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Abstract

A thorough understanding of the complex process-structure-property (P-S-P) relationship in
additive manufacturing (AM) has long been pursued, due to its paramount importance in
achieving AM process optimization and quality control. The physical modeling and experimental
approaches are usually time-consuming and/or costly. With the increasing availability of digital
AM data and rapid development of data-driven modeling techniques, especially machine learning
(ML), data-driven AM modeling is emerging as an effective approach towards this end. It allows
for automatic exploration of pattern and trend in the data, construction of quantitative P-S-P
relationship over the parameter space and prediction at unseen points without having to perform
new physical modeling or experiments. A proliferation of researches on data-driven modeling of
process, structure and property in AM have been witnessed in recent years. In this context, this
paper aims to provide a systematic review of existing data-driven AM modeling with respect to
different quantities of interest (Qol) along the process-structure-property chain. Specifically, this
paper offers a summary of important information (i.e., input features, Qol-related output, data
source and data-driven model used) of existing data-driven AM modeling, as well as an in-depth
analysis on relevant success achieved so far. Based on the comprehensive review, this paper also
critically discusses the major limitations faced today and brings up some research directions that

are promising for significantly advancing data-driven AM modeling tomorrow.
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1. Introduction

Additive manufacturing (AM) ', which builds a part directly from a 3D CAD model in a layer-
by-layer manner, can fabricate components with complex geometry in a time- and cost-saving
manner, which makes it potent and increasingly used in many industries. While the unique layer-
wise building endows AM unrivaled manufacturing capabilities, those benefits come at the cost
of complicated AM process and miscellaneous physics involved. A plethora of complex physical
events, of which some *7 rarely occur in conventional manufacturing process, exist at different
stages of AM process. This would result in extremely non-linear and complex process-structure-
property (P-S-P) relationship ®. Meanwhile, (multi-)physical AM modeling and AM experiment
are notoriously time-consuming and/or costly. Those two facts pose great challenges in fully
exploring and understanding AM P-S-P linkage that, however, is vital to efficient AM process

optimization and quality control.

In the context of the fourth research paradigm of data-intensive discovery °, research
methodologies across science and engineering have seen a shift to data-driven and informatics
approaches. This is in part due to the increasing availability of digital scientific data or data
deluge '°, both theoretical and experimental, with the fast advancement of computational power
and experimental instrumentation. On the other hand, with the revival of artificial intelligence (Al)
researches from Al winter ', the rapid development of machine learning (ML), a disruptive data-
driven modeling technique, has especially accelerated such paradigm shift sweeping through
many scientific disciplines '*'¥. It should be stressed that, although becoming more and more
popular, data-driven modeling is not a standalone approach and, instead, augments physics-based
modeling and experiments by making best use of the generated data thereof. Specifically, data-
driven modeling can have different types for diagnostic, descriptive, predictive and prescriptive

purposes, respectively >,



Among others, additive manufacturing (AM) is arguably one of the most affected domains in the
age of data. For example, data-driven model has appeared frequently as a key building block of
various AM design and management frameworks/strategies, such as design for additive
manufacturing (DfAM) ', digital twin (DT) for AM ****, smart additive manufacturing *, cloud
additive manufacturing 2°. While applications of data-driven model in AM are diverse, data-
driven predictive modeling is especially useful for studying P-S-P relationship in AM. It usually
discovers the P-S-P relationship in a mathematical form (or the predictive function) via regression
analysis. More specifically, data-driven predictive modeling allows for automatic exploration of
pattern and trend in the AM data, construction of P-S-P relationship over the parameter space and
prediction at unseen points without having to perform new physics-based modeling or
experiments. This data-driven attempt of training a cheap relationship model to replace original
physics-based modeling or experiment is sometimes also called surrogate modeling or
metamodeling *’. Such a data-driven modeling approach is crucial for achieving AM process
optimization based on a complete, quantitative understanding of P-S-P relationship. AM
community has witnessed an upsurge of data-driven AM researches on this topic and produced a

wealth of relevant literature.

Although existing related review efforts 25

, more or less, touched those literature, they usually
focus neither specifically nor fully on the topic of data-driven modeling of P-S-P relationships.
Most of those reviews cover the comprehensive applications of data-driven modeling techniques
and ML in AM. They thus have quite different emphasis from this review. For example, the
review paper by Wang et al. *® is organized based on existing applications of ML for AM design,
AM production, and AM process. The review by Razvi et al. *° is focused on four applications -
AM design, process and performance optimization, in-situ monitoring and control, and AM part

inspection and validation. Similarly, the survey by Jin et al. ** concentrates on geometrical design,

process parameter configuration, and in-situ anomaly detection. Baumann et al. *' focuses on



process control, process monitoring, and quality enhancement of manufactured objects and so on.
Goh et al. ** have broadly reviewed applications of ML in AM including design for 3D printing,
process optimization, in-situ monitoring, cloud 3D printing, and even security of attach detection.
Therefore, the specific topic of data-driven predictive modeling of P-S-P relationships has not
been explicitly addressed in those reviews. While the reviews by Qi et al.*}, Kouraytem et al. **
and Meng et al.*® have clearly surveyed existing data-driven modeling of P-S-P relationships, this
topic constitutes only a portion of the entire article in their reviews. In conclusion, a systematic
and fine-grained review exclusively devoted to the important topic of data-driven modeling of
process, structure and property in AM (simply referred to as data-driven AM modeling

hereinafter) is still absent.

To fill this gap, this paper provides an extensive review and detailed analysis of existing
researches on data-driven modeling of process, structure and property in metal, polymer,
ceramics and composite-based AM. For a systematic review, this research classifies concerned
data-driven AM modeling into three categories - process modeling, structure modeling and
property modeling (Fig. 1). The three main categories are further subdivided based on the detailed
modeling quantity of interest or output of data-driven modeling. More specifically, process
modeling broadly involves modeling of AM machine activities and its thermal and physical
interactions with AM building during manufacturing process. Typical process modeling is
thermally related modeling, e.g., modeling of process temperature development and melt pool
formation; structure modeling precisely refers to those modeling interested in various structures
across multiple scales, ranging from microstructures to mesoscale geometries and macroscopic
shapes; property modeling includes modeling of different mechanical properties of AM-

fabricated parts.

In this paper, the review and analysis of those different types of data-driven AM modeling will

contain three main parts: 1) tabulated summary that gives a quick overview of existing data-



driven AM modeling; see Table 1, 2 and 3 for data-driven process, structure and property
modeling respectively. We summarize basic information of existing data-driven AM modeling,
namely the four components - input features, Qol-related output and data-driven model used to
link them, as well as the data source. Note that, data source (simulation or experiment) largely
implies if the related data-driven modeling is more in the stage of proof-of-concept or rather
practically significant. Besides the four components, data-driven modeling result is briefly
summarized in the table, in terms of predictive accuracy or error. It gives readers a general sense
of the performance of existing data-driven models and may provide baselines for future studies. 2)
further analysis that provides deeper insights into existing data-driven AM modeling; see
subsections of Data-driven Process Modeling, Data-driven Structure Modeling and Data-driven
Property Modeling. In those three subsections, we further analyze in depth the success achieved
by existing researches. 3) detailed discussion that offers guidance on future data-driven AM
modeling; see Future Directions section. Based on the two review parts, we finally discuss major
limitations faced today and raise some promising research directions for significantly advancing

data-driven AM modeling tomorrow.
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Fig. 1 Schematic illustration of data-driven AM modeling. Data-driven AM modeling usually
consists of four basic components - input features, quantity of interest (output) and data-driven
model used to link them, as well as the data source that fuels data-driven modeling. Note that, this
review divides data-driven AM modeling into three groups - data-driven process modeling,

structure modeling and property modeling, according to the modeling quantity of interest or
output of data-driven modeling.

2. Data-driven model

2.1 Common data-driven models in AM
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Fig. 2 Frequency of common data-driven models used in different data-driven AM
modeling. Even for a certain data-driven AM modeling, researchers may use quite different data-
driven models.

This subsection gives a brief introduction to those common data-driven AM models involved in
this review. Readers interested in more detail are referred to related references in this paper; see
Table 1-3 as a guide. Additionally, Fig. 2 summarizes the frequency of those different data-driven
models used in previous researches. It may serve as a quick reference for model selection or

model novelty evaluation against existing ones in future studies.



Polynomial Regression (PR): PR is a rudimentary data-driven modeling technique by using
the polynomial function. PR is easy to implement but usually limited to approximating simple
or moderately complex relationship.

Genetic Programming (GP): GP and its variants are based on combining a more varied set
of essential elements and functions, such as arithmetic operators (+, —, x, /), non-linear
functions (sin, cos, tan etc.) and/or Boolean operators. The satisfactory structure and
parameters of GP model are iteratively found through genetic operations on a population of
initial configurations. GP is thus a more flexible data-driven modeling technique, but the
proper setup of GP model (e.g., genetic operation details) requires much expert knowledge.
Gaussian Process Regression (GPR): GPR is instead a “non-parametric” (i.e., without a
rigid regression model) and more universal approximation method. The input-response
relationship is formulated within covariance kernel. GPR has the outstanding capability of
measuring uncertainty on the prediction, as GPR essentially considers the whole data as a
sample from a multivariate Gaussian distribution and therefore the prediction as a conditional
distribution. GPR would become painfully slow in face of large dataset, as whole samples or
features information are used to perform the prediction. Note that in the literature, Gaussian
process regression is often called GP for short. To avoid confusion with genetic programming,
we refer to Gaussian process regression as GPR throughout this article.

Decision Tree (DT): DT for either classification or regression is conducted by recursively
and discriminatingly partitioning data into branches until sufficiency or user-defined depth.
DT is easy to understand and known as a white box. It does not require much data preparation
such as data normalization, dummy variables creation and can handle both numerical and
categorical data. To mitigate the overfitting issue of deep DT, a common practice is to use
ensemble of decision trees i.e., Random Forests (RF), which randomly selects observations

and features to build several decision trees and then averages the results.



Support Vector Machine (SVM): SVM for regression analysis is a close variant of
classification-purposed SVM. They follow similar principles to use Kernel trick to transform
data into a more amenable high-dimensional space, which then permits simply finding a N-
dimensional hyperplane that has best fit to all data points. Contrary to the intuitive DT, SVM
is more difficult to interpret as a black-box model.

Multilayer Perceptron (MLP): MLP as the classical type of neural network consists of
multiple layers of fully connected neurons, which include input layer, hidden layer(s), and
output layer. MLP can learn a mapping from inputs to outputs of tabular datasets. For other
types of data such as images and words of document, they have to be converted to one long
row of data as the input, which however usually results in a parameter-intensive MLP with
inferior performance.

Convolutional Neural Networks (CNNs): CNNs on the other hand were designed to make
predictions by directly using image data as an input. More generally, CNNs perform well on
array data that has a spatial relationship, because they can develop an internal representation
of both one-dimensional sequence and high-dimensional matrix by using stacks of
convolutional layers to extract salient patterns. However, CNNs usually demand large
amounts of training data.

Generative Adversarial Networks (GANs): GANs as another important image-based neural
networks are significantly promising deep learning models. GAN and its variants can
generate sharp images from latent variables and/or conditional information, and the
distribution of generated samples usually matches the true data distribution well. Especially,
they can be employed to generate deterministic results when complicated conditional
information is provided. This fact brings them huge potential in a wide range of engineering
applications, including microstructure reconstruction, microstructure synthesis and image-

based microstructure prediction.



9. Recurrent Neural Networks (RNNs): RNNs were designed to handle sequential data, by
permitting output from previous step to be fed to the current step during processing long
sequences. RNNs perform well on processing and predicting sequences with even variable
length, e.g., words and spoken language in natural language processing (NLP) applications.
However, the looping structure of RNNs for dealing with sequences can increase training
complexity due to the more complicated signal movements. Long short-term memory (LSTM)
3¢ which can learn the very long dependence in sequences, is the most commonly used RNN

variant in data-driven AM modeling currently.

2.2 Model selection

Selecting the suitable data-driven models is an essential step towards successful data-driven AM
modeling. However, as shown in Fig. 2, different research groups adopted different data-driven
models even for the same data-driven AM modeling problem (up to 7 in data-driven modeling of
mechanical properties). In part, this is attributable to different simplification and formulation of a
data-driven modeling problem. For instance, the detailed modeling quantity of data-driven
porosity modeling could be simple porosity percentage or real porosity structure; see Table 2.
Also, different researchers may be interested in using distinct input features. On the other hand,
even for a well-specified data-driven AM modeling problem, e.g., building the relationship
between the melt pool area and AM parameters in Table 1, there is still no widely accepted
criterion for choosing the best data-driven model. Regarding this, one of the best strategies is

37,38

ensemble learning °*~°, which use the weighted summation of predictions by data-driven models

of different types to achieve better prediction accuracy than any constituent model.
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Fig. 3 Flowchart of the two-step model selection.

While model selection is still an open research problem in AM, we introduce a general two-step
model selection method for different problems in AM as a guideline. From previous practices,
one can first narrow down data-driven models based on data involved in the data-driven modeling,
followed by determining a suitable model according to the unique characteristics of different

data-driven models and properties of the modeling problem; see flowchart in Fig. 3.

For step 1, all the data-driven model candidates may be classified into two groups, based on their
capability in tackling data of different types and complexities. The first group (PR, GP, GPR, DT,
SVM, MLP) usually deals with scalar quantities and sometimes categorical/label data, while the
second group (CNN, GAN, RNN, and CNN+RNN) handles more complex data (e.g., time series,
image and video). For step 2, a proper data-driven model can be further determined depending on
the model’s specialties and modeling problem. When only scalar and simple quantities are

involved in the data-driven modeling, the modeling task lies more within conventional regression



analysis. Generally, all of those six data-driven models would be useful, although MLP tends to
be the first choice nowadays as reflected in Fig. 2. Meanwhile, as discussed in Subsection 2.1,
those data-driven models also have their own characteristics in terms of friendliness to non-expert,
interpretability, regression power, categorical prediction capability and so on. This may make a
particular data-driven model favored in some special situations where those factors carry weight.
Besides the above common data-driven AM modeling, AM modelers often encounter high-
dimensional and complex quantities, e.g., acoustic signal, thermal history curve, melt pool image
and 3D temperature field. Those complex quantities can arise from the input feature, Qol output,
or both sides. Sometimes the high-dimensional data might be further processed before performing
data-driven modeling by using data dimension reduction techniques, such as singular value
decomposition (SVD)*, principal component analysis (PCA)*, and GAN-based encoder*'.
Additionally, CNN, though not yet used for dimension reduction in AM-related applications, is
effective in learning latent representations of high-dimensional data****. Dimension reduction will
then transform the original modeling problem to the common regression analysis (i.e., left-hand
side in Fig. 3) in the latent space. In other cases, some capable ML models are leveraged to
directly deal with complex data. RNN is preferred when modeling time series and other
sequences; GAN is usually selected for image (generation) modeling; CNN is able to handle
images, 3D array (e.g., stacked images, video and 3D structure*), as well as long sequences (e.g.,
thermal history profile®). Furthermore, integration of CNN and RNN for processing image

streams is also a common practice 447,



Table 1 Summary of data-driven process modeling in AM

. . Data- .
Quantity of interest Input features Qol-related output driven Data source Modeling Ref.
(Qol) (Dataset size) results*
model
Laser power, scanning speed. Pool depth GPR Exp. (139) MAPE =10.91 pm 48
Simu. (26) MAPE = 6 pm**
Laser power, scanning speed. Pool depth GPR, DT Simu. (462) ReMSE = 3.6%*** 4
Laser power, scanning speed. Remelting depth GPR Simu. (24) MAPE = 1.4 um 50
Chemistry of powders, materials thermal property, | Pool width, depth, area | RF, SVM, | Exp. (472) St
powder bed information and laser parameters. within substrate, | etc. R2=0.75-0.9
Melt pool height, area based on ' ’
height
Laser power, scanning speed, neighboring effect factors. Pool area PR Exp. (4,957) NRMSE = 0.08 32
Laser power, scanning speed, neighboring effect factors, | Pool area MLP Exp. (118,928) AREM = 12.21% 53
layer-wise effect factors.
Laser power, scanning speed and five uncertainty sources. | Pool length, width and | GPR Exp. (7) AREM 4
depth Simu. (300) 5.74/3.26/10.08%
Laser parameters and feeding rate. Be.ad width, depth and MLP Exp. (90) RMSE=0.59/0.53/0.14m ”
height m
Bead Laser processing parameters. Bead width PR Simu. (70) MAE = 0.2997 um 56
Layer thickness, laser power and scanning speed. Bead width GP, MLP Exp. (54) RMSE=65.53 um 57
Power, speed, feeding rate. Bead height SVM Exp. (180) MSE = 2.89E-8 mm 38
Long-term, short-term memory descriptors and M.ax}mum temperature . ?
i . within  heat-affected | MLP Simu. (54,450) | RMSE=108.87 °C
temperature feedback from previous step. zone
}I;ayer power, scan speed, layer index, time index, average M.ax.imum temperature LSTM Exp. (<17,000) | RMSE =20.1 °C 60
eight, average width. within pool boundary
Thermal .and spatial information of the voxel and its | Thermal history of DT Simu. (9.05E6) | MAE =021 o1
Process neighboring elements. : _ : voxel : -
temperature Tool-path feature, ' time of deposition, location Th.ermal history of RNN Simu. (>2.5E5) | MSE =3 84¢-5
information of the point, etc. point
A set of relative distances from the cooling surfaces & the | Thermal history of 63
heat sources and a set of deposition times influencing | point MLP Simu. (2.6ES5) NRMSE < 2%
thermal behavior.
Printing settings, index variables and calibration | Layer-to-layer thermal Simu. & Exp. _ 64
parame%ers. ¢ ﬁeild Y GPR (N/A***%) b RMSE =5.71 K
AM process conditions and materials properties. 3D high-temperature | GPR Simu. (280) N/A 39




| [Tield [ [ | |

Note: * Metrics used to measure modeling performance in previous researches include mean absolute prediction error (MAPE), relative mean-squared error
(ReMSE), residuals (R?), normalized root-mean-square error (NRMSE), average relative error magnitude (AREM), root mean-squared error (RMSE), mean
absolute error (MAE), mean-squared error (MSE), mean-squared prediction error (MSPE), accuracy (Acc), global accuracy (GAcc), intersection over union
(IoU), F1 score (F1) and mean error (ME). Detailed definition of each metric can be found in corresponding referred literature.

** When simulation and experiment data are used separately to train two individual data-driven models, both of their predictive results are listed.
*#* When more than one type of data-driven models have been used in a research, only the best predictive result is listed.

**** In a few researches, related information was not directly reported.



Table 2 Summary of data-driven structure modeling in AM

Quantity of interest Data-driven Data source Modeling
(Qol) Input features Qol-related output model (Dataset size) results Ref.
; ; 39
AM manufacturing conditions and materials properties. g/slgzgt z;:tcilovarlance of grain GPR Simu. (150) N/A
Grain structure Seven processing conditions including scan pattern, molten | Principle component (PC) PR Simu. (1,799) MAE =%
zone width, velocity, molten zone depth, etc. scores of the microstructure 7 0.0168
: : : : 66
Seven process pgrameters. including layer thickness, laser | Density MLP Exp. (26) N/A
power, hatch spacing, scanning speed, etc.
: .
Laser power and scanning speed. Density GPR Exp. (42) BAZS 5}’9]33
- - — | 68
Laser power, laser velocity and hatching space. Relative density MLP Exp. (60) 51;423];0/
. 0
: : 69
Laser power and scan speed. Relative density GPR Exp. (82) 18/13A0/E =
. 0
Porosity Volumetric energy density. Density GPR Exp. (N/A) MAPE=1% [ 7
. Open porosity (%) GP, MLP, MAPE = |7
Layer thickness, laser power, laser scan speed. SVM Exp. (36) 3.82%
. “Bad” (porous) or “good” Acc = |46
Thermal images by pyrometer and IR camera. (neglectable porosity) label CNN+RNN | Exp. (840) 99.29 %
. “With flaw” or “without Acc =|"7
Surface images by DSLR camera. flaw” label CNN Exp. (1708) 92.50 %
. I Porous  structure  after . GAcc =7
Laser power, scanning speed, initial powder-bed structure. sintering CNN Simu. (130,500) 99.13%
. . Nodal coordinates of actual . MSE ="
Nodal coordinates of designed geometry. geometry MLP Simu. (N/A) 1 12E-05
Five process parameters including part bed temperature, laser | Shrinkages (%) along length, R2=0.54 75
. . . MLP Exp. (50)
power, scan speed, scan spacing, scan length. width and thickness
. . . Polar radii of point on the Exp.  (20,000- | MSE < 10E- | 7
o ical Polar angle, polar radii of point on the designed shape. actual shape MLP 40,000) 7
eometrica - - r - 7= e
distortion Polar angle. of point on the contour of the designed shape, | Polar radii of point on the GPR Exp. (360) R#=0.9022
transformation parameter set. contour of the actual shape
Polar angle of point on the contour of the designed shape, infill | Polar radii of point on the MSE =7
parameters. contour of the actual shape GPR Exp. (N/A) 0.21%
Designed shape. Actual shape CNN Exp. (18,500) ToU > 0.90 7
Designed shape. Actual shape CNN Simu. (39,424) F1>0.93 80
Thermal image and process/design parameters including laser | Pointwise distortion MLP+CNN | Exp. (21,818) RMSE = 56 | 8!




power, scan speed, location, print angle and material. pm




Table 3 Summary of data-driven property modeling in AM

Quantity of Data-driven Data source Modeling
interest (Qol) Input features Qol-related output model (Dataset size) results Ref.
Structur§ descpptor.s including volume fraction of inclusions and | Yield . strength, strain PR Simu. (900) MAE = 0.0038 ©
average inclusion size. hardening coefficient, etc.
3D grain structure. Yield strength CNN Simu. (7680) | RMSE=9.23 MPa | #
Materials compositions and microstructural features including
mean equiaxed alpha size, volume fraction of equiaxed alpha, | Yield strength GP, MLP Exp.(N/A) N/A 83
etc.
Mechanical Layer thickness, orientation, raster angle, raster width, air gap. Compressive strength GP Exp.(32) MAPE=3.93 84
i - — - -
Layer-wise temperature and vibration information, materials . 85
.. + . =0.
property property, AM process conditions, Tensile strength MLP+RNN Exp. (144) RMSE=0.59MPa
Melt temperatures, layer thickness, raster pattern orientation. Tensile strength MLP Exp. (108) RMSE=0.040756 | 8¢
; ; ; ; ; ; 87
Layer thickness, orientation, raster angle, raster width, air gap. Compressive strength GP, SVM, etc. | Exp.(32) MAE=0.0558
Angle of incline, overlapping length, number of specimen shells | Tensile strength SVM, etc. Exp. (192) RMSE=2.648MPa | *¢
Number of fiber layers and fiber rings as well as polymer infill _ %9
patterns of AM-fabricated carbon fiber-reinforced polymer Flexural strength SVM, DT, ete. | Exp. (162) RMSE=7.75MPa
Grain structure descriptors including mean and variance of grain Stress-strain curve GPR Simu. (150) N/A 9
aspect ratio.
St trai Strain rate, strain and temperature. Flow stress MLP Exp. (128) ME =-0.3% o1
recslf;i:am Temperature, strain rate, uniform elongation. Flow stress MLP Exp. (720) RMSE =2.056% |
True strain and 12 microstructural descriptors. True stress MLP Exp. (111) RMSE < 0.2 93
. . Simu. 40
Raw image-based structure. Stress-strain curve CNN (100,000) N/A

16



3. Data-driven modeling of additive manufacturing

Complementary to Table 1-3, this section gives detailed analysis on the achievement made so far
for different data-driven AM modeling. Unless otherwise pointed out, throughout this article we
survey the relevant literature indiscriminately in terms of AM techniques and AM materials. The
literature is grouped based merely on the modeling quantity of interest, which determines the type

and name of data-driven modeling.

3.1 Data-driven process modeling

3.1.1 Data-driven modeling of melt pool

Data-driven melt pool (size) modeling is one of the most widely studied data-driven AM
modeling for achieving AM process control. This is because the melt pool size, although a simple
quantity, is an effective indicator of overall manufacturing quality, intimately associated with the

94

development of columnar grain structure?, solidification textures at the sub-grain scale ** and

>, etc. A robust data-driven melt pool model is of huge value for

lack-of-fusion porosity °
optimizing AM process on-the-fly and ensuring part quality. Moreover, unlike many other AM
quantities, melt pool is readily measurable during AM process by using pyrometer, thermal
camera or high-speed camera. This fact facilitates experimental data-based data-driven modeling

that can generate actionable insights for AM practice. Therefore, melt pool is a prevailing Qol in

data-driven AM modeling nowadays.
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Fig. 4 Data driven melt pool modeling. a A common data-driven melt pool modeling that builds
melt pool depth simply as a function of primary manufacturing conditions (i.e., laser power and
speed), based on pool depth data obtained under different conditions **. b An improved data-

driven melt pool modeling designs neighboring-effect modeling (NBEM) factors, 6 and Hfd, to
account for inter-track heating effect or scanning history on melt pool development . ¢
Uncertainty-incorporated data-driven melt pool modeling includes uncertainty sources, 6, as
inputs to enable prediction of caused fluctuation of melt pool **.

Since melt pool size (e.g., pool width, length, depth or area) is a scalar quantity, data-driven melt
pool modeling itself is technically not difficult, generally falling within the task of common
regression analysis like curve fitting. The key challenge and research interest today lie in the
rational selection and even design of input features correlated with melt pool development. Most

48-50

of existing data-driven melt pool modeling just build melt pool as a simple function of

common AM process parameters, typically laser power and scanning speed (Fig. 4a). Lee et al. *'
have adopted as many as 23 input features, including various process parameters and materials
parameters, to enhance data-driven melt pool modeling. However, those data-driven melt pool

modeling by incorporating simple input features, even broadly, cannot adequately account for the

complexity of AM process physics, including but not limited to layer-by-layer heat accumulation,

18



inter-track heating effect and, not less importantly, many aleatory uncertainties (i.e., natural
variabilities) present in AM process. Those factors can greatly complicate melt pool dynamics. In
this sense, more advanced input features, such as cumulative time- and distance-neighboring
effect factors > (Fig. 4b) as well as various layer-wise effect factors >*, have been designed to
improve the predictive accuracy. Wang et al. ** have also introduced five experimentally
calibrated uncertainty sources as inputs in the data-driven model and permits reasonable

prediction of melt pool fluctuations (Fig. 4c).

3.1.2 Data-driven modeling of bead

(a) - Bead width vs Scanning speed (b) Width I
< >

_______ ‘Deposited trace
1
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700 Substrate
] 10 20 30 40
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Fig. 5 Data-driven bead modeling. a A typical data-driven bead modeling that builds bead with
as a function of scanning speed >’. b Geometrical quantities of interest in data-driven bead
modeling, adapted from . Data-driven bead modeling shares the same modeling philosophy and
similar modeling quantities with data-driven melt pool modeling.

Another type of data-driven AM modeling very similar to melt pool modeling is the modeling of
bead geometry and size (Fig. 5a). Bead formation is a remarkable phenomenon especially in
extrusion/feeding/deposition-based AM. Melt pool and bead are highly relevant AM quantities,
both essentially concerned with the high-temperature molten part, but bead is just more related to
molten materials upon solidification. In fact, their geometrical characteristics, e.g., depth and
width between melt pool and bead, are sometimes not really distinguished *'~°. The only big
difference might be that solidification would give rise to a new geometrical quantity - bead height
(Fig. 5b), data-driven modeling of which is important for building precision control along z-axis

8. However, since the overall significance and philosophy of data-driven bead modeling are
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almost the same to that of data-driven melt pool modeling, this paper will not separately analyze

data-driven bead modeling in detail.

3.1.3 Data-driven modeling of process temperature

Data-driven thermal modeling of AM process is a more advanced data-driven process modeling.
It can give general thermal characteristics of AM process that includes melt pool informed by
high-temperature region. Temperature field formed during AM process is closely related to later
development of various structures across many scales and, in turn, largely dictate the properties of
final AM parts. Thermal modeling is thus of fundamental importance as a starting point of

exploring P-S-P relationship, as evidenced by many multi-stage AM studies of dendrite structure

96,97 98,99

, grain structure ***°, porosity '® and mechanical property °'.
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Fig. 6 Data-driven thermal modeling. a Localized data-driven thermal modeling of maximum
temperature under the beam *°. b Another type of localized data-driven thermal modeling that
allows for modeling the real-time temperature or thermal history for any spatial point/node in the
component . ¢ Field-level data-driven thermal modeling by using singular value decomposition
(SVD) for dimension reduction of original 3D temperature field, followed by data-driven

modeling in the latent space ¥.
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However, unlike data-driven melt pool modeling, data-driven modeling of temperature field is
challenging due to its high-dimensional nature. In light of this difficulty, a widely adopted
strategy is data-driven thermal modeling of local temperature, instead of the entire temperature
field. There exists two such types of data-driven thermal models. The first type focus on a
specific, local thermal quantity like peak temperature within the current heating zone (Fig. 6a) >
or melt pool boundary®. The second type is general to all spatial points; that is, the modeling
subject is the real-time temperature or thermal history for any given point within the building ®'-%
(Fig. 6b). In this way temperature field can be implicitly obtained by aggregating separate

63, Besides the mainstream point-/voxel-level data-driven

modeling results of many points
thermal modeling, Wang et al. * have utilized dimension reduction technique - singular value
decomposition (SVD), thus facilitating the data-driven modeling of the entire 3D temperature
field in the latent space (Fig. 6¢). But the above SVD-assisted approach is limited to data-driven

modeling of temperature field with predefined dimensions and, therefore, focus only on a cuboid

of high-temperature part in their work.

3.1.4 Other data-driven process modeling
Other relatively less studied data-driven process modeling include modeling of powder spreading

behavior (measured in powder bed surface roughness '%?

or represented by six categorical
anomalies '®) and thermal stress field developed in AM process '**. Apart from powder- and
wire-based 3D printing, data-driven methods have been also used in other printing techniques
such as the inkjet-based printing. In inkjet-based AM, a special and important process
phenomenon is droplet formation determined by the fluid flow pattern, which is critical to
printing quality. Wu and Xu '® developed a supervised data-driven method to predict droplet
formation process including droplet volume and velocity based on the AM process parameters

(e.g., polymer concentration, dwell time, rise time, and excitation voltage) in the inkjet-based

printing process. The proposed method was able to predict droplet volume and velocity in high
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accuracy. Data-driven method has been also applied to achieve the in-situ process optimization
of the process parameters in the inkjet-based printing through a neural network based PID control

system '%.

3.2 Data-driven structure modeling

3.2.1 Data-driven modeling of grain structure

Data-driven modeling of grain structure is of particular significance for AM process, since
complex and unconventional grain structure is one of the signatures of AM-fabricated
components '”’. Grain structure development within AM part has always been an active research
topic in AM community '*®. Data-driven grain structure modeling will greatly benefit process

plan for tailoring grain structure within AM parts.
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Fig. 7 Data-driven grain structure modeling. a Data-driven grain structure modeling that builds
microstructure described by mean and variance of grain aspect ratio, 4. and m,,, as a function of

various input features, such as AM manufacturing conditions and AM materials properties '*. b
Data-driven grain structure modeling that chooses to describe complex microstructure using
principal component (PC) scores of PC analysis on grain chord length distribution ®. ¢ ML model
allows for extraction of highly abstract yet informative features from microstructure through
representation learning ''’. d GAN allows for direct generation and prediction of microstructure
image for a given condition ''".

In contrast with many physics-based modeling and experimental efforts, data-driven grain
structure modeling has been surprisingly little explored. Wang et al.'” have built the formed
grain structure, described by the mean and variance of grain aspect ratio, as a function of AM
process conditions and other input features (Fig. 7a). Similarly, Popova et al. ® have correlated

grain structure, but quantitatively represented by principal component (PC) scores of PC analysis
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on grain chord length distribution, with various AM process parameters (Fig. 7b). From the few
related researches, it can be seen that data-driven grain structure modeling is still at its early stage,
focusing on building mapping between simple microstructure descriptors and input features. This
dilemma may be attributed to grain structure as a high-dimensional quantity like temperature field,
making explicit modeling of real grain structure difficult. In addition, while the temperature field
developed in AM process usually show a tear-drop shape and regular pattern, grain structure is
stochastic by nature, thus further preventing the development of advanced data-driven grain

structure modeling in AM.

Although related study in AM is scarce, here we would like to provide a glimpse of data-driven
grain structure modeling from a wider viewpoint of materials science. In fact, microstructure
representation and featurization has long been of great interest in materials community. Early
efforts of materials scientist were centered on hand-designing physical and statistical descriptors
for various microstructures ''2, as did the above AM grain structure modeling. In recent years,
ML models, especially CNNs, have substantially advanced representation modeling of

microstructure '3,

It allows for automatic learning of high-level, abstract features of
microstructure (Fig. 7¢). Those microstructure representation modeling may be adapted to AM
grain structures for extracting more informative and representative microstructure features, thus
enabling data-driven construction of high-fidelity process-structure relationship by improving the
structure side. Of most relevance, Akshay et al.'"' have even proposed a GAN conditioned on
processing conditions - cooling method in processing ultrahigh carbon steel (UHCS) (Fig. 7d).
The proposed ML model can directly build process-structure linkage by permitting generation of
UHCS microstructure images for given cooling method. Tang et al. ''* has further developed a

similar GAN-based approach by conditioning it on numerical conditions, instead of categorical

conditions. Although they are not proposed specifically for AM process, but would undoubtedly
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shed light on data-driven prediction of image-based grain structure under different process

conditions in AM.

3.2.2 Data-driven modeling of porosity

Besides grain structure, porosity is another important structural feature of AM-fabricated
components. Depending on AM process conditions, various types of porosity can be developed
for as-built AM parts, such as lack-of-fusion by insufficient melting ''°, keyhole by strong metal
evaporation ''®, and surface open pore by complex fluid dynamics °, etc. Porosity modeling might
be particularly valuable for the selective laser sintering (SLS), a type of AM process featuring
sintering mechanisms for binding raw materials. Unlike laser melting, sintering-based binding is a
mild process with insignificant melting and solidification phenomenon, which makes porous
structure the prominent feature of SLS components ''7. A data-driven modeling capability of
porosity development is necessitated to facilitate process control for not only successfully
producing fully-dense parts, but also intentionally fabricating porous structure with desired

biocompatibility and permeability %!,
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Fig. 8 Data-driven porosity modeling. a A common data-driven porosity modeling that builds
porosity simply as a function of manufacturing parameters (i.e., laser power and speed), based on
porosity data obtained under different manufacturing conditions . b A hybrid CNN and RNN
model permits data-driven prediction of porous component by using pyrometer image and IR
sequence as inputs “6. ¢ A multi-input CNN enables ultra-fast data-driven simulation of structural
evolution and development of porosity for any given manufacturing condition ”*.
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Data-driven porosity modeling has been more widely studied than data-driven grain structure
modeling in AM. The majority of them concentrate on correlating porosity represented in simple
porosity-related metrics, typically density *¢"° or relative density **%, with different AM
process parameters (Fig. 8a). The basic idea behind those researches is thus analogous to that of
existing data-driven grain structure modeling in AM as aforementioned. Aside from that, there
are a few more interesting attempts. Tian et al. *° have selected some special and complex input
features, including pyrometry images and sequential images from infrared camera during AM
process, to data-driven predict layer-wise porosity (Fig. 8b) and Imani et al. * have taken layer-
wise surface images from DSLR camera as inputs. Most recently, Wang et al.”” have proposed a
multi-input CNN for data-driven modeling of structural and morphological evolution of porosity
structure for SLS process, based on the input structure of as-deposited powder bed and input
parameters of applied laser (Fig. 8c). They have also showed that the proposed data-driven

approach permits component-level SLS porosity simulation in minutes.

3.2.3 Data-driven modeling of geometric distortion

Data-driven modeling of geometric distortion is targeted at external shape of AM parts, from
mesoscale cross-sectional shape of struts ® to macroscopic shape of the whole component .
Geometrical distortion and dimensional inaccuracy can stem from internal stress associated with

120

the complex thermal behavior of AM process '%°, insufficient support for overhangs ’°, limited

printing resolution of AM machine "

and inaccurate representation by .stl file (e.g.,
approximation of curvilinear surface by a mesh of triangles) '*!. They lead to deviation between

designed and fabricated geometry/shape. Accurate modeling of geometric distortion is critical for

correct compensation of geometrical deviation in the computer-aided design (CAD) phase.
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Data-driven modeling of geometric distortion might be the most developed data-driven AM

modeling. For example, unlike data-driven grain structure or porosity modeling, the bulk of

28



existing data-driven modeling of geometrical distortion focus on the real geometry’76-8! rather
than dealing with some simple deviation descriptors (e.g., percentage of shrinkage/expansion”).
Also, some novel data-driven modeling methodologies based on CNN have been proposed for
explicitly handling the 2D or even 3D component geometry. Most of existing data-driven
modeling may be categorized into two groups. The first group adopted localized modeling of
points that form the geometry/shape. For instance, Chowdhury et al. ' have attempted to
correlate Cartesian coordinates of nodes between the designed and actual model (Fig. 9a).
However, a preferred way in this group is to describe points and thus their deviation in polar
coordinate system (PCS) "*"8 which facilitates the modeling of complicated deviation mainly as a
function of the polar angle (Fig. 9b). The second group mainly leverages CNN for direct data-

driven modeling of the whole shape "*°

, thus usually enjoying better generalization to various
shapes. The core principle behind them is to use image-to-image regression capability of some

CNNs, namely those with an encoder-decoder structure, where encoder reads original shape and

decoder reconstructs encoding results to the shape after distortion (Fig. 9c).

3.2.4 Other data-driven structure modeling
There are also some other types of data-driven structure modeling in literature, including surface

37123 and dendrite structure (arm space) modeling '**. Although they

structure/roughness modeling
have not been widely studied yet, data-driven modeling of those structures is of same importance.
Besides the above two, other structures, such as sub-grain microstructure and texture associated
with solid-state phase transformation >, seem to have been even less studied. In part this may be
attributed to the difficulty in acquiring related data. On the other hand, these AM quantities may

have usually been less focused in AM field, even in physics-based modeling or experiment based

AM researches.
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3.3 Data-driven property modeling

3.3.1 Data-driven modeling of mechanical properties

Stress-strain curve is an informative representation of mechanical property, revealing many scalar
properties, such as yield strength, Young’s modulus, stiffness, etc. Due to the complex
characteristics of stress-strain curve, the bulk of existing data-drive property modeling in AM is
centered on those specific scalar properties. Methodologically, data-driven modeling of them are
quite similar. They are thus collectively reviewed as data-driven modeling of mechanical

properties in this subsection.
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Fig. 10 Data driven modeling of mechanical properties. a Data-driven property modeling that
builds process-property (P-P) linkage . b-¢ Data-driven property modeling that builds structure-
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property (S-P) linkages by using microstructural descriptors (i.e., mean equiaxed alpha size,
volume fraction of equiaxed alphas) ** and real microstructure ** as inputs, respectively.

The two most widely studied scalar properties in existing data-driven property modeling are
ultimate strength and yield strength. Data-driven modeling of different mechanical properties can
be divided into two groups based on the type of input features. The first group directly links AM

84-88

process (parameters) to properties by skipping the structure stage , thus essentially building

the process-property (P-P) linkage (Fig. 10a). The second group instead builds structure-property

(S-P) linkage by using structure as input *48%

, and can be more challenging by involving the
complex quantity of structure. Among them, some have simplified the modeling problem by
using quantitative descriptors to represent structure *>** (Fig. 10b), as usually does the data-driven
modeling of AM structure; some other data-driven S-P modeling **'?® have however adopted

CNN to explicitly read and process grain structure, and successfully built the relationship

between image-based structure and scalar properties (Fig. 10c).

3.3.2 Data-driven modeling of stress-strain curves

As mentioned, it is known that stress-strain curve is a more general representation of mechanical
property, indicating many basic properties of a materials. Data-driven modeling of stress-strain
curve is thus of prime importance in data-driven property modeling in AM and even materials

science.
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Fig. 11 Data-driven stress-strain curve modeling. a-b Step-wise data-driven modeling of
stress-strain curve, where uniform elongation ** and true strain *> were respectively used as step
indicator. The stress-strain curve was obtained by combining discrete predictions at different step
input. ¢ Data-driven modeling of the stress-strain curve as a whole, where principal component
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analysis (PCA) was utilized to reduce the dimension of original stress-strain curve *°. It is also
noteworthy that 2D image-based structure was just used as the input with the assistance of CNN.

In spite of its major significance, data-driven modeling of stress-strain curve in AM has been
rather limitedly studied. Wang et al. * have proposed to use SVD to reduce dimension of stress-
strain curve, followed by data-driven stress-strain curve modeling in the latent space. However, in
other fields there are indeed many research efforts on this theme, and those data-driven modeling
methodologies can be easily extended to AM. Most of those researches *'* adopted a step-wise
modeling method, namely building real-time mechanical response as a function of input features
(Fig. 11a-b). In this case, elongation or strain as a time-step indicator has to be included as an
input. The entire stress-strain curve is then obtained from a series of separate predictions at
different time-step inputs, i.e., discrete points in Fig. 1la-b. In addition to step-wise method,
Yang et al. *° have used principal component analysis (PCA) for dimension reduction and
facilitated data-driven modeling of stress-strain curve as a whole (Fig. 11c). This idea is similar to
the above-mentioned SVD-based approach, but they have further integrated CNN for
microstructure representation modeling, instead of using structural descriptors as input features of

the data-driven structure-property model.

3.3.3 Other data-driven property modeling

Other existing data-driven property modeling in AM includes data-driven modeling of fatigue life

12

127 dynamic properties including storage compliance and loss compliance ', maximum stress

129

development and even full-field strain development '*°. There is also other data-driven

property modeling, which is not performed for but readily extendable to AM-fabricated materials

and components, such as data-driven modeling of fatigue crack development '

, stress hotspot
formation '** and full-field stress response '**. Like many underexplored quantities in data-driven
structure modeling, those properties are worth more attention from AM researchers. For instance,

maximum stress and even stress hotspot development are important to study considering the main

application of AM for fabricating complex structures with intricate geometry, wherein stress
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concentration and caused fracture may be an outstanding issue. A data-driven modeling
capability is thus of immense help for optimizing structure design and improving service lifetime

of AM parts.

4. Future directions and conclusion
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Fig. 12 Potential future research directions for further advancing data-driven AM modeling.
a Building professional AM database with easy access will greatly advance data-driven AM
modeling by improving data efficiency. b Using hybrid experimental and simulation will enable
to build trustworthy data-driven AM models at minimal cost. ¢ In future, more attention can be
paid to data-driven modeling of those less studied AM quantities. d The distinct capability of
machine learning (ML) in explicitly handling high-dimensional and complex data will open
enormous opportunities for advanced data-driven AM modeling. e ML-assisted data collection,
processing and acquisition in Step 1 will hugely benefit data-driven modeling by improving both
the quality and quantity of data. f Physics-informed ML will potentially revolutionize data-driven
modeling by alleviating its dependence on AM data, with the incorporation of physical
knowledge into ML model.

4.1 Data sharing and reusage
In future, fostering data-sharing culture and increasing data reusage will be critical for
substantially advancing data-driven AM modeling from the data perspective. Data sharing and
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reusage is a common issue extensively implied in data-driven studies across many scientific
domains, from geoscience '® to agriculture '** and materials science '**. Establishing professional
database with easy access and building supportive data infrastructure have thus been widely
recognized, enabling to greatly improve data efficiency (Fig. 12a). This has been proved in
computer science (CS) field, where the constant improvement of different ML techniques has
greatly relied on many known datasets, from the early MNIST dataset of handwritten digit '*° to
the more recent ImageNet dataset of diverse visual objects '*’. Those large datasets are well
curated, easily accessible and commonly used by CS community, providing standardized
benchmarks for transparent comparison and accelerated evolvement of ML algorithms.
Researchers are able to spend maximum efforts on developing and advancing data-driven
modeling itself without data worry. In terms of AM, AM-Bench by National Institute of
Standards and Technology (NIST) "** seems to be the only relevant project, which aims to
provides highly controlled AM benchmark P-S-P data with permanent public access. On the other
hand, with the ever-increasing interest in data-driven AM studies, an abundance of AM data is
actually generated every day. There is however currently still a lack of satisfactory practices that
archive and manage them in a unified way. This largely prevents the reusage of those scholarly

AM data and maximization of their value.

4.2 Hybrid data-based data-driven AM modeling

Using hybrid data possibly allows for defeating respective drawback of data-driven modeling
based solely on simulation data or experimental data (Fig. 12b). That is, physic-based modeling is
usually inexpensive compared to experiments, but can only take into account partial physics in
practice and thus provide imperfect data. Experiments, on the contrary, offers more practical and
reliable data, yet at greater expense. Some researchers >***'* have thus advocated the hybrid-data
schema to build high-reliability data-driven AM model at minimal cost. In the few related studies,

they first build a primitive data-driven model based on simulation data, followed by incorporating

35



and experimentally calibrating a discrepancy term to describe the bias between physical
simulation and practice. Nonetheless, the efficacy and feasibility of hybrid-data strategy are still
subject to further verification, not only through a more detailed and clearer comparison with those
based purely on theoretical or experimental data, but also in various data-driven AM modeling
scenarios. In near future, using hybrid data might be the optimal way to economically build fully

trustworthy data-driven AM models for practical use.

4.3 Underexplored AM quantities of interest

Based on the current review, it seems that some AM quantities related to structure and property
are limitedly studied (e.g., grain structure, stress-strain curve) or even completely unexplored
(e.g., sub-grain structure) in existing data-driven AM modeling. For some of them, such as grain
structure and stress-strain curve, the complex quantity involved greatly impedes the development
of those data-driven modeling. However, as indicated by the early analysis, one can often find
related data-driven modeling researches in other fields than AM. The advanced data-driven
modeling methodologies developed therein can be borrowed to facilitate data-driven AM
modeling in future. However, for some other AM quantities, the root reason of their little-to-no
exploration may stem largely from the difficulty in obtaining (sufficient) related data. To
overcome this situation, the further advancement of related experimental instrumentations and
physical models are critical. In brief, special care can be taken for those underexplored and

underdeveloped areas in future data-driven AM modeling (Fig. 12c).

4.4 Machine learning enabled advanced data-driven modeling

Among various ML techniques, MLP is the most frequently used one. Much of existing data-
driven AM modeling basically falls within or is purposely simplified to common regression
analysis. One of the most distinct advantages of ML models, the capability of explicitly handling
high-dimensional and complex data, such as CNN for image-type data and RNN for sequences, is

sometimes neglected. For example, for data-driven grain structure modeling, what one nowadays
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does is usually using ML to build simple microstructure descriptors as a function of different AM
process parameters. Under this circumstance, it poses an intriguing question - can we make
deeper use of ML model to realistically predict structural/morphological development and even
dynamic evolution of grain structure (as does a physical model)? For instance, in fluid
community, different CNNs with encoder-decoder architecture'*'*?, CNN+RNN'*!* and
GAN'® have been used for modeling the evolution and development of flow fields. In solid
mechanics modeling, CNN '* and GAN ' can accurately predict the stress field developed for
given solid structure and loading condition. Admittedly, ML is now serving as the main
workhorse in various AM data-driven modeling. However, many capable ML models are
overlooked for some data-driven AM modeling within their specialties. Therefore, a more general
question raised herein is - in face of high-dimensional and complex AM quantities, which are not
uncommon scenarios in data-driven AM modeling, can we take more real advantage of those

powerful ML techniques (Fig. 12d)?

4.5 Machine learning assisted data improvement

The whole workflow of a data-driven modeling effort actually includes two main steps — data
obtainment and data-driven modeling (Fig. 12¢). Acquiring a large quantity of high-quality data
would be excellent for any type of data-driven modeling. Existing data-driven AM modeling
often uses ML model purely as a data-driven relationship modeling tool, while largely ignoring
its multi-functionalities and thus enormous potential for improving data in data-obtainment step.
For instance, AM data of experimental images are sometimes not ideal (e.g., noisy and blurry),
requiring further processing that is too laborious for human, whereas image processing for
various purposes are specialized areas of CNNs and GANs. Also, NLP techniques have shown
great potential in information extraction, for example, from literature (including tables, figures,
and textual paragraphs) '**!* and medical records '*. Similarly, NLP techniques may be used to

collect useful AM data from their unstructured form in the voluminous AM literature and other
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digitalized resources. Ma et al. '*' have used GAN for data augmentation by synthesizing
experimental images of grain structures. All of those facts show the tremendous usability and
versatility of ML in improving the quality and quantity of data. To authors’ best knowledge, there
is however only one related work'>?, where a CNN-based detection module replaced human to
classify local flaws in AM parts and thus effortlessly create required data for further data-driven
predictive modeling of local flaws. In short, a valuable research direction implied herein is - can
we use ML in a more versatile way, and enhance data-driven AM modeling from the pre-data-
driven-modeling aspect, i.e., improving data via ML-assisted data collection, processing and

acquisition?

4.6 Small data and physics-informed machine learning

Simulation-derived and experimental datasets in AM are usually limited in size and expensive to
be collected. Additionally, training datasets have to be recollected for traditional machine
learning methods regarding the new manufacturing conditions such as new geometries, materials,
and printing techniques since the feature distribution changes '*. It is critical for data-driven
methods to achieve high prediction accuracy when available datasets are small. Transfer learning,
which leverages the knowledge from a related task (in the source domain) to facilitate a new task
(in the target domain), can be utilized when the feature distribution shifts and training datasets are
deficient '**. Cheng et al. '*° proposed a hybrid transfer learning framework to predict the in-plane
shape deviation of new geometries based on the knowledge from a small number of known
geometries. Sabbaghi and Huang'*® developed a transfer learning model to predict the in-plane
shape deviations of a new stereolithography process based on the knowledge learned from a
previous stereolithography process with limited experimental datasets. Although previous studies
demonstrated that transfer learning is effective to predict shape deviation across distinct processes
and geometries, more studies are still needed to be extended to the other fields in AM, e.g.,

learning the knowledge from one material having a large amount of training data to predict the
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properties of another material having limited training data. Moreover, data-driven models which
can transfer the knowledge among process, structure, and property in AM have not been fully

developed when training data is limited.

In addition to transfer learning, physics-informed machine learning'>’ (PIML) especially holds
the promise of reducing, or even completely obviating'**'%, the need for training data (Fig. 12f),
while improving the generalization and robustness of the trained model. This is done through
incorporating prior knowledge and physical laws into the otherwise purely data-driven model.
Specifically, Guo et al. '® have summarizes five types of PIMLs, namely physics-informed
model inputs (PIMI), physics-informed model training (PIMT), physics-informed model
components (PIMC), physics-informed model architecture (PIMA), and physics-informed model
output (PIMO). That said, the prevalent way to impose physics constraint might be formulating
physical governing equations into loss function'®' (i.e., the foregoing PIMT). In this case, the
prediction of data-driven model would be penalized by its violation of physical laws. The model
training is thus guided directly and sometimes completely by the physical principles, thereby
potentially free from any training data. As a transformative modeling technique, there is an
explosive application of PIML across various fields in last few years'>’. However, PIML in AM is

1162—165 and

still at its infancy, with only a handful of relevant research efforts on PIM
PIMT!'¢3166.167 " physics-informed ML is anticipated to play a revolutionary role in future data-

driven AM modeling, by eliminating its dependence on intensive AM data yet without sacrifice

of modeling accuracy.

In conclusion, this paper has systematically reviewed the existing data-driven modeling with
respect to different AM quantities of interest along process-structure-property chain. It provides a
summary of basic information of existing data-driven AM modeling, as well a further analysis on
relevant progress made so far. Promising research directions in future are also discussed in detail,

which are associated with improving not only data-driven modeling itself but also AM data.
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Particularly, many capable ML models possess unparalleled regression power especially in
explicitly handling high-dimensional and complex data, as well as much other versatility. They
are expected to significantly improve data-driven AM modeling in future, from perspectives of
both AM data obtainment and data-driven modeling methodology. In addition, the burgeoning
physics-informed ML even has the potential to completely transform data-driven AM modeling,

by alleviating or fully obviating the need for AM data.
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