∇r)

∗∇θh,∇rh〉]
= −γEp∗ [〈∇rh,∇θ(∇r)

∗∇rh〉+ 〈∇θh,∇r(∇r)
∗∇rh〉]

= −γEp∗ [〈∇rh, (∇r)
∗∇r∇θh〉+ 〈∇θh,∇r(∇r)

∗∇rh〉] 5

= −γEp∗

[〈
∇θh,

(
(∇r)

∗∇r +∇r(∇r)
∗
)
∇rh

〉]
.

We make use of the commutator of ∇r and (∇r)
∗, [∇r, (∇r)

∗]−→v = ∇r(∇r)
∗−→v (x)−(∇r)

∗∇r
−→v (x) =

−∇r∇T
r
−→v + ξ−→v +∇T

r ∇r
−→v , and simplify Line (50):

−γEp∗ [〈∇r(∇θ)
∗∇rh,∇rh〉+ 〈∇r(∇r)

∗∇θh,∇rh〉]
= −γEp∗

[〈
∇θh,

(
2(∇r)

∗∇r + [∇r, (∇r)
∗]
)
∇rh

〉]

= −γEp∗ [〈∇θh, 2(∇r)
∗∇r∇rh+ ξ∇rh〉]

= −2γEp∗ [〈∇r∇θh,∇r∇rh〉F ]− γξEp∗ [〈∇θh,∇rh〉] ,

5Here (∇r)∗∇r∇θh is a column vector with its elements defined as:
(

(∇r)∗∇r∇θh
)

i
=

∑

j

(

∂

∂rj

)∗ ∂

∂rj

∂

∂θi
h.
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where we have used 〈·, ·〉F to also denote Frobenius inner product between matrices.

• Line (51) can be simplified by using the representation of the vector flow in Eq. (7):

−Ep∗

[〈(
∇θ

∇r

)(
(∇θ)

∗∇rh+ (∇r)
∗∇θh

)
, Q

(
∇θh
∇rh

)〉]

= −Ep∗

[〈(
∇θ

∇r

)(
(∇θ)

∗∇rh+ (∇r)
∗∇θh

)
, Q

(
∇U(θ)
ξr

)
h

2

〉]

= −1

2
Ep∗

[〈(
∇θ

∇r

)
h,

(
∇r

∇θ

)(
ξrT∇θh−∇TU(θ)∇rh

)〉]
. (52)

Denote B[h] = ξrT∇θh − ∇TU(θ)∇rh, then B is an anti-symmetric operator: B∗[h] = −B[h].
Then Eq. (52) can be further simplified:

−1

2
Ep∗

[〈(
∇θ

∇r

)
h,

(
∇r

∇θ

)(
ξrT∇θh−∇TU(θ)∇rh

)〉]

= −1

2
Ep∗

[〈(
∇θ

∇r

)
h,

(
∇r

∇θ

)
B[h]

〉]

= −1

2
Ep∗ [〈∇θh,∇rB[h]〉+ 〈∇rh,∇θB[h]〉]

= −1

2
Ep∗ [〈∇θh,∇rB[h]〉+ 〈∇rh,B∇θ[h]〉+ 〈∇rh, [∇θ, B][h]〉]

= −1

2
Ep∗ [〈∇θh,∇rB[h]〉 − 〈B∇rh,∇θ[h]〉+ 〈∇rh, [∇θ, B][h]〉]

= −1

2
Ep∗ [〈∇θh, [∇r, B][h]〉+ 〈∇rh, [∇θ, B][h]〉] . (53)

Since [∇r, B][h] = ξ∇θh and [∇θ, B][h] = −∇2U(θ)∇rh, Eq. (53) becomes

−1

2
Ep∗ [〈∇θh, [∇r, B][h]〉+ 〈∇rh, [∇θ, B][h]〉]

= −1

2
Ep∗

[
ξ 〈∇θh,∇θh〉 −

〈
∇rh,∇2U(θ)∇rh

〉]
.

Therefore, Line (51) is

−Ep∗

[〈(
∇θ

∇r

)(
(∇θ)

∗∇rh+ (∇r)
∗∇θh

)
, Q

(
∇θh
∇rh

)〉]

= −1

2
Ep∗

[
ξ 〈∇θh,∇θh〉 −

〈
∇rh,∇2U(θ)∇rh

〉]
.

Summing up Lines (50) and (51),

−Ep∗

[〈
∇x

(
(∇θ)

∗∇rh+ (∇r)
∗∇θh

)
, (D +Q)∇xh

〉]

= −2γEp∗ [〈∇θ∇rh,∇r∇rh〉F ]

− γξEp∗ [〈∇θh,∇rh〉]−
ξ

2
Ep∗

[
||∇θh||2

]
+

1

2
Ep∗

[〈
∇rh,∇2U(θ)∇rh

〉]
.
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2. For −8bEp∗ [〈∇x(∇θ)
∗∇θh, (D +Q)∇xh〉] in Line 48,

−2Ep∗ [〈∇x(∇θ)
∗∇θh, (D +Q)∇xh〉]

= −2Ep∗

[〈(
∇θ

∇r

)
(∇θ)

∗∇θh, (D +Q)

(
∇θh
∇rh

)〉]

= −2γEp∗ [〈∇r(∇θ)
∗∇θh,∇rh〉]− Ep∗ [〈∇θh,∇θB[h]〉]

= −2γEp∗ [〈∇r(∇θ)
∗∇θh,∇rh〉]− Ep∗ [〈∇θh,B∇θh+ [∇θ, B][h]〉]

= −2γEp∗ [〈∇θ∇rh,∇θ∇rh〉F ] + Ep∗

[〈
∇θh,∇2U(θ)∇rh

〉]
.

3. For −8cEp∗ [〈∇x(∇r)
∗∇rh, (D +Q)∇xh〉] in Line 49,

−2Ep∗ [〈∇x(∇r)
∗∇rh, (D +Q)∇xh〉]

= −2Ep∗

[〈(
∇θ

∇r

)
(∇r)

∗∇rh, (D +Q)

(
∇θh
∇rh

)〉]

= −2γEp∗ [〈∇r(∇r)
∗∇rh,∇rh〉]− Ep∗ [〈∇rh,∇rB[h]〉]

= −2γEp∗ [〈((∇r)
∗∇r + [∇r, (∇r)

∗])∇rh,∇rh〉]
− Ep∗ [〈∇rh,B∇rh+ [∇r, B][h]〉]
= −2γEp∗ [〈∇r∇rh,∇r∇rh〉F ]
− 2γξEp∗ [〈∇rh,∇rh〉]− ξEp∗ [〈∇θh,∇rh〉] .

Summing everything up,

−8Ep∗ [〈∇x(∇x)
∗S∇xh, (D(x) +Q(x))∇xh〉]

= −8aγEp∗ [〈∇θ∇rh,∇r∇rh〉F ] (54)

− 8bγEp∗ [〈∇θ∇rh,∇θ∇rh〉F ] (55)

− 8cγEp∗ [〈∇r∇rh,∇r∇rh〉F ] (56)

− 2aξEp∗

[
||∇θh||2

]

− 4Ep∗

[〈
∇rh,

(
2cγξI− a

2
∇2U(θ)

)
∇rh

〉]

− 4Ep∗

[〈
∇θh,

(
(cξ + aγξ)I− b∇2U(θ)

)
∇rh

〉]
.

For Lines (54)–(56),

−aEp∗ [〈∇θ∇rh,∇r∇rh〉F ]
− bEp∗ [〈∇θ∇rh,∇θ∇rh〉F ]
− cEp∗ [〈∇r∇rh,∇r∇rh〉F ]
= −γEp∗ [〈∇x∇rh, S∇x∇rh〉F ] .

Therefore,

−8Ep∗ [〈∇x(∇x)
∗S∇xh, (D(x) +Q(x))∇xh〉]

= −8γEp∗ [〈∇x∇rh, S∇x∇rh〉F ] (57)

− 2aξEp∗

[
||∇θh||2

]

− 4Ep∗

[〈
∇rh,

(
2cγξI− a

2
∇2U(θ)

)
∇rh

〉]

− 4Ep∗

[〈
∇θh,

(
(cξ + aγξ)I− b∇2U(θ)

)
∇rh

〉]
. (58)

�
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D Discretization Error

Proof of Lemma 3 As in the continuous case, define h =

√
pτ (xτ )

p∗(xτ )
, and denote a =

1

LG
, b =

1

4LG
,

c =
2

LG
. First note that

∫ 〈
∇r

δL

δpt
,Exkh∼p(xkh)

[(
∇U(θτ )−∇U(θkh)

)
p(xτ |xkh)

]〉
dxτ

=

∫ 〈
∇r

(
2 lnh+ 4

∇∗
xS∇xh

h

)
,Exkh∼p(xkh)

[(
∇U(θτ )−∇U(θkh)

)
p(xτ |xkh)

]〉
dxτ .

We prove in the following that

∫ 〈
∇r

(∇∗
xS∇xh

h

)
,Exkh∼p(xkh)

[(
∇U(θτ )−∇U(θkh)

)
p(xτ |xkh)

]〉
dxτ (59)

=

∫ 〈
∇x∇r lnh, S∇x

(
Exkh∼p(xkh)

[(
∇U(θτ )−∇U(θkh)

)
p(xτ |xkh)

]

p(xτ )

)〉

F

pτ (xτ ) dxτ

+ ξ

∫ 〈a
2
∇θ lnh+ c∇r lnh,Exkh∼p(xkh) [(∇U(θτ )−∇U(θkh))p(xτ |xkh)]

〉
dxτ .

Similar to the continuous case, the term in Line (59) separates into four terms:

∫ 〈
∇r

(∇∗
xS∇xh

h

)
,Exkh∼p(xkh)

[(
∇U(θτ )−∇U(θkh)

)
p(xτ |xkh)

]〉
dxτ

= b

∫ 〈
∇r

(∇∗
θ∇θh

h

)
,Exkh∼p(xkh)

[(
∇U(θτ )−∇U(θkh)

)
p(xτ |xkh)

]〉
dxτ (60)

+
a

2

∫ 〈
∇r

(∇∗
θ∇rh

h

)
,Exkh∼p(xkh)

[(
∇U(θτ )−∇U(θkh)

)
p(xτ |xkh)

]〉
dxτ (61)

+
a

2

∫ 〈
∇r

(∇∗
r∇θh

h

)
,Exkh∼p(xkh)

[(
∇U(θτ )−∇U(θkh)

)
p(xτ |xkh)

]〉
dxτ (62)

+ c

∫ 〈
∇r

(∇∗
r∇rh

h

)
,Exkh∼p(xkh)

[(
∇U(θτ )−∇U(θkh)

)
p(xτ |xkh)

]〉
dxτ . (63)

We first simplify Lines (60) and (61) and then deal with Lines (62) and (63).
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1. For Lines (60) and (61):

∫ 〈
∇r

(∇∗
θ∇#h

h

)
,Exkh∼p(xkh)

[(
∇U(θτ )−∇U(θkh)

)
p(xτ |xkh)

]〉
dxτ

=

∫ 〈
h∇r∇∗

θ∇#h−∇rh∇∗
θ∇#h,

Exkh∼p(xkh)

[(
∇U(θτ )−∇U(θkh)

)
p(xτ |xkh)

]

p(xτ )

〉
p
∗(xτ ) dxτ

=

∫ 〈
∇r∇#h,

Exkh∼p(xkh)

[(
∇U(θτ )−∇U(θkh)

)
p(xτ |xkh)

]

p(xτ )
∇T

θ h

〉

F

p
∗(xτ ) dxτ

−
∫ 〈

∇θ∇rh,
Exkh∼p(xkh)

[(
∇U(θτ )−∇U(θkh)

)
p(xτ |xkh)

]

p(xτ )
∇T

#h

〉

F

p
∗(xτ ) dxτ

+

∫ 〈
h∇r∇#h−∇rh∇T

#h,∇θ

(
Exkh∼p(xkh)

[(
∇U(θτ )−∇U(θkh)

)
p(xτ |xkh)

]

p(xτ )

)〉

F

p
∗(xτ ) dxτ

=

∫ 〈
∇r∇#h,

Exkh∼p(xkh)

[(
∇U(θτ )−∇U(θkh)

)
p(xτ |xkh)

]

p(xτ )
∇T

θ h

〉

F

p
∗(xτ ) dxτ

−
∫ 〈

∇θ∇rh,
Exkh∼p(xkh)

[(
∇U(θτ )−∇U(θkh)

)
p(xτ |xkh)

]

p(xτ )
∇T

#h

〉

F

p
∗(xτ ) dxτ

+

∫ 〈
∇r∇# lnh,∇θ

(
Exkh∼p(xkh)

[(
∇U(θτ )−∇U(θkh)

)
p(xτ |xkh)

]

p(xτ )

)〉

F

pτ (xτ ) dxτ .

When # = θ,

∫ 〈
∇r

(∇∗
θ∇θh

h

)
,Exkh∼p(xkh)

[(
∇U(θτ )−∇U(θkh)

)
p(xτ |xkh)

]〉
dxτ

=

∫ 〈
∇r∇θ lnh,∇θ

(
Exkh∼p(xkh)

[(
∇U(θτ )−∇U(θkh)

)
p(xτ |xkh)

]

p(xτ )

)〉

F

pτ (xτ ) dxτ .

When # = r,

∫ 〈
∇r

(∇∗
θ∇rh

h

)
,Exkh∼p(xkh)

[(
∇U(θτ )−∇U(θkh)

)
p(xτ |xkh)

]〉
dxτ

=

∫ 〈
∇2

rh,
Exkh∼p(xkh)

[(
∇U(θτ )−∇U(θkh)

)
p(xτ |xkh)

]

p(xτ )
∇T

θ h

〉

F

p
∗(xτ ) dxτ

−
∫ 〈

∇θ∇rh,
Exkh∼p(xkh)

[(
∇U(θτ )−∇U(θkh)

)
p(xτ |xkh)

]

p(xτ )
∇T

r h

〉

F

p
∗(xτ ) dxτ

+

∫ 〈
∇2

r lnh,∇θ

(
Exkh∼p(xkh)

[(
∇U(θτ )−∇U(θkh)

)
p(xτ |xkh)

]

p(xτ )

)〉

F

pτ (xτ ) dxτ .
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2. For Lines (62) and (63):
∫ 〈

∇r

(∇∗
r∇#h

h

)
,Exkh∼p(xkh)

[(
∇U(θτ )−∇U(θkh)

)
p(xτ |xkh)

]〉
dxτ

=

∫ 〈
h∇r∇∗

r∇#h−∇rh∇∗
r∇#h,

Exkh∼p(xkh)

[(
∇U(θτ )−∇U(θkh)

)
p(xτ |xkh)

]

p(xτ )

〉
p
∗(xτ ) dxτ

= ξ

∫ 〈∇#h

h
,Exkh∼p(xkh)

[(
∇U(θτ )−∇U(θkh)

)
p(xτ |xkh)

]〉

F

dxτ

+

∫ 〈
∇r∇#h,

Exkh∼p(xkh)

[(
∇U(θτ )−∇U(θkh)

)
p(xτ |xkh)

]

p(xτ )
∇T

r h

〉

F

p
∗(xτ ) dxτ

−
∫ 〈

∇2
rh,

Exkh∼p(xkh)

[(
∇U(θτ )−∇U(θkh)

)
p(xτ |xkh)

]

p(xτ )
∇T

#h

〉

F

p
∗(xτ ) dxτ

+

∫ 〈
h∇r∇#h−∇rh∇T

#h,∇r

(
Exkh∼p(xkh)

[(
∇U(θτ )−∇U(θkh)

)
p(xτ |xkh)

]

p(xτ )

)〉

F

p
∗(xτ ) dxτ

= ξ

∫ 〈
∇# lnh,Exkh∼p(xkh)

[(
∇U(θτ )−∇U(θkh)

)
p(xτ |xkh)

]〉
F

dxτ

+

∫ 〈
∇r∇#h,

Exkh∼p(xkh)

[(
∇U(θτ )−∇U(θkh)

)
p(xτ |xkh)

]

p(xτ )
∇T

r h

〉

F

p
∗(xτ ) dxτ

−
∫ 〈

∇2
rh,

Exkh∼p(xkh)

[(
∇U(θτ )−∇U(θkh)

)
p(xτ |xkh)

]

p(xτ )
∇T

#h

〉

F

p
∗(xτ ) dxτ

+

∫ 〈
∇r∇# lnh,∇r

(
Exkh∼p(xkh)

[(
∇U(θτ )−∇U(θkh)

)
p(xτ |xkh)

]

p(xτ )

)〉

F

pτ (xτ ) dxτ .

When # = θ,
∫ 〈

∇r

(∇∗
r∇θh

h

)
,Exkh∼p(xkh)

[(
∇U(θτ )−∇U(θkh)

)
p(xτ |xkh)

]〉
dxτ

= ξ

∫ 〈
∇θ lnh,Exkh∼p(xkh)

[(
∇U(θτ )−∇U(θkh)

)
p(xτ |xkh)

]〉
F

dxτ

+

∫ 〈
∇r∇θh,

Exkh∼p(xkh)

[(
∇U(θτ )−∇U(θkh)

)
p(xτ |xkh)

]

p(xτ )
∇T

r h

〉

F

p
∗(xτ ) dxτ

−
∫ 〈

∇2
rh,

Exkh∼p(xkh)

[(
∇U(θτ )−∇U(θkh)

)
p(xτ |xkh)

]

p(xτ )
∇T

θ h

〉

F

p
∗(xτ ) dxτ

+

∫ 〈
∇r∇θ lnh,∇r

(
Exkh∼p(xkh)

[(
∇U(θτ )−∇U(θkh)

)
p(xτ |xkh)

]

p(xτ )

)〉

F

pτ (xτ ) dxτ .

When # = r,
∫ 〈

∇r

(∇∗
r∇rh

h

)
,Exkh∼p(xkh)

[(
∇U(θτ )−∇U(θkh)

)
p(xτ |xkh)

]〉
dxτ

= ξ

∫ 〈
∇r lnh,Exkh∼p(xkh)

[(
∇U(θτ )−∇U(θkh)

)
p(xτ |xkh)

]〉
F

dxτ

+

∫ 〈
∇2

r lnh,∇r

(
Exkh∼p(xkh)

[(
∇U(θτ )−∇U(θkh)

)
p(xτ |xkh)

]

p(xτ )

)〉

F

pτ (xτ ) dxτ .
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Therefore, Lines (60)–(63) combines to be:

∫ 〈
∇r

(∇∗
xS∇xh

h

)
,Exkh∼p(xkh)

[(
∇U(θτ )−∇U(θkh)

)
p(xτ |xkh)

]〉
dxτ

= b

∫ 〈
∇r∇θ lnh,∇θ

(
Exkh∼p(xkh)

[(
∇U(θτ )−∇U(θkh)

)
p(xτ |xkh)

]

p(xτ )

)〉

F

pτ (xτ ) dxτ

+
a

2

∫ 〈
∇2

r lnh,∇θ

(
Exkh∼p(xkh)

[(
∇U(θτ )−∇U(θkh)

)
p(xτ |xkh)

]

p(xτ )

)〉

F

pτ (xτ ) dxτ

+
a

2

∫ 〈
∇r∇θ lnh,∇r

(
Exkh∼p(xkh)

[(
∇U(θτ )−∇U(θkh)

)
p(xτ |xkh)

]

p(xτ )

)〉

F

pτ (xτ ) dxτ

+ c

∫ 〈
∇2

r lnh,∇r

(
Exkh∼p(xkh)

[(
∇U(θτ )−∇U(θkh)

)
p(xτ |xkh)

]

p(xτ )

)〉

F

pτ (xτ ) dxτ

+ ξ

∫ 〈a
2
∇θ lnh+ c∇r lnh,Exkh∼p(xkh)

[(
∇U(θτ )−∇U(θkh)

)
p(xτ |xkh)

]〉
F

dxτ

=

∫ 〈
∇x∇r lnh, S∇x

(
Exkh∼p(xkh)

[(
∇U(θτ )−∇U(θkh)

)
p(xτ |xkh)

]

p(xτ )

)〉

F

pτ (xτ ) dxτ

+ ξ

∫ 〈a
2
∇θ lnh+ c∇r lnh,Exkh∼p(xkh)

[(
∇U(θτ )−∇U(θkh)

)
p(xτ |xkh)

]〉
F

dxτ .

Hence
∫ 〈

∇r
δL

δpt
,Exkh∼p(xkh)

[(
∇U(θτ )−∇U(θkh)

)
p(xτ |xkh)

]〉
dxτ

=

∫ 〈
∇r

(
2 lnh+ 4

∇∗
xS∇xh

h

)
,Exkh∼p(xkh)

[(
∇U(θτ )−∇U(θkh)

)
p(xτ |xkh)

]〉
dxτ

=

∫ 〈
∇r ln

pτ (xτ )

p∗(xτ )
,Exkh∼p(xkh)

[(
∇U(θτ )−∇U(θkh)

)
p(xτ |xkh)

]〉
dxτ

+ 2

∫ 〈
∇x∇r ln

pτ (xτ )

p∗(xτ )
, S∇x

(
Exkh∼p(xkh)

[(
∇U(θτ )−∇U(θkh)

)
p(xτ |xkh)

]

p(xτ )

)〉

F

pτ (xτ ) dxτ (64)

+ 2ξ

∫ 〈
a

2
∇θ ln

pτ (xτ )

p∗(xτ )
+ c∇r ln

pτ (xτ )

p∗(xτ )
,Exkh∼p(xkh)

[(
∇U(θτ )−∇U(θkh)

)
p(xτ |xkh)

]〉

F

dxτ .

It can be seen that the expectation in Line (64) can be rewritten as xkh conditioning on xτ :

∫ 〈
∇x∇r ln

pτ (xτ )

p∗(xτ )
, S∇x

(
Exkh∼p(xkh)

[(
∇U(θτ )−∇U(θkh)

)
p(xτ |xkh)

]

pτ (xτ )

)〉

F

pτ (xτ ) dxτ

=

∫ 〈
∇x∇r ln

pτ (xτ )

p∗(xτ )
, S∇xτ

Exkh∼p(xkh|xτ ) [∇U(θτ )−∇U(θkh)]

〉

F

pτ (xτ ) dxτ .
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Therefore,

∫ 〈
∇r

δL

δpt
,Exkh∼p(xkh)

[(
∇U(θτ )−∇U(θkh)

)
p(xτ |xkh)

]〉
dxτ

=

∫ 〈
∇r ln

pτ (xτ )

p∗(xτ )
,Exkh∼p(xkh)

[(
∇U(θτ )−∇U(θkh)

)
p(xτ |xkh)

]〉
dxτ

+ 2

∫ 〈
∇x∇r ln

pτ (xτ )

p∗(xτ )
, S∇xτ

Exkh∼p(xkh|xτ ) [∇U(θτ )−∇U(θkh)]

〉

F

pτ (xτ ) dxτ

+ 2ξ

∫ 〈
a

2
∇θ ln

pτ (xτ )

p∗(xτ )
+ c∇r ln

pτ (xτ )

p∗(xτ )
,Exkh∼p(xkh)

[(
∇U(θτ )−∇U(θkh)

)
p(xτ |xkh)

]〉

F

dxτ

= aξ

∫ 〈
∇θ ln

pτ (xτ )

p∗(xτ )
,Exkh∼p(xkh)

[(
∇U(θτ )−∇U(θkh)

)
p(xτ |xkh)

]〉

F

dxτ

+ (2cξ + 1)

∫ 〈
∇r ln

pτ (xτ )

p∗(xτ )
,Exkh∼p(xkh)

[(
∇U(θτ )−∇U(θkh)

)
p(xτ |xkh)

]〉
dxτ

+ 2

∫ 〈
∇x∇r ln

pτ (xτ )

p∗(xτ )
, S∇xτ

Exkh∼p(xkh|xτ ) [∇U(θτ )−∇U(θkh)]

〉

F

pτ (xτ ) dxτ .

�

Proof of Lemma 4 We first explicitly calculate ∇xτ
Exkh∼p(xkh|xτ ) [∇U(θτ )−∇U(θkh)] in the following

Lemma 10. To obtain the expression, we use synchronous coupling of the trajectories of underdamped
Langevin algorithm with infinitesimally different initial conditions.
Lemma 10. Denote ν = τ − kh ≤ h and

η =
1

γ

(
eγξ(τ−kh)

(
1− e−γξ(τ−kh)

)2

γξ
−
(
(τ − kh)− 1− e−γξ(τ−kh)

γξ

))
∼ O

(
ξν2
)
.

Then for ν ≤ 1

8LG
(and γ = 2, and ξ = 2LG),

∇xτ
Exkh∼p(xkh|xτ) [∇U(θτ )−∇U(θkh)]

= Exkh∼p(xkh|xτ )




(
∇2U(θτ )−∇2U(θkh)

)
+∇2U(θkh)

((
I + η∇2U(θkh)

)−1 − I
)

−eγξ(τ−kh) − 1

γ
∇2U(θkh)

(
I + η∇2U(θkh)

)−1


 . (65)

Taking Lemma 10 as given, we can separate Term (19c) into two:

∫ 〈
∇x∇r ln

pτ (xτ )

p∗(xτ )
, S∇xτ

Exkh∼p(xkh|xτ ) [∇U(θτ )−∇U(θkh)]

〉

F

pτ (xτ ) dxτ

=

∫ ∫ 〈
S∇x∇r ln

pτ (xτ )

p∗(xτ )
,

(
∇2U(θτ )−∇2U(θkh)

0

)〉

F

p(xkh|xτ )pτ (xτ ) dxkhdxτ (66a)

+

∫ ∫ 〈
S∇x∇r ln

pτ (xτ )

p∗(xτ )
,




∇2U(θkh)
((

I + η∇2U(θkh)
)−1 − I

)

−eγξ(τ−kh) − 1

γ
∇2U(θkh)

(
I + η∇2U(θkh)

)−1



〉

F

· p(xkh|xτ )pτ (xτ ) dxkhdxτ . (66b)

We then make use of the properties of Frobenius inner product to upper bound Terms (66a) and (66b) by
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the Frobenius norms:
〈
S∇x∇r ln

pτ (xτ )

p∗(xτ )
, A2d×d

〉

F

=

〈√
S∇x∇r ln

pτ (xτ )

p∗(xτ )
,
√
SA2d×d

〉

F

≤ α

〈
∇x∇r ln

pτ (xτ )

p∗(xτ )
, S∇x∇r ln

pτ (xτ )

p∗(xτ )

〉

F

+
1

4α
〈A2d×d, SA2d×d〉F .

As a result, we obtain that for Term (66a),

〈
S∇x∇r ln

pτ (xτ )

p∗(xτ )
,

(
∇2U(θτ )−∇2U(θkh)

0

)〉

F

≤ γ

2

〈
∇x∇r ln

pτ (xτ )

p∗(xτ )
, S∇x∇r ln

pτ (xτ )

p∗(xτ )

〉

F

+
b

2γ

∥∥∇2U(θτ )−∇2U(θkh)
∥∥2
F
;

and for Term (66b),

〈
S∇x∇r ln

pτ (xτ )

p∗(xτ )
,




∇2U(θkh)
((

I + η∇2U(θkh)
)−1 − I

)

−eγξ(τ−kh) − 1

γ
∇2U(θkh)

(
I + η∇2U(θkh)

)−1



〉

F

≤ γ

2

〈
∇x∇r ln

pτ (xτ )

p∗(xτ )
, S∇x∇r ln

pτ (xτ )

p∗(xτ )

〉

F

+
1

2γ

〈


∇2U(θkh)
((

I + η∇2U(θkh)
)−1 − I

)

−eγξ(τ−kh) − 1

γ
∇2U(θkh)

(
I + η∇2U(θkh)

)−1


 ,

S




∇2U(θkh)
((

I + η∇2U(θkh)
)−1 − I

)

−eγξ(τ−kh) − 1

γ
∇2U(θkh)

(
I + η∇2U(θkh)

)−1



〉

F

≤ γ

2

〈
∇x∇r ln

pτ (xτ )

p∗(xτ )
, S∇x∇r ln

pτ (xτ )

p∗(xτ )

〉

F

+
(b + c)d

2γ

∥∥∥∥∥∥∥




∇2U(θkh)
((

I + η∇2U(θkh)
)−1 − I

)

−eγξ(τ−kh) − 1

γ
∇2U(θkh)

(
I + η∇2U(θkh)

)−1




∥∥∥∥∥∥∥

2

2

. (67)

To obtain the final bound, we simplify Eq. (67) by demonstrating the following fact.

Fact 2. For 0 ≤ ν ≤ min

{
1

γξ
,

1√
2eLGξ

}
,

∥∥∥∥∥∥∥




∇2U(θkh)
((

I + η∇2U(θkh)
)−1 − I

)

−eγξ(τ−kh) − 1

γ
∇2U(θkh)

(
I + η∇2U(θkh)

)−1




∥∥∥∥∥∥∥
2

≤ 4emax{L2
Gξν

2, LGξν}.

Since ν ≤ 1

8LG
≤ min

{
1

γξ
,

1√
2eLGξ

}
, and

∥∥∇2U(θτ )−∇2U(θkh)
∥∥
F
≤ LH ‖θτ − θkh‖, we plug the above
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inequalities into Terms (66a) and (66b) and arrive at our conclusion:

∫ 〈
∇x∇r ln

pτ (xτ )

p∗(xτ )
, S∇xτ

Exkh∼p(xkh|xτ ) [∇U(θτ )−∇U(θkh)]

〉

F

pτ (xτ ) dxτ

≤ γEpτ (xτ )

[〈
∇x∇r ln

pτ (xτ )

p∗(xτ )
, S∇x∇r ln

pτ (xτ )

p∗(xτ )

〉

F

]

+
2e(b+ c)d

γ
max{L4

Gξ
2ν4, L2

Gξ
2ν2}+ bL2

H

2γ
Ep(xkh|xτ )pτ (xτ )

[
‖θτ − θkh‖2

]
.

�

Proof of Lemma 10 We study the following term with an arbitrary vector v ∈ R
2d (and denote x̂n =(

θ̂n, r̂n

)
∈ R

2d):

vT∇xτ
Exkh∼p(xkh|xτ ) [∇U(θτ )−∇U(θkh)]

= lim
h→0

1

h
E xkh∼p(xkh|xτ )
x̂n∼p(x̂n|xτ+hv)

[(
∇U(θτ + hv)−∇U(θ̂n)

)
−
(
∇U(θτ )−∇U(θkh)

)]

= lim
h→0

1

h
E(xkh,x̂n)∼Γ(p(xkh|xτ ),p(x̂n|xτ+hv))

[(
∇U(θτ + hv)−∇U(θτ )

)
−
(
∇U(θ̂n)−∇U(θkh)

)]
,

where Γ (p(xkh|xτ ),p(x̂n|xτ + hv)) is any joint distribution of xkh and x̂n with marginal distributions being
p(xkh|xτ ) and p(x̂n|xτ + hv) – any coupling between the two random variables.

Recall from (34) that the relation between xτ and xkh is:





θτ = θkh +
1− e−γξ(τ−kh)

γ
rkh − 1

γ

(
(τ − kh)− 1− e−γξ(τ−kh)

γξ

)
∇U(θkh) +Wθ

rτ = rkh −
(
1− e−γξ(τ−kh)

)
rkh − 1− e−γξ(τ−kh)

γξ
∇U(θkh) +Wr

, (68)

where WT
x =

(
WT

θ ,WT
r

)
is the Gaussian random variable. It can be proven that for step size ν ≤ h ≤ 1

8LG
,

xkh is uniquely determined given xτ and Wx. Here we take the parallel coupling between xkh and x̂n. Namely,
we take:





θτ + hvθ = θ̂n +
1− e−γξ(τ−kh)

γ
r̂n − 1

γ

(
(τ − kh)− 1− e−γξ(τ−kh)

γξ

)
∇U(θ̂n) +Wθ

rτ + hvr = r̂n −
(
1− e−γξ(τ−kh)

)
r̂n − 1− e−γξ(τ−kh)

γξ
∇U(θ̂n) +Wr

,

where the Gaussian random variable Wx takes the same value as that in Eq. (68). Then we get that for any
pair of (xkh, x̂n) following this joint law,

θ̂n − θkh = hvθ + h∆(θ̄),

where we define

∆(θ̄) =
((

I + η∇2U(θ̄)
)−1 − I

)
vθ −

eγξ(τ−kh) − 1

γ

(
I + η∇2U(θ̄)

)−1
vr,

θ̄ a convex combination of θkh and θ̂n, and

η =
1

γ

(
eγξ(τ−kh)

(
1− e−γξ(τ−kh)

)2

γξ
−
(
(τ − kh)− 1− e−γξ(τ−kh)

γξ

))
∼ O(ξν2).
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Therefore,

E(xkh,x̂n)∼Γ(p(xkh|xτ ),p(x̂n|xτ+hv))

[(
∇U(θτ + hv)−∇U(θτ )

)
−
(
∇U(θ̂n)−∇U(θkh)

)]

= E(xkh,x̂n)∼Γ(p(xkh|xτ ),p(x̂n|xτ+hv))

[
∇2U(θ̃)hvθ −∇2U(θ̄)

(
θ̂n − θkh

)]

= EΓ

[(
∇2U(θ̃)−∇2U(θ̄)

)
hvθ + h∇2U(θ̄)∆(θ̄)

]
,

where θ̃ is a convex combination of θτ and θτ + hv. Taking the limit h → 0, we have:

vT∇xτ
Exkh∼p(xkh|xτ ) [∇U(θτ )−∇U(θkh)]

= lim
h→0

1

h
E xkh∼p(xkh|xτ )
x̂n∼p(x̂n|xτ+hv)

[(
∇U(θτ + hv)−∇U(θ̂n)

)
−
(
∇U(θτ )−∇U(θkh)

)]

= Exkh∼p(xkh|xτ)

[(
∇2U(θτ )−∇2U(θkh)

)
vθ +∇2U(θkh)∆(θkh)

]
.

Therefore,

∇xτ
Exkh∼p(xkh|xτ) [∇U(θτ )−∇U(θkh)]

= Exkh∼p(xkh|xτ )




(
∇2U(θτ )−∇2U(θkh)

)
+∇2U(θkh)

((
I + η∇2U(θkh)

)−1 − I
)

−eγξ(τ−kh) − 1

γ
∇2U(θkh)

(
I + η∇2U(θkh)

)−1


 .

�

E Overall Convergence of the Underdamped Langevin Algorithm

Proof of Lemma 5 We aim to prove that

M =




31

64
aξ · I c+ aγ

2
ξ · I− b

2
∇2U(θ)

c+ aγ

2
ξ · I− b

2
∇2U(θ)

31

32
γ (2cξ + 1) I− a

2
∇2U(θ)




� λ

(
S +

1

2ρ
I

)
= λ




(
b +

1

2ρ

)
I

a

2
I

a

2
I

(
c+

1

2ρ

)
I


 ,

for a =
1

LG
, b =

1

4LG
, c =

2

LG
, γ = 2, ξ = 2LG, and λ =

ρ

30
. That is equivalent to having:

M̂ =




(
31

64
aξ −

(
b+

1

2ρ

)
λ

)
I

(
c+ aγ

2
ξ − a

2
λ

)
I− b

2
∇2U(θ)

(
c+ aγ

2
ξ − a

2
λ

)
I− b

2
∇2U(θ)

(
31

32
γ (2cξ + 1)−

(
c+

1

2ρ

)
λ

)
I− a

2
∇2U(θ)




to be positive semidefinite.

Denote α =
31

64
aξ−

(
b+

1

2ρ

)
λ, β =

c+ aγ

2
ξ− a

2
λ, and σ =

31

32
γ (2cξ + 1)−

(
c+

1

2ρ

)
λ. Then we analyze

the eigenvalues of M̂ =




αI βI− b

2
∇2U(θ)

βI− b

2
∇2U(θ) σI− a

2
∇2U(θ)


 and ask when they will all be nonnegative. We
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write the characteristic equation for M̂ :

det
[
M̂ − l · I

]
= det







(α− l)I βI− b

2
∇2U(θ)

βI− b

2
∇2U(θ) (σ − l)I− a

2
∇2U(θ)







= det

[
(α− l)(σ − l)I− a

2
(α− l)∇2U(θ)−

(
βI− b

2
∇2U(θ)

)2
]
= 0,

since βI− b

2
∇2U(θ) and (σ− l)I− a

2
∇2U(θ) commute. Diagonalizing ∇2U(θ) = V −1ΛV , we obtain a set of

independent equations based on each eigenvalue Λj of ∇2U(θ):

l2 +
(a
2
Λj − α− σ

)
l −
(
b2

4
Λ2
j +

(a
2
α− bβ

)
Λj + β2 − ασ

)
= 0.

To guarantee that l ≥ 0, we need that ∀Λj ∈ [−LG, LG],





a

2
Λj − α− σ ≤ 0

b2

4
Λ2
j +

(a
2
α− bβ

)
Λj + β2 − ασ ≤ 0

.

Since the linear function
a

2
Λj−α−σ of Λj is increasing; the quadratic function

b2

4
Λ2
j+
(a
2
α− bβ

)
Λj+β2−ασ

of Λj is convex, we simply need the inequality to satisfy at the end points:





a

2
LG − α− σ ≤ 0

b2

4
L2
G −

(a
2
α− bβ

)
LG + β2 − ασ ≤ 0

b2

4
L2
G +

(a
2
α− bβ

)
LG + β2 − ασ ≤ 0

.

We verify these inequalities by plugging in the setting of a =
1

LG
, b =

1

4LG
, c =

2

LG
, γ = 2, ξ = 2LG, and

λ =
ρ

30
, in the definition of α, β, and σ. Then for LG ≥ 2ρ, we obtain that





a

2
LG − α− σ = −8579

480
+

3ρ

40LG
≤ 0

b2

4
L2
G −

(a
2
α− bβ

)
LG + β2 − ασ = − 5357

115200
+

241ρ

3200LG
− ρ2

3600L2
G

≤ 0

b2

4
L2
G +

(a
2
α− bβ

)
LG + β2 − ασ = −126077

115200
+

241ρ

3200LG
− ρ2

3600L2
G

≤ 0

.

Therefore, M � λ

(
S +

1

2ρ
I2d×2d

)
when we take a =

1

LG
, b =

1

4LG
, c =

2

LG
, γ = 2, and ξ = 2LG, where

the contraction rate λ is λ =
ρ

30
.

�
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Proof of Lemma 6 For the expectation of ‖θτ − θkh‖2 taken over the joint distribution of (xτ , xkh), we
use the definition of xτ in our Equation (13) to expand it (by way of Jensen’s inequality):

Ep(xkh,xτ)

[
‖θτ − θkh‖2

]
= ξE

[∥∥∥∥
∫ τ

kh

rsds

∥∥∥∥
2
]

≤ ξh

∫ τ

kh

E

[
‖rs‖2

]
ds

≤ ξh2 sup
s∈[kh,(k+1)h]

Ers∼ps

[
‖rs‖2

]

= 2LGh
2 sup
s∈[kh,(k+1)h]

Ers∼ps

[
‖rs‖2

]
. (69)

In the following Lemma 11, we uniformly upper bound E

[
‖rs‖2

]
by O

(
d

ρ

)
.

Lemma 11. Assume that function U satisfies Assumption A1–A3, where ρ denotes the minimum of the
log-Sobolev constant and 1. If we take γ = 2, ξ = 2LG, and

h =
1

56

1√
LG

min

{
1

24

ρ

LG
,

√
LGρ

LH

}
·min

{(
C̃N + 2

)−1/2
√

ǫ

d
,

√
ǫ

CM

}
,

where ǫ ≤ d
LG

ρ
. Then for rs following Equation (13), ∀s ≥ 0,

E

[
‖xs‖2

]
≤
(
12C̃N + 13

) d

ρ
+ 12

CM

ρ
= O

(
d

ρ

)
.

We defer the proof of Lemma 11 to Sec. E.1.

Taking Lemma 11 as given, we can find that Ers∼ps

[
‖rs‖2

]
in Eq. (69) is upper bounded as:

sup
s∈[kh,(k+1)h]

Ers∼ps

[
‖rs‖2

]
≤ sup

s∈[kh,(k+1)h]

Exs∼ps

[
‖xs‖2

]
≤
(
12C̃N + 13

) d

ρ
+ 12

CM

ρ
,

resulting in the final bound for Ep(xkh,xτ )

[
‖θτ − θkh‖2

]
to be:

Ep(xkh,xτ)

[
‖θτ − θkh‖2

]
≤
((

24C̃N + 26
) LG

ρ
· d+ 24CM

LG

ρ

)
h2 = O

(
LG

ρ
d · h2

)
.

�

Lemma 12. Let p0(x) = p0(θ)p0(r), where

p0(θ) =

(
LG

2π

)d/2

exp

(
−LG

2
‖θ‖2

)
,

and

p0(r) =

(
ξ

2π

)d/2

exp

(
− ξ

2
‖r‖2

)
.

For p
∗(x) ∝

(
−U(θ)− ξ

2
‖r‖2

)
, if U(θ) follows Assumptions A1–A3, then we can define C̃N = CN +

1

2
ln

LG

2π
and obtain that

KL (p0‖p∗) =

∫
p0(x) ln

(
p0(x)

p∗(x)

)
dx ≤ C̃N · d+ CM , (70)
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and

L[p0] = KL (p0‖p∗) + Ep0

[〈
∇x ln

p0

p∗
, S∇x ln

p0

p∗

〉]

≤
(
C̃N + 1

)
d+ CM . (71)

With the setting of ξ = 2LG, we can also obtain that

Ex∼p∗

[
‖x‖2

]
≤
(
4
C̃N

ρ
+

5

2

1

LG

)
· d+ 4

CM

ρ
. (72)

Proof of Lemma 12 We want to bound KL(p0‖p∗) =

∫
p0(x) ln

(
p0(x)

p∗(x)

)
dx =

∫
p0(θ) ln

(
p0(θ)

p∗(θ)

)
dθ,

where p
∗(θ) ∝ e−U(θ) and p0(θ) =

(
LG

2π

)d/2

exp

(
−LG

2
‖θ‖2

)
. First note that

p
∗(θ) = exp (−U(θ))

/∫
exp (−U(θ)) dθ.

By Assumptions A2 and A3, U(θ) ≤ LG

2
‖θ‖2, ∀θ ∈ R

d. We also know that: ln
∫
exp (−U(θ)) dθ ≤

CN · d+ CM .

Therefore,

− ln p∗(θ) = U(θ) + ln

∫
exp (−U(θ)) dθ (73)

≤ LG

2
‖θ‖2 + CN · d+ CM .

Hence

−
∫

p0(θ) ln p
∗(θ)dθ ≤ d

2
+ CN · d+ CM .

We can also calculate that
∫

p0(θ) ln p0(θ)dθ = −d

2
− d

2
ln

2π

LG
.

Therefore,

KL (p0‖p∗) =

∫
p0(θ) ln p0(θ)dθ −

∫
p0(θ) ln p

∗(θ)dθ

≤
(
CN +

1

2
ln

LG

2π

)
· d+ CM

= C̃N · d+ CM .
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For Ep0

[〈
∇x ln

p0

p∗
, S∇x ln

p0

p∗

〉]
, since U is LG-Lipschitz smooth, ‖∇θ ln p

∗(x)‖2 ≤ L2
G ‖θ‖2, and thus

Ep0

[〈
∇x ln

p0

p∗
, S∇x ln

p0

p∗

〉]

=
1

4LG
Ep0

[∥∥∥∥∇θ ln
p0

p∗

∥∥∥∥
2
]

≤ 1

2LG
Ep0

[
‖∇θ lnp0‖2 + ‖∇θ lnp

∗‖2
]

≤ LGEp0

[
‖θ‖2

]

= d.

Consequently,

L[p0] = KL (p0‖p∗) + Ep0

[〈
∇x ln

p0

p∗
, S∇x ln

p0

p∗

〉]

≤
(
C̃N + 1

)
d+ CM . (74)

For Ex∗∼p∗

[
‖x∗‖2

]
, we bound it using W2(p

∗,p0). We choose an auxiliary random variable θ0 following the

law of p0(θ) and couples optimally with θ∗ ∼ p
∗(θ): (θ∗, θ0) ∼ γ ∈ Γopt(p

∗,p0). We then have

Ex∗∼p∗

[
‖x∗‖2

]
= Er∗∼p∗(r)

[
‖r∗‖2

]
+ Eθ∗∼p∗(θ)

[
‖θ∗‖2

]

=
d

ξ
+ E(θ∗,θ0)∼γ

[
‖θ0 + (θ∗ − θ0)‖2

]

≤ d

ξ
+ 2Eθ0∼p0

[
‖θ0‖2

]
+ 2E(θ∗,θ0)∼γ

[
‖θ∗ − θ0‖2

]

=
d

ξ
+

2d

LG
+ 2W 2

2 (p
∗,p0).

We further expand this inequality by using the extended Talagrand inequality, Eq. (1), which applies to the

joint density function p
∗(θ, r) ∝ exp

(
−U(θ)− ξ

2
‖r‖2

)
with log-Sobolev constant greater than or equal to

ρ and Lipschitz smoothness of U +
ξ

2
‖r‖2 less than or equal to 4LG:

W 2
2 (ps,p

∗) ≤ 2

ρ
KL (ps‖p∗) .

Therefore, for ξ = 2LG,

Ex∗∼p∗

[
‖x∗‖2

]
≤ d

ξ
+

2d

LG
+

4

ρ
KL (p0‖p∗)

≤
(
4C̃N

ρ
+

1

ξ
+

2

LG

)
· d+ 4CM

ρ

=

(
4
C̃N

ρ
+

5

2

1

LG

)
· d+ 4

CM

ρ
.
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It is worth noting that the choice of the initial condition p0 can be flexible. For example, if we choose

x0 ∼ N (0, I), then KL(p0‖p∗) ≤
(
CN +

LG

2
− 1

2
− 1

2
ln(2π)

)
· d+CM (resulting in merely an extra lnLG

term in the overall computation complexity). �

E.1 Supporting Proof for Lemma 6

Proof of Lemma 11 In what follows, we will prove that:

1. E

[
‖x0‖2

]
≤
(
12C̃N + 13

) d

ρ
+ 12

CM

ρ
.

2. If ∀s ≤ kh, E
[
‖xs‖2

]
≤
(
12C̃N + 13

) d

ρ
+ 12

CM

ρ
, then ∀s ∈ [kh, (k + 1)h],

E

[
‖xs‖2

]
≤
(
12C̃N + 13

) d

ρ
+ 12

CM

ρ
.

By induction, this will prove Lemma 11.

For claim 1, we can calculate that Ex0∼p0

[
‖x0‖2

]
=

3

2
· d

LG
≤
(
12C̃N + 13

) d

ρ
+ 12

CM

ρ
.

We prove claim 2 in a two step procedure: we first prove in the following Lemma 13 that if E
[
‖xkh‖2

]
is

bounded, then E

[
‖xs‖2

]
remains bounded for s ∈ [kh, (k + 1)h]. We then provide a specific bound of it.

Lemma 13. Assume the step size h ≤ 1

8LG
and let γ = 2 and ξ = 2LG. Then ∀s ∈ [kh, (k + 1)h],

E

[
‖xs‖2

]
≤ 2E

[
‖xkh‖2

]
+

d

LG
.

It can be verified that for ǫ ≤ 2d and ρ ≤ 1, h is indeed smaller than
1

8LG
. Thus Lemma 13, in conjunction

with the induction hypothesis, gives us a rough bound that ∀s ∈ [kh, (k + 1)h],

E

[
‖xs‖2

]
≤ 2E

[
‖xkh‖2

]
+

d

LG
≤
(
24C̃N + 26

) d

ρ
+ 24

CM

ρ
+

d

LG

≤
(
24C̃N + 27

) d

ρ
+ 24

CM

ρ
. (75)

Then to accurately bound E

[
‖xs‖2

]
, we use Ex∗∼p∗

[
‖x∗‖2

]
as an anchor point and bound the Wasserstein-2

distance between ps and p∗. To this end, we choose an auxiliary random variable x∗ following the law of p∗

and couples optimally with p(xs): (xs, x
∗) ∼ ζ ∈ Γopt(p(xs),p

∗(x∗)). Then using Young’s inequality and
Eq. (72) in Lemma 12,

E

[
‖xs‖2

]
= E(xs,x∗)∼ζ

[
‖x∗ + (xs − x∗)‖2

]

≤ 2Ep∗

[
‖x∗‖2

]
+ 2E(xs,x∗)∼ζ

[
‖xs − x∗‖2

]

≤
(
8
C̃N

ρ
+ 5

1

LG

)
· d+ 8

CM

ρ
+ 2W 2

2 (ps,p
∗).
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Applying the extended Talagrand inequality, Eq. (1), we obtain that

E

[
‖xs‖2

]
≤
(
8
C̃N

ρ
+ 5

1

LG

)
· d+ 8

CM

ρ
+

4

ρ
KL(ps‖p∗) . (76)

On the other hand, we can use dissipation of the Lyapunov functional to bound the growth of the KL-

divergence, and in turn the growth of E
[
‖xs‖2

]
in Eq. (76). This is the thesis of the following Lemma 14.

Lemma 14. Let xs follow the underdamped Langevin algorithm 1 with parameters ξ = 2LG, γ = 2, and the
step size h = (k + 1)h− kh given in Eq. (37). Also let ps be the probability distribution of xs. Assume that
Eq. (75) (given by the induction hypothesis in conjunction with Lemma 13) holds for any s ∈ [kh, (k + 1)h].
Then for ǫ ≤ 2d and ρ ≤ 1, ∀s ∈ [kh, (k + 1)h],

dL[ps]

ds
≤ − ρ

30
·
(
L[ps]−

ǫ

2

)
. (77)

Applying Grönwall’s Lemma in Eq. (77), we obtain that the objective functional L will not increase by more
than ǫ/2 throughout the progress of the algorithm:

L[ps]−
ǫ

2
≤ e−

ρ
30

(s−kh)
(
L[pkh]−

ǫ

2

)
≤ e−

ρ
30

kh− ρ
30

(s−kh)
(
L[p0]−

ǫ

2

)
≤ L[p0],

where L[ps] = KL (ps‖p∗) + Eps

[〈
∇x ln

ps

p∗
, S∇x ln

ps

p∗

〉]
. Therefore, we can bound KL (ps‖p∗) using

initial conditions

KL (ps‖p∗) ≤ L[ps] ≤ L[p0] +
ǫ

2
.

From Lemma 12, we know that L[p0] ≤
(
C̃N + 1

)
d+ CM . Therefore, for ǫ ≤ 2d,

KL(ps‖p∗) ≤
(
C̃N + 1

)
d+ CM +

ǫ

2

≤
(
C̃N + 2

)
d+ CM . (78)

Plugging Eq. (78) into Eq. (76), we obtain our final result that

E

[
‖xs‖2

]
≤
(
8
C̃N

ρ
+ 5

1

LG

)
d+ 8

CM

ρ
+

4

ρ
KL(ps‖p∗)

≤
(
12

C̃N

ρ
+ 8

1

ρ
+ 5

1

LG

)
d+ 12

CM

ρ

≤
(
12C̃N + 13

) d

ρ
+ 12

CM

ρ
,

since ρ ≤ LG. �

Proof of Lemma 13 We begin from the discretized dynamics of underdamped Langevin diffusion Eq. (15)
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to calculate that ∀s ∈ [kh, (k + 1)h],

d

ds
E

[
‖xs‖2

]
=

d

ds
E

[
‖θs‖2 + ‖rs‖2

]

= 2E

[〈(
θs
rs

)
,

(
ξrs

−∇U(θkh)− γξrs − γ∇r lnps

)〉]

≤ 2E
[
ξ 〈θs, rs〉 − 〈rs, θkh〉 − γξ ‖rs‖2

]
− 2γ

∫

Rd

〈rs,∇r lnps〉psdxs

≤ 2E
[
ξ ‖θs‖ ‖rs‖+ LG ‖θkh‖ ‖rs‖ − γξ ‖rs‖2

]
+ 2γd

≤ 2LGE

[
‖θs‖2 + ‖rs‖2

]
+ 2LGE

[
‖θkh‖2 + ‖rkh‖2

]
+ 2γd, (79)

where the last step follows from plugging in the setting of γ = 2 and ξ = 2LG and using Young’s inequality.
Multiplying e−2LGs > 0 on both ends of Eq. (79), we obtain that ∀s,

d

ds

(
e−2LGs

E

[
‖xs‖2

])
≤ e−2LGs

(
2LGE

[
‖xkh‖2

]
+ 2γd

)
. (80)

Applying the fundamental theorem of calculus and multiplying e2LGτ > 0 on both sides, we have that

E

[
‖xτ‖2

]
≤ e2LGτ

∫ τ

kh

e−2LGs
(
2LGE

[
‖xkh‖2

]
+ 2γd

)
ds+ e2LG(τ−kh)

E

[
‖xkh‖2

]

=
1

2LG

(
e2LG(τ−kh) − 1

)(
2LGE

[
‖xkh‖2

]
+ 2γd

)
+ e2LG(τ−kh)

E

[
‖xkh‖2

]
.

It can then be checked that when τ − kh ≤ h ≤ 1

8LG
, the factor

(
e2LG(τ−kh) − 1

)
≤ 1

2
, and that

E

[
‖xτ‖2

]
≤ 2E

[
‖xkh‖2

]
+

d

LG
, ∀τ ∈ [kh, (k + 1)h].

�

Proof of Lemma 14 Applying the result of Eq. (69) that:

Ep(xkh,xτ )

[
‖θτ − θkh‖2

]
≤ 2LGh

2 sup
s∈[kh,(k+1)h]

Ers∼ps

[
‖rs‖2

]

to Eq. (23a)–(23c), we obtain that for ξ = 2LG, γ = 2, and ∀τ ∈ [kh, (k + 1)h],

dL(pτ )

dτ
≤ − ρ

30
L(pτ )

+

(
68L2

G +
1

8

L2
H

LG

)
Ep(xkh,xτ )

[
‖θτ − θkh‖2

]
+ 18eLGdmax

{
L4
G(τ − kh)4, L2

G(τ − kh)2
}

≤ − ρ

30

(
L(pτ )− 60

LG

ρ

(
68L2

G +
1

8

L2
H

LG

)
h2 sup

s∈[kh,(k+1)h]

Ers∼ps

[
‖rs‖2

]

− 540e
LG

ρ
dmax

{
L4
Gh

4, L2
Gh

2
})

≤ − ρ

30

(
L(pτ )− 60

LG

ρ
max

{
136L2

G,
1

4

L2
H

LG

}
h2 sup

s∈[kh,(k+1)h]

Ers∼ps

[
‖rs‖2

]

− 1500
LG

ρ
dmax

{
L4
Gh

4, L2
Gh

2
})

. (81)
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Using the definition of h =
1

56

1√
LG

min

{
1

24

ρ

LG
,

√
LGρ

LH

}
· min

{(
C̃N + 2

)−1/2
√

ǫ

d
,

√
ǫ

CM

}
in Eq. (37),

we know that

L2
Gh

2 ≤ 1

6000

1

C̃N + 2
· ρ2

LG

ǫ

d
.

Plugging this setting into the last term of Eq. (81), we obtain that for ǫ ≤ 2d and ρ ≤ 1,

1500
LG

ρ
dmax

{
L4
Gh

4, L2
Gh

2
}
≤ ǫ

4
.

We can similarly combine this setting of the step size h with the premise of this Lemma, Eq. (75), that

sups∈[kh,(k+1)h] Ers∼ps

[
‖rs‖2

]
≤
(
24C̃N + 27

) d

ρ
+ 24

CM

ρ
, and obtain:

60
LG

ρ
max

{
136L2

G,
1

4

L2
H

LG

}
h2 · sup

s∈[kh,(k+1)h]

Ers∼ps

[
‖rs‖2

]

≤ 60
LG

ρ
max

{
144L2

G,
1

4

L2
H

LG

}
·
((

24C̃N + 27
) d

ρ
+ 24

CM

ρ

)
h2

≤ 282LGmax

{
242

L2
G

ρ2
,
L2
H

LGρ2

}
·max

{(
C̃N + 2

)
d, CM

}
h2 ≤ ǫ

4
.

Consequently, the time derivative of the Lyapunov functional L is bounded as:

dL[ps]

ds
≤ −ρ ·

(
L[ps]−

ǫ

2

)
. (82)

�

F Proofs for Auxiliary Facts

Proof of Fact 1 By Assumptions (b) and (c), U(θ) ≤ LG

2
‖θ‖2, ∀θ ∈ R

d. We also prove in the following

that

• U(θ) ≥ m

4
‖θ‖2, ∀θ ∈ R

d \ B
(
0,

8LG

m
R

)
;

• U(θ) ≥ −LG

2
‖θ‖2, ∀θ ∈ B

(
0,

8LG

m
R

)
.

The latter case follows directly from Assumptions (b) and (c). For the former case where ‖θ‖ ≥ 8LG

m
R,

define ϑ =
R

‖θ‖θ. Since ‖ϑ‖ = R,

〈∇U(ϑ), ϑ〉 ≥ −LGR
2.
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Because any convex combination of θ and ϑ belongs to the set R
d \ B(0, R), where U is m-strongly convex,

U(θ)− U(ϑ) ≥ 〈∇U(ϑ), θ − ϑ〉+ m

2
‖θ − ϑ‖2

=

(‖θ‖
R

− 1

)
〈∇U(ϑ), ϑ〉+ m

2

(‖θ‖
R

− 1

)2

≥ −
(‖θ‖

R
− 1

)
LGR

2 +
m

2

(‖θ‖
R

− 1

)2

≥ m

4
‖θ‖2 + LGR

2,

since ‖θ‖ ≥ 8LG

m
R. Again, using Assumptions (b) and (c), U(ϑ) ≥ −LG

2
R2, which leads to the result that

U(θ) ≥ m

4
‖θ‖2.

Therefore, U(θ) ≥ m

4
‖θ‖2 − 32

L2
G

m2
LGR

2 and

ln

∫
exp (−U(θ)) dθ ≤ ln

∫
exp

(
−m

4
‖θ‖2 + 32

L2
G

m2
LGR

2

)
dθ

=
d

2
ln

4π

m
+ 32

L2
G

m2
LGR

2.

Hence CN ≤ 1

2
ln

4π

m
and CM ≤ 32

L2
G

m2
LGR

2. �

Proof of Fact 2 We begin with the definition of

η =
1

γ

(
eγξ(τ−kh)

(
1− e−γξ(τ−kh)

)2

γξ
−
(
(τ − kh)− 1− e−γξ(τ−kh)

γξ

))
,

and provide bound for it when 0 ≤ (τ − kh) ≤ min

{
1

γξ
,

1√
2eLGξ

}
.

First note that for 0 ≤ (τ − kh) ≤ 1

γξ
,

1− γξν ≤ e−γξ(τ−kh) ≤ 1 + γξ(τ − kh).

Then we obtain that

η =
1

γ

(
eγξ(τ−kh)

γξ
(γξ(τ − kh))

2 − (τ − kh) +
−γξ(τ − kh)

γξ

)

= γ(τ − kh)2eγξ(τ−kh)

≤ eξ(τ − kh)2.

We then prove Fact 2 by separating the following term:
∥∥∥∥∥∥∥




∇2U(θkh)
((

I + η∇2U(θkh)
)−1 − I

)

−eγξ(τ−kh) − 1

γ
∇2U(θkh)

(
I + η∇2U(θkh)

)−1




∥∥∥∥∥∥∥
2

≤ 2max

{∥∥∥∇2U(θkh)
((

I + η∇2U(θkh)
)−1 − I

)∥∥∥
2
,

∥∥∥∥
1− eγξ(τ−kh)

γ
∇2U(θkh)

(
I + η∇2U(θkh)

)−1
∥∥∥∥
2

}
.
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Since
∥∥η∇2U(θkh)

∥∥ ≤ eξν2
∥∥∇2U(θkh)

∥∥ ≤ eLGξν
2 < 1 for ν ≤ min

{
1

γξ
,

1√
2eLGξ

}
,
(
I + η∇2U(θkh)

)−1

admits the following series expansion:

(
I + η∇2U(θkh)

)−1
=

∞∑

n=0

(
−η∇2U(θkh)

)n
.

Consequently,
∥∥∥
(
I + η∇2U(θkh)

)−1
∥∥∥
2
≤

∞∑

n=0

(ηLG)
n
=

1

1− ηLG
≤ 2,

and ∥∥∥
(
I + η∇2U(θkh)

)−1 − I
∥∥∥
2
≤

∞∑

n=1

(ηLG)
n
=

ηLG

1− ηLG
≤ 2ηLG = 2eLGξν

2.

Therefore, for the first term,

∥∥∥∇2U(θkh)
((

I + η∇2U(θkh)
)−1 − I

)∥∥∥
2

≤
∥∥∇2U(θkh)

∥∥
2

∥∥∥
(
I + η∇2U(θkh)

)−1 − I
∥∥∥
2

≤ 2eL2
Gξν

2.

For the second term,

∥∥∥∥
1− eγξ(τ−kh)

γ
∇2U(θkh)

(
I + η∇2U(θkh)

)−1
∥∥∥∥
2

≤ ξν
∥∥∇2U(θkh)

∥∥
∥∥∥
(
I + η∇2U(θkh)

)−1
∥∥∥
2

≤ 2LGξν.

Therefore,

∥∥∥∥∥∥∥




∇2U(θkh)
((

I + η∇2U(θkh)
)−1 − I

)

−eγξ(τ−kh) − 1

γ
∇2U(θkh)

(
I + η∇2U(θkh)

)−1




∥∥∥∥∥∥∥
2

≤ 4emax{L2
Gξν

2, LGξν}.
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