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ABSTRACT

We present the DustFilaments code, a full-sky model for the millimeter Galactic emission of

thermal dust. Our model, composed of millions of filaments that are imperfectly aligned with the

magnetic field, is able to reproduce the main features of the dust angular power spectra at 353GHz

as measured by the Planck mission. Our model is made up of a population of filaments with sizes

following a Pareto distribution ∝ L−2.445
a , with an axis ratio between short and long semiaxes ϵ ∼ 0.16

and an angle of magnetic field misalignment with a dispersion RMS(θLH)= 10◦.

On large scales, our model follows a Planck-based template. On small scales, our model produces

spectra that behave like power laws up to ℓ ∼ 4000 or smaller scales by considering even smaller

filaments, limited only by computing power. We can produce any number of Monte Carlo realizations

of small-scale Galactic dust. Our model will allow tests of how the small-scale non-Gaussianity affects

CMB weak lensing and the consequences for the measurement of primordial gravitational waves or

relativistic light relic species.

Our model also can generate frequency decorrelation on the modified blackbody spectrum of dust

and is freely adjustable to different levels of decorrelation. This can be used to test the performance

of component separation methods and the impact of frequency spectrum residuals on primordial B-

mode surveys. The filament density we paint in the sky is also able to reproduce the general level of

non-Gaussianities measured by Minkowski functionals in the Planck 353GHz channel map.

1. INTRODUCTION

The presence of Galactic foregrounds at millimeter

wavelengths is one of the main hurdles for cosmology

with the cosmic microwave background (CMB). This

is especially true for the potential detection of a back-

ground of gravitational waves from inflation that source

a curl polarization component in the CMB, also known

as B-modes (Kamionkowski et al. 1997; Seljak & Zal-

darriaga 1997; Kamionkowski & Kovetz 2016). A mea-

surement of the tensor-to-scalar ratio r could substan-

tiate or rule out different models of inflation (Baumann

2009). This primordial signal peaks at degree scales,

and at these scales, we already have full-sky observa-

tions, like the ones by the Planck experiment. These

are not sensitive enough to detect the B-modes, but let

us begin to construct large-scale models of foreground

emission (Planck Collaboration et al. 2016a). In addi-

tion to the foregrounds, the primordial B-mode signal
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is contaminated by B-modes generated via gravitational

lensing of the CMB photons by large-scale structure be-

tween us and the surface of last scattering (Lewis &

Challinor 2006). The B-mode signal from foreground

contamination and from gravitational weak lensing are

each larger than the possible primordial cosmological
B-mode signal. Constraining this lensed B-mode signals

with arcminute-scale CMB data is vital to remove the

lensing contaminant at degree scales

The new generation of CMB ground-based experi-

ments will observe with high resolution over a huge frac-

tion of the sky with very good sensitivity. Experiments

like Simons Observatory (Ade et al. 2019) and CMB-

S4 (Abazajian et al. 2016) aim to observe fsky ≥ 0.4 of

the sky with an ∼ 6m aperture, which is equivalent to

an ∼ 1′ resolution at 150GHz. At these small scales,

the Galactic foregrounds, such as thermal dust and syn-

chrotron, will have non-Gaussian features. Structure in

the emission originates from nonlinear processes in the

interstellar medium (ISM) by the interaction of turbu-

lence, energy injection, and the Galactic magnetic field.

Methods for component separation and lensing recon-

struction could suffer from unexpected non-Gaussian
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foregrounds and leave residuals in the science products.

These residuals could potentially damage our efforts, so

our methods must be tested against models that include

them.

In the last few years, several models of the diffuse

and extragalactic foregrounds at millimeter frequencies

have been developed to simulate observations for CMB

end-to-end pipeline data analysis (e.g. de Oliveira-Costa

et al. 2008; Delabrouille et al. 2013; Herv́ıas-Caimapo

et al. 2016; Thorne et al. 2017; Zheng et al. 2017). How-

ever, these models are usually based in foreground tem-

plates in intensity and polarization observed directly by

experiments like Planck. Since observations of the mil-

limeter sky have limited resolution, the small scales of

these templates are usually filled by generating Gaussian

anisotropies with power spectra that follow an extrapo-

lation of the measured foregrounds at the large scales.

This will usually take the form of a power law. Ob-

viously, the problem with this approach is that it will

not simulate a deviation from Gaussianity in polarized

foregrounds, which is most likely present in the real sky.

Several works have looked at analyzing and quanti-

fying the non-Gaussianity and statistical isotropy vi-

olation in radio and millimeter diffuse Galactic fore-

grounds (e.g. Chingangbam & Park 2013; Kamionkowski

& Kovetz 2014; Ben-David et al. 2015; Rotti & Huffen-

berger 2016; Rana et al. 2018; Coulton & Spergel 2019;

von Hausegger et al. 2019; Rahman et al. 2021; Regaldo-

Saint Blancard et al. 2021; Saydjari et al. 2021). In

general, they find that their deviations from Gaussian-

ity are increased toward the Galactic plane at ≲degree

scales. However, the lack of adequate resolution and

signal-to-noise ratio prevents us from making conclusive

statements at the few arcminute scales.

In particular, diffuse thermal dust emission from our

galaxy, the subject of this work, is radiation from dust

grains in the ISM. The polarization of the thermal

dust is the product of the interplay of elongated dust

grains aligned with respect to the Galactic magnetic field

(Draine 2003). Turbulent, supersonic flows in the ISM

compress the gas and organize it into a weblike structure

of filaments (André et al. 2014). These filaments have

been observed in multiple frequencies by many exper-

iments, in particular at millimeter emission by Planck

(Planck Collaboration et al. 2016b,c,d). Filamentary

structure is measured in the Galactic H I emission and

correlates well with the thermal dust polarization in the

Planck 353GHz emission (Clark et al. 2014, 2015).

The CMB community has recently started to fo-

cus on developing millimeter foreground models with

non-Gaussian small-scale emission. For example, some

efforts have been focused on magnetohydrodynamic

(MHD) simulations. Several works have looked at the

effect in the ISM of turbulence driven by different pro-

cesses (supernova explosions, massive star outflows, etc.)

and how they shape the physical parameters such as the

magnetic field and density and examined the Alfvénic

and sonic Mach numbers of the flow (e.g. Kritsuk et al.

2018; Kim et al. 2019; Bialy & Burkhart 2020, Stalpes

et al. in preparation).

Other models have tried less computationally inten-

sive methods to account for the three-dimensional struc-

tures of the Galactic magnetic field, layers of Galac-

tic dust, and the spiral structure of the Milky Way

(e.g. Fauvet et al. 2011; Vansyngel et al. 2017; Levrier

et al. 2018; Mart́ınez-Solaeche et al. 2018). Recently, a

new approach has taught neural networks to extrapo-

late foregrounds from large to intermediate scales, then

used that same extrapolation to go from observed inter-

mediate scales in Planck to unobserved arcminute scales

(e.g. Krachmalnicoff & Puglisi 2021; Thorne et al. 2021).

Another approach is to construct models based on ob-

servations specifically exploiting ancillary data such as

Galactic H I emission, which will add information on

a third radial dimension along the line of sight (LOS)

using a Doppler velocity shift of the molecular gas in

the ISM (e.g. Ghosh et al. 2017; Clark & Hensley 2019;

Adak et al. 2020).

Another interesting phenomenon discovered recently

is the frequency decorrelation of the dust spectral emis-

sion, meaning that the flux between two or more fre-

quencies is not a simple multiplicative factor but varies

across and along LOSs. The dust in the galaxy will have

different physical conditions, such as dust grain popu-

lation, gas cloud velocity, direction of magnetic field,

etc., which will generate an overlap of different frequency

spectra. Frequency decorrelation was first analyzed in

Planck data by Planck Collaboration et al. (2016e) and

measured by Planck Collaboration et al. (2017). It has

been discussed in Sheehy & Slosar (2018), Planck Col-

laboration et al. (2020a), and Pelgrims et al. (2021).

Planck has measured limits on the decorrelation between

the 217 and 353GHz channels for a large fraction of the

sky, while Pelgrims et al. (2021) measured the decorre-

lation on individual LOSs located at the Galactic pole

regions.

In this work, we build a foreground model from the

idea presented in Huffenberger et al. (2020) that fil-

aments and their interaction with the magnetic field

can explain most of the features measured by Planck

in the dust power spectra in Planck Collaboration et al.

(2020a). While Huffenberger et al. (2020) considered an

idealized population of filaments and integrated their

distributions to predict their power spectra in a semi-
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analytic computation, here we create simulated popu-

lations of individual randomized filaments and combine

the emission of each filament to produce a full-sky image

of the Galactic thermal dust intensity and polarization

at millimeter frequencies.

We produce a model that can reproduce the dust an-

gular power spectrum and its features as measured by

Planck in Planck Collaboration et al. (2020a). In par-

ticular, we look at the power law fit of the TE, EE,

and BB spectra, as well as the DBB
ℓ /DEE

ℓ , DTE
ℓ /DEE

ℓ ,

and rTE
ℓ = DTE

ℓ /
√︂

DTT
ℓ DEE

ℓ ratios. We also introduce

a simple method for generating frequency decorrelation,

measured by the correlation RBB
ℓ (217, 353). We are also

able to reproduce the general level of non-Gaussianity in

intensity, which we measure using Minkowski function-

als (MFs).

This paper is organized as follows. In Section 2, we

briefly present the Planck data we use to inform our

model. In Section 3, we describe the method that gen-

erates the simulated map of thermal dust composed of

individual filaments (with extra details appearing in Ap-

pendix A). In Section 4, we present our results and com-

pare our filament model to the Planck observations in

detail. In Section 5, we discuss specific details about

where our models and the observed sky might not match.

Finally, in Section 6, we draw our conclusions.

2. DATA THAT INFORM OUR MODEL

We build our model with public data from Data Re-

leases (DRs) 2 and 3 from the Planck mission.

The main results we aim to reproduce in this paper

are the power spectrum properties of the thermal dust

emission in Planck Collaboration et al. (2020a). We

use their same inputs, namely, the 217 and 353GHz

frequency maps from the High-Frequency Instrument

(HFI; Planck Collaboration et al. 2020b), and both the

full mission maps and the two half-mission splits for

both frequency channels. We also use the Intensity

and Polarization Large Region (LR) 71 masks (the po-

larization mask is shown in Fig. 2 of Planck Collabo-

ration et al. 2020a) to estimate the power spectra in

the same sky fraction when comparing to our model.

For the LR71 mask and at an anchor scale of ℓ = 80,

their measured ratios are DBB
ℓ /DEE

ℓ = 0.53 ± 0.01 and

DTE
ℓ /DEE

ℓ = 2.77±0.05. The reference value for the TE

correlation is rTE
ℓ ∼ 0.357 for the LR71 mask. The mea-

sured slopes are αEE = −2.42±0.02, αBB = −2.54±0.02

and αTE = −2.50 ± 0.02. All of these amplitudes and

slopes are somewhat mask-dependent.

We also use the component-separated thermal dust

products derived from the GNILC method in Planck

Collaboration et al. (2016f), constructed from the DR2

LFI and HFI Planck maps (Planck Collaboration et al.

2016g,h). These data products include maps of thermal

dust temperature and emissivity index found by fitting

a modified blackbody (MBB) to the high-frequency ν >

353GHz Planck maps. Finally, we use the thermal dust

Q and U maps produced with the same GNILC method

as above but with the DR3 maps (Planck Collaboration

et al. 2020c). We use the thermal dust template with a

uniform resolution of 80′.

We also need a model for the Planck-measured

353GHz DTT
ℓ to aid in the modeling of the temperature-

to-polarization correlation. Planck Collaboration et al.

(2020a) did not provide a fit to it. We compute it with

the namaster code (Alonso et al. 2019), which we use

for all of the angular power spectra in this work. We

calculate the cross-spectra between the two half-mission

maps (each with independent noise realizations) and

subtract the CMB contribution by removing the best-

fit theory CMB spectra from the Planck DR2 (Planck

Collaboration et al. 2016i). We fit a power law to the

remaining spectrum using the LR71 mask and using the

Knox formula (Knox 1997) to account for the bandpower

error bars. This fit is performed in the multipole range

260 ≤ ℓ < 600, where the Planck dust TT spectrum

looks like a stable power law (and avoiding an oscilla-

tion around ℓ ∼ 150). Our model is given by

DTT
ℓ = ATT(ℓ/80)αTT+2, (1)

where we find ATT = 28, 097 ± 1215µK2 and αTT =

−2.60± 0.03.

3. METHOD

To generate realizations of our model, we populate an

observer-centered volume with simply defined filaments.

We fill a (400 pc)3 cube with a magnetic field composed

of two parts: a dominant, correlated, isotropic, ran-

dom component and a sub dominant, large-scale com-

ponent based on the Jansson & Farrar model (Jans-

son & Farrar 2012a,b). The filaments are coherently

oriented using the magnetic field. Following Huffen-

berger et al. (2020), we set the properties of the fila-

ment population—including the distribution of filament

sizes, aspect ratios, and polarization fractions—so that

the resulting power spectra reproduce the observations

by Planck. We integrate the filament density profiles

and magnetic field along the LOS to generate maps of

the intensity and linear Stokes parameters. From these

maps, we verify that we have achieved the target power

spectra and other properties.

Most of the details of the geometric description of how

we define filaments are in Appendix A, while in the fol-
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Table 1. Parameters We Adopt for our Thermal Dust Model.

Parameter Symbol Value Reference

Total number of filaments for full-sky Nfil 180.5 million Section 4.4

Filament density nfil 3898 deg−2 × [Idust/(MJy sr−1)] Section 4.4

Size of the box S 400 pc Section A.1.1

Large-scale magnetic field model Jansson & Farrar (2012a,b) Section A.1.1

RMS of isotropic random magnetic field RMS(H) 3µG Section A.1.2

Random isotropic magnetic field power law P (k) ∝ k−4 Section A.1.2

Multipole limit for very long filaments ℓlimit 50 Section A.2.3

Minimum length of filaments Lmin
a 0.04 pc Sections 3.1, A.2.2

Filament length, Pareto distribution p(La) ∝ L−2.445
a Sections 3.3, A.2.2

Filament axis ratio ϵ 0.16(La/L
min
a )+0.122 Section 3.3,

Filament misalignment angle dispersion RMS(θLH) 10◦ Section A.2.1

Polarization fraction geometric dependence fpol ∝ (La/L
min
a )−0.1 Sections 3.3, 3.4

Dispersion MBB SED σρ 0.15 Section 3.7, eq. 8

lowing subsections, we describe how our model is fine-

tuned to match the Planck thermal dust spectra from

Planck Collaboration et al. (2020a). A summary of the

parameters used to define our model is given in Table 1.

3.1. Filament properties, spatial distribution, and

correlations

The small-scale power spectra derive from correlations

of filaments with themselves, a one-filament contribution

that corresponds to the one-halo term in the cosmolog-

ical halo model (Scherrer & Bertschinger 1991; Seljak

2000). As in Huffenberger et al. (2020), we model our

filaments as prolate spheroids, each with a long semiaxis

La and two short semiaxes Lb. We model the density

profiles as Gaussians. The slopes of the power spectra

are determined by the dependence on filament size of the

halo abundance and properties. The semi-major axis

length of the filaments La is drawn from a Pareto distri-

bution p(La) ∝ L−ηL
a and starting at a minimum length

Lmin
a . We use ϵ = Lb/La as the axis ratio determining

the shape of the prolate spheroid, which varies slightly

with length. The central densities of the filaments follow

an empirical size relationship from the ISM, n0 ∝ L−1.1
a

(Larson 1981). Since these relations are all power laws,

the small-scale power spectra will also be power laws

(Huffenberger et al. 2020).

Our choice for how we place the filaments inside

the cubic volume controls the correlations between fil-

aments, providing a two-filament contribution that de-

termines the large-scale power spectrum, unlike Huffen-

berger et al. (2020), who considered filaments on a sin-

gle shell and only treated the one-filament term. To

reproduce the overall distribution of dust, we allocate

θLH

θH

line of sight

θL

local magnetic field
filament

10La

10Lb

10Lb

L

H

X

X

Figure 1. Orientation of a filament with respect to the
magnetic field and the bounding box for our LOS integra-
tion. The filament long axis L is correlated but not per-
fectly aligned to the local magnetic field H as described in
the main text. We integrate along the LOS between the two
crosses, where the LOS intersects the filament’s rectangular
box.
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our filaments across the sky according to a full-sky dust

template Idust, in this case, the GNILC dust template

from Planck (Planck Collaboration et al. 2020c), using

a random Poisson distribution with an expected number

of filaments per pixel p,

λ(p) =
NfilIdust(p)∑︁

p′ Idust(p′)
, (2)

where Nfil is the total number of filaments. The fila-

ments are given random radial positions but distributed

so that the volume density of the filaments is constant

along each LOS.

Filaments that subtend large angles can be generated

by chance if they are very close or have a large intrin-

sic size (or may intersect the observer). We skip them

when their angular size is larger than some limit mul-

tipole ℓlimit. We adopt a value of ℓlimit = 50, which

is equivalent to an angle ∼ 3.6◦, which proves to be a

good threshold for leaving out the unrealistic very long

filaments that would show up prominently in a T map.

The magnetic field provides the two-filament correla-

tions between the orientations of the filaments, as well

as the orientation of the dust polarization. We model

the large-scale Galactic field, as well as a small-scale

isotropic random field, where we generate a random cor-

related vector field inside the cube following a power

spectrum. The details are in Appendix A.1. We fix

the RMS of the random isotropic component to be 3µG

(Sun et al. 2008; Jaffe et al. 2010), which is larger than

the RMS of the large-scale model, which is ∼ 0.5µG

in the box we consider. Because of this, the large-scale

Galactic magnetic field model choice has a very small

effect. (We discuss possible modeling improvements in

Section 6.) We orient the filaments roughly following

the direction of the local magnetic field, as in Fig. 1.

The filament long axis L is rotated by an angle θLH

away from the local magnetic field H. This angle is

drawn from a Gaussian distribution with zero mean and

standard deviation RMS(θLH). Then, to randomize the

filament orientations, we rotate the L vector once more

around the local magnetic field H by a random angle

ϕLH ∼ U(0, 2π). Consistent with MHD simulations, we

have used a k−4 power spectrum for the generation of

the random magnetic field. Large scales have much more

power than small scales, and this results in large-scale

coherent orientations of the magnetic field. By sample

variance, the orientation of these directions with respect

to the galactic plane depends on the random seed for the

field in our code. The large-scale coherence affects the

relative power of temperature and polarization fluctua-

tions in the map and their cross-correlation. Such an

effect is absent for incoherent magnetic field directions

(i.e. white power spectrum for the magnetic field).

3.2. LOS integration

For each filament, we integrate the LOSs that corre-

spond to the individual pixels of a full-sky healpix map

of a given resolution, Nside = 2048 in our main case, pro-

jecting the image of the 3D filament onto the 2D surface

of the celestial sphere (Appendix A.3). Summing all the

filaments in the population renders the full-sky image

viewed by an observer located at the center of the cube.

As in Fig. 1, for integration, the profile is defined inside

a rectangular box with a long side 10La and the two

short sides 10Lb.

Since most of the filaments will have a very small an-

gular size, we would waste resources by sampling all fil-

aments with the same resolution, where some of them

would be sampled by several million pixels and others

by a handful of pixels. To avoid this, we implement a

mechanism to sample each filament with a variable reso-

lution Nvariable
side , determined by the filament size, which

may be coarser or finer than our final resolution. We

then smooth or degrade to achieve the final resolution

while avoiding pixel artifacts (Appendix A.4).

Finally, we extrapolate this map at specified frequen-

cies, which can be done with a simple spectral energy

distribution (SED), or an elaborate method to create

some level of frequency decorrelation.

3.3. Reproducing power spectrum ratios and slopes

We aim to reproduce the power spectrum ratios of

the EE, BB and TE spectra from Planck Collaboration

et al. (2020a), as well as the slopes αXY. To reproduce

the DBB
ℓ /DEE

ℓ ratio, we set the filament misalignment to

the magnetic field RMS(θLH) and the axis ratio ϵ. Huf-

fenberger et al. (2020) noted that a tighter alignment

between the magnetic field and filament axis leads to

an excess of E power over B power (here Appendix B

explores this idea in more detail). A smaller axis ra-

tio ϵ (meaning thinner filaments) also increases the rel-

ative power of the E-modes over the B-modes. Huf-

fenberger et al. (2020) incorrectly concluded that there

was a unique combination of misalignment and axis ra-

tio that simultaneously fit the E/B power ratio and the

rTE correlation when the polarization fraction was com-

mon for all filaments. That conclusion was due to a

now-fixed bug that underestimated both the misalign-

ment effect on the power ratio and the overall level of

rTE. Here we find that the parameters RMS(θLH) = 10◦

and ϵ = 0.16 (at the minimum filament size) work well,

but find these parameters are not unique; a thinner fil-

ament could work if less aligned. We chose a particular
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combination because it works and is computationally

convenient; extremely thin filaments are difficult to rep-

resent with a small number of pixels. We also found

that variety in the polarization fraction per filament is

necessary for rTE, discussed below.

The TT slope is affected by the filament length distri-

bution with the probability density function p(La) ∝
L−ηL
a . The ηL index of the Pareto size distribution

will shift all slopes at the same time, so we fix it to

ηL = 2.445 which (in combination with Larson’s law for

the density distribution) will enable the TT spectrum

slope to match the measurement of αTT ∼ −2.6. As

detailed in Huffenberger et al. (2020), to achieve differ-

ent slopes for the different TEB spectra, we must put a

filament length dependence on the axis ratio ϵ(La) and

polarization fraction fpol(La). A positive slope on the

model ϵ(La) ∝ Lηϵ
a means large scales will have less EE

power over BB power compared to small scales, making

EE have a shallower spectrum. Adopting ηϵ = 0.122

creates a difference of αBB − αEE ∼ −0.11 between the

two slopes. Fig. 2 compares data and model EE and BB

ratios.

The difference between the temperature and polariza-

tion slopes is fixed by the length dependence of the po-

larization fraction with the model fpol ∝ L
−ηfpol
a . We fix

it to ηfpol
= 0.1, which shifts the slopes of the TE, EE

and BB spectra to approximately their measured val-

ues. All of these values were found by running the semi-

analytic filament code from Huffenberger et al. (2020)

until we converge on satisfactory results. The signifi-

cant digits on the slopes ηϵ, ηfpol
and ηL are related to

the sensitivity of the semianalytic code. For example, a

±0.01 change in slope ηϵ changes the EE and BB slopes

by ∼ 0.03. We aimed at matching the Planck-measured

slopes within ∼ 0.01 of their best-fit values, comparable

to or smaller than the errors.

3.4. Polarization fraction distribution

The polarization fraction fpol dictates the relative

strength of polarization with respect to intensity. It

has a geometric dependence ∝ sin2 θH (Fiege & Pudritz

2000, where θH is the angle between the LOS and the

local magnetic field) and some normalization constant

fpol,0. As mentioned above, we include a slight power

law dependence on the filament length, fpol ∝ L
−ηfpol
a .

Then, the polarization fraction that multiplies Q,U is

fpol ∝ fpol,0L
−ηfpol
a sin2(θH). As noted in Huffenberger

et al. (2020), rTE
ℓ and DTE

ℓ /DEE
ℓ depend on the fpol,0

distribution as follows:

rTE
ℓ ∝ ⟨fpol,0⟩/⟨f2pol,0⟩ (3)

DTE
ℓ /DEE

ℓ ∝ ⟨fpol,0⟩/⟨f2pol,0⟩1/2. (4)

This means that we need an fpol,0 distribution with a

domain limited to [0, 1] and convenient control over the

mean and variance. The beta distribution fulfills these

requirements. It depends on two parameters, α and β,

which together determine the mean and variance of the

distribution. We sample with

p(fpol,0) ∝ PDFBeta(α, β) (5)

and we can calibrate α and β to achieve a specific rela-

tion between the mean and the variance and increase or

decrease rTE
ℓ and DTE

ℓ /DEE
ℓ as needed to fit the Planck-

modeled ratios.

As mentioned in Section 3.1, the coherent orientation

of the random magnetic field will change slightly with

the seed used to generate it. The polarization fraction

calibrates the ratio between temperature and polariza-

tion, so in order to match the Planck observations, a new

polarization fraction calibration is needed when chang-

ing the magnetic field seed. In practice, this means that

to match the Planck spectra, the α and β parameters

of the beta distribution will be different for each mag-

netic field seed. Physically, this also means that the

temperature-to-polarization relationships seen in fore-

grounds are likely not universal but rather depend on

the local magnetic field structure. From a different lo-

cation in the Milky Way or from inside an analogous

galaxy, an observer would see a different realized mag-

netic field, altering the ratio between the temperature

and polarization of dust.

These polarization fraction-dependent quantities are

also illustrated in Fig. 2, where we plot the Planck-

measured ratios at 353GHz from Planck Collaboration

et al. (2020a) (black circles) and the power law models

(black dashed lines; the TT spectrum is fitted by this

work, and the other three are fitted by the Planck team).

The ratios from our filament model are calculated up to

ℓ < 1100, shown as blue points. We tune the beta distri-

bution parameters such that the ratios from our filament

model fit the Planck-modeled power law ratios.

3.5. Normalization

The different parts of the model scale differently with

the mean number density of the filaments. Before nor-

malization, the large-scale, two-filament contribution to

the power spectrum scales like n2fil, while the small-

scale, one-filament contribution scales like nfil (Scherrer

& Bertschinger 1991). Both the one- and two-filament

terms scale as the square of the normalization for the

filament mass density profile. We have to adjust both

of these parameters to match the Planck power spectra

on large and small scales. In practice, we choose our

overall temperature-unit normalization to fix the small-

scale polarization power spectra on small scales in all
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Figure 2. Moderate-resolution BB/EE, TE/EE and rTE
ℓ power spectrum ratios comparison between our filament model and

the Planck 353GHz dust spectra from Planck Collaboration et al. (2020a). These are used to calibrate the fpol,0 distribution to
match the Planck ratios, as explained in the text. The circles are the Planck data points, using their binning scheme 2 ≤ ℓ < 600
and the LR71 mask (Nside = 512). The blue lines are the ratios calculated from the power law models for each spectrum. The TT
spectrum power-law fit (αTT = −2.60± 0.03) is calculated by this work, and the other three are fitted by Planck Collaboration
et al. (2020a). The blue points are the ratios calculated from our filament model in the LR71 mask but with a binning scheme
2 ≤ ℓ < 1100. Notice how our model matches the extrapolated ratios beyond ℓ ≥ 600.

cases, since that is the quantity of most interest. The

resulting power spectrum normalization scales as 1/nfil
to counteract the dependence of the smale-scale, one-

filament term. Then we can examine the large scales to

deduce the nfil that does not under- or overproduce the

large-scale power in the two-filament term.

Because of the tuning of the polarization fraction, the

Stokes parameter maps are calibrated among each other.

We use the following procedure to calibrate to µK, based

on the 353 GHz dust Planck Collaboration et al. (2020a)

EE and BB polarization spectra calculated for the LR71

mask, listed in their Table C.1 with error bars from

simulations, in bins over the range 2 ≤ ℓ < 600. We

need to restrict this multipole range to examine only

the one-filament contribution and fit with a standard

χ2 estimator for the spectrum’s amplitude. The best

reduced χ2 is achieved for 280 < ℓ < 600. We com-

pute the EE and BB spectra of our filament model in

the same LR71 mask. After this procedure, our fila-

ment model will have Stokes parameter maps in physical

units. We then try several values for the filament density

nfil, which, in practice, is implemented by setting a to-

tal number of filaments Nfil
1. Using Nfil = 180.5 × 106

1 The Nfil is dependent on the sky fraction or mask consid-
ered, while the filament density nfil in units of deg−2 ×
[Idust/(MJy sr−1)] is independent of this. The Nfil will be dif-
ferent for a full-sky versus partial-sky simulation, but nfil will be
the same.

filaments for the full-sky (which is a filament density

nfil = 3898 deg−2 × [Idust/(MJy sr−1)], where Idust is

the dust intensity at any given pixel at 353GHz), we

can produce the large-scale power coming from the two-

filament term that matches the Planck 353GHz DTT
ℓ

spectrum. Using the Knox formula to estimate the er-

ror bars, we find χ2 = 269 (for 29 multipole bins) for

the DTT
ℓ spectrum fit using the Planck Collaboration

et al. (2020a) binning scheme in the range 2 ≤ ℓ < 600.

The TT spectrum comparison between the Planck dust

353GHz emission and our filament model is shown in

Fig. 3 (green circles and triangles).

As mentioned in Section 3.4, changing the seed of

the random magnetic field alters the temperature-to-

polarization relationships. Since we calibrate the µK

units with respect to the EE and BB spectra, the

TT and TE spectra will change with respect to the

Planck-measured spectra. The standard deviation of the

polarization-to-TT calibration is ∼ 10% when changing

the magnetic field seed but keeping the same (untuned)

polarization fraction distribution.

3.6. Large-scale polarization template

Although we can reasonably approximate the large-

scale temperature map by having the filament density

trace the dust in the Milky Way, we do not reproduce

the large-scale polarization. Our 3D model of the dust

distribution and Galactic magnetic field is insufficient to
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Figure 3. Moderate-resolution power spectrum compari-
son between our filament model (triangles) and the Planck
353GHz dust spectra from Planck Collaboration et al.
(2020a, circles), using their binning scheme 2 ≤ ℓ < 600 and
the LR71 mask (Nside = 512). Here TT is green, TE is black,
EE is red, and BB is blue. The dashed vertical line is the
limit ℓ = 600. In the range 600 ≤ ℓ < 1300, we use bins with
∆ℓ = 50. The Q and U maps in our model, and therefore
the polarization spectra, have their large-scale emission filled
using the Planck frequency maps, as explained in the text.
The dashed lines are the power law model for each spectrum.
The TT is fitted by this work (αTT = −2.60±0.03), and the
other three are fitted by Planck Collaboration et al. (2020a).
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Figure 4. Filters for blending the filament model E and
B fields with a Planck template of the real sky, as defined
in eq. 6. Note that at scales ℓ < 50, all emission is con-
tributed by the Planck template, while at higher multipoles,
the filament model comes to dominate the mixture.

do so, as it does not include the specific features that are

crucial to reproducing the large-scale Q and U maps.

To address this, we can replace the large scales of the

Q and U maps with a polarized dust template of the

real sky to create a hybrid model. First, we suppress the

large scales ℓ < 50 produced in our filament model by

using a logistic function as a spherical harmonic high-

pass filter gℓ. We want to match the target thermal

dust spectra calculated by Planck Collaboration et al.

(2020a), by filling the difference at large scales with the

power spectra of a template map. This map, which in

our case is the 353GHz full mission map from Planck

DR3 with the SMICA CMB map subtracted (Planck

Collaboration et al. 2020c), must be filtered by the ad

hoc spherical harmonic filter fXX
ℓ such that

DXX,target
ℓ = (fXX

ℓ )2DXX,template
ℓ + g2ℓD

XX,filaments
ℓ ,

(6)

where X ∈ E,B, DXX,filaments
ℓ are the spectra of our

filament model, and DXX,target
ℓ is the dust spectrum we

want to match, as calculated by Planck Collaboration

et al. (2020a), crossing the two half-missions and sub-

tracting the best-fit CMB, as described in Section 2.

This filter, fXX
ℓ , is calculated with ∆ℓ = 20 bins, and

it is smoothed with a Hamming window to avoid sharp

edges and ringing effects. Also, we force fXX
ℓ = 0 when

ℓ ≥ 300 (since at these scales, we want the whole emis-

sion to come completely from our model) or is undefined,

i.e. DXX,target
ℓ < DXX,filaments

ℓ . We show the ad hoc fil-

ter fXX
ℓ and high-pass filter gℓ in Fig. 4.

Then, the Q and U all-scale hybrid map in our fil-

ament model is the sum of the filtered template map

plus the high-pass filtered small-scale map (our filament

model), following eq. 6. The resulting all-scale power

spectra from our filament model are shown in Fig. 3,

compared to the target dust spectra we want to match.

All spectra use the LR71 mask. We also include the TT

and TE spectra calculated with our filament model T

map, which has no large-scale filling, but still it is able

to reproduce the Planck-measured spectra fairly accu-

rately, as will be described in Section 4.4.

In the figure, we show the Planck Collaboration et al.

(2020a) spectra compared to our filament model spectra

in the same binning scheme, 2 ≤ ℓ < 600. We also

extend the bins 600 ≤ ℓ < 1300 with size ∆ℓ = 50,

showing the consistent power law emission of our model,

while the Planck polarization emission has a very low

signal-to-noise ratio and the bandpowers are noisy.

Because the Galactic plane emission is very bright in

Q and U , filtering our filament model with the high-pass

harmonic filter gℓ produces very prominent stripe arti-

facts near the galactic plane. These stripes are visible

if we view the full-sky, unmasked map of our filament
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Figure 5. full-sky Q and U emission from Planck’s GNILC dust template at 353GHz (left column), a hybrid filament model
(middle column) that replaces the large scales with Planck’s template, and our raw filament-only model (right column). The
hybrid model (middle column) shows stripe artifacts produced by the high-pass harmonic filtering along the Galactic plane
region and should not be used there.

model (see Fig. 5). Therefore, in the hybrid model, we

exclude the filament model along the plane, keeping the

sky in the Planck DR2 Galactic mask with fsky = 0.9.

We note that the Galactic plane Q and U emission from

our final model will not contain small-scale emission,

and we warn the reader to not use the polarization from

our model inside the Galactic plane.

3.7. Spectral Energy Distribution

With our model, we aim to produce multifrequency

simulations of the thermal dust emission at any arbi-

trary frequency channel. We can start with the usual

MBB SED used to model the thermal dust emission,

given by

Sdust(ν, βdust, Tdust) ∝ νβdust+3/[exp(hν/kTdust)− 1]

(7)

in surface brightness units, where ν is the frequency;

h and k are the Planck and Boltzmann constants, re-

spectively; and βdust and Tdust are the free spectral pa-

rameters of emissitivity index and dust temperature, re-

spectively. When a full-sky map is generated at some

frequency (e.g. 353GHz), it is straightforward to mul-

tiply this map with an MBB spectral law at chosen fre-

quencies with either spatially constant or variable dust

spectral parameters. In this case, we only need to gener-

ate a single template of thermal dust Stokes parameters

at an anchor frequency, and the extrapolation to other

frequencies can be done separately.

Another option is to introduce frequency decorrela-

tion, where the flux measured between two or more fre-

quencies is not a constant factor. Planck Collaboration

et al. (2017, 2020a) measured this on different Galactic

masks with different sky fractions. Recently, Pelgrims

et al. (2021) tried to measure the frequency decorrela-

tion on individual LOSs within the Galactic poles areas

using the Planck maps, as well as the 3D information

along the LOS provided by H I spectral observations.

They modeled the ratio between the 217 and 353GHz

thermal dust flux as some constant δ that is perturbed

by a small Gaussian random variable ρ with zero mean

and standard deviation σρ, given by

Sdust(217, βdust, Tdust)

Sdust(353, βdust, Tdust)
= δ(1 + ρ). (8)

The δ flux ratio represents the mean ratio along each

LOS, which can be calculated with the best-fit βdust and

Tdust parameters from the Planck GNILC estimation, as

described in Section 2. The σρ standard deviation rep-

resents the degree of random variability in the dust SED

along the LOS, which can be accomplished by random-

izing βdust and Tdust, adding new parameters, or even

replacing the spectral model completely.

In our case, we model the frequency decorrelation by

generating a random dust MBB SED for each individual

filament. Then, since our model is the addition of mil-

lions of maps of individual filaments, we naturally create

a way to decorrelate different frequencies. We generate

the random βdust index, and we fix the Tdust parame-

ter to the best-fit value found by Planck on each LOS.

Since the 217 and 353GHz frequencies are within the

Rayleigh-Jeans area of the MBB, the impact of varying

Tdust is limited. We choose to put all the dust SED

variability in the βdust index. Using eq. 7 and inverting
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eq. 8 for βdust, we find

βdust = log

[︃
δ(1 + ρ)

e217GHzh/kTdust − 1

e353GHzh/kTdust − 1

]︃
/ log(217/353)−3,

(9)

where the Tdust temperature and the ratio δ are

coordinate-dependant, and consequently, the random

βdust will also be.

Also, as we explained in Section 3.6, we fill the large-

scale emission of the Q and U maps with the Planck

353GHz frequency map, which means that we need some

recipe to fill those scales at any arbitrary frequency. The

procedure to do this is the following. We take the large-

scale fill-in map at 353GHz (which has been filtered in

harmonic space by the ad hoc filter in eq. 6), and we

extrapolate it to the desired frequency using a regular

MBB from eq. 7. We use the best-fit maps of βdust
and Tdust parameters from the GNILC estimation. Our

model does not include polarization frequency decorre-

lation on scales where the large-scale fill-in contributes

most of the emission, i.e. ℓ ≲ 50. In the transition

scales, ℓ = 50 − 300, there will be some level of fre-

quency decorrelation, since a fraction of the emission

is contributed by our filament model. We have checked

that this works well at 217GHz and frequencies relevant

for the dust emission by comparing it with the Planck

frequency map, finding a smooth transition between the

large- and small-scale angular power spectra despite be-

ing derived completely separately. At lower frequencies,

≲ 50GHz, the mismatch between the perfect MBB law

at large scales and the decorrelated MBB law at small

scales is enough to create a break in the power spec-

trum, although in this frequency range, dust is a minor

foreground.

Our filament model will contain a polarization fre-

quency decorrelation at ℓ ∼ 80, where the recombination

bump in the CMB primordial BB spectrum is located.

It has less decorrelation than at ℓ ≥ 300, because at

ℓ ∼ 80, the model is a mixture of the fill-in template

and our filament model.

4. RESULTS

In the following subsections, we detail the results of

our filament model and how they match the Planck re-

sults. We summarize the model parameters we use in

Table 1. (We do not list the parameters for the polar-

ization fraction beta distribution in the table because,

as explained in Section 3.4, to match Planck, they vary

with the particular seed we used to generate the random

magnetic field. For our particular case, the values were

α = 0.07734 and β = 0.37448.)

4.1. Maps

In Fig. 5 we show the full-sky polarization maps. In

Fig. ?? (top), we show the full-sky comparison in tem-

perature between our filament model and the GNILC

dust template. Our temperature map comes only from

the combined emission of millions of filaments stacked

together. There are no data in it other than the GNILC

template that modulates the probability to place the

random filaments. In Fig. ?? (bottom), we show the

zoomed 30× 30◦patch centered in the prominent super-

filament north of the Ophiuchus region. We compare the

Planck 353GHz frequency channel (left column), which

has a resolution of ∼ 5′, the GNILC dust template (mid-

dle column); and our filament model (right column).

The top, middle, and bottom rows are T , Q and U . Our

model is limited by the fact that it is composed of many

small filaments that are oriented randomly with respect

to their local magnetic field. Their centers might be in

the correct place, but their orientations will not be cor-

related along tens of degrees into the shape of such a

super dust filament. To achieve this, we would need a

model of the Galactic magnetic field and dust distribu-

tion including all of the particular structures. In Q and

U , we fill the large-scale structure as described in Sec-

tion 3.6. However, the extra small-scale detail that our

filament model produces is clear in this comparison.

Fig. ?? shows the zoomed-in patch centered in the

north Galactic pole with a size of 10 × 10◦for our fila-

ment model. We show the T field, along with E and B.

The groups of tiny filaments clumped along the magnetic

field lines are clearly visible. We can see the E-mode

domination over the B-mode; the E field runs positive

along each filament axis, while the B field is a much

weaker quadrupole pattern. This is expected, given our

strong alignment of the filaments (compare to Fig. 2 of

Huffenberger et al. (2020)).

4.2. Power spectra and ratios

We present the power spectra of our filament model at

353GHz in Fig. 8. These are calculated with the Planck

DR2 Galactic mask (fsky = 0.7), which is produced at

Nside = 2048 natively. We calculate the power spectra

up to ℓmax = 6000 with bins ∆ℓ = 30. The TB and

EB spectra are consistent with zero. We emphasize the

ability of our model to produce a consistent signal in the

form of a power law down to very small scales.

We fit a power law to our filament model power spec-

tra in the multipole range 1000 ≤ ℓ ≤ 3000 (gray area

in the figure). We use the Knox formula to account only

for sample variance in the error bars. As explained in

Section 3.3, our filament model can produce different

tunable different slopes for the different spectra. Our

fit finds αTT = −2.633 ± 0.003, αEE = −2.459 ± 0.004,
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Figure 8. Higher-resolution power spectra from our fila-
ment model at 353GHz, calculated with the Planck DR2
Galactic mask with fsky = 0.7 (Nside = 2048), apodized
with a 2◦ Gaussian kernel. We fit the slopes in the 1000 ≤
ℓ ≤ 3000 range (gray area). Note that our model has dust
emission even at very small scales, ℓ ∼ 4000.

αBB = −2.590± 0.003, and αTE = −2.511± 0.007. We

do not extend our fit to multipoles ℓ ≳ 2Nside, since the

very small filaments at these scales start approaching

the point where they look like point sources.

We also fit the slopes at large/medium scales to

compare directly with the Planck Collaboration et al.

(2020a) power law fit results. We show the spectra

of our filament model in the Planck binning scheme

(2 ≤ ℓ < 600) with the LR71 mask in Fig. 3. We fit the

polarization spectra in the multipole range 40 ≤ ℓ < 600

and using the same binning scheme as Planck Collabo-

ration et al. (2020a). Our fit finds αEE = −2.50± 0.02,

αBB = −2.65± 0.02, and αTE = −2.48± 0.02.

We notice that these slopes are slightly different from

the predictions (Section 3.3) made with the Huffen-

berger et al. (2020) semianalytical code. We attribute

this difference to the fact that the semianalytical code

assumes an isotropic distribution of the filaments and

the magnetic field, while in our filament model, neither

of these are true; the filaments are not isotropic, since

they are arranged by the Galactic template, and the

magnetic field does not have a white spectrum. De-

parting from these idealized conditions, we notice a

slight steepening of the polarization spectra. Also, the

fact that the error bars of the Planck fit contain both

sample variance, and instrumental noise, while our fil-

ament model only includes sample variance should be
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Figure 9. Higher-resolution power spectrum ratios from our
filament model at 353GHz, calculated with the DR2 Galactic
mask with fsky = 0.7 (Nside = 2048), apodized with a 2◦

Gaussian kernel. The circles are the ratios from our model,
and the dashed lines are the targeted ratios modeled by the
power law fit to each spectrum (extrapolated to very small
scale) done in Planck Collaboration et al. (2020a), except
for the TT spectrum, which is fitted by this work. The solid
lines are the power laws fitted directly to the realization of
our model and listed in Table 2.

taken into account. The slopes get closer to the target

(Planck) values in the higher multipoles, 1000 ≤ ℓ ≤
3000, since at these scales, the model is closer to the

idealized, one-filament-dominated conditions than the

semianalytical code models.

We also fit the TT spectrum for our filament model

in the range 300 ≤ ℓ < 600, finding αTT = −2.62 ±
0.03, which agrees with the value measured in the Planck

map by ourselves. All of the fitted parameters for our

filament model spectra are listed in Table 2.

We calculate the DBB
ℓ /DEE

ℓ , DTE
ℓ /DEE

ℓ , and rTE
ℓ ra-

tios with our filament model and show them in Fig. 9.

We show the ratios modeled by the Planck observation

power law fits to each spectrum as dashed lines, as seen

in Fig. 2, and we extend them to small scales, ℓ ∼ 4000.

We can reproduce the tendency of power spectrum ra-

tios measured at large scales by Planck Collaboration

et al. (2020a), extrapolating them to higher multipoles.

We fit a power law to each ratio Rℓ, modeled by Rℓ =

AR(ℓ/80)
αR in the multipole range 1000 ≤ ℓ ≤ 3000.

We use the Knox formula for the sample variance er-

ror bars and propagate them through the ratio division.

The fitted amplitudes AR and slopes αR are listed in
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Figure 10. Frequency decorrelation ratio RBB
ℓ (217, 353),

measured with the LR71 mask, versus the standard devia-
tion σρ (eq. 8) used to generate variability on the dust SED
along an LOS. Pelgrims et al. (2021) found that σρ = 0.15
works for reproducing decorrelation along individual LOSs.
The RBB

ℓ (217, 353) at small scales from our model is scale-
independent, so we show its mean value at small scales,
calculated in the range ℓ = 320 − 1500. The dashed hor-
izontal line is the value measured in Planck Collabora-
tion et al. (2020a) in the multipole range 50 ≤ ℓ < 150,
RBB

ℓ (217, 353) = 0.989± 0.005.

Table 2. The power laws fitted directly to the ratios are

the solid lines in Fig. 9.

4.3. SED decorrelation

We produce a full-sky map of our filament model at

217GHz. We apply a distinct MBB spectral law to each

individual filament, as explained in Section 3.7. We gen-

erate a random realization for βdust for each filament fol-

lowing eq. 9. The δ ratio between the 217 and 353GHz

MBB and the Tdust parameters are set to the value at

the pixel on which the center of each individual filament

is located. The full-sky maps of δ and Tdust are calcu-

lated from the best-fit βdust and Tdust maps calculated

by the GNILC method in Planck Collaboration et al.

(2016f).

Pelgrims et al. (2021) found that σρ = 0.15 can repro-

duce the level of variability seen in the LOSs near the

Galactic poles. We use that value, together with other

values σρ =0.12, 0.18, 0.21, and 0.24 to see the effect.

We measure the degree of spectral decorrelation with the

BB spectral correlation ratio RBB
ℓ (217, 353), defined in

Planck Collaboration et al. (2017) as

RBB
ℓ (217, 353) =

DBB
ℓ (217× 353)√︂

DBB
ℓ (217× 217)DBB

ℓ (353× 353)
,

(10)

where 217 and 353 represent the 217 and 353GHz

Planck frequency maps.

In Fig. 10 we show the mean RBB
ℓ ratio calculated

in our filament model with different values of σρ using

mask LR71. Since this ratio is calculated in polariza-

tion, the large scale RBB
ℓ ratio is influenced by the fill-

ing of the large-scale with the Planck template, as de-

scribed in Section 3.6. All of the emission at ℓ < 50 is

completely due to the Planck template, while the emis-

sion in the range 50 ≤ ℓ < 300 is a mixture of the

Planck template and our filament model, depending on

the ad hoc filter defined in eq. 6 and shown in Fig. 4.

The emission at ℓ > 300 is completely due to our fil-

ament model. In these small scales, the decorrelation

ratio from our filament model is scale-independent, so

we calculate the mean RBB
ℓ in the range 320 ≤ ℓ < 1500

and plot that versus σρ. We also include the measured

ratio RBB
ℓ = 0.989 ± 0.005 by Planck Collaboration

et al. (2020a) in the mask LR71 and multipole range

50 ≤ ℓ < 150. Here σρ = 0.15 seems to produce a realis-

tic ratio RBB
ℓ > 0.98. By increasing σρ, we increase the

variability of the random βdust along each LOS and in-

crease the frequency decorrelation by lowering the RBB
ℓ

ratio almost linearly to any desired value.

As noted by Pelgrims et al. (2021), SED frequency

decorrelation is not uniform throughout the sky but

rather depends on the 3D structure of Galactic dust

clouds and the Galactic magnetic field. In our filament

model, we assume that filaments have distinct SEDs and

therefore the LOS effect will create decorrelation, but

spatially uniform since we assume the same σρ inde-

pendent of how many filaments are located in a given

LOS. This produces a scale-independent RBB
ℓ ratio, as

noted above. As such, our way of modeling frequency

decorrelation is a crude approximation that can roughly

reproduce the overall RBB
ℓ ratio measured by Planck,

but it cannot reproduce the individual LOS frequency

decorrelation features.

4.4. Density of filaments, Non-Gaussianity and MFs

Our filament model depends on the filament density

nfil of our population, which ultimately depends on the

total number of filaments Nfil to achieve this. A low

density of filaments will render a highly non-Gaussian

field, but due the central limit theorem, we expect that

as nfil → ∞, the field will get closer to Gaussian.

We wish to examine the relationship between Gaus-

sianity and the nfil parameter and compare to the Gaus-

sianity in the Planck 353GHz map. We focus on tem-

perature because, in polarization, the observations have

a low signal-to-noise ratio outside the Galactic plane at

small scales; therefore, it is very hard to constrain the
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Table 2. Fitted quantities in our filament model.

Quantity Model Multipole Range Fitted Amplitude Fitted Slope

LR71 I,P Masks (Nside = 512)

DTT
ℓ ATT(ℓ/80)

αTT+2 300 ≤ ℓ < 600 a ATT = 28308± 1443µK2 αTT = −2.62± 0.03

DEE
ℓ AEE(ℓ/80)

αEE+2 40 ≤ ℓ < 600 a AEE = 346± 8µK2 αEE = −2.50± 0.02

DBB
ℓ ABB(ℓ/80)

αBB+2 40 ≤ ℓ < 600 a ABB = 198± 6µK2 αBB = −2.65± 0.02

DTE
ℓ ATE(ℓ/80)

αTE+2 40 ≤ ℓ < 600 a ATE = 792± 31µK2 αTE = −2.48± 0.02

DR2 Galactic Mask with fsky = 0.7 (Nside = 2048)

DTT
ℓ ATT(ℓ/80)

αTT+2 1000 ≤ ℓ < 3000 ATT = 23923± 246µK2 αTT = −2.633± 0.003

DEE
ℓ AEE(ℓ/80)

αEE+2 1000 ≤ ℓ < 3000 AEE = 281± 4µK2 αEE = −2.459± 0.004

DBB
ℓ ABB(ℓ/80)

αBB+2 1000 ≤ ℓ < 3000 ABB = 152± 2µK2 αBB = −2.590± 0.003

DTE
ℓ ATE(ℓ/80)

αTE+2 1000 ≤ ℓ < 3000 ATE = 727± 16µK2 αTE = −2.511± 0.007

DBB
ℓ /DEE

ℓ ABBEE(ℓ/80)
αBBEE 1000 ≤ ℓ < 3000 ABBEE = 0.543± 0.008 αBBEE = −0.131± 0.005

DTE
ℓ /DEE

ℓ ATEEE(ℓ/80)
αTEEE 1000 ≤ ℓ < 3000 ATEEE = 2.59± 0.05 αTEEE = −0.053± 0.006

rTE
ℓ ArTE(ℓ/80)αrTE 1000 ≤ ℓ < 3000 ArTE = 0.280± 0.005 αrTE = 0.035± 0.006

aThis binning scheme is listed in Table C.1 of Planck Collaboration et al. (2020a).

non-Gaussianity (e.g. von Hausegger et al. 2019). Those

sky areas are noise-dominated at the pixel level in po-

larization.

As explained in Section 3.5, the relative power of the

one- and two-filament terms already determines nfil by

fitting to the Planck-measured DTT
ℓ spectrum, and we

found that the best-fit density is nfil = 3898 deg−2 ×
[Idust/(MJy sr−1)] = nbestfil .

We use MFs (Mecke et al. 1994) to quantify the level

of non-Gaussianity and directly compare to the Planck

353GHz observations. We use the 353GHz frequency

channel map, since it has the highest resolution (∼ 5′)

and signal-to-noise ratio for dust of the polarized Planck
channels. The three MFs, V0(ν), V1(ν), and V2(ν), mea-

sure the area, the perimeter length, and the genus of the

excursion set at threshold ν in a map. The genus equals

the total number of connected regions above a given

contour level ν minus the number of connected regions

below.

We compute the three curved-sky MFs (calculated via

code from Marques et al. 2019) within the LR71 mask

for three kinds of maps: (1) the T map for the Planck

353GHz full mission frequency channel (with the best-

fit SMICA CMB map subtracted; Planck Collaboration

et al. 2020c); (2) a Gaussian random field (GRF) gener-

ated with the DTT
ℓ power law fit of the Planck 353GHz

map, as described in Section 2; and (3) our filament

model with different values for the filament density nfil.

Since the Planck 353GHz map has the instrument beam

and noise in it, we have to apply the same to our filament

model and the GRF. We smooth the synthetic maps

with the 353GHz channel beam in harmonic space, and

then we add one of the 353GHz channel noise realiza-

tions from the Planck FFP simulations. All maps are

normalized by subtracting the mean and dividing by

the standard deviation. The zero-valued pixels in the

mask create a jump and spike at ν = 0 for V0 and V1,

respectively.

We also checked the consistency of the calculated MFs

against the cnd reg2d code (Ducout et al. 2013).

Figure 11 shows that our filament model with nfil =

nbestfil (blue) fits well the Planck 353GHz map (dashed

black). We can see the highly non-Gaussian maps with

a very low density, nfil = 72 deg−2× [Idust/(MJy sr−1)],

and how by increasing the filament density, we approach

the non-Gaussianity levels of the Planck 353GHz map.

Also, both the Planck 353GHz map and our filament

models are very distinct from a GRF.

We perhaps should not read too much into this agree-

ment, since we are placing the filaments to mimic the

large-scale features in the temperature map, and by de-

sign, the filament model reproduces its power spectrum.

As noted, adjustments to the filament density nfil mod-

ify the power spectrum, which will modify the MFs by

changing the overall variance, even if they had no other

effects.

To focus on the scales more directly generated by the

filaments, as a second test, we computed the MFs while
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Figure 11. The MFs calculated over the T map within
the LR71 mask show a reasonable agreement between the
filament model and Planck data. The dashed black line is
the dust data: the Planck 353GHz frequency channel full
mission map with the SMICA CMB map subtracted. The
dashed gray line is a GRF with the power law fit of the Planck
DTT

ℓ . The solid colored lines are our filament model with
different filament densities. The blue line is the best fit we
obtained by matching to the power spectrum, independent
of the MFs. The unit of nfil is deg−2 × [Idust/(MJy sr−1)].
To make the comparison, we smooth our filament model and
the GRF with the Planck 353GHz beam and add a noise
simulation for that channel. The threshold ν is normalized
by subtracting the mean and dividing by the σ of the map.
The jumps at ν = 0 are due to the zero-value pixels in the
mask.

limiting the range of scales with a bandpass harmonic

filter that allows only ℓ = 300 − 1200, where we have

checked that the Planck 353GHz signal-to-noise ratio

is > 1. Our filament model is non-Gaussian on these

scales compared to the GRF, but the Planck 353GHz

map is substantially more non-Gaussian than our model

on those scales.

5. DISCUSSION

By design, our model reproduces well the power spec-

tra of dust within the large-area LR71 Planck mask. By

mimicking the large-scale structure of the Planck dust

intensity at the same time, it also reproduces the MF

statistics on large scales. However, the following effects

cause differences between our models and the real sky

that may be relevant for some applications.

5.1. Large-scale polarization fraction fluctuations

The polarization fraction of thermal dust varies

greatly across the sky (see, e.g., Fig. 43 of Planck Col-

laboration et al. (2016a) or Fig. 4 of Planck Collabora-

tion et al. (2015)), ranging from zero to ∼ 0.2 in the 80′

GNILC dust template, with a substantial uncertainty

due to estimation of the dust monopole. In our model,

two mechanisms cause the polarization fraction to vary.

First, the summation of polarization from large num-

bers of filaments along dense LOSs depolarizes the total

signal. This effect is seen near the Galactic plane, and

will tend to make our model more polarized toward the

Galactic poles, where there are fewer filaments.

Second, geometric effects cause filaments aligned to

the LOS to be less polarized (section 3.4), so the partic-

ular realization of the large-scale magnetic field is also

important. The polarization fraction in maps produced

by our model varies between zero and ∼ 0.22 at 80′ res-

olution, and the geometry is different. The polarization

fraction of the raw filament map has more variability

than the GNILC dust template when filtered similarly.

Our model also tends to have a higher polarization frac-

tion toward the Galactic poles, as described above.

5.2. Spatially varying physical polarization conditions

Table 1 of Planck Collaboration et al. (2020a) shows

that the rTE
ℓ and DTE

ℓ /DEE
ℓ ratios change in masks with

varying sky fractions. We have argued that these quan-

tities depend on the distribution of the intrinsic polar-

ization fraction per filament, but in our model, we do

not allow these distributions to vary as a function of

2 This range somewhat depends on the seed for the random mag-
netic field, since there could be particularly bad luck realizations
that will render relatively highly polarized filaments.
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position. As a consequence, the power spectrum ratios

that depend on the polarization change across the sky

in the observations, but they stay constant in our model

by construction.

5.3. Consequences for modeling small, clean patches

When our model is calibrated to match the power

spectrum from the overall LR71 sky region, that power

is dominated by the brightest regions. Thus calibrated,

our model can have trouble reproducing the polarization

power spectrum in smaller, cleaner regions. This can be

because of the above points about nonuniversal polar-

ization behavior, as well as issues with the dust intensity

template that underlies our distribution of filaments.

The GNILC dust template has a higher specific inten-

sity ⟨I353⟩ than reported in Table 1 of Planck Collabo-

ration et al. (2020a) for the different sky fractions. To

match this, you can subtract the dust monopole, but

this is uncertain, since the largest scales are subjected

to more systematics due to calibration drifts, etc. Sub-

tracting a monopole has more impact in the cleanest

regions of the sky, close to the Galactic poles. In these

regions, the monopole represents a significant fraction

of the emission, while regions with bright dust are little

affected.

As a concrete example, in the BICEP/KECK (BK)

region, we find that the EE and BB spectral amplitude

of our model’s default realization is about 10 times the

amplitude observed in the sky. We note in particular

that, in Planck data, the polarization fraction in the

BK patch is lower than the average overall LR71 mask

region. Through geometric effects, the polarization frac-

tion in our model depends on the random realization of

the local magnetic field. By chance in our default real-

ization, the polarization fraction is higher than average

in the BK patch, which contributes to our polarization

power discrepancy there.

To match the power spectrum in a specific, small sky

region, the raw maps from the filament model can be

normalized to any spectra, as described in Section 3.5.

If the objective is to use our model in the BK region,

for example, the raw model can be normalized to tem-

perature units with EE and BB spectra that match the

observations in the BK region, therefore matching the

observed amplitude of polarization while generating a

filament realization.

6. SUMMARY AND CONCLUSIONS

In this work, we present a model for the millimeter

thermal dust Galactic emission based on the idea of

Huffenberger et al. (2020) of using filaments that are

misaligned with respect to the local magnetic field to

recreate the observed TEB power spectra and ratios as

measured by Planck Collaboration et al. (2020a). We

produce a 3D population of millions of filaments and in-

tegrate the emission along the LOS to produce a full-sky

healpix map of the Stokes parameters.

We produce maps at the nominal frequencies of

ground-based experiments like SO and CMB-S4: 20, 27,

39, 93, 145, 225, and 280GHz. We also make available

the maps at the Planck channels of 217 and 353GHz.

We make these maps publicly available to the commu-

nity, along with the DustFilaments code to produce

them, at https://github.com/chervias/DustFilaments3.

Our 353GHz map can be used as a template for the

dust emission and scaled to any other frequency using,

for example, an MBB spectral law. Our maps at other

frequencies include frequency decorrelation as described

in Section 3.7.

Our model can reproduce the power law shape of

the intensity and polarization spectra, as well as the

DBB
ℓ /DEE

ℓ , DTE
ℓ /DEE

ℓ , and rTE
ℓ ratios as observed by

Planck. Our final thermal dust model is produced at

Nside = 2048, with a filament density nfil = 3898 deg−2×
[Idust/(MJy sr−1)], which corresponds to Nfil = 180.5

million filaments for the full-sky. The box has a

size S = 400 pc per side. The filament population

is produced with Lmin
a = 0.01 pc, a Pareto distribu-

tion for the filament length p(La) ∝ L−2.445
a , field

misalignment RMS(θLH) = 10◦, axis ratio ϵ(La) =

0.16(La/L
min
a )+0.122, and a polarization fraction fpol ∝

fpol,0(La/L
min
a )−0.1, where fpol,0 is drawn from a beta

distribution (with α = 0.07734 and β = 0.37448 for

the particular random realization of the magnetic field

we use in this paper). We skip large filaments, using a

size limit corresponding to ℓlimit = 50. To generate the

thermal dust SED with decorrelation, we allow the flux

density ratio between the 217 GHz and 353 GHz bands
to vary per filament with σρ = 0.15. All of the parame-

ters used to create our model are listed in Table 1.

This modeling reproduces the spectra in the large-

area LR71 mask by design. As explained in Section 5,

polarization properties are not spatially homogeneous;

therefore, our model can produce a mismatch in sub-

regions, like the BK patch. Our model can always be

renormalized to match the spectra in those regions. In

the future, we would like to improve the modeling so

that we can match the large areas and small, clean re-

gions simultaneously.

Our filament model offers novel features, including the

relatively fast production of small-scale emission up to

3 https://zenodo.org/badge/latestdoi/382487350

https://github.com/chervias/DustFilaments
https://zenodo.org/badge/latestdoi/382487350
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ℓ ∼ 4000, or even smaller scales by adjusting the min-

imum size and total number of filaments, limited only

by the computing power. Our filament model takes ≲ 5

CPU hr per million filaments. Our model is designed to

naturally produce non-Gaussian emission at all scales.

We compare directly with the DR3 353GHz frequency

channel from Planck (Planck Collaboration et al. 2020b)

using MFs, and we are able to reproduce the general

level of non-Gaussianity in the LR71 mask, although in

detail, the MFs are not the same when comparing small

scales in a bandpass filter. By switching the random

seed, our model can produce a Monte Carlo realization

of the full-sky dust emission in an ∼hour timescale on

a small cluster, which can then be used in CMB exper-

imental forecasting.

Recent works have looked at the impact of foregrounds

on the small-scale lensing reconstruction, in particu-

lar the effect of non-Gaussian foreground residuals (e.g.

Beck et al. 2020; Baleato Lizancos et al. 2021). One

feature of our model is its ability to fine-tune the non-

Gaussianity by increasing or decreasing the density of

filaments or changing the filament profile. Our model

can help with forecasting the performance of CMB weak-

lensing reconstruction methods in the presence of highly

non-Gaussian dust emission. This will be very useful for

exploring future methods both for the reconstruction it-

self and for the delensing of primordial B-mode surveys.

Our model can also impact studies of frequency decor-

relation. Forecasts suggest that this could have a siz-

able impact on parametric component separation meth-

ods trying to clean the B-mode CMB observations to

measure r (Hensley & Bull 2018). Methods that model

the dust SED using moment expansion seem promising

in dealing with the extra complexities that frequency

decorrelation brings (Chluba et al. 2017; Mangilli et al.

2021; Remazeilles et al. 2021; Azzoni et al. 2021). Our

filament model can create dust frequency decorrelation

that can be adjusted to any desired level with the σρ
parameter and help to evaluate the performance of fore-

ground cleaning methods for primordial B-mode sur-

veys.

Regarding the DTB
ℓ and DEB

ℓ spectra, our model can

easily be made to produce a signal that violates parity.

As pointed out by Huffenberger et al. (2020), a prefer-

ence in the handedness of the filament long axis with

respect to the projected local magnetic field would cre-

ate parity violation and nonzero TB and EB spectra.

Recently, Clark et al. (2021) tested this possibility by

analyzing the misalignment between filamentary struc-

ture in intensity and the projected magnetic field. We

will leave the modeling of nonzero TB and EB spectra

for future work.

While our filament model produces non-Gaussian

small-scale emission, it is not the same as the small-

scale emission in the Planck 353GHz map, as measured

by comparing bandpass-filtered maps. This could be due

to multiple factors, such as the lack of realism brought

by the modeling of the interaction between the ISM and

the magnetic field, something that is studied by MHD

simulations; the fact that a filament Gaussian profile

is not realistic on small scales; or even that filaments

cannot explain the full picture of Galactic dust, and as-

suming that all dust particles are part of the filamentary

structure may lead us to the wrong conclusions. Other

areas of our filament model can certainly be improved,

since we make several approximations. For example, we

place filaments in the celestial sphere according to dust

templates, but the third dimension (the radial distance

to the filament) is still drawn from a random sample.

For example, we could make the model more realistic by

using a 3D distribution of the dust density, measured by

dust extinction (e.g. Rezaei Kh. et al. 2017; Chen et al.

2019; Green et al. 2019; Lallement et al. 2019), to place

the individual filaments and trace the density structure

of Galactic dust.

While the main purpose of our filament model is not

to constrain the physical conditions of the local ISM and

its magnetic field, using information on those conditions

would certainly increase the realism of our model and

presumably the match to Planck data. The fact that

we cannot reproduce the large-scale polarization of dust

is a consequence of not having a realistic model of the

magnetic field in the local ISM. We know the field is

irregular and does not follow the large-scale Galactic

field (e.g. Leroy 1999). Some works have tried to model

the local magnetic field traced by dust polarization (e.g.

Alves et al. 2018; Pelgrims et al. 2020), and we leave to

future work using such models to try to produce full-sky

polarization maps that do not require their large-scale

emission to be filled by a template. Also in the future,

we will test local ISM models and their match to the

large-scale dust emission as measured by Planck.

To make a unified foreground model over a broad

range of frequencies, we need to incorporate synchrotron

emission and its correlation to dust (Choi & Page 2015),

which we leave for future work. We will also study the

effect of non-Gaussian foreground residuals for the re-

construction of the small-scale CMB weak-lensing po-

tential in the future, and we hope our dust model will

contribute to the analysis of the effects of foreground

non-Gaussianity and frequency decorrelation in the fore-

casting for upcoming CMB experiments.



Full-sky model of Galactic dust based on filaments 19

We thank Gabriela Marques for providing the code

to compute the curved-sky Minkowski functionals and

for checking the consistency between her code and the

cnd reg2d code. We thank Aditya Rotti for helping

us in the measurement of the power spectrum slopes

of the Planck data. We also thank David Collins and

Kye Stalpes for useful conversations about the turbu-

lent nature of the ISM. Arthur Kosowsky helped us

to understand how to describe the power spectrum of

the isotropic magnetic field component. We thank Su-

san Clark and Brandon Hensley for providing com-

ments on a draft of this work. We acknowledge sup-

port from NASA Astrophysics Theory Program award

NNX17AF87G and NSF Astronomy and Astrophysics

Grant program awards 1815887 and 2009870. This work
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APPENDIX

A. DETAILS OF THE METHOD

A.1. Magnetic field model

The full Galactic magnetic field we use in our model has a large-scale regular component. We also developed code

to add an isotropic random component.

A.1.1. Large-scale Galactic component

For the large-scale Galactic magnetic field, we use the model from Jansson & Farrar (2012a,b). This model has three

components that describe the large-scale regular magnetic field in our galaxy, defined in galactocentric cylindrical

coordinates.

• Disk component. The disk magnetic field only has components in the azimuthal and radial directions, so the Z

component is null. This disk defines eight logarithmic spirals.

• Halo component. This magnetic field only has an azimuthal component, which drops exponentially with the Z

height up and down with respect to the Galactic plane disk.

• Out-of-plane component. This component is also called the X halo, since the magnetic field lines resemble an X

when observed from the edge of the Galactic disk. This has been observed in external galaxies.

We adopt a cube with side S = 400 pc, larger than the ∼ 100 pc diameter Local Bubble and big enough to include

some fraction of the Galactic neighborhood. We use the Jansson & Farrar model shifted 8.5 kpc along the X-axis

to place the cube around the solar system, with the Galactic center toward the +X direction. Our H cube has a

resolution of 2563 voxels.

A.1.2. Generating the isotropic random magnetic field

Following Mack et al. (2002), the power spectrum of a homogeneous, isotropic magnetic field is

⟨Hi(k)Hj(k
′)∗⟩ = (2π)3Pij(k)P (k)δ(k− k′) (A1)

where ij are the vector components of the field, k is the wavevector of the mode, and the projection operator to the

transverse plane is

Pij(k) = δij − k̂ik̂j . (A2)

Here k̂i are the components of the unit vector in the longitudinal (k) direction. To fill our simulation box with a

magnetic field, we generate harmonics that satisfy the above relationship via

Hi(k) =

[︃
(2π)3P (k)

∆vol k

]︃1/2
Pij(k)gj(k), (A3)

where gj is a vector of complex Gaussian random deviates with unit variance in each component, and ∆vol k is the

volume of a pixel in harmonic space. We transform the field components to real space with a fast Fourier transform.

With this model, we aim to simulate the isotropic random component seen in the small-scale Galactic magnetic field

(Haverkorn 2015). We generate our random magnetic field cube component with a power law spectrum P (k) ∝ k−4,

which corresponds to roughly the small-scale spectrum seen in MHD simulations of the ISM (Stalpes et al. 2022 in

preparation.). To add the large-scale Galactic component and the isotropic random component together, we normalize

the random isotropic magnetic field cube so that RMS(|H|)= 3µG (Sun et al. 2008; Jaffe et al. 2010).

A.2. Defining the filament population

The filaments are placed inside the cube defined by the model of the magnetic field. Because we do not want

to generate distortion on the corners of this cube, we place the filaments inside a sphere centered at the observer

with a radius equal to 0.45 times the side of the cube S. The positioning of the filaments inside this sphere can be

accomplished in two main ways.
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Placement at random.—The centers of the filaments are generated randomly, such that the density of filaments per

unit of volume is uniform. We generate random numbers u ∈ U(−1, 1), ϕ ∈ U(0, 2π), and r ∈ U(0.15, 1). The random

position of a filament in the Cartesian 3D space is then given by

r = Rr1/3(
√︁
(1− u2) cos(ϕ)x̂+

√︁
(1− u2) sin(ϕ)ŷ + uẑ), (A4)

where R is the radius of the sphere contained within the magnetic field cube. The random number r is not generated

starting at zero to avoid placing filaments that will overlap with the observer.

Placement following a template map.—As described in Section 3.1, for our primary method, we use a template map for

placing the filament centers along the surface of the celestial sphere. This map can be a Galactic template or any

other type, as long as it describes how intense each pixel is with respect to others. Each pixel will get a number of

filaments given by a Poisson distribution with a parameter given by eq. 2. The third dimension, which is the radial

distance to the filament, is randomly generated with Rr1/3, just like it is done in equation A4.

A.2.1. Orientation of the filaments

The filaments are randomly oriented following the local magnetic field. The semi-major axis of the prolate spheroid

is aligned with the local magnetic field at the center of the filament, H(r). The filament long axis is then rotated by

a random angle θLH (with respect to some orthogonal vector) and then rotated again by a random angle ϕ ∈ U(0, 2π)

with respect to the local magnetic field H(r). The angle between the local magnetic field and the filament semi-major

axis, θLH, is drawn from a random Gaussian distribution with zero mean and standard deviation RMS(θLH). This

way, the filaments will be approximately oriented with respect to the local magnetic field at their centers, and the

degree of orientation is controlled by the RMS(θLH) parameter. If L̂ is the unit vector along the semi-major axis of

the filament, the orientation of the filament is described by two Euler angles, αe and βe given by

αe = atan2(L̂y, L̂x) (A5)

βe = arccos(L̂z). (A6)

A.2.2. Sizes of the filament semi-major axis

The sizes of the filaments are generated randomly from a Pareto distribution, which is a power law p(La) ∝ L−ηL
a .

As described in Huffenberger et al. (2020), this distribution will render the power law behavior observed by Planck

in the various angular power spectra. The semi-major axis length La is drawn from such a distribution, and the

semi-minor axis length Lb is defined as Lb = ϵLa, where ϵ is the axis ratio defined for the population of filaments

and the parameter that controls if the filaments are thick or thin. In principle, ϵ can be a constant number (i.e. all

filaments have the same aspect ratio), dependent on the filament size, or stochastic. We also note that the central

density, which could be proportional to the size, as described in Section A.3, will change the slope of the necessary

Pareto distribution.

A.2.3. Skipping large filaments

One issue with the filament population that is not immediately obvious is the effect of very large filaments. The

Pareto distribution for the filament major semiaxis length La is a power law with a negative index, and as such, the

longer side of the distribution does not have a hard bound, but rather the largest sample drawn will depend on the

total number of filaments produced. When generating a population of several million filaments, some of those very

large filaments will be generated, and they will be very prominent in the final Stokes parameter map. The largest

filaments of all will be skipped when some fraction of their volume falls outside the modeled box, but other filaments

will be slightly smaller than this threshold and will appear in the map. This feature is not realistic, so we do not add

filaments to the final map whose projected angular size along the major axis Θa is larger than some predetermined

scale.

The projected angular size Θa is given by

Θa = 2(L2
a cos(tan

−1(
tan(θL)

ϵ
))2 + L2

b sin(tan
−1(

tan(θL)

ϵ
))2)1/2/r, (A7)

where θL is the angle between the filament long axis and the LOS, and r is the distance between the observer and

the filament center. A filament has a smooth Gaussian profile, so it does not have a well defined edge. We choose to
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multiply by 2 since La is the major semiaxis, and within two semiaxis length 2La in the Z-axis direction, a Gaussian

profile for the filament density contains 68% of the emission. We limit the scale to an appropriate value ℓlimit, and we

skip the filaments that fulfill the following condition

π/Θa < ℓlimit, (A8)

which effectively cuts off the one-halo term at low ℓ.

A.3. LOS integration

Once we have a randomly generated filament population, we can integrate its emission along the LOS and project

into the surface of the celestial sphere using the healpix conventions and tools.

Every filament is defined within a rectangular box that extends to five times the size of the filament (Lb,Lb,La) in

each axis direction (X,Y ,Z). First, we need to define which LOSs will be integrated to paint an individual filament

into the celestial sphere. Each LOS will correspond to a healpix pixel. We find which pixels are in the celestial sphere

projection of an individual filament with the query polygon method. Therefore, we need the coordinates of the outer

perimeter of the projection of the rectangular box in the celestial sphere. To do this, we find the convex hull of the

eight vertices that make up a filament box, projected in the 2D surface of the celestial sphere. We cannot use the

latitude and longitude of each vertex straightforwardly as proxies for the X- and Y-coordinates, since we cannot control

the behavior of filaments that cross either one of the poles or that cross the prime meridian. Instead, we transform

the latitude-longitude coordinates into a stereographic projection, given by

k = 2/(1 + sin(π/2− θc) sin(π/2− θc) + cos(π/2− θc) cos(π/2− θ) cos(ϕ− ϕc)) (A9)

X = k cos(π/2− θ) sin(ϕ− ϕc) (A10)

Y = k[cos(π/2− θc) sin(π/2− θ)− sin(π/2− θc) cos(π/2− θ) cos(ϕ− ϕc)], (A11)

where θ, ϕ are the latitude and longitude of the corresponding vertex, and θc, ϕc are the latitude and longitude of the

center of the filament. With the convex hull, we determine which six of the eight vertices are on the exterior perimeter
4. We run the query polygon function in this convex hull polygon to determine the list of pixels that belong inside the

filament projection onto the celestial sphere.

For every LOS within each individual filament, we must determine at which distance the rectangular box is intersected

going in and coming out. We do this by defining a set of coordinates R whose center is located at the center of the

filament and rotated in conjunction with the orientation of the filament. To transform between the observer coordinates

r and R, we apply the rotation matrix M(αe, βe) in the Z1Y2Z3 convention,

R = M(αe, βe)r + rc =

(︃
cos(αe) cos(βe) − sin(αe) cos(αe) sin(βe)
sin(αe) cos(βe) cos(αe) sin(αe) sin(βe)

− sin(βe) 0 cos(βe)

)︃
r + rc, (A12)

where rc is the position of the center of the filament in the observer coordinates. At this stage, we determine if any

of the eight vertices that define the filament rectangular box lie outside the magnetic field box, which could happen

if the generated length La is so long that the filament lies partly outside our defined box. In this case, we skip the

filament, since the magnetic field is not defined inside it completely. We calculate the six normal unit vectors that are

perpendicular to each of the six faces of the filament rectangular box, as well as the vectors that trace the four edges

of each of the six faces. Now, we need to know the distance between the observer and one of the faces of the filament

rectangular box across the LOS. To calculate this distance r, we intersect an LOS vector r̂ in the observer coordinates

with each of the six faces of the filament rectangular box, using the equation for the intersection between a line and

an infinite plane,

r =
p0 · n
r̂ · n̂

, (A13)

where p0 is any point in the infinite plane defined by the face of the rectangular box (e.g. one of the vertices that

belong to the particular face in question), and n̂ is the unit vector normal to the face (which is also normal to the

4 Since we are calculating a convex hull with discrete floating point
precision, we are prone to error when three or more points are
very close to being colinear. In this case, we skip the particular
filament, since the calculated convex hull might not be convex,
and query polygon will fail.
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infinite plane) in question. For every LOS, we do this six times, one for each face. We will then get six distances from

the observer to the six infinite planes (in which the face is contained), but we only want two distances, one near and

one far. If we define the four vectors ri with i ∈ 0, 1, 2, 3 as the vectors pointing to the four corners of the face in

question, we calculate the projection of the vector rr̂ − r0 toward the two edge vectors r1 − r0 and r3 − r0. If the

norm of each of the projections is above zero and below the norm of the respective vector rj − r0, with j ∈ 1, 3, then

we know that this particular face is intersected by the LOS vector. Finally, we know the two distances rnear and rfar,

one near and one far. Along the LOS vector, we know that between these two distances, the filament is defined.

The next step is to integrate the LOS between rnear and rfar. The Stokes parameters T , Q, and U are defined by

(e.g. Kim et al. 2019)

T (r̂) = A

∫︂ rfar

rnear

ρ0u(r)dr (A14)

Q(r̂) = Afpol,0 sin
2 θH

∫︂ rfar

rnear

ρ0u(r)
Hy(r)

2 −Hx(r)
2

|H(r)|2
dr (A15)

U(r̂) = Afpol,0 sin
2 θH

∫︂ rfar

rnear

ρ0u(r)
−2Hx(r)Hy(r)

|H(r)|2
dr, (A16)

where r = rr̂ is the radial vector along the LOS, and the x, y subindex in the magnetic fieldH represents the projection

along the two axes perpendicular to the LOS in the healpix convention (see Fig. 5 of the healpix primer 5). We

choose the normalization A to match the Planck power spectra (Section 3.5). We do not include the modulation in

the dust intensity by the θH angle (Hensley et al. 2019). The density profile u(r) is defined following the profile of the

prolate spheroid. We define it in the R coordinates of the filament as a Gaussian profile,

u(R) = exp(−1

2
((RX/Lb)

2 + (RY /Lb)
2 + (RZ/La)

2)). (A17)

This can also be changed to any profile required. We transform between the R and r coordinates using the inverse of

eq. A12,

r = M−1(αe, βe)(R− rc). (A18)

The normalization factor of the density, ρ0, is set by Larson’s law (Larson 1981), which states that the central density

of star formation clouds is inversely proportional to the size of the cloud with a power law with index∼ −1.1. Therefore,

we define

ρ0 ∝ L−1.1
a (A19)

for every filament. The local magnetic field, H(r), is interpolated using a trilinear interpolation, since the resolution

of the magnetic field cube is limited. The polarization fraction fpol is explained in Section 3.4. We also include a

computationally cheaper option to replace H(r) with H(rc), meaning that we do not interpolate the magnetic field

at every position r; instead, we calculate the magnetic field at the center of the filament rc only once per filament and

apply that constant value throughout.

A.4. Variable sampling resolution

The wildly variable sizes of the filaments are a problem when we sample a healpix map with a fixed resolution.

Filaments with a large angular size (either physically big or close to the observer) will be sampled with many pixels,

often several million, while filaments with a very small angular size will be sampled with a handful of pixels, too few to

accurately sample and average their elongated density profiles, which generates erroneous shot noise. To avoid these

effects, we implement a variable resolution that keeps the pixel sampling nearly uniform relative to each filament.

First, we choose an Nfixed
side resolution parameter for the overall simulated map. Then, for every filament, we will

determine a variable resolution parameter Nvariable
side and sample the LOS integration for that individual filament at

that resolution. To determine this, we do the following calculation. Imagine we put the filament with its long axis

aligned with the LOS. In this configuration, to the observer, the filament will look like a circle with a radius Lb, and the

filament rectangular box will look like a square with a side 10Lb. We want to sample this side 10Lb square with a grid

5 https://healpix.sourceforge.io/pdf/intro.pdf
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of Nreso by Nreso pixels. In this case, the size of the pixel sampling this filament should be ∼ (10Lb)/(|r⃗c|Nreso) rad.

The approximate size of a healpix pixel at resolution Nside is
√︁
(4π)/(12N2

side). We want to choose Nvariable
side so that

both of these pixel sizes are roughly equal. Then, the value of Nvariable
side is given by

log2N
variable
side = ⌊log(0.1Nreso

√︁
π/3|r⃗c|/Lb)/ log(2)⌉, (A20)

where ⌊⌉ means round to the nearest integer, since Nvariable
side must be a power of 2. If Nvariable

side = Nfixed
side , nothing special

is required, and we add the filament map to the final map.

IfNvariable
side > Nfixed

side , then the filament map has a higher resolution than the fixed resolution. We need to down-sample

the map. This is easily achieved thanks to the nested ordering in healpix, where every pixel at a higher resolution

belongs to a parent pixel at a lower resolution. For every M steps in resolution (for example, an Nside = 2048 − 512

change in resolution would be an M = 2 step), every parent pixel at the lower resolution has 4M children pixels at the

higher resolution. Therefore, every pixel in the down-sampled map is the average of the 4M children pixels from the

high-resolution map.

If Nvariable
side < Nfixed

side , then we need to up-sample the map to the Nfixed
side resolution. Doing this up-sampling in pixel

space is possible, but it is not recommended. The edges of the large parent pixels are visible in the higher-resolution

map, and this creates undesirable small-scale artifacts in the power spectra. For this reason, we do this up-sampling in

harmonic space using a Gaussian kernel with FWHM equal to the pixel size of an Nvariable
side map, which discards scales

where such large filaments contribute little power and avoids the pixel effects. Since harmonic space transforms are

expensive, we add together all of the filaments sampled at the same resolution. At the end, we up-sample these total

filament maps to the fixed Nfixed
side resolution, doing only one harmonic calculation per Nside between 128 and Nfixed

side /2,

and add them to the final map.

B. E/B POWER FROM SINGLE FILAMENTS

As noted by Huffenberger et al. (2020), the main parameters that control the relative E and B power in a filament are

the misalignment angle between the filament long semiaxis and the magnetic field θLH and the axis ratio ϵ. Changing

the standard deviation of the misalignment angle RMS(θLH) will control how much correlation there is between the

filaments and the magnetic field lines. A smaller RMS(θLH) means a higher degree of correlation, which generally

means that the projected angle between the filament and magnetic field, ψLH , is smaller. This will decrease the

DBB
ℓ /DEE

ℓ ratio and increase the rTE
ℓ ratio. The latter will increase as the filament-magnetic field alignment increases,

i.e. a smaller RMS(θLH). To understand the former effect, we look into the details of the spectra for a single filament.

Our starting point is Figure 2 of Huffenberger et al. (2020). We note that when the filament and magnetic field are

aligned, the projected angle between them is ψLH = 0. There the E field reaches its maximum, and the B field reaches

its minimum. When there is a ψLH = 22.5◦angle between the filament and magnetic field, both the E and B fields

have about the same power. Then, when the angle is ψLH = 45◦, E and B reverse roles: B reaches its maximum, and

E reaches its minimum. This oscillation continues with a period of 90◦.

Fig. 12 shows this oscillation of the DBB
ℓ /DEE

ℓ ratio as a function of the projected filament-magnetic field angle ψLH .

We calculate the mean ratio for the small-scale spectra for an individual filament map. We use RMS(θLH)=10◦and

ϵ = 0.16 for 2000 filaments with equal length La. We note that for every 22.5◦in ψLH , the ratio goes from minimum to

maximum, or vice versa. Therefore, the key to achieving a filament population where the E-modes dominate over the

B ones is to have more filaments in the ψLH angle ranges where the ratio is above 1. We know that for |ψLH | < 22.5◦,

the E-modes dominate, so filament populations with smaller rms(θLH) will have proportionally more filaments closer

to alignment with the magnetic field and more E-mode domination. In the figure, the number on each ψLH range

shows the percentage of the 2000 filaments that belong to that range.

The dependence on the axis ratio ϵ is shown in Fig 1 of Huffenberger et al. (2020), where decreasing ϵ, i.e. thinner

filaments, increases the E-modes over the B-modes. The combined effect of fine-tuning RMS(θLH) and ϵ in a filament

population will render a given combination of DBB
ℓ /DEE

ℓ and rTE
ℓ ratios. The rTE correlation can be further refined

by tuning the distribution of the polarization fraction.
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Figure 12. Mean small-scale DEE
ℓ /DBB

ℓ ratio as a function of the projected angle between the filament and magnetic field ψLH

for a population of 2000 filaments, with rms(θLH)=10◦, ϵ = 0.16, and filaments with the same length. The fraction of filaments
that belong to each 22.5◦bin in ψLH is shown in each bin.
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