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Abstract 

A thorough understanding of the complex process-structure-property (P-S-P) relationship in 

additive manufacturing (AM) has long been pursued, due to its paramount importance in 

achieving AM process optimization and quality control. The physical modeling and experimental 

approaches are usually time-consuming and/or costly. With the increasing availability of digital 

AM data and rapid development of data-driven modeling techniques, especially machine learning 

(ML), data-driven AM modeling is emerging as an effective approach towards this end. It allows 

for automatic exploration of pattern and trend in the data, construction of quantitative P-S-P 

relationship over the parameter space and prediction at unseen points without having to perform 

new physical modeling or experiments. A proliferation of researches on data-driven modeling of 

process, structure and property in AM have been witnessed in recent years. In this context, this 

paper aims to provide a systematic review of existing data-driven AM modeling with respect to 

different quantities of interest (QoI) along the process-structure-property chain. Specifically, this 

paper offers a summary of important information (i.e., input features, QoI-related output, data 

source and data-driven model used) of existing data-driven AM modeling, as well as an in-depth 

analysis on relevant success achieved so far. Based on the comprehensive review, this paper also 

critically discusses the major limitations faced today and brings up some research directions that 

are promising for significantly advancing data-driven AM modeling tomorrow. 

Keywords: Data-driven modeling, Machine Learning, Additive Manufacturing, Process-

structure-property. 
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1. Introduction 

Additive manufacturing (AM) 1-3, which builds a part directly from a 3D CAD model in a layer-

by-layer manner, can fabricate components with complex geometry in a time- and cost-saving 

manner, which makes it potent and increasingly used in many industries. While the unique layer-

wise building endows AM unrivaled manufacturing capabilities, those benefits come at the cost 

of complicated AM process and miscellaneous physics involved. A plethora of complex physical 

events, of which some 4-7 rarely occur in conventional manufacturing process, exist at different 

stages of AM process. This would result in extremely non-linear and complex process-structure-

property (P-S-P) relationship 8. Meanwhile, (multi-)physical AM modeling and AM experiment 

are notoriously time-consuming and/or costly. Those two facts pose great challenges in fully 

exploring and understanding AM P-S-P linkage that, however, is vital to efficient AM process 

optimization and quality control. 

In the context of the fourth research paradigm of data-intensive discovery 9, research 

methodologies across science and engineering have seen a shift to data-driven and informatics 

approaches. This is in part due to the increasing availability of digital scientific data or data 

deluge 10, both theoretical and experimental, with the fast advancement of computational power 

and experimental instrumentation. On the other hand, with the revival of artificial intelligence (AI) 

researches from AI winter 11, the rapid development of machine learning (ML), a disruptive data-

driven modeling technique, has especially accelerated such paradigm shift sweeping through 

many scientific disciplines 12-18. It should be stressed that, although becoming more and more 

popular, data-driven modeling is not a standalone approach and, instead, augments physics-based 

modeling and experiments by making best use of the generated data thereof. Specifically, data-

driven modeling can have different types for diagnostic, descriptive, predictive and prescriptive 

purposes, respectively 19,20.  



Among others, additive manufacturing (AM) is arguably one of the most affected domains in the 

age of data. For example, data-driven model has appeared frequently as a key building block of 

various AM design and management frameworks/strategies, such as design for additive 

manufacturing (DfAM) 21,22, digital twin (DT) for AM 23,24, smart additive manufacturing 25, cloud 

additive manufacturing 26. While applications of data-driven model in AM are diverse, data-

driven predictive modeling is especially useful for studying P-S-P relationship in AM. It usually 

discovers the P-S-P relationship in a mathematical form (or the predictive function) via regression 

analysis. More specifically, data-driven predictive modeling allows for automatic exploration of 

pattern and trend in the AM data, construction of P-S-P relationship over the parameter space and 

prediction at unseen points without having to perform new physics-based modeling or 

experiments. This data-driven attempt of training a cheap relationship model to replace original 

physics-based modeling or experiment is sometimes also called surrogate modeling or 

metamodeling 27. Such a data-driven modeling approach is crucial for achieving AM process 

optimization based on a complete, quantitative understanding of P-S-P relationship. AM 

community has witnessed an upsurge of data-driven AM researches on this topic and produced a 

wealth of relevant literature.   

Although existing related review efforts 28-35, more or less, touched those literature, they usually 

focus neither specifically nor fully on the topic of data-driven modeling of P-S-P relationships. 

Most of those reviews cover the comprehensive applications of data-driven modeling techniques 

and ML in AM. They thus have quite different emphasis from this review. For example, the 

review paper by Wang et al. 28 is organized based on existing applications of ML for AM design, 

AM production, and AM process. The review by Razvi et al. 29 is focused on four applications - 

AM design, process and performance optimization, in-situ monitoring and control, and AM part 

inspection and validation. Similarly, the survey by Jin et al. 30 concentrates on geometrical design, 

process parameter configuration, and in-situ anomaly detection. Baumann et al. 31 focuses on 



process control, process monitoring, and quality enhancement of manufactured objects and so on. 

Goh et al. 32 have broadly reviewed applications of ML in AM including design for 3D printing, 

process optimization, in-situ monitoring, cloud 3D printing, and even security of attach detection. 

Therefore, the specific topic of data-driven predictive modeling of P-S-P relationships has not 

been explicitly addressed in those reviews. While the reviews by Qi et al.33, Kouraytem et al. 34 

and Meng et al.35 have clearly surveyed existing data-driven modeling of P-S-P relationships, this 

topic constitutes only a portion of the entire article in their reviews. In conclusion, a systematic 

and fine-grained review exclusively devoted to the important topic of data-driven modeling of 

process, structure and property in AM (simply referred to as data-driven AM modeling 

hereinafter) is still absent. 

To fill this gap, this paper provides an extensive review and detailed analysis of existing 

researches on data-driven modeling of process, structure and property in metal, polymer, 

ceramics and composite-based AM. For a systematic review, this research classifies concerned 

data-driven AM modeling into three categories - process modeling, structure modeling and 

property modeling (Fig. 1). The three main categories are further subdivided based on the detailed 

modeling quantity of interest or output of data-driven modeling. More specifically, process 

modeling broadly involves modeling of AM machine activities and its thermal and physical 

interactions with AM building during manufacturing process. Typical process modeling is 

thermally related modeling, e.g., modeling of process temperature development and melt pool 

formation; structure modeling precisely refers to those modeling interested in various structures 

across multiple scales, ranging from microstructures to mesoscale geometries and macroscopic 

shapes; property modeling includes modeling of different mechanical properties of AM-

fabricated parts.  

In this paper, the review and analysis of those different types of data-driven AM modeling will 

contain three main parts: 1) tabulated summary that gives a quick overview of existing data-



driven AM modeling; see Table 1, 2 and 3 for data-driven process, structure and property 

modeling respectively. We summarize basic information of existing data-driven AM modeling, 

namely the four components - input features, QoI-related output and data-driven model used to 

link them, as well as the data source. Note that, data source (simulation or experiment) largely 

implies if the related data-driven modeling is more in the stage of proof-of-concept or rather 

practically significant. Besides the four components, data-driven modeling result is briefly 

summarized in the table, in terms of predictive accuracy or error. It gives readers a general sense 

of the performance of existing data-driven models and may provide baselines for future studies. 2) 

further analysis that provides deeper insights into existing data-driven AM modeling; see 

subsections of Data-driven Process Modeling, Data-driven Structure Modeling and Data-driven 

Property Modeling. In those three subsections, we further analyze in depth the success achieved 

by existing researches. 3) detailed discussion that offers guidance on future data-driven AM 

modeling; see Future Directions section. Based on the two review parts, we finally discuss major 

limitations faced today and raise some promising research directions for significantly advancing 

data-driven AM modeling tomorrow. 

 



Fig. 1 Schematic illustration of data-driven AM modeling. Data-driven AM modeling usually 

consists of four basic components - input features, quantity of interest (output) and data-driven 

model used to link them, as well as the data source that fuels data-driven modeling. Note that, this 

review divides data-driven AM modeling into three groups - data-driven process modeling, 

structure modeling and property modeling, according to the modeling quantity of interest or 

output of data-driven modeling. 

2. Data-driven model 

2.1 Common data-driven models in AM 

 

Fig. 2 Frequency of common data-driven models used in different data-driven AM 

modeling. Even for a certain data-driven AM modeling, researchers may use quite different data-

driven models. 

This subsection gives a brief introduction to those common data-driven AM models involved in 

this review. Readers interested in more detail are referred to related references in this paper; see 

Table 1-3 as a guide. Additionally, Fig. 2 summarizes the frequency of those different data-driven 

models used in previous researches. It may serve as a quick reference for model selection or 

model novelty evaluation against existing ones in future studies.  



1. Polynomial Regression (PR): PR is a rudimentary data-driven modeling technique by using 

the polynomial function. PR is easy to implement but usually limited to approximating simple 

or moderately complex relationship.  

2. Genetic Programming (GP): GP and its variants are based on combining a more varied set 

of essential elements and functions, such as arithmetic operators (+, −, , ), non-linear 

functions (sin, cos, tan etc.) and/or Boolean operators. The satisfactory structure and 

parameters of GP model are iteratively found through genetic operations on a population of 

initial configurations. GP is thus a more flexible data-driven modeling technique, but the 

proper setup of GP model (e.g., genetic operation details) requires much expert knowledge. 

3. Gaussian Process Regression (GPR): GPR is instead a “non-parametric” (i.e., without a 

rigid regression model) and more universal approximation method. The input-response 

relationship is formulated within covariance kernel. GPR has the outstanding capability of 

measuring uncertainty on the prediction, as GPR essentially considers the whole data as a 

sample from a multivariate Gaussian distribution and therefore the prediction as a conditional 

distribution. GPR would become painfully slow in face of large dataset, as whole samples or 

features information are used to perform the prediction. Note that in the literature, Gaussian 

process regression is often called GP for short. To avoid confusion with genetic programming, 

we refer to Gaussian process regression as GPR throughout this article. 

4. Decision Tree (DT): DT for either classification or regression is conducted by recursively 

and discriminatingly partitioning data into branches until sufficiency or user-defined depth. 

DT is easy to understand and known as a white box. It does not require much data preparation 

such as data normalization, dummy variables creation and can handle both numerical and 

categorical data. To mitigate the overfitting issue of deep DT, a common practice is to use 

ensemble of decision trees i.e., Random Forests (RF), which randomly selects observations 

and features to build several decision trees and then averages the results.  



5. Support Vector Machine (SVM): SVM for regression analysis is a close variant of 

classification-purposed SVM. They follow similar principles to use Kernel trick to transform 

data into a more amenable high-dimensional space, which then permits simply finding a N-

dimensional hyperplane that has best fit to all data points. Contrary to the intuitive DT, SVM 

is more difficult to interpret as a black-box model.  

6. Multilayer Perceptron (MLP): MLP as the classical type of neural network consists of 

multiple layers of fully connected neurons, which include input layer, hidden layer(s), and 

output layer. MLP can learn a mapping from inputs to outputs of tabular datasets. For other 

types of data such as images and words of document, they have to be converted to one long 

row of data as the input, which however usually results in a parameter-intensive MLP with 

inferior performance.  

7. Convolutional Neural Networks (CNNs): CNNs on the other hand were designed to make 

predictions by directly using image data as an input.  More generally, CNNs perform well on 

array data that has a spatial relationship, because they can develop an internal representation 

of both one-dimensional sequence and high-dimensional matrix by using stacks of 

convolutional layers to extract salient patterns. However, CNNs usually demand large 

amounts of training data. 

8. Generative Adversarial Networks (GANs): GANs as another important image-based neural 

networks are significantly promising deep learning models. GAN and its variants can 

generate sharp images from latent variables and/or conditional information, and the 

distribution of generated samples usually matches the true data distribution well. Especially, 

they can be employed to generate deterministic results when complicated conditional 

information is provided. This fact brings them huge potential in a wide range of engineering 

applications, including microstructure reconstruction, microstructure synthesis and image-

based microstructure prediction.  



9. Recurrent Neural Networks (RNNs): RNNs were designed to handle sequential data, by 

permitting output from previous step to be fed to the current step during processing long 

sequences. RNNs perform well on processing and predicting sequences with even variable 

length, e.g., words and spoken language in natural language processing (NLP) applications. 

However, the looping structure of RNNs for dealing with sequences can increase training 

complexity due to the more complicated signal movements. Long short-term memory (LSTM) 

36, which can learn the very long dependence in sequences, is the most commonly used RNN 

variant in data-driven AM modeling currently. 

2.2 Model selection 

Selecting the suitable data-driven models is an essential step towards successful data-driven AM 

modeling. However, as shown in Fig. 2, different research groups adopted different data-driven 

models even for the same data-driven AM modeling problem (up to 7 in data-driven modeling of 

mechanical properties). In part, this is attributable to different simplification and formulation of a 

data-driven modeling problem. For instance, the detailed modeling quantity of data-driven 

porosity modeling could be simple porosity percentage or real porosity structure; see Table 2. 

Also, different researchers may be interested in using distinct input features. On the other hand, 

even for a well-specified data-driven AM modeling problem, e.g., building the relationship 

between the melt pool area and AM parameters in Table 1, there is still no widely accepted 

criterion for choosing the best data-driven model. Regarding this, one of the best strategies is 

ensemble learning 37,38, which use the weighted summation of predictions by data-driven models 

of different types to achieve better prediction accuracy than any constituent model. 



 

Fig. 3 Flowchart of the two-step model selection. 

While model selection is still an open research problem in AM, we introduce a general two-step 

model selection method for different problems in AM as a guideline. From previous practices, 

one can first narrow down data-driven models based on data involved in the data-driven modeling, 

followed by determining a suitable model according to the unique characteristics of different 

data-driven models and properties of the modeling problem; see flowchart in Fig. 3.  

For step 1, all the data-driven model candidates may be classified into two groups, based on their 

capability in tackling data of different types and complexities. The first group (PR, GP, GPR, DT, 

SVM, MLP) usually deals with scalar quantities and sometimes categorical/label data, while the 

second group (CNN, GAN, RNN, and CNN+RNN) handles more complex data (e.g., time series, 

image and video). For step 2, a proper data-driven model can be further determined depending on 

the model’s specialties and modeling problem. When only scalar and simple quantities are 

involved in the data-driven modeling, the modeling task lies more within conventional regression 



analysis. Generally, all of those six data-driven models would be useful, although MLP tends to 

be the first choice nowadays as reflected in Fig. 2. Meanwhile, as discussed in Subsection 2.1, 

those data-driven models also have their own characteristics in terms of friendliness to non-expert, 

interpretability, regression power, categorical prediction capability and so on. This may make a 

particular data-driven model favored in some special situations where those factors carry weight. 

Besides the above common data-driven AM modeling, AM modelers often encounter high-

dimensional and complex quantities, e.g., acoustic signal, thermal history curve, melt pool image 

and 3D temperature field. Those complex quantities can arise from the input feature, QoI output, 

or both sides. Sometimes the high-dimensional data might be further processed before performing 

data-driven modeling by using data dimension reduction techniques, such as singular value 

decomposition (SVD)39, principal component analysis (PCA)40, and GAN-based encoder41. 

Additionally, CNN, though not yet used for dimension reduction in AM-related applications, is 

effective in learning latent representations of high-dimensional data42,43. Dimension reduction will 

then transform the original modeling problem to the common regression analysis (i.e., left-hand 

side in Fig. 3) in the latent space. In other cases, some capable ML models are leveraged to 

directly deal with complex data. RNN is preferred when modeling time series and other 

sequences; GAN is usually selected for image (generation) modeling; CNN is able to handle 

images, 3D array (e.g., stacked images, video and 3D structure44), as well as long sequences (e.g., 

thermal history profile45). Furthermore, integration of CNN and RNN for processing image 

streams is also a common practice 46,47. 

 



Table 1 Summary of data-driven process modeling in AM 

Quantity of interest 

(QoI) 
Input features QoI-related output 

Data-

driven 

model 

Data source 

(Dataset size) 

Modeling 

results* 
Ref. 

Melt pool 

Laser power, scanning speed. Pool depth GPR Exp. (139)  

Simu. (26) 
MAPE = 10.91 m 

MAPE = 6 m** 

48 

Laser power, scanning speed. Pool depth GPR, DT Simu. (462) ReMSE = 3.6%*** 49 

Laser power, scanning speed. Remelting depth GPR Simu. (24) MAPE = 1.4 m 50 

Chemistry of powders, materials thermal property, 

powder bed information and laser parameters. 

Pool width, depth, area 

within substrate, 

height, area based on 

height 

RF, SVM, 

etc. 

Exp. (472) 

R2=0.75-0.9 

51 

Laser power, scanning speed, neighboring effect factors. Pool area PR Exp. (4,957) NRMSE = 0.08 52 

Laser power, scanning speed, neighboring effect factors, 

layer-wise effect factors. 

Pool area MLP Exp. (118,928) 
AREM = 12.21% 

53 

Laser power, scanning speed and five uncertainty sources. Pool length, width and 

depth 

GPR Exp. (7) 

Simu. (300) 

AREM = 

5.74/3.26/10.08% 

54 

Bead 

Laser parameters and feeding rate. 
Bead width, depth and 

height 
MLP Exp. (90) 

RMSE=0.59/0.53/0.14m

m 

55 

Laser processing parameters. Bead width PR Simu. (70) MAE = 0.2997 m 56 

Layer thickness, laser power and scanning speed. Bead width GP, MLP  Exp. (54) RMSE=65.53 m 57 

Power, speed, feeding rate. Bead height SVM Exp. (180) MSE = 2.89E-8 mm 58 

Process 

temperature 

Long-term, short-term memory descriptors and 

temperature feedback from previous step. 

Maximum temperature 

within heat-affected 

zone 

MLP Simu. (54,450) RMSE=108.87 C 

59 

Layer power, scan speed, layer index, time index, average 

height, average width. 

Maximum temperature 

within pool boundary 
LSTM Exp. (~17,000) RMSE = 20.1 C 

60 

Thermal and spatial information of the voxel and its 

neighboring elements. 

Thermal history of 

voxel 
DT Simu. (9.05E6) MAE  = 0.21 

61 

Tool-path feature, time of deposition, location 

information of the point, etc. 

Thermal history of 

point 
RNN Simu. (>2.5E5) MSE = 3.84e-5 

62 

A set of relative distances from the cooling surfaces & the 

heat sources and a set of deposition times influencing 

thermal behavior. 

Thermal history of 

point MLP Simu. (2.6E5) NRMSE <  2% 

63 

Printing settings, index variables and calibration 

parameters. 

Layer-to-layer thermal 

field 
GPR 

Simu. & Exp. 

(N/A****) 
RMSE = 5.71 K 

64 

AM process conditions and materials properties. 3D high-temperature GPR Simu. (280) N/A 39 



field 

Note: * Metrics used to measure modeling performance in previous researches include mean absolute prediction error (MAPE), relative mean-squared error 

(ReMSE), residuals (R2), normalized root-mean-square error (NRMSE), average relative error magnitude (AREM), root mean-squared error (RMSE), mean 

absolute error (MAE), mean-squared error (MSE), mean-squared prediction error (MSPE), accuracy (Acc), global accuracy (GAcc), intersection over union 

(IoU), F1 score (F1) and mean error (ME). Detailed definition of each metric can be found in corresponding referred literature. 

** When simulation and experiment data are used separately to train two individual data-driven models, both of their predictive results are listed.  

*** When more than one type of data-driven models have been used in a research, only the best predictive result is listed. 

**** In a few researches, related information was not directly reported. 

 



Table 2 Summary of data-driven structure modeling in AM 

Quantity of interest 

(QoI) 
Input features QoI-related output 

Data-driven 

model 

Data source 

(Dataset size) 

Modeling  

results 
Ref. 

Grain structure 

AM manufacturing conditions and materials properties. 
Mean and variance of grain 

aspect ratio 
GPR Simu. (150) 

N/A 39 

Seven processing conditions including scan pattern, molten 

zone width, velocity, molten zone depth, etc. 

Principle component (PC) 

scores of the microstructure 
PR Simu. (1,799) 

MAE = 

0.0168 

65 

Porosity 

Seven process parameters including layer thickness, laser 

power, hatch spacing, scanning speed, etc. 

Density 
MLP Exp. (26) 

N/A 66 

Laser power and scanning speed. 
Density 

GPR Exp. (42) 
MSPE = 

0.2593 

67 

Laser power, laser velocity and hatching space. 
Relative density 

MLP Exp. (60) 
RMSE = 

0.3249% 

68 

Laser power and scan speed. 
Relative density 

GPR Exp. (82) 
MAE < 

0.3% 

69 

Volumetric energy density. Density GPR Exp. (N/A) MAPE = 1% 70 

Layer thickness, laser power, laser scan speed. 
Open porosity (%) GP, MLP, 

SVM 
Exp. (36) 

MAPE = 

8.82% 

71 

Thermal images by pyrometer and IR camera. 
“Bad” (porous) or “good” 

(neglectable porosity) label 
CNN+RNN Exp. (840) 

Acc = 

99.29 % 

46 

Surface images by DSLR camera. 
“With flaw” or “without 

flaw” label  
CNN Exp. (1708) 

Acc = 

92.50 % 

72 

Laser power, scanning speed, initial powder-bed structure. 
Porous structure after 

sintering 
CNN Simu. (130,500) 

GAcc = 

99.13% 

73 

Geometrical 

distortion 

Nodal coordinates of designed geometry. 
Nodal coordinates of actual 

geometry 
MLP Simu. (N/A) 

MSE = 

1.12E-05 

74 

Five process parameters including part bed temperature, laser 

power, scan speed, scan spacing, scan length. 

Shrinkages (%) along length, 

width and thickness 
MLP Exp. (50) 

R2 = 0.54 75 

Polar angle, polar radii of point on the designed shape. 
Polar radii of point on the 

actual shape 
MLP 

Exp. (20,000-

40,000) 

MSE < 10E-

7 

76 

Polar angle of point on the contour of the designed shape, 

transformation parameter set. 

Polar radii of point on the 

contour of the actual shape 
GPR Exp. (360) 

R2 = 0.9022 77 

Polar angle of point on the contour of the designed shape, infill 

parameters. 

Polar radii of point on the 

contour of the actual shape 
GPR Exp. (N/A) 

MSE = 

0.21% 

78 

Designed shape. Actual shape  CNN Exp. (18,500) IoU > 0.90 79 

Designed shape. Actual shape CNN Simu. (39,424) F1 > 0.93 80 

Thermal image and process/design parameters including laser Pointwise distortion MLP+CNN Exp. (21,818) RMSE = 56 81 



power, scan speed, location, print angle and material. m 
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Table 3 Summary of data-driven property modeling in AM 

Quantity of 

interest (QoI) 
Input features QoI-related output 

Data-driven 

model 

Data source 

(Dataset size) 

Modeling 

results 
Ref. 

Mechanical 

property 

Structure descriptors including volume fraction of inclusions and 

average inclusion size. 

Yield strength, strain 

hardening coefficient, etc. 
PR Simu. (900) MAE = 0.0038 82 

3D grain structure. Yield strength CNN Simu. (7680) RMSE=9.23 MPa 44 

Materials compositions and microstructural features including 

mean equiaxed alpha size, volume fraction of equiaxed alpha, 

etc. 

Yield strength GP, MLP Exp.(N/A) N/A 83 

Layer thickness, orientation, raster angle, raster width, air gap. Compressive strength GP Exp.(32) MAPE=3.93 84 

Layer-wise temperature and vibration information, materials 

property, AM process conditions. 
Tensile strength MLP+RNN Exp. (144) RMSE=0.59MPa 85 

Melt temperatures, layer thickness, raster pattern orientation. Tensile strength MLP Exp. (108) RMSE=0.040756 86 

Layer thickness, orientation, raster angle, raster width, air gap. Compressive strength GP, SVM, etc. Exp.(32) 
 

MAE=0.0558 
87 

Angle of incline, overlapping length, number of specimen shells Tensile strength SVM, etc. Exp. (192) RMSE=2.648MPa 88 

Number of fiber layers and fiber rings as well as polymer infill 

patterns of AM-fabricated carbon fiber-reinforced polymer 
Flexural strength SVM, DT, etc. Exp. (162) RMSE=7.75MPa 89 

Stress-strain 

curve 

Grain structure descriptors including mean and variance of grain 

aspect ratio. 
Stress-strain curve GPR Simu. (150) N/A 90 

Strain rate, strain and temperature. Flow stress MLP Exp. (128) ME = -0.3%  91 

Temperature, strain rate, uniform elongation. Flow stress MLP Exp. (720) RMSE = 2.056% 92 

True strain and 12 microstructural descriptors. True stress MLP Exp. (111) RMSE <  0.2 93 

Raw image-based structure. Stress-strain curve CNN 
Simu. 

(100,000) 
N/A 40 
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3. Data-driven modeling of additive manufacturing 

Complementary to Table 1-3, this section gives detailed analysis on the achievement made so far 

for different data-driven AM modeling. Unless otherwise pointed out, throughout this article we 

survey the relevant literature indiscriminately in terms of AM techniques and AM materials. The 

literature is grouped based merely on the modeling quantity of interest, which determines the type 

and name of data-driven modeling.  

3.1 Data-driven process modeling 

3.1.1 Data-driven modeling of melt pool 

Data-driven melt pool (size) modeling is one of the most widely studied data-driven AM 

modeling for achieving AM process control. This is because the melt pool size, although a simple 

quantity, is an effective indicator of overall manufacturing quality, intimately associated with the 

development of columnar grain structure4, solidification textures at the sub-grain scale 94 and 

lack-of-fusion porosity 95, etc. A robust data-driven melt pool model is of huge value for 

optimizing AM process on-the-fly and ensuring part quality. Moreover, unlike many other AM 

quantities, melt pool is readily measurable during AM process by using pyrometer, thermal 

camera or high-speed camera. This fact facilitates experimental data-based data-driven modeling 

that can generate actionable insights for AM practice. Therefore, melt pool is a prevailing QoI in 

data-driven AM modeling nowadays. 
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Fig. 4 Data driven melt pool modeling. a A common data-driven melt pool modeling that builds 

melt pool depth simply as a function of primary manufacturing conditions (i.e., laser power and 

speed), based on pool depth data obtained under different conditions 48. b An improved data-

driven melt pool modeling designs neighboring-effect modeling (NBEM) factors, 𝑖
𝑡

 and 𝑖
𝑑

, to 

account for inter-track heating effect or scanning history on melt pool development 52. c 

Uncertainty-incorporated data-driven melt pool modeling includes uncertainty sources, , as 

inputs to enable prediction of caused fluctuation of melt pool 54.  

Since melt pool size (e.g., pool width, length, depth or area) is a scalar quantity, data-driven melt 

pool modeling itself is technically not difficult, generally falling within the task of common 

regression analysis like curve fitting. The key challenge and research interest today lie in the 

rational selection and even design of input features correlated with melt pool development. Most 

of existing data-driven melt pool modeling 48-50 just build melt pool as a simple function of 

common AM process parameters, typically laser power and scanning speed (Fig. 4a). Lee et al. 51  

have adopted as many as 23 input features, including various process parameters and materials 

parameters, to enhance data-driven melt pool modeling. However, those data-driven melt pool 

modeling by incorporating simple input features, even broadly, cannot adequately account for the 

complexity of AM process physics, including but not limited to layer-by-layer heat accumulation, 
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inter-track heating effect and, not less importantly, many aleatory uncertainties (i.e., natural 

variabilities) present in AM process. Those factors can greatly complicate melt pool dynamics. In 

this sense, more advanced input features, such as cumulative time- and distance-neighboring 

effect factors 52 (Fig. 4b) as well as various layer-wise effect factors 53, have been designed to 

improve the predictive accuracy. Wang et al. 54 have also introduced five experimentally 

calibrated uncertainty sources as inputs in the data-driven model and permits reasonable 

prediction of melt pool fluctuations (Fig. 4c).  

3.1.2 Data-driven modeling of bead 

 

Fig. 5 Data-driven bead modeling. a A typical data-driven bead modeling that builds bead with 

as a function of scanning speed 57. b Geometrical quantities of interest in data-driven bead 

modeling, adapted from 55. Data-driven bead modeling shares the same modeling philosophy and 

similar modeling quantities with data-driven melt pool modeling. 

Another type of data-driven AM modeling very similar to melt pool modeling is the modeling of 

bead geometry and size (Fig. 5a). Bead formation is a remarkable phenomenon especially in 

extrusion/feeding/deposition-based AM. Melt pool and bead are highly relevant AM quantities, 

both essentially concerned with the high-temperature molten part, but bead is just more related to 

molten materials upon solidification. In fact, their geometrical characteristics, e.g., depth and 

width between melt pool and bead, are sometimes not really distinguished 51,56. The only big 

difference might be that solidification would give rise to a new geometrical quantity - bead height 

(Fig. 5b), data-driven modeling of which is important for building precision control along z-axis 

58. However, since the overall significance and philosophy of data-driven bead modeling are 
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almost the same to that of data-driven melt pool modeling, this paper will not separately analyze 

data-driven bead modeling in detail.  

3.1.3 Data-driven modeling of process temperature 

Data-driven thermal modeling of AM process is a more advanced data-driven process modeling. 

It can give general thermal characteristics of AM process that includes melt pool informed by 

high-temperature region. Temperature field formed during AM process is closely related to later 

development of various structures across many scales and, in turn, largely dictate the properties of 

final AM parts. Thermal modeling is thus of fundamental importance as a starting point of 

exploring P-S-P relationship, as evidenced by many multi-stage AM studies of dendrite structure 

96,97, grain structure 98,99, porosity 100 and mechanical property 101.  

 

Fig. 6 Data-driven thermal modeling. a Localized data-driven thermal modeling of maximum 

temperature under the beam 59. b Another type of localized data-driven thermal modeling that 

allows for modeling the real-time temperature or thermal history for any spatial point/node in the 

component 62. c Field-level data-driven thermal modeling by using singular value decomposition 

(SVD) for dimension reduction of original 3D temperature field, followed by data-driven 

modeling in the latent space 39.   
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However, unlike data-driven melt pool modeling, data-driven modeling of temperature field is 

challenging due to its high-dimensional nature. In light of this difficulty, a widely adopted 

strategy is data-driven thermal modeling of local temperature, instead of the entire temperature 

field. There exists two such types of data-driven thermal models. The first type focus on a 

specific, local thermal quantity like peak temperature within the current heating zone (Fig. 6a) 59 

or melt pool boundary60. The second type is general to all spatial points; that is, the modeling 

subject is the real-time temperature or thermal history for any given point within the building 61-63  

(Fig. 6b). In this way temperature field can be implicitly obtained by aggregating separate 

modeling results of many points 63. Besides the mainstream point-/voxel-level data-driven 

thermal modeling, Wang et al. 39 have utilized dimension reduction technique - singular value 

decomposition (SVD), thus facilitating the data-driven modeling of the entire 3D temperature 

field in the latent space (Fig. 6c). But the above SVD-assisted approach is limited to data-driven 

modeling of temperature field with predefined dimensions and, therefore, focus only on a cuboid 

of high-temperature part in their work. 

3.1.4 Other data-driven process modeling  

Other relatively less studied data-driven process modeling include modeling of powder spreading 

behavior (measured in powder bed surface roughness 102 or represented  by six categorical 

anomalies 103) and thermal stress field developed in AM process 104. Apart from powder- and 

wire-based 3D printing, data-driven methods have been also used in other printing techniques 

such as the inkjet-based printing. In inkjet-based AM, a special and important process 

phenomenon is droplet formation determined by the fluid flow pattern, which is critical to 

printing quality. Wu and Xu 105 developed a supervised data-driven method to predict droplet 

formation process including droplet volume and velocity based on the AM process parameters 

(e.g., polymer concentration, dwell time, rise time, and excitation voltage) in the inkjet-based 

printing process. The proposed method was able to predict droplet volume and velocity in high 
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accuracy.  Data-driven method has been also applied to achieve the in-situ process optimization 

of the process parameters in the inkjet-based printing through a neural network based PID control 

system 106.  

3.2 Data-driven structure modeling 

3.2.1 Data-driven modeling of grain structure 

Data-driven modeling of grain structure is of particular significance for AM process, since 

complex and unconventional grain structure is one of the signatures of AM-fabricated 

components 107. Grain structure development within AM part has always been an active research 

topic in AM community 108. Data-driven grain structure modeling will greatly benefit process 

plan for tailoring grain structure within AM parts.  
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Fig. 7 Data-driven grain structure modeling. a Data-driven grain structure modeling that builds 

microstructure described by mean and variance of grain aspect ratio, 
𝑟
 and 𝑚𝑟2, as a function of 

various input features, such as AM manufacturing conditions and AM materials properties 109. b 

Data-driven grain structure modeling that chooses to describe complex microstructure using 

principal component (PC) scores of PC analysis on grain chord length distribution 65. c ML model 

allows for extraction of highly abstract yet informative features from microstructure through 

representation learning 110. d GAN allows for direct generation and prediction of microstructure 

image for a given condition 111. 

In contrast with many physics-based modeling and experimental efforts, data-driven grain 

structure modeling has been surprisingly little explored. Wang et al.109 have built the formed 

grain structure, described by the mean and variance of grain aspect ratio, as a function of AM 

process conditions and other input features (Fig. 7a). Similarly, Popova et al. 65 have correlated 

grain structure, but quantitatively represented by principal component (PC) scores of PC analysis 
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on grain chord length distribution, with various AM process parameters (Fig. 7b). From the few 

related researches, it can be seen that data-driven grain structure modeling is still at its early stage, 

focusing on building mapping between simple microstructure descriptors and input features. This 

dilemma may be attributed to grain structure as a high-dimensional quantity like temperature field, 

making explicit modeling of real grain structure difficult.  In addition, while the temperature field 

developed in AM process usually show a tear-drop shape and regular pattern, grain structure is 

stochastic by nature, thus further preventing the development of advanced data-driven grain 

structure modeling in AM.  

Although related study in AM is scarce, here we would like to provide a glimpse of data-driven 

grain structure modeling from a wider viewpoint of materials science. In fact, microstructure 

representation and featurization has long been of great interest in materials community. Early 

efforts of materials scientist were centered on hand-designing physical and statistical descriptors 

for various microstructures 112, as did the above AM grain structure modeling. In recent years, 

ML models, especially CNNs, have substantially advanced representation modeling of 

microstructure 110,113. It allows for automatic learning of high-level, abstract features of 

microstructure (Fig. 7c). Those microstructure representation modeling may be adapted to AM 

grain structures for extracting more informative and representative microstructure features, thus 

enabling data-driven construction of high-fidelity process-structure relationship by improving the 

structure side. Of most relevance, Akshay et al.111 have even proposed a GAN conditioned on 

processing conditions - cooling method in processing ultrahigh carbon steel (UHCS) (Fig. 7d). 

The proposed ML model can directly build process-structure linkage by permitting generation of 

UHCS microstructure images for given cooling method.  Tang et al. 114 has further developed a 

similar GAN-based approach by conditioning it on numerical conditions, instead of categorical 

conditions.  Although they are not proposed specifically for AM process, but would undoubtedly 
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shed light on data-driven prediction of image-based grain structure under different process 

conditions in AM.  

3.2.2 Data-driven modeling of porosity 

Besides grain structure, porosity is another important structural feature of AM-fabricated 

components. Depending on AM process conditions, various types of porosity can be developed 

for as-built AM parts, such as lack-of-fusion by insufficient melting 115, keyhole by strong metal 

evaporation 116, and surface open pore by complex fluid dynamics 5, etc. Porosity modeling might 

be particularly valuable for the selective laser sintering (SLS), a type of AM process featuring 

sintering mechanisms for binding raw materials. Unlike laser melting, sintering-based binding is a 

mild process with insignificant melting and solidification phenomenon, which makes porous 

structure the prominent feature of SLS components 117. A data-driven modeling capability of 

porosity development is necessitated to facilitate process control for not only successfully 

producing fully-dense parts, but also intentionally fabricating porous structure with desired 

biocompatibility and permeability 118,119. 
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Fig. 8 Data-driven porosity modeling. a A common data-driven porosity modeling that builds 

porosity simply as a function of manufacturing parameters (i.e., laser power and speed), based on 

porosity data obtained under different manufacturing conditions 67. b A hybrid CNN and RNN 

model permits data-driven prediction of porous component by using pyrometer image and IR 

sequence as inputs 46. c A multi-input CNN enables ultra-fast data-driven simulation of structural 

evolution and development of porosity for any given manufacturing condition 73. 
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Data-driven porosity modeling has been more widely studied than data-driven grain structure 

modeling in AM. The majority of them concentrate on correlating porosity represented in simple 

porosity-related metrics, typically density 66,67,70 or relative density 68,69, with different AM 

process parameters (Fig. 8a). The basic idea behind those researches is thus analogous to that of 

existing data-driven grain structure modeling in AM as aforementioned. Aside from that, there 

are a few more interesting attempts. Tian et al. 46 have selected some special and complex input 

features, including pyrometry images and sequential images from infrared camera during AM 

process, to data-driven predict layer-wise porosity (Fig. 8b) and Imani et al. 72 have taken layer-

wise surface images from DSLR camera as inputs. Most recently, Wang et al.73 have proposed a 

multi-input CNN for data-driven modeling of structural and morphological evolution of porosity 

structure for SLS process, based on the input structure of as-deposited powder bed and input 

parameters of applied laser (Fig. 8c). They have also showed that the proposed data-driven 

approach permits component-level SLS porosity simulation in minutes. 

3.2.3 Data-driven modeling of geometric distortion 

Data-driven modeling of geometric distortion is targeted at external shape of AM parts, from 

mesoscale cross-sectional shape of struts 76 to macroscopic shape of the whole component 77. 

Geometrical distortion and dimensional inaccuracy can stem from internal stress associated with 

the complex thermal behavior of AM process 120, insufficient support for overhangs 76, limited 

printing resolution of AM machine 79 and inaccurate representation by .stl file (e.g., 

approximation of curvilinear surface by a mesh of triangles) 121. They lead to deviation between 

designed and fabricated geometry/shape. Accurate modeling of geometric distortion is critical for 

correct compensation of geometrical deviation in the computer-aided design (CAD) phase.  
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Fig. 9 Data-driven modeling of geometrical distortion. a Localized data-driven modeling that 

corelates cartesian coordinates of node between theoretical and actual shape 74. b. Localized data-

driven modeling that describe deviation of peripheral points as a function of polar angle, , in 

polar coordinate system (PCS) 77. c. CNN with encoder and decoder allows for explicit data-

driven modeling of the geometrical distortion of the entire shape 79.  

Data-driven modeling of geometric distortion might be the most developed data-driven AM 

modeling. For example, unlike data-driven grain structure or porosity modeling, the bulk of 
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existing data-driven modeling of geometrical distortion focus on the real geometry74,76-81, rather 

than dealing with some simple deviation descriptors (e.g., percentage of shrinkage/expansion75). 

Also, some novel data-driven modeling methodologies based on CNN have been proposed for 

explicitly handling the 2D or even 3D component geometry.  Most of existing data-driven 

modeling may be categorized into two groups. The first group adopted localized modeling of 

points that form the geometry/shape. For instance, Chowdhury et al. 122 have attempted to 

correlate Cartesian coordinates of nodes between the designed and actual model (Fig. 9a). 

However, a preferred way in this group is to describe points and thus their deviation in polar 

coordinate system (PCS) 76-78, which facilitates the modeling of complicated deviation mainly as a 

function of the polar angle (Fig. 9b). The second group mainly leverages CNN for direct data-

driven modeling of the whole shape 79,80, thus usually enjoying better generalization to various 

shapes. The core principle behind them is to use image-to-image regression capability of some 

CNNs, namely those with an encoder-decoder structure, where encoder reads original shape and 

decoder reconstructs encoding results to the shape after distortion (Fig. 9c).   

3.2.4 Other data-driven structure modeling 

There are also some other types of data-driven structure modeling in literature, including surface 

structure/roughness modeling 37,123 and dendrite structure (arm space) modeling 124. Although they 

have not been widely studied yet, data-driven modeling of those structures is of same importance.  

Besides the above two, other structures, such as sub-grain microstructure and texture associated 

with solid-state phase transformation 125, seem to have been even less studied. In part this may be 

attributed to the difficulty in acquiring related data. On the other hand, these AM quantities may 

have usually been less focused in AM field, even in physics-based modeling or experiment based 

AM researches.   
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3.3 Data-driven property modeling 

3.3.1 Data-driven modeling of mechanical properties 

Stress-strain curve is an informative representation of mechanical property, revealing many scalar 

properties, such as yield strength, Young’s modulus, stiffness, etc. Due to the complex 

characteristics of stress-strain curve, the bulk of existing data-drive property modeling in AM is 

centered on those specific scalar properties. Methodologically, data-driven modeling of them are 

quite similar. They are thus collectively reviewed as data-driven modeling of mechanical 

properties in this subsection. 

 

Fig. 10 Data driven modeling of mechanical properties. a Data-driven property modeling that 

builds process-property (P-P) linkage 85. b-c Data-driven property modeling that builds structure-
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property (S-P) linkages by using microstructural descriptors (i.e., mean equiaxed alpha size, 

volume fraction of equiaxed alphas) 83 and real microstructure 44 as inputs, respectively. 

The two most widely studied scalar properties in existing data-driven property modeling are 

ultimate strength and yield strength. Data-driven modeling of different mechanical properties can 

be divided into two groups based on the type of input features. The first group directly links AM 

process (parameters) to properties by skipping the structure stage 84-88, thus essentially building 

the process-property (P-P) linkage (Fig. 10a). The second group instead builds structure-property 

(S-P) linkage by using structure as input 44,82,83, and can be more challenging by involving the 

complex quantity of structure. Among them, some have simplified the modeling problem by 

using quantitative descriptors to represent structure 82,83 (Fig. 10b), as usually does the data-driven 

modeling of AM structure; some other data-driven S-P modeling 44,126 have however adopted 

CNN to explicitly read and process grain structure, and successfully built the relationship 

between image-based structure and scalar properties (Fig. 10c). 

3.3.2 Data-driven modeling of stress-strain curves 

As mentioned, it is known that stress-strain curve is a more general representation of mechanical 

property, indicating many basic properties of a materials. Data-driven modeling of stress-strain 

curve is thus of prime importance in data-driven property modeling in AM and even materials 

science. 
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Fig. 11 Data-driven stress-strain curve modeling. a-b Step-wise data-driven modeling of 

stress-strain curve, where uniform elongation 92 and true strain 93 were respectively used as step 

indicator. The stress-strain curve was obtained by combining discrete predictions at different step 

input. c Data-driven modeling of the stress-strain curve as a whole, where principal component 
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analysis (PCA) was utilized to reduce the dimension of original stress-strain curve 40. It is also 

noteworthy that 2D image-based structure was just used as the input with the assistance of CNN. 

In spite of its major significance, data-driven modeling of stress-strain curve in AM has been 

rather limitedly studied. Wang et al. 90 have proposed to use SVD to reduce dimension of stress-

strain curve, followed by data-driven stress-strain curve modeling in the latent space. However, in 

other fields there are indeed many research efforts on this theme, and those data-driven modeling 

methodologies can be easily extended to AM. Most of those researches 91-93 adopted a step-wise 

modeling method, namely building real-time mechanical response as a function of input features 

(Fig. 11a-b). In this case, elongation or strain as a time-step indicator has to be included as an 

input. The entire stress-strain curve is then obtained from a series of separate predictions at 

different time-step inputs, i.e., discrete points in Fig. 11a-b. In addition to step-wise method, 

Yang et al. 40 have used principal component analysis (PCA) for dimension reduction and 

facilitated data-driven modeling of stress-strain curve as a whole (Fig. 11c). This idea is similar to 

the above-mentioned SVD-based approach, but they have further integrated CNN for 

microstructure representation modeling, instead of using structural descriptors as input features of 

the data-driven structure-property model.         

3.3.3 Other data-driven property modeling 

Other existing data-driven property modeling in AM includes data-driven modeling of fatigue life 

127, dynamic properties including storage compliance and loss compliance 128, maximum stress 

development 129  and even full-field strain development 130. There is also other data-driven 

property modeling, which is not performed for but readily extendable to AM-fabricated materials 

and components, such as data-driven modeling of fatigue crack development 131, stress hotspot 

formation 132 and full-field stress response 133. Like many underexplored quantities in data-driven 

structure modeling, those properties are worth more attention from AM researchers. For instance, 

maximum stress and even stress hotspot development are important to study considering the main 

application of AM for fabricating complex structures with intricate geometry, wherein stress 
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concentration and caused fracture may be an outstanding issue.  A data-driven modeling 

capability is thus of immense help for optimizing structure design and improving service lifetime 

of AM parts.  

4. Future directions and conclusion 

 

Fig. 12 Potential future research directions for further advancing data-driven AM modeling. 

a Building professional AM database with easy access will greatly advance data-driven AM 

modeling by improving data efficiency. b Using hybrid experimental and simulation will enable 

to build trustworthy data-driven AM models at minimal cost. c In future, more attention can be 

paid to data-driven modeling of those less studied AM quantities. d The distinct capability of 

machine learning (ML) in explicitly handling high-dimensional and complex data will open 

enormous opportunities for advanced data-driven AM modeling. e ML-assisted data collection, 

processing and acquisition in Step 1 will hugely benefit data-driven modeling by improving both 

the quality and quantity of data. f Physics-informed ML will potentially revolutionize data-driven 

modeling by alleviating its dependence on AM data, with the incorporation of physical 

knowledge into ML model.  

4.1 Data sharing and reusage 

In future, fostering data-sharing culture and increasing data reusage will be critical for 

substantially advancing data-driven AM modeling from the data perspective. Data sharing and 
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reusage is a common issue extensively implied in data-driven studies across many scientific 

domains, from geoscience 16 to agriculture 134 and materials science 135. Establishing professional 

database with easy access and building supportive data infrastructure have thus been widely 

recognized, enabling to greatly improve data efficiency (Fig. 12a). This has been proved in 

computer science (CS) field, where the constant improvement of different ML techniques has 

greatly relied on many known datasets, from the early MNIST dataset of handwritten digit 136 to 

the more recent ImageNet dataset of diverse visual objects 137. Those large datasets are well 

curated, easily accessible and commonly used by CS community, providing standardized 

benchmarks for transparent comparison and accelerated evolvement of ML algorithms. 

Researchers are able to spend maximum efforts on developing and advancing data-driven 

modeling itself without data worry. In terms of AM, AM-Bench by National Institute of 

Standards and Technology (NIST) 138 seems to be the only relevant project, which aims to 

provides highly controlled AM benchmark P-S-P data with permanent public access. On the other 

hand, with the ever-increasing interest in data-driven AM studies, an abundance of AM data is 

actually generated every day. There is however currently still a lack of satisfactory practices that 

archive and manage them in a unified way. This largely prevents the reusage of those scholarly 

AM data and maximization of their value.  

4.2 Hybrid data-based data-driven AM modeling 

Using hybrid data possibly allows for defeating respective drawback of data-driven modeling 

based solely on simulation data or experimental data (Fig. 12b). That is, physic-based modeling is 

usually inexpensive compared to experiments, but can only take into account partial physics in 

practice and thus provide imperfect data. Experiments, on the contrary, offers more practical and 

reliable data, yet at greater expense. Some researchers 54,64,139 have thus advocated the hybrid-data 

schema to build high-reliability data-driven AM model at minimal cost. In the few related studies, 

they first build a primitive data-driven model based on simulation data, followed by incorporating 
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and experimentally calibrating a discrepancy term to describe the bias between physical 

simulation and practice. Nonetheless, the efficacy and feasibility of hybrid-data strategy are still 

subject to further verification, not only through a more detailed and clearer comparison with those 

based purely on theoretical or experimental data, but also in various data-driven AM modeling 

scenarios. In near future, using hybrid data might be the optimal way to economically build fully 

trustworthy data-driven AM models for practical use. 

4.3 Underexplored AM quantities of interest 

Based on the current review, it seems that some AM quantities related to structure and property 

are limitedly studied (e.g., grain structure, stress-strain curve) or even completely unexplored 

(e.g., sub-grain structure) in existing data-driven AM modeling. For some of them, such as grain 

structure and stress-strain curve, the complex quantity involved greatly impedes the development 

of those data-driven modeling. However, as indicated by the early analysis, one can often find 

related data-driven modeling researches in other fields than AM. The advanced data-driven 

modeling methodologies developed therein can be borrowed to facilitate data-driven AM 

modeling in future. However, for some other AM quantities, the root reason of their little-to-no 

exploration may stem largely from the difficulty in obtaining (sufficient) related data. To 

overcome this situation, the further advancement of related experimental instrumentations and 

physical models are critical. In brief, special care can be taken for those underexplored and 

underdeveloped areas in future data-driven AM modeling (Fig. 12c). 

4.4 Machine learning enabled advanced data-driven modeling  

Among various ML techniques, MLP is the most frequently used one. Much of existing data-

driven AM modeling basically falls within or is purposely simplified to common regression 

analysis. One of the most distinct advantages of ML models, the capability of explicitly handling 

high-dimensional and complex data, such as CNN for image-type data and RNN for sequences, is 

sometimes neglected. For example, for data-driven grain structure modeling, what one nowadays 
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does is usually using ML to build simple microstructure descriptors as a function of different AM 

process parameters. Under this circumstance, it poses an intriguing question - can we make 

deeper use of ML model to realistically predict structural/morphological development and even 

dynamic evolution of grain structure (as does a physical model)? For instance, in fluid 

community, different CNNs with encoder-decoder architecture140-142, CNN+RNN143,144 and 

GAN145 have been used for modeling the evolution and development of flow fields. In solid 

mechanics modeling, CNN 146 and GAN 147 can accurately predict the stress field developed for 

given solid structure and loading condition. Admittedly, ML is now serving as the main 

workhorse in various AM data-driven modeling. However, many capable ML models are 

overlooked for some data-driven AM modeling within their specialties. Therefore, a more general 

question raised herein is - in face of high-dimensional and complex AM quantities, which are not 

uncommon scenarios in data-driven AM modeling, can we take more real advantage of those 

powerful ML techniques (Fig. 12d)?   

4.5 Machine learning assisted data improvement 

The whole workflow of a data-driven modeling effort actually includes two main steps – data 

obtainment and data-driven modeling (Fig. 12e). Acquiring a large quantity of high-quality data 

would be excellent for any type of data-driven modeling. Existing data-driven AM modeling 

often uses ML model purely as a data-driven relationship modeling tool, while largely ignoring 

its multi-functionalities and thus enormous potential for improving data in data-obtainment step. 

For instance, AM data of experimental images are sometimes not ideal (e.g., noisy and blurry), 

requiring further processing that is too laborious for human, whereas image processing for 

various purposes are specialized areas of CNNs and GANs. Also, NLP techniques have shown 

great potential in information extraction, for example, from literature (including tables, figures, 

and textual paragraphs) 148,149 and medical records 150. Similarly, NLP techniques may be used to 

collect useful AM data from their unstructured form in the voluminous AM literature and other 
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digitalized resources. Ma et al. 151 have used GAN for data augmentation by synthesizing 

experimental images of grain structures. All of those facts show the tremendous usability and 

versatility of ML in improving the quality and quantity of data. To authors’ best knowledge, there 

is however only one related work152, where a CNN-based detection module replaced human to 

classify local flaws in AM parts and thus effortlessly create required data for further data-driven 

predictive modeling of local flaws. In short, a valuable research direction implied herein is - can 

we use ML in a more versatile way, and enhance data-driven AM modeling from the pre-data-

driven-modeling aspect, i.e., improving data via ML-assisted data collection, processing and 

acquisition? 

4.6 Small data and physics-informed machine learning 

Simulation-derived and experimental datasets in AM are usually limited in size and expensive to 

be collected. Additionally, training datasets have to be recollected for traditional machine 

learning methods regarding the new manufacturing conditions such as new geometries, materials, 

and printing techniques since the feature distribution changes 153. It is critical for data-driven 

methods to achieve high prediction accuracy when available datasets are small. Transfer learning, 

which leverages the knowledge from a related task (in the source domain) to facilitate a new task 

(in the target domain), can be utilized when the feature distribution shifts and training datasets are 

deficient 154. Cheng et al. 155 proposed a hybrid transfer learning framework to predict the in-plane 

shape deviation of new geometries based on the knowledge from a small number of known 

geometries. Sabbaghi and Huang156 developed a transfer learning model to predict the in-plane 

shape deviations of a new stereolithography process based on the knowledge learned from a 

previous stereolithography process with limited experimental datasets. Although previous studies 

demonstrated that transfer learning is effective to predict shape deviation across distinct processes 

and geometries, more studies are still needed to be extended to the other fields in AM, e.g., 

learning the knowledge from one material having a large amount of training data to predict the 
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properties of another material having limited training data. Moreover, data-driven models which 

can transfer the knowledge among process, structure, and property in AM have not been fully 

developed when training data is limited. 

In addition to transfer learning, physics-informed machine learning157 (PIML) especially holds 

the promise of reducing, or even completely obviating158,159, the need for training data (Fig. 12f), 

while improving the generalization and robustness of the trained model. This is done through 

incorporating prior knowledge and physical laws into the otherwise purely data-driven model. 

Specifically, Guo et al. 160 have summarizes five types of PIMLs, namely physics-informed 

model inputs (PIMI), physics-informed model training (PIMT), physics-informed model 

components (PIMC), physics-informed model architecture (PIMA), and physics-informed model 

output (PIMO).  That said, the prevalent way to impose physics constraint might be formulating 

physical governing equations into loss function161 (i.e., the foregoing PIMT). In this case, the 

prediction of data-driven model would be penalized by its violation of physical laws. The model 

training is thus guided directly and sometimes completely by the physical principles, thereby 

potentially free from any training data. As a transformative modeling technique, there is an 

explosive application of PIML across various fields in last few years157. However, PIML in AM is 

still at its infancy, with only a handful of relevant research efforts on PIMI162-165 and 

PIMT163,166,167. Physics-informed ML is anticipated to play a revolutionary role in future data-

driven AM modeling, by eliminating its dependence on intensive AM data yet without sacrifice 

of modeling accuracy. 

In conclusion, this paper has systematically reviewed the existing data-driven modeling with 

respect to different AM quantities of interest along process-structure-property chain. It provides a 

summary of basic information of existing data-driven AM modeling, as well a further analysis on 

relevant progress made so far. Promising research directions in future are also discussed in detail, 

which are associated with improving not only data-driven modeling itself but also AM data.  
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Particularly, many capable ML models possess unparalleled regression power especially in 

explicitly handling high-dimensional and complex data, as well as much other versatility. They 

are expected to significantly improve data-driven AM modeling in future, from perspectives of 

both AM data obtainment and data-driven modeling methodology. In addition, the burgeoning 

physics-informed ML even has the potential to completely transform data-driven AM modeling, 

by alleviating or fully obviating the need for AM data. 
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