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Abstract 

There is a compelling need for the capability of multi-input field-to-field 

regression or mapping the initial field and applied conditions to the evolved field, e.g., 

given current flow field and fluid properties predicting next-step flow field. Such a 

regression capability can provide a maximum substitute of various physics-based models, 

enabling fast simulation of condition-dependent field evolvements. We hereby propose a 

y-shaped multi-input convolutional network (ConvNet), yNet, which can efficiently build 

functional relationship between multi-input (i.e., input field and applied condition 

parameters) and evolved field. yNet merges input signals without flattening the field 

input into a large vector and, instead, by directly manipulating high-level encoded feature 

maps. It thus possesses extreme computational efficiency (i.e., as much as six orders of 

magnitude faster) against physics-based models, as well as significant model reduction 

(i.e., one-tenth of the model size) over its ConvNet counterpart. It is applied to solving a 

variety of data-driven modeling problems in physical science and engineering, i.e., fluid 

dynamics, porosity evolution in selective laser sintering (SLS), and stress field 

development. yNet consistently shows great extrapolation capability in predicting beyond 

the training datasets in terms of temporal ranges, spatial domains, and geometrical shapes. 

The three applications have demonstrated the general effectiveness of yNet in learning 

the underlying physical rules that govern field evolvement and development. The well-

tested yNet thus may have an enormous potential and profound impact as a conceptually 

simple, light-weight yet powerful multi-input field-to-field regressor. 
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Introduction 

Deep convolutional network (ConvNet) utilizes stacks of convolutional layers for 

automatic, hierarchical representation learning of high-dimensional data. The 

convolutional components of ConvNet bring it great advantages in processing data in the 

form of multiple arrays, such as signals and sequences (1D), images or audio 

spectrograms (2D) and video or volumetric images (3D) [1]. Since its first application in 

digit recognition nearly 30 years ago [2], ConvNet has been particularly serving as the 

backbone for performing various computer vision (CV) and other image-centered tasks, 

such as image labeling/classification [3], object localization [4], semantic segmentation 

(pixel-wise labeling) [5, 6], etc. Upon realization of its distinct advantage in image 

modeling, it has been recently witnessed a surge of applications in different scientific 

domains where image-involved problems are ubiquitous. Some of those scientific 

applications include image classification with respect to scientific images [7, 8], 

microstructure characterization and reconstruction (MCR) [9-11], process-structure [12, 

13] and structure-property [14, 15] relationship modeling in materials science and 

engineering. They all leverage ConvNets to explicitly process and “understand” scientific 

images, thereby free from hand-craft featurization and with minimal human intervention. 

For example, conventional structure-property modeling relies heavily on domain experts 

to design effective structure descriptors [16, 17], while ConvNets directly take raw 

structure information as input and can construct high-fidelity relationship between image-

based structure and property; see Fig. 1a and 1b respectively.  

Another prominent application is ConvNet based simulation of field evolvement 

and development. This application also takes advantage of its superior image modeling 
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capability because different types of physical fields, such as temperature, velocity and 

density fields, can eventually present as images. In this regarding, ConvNets treat the 

field evolvement and development as a purely data-driven, image-to-image/field-to-field 

regression problem; see Fig. 1c. Some typical examples include fluid flow evolvement 

(i.e., current flow field to future flow field [18]), microstructure evolution (i.e., current 

structural field to future structural field [19]) and stress/strain field development 

(structural field to stress/strain field [20, 21]). ConvNets simply aim to build those field-

to-field mappings from training datasets, without ever playing with any complex physical 

governing equation. As such, the ConvNet, once trained, can offer an inexpensive 

substitute of physics-based model, enabling fast yet realistic simulation of field 

evolvement and development.  

However, most of the related research [19, 21-27] just adopted the CV task 

oriented ConvNets, especially those with a typical encoder-decoder architecture. 

Obviously, such an encoder-decoder model originally for semantic segmentation is 

unable to satisfactorily address data-driven modeling of field evolvements. In semantic 

segmentation, the output image or segmentation result is uniquely determined by the 

input image to be segmented; see Fig. 1c. However, the evolvement and development of 

a physical field is usually not only decided by the initial field, but also controlled by the 

applied conditions. For instance, flow field developed at a future point is concerned with 

the current flow field as well as fluid properties (see Fig. 1d) and stress field development 

greatly depends on the condition of applied force. With a pure image-to-image regression 

tool, those existing researches have to fix conditions, thus failing to incorporate 

condition-related parameters. Regarding this, the trained ConvNet is strictly applicable to 
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the specific condition used for training. This is apparently contrary to the general fact of 

great variability in applied conditions, and seriously stifles the practical use of the trained 

ConvNet. Thus, developing a more general multi-input field-to-field regressor, which can 

build functional relationship between multi-input (i.e., input field and condition 

parameters) and output field, would be of huge significance. It will, for example, allow us 

to train a single ConvNet applicable to various fluids with distinct conditions (Fig. 1d), 

instead of training separate ConvNet for each of them. Such a multi-input field-to-

field/image-to-image regression capability with well-tested general usefulness is 

fundamentally important, as are the other three regression capabilities. It will solidly 

advance the border of our reachable regression tasks, as compared between Fig. 1c and 

Fig. 1d. 

Towards this end, we propose a multi-input deep convolutional neural network, 

which naturally exhibits a signature y-shape as a multi-input field-to-field regressor; see 

Fig. 1f. We thus name it “yNet” that conveys its most salient feature, namely the efficient 

fusion of an additional input signal of condition-related parameters, in comparison with 

the pure image-to-image regression neural network (thus I-shaped) in aforementioned CV 

and scientific applications (Fig. 1c). As shown, the main architecture is basically 

composed of encoder-decoder based on deep convolutional network and a branch of 

multilayer perceptron (MLP). The encoder essentially plays a role of non-linear 

dimension reduction. It decomposes the original high-dimensional pixel-based field into 

N2 information-rich n1n2 feature maps; see Fig. 1g.  MLP acts to expand the condition-

related parameter(s) into N1 neurons that generate a 1N1 embedding vector. In this way, 

the encoder and MLP would facilitate effective fusion of input signals at their ends, as 
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further discussed later. Decoder serves to correctly reconstruct the merged signal back to 

a meaningful and desired output field through the deep deconvolution process. Note that, 

in the deep deconvolution process we also concatenate feature maps extracted during the 

early autoencoding process. This technique is commonly adopted in semantic 

segmentation networks, such as U-Net [28] and FCN [29], with the aim of improving 

segmentation details. It is expected to compensate information loss by coarsening during 

max-pooling in encoding process and improve information flow from (image) input to 

decoder.  

After building the main architecture, merging signals of multiple inputs poses as a 

key problem. In fact, such multiple mixed inputs (a high-dimensional image and scalar 

parameters) are not uncommon in various ML tasks, although the output is not 

necessarily image. However, the merging strategies in existing multi-input ConvNets can 

suffer from various drawbacks associated with dense parameters. One common merging 

strategy [30-32] is to flatten image signal, here represented by its feature maps, into a 

long vector, thus making it compatible and hence concatenable to the vectorial output of 

MLP; see Fig. 1e. Another merging strategy in image captioning model [33], which is not 

graphically illustrated here as it is very similar to the above one, is also flattening image 

first, however, strictly to a vector of the same size (i.e., N1 = N2). In doing so, it allows 

for element-wise adding of two vectors (image and linguistic vectors) to successfully 

merge signals. Those flattening-based strategies (flattening+concatenating or 

flattening+adding) are suitable or sometimes unavoidable for predicting a single label or 

numeric value but may not be optimal for ConvNets with an image-type output. The 

flattening operation would yield large fully connected layers as shown, which are known 
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to be parameter-intensive. The dense parameters can bring about drawbacks such as 

increased training complexity requiring sophisticated training schemes, more hardware 

resources demanded during both training and inference, slow inference speed. The above 

facts are clearly shown, for example,  in comparative studies [34] between the light-

weight SegNet and other semantic segmentation ConvNets [29, 35, 36]. Apart from 

parameter-efficiency issue, flattening operation will interrupt the signal flow of 2D 

feature maps, which themself are meaningful as spatial features in condensed and coarse 

form. The merged signal in those manners however becomes a skinny numerical vector, 

which is somewhat meaningless or less interpretable. After flattening-based merging, 

ConvNet would have to take further efforts to force the vectors back to 2D useful maps 

for decoding process. A flattening-based strategy thus, if workable for multi-input image-

to-image regression [37, 38], might make the multi-input ConvNet more like a brute-

force regressor.  

To overcome the shortcomings of flattening-based merging strategy, we propose 

to properly merge signals using a one-to-one connection via multiplication (Fig. 1g), 

which is mathematically akin to the gating mechanism [39]. The proposed gating-based 

signal merging strategy features great simplicity and would result in smooth signal flow 

of feature maps throughout the encoding-decoding process. In this case, MLP actually 

turns as a signal modulator of feature maps, which is anticipated to rearrange encoded 

high-level feature maps towards high-level representation of the output field. Especially, 

the effectiveness of the gating-based merging strategy lies in the fact of those neurons 

interacting with respective feature map in a direct, neat and therefore strong manner. This 

is a key for yNet to efficiently learn the combined effects of two channels. We posit that, 
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through training, MLP can learn to precisely manipulate the initial field represented by 

high-level feature maps into the developed field (preliminarily in the form of gated 

feature maps) for given condition; the decoder then appropriately reconstruct the gated 

feature maps into the realistic evolved or developed field. 

We further clarify that this research focuses on the parameter-type conditions only. 

However, the core of yNet should shed light on efficiently incorporating other conditions 

in more complex forms, as discussed later. That being said, the umbrella term “condition” 

in this paper refers to not only external conditions (e.g., ambient temperature and applied 

loading level) but also internal conditions (e.g., materials and physical properties 

concerned with evolving kinetics), as well as the time period of evolvement. As long as 

one has an association with the field evolvement and development, it can be seen as 

“condition”, thus falling within the interest of the proposed yNet. 
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Fig. 1 Four different regression tasks with increasing complexity and multi-input 

ConvNet. (a) parameter(s) to parameter(s) regression for conventional structure-property 

modeling, where both the input and output are one or a few parameters, i.e., scalar 

quantities. (b) image to parameter(s) regression for high-fidelity structure-property 

modeling, where the input is image and output are parameters. (c) image to image/field to 

field regression for semantic segmentation and fluid dynamics simulation, where both the 

input and output are images. (d) multi-input field to field regression for condition-

incorporated fluid dynamics simulation, where the mixed input are parameters of fluid 

properties and image of current flow field and the output is image of next-step flow field. 

(f) The proposed y-shaped multi-input ConvNet for handling the above multi-input field-

to-field regression tasks. Comparison of (e) the conventional flattening-based and (g) the 

proposed gating-based signal merging strategy. 

 

Next, we will present three applications of yNet to show its different extrapolation 

capabilities, which collectively demonstrate the general effectiveness of yNet in learning 

various field evolvement and development rules. Following the above three applications, 

we finally discuss its enormous potential in future applications as well as some 

limitations.  

 

Application 1: fluid dynamics 

In this paper, we start with the widely studied fluid dynamics simulation in the 

data-driven modeling community. Specifically, we will use a classical fluid flow problem 

– incompressible, viscous flow shedding around a cylinder. In this case, the 

spatiotemporal evolution of viscous fluid field is governed by: 

( ) 2

t


  


=   + 


v                                             (1) 
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where  = ∇  v is the vorticity, v is the velocity of the fluid,  is the kinematic viscosity 

of the fluid. Variables in Eq. (1) can be rewritten in scaled units with respect to unit 

length L and unit fluid velocity V, namely, 'x x L= , 'V=v v , '
L

t t
V

= , '
V

L
 = . 

Consequently, Eq. (1) can be rewritten as: 

       ( ) 2' 1
' ' ' '

't Re


 


=    + 


v'                                         (2) 

where 
LV

Re


= is the Reynolds number as a function of kinematic viscosity, unit length 

and unit fluid velocity. From Eq. (2), we can find that Reynolds number is the dominating 

condition that dictates the flow behavior. Therefore, in the following research, we will 

train a single yNet capable of simulating fluid flow evolution over a range of Reynolds 

numbers. The trained yNet will be tested on: (1) predicting flow field development for Re 

conditions unused in the training datasets;  (2) simulating dynamic flow field evolution 

via recursive predictions;  (3) temporal extrapolation for predication, i.e., extending the 

dynamic simulation beyond the original time domain in training data, and (4) 

computational accuracy and efficiency in comparison with conventional ConvNet. 

Training and testing procedure 

Fig. 2a illustrates the overall procedure of training an yNet applicable to a range 

of Reynolds numbers. Vorticity field is selected as flow field of interest and Reynolds 

number as the condition parameter, but we can easily train yNet for the other flow fields 

in the same way. To achieve simulation of dynamic field evolution, yNet acts to predict 

next-step flow field based on the current flow field and Reynolds number, Re. As such, 
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long-term flow field evolution simulation can be performed by yNet through multi-step 

recursive predictions as shown in Fig. 2d and Fig. S2a.  

 

 

 

Fig. 2 Illustration of training and testing of yNet for fluid dynamics simulation. (a) 

Overall flowchart of training and testing yNet. (b) To generate data, a physical fluid 

dynamics simulation using OpenFOAM is performed at each Reynolds number sampling 

point, followed by extraction of neighboring snapshots as data pair. (c) Each data point is 

thus a triplet, consisting of respective Reynolds number, flow fields at tn and tn+1, where n 

= 1, 2, 3, …, 159. (d) The trained yNet can be used to predict flow field for next time step 

based on given flow field and Reynolds number condition. As such, the trained yNet can 

also work in a recursive manner to predict long-term flow field evolution. 
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It should be noted that more condition parameters can be easily incorporated by 

simple adjustment of input layer of MLP, as executed in next application. To provide 

dataset, physical simulations are performed at 29 equally spaced Reynolds numbers (i.e., 

Re = 75, 78, 81, … ,159), where 24 cases would be randomly chosen for training and the 

other 5 for testing; see data splitting in Fig. 2a. For all those physical simulations, 

extraction of neighboring snapshots is performed to generate one-step-distance data pairs, 

as illustrated in Fig. 2b. A physical simulation will output a total of 160 frames, 

indicative of 159 data pairs obtained at each Reynolds number sampling point or 4611 for 

the entire dataset; see Fig. 2c. They are split into training and testing datasets based on 

Reynolds numbers as mentioned early. 

For yNet instantiated in this application, the detailed architecture is illustrated in 

Fig. S1a and explained in the Method section. We train yNet for 100 epochs with a mini-

batch size of 2, by using Adam Optimizer with learning rate = 0.001, 1 = 0.9 and 2 = 

0.999. Training process is fully monitored and the weights with the smallest testing loss 

after reaching convergence are used to generate results in the next subsection. 

Testing under unused Re conditions 

           Fig. 3 presents a set of testing results under the 4 different testing Re conditions. 

As clearly indicated by the predictive error, yNet can accurately predict the next-step 

flow field in all cases, with minor difference to the original physic-based simulation. For 

all the 795 testing results, yNet achieves a negligibly small root mean squared error 

(RMSE) of 0.588 s-2. It represents one of the first data-driven modeling that directly 

incorporates Reynolds number. Previous strategies for considering Reynolds number are 

usually to train a neural network that takes as inputs a series of historical flow fields [18, 
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40, 41], which as a whole embed corresponding Re information; see LSTM+ConvNet 

model in Fig. S2b. Thus, the neural network can predict the next step based on the 

evolving trend of consecutive flow fields, without being informed by any additional 

inputs like Reynold number. yNet however explicitly incorporates the important 

condition of Reynolds number, and thus possess two major advantages over previous 

strategies.  

First, yNet is as conceptually simple as a basic ConvNet, without the complexity 

of integrating sequence-modeling purposed LSTM model [18, 40], thus rendering a 

significant reduction in model size. Second, yNet is widely applicable to general 

condition-dependent fluid flow simulation problems. One typical example is to predict 

the development of flow field for different bluff body shapes [25, 38]. This is essentially 

a different mapping problem between distinct field quantities, i.e., from structural field 

(bluff body structure) to flow field; see comparison in Fig. S3. For such regression tasks 

beyond standard field evolvement, the aforementioned LSTM+ConvNet model 

apparently will no longer work. We have to explicitly incorporate effects of condition 

parameters on the flow field development, by developing a general multi-input field-to-

field regression capability [38].  
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Fig.3 Testing results of yNet under different Re conditions. We randomly pick a set of 

testing results, which show yNet in predicting next-step flow field development under 

different Re testing conditions. 

 

Testing on dynamic fluid simulation and temporal extrapolation 

          Fig. 4a visualizes a representative testing result of predicting multi-step evolution, 

under the testing condition of Re = 84, through recursive inference as depicted earlier in 

Fig. 2d. Noteworthy is that predictive errors can accumulate after many steps of recursive 

predictions. However, compared to the ground truth of physics-based simulation, yNet 

well reproduces the long-term dynamic flow field evolution, suggestive of rather small 

error during recursive prediction at every step. The predictive error over multi-step 

predictions for different Re testing conditions is summarized in the left half of Fig. 4c. 

The quantitative result reveals that predictive error does accumulate as recursive 

prediction proceeds, but remains within a small level, i.e., < 12.0 s-2 for different testing 

conditions. 
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In addition, attempts have been made to predict fluid dynamics towards the 

further future, i.e., beyond the time domain in training data; see the visualized example 

for Re = 84 in Fig. 4b. Correspondingly, for validation purpose we also extend the 

physical simulation for another 32 frames. Despite the big challenge associated with 

temporal extrapolation, predictive error continues to display gradual accumulation 

without a sudden rise, as shown in the right half of Fig. 4c. Notably, predictive error can 

finally reach a maximum RMSE of 29.37 s-2 for Re = 135. However, such a predictive 

error is acceptable, still providing good prediction of flow field as clearly shown by the 

inset in Fig. 4c. The above results indicate the successful learning of underlying evolution 

dynamics by yNet, which supports its temporal scalability to reasonably predicting flow 

field evolvement into further future.  
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Fig. 4 Testing results of yNet for dynamic fluid simulation. (a) testing of yNet in 

predicting dynamic flow field evolution with time through recursive predictions. In the 

dynamic simulation, we start from No. 128 step, which is around the wake of flow under 

Re = 84. We presented snapshots at some time points to quickly show the dynamic 

evolution process. (b) testing of yNet in predicting dynamic flow filed evolution beyond 

the original time domain in training data. (c) predictive errors over the long-term 

simulation of fluid dynamics under five Re testing conditions. 

 

Computational efficiency comparison: yNet VS conventional multi-input ConvNet 

Fig. 5a and b compares the computational accuracy and efficiency, respectively, 

between gating-based yNet and the conventional flattening-based multi-input ConvNet. 

For fair comparison, both networks are implemented with the exact same encoder and 
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decoder parts, but using gating and flattening based signal-merging strategies 

respectively. Also, since there are a few variants of flattening based strategy, we 

implement one by directly concatenating Re to the flattening result. The detailed 

architectures and configurations of the two implemented ConvNets are graphically 

compared in Fig. S1. As testing loss curves in Fig. 5a indicate, upon reaching 

convergence of training, yNet in general achieves comparable modeling accuracy (MSE 

= 2.4710-7) to that (MSE = 3.4110-7) of the conventional multi-input ConvNet. The 

inset in Fig.5a further shows almost the same prediction by the two models at a randomly 

selected testing data point. However, yNet can substantially reduce the number of model 

parameters by one order of magnitude and thus enjoys various computational benefits 

against the conventional ConvNet, such as significantly reduced memory consumption, 

shorter training time and faster inference speed; see Fig. 5b. 

 

Fig. 5 Comparison of yNet with conventional multi-input ConvNet. (a) testing loss 

curves of yNet and conventional multi-input CNN; (b) comparison of model size (i.e., 

total number of parameters) and three other performance metrics between yNet and 

conventional multi-input CNN. The performance is measured purposely based on a 

laptop (Intel Core i7-7500U CPU, NVIDIA GeForce GTX 950M GPU, 16G RAM). Note 

that memory usage is measured with a single unit input, instead of a batch. 
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The above merits of yNet are attributed to gating-based signal merging strategy, 

which permits effective interaction between two input channels while inducing only a 

minimal number of model parameters. The root reason for the effectiveness of directly 

manipulating feature maps might be further revealed by drawing an analogy to the 

conventional data compression technique - proper orthogonal decomposition (POD). It is 

known that POD is close to a basic feedforward neural network with certain constraints 

[42, 43]. In fact, there are also interesting parallels between POD and ConvNet. POD is a 

linear-theory based feature extraction technique. Through POD, a high-dimensional 

image can be expressed as a linear combination of orthogonal modes, i.e., the extracted 

features. Feature maps in ConvNets, albeit in a 2D matrix form, play a similar role as the 

coefficients of the linear combination in POD. Like those coefficients corresponding to 

their respective mode, a feature map in ConvNet would strongly correlate with a certain 

feature in the pixel space if one projects them back to pixel-based image reversely along 

the encoding process [44]. The activation values of each feature map are also specifically 

determined by the input image. The main difference is that the detailed representation of 

each feature map in high-dimensional image space is not easy to interpret, while those 

POD coefficients have their own well-decomposed POD mode. However, recent 

researches prove that one may build separate deconvolution networks to visualize 

detailed representation of encoded latent variables in high-dimensional space [45] and 

even analyze their energy contribution like the POD mode decomposition [46]. Although 

those researches focus on the latent variables (i.e., further compressed latent 

representation from feature maps), similar methodologies can be used to deconvolve the 

feature maps to fully reveal their high-dimensional looks. All of those facts imply the 
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similar function of feature maps in ConvNet to that of coefficients of the linear 

combination in POD. Thus, direct manipulation of those “coefficients” in ConvNet will 

effectively generate new combinations of features towards the target image, as does a 

POD. The deep decoder would then further contribute to the accurate obtainment of 

target or output image through the non-linear and complex reconstruction. 

Application 2: porosity evolution in selective laser sintering 

In this section, we further apply yNet to simulation of porosity development in 

selective laser sintering (SLS) to demonstrate (1) the capability in spatially extrapolating 

prediction, and (2) extreme computational efficiency over physics-based model. SLS [47] 

is one of the most popular additive manufacturing (AM) techniques, widely adopted for 

fabricating metal, ceramic and polymer components in a layer-by-layer manner [48]. Fast 

prediction of porosity formation in realistically large area with multiple sintering layers is 

of huge practical significance. However, accurate simulation of porosity formation in 

SLS usually requires proper consideration of rigid-body translation and rotation of 

powder particles for particle calescence, grain growth by boundary migration through 

various diffusion mechanisms and densification [49]; see Fig. S4. The complicated 

physics-based SLS simulation is so far computationally restricted to a few layers with 

limited length, thereby far from SLS practice. There is an urgent need for an inexpensive 

surrogate of the cumbersome physics-based SLS model.  

Training and testing procedure 

A multi-physical SLS model [50] is used to generate training and testing data. In 

the current SLS modeling, the sintering effects (particle calescence, grain growth and 
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porosity evolution) are largely decided by the heat-affected zone (HAZ) that depends on 

the laser condition, and inter-layer interaction mainly includes re-sintering of previous 

layers during scanning the newly added layer during the layer-by-layer fabrication. It is 

assumed that the sintering effect and the layer-interaction behavior can be transferred 

from a small patch to a long track as long as the size of the small patch is larger than the 

HAZ size. With the above assumption, we will train yNet based on dataset of small 

128128 patches (> maximum HAZ depth of 117 pixels) and then demonstrate its spatial 

scalability to handling multiple layers of long tracks. Dataset of standard patches are 

obtained by cropping as-received simulation results every 10 pixels; see Fig. 6a. The 

detailed training and testing procedure can be found in Supplementary Note 1.  

Testing on small standard patches 

Fig. 6a illustrates the data generation of standard patches for training and testing 

from raw simulation results. The generated dataset is split into training and testing parts 

based on laser power and scanning speed sample points, i.e., 75 [P, V] conditions 

randomly selected for training and the other 25 for testing; see detailed partition of [P, V] 

points in Fig. S6. Fig. 6b shows 5 testing results on standard patches. yNet prediction 

results closely resemble physics-based simulations and only minor morphological error 

(see last row of Fig.6b) can be observed through pixel-wise comparison of their phase 

variables. In addition to visual resemblance, we examine the pixel-wise global accuracy 

(i.e., percentage of correct pixels) for such two-phase high-contrast fields. yNet achieves 

an as high as 99.13% similarity to ground truth in average for all 43500 testing results.  
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Fig.6 Testing of yNet on small standard patches. (a) pre-pocessing raw simulation 

results for dataset of standard patches. (b) testing results of yNet on standard patches. We 

randomly selected 5 out of 42750 testing results. 

 

Testing on long tracks and spatial extrapolation 

The as-trained yNet is scalable to perform large- or even extreme-scale simulation 

in space, such as multiple layers of long tracks. To validate step-by-step, we first examine 
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the spatial extrapolation of the trained yNet to handling a single-layer long track; see Fig. 

7a. Fig. 7b compares the accuracy of yNet in modeling small patches of original size and 

long tracks. For different laser power conditions, yNet consistently shows a comparably 

high accuracy in dealing with long tracks. On average, yNet achieves a pixel-wise 

accuracy of 99.04% in modeling long tracks, which is close to 99.24% in modeling small 

patches. The root reason for its scalability to track of any length is that yNet essentially 

learns sintering effect associated with laser conditions and independent from track length. 

The second step is the further validation of sintering multi-layer long tracks that involves 

inter-layer interaction. Fig. S7 show an example of detailed simulation process for several 

layers. By adopting such layer-wise simulation, we obtain the multi-layer sintering results 

by yNet and physics-based model under different laser conditions; see Fig. 7c. By 

increasing laser power, we can observe that results by yNet and physics-based model 

both show a transition from layer-scale unsintered region (see top-left inset) to small 

scattered unsintered areas (see bottom-left inset) and, eventually, to a fully sintered state 

(see bottom-right inset). The unsintered regions are located in between layers, due to 

insufficient sintering depth under small laser powers. The quantitative results of 

measured unsintered regions (see top-right figure) further prove the good agreement 

between yNet-based and physical multi-layer simulations. 
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Fig. 7 Testing of yNet on extrapolating prediction for long tracks. (a) schematic 

illustration of as-trained yNet for predicting sintering of long track. (b) testing results of 

yNet for predicting sintering of long track under different laser conditions. (c) further 

extension of yNet to predicting sintering of multi-layer long tracks under different laser 

conditions. By following the workflow in Fig. S7, we perform sintering simulation of 

multiple layers under three laser power conditions (P = 20, 25, and 30 W). Other settings 

are the same as that used in Fig. S7. The overall sintering effect of multiple layers 

(measured by fraction of unsintered region) as a function of laser power are then obtained 

for yNet and physics-based model as shown. Note that, for unbiased measurement of 

unsintered regions, unsintered regions are manually labeled and calculated by the third 

party. 

 

The above-validated spatial scalability can help address the computationally 

daunting task of full-component SLS simulation. As an illustration, we use yNet to 
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perform multi-layer sintering simulation of a practical 315-layer SLS component with 

dimensions of 70.844.1 mm2 (or 3541622050 pixels). As depicted in Fig. S8, we 

completely emulate the practical SLS process to perform the full-component simulation 

layer-by-layer, i.e., generating a new layer of raw powder bed, CAD-model guided 

selective sintering simulation of the newly added layer, and repeat the above two steps 

until completing the whole component. It should be pointed out that computational cost 

of raw powder bed generation increases exponentially with track length. For efficiency, 

we simplify powder bed generation during full-component simulation, by depositing a 

continuous series of mini-powder-beds till completing deposition of the entire layer. This 

will numerically create large pores regularly observed in between adjunct mini-powder-

beds, as shown later. Fig. 8a shows the final SLS simulation result. Due to its extremely 

large size, here we can only present a fraction of the detail of the whole simulation result; 

see Fig. 8b. The periodically observed large pores are attributed to numerical artifacts due 

to the aforementioned simplified powder-bed generation. Once available, a more efficient 

powder bed generation model can be integrated with our yNet for better component-level 

simulation. It is known that AM simulation is often limited to a single layer or even a 

representative volume element (RVE). A practical simulation of the entire layer-by-layer 

AM process is rarely achieved so far. Fig. 8a represents one of the first achievements of 

component-level AM simulation to date. Fig. 8c summarizes the simulation size of some 

of existing 2D sintering simulation research [51-55]. Although prior researches did not 

report computation time and hardware used, Fig. 8c gives a rough yet direct insight into 

the massively boosted simulation capability by yNet. The simulation size by yNet is 

several orders of magnitude larger than previous physics-based simulation. yNet enabled 
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component-level simulation would open up enormous possibilities in SLS practices. For 

example, SLS has been intentionally used for fabricating porous structures with high 

permeability and bio-compatibility [56, 57]. The trained yNet permits extensive virtual 

experiments in the pre-production phase, thus greatly facilitating structure design and 

process planning for fabricating a SLS component with any desired porosity distribution.   

Comparison of yNet with physics-based model 

As discussed early, physics-based SLS simulation especially at the component 

level is quite computationally demanding. It thus presents as an ideal case to demonstrate 

the computational superiority of yNet over physics-based model. In this subsection, we 

look into the computation time of yNet and the original physics-based SLS model. Again, 

yNet and physics-based model are intentionally tested on the laptop used in the 

benchmark study in Application 1.  

Fig. 8d shows the computation time as a function of the length of modeled 

powder bed. We can find that simulation of small tracks like 640-pixel long tracks in Fig. 

7a is just a matter of tens of milliseconds by using yNet. In striking contrast, the original 

physics-based model used in this study will take a few hours to complete the same task in 

the same computational setting. The test for physics-based model stops at the length of 

2048 pixels, because it can be foreseen that by modeling even longer track, the 

computation time will increase rapidly to days. With such limited computational 

resources, yNet can however easily handle extremely large layers with a maximum length 

of ~21248 pixels. Modeling even this large layer remains to be nearly instant for yNet. In 

this regarding, the component-level SLS simulation (i.e., hundreds of large layers), which 
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is previously a formidable task even for high-end computing facilities, is now 

accomplishable in a few minutes with yNet by simply using a laptop.  

 

Fig. 8 yNet enabled component-level SLS simulation. (a) Final result of yNet based 

porosity simulation of a 315-layer high SLS component - block “M” logo of University 

of Michigan (3541622050 pixels). (b) Magnified image showing the sintering details of 

a fraction of the SLS component. (c) Relative simulation size of existing sintering 

simulations to y-Net based component-level simulation. They are compared in terms of 

dimensionless size in number of pixels. (d) Comparison of computation time between 

yNet and physics-based model. In general, yNet is not only 5 to 6 orders of magnitude 

faster than physics-based model, but also able to handle extremely long tracks with even 

limited computational resource. 

 

Application 3: stress field development  

In this section, we quickly present another application of yNet to predicting stress 

field development. The main objective of this application is to test the robustness of yNet 

in (1) handling input and output field with striking difference and (2) extending the stress 
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field prediction for structures beyond the specific type of shape used in training. Stress 

field development is a totally different type of field evolvement problem compared to the 

previous two. The task in this application is to construct mapping between fields of 

different physical meaning - structural field and stress field. Compared to standard field 

evolvement of a certain type of field, the stress field development shows a radical 

difference between input and output images.  The input structure is a simple high-contrast 

field, whereas the output stress field is characterized with complex texture and great 

variability. Therefore, this application may further push the performance limit of the 

proposed yNet in the tough application scenario of strong “field evolvement”.  

Training and testing procedure 

           For illustration purpose, we trained yNet to predict stress field development within 

typical perforation structure (i.e., 0.1m0.1m solid structure with a hole), when subject to 

compressive loading.  Supplementary Note 2 describes the detailed training and testing 

procedure. As illustrated in Fig. 9a, the basic idea is to train yNet with a specific type of 

perforation structures, which all feature elliptic hole albeit with random combination of 

hole orientation, size and aspect ratio. Once trained, yNet is expected to predict stress 

field development for perforation structures with holes of not only elliptical shapes but 

also other geometries. 

We first routinely test yNet for perforation structures with elliptical holes unused 

during training; see Fig. S11 for more details. Briefly, the prediction by yNet overall 

agrees well with FE-based simulation. The RMSE for all 1000 testing results is as small 

as 11.29 MPa. Therefore, although the input and output images are totally different and 

display huge changes, yNet can still correctly predict those significant “evolvements”. 
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Testing on other types of perforation structures (extrapolation???) 

Besides the routine testing, we further test yNet for perforation structure with 

other categories of holes, including triangle, rectangle, and polygonal ones. For the 5 

random testing results in Fig. 9b, the RMSE is 20.97, 50.43, 49.66, 41.33, 51.71 MPa 

respectively, which are relatively higher that of testing with respect to elliptical holes. 

Although the predictive performance shows a small decrease, from the comparison of 

detailed stress distribution, yNet still reasonably predict stress field development. It is 

thus believed that yNet has learned the basic rule for stress field development. For 

example, stress concentration tends to take place during sharp geometrical transitions 

along the loading direction and also initiates from two bottom corners with increasing 

loading (associated with fixed boundary at the bottom in the current modeling); the 

discontinuous geometrical changes transverse to the loading direction will however not 

serve as significant stress risers. Those rules are fully contained in the training dataset 

and universally valid for perforation structures of any type. Learning those fundamental 

rules thus endows yNet great extrapolation capability in coping with different perforation 

structures. 

Noteworthy is that, such a data-driven stress field prediction capability also 

naturally addresses the data-driven prediction of stress hotspot. The prior art of this 

research area is grain-wise stress-hotspot prediction for grain microstructures [58, 59], 

which also relies on expert knowledge to hand-design contributing factors to stress 

hotspot. The yNet trained herein can predict the detailed distribution of loading-

dependent stress field, thus allowing for direct pixel-level prediction of stress hotspot by 

simply thresholding using the critical stress.  
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Fig.9 Illustrates the extrapolation capability in predicting stress development of 

various types of perforation structures. (a) yNet is trained based on simple dataset 

containing ecliptic holes only. The as-trained yNet can predict stress field for other types 

of holes. All of the holes used in training and testing are randomly generated based on the 

descriptive methods as shown. (b) Testing of yNet on different types of perforation 

structures. In this second-round testing, these perforation structures have completely 

different types of holes than that in training dataset. Five randomly generated rectangle, 

triangle and polygonal holes are tested. 
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Discussion 

Future applications  

The proposed yNet should be generally applicable to a plenty of condition-

dependent field evolvement and development problems. The presented applications have 

helped comprehensively examine the reliability of yNet. Those different application 

scenarios should cover many field evolvement and development problems across physical 

science and engineering. As the results throughout this study show, the proposed yNet is 

widely useful for simulating field evolvement in those different situations. The well-

tested yNet thus has an enormous potential in future applications in a lot of domains. For 

example, Supplementary Note 3 describes another interesting application of yNet for 

grain growth simulation. It again utilizes spatiotemporal scalability of yNet to enable 

long-term, large-scale grain growth simulation (60K grains) based on a laptop. yNet can 

be also easily extended to 3D modeling with simple modifications like adoption of 3D 

convolutions and 3D pooling operations. It is known that computational cost of physical 

simulation usually increases sharply for 3D, in which case yNet may become even more 

invaluable. 

Limitations 

The main limitation of yNet is that the trained yNet is sometimes limited in 

scaling to field of large and variable dimensions. In yNet-based component-level SLS 

simulation, the scalability to long tracks relies on the assumption of globally uniform 

evolving kinetics of porosity evolution in SLS. That is, the sintering effect depends on 

applied laser condition and is consistent along the length of the sintered track for a given 
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laser condition; see Fig. S9. The large-scale simulation of natural grain growth is also 

based on its completely uniform evolving kinetics over modeling domain. This is 

however not always the case, e.g., fluid dynamics simulation and stress field prediction 

where such simple scalability may not hold. Other solutions are demanded for developing 

more advanced scientific ConvNets. However, the core of yNet is still expected to play a 

role whenever it comes to developing multi-input ConvNets and merging input signals. 

Another limitation is that only parameter-type conditions are considered and 

demonstrated in the current study. There are however higher-dimensional and more 

complex conditions in various physical and engineering problems. For example, the 

applied loading in stress-hotspot development case in Fig. 8a can be non-uniform, thus 

not describable by a single scalar parameter. Also, besides natural grain growth in Fig. 8b, 

grain growth in practice can be influenced by their living temperature field, as the 

preferred growth direction is along the local thermal gradient [60]. Nonetheless, those 

complex conditions, no matter how many dimensions they have, can be eventually 

converted to an embedding vector of desired length. It would then allow for the adoption 

of gating-based signal merging for efficient incorporation of their impacts on field 

evolvement. 

Conclusion 

In summary, we have proposed a multi-input deep convolutional network, yNet, 

which aims to solidly push our data-driven modeling capability to multi-input field-to-

field/image-to-image regression. It provides an ultra-fast way to realistically simulate 

various condition-dependent field evolvements, by treating them as a purely data-driven 
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regression problem. Experiments demonstrate that yNet enjoys extreme computational 

efficiency against the physics-based model and significant computational advantage over 

its ConvNet counterparts. The proposed yNet is applied to three representative data-

driven modeling problems - fluid dynamics, porosity evolution in selective laser sintering 

(SLS), and stress field development. Those diverse applications have demonstrated the 

general effectiveness of yNet in handling many types of field evolvements in physical 

science and engineering. Therefore, the well-tested yNet may have a profound impact as 

a conceptually simple, light-weight yet generally useful multi-input field-to-field 

regression tool. 
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Method 

Physics-based fluid dynamics model 

XX 

Physics-based SLS model 

Physics-based SLS simulation provides training and testing data. In this study, we 

basically customize a phase-field-based sintering model [49] for applicability in SLS, 

with further incorporation of heat transfer model and a Gaussian heat source model 

describing the effective heat input from moving laser beam [61]. The sintering model 

itself has properly taken into account multiple physical processes, by first reformulating 

the effective diffusion coefficient as: 

( ) ( ) ( ) ( )'
'

1 1eff

vol vap sf gbD D D D D  
  
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

= + − + − +      (3) 

where, Dvol, Dvap, Dsf and Dgb are temperature-dependent diffusion coefficients in solid 

volume, vapor, along surface, and grain boundary, respectively.  is phase variable that 

describes the -th particle. In addition, the non-conserved porosity evolution is partially 

governed by the rigid body motion-induced advection velocity field, which is a 

combination of the translation of rotation from all relevant particles,
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 = +  v v v . The velocit fields of rigid-body translation, vt and rotation, vr, 

of the -th particle are calculated by: 
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where mt = 500 and mr = 1. The force, F, and torque, T, acting on the powder particles 

are associated with the their real-time structural envrionment. 

The operating range of laser power is [25, 40] W and scanning speed [0.5, 2.5] m 

s-1. The alloy we used is stainless steel 316L. The spatial and temporal simulation 

resolution are x = y = 2m and t = 1s, respectively. Full mathematical details of our 

physical SLS model are reported in a separate paper on multi-physical SLS simulation 

[50].  

Powder generation model 

In addition to sintering model for simulating porosity evolution, generation of 

powder bed (i.e. initial porous structure) is simulated using a “rain” model [62]. The 

basic mechanism of rain model is to add a powder particle to the lowest position on the 

surface of the current powder layer, update the powder layer and repeat the above two 

steps. This iterative process is terminated when the newly added particle reaches the user-

defined layer height. The mean and standard deviation of the diameter of deposited 

powders are 25m and 0.5m, respectively. It should be pointed out that yNet in this 

study will be trained to simulate porosity evolution and thus replace physics-based 
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sintering model only. Powder bed generation model is a separate model that provides 

initial structure for physical sintering simulation and yNet-based sintering simulation. 

yNet 

We use the yNet instantiated in fluid dynamics simulation as an illustrative 

example. The detailed architecture is shown in Fig. S1a. The first layer of MLP is the 

condition input (i.e, Reynolds number), the hidden layer is a fully connected layer with 

256 neurons and the final layer 512 neurons. For the encoder, the input is vorticity flow 

field at the current step in 25664 image. Each green block represents a combo of 

Conv+Relu operations and light green block means max-pooling. In this manner, encoder 

finally yields 512 82 feature maps, which are passed to a dropout layer with rate of 0.5 

before merging with MLP signal. The decoder just has a somewhat mirrored topology of 

encoder, with each blue block representing a combo of Conv+Relu operations and dark 

blue block up-sampling. For the other three applications, we basically use the above-

described yNet, but with potentially adjusted depth of encoder-decoder and width of 

MLP depending on the modeling complexity.  

Two types of loss functions are used in this study. For output field with strong 

texture (i.e, flow field and stress field), we use mean squared error (MSE) to evaluate loss: 

( )
2

1

1
,

N i i i

i
Loss f

N =
= − a X Y     (6) 

where N is number of samples processed, a is the condition-parameter inputs, X is the 

field input, 𝑓(𝒂𝒊, 𝑿𝒊) is the evolved field by prediction and 𝒀̅ is evolved field of ground 
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truth. For output field that clearly displays two distinct phases (i.e., porosity structure and 

grain structure), we use binary cross-entropy loss to better penalize predictive errors:  

( ) ( )( ) ( )
2
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1
, log 1 , 1 log

N i i i i i i

i
Loss f f

N =
= −  + −  − a X Y a X Y   (7) 
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