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Abstract

There is a compelling need for the capability of multi-input field-to-field
regression or mapping the initial field and applied conditions to the evolved field, e.g.,
given current flow field and fluid properties predicting next-step flow field. Such a
regression capability can provide a maximum substitute of various physics-based models,
enabling fast simulation of condition-dependent field evolvements. We hereby propose a
y-shaped multi-input convolutional network (ConvNet), yNet, which can efficiently build
functional relationship between multi-input (i.e., input field and applied condition
parameters) and evolved field. yNet merges input signals without flattening the field
input into a large vector and, instead, by directly manipulating high-level encoded feature
maps. It thus possesses extreme computational efficiency (i.e., as much as six orders of
magnitude faster) against physics-based models, as well as significant model reduction
(i.e., one-tenth of the model size) over its ConvNet counterpart. It is applied to solving a
variety of data-driven modeling problems in physical science and engineering, i.e., fluid
dynamics, porosity evolution in selective laser sintering (SLS), and stress field
development. yNet consistently shows great extrapolation capability in predicting beyond
the training datasets in terms of temporal ranges, spatial domains, and geometrical shapes.
The three applications have demonstrated the general effectiveness of yNet in learning
the underlying physical rules that govern field evolvement and development. The well-
tested yNet thus may have an enormous potential and profound impact as a conceptually

simple, light-weight yet powerful multi-input field-to-field regressor.

Keywords: Convolutional Network, Scientific Machine Learning, Data-driven Modeling

* leichn@umich.edu (L. Chen).



mailto:leichn@umich.edu

Introduction

Deep convolutional network (ConvNet) utilizes stacks of convolutional layers for
automatic, hierarchical representation learning of high-dimensional data. The
convolutional components of ConvNet bring it great advantages in processing data in the
form of multiple arrays, such as signals and sequences (1D), images or audio
spectrograms (2D) and video or volumetric images (3D) [1]. Since its first application in
digit recognition nearly 30 years ago [2], ConvNet has been particularly serving as the
backbone for performing various computer vision (CV) and other image-centered tasks,
such as image labeling/classification [3], object localization [4], semantic segmentation
(pixel-wise labeling) [5, 6], etc. Upon realization of its distinct advantage in image
modeling, it has been recently witnessed a surge of applications in different scientific
domains where image-involved problems are ubiquitous. Some of those scientific
applications include image classification with respect to scientific images [7, 8],
microstructure characterization and reconstruction (MCR) [9-11], process-structure [12,
13] and structure-property [14, 15] relationship modeling in materials science and
engineering. They all leverage ConvNets to explicitly process and “understand” scientific
images, thereby free from hand-craft featurization and with minimal human intervention.
For example, conventional structure-property modeling relies heavily on domain experts
to design effective structure descriptors [16, 17], while ConvNets directly take raw
structure information as input and can construct high-fidelity relationship between image-

based structure and property; see Fig. 1a and 1b respectively.

Another prominent application is ConvNet based simulation of field evolvement

and development. This application also takes advantage of its superior image modeling
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capability because different types of physical fields, such as temperature, velocity and
density fields, can eventually present as images. In this regarding, ConvNets treat the
field evolvement and development as a purely data-driven, image-to-image/field-to-field
regression problem; see Fig. 1c. Some typical examples include fluid flow evolvement
(i.e., current flow field to future flow field [18]), microstructure evolution (i.e., current
structural field to future structural field [19]) and stress/strain field development
(structural field to stress/strain field [20, 21]). ConvNets simply aim to build those field-
to-field mappings from training datasets, without ever playing with any complex physical
governing equation. As such, the ConvNet, once trained, can offer an inexpensive
substitute of physics-based model, enabling fast yet realistic simulation of field

evolvement and development.

However, most of the related research [19, 21-27] just adopted the CV task
oriented ConvNets, especially those with a typical encoder-decoder architecture.
Obviously, such an encoder-decoder model originally for semantic segmentation is
unable to satisfactorily address data-driven modeling of field evolvements. In semantic
segmentation, the output image or segmentation result is uniquely determined by the
input image to be segmented; see Fig. 1c. However, the evolvement and development of
a physical field is usually not only decided by the initial field, but also controlled by the
applied conditions. For instance, flow field developed at a future point is concerned with
the current flow field as well as fluid properties (see Fig. 1d) and stress field development
greatly depends on the condition of applied force. With a pure image-to-image regression
tool, those existing researches have to fix conditions, thus failing to incorporate

condition-related parameters. Regarding this, the trained ConvNet is strictly applicable to



the specific condition used for training. This is apparently contrary to the general fact of
great variability in applied conditions, and seriously stifles the practical use of the trained
ConvNet. Thus, developing a more general multi-input field-to-field regressor, which can
build functional relationship between multi-input (i.e., input field and condition
parameters) and output field, would be of huge significance. It will, for example, allow us
to train a single ConvNet applicable to various fluids with distinct conditions (Fig. 1d),
instead of training separate ConvNet for each of them. Such a multi-input field-to-
field/image-to-image regression capability with well-tested general usefulness is
fundamentally important, as are the other three regression capabilities. It will solidly
advance the border of our reachable regression tasks, as compared between Fig. 1c and

Fig. 1d.

Towards this end, we propose a multi-input deep convolutional neural network,
which naturally exhibits a signature y-shape as a multi-input field-to-field regressor; see
Fig. 1f. We thus name it “yNet” that conveys its most salient feature, namely the efficient
fusion of an additional input signal of condition-related parameters, in comparison with
the pure image-to-image regression neural network (thus I-shaped) in aforementioned CV
and scientific applications (Fig. lc). As shown, the main architecture is basically
composed of encoder-decoder based on deep convolutional network and a branch of
multilayer perceptron (MLP). The encoder essentially plays a role of non-linear
dimension reduction. It decomposes the original high-dimensional pixel-based field into
N> information-rich nixn2 feature maps; see Fig. 1g. MLP acts to expand the condition-
related parameter(s) into N1 neurons that generate a 1xN1 embedding vector. In this way,

the encoder and MLP would facilitate effective fusion of input signals at their ends, as



further discussed later. Decoder serves to correctly reconstruct the merged signal back to
a meaningful and desired output field through the deep deconvolution process. Note that,
in the deep deconvolution process we also concatenate feature maps extracted during the
early autoencoding process. This technique is commonly adopted in semantic
segmentation networks, such as U-Net [28] and FCN [29], with the aim of improving
segmentation details. It is expected to compensate information loss by coarsening during
max-pooling in encoding process and improve information flow from (image) input to

decoder.

After building the main architecture, merging signals of multiple inputs poses as a
key problem. In fact, such multiple mixed inputs (a high-dimensional image and scalar
parameters) are not uncommon in various ML tasks, although the output is not
necessarily image. However, the merging strategies in existing multi-input ConvNets can
suffer from various drawbacks associated with dense parameters. One common merging
strategy [30-32] is to flatten image signal, here represented by its feature maps, into a
long vector, thus making it compatible and hence concatenable to the vectorial output of
MLP; see Fig. 1e. Another merging strategy in image captioning model [33], which is not
graphically illustrated here as it is very similar to the above one, is also flattening image
first, however, strictly to a vector of the same size (i.e., N1 = N2). In doing so, it allows
for element-wise adding of two vectors (image and linguistic vectors) to successfully
merge signals. Those flattening-based strategies (flattening+concatenating or
flattening+adding) are suitable or sometimes unavoidable for predicting a single label or
numeric value but may not be optimal for ConvNets with an image-type output. The

flattening operation would yield large fully connected layers as shown, which are known



to be parameter-intensive. The dense parameters can bring about drawbacks such as
increased training complexity requiring sophisticated training schemes, more hardware
resources demanded during both training and inference, slow inference speed. The above
facts are clearly shown, for example, in comparative studies [34] between the light-
weight SegNet and other semantic segmentation ConvNets [29, 35, 36]. Apart from
parameter-efficiency issue, flattening operation will interrupt the signal flow of 2D
feature maps, which themself are meaningful as spatial features in condensed and coarse
form. The merged signal in those manners however becomes a skinny numerical vector,
which is somewhat meaningless or less interpretable. After flattening-based merging,
ConvNet would have to take further efforts to force the vectors back to 2D useful maps
for decoding process. A flattening-based strategy thus, if workable for multi-input image-
to-image regression [37, 38], might make the multi-input ConvNet more like a brute-

force regressor.

To overcome the shortcomings of flattening-based merging strategy, we propose
to properly merge signals using a one-to-one connection via multiplication (Fig. 1g),
which is mathematically akin to the gating mechanism [39]. The proposed gating-based
signal merging strategy features great simplicity and would result in smooth signal flow
of feature maps throughout the encoding-decoding process. In this case, MLP actually
turns as a signal modulator of feature maps, which is anticipated to rearrange encoded
high-level feature maps towards high-level representation of the output field. Especially,
the effectiveness of the gating-based merging strategy lies in the fact of those neurons
interacting with respective feature map in a direct, neat and therefore strong manner. This

is a key for yNet to efficiently learn the combined effects of two channels. We posit that,



through training, MLP can learn to precisely manipulate the initial field represented by
high-level feature maps into the developed field (preliminarily in the form of gated
feature maps) for given condition; the decoder then appropriately reconstruct the gated

feature maps into the realistic evolved or developed field.

We further clarify that this research focuses on the parameter-type conditions only.
However, the core of yNet should shed light on efficiently incorporating other conditions
in more complex forms, as discussed later. That being said, the umbrella term “condition”
in this paper refers to not only external conditions (e.g., ambient temperature and applied
loading level) but also internal conditions (e.g., materials and physical properties
concerned with evolving kinetics), as well as the time period of evolvement. As long as
one has an association with the field evolvement and development, it can be seen as

“condition”, thus falling within the interest of the proposed yNet.
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Fig. 1 Four different regression tasks with increasing complexity and multi-input
ConvNet. (a) parameter(s) to parameter(s) regression for conventional structure-property
modeling, where both the input and output are one or a few parameters, i.e., scalar
quantities. (b) image to parameter(s) regression for high-fidelity structure-property
modeling, where the input is image and output are parameters. (¢) image to image/field to
field regression for semantic segmentation and fluid dynamics simulation, where both the
input and output are images. (d) multi-input field to field regression for condition-
incorporated fluid dynamics simulation, where the mixed input are parameters of fluid
properties and image of current flow field and the output is image of next-step flow field.
(f) The proposed y-shaped multi-input ConvNet for handling the above multi-input field-
to-field regression tasks. Comparison of (e) the conventional flattening-based and (g) the
proposed gating-based signal merging strategy.

Next, we will present three applications of yNet to show its different extrapolation
capabilities, which collectively demonstrate the general effectiveness of yNet in learning
various field evolvement and development rules. Following the above three applications,
we finally discuss its enormous potential in future applications as well as some

limitations.

Application 1: fluid dynamics

In this paper, we start with the widely studied fluid dynamics simulation in the
data-driven modeling community. Specifically, we will use a classical fluid flow problem
— 1incompressible, viscous flow shedding around a cylinder. In this case, the

spatiotemporal evolution of viscous fluid field is governed by:

oo
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where w =V x v is the vorticity, v is the velocity of the fluid, v is the kinematic viscosity

of the fluid. Variables in Eq. (1) can be rewritten in scaled units with respect to unit

) ) . L 14
length L and unit fluid velocity V, namely, x=x'L, v=v'V , t=t'; , a)za)'z.
Consequently, Eq. (1) can be rewritten as:
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where Re =——1s the Reynolds number as a function of kinematic viscosity, unit length
1%

and unit fluid velocity. From Eq. (2), we can find that Reynolds number is the dominating
condition that dictates the flow behavior. Therefore, in the following research, we will
train a single yNet capable of simulating fluid flow evolution over a range of Reynolds
numbers. The trained yNet will be tested on: (1) predicting flow field development for Re
conditions unused in the training datasets; (2) simulating dynamic flow field evolution
via recursive predictions; (3) temporal extrapolation for predication, i.e., extending the
dynamic simulation beyond the original time domain in training data, and (4)

computational accuracy and efficiency in comparison with conventional ConvNet.

Training and testing procedure

Fig. 2a illustrates the overall procedure of training an yNet applicable to a range
of Reynolds numbers. Vorticity field is selected as flow field of interest and Reynolds
number as the condition parameter, but we can easily train yNet for the other flow fields
in the same way. To achieve simulation of dynamic field evolution, yNet acts to predict

next-step flow field based on the current flow field and Reynolds number, Re. As such,



long-term flow field evolution simulation can be performed by yNet through multi-step

recursive predictions as shown in Fig. 2d and Fig. S2a.
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Fig. 2 Illustration of training and testing of yNet for fluid dynamics simulation. (a)
Overall flowchart of training and testing yNet. (b) To generate data, a physical fluid
dynamics simulation using OpenFOAM is performed at each Reynolds number sampling
point, followed by extraction of neighboring snapshots as data pair. (¢) Each data point is
thus a triplet, consisting of respective Reynolds number, flow fields at #, and #+1, where n
=1,2,3,...,159. (d) The trained yNet can be used to predict flow field for next time step
based on given flow field and Reynolds number condition. As such, the trained yNet can
also work in a recursive manner to predict long-term flow field evolution.
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It should be noted that more condition parameters can be easily incorporated by
simple adjustment of input layer of MLP, as executed in next application. To provide
dataset, physical simulations are performed at 29 equally spaced Reynolds numbers (i.e.,
Re=175,78, 81, ... ,159), where 24 cases would be randomly chosen for training and the
other 5 for testing; see data splitting in Fig. 2a. For all those physical simulations,
extraction of neighboring snapshots is performed to generate one-step-distance data pairs,
as illustrated in Fig. 2b. A physical simulation will output a total of 160 frames,
indicative of 159 data pairs obtained at each Reynolds number sampling point or 4611 for
the entire dataset; see Fig. 2c. They are split into training and testing datasets based on

Reynolds numbers as mentioned early.

For yNet instantiated in this application, the detailed architecture is illustrated in
Fig. Sla and explained in the Method section. We train yNet for 100 epochs with a mini-
batch size of 2, by using Adam Optimizer with learning rate = 0.001, /i = 0.9 and /& =
0.999. Training process is fully monitored and the weights with the smallest testing loss

after reaching convergence are used to generate results in the next subsection.

Testing under unused Re conditions

Fig. 3 presents a set of testing results under the 4 different testing Re conditions.
As clearly indicated by the predictive error, yNet can accurately predict the next-step
flow field in all cases, with minor difference to the original physic-based simulation. For
all the 795 testing results, yNet achieves a negligibly small root mean squared error
(RMSE) of 0.588 s. It represents one of the first data-driven modeling that directly
incorporates Reynolds number. Previous strategies for considering Reynolds number are

usually to train a neural network that takes as inputs a series of historical flow fields [18,
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40, 41], which as a whole embed corresponding Re information; see LSTM~+ConvNet
model in Fig. S2b. Thus, the neural network can predict the next step based on the
evolving trend of consecutive flow fields, without being informed by any additional
inputs like Reynold number. yNet however explicitly incorporates the important
condition of Reynolds number, and thus possess two major advantages over previous

strategies.

First, yNet is as conceptually simple as a basic ConvNet, without the complexity
of integrating sequence-modeling purposed LSTM model [18, 40], thus rendering a
significant reduction in model size. Second, yNet is widely applicable to general
condition-dependent fluid flow simulation problems. One typical example is to predict
the development of flow field for different bluff body shapes [25, 38]. This is essentially
a different mapping problem between distinct field quantities, i.e., from structural field
(bluff body structure) to flow field; see comparison in Fig. S3. For such regression tasks
beyond standard field evolvement, the aforementioned LSTM+ConvNet model
apparently will no longer work. We have to explicitly incorporate effects of condition
parameters on the flow field development, by developing a general multi-input field-to-

field regression capability [38].
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Fig.3 Testing results of yNet under different Re conditions. We randomly pick a set of
testing results, which show yNet in predicting next-step flow field development under
different Re testing conditions.

Testing on dynamic fluid simulation and temporal extrapolation

Fig. 4a visualizes a representative testing result of predicting multi-step evolution,
under the testing condition of Re = 84, through recursive inference as depicted earlier in
Fig. 2d. Noteworthy is that predictive errors can accumulate after many steps of recursive
predictions. However, compared to the ground truth of physics-based simulation, yNet
well reproduces the long-term dynamic flow field evolution, suggestive of rather small
error during recursive prediction at every step. The predictive error over multi-step
predictions for different Re testing conditions is summarized in the left half of Fig. 4c.
The quantitative result reveals that predictive error does accumulate as recursive
prediction proceeds, but remains within a small level, i.e., < 12.0 s for different testing

conditions.
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In addition, attempts have been made to predict fluid dynamics towards the
further future, i.e., beyond the time domain in training data; see the visualized example
for Re = 84 in Fig. 4b. Correspondingly, for validation purpose we also extend the
physical simulation for another 32 frames. Despite the big challenge associated with
temporal extrapolation, predictive error continues to display gradual accumulation
without a sudden rise, as shown in the right half of Fig. 4c. Notably, predictive error can
finally reach a maximum RMSE of 29.37 s for Re = 135. However, such a predictive
error is acceptable, still providing good prediction of flow field as clearly shown by the
inset in Fig. 4c. The above results indicate the successful learning of underlying evolution
dynamics by yNet, which supports its temporal scalability to reasonably predicting flow

field evolvement into further future.
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Fig. 4 Testing results of yNet for dynamic fluid simulation. (a) testing of yNet in
predicting dynamic flow field evolution with time through recursive predictions. In the
dynamic simulation, we start from No. 128 step, which is around the wake of flow under
Re = 84. We presented snapshots at some time points to quickly show the dynamic
evolution process. (b) testing of yNet in predicting dynamic flow filed evolution beyond
the original time domain in training data. (¢) predictive errors over the long-term
simulation of fluid dynamics under five Re testing conditions.

Computational efficiency comparison: yNet VS conventional multi-input ConvNet

Fig. 5a and b compares the computational accuracy and efficiency, respectively,
between gating-based yNet and the conventional flattening-based multi-input ConvNet.

For fair comparison, both networks are implemented with the exact same encoder and
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decoder parts, but using gating and flattening based signal-merging strategies
respectively. Also, since there are a few variants of flattening based strategy, we
implement one by directly concatenating Re to the flattening result. The detailed
architectures and configurations of the two implemented ConvNets are graphically
compared in Fig. S1. As testing loss curves in Fig. 5a indicate, upon reaching
convergence of training, yNet in general achieves comparable modeling accuracy (MSE
= 2.47x107) to that (MSE = 3.41x107") of the conventional multi-input ConvNet. The
inset in Fig.5a further shows almost the same prediction by the two models at a randomly
selected testing data point. However, yNet can substantially reduce the number of model
parameters by one order of magnitude and thus enjoys various computational benefits
against the conventional ConvNet, such as significantly reduced memory consumption,

shorter training time and faster inference speed; see Fig. 5b.
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Fig. 5 Comparison of yNet with conventional multi-input ConvNet. (a) testing loss
curves of yNet and conventional multi-input CNN; (b) comparison of model size (i.e.,
total number of parameters) and three other performance metrics between yNet and
conventional multi-input CNN. The performance is measured purposely based on a
laptop (Intel Core 17-7500U CPU, NVIDIA GeForce GTX 950M GPU, 16G RAM). Note
that memory usage is measured with a single unit input, instead of a batch.
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The above merits of yNet are attributed to gating-based signal merging strategy,
which permits effective interaction between two input channels while inducing only a
minimal number of model parameters. The root reason for the effectiveness of directly
manipulating feature maps might be further revealed by drawing an analogy to the
conventional data compression technique - proper orthogonal decomposition (POD). It is
known that POD is close to a basic feedforward neural network with certain constraints
[42, 43]. In fact, there are also interesting parallels between POD and ConvNet. POD is a
linear-theory based feature extraction technique. Through POD, a high-dimensional
image can be expressed as a linear combination of orthogonal modes, i.e., the extracted
features. Feature maps in ConvNets, albeit in a 2D matrix form, play a similar role as the
coefficients of the linear combination in POD. Like those coefficients corresponding to
their respective mode, a feature map in ConvNet would strongly correlate with a certain
feature in the pixel space if one projects them back to pixel-based image reversely along
the encoding process [44]. The activation values of each feature map are also specifically
determined by the input image. The main difference is that the detailed representation of
each feature map in high-dimensional image space is not easy to interpret, while those
POD coefficients have their own well-decomposed POD mode. However, recent
researches prove that one may build separate deconvolution networks to visualize
detailed representation of encoded latent variables in high-dimensional space [45] and
even analyze their energy contribution like the POD mode decomposition [46]. Although
those researches focus on the latent variables (i.e., further compressed latent
representation from feature maps), similar methodologies can be used to deconvolve the

feature maps to fully reveal their high-dimensional looks. All of those facts imply the
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similar function of feature maps in ConvNet to that of coefficients of the linear
combination in POD. Thus, direct manipulation of those “coefficients” in ConvNet will
effectively generate new combinations of features towards the target image, as does a
POD. The deep decoder would then further contribute to the accurate obtainment of

target or output image through the non-linear and complex reconstruction.

Application 2: porosity evolution in selective laser sintering

In this section, we further apply yNet to simulation of porosity development in
selective laser sintering (SLS) to demonstrate (1) the capability in spatially extrapolating
prediction, and (2) extreme computational efficiency over physics-based model. SLS [47]
is one of the most popular additive manufacturing (AM) techniques, widely adopted for
fabricating metal, ceramic and polymer components in a layer-by-layer manner [48]. Fast
prediction of porosity formation in realistically large area with multiple sintering layers is
of huge practical significance. However, accurate simulation of porosity formation in
SLS wusually requires proper consideration of rigid-body translation and rotation of
powder particles for particle calescence, grain growth by boundary migration through
various diffusion mechanisms and densification [49]; see Fig. S4. The complicated
physics-based SLS simulation is so far computationally restricted to a few layers with
limited length, thereby far from SLS practice. There is an urgent need for an inexpensive

surrogate of the cumbersome physics-based SLS model.

Training and testing procedure

A multi-physical SLS model [50] is used to generate training and testing data. In

the current SLS modeling, the sintering effects (particle calescence, grain growth and
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porosity evolution) are largely decided by the heat-affected zone (HAZ) that depends on
the laser condition, and inter-layer interaction mainly includes re-sintering of previous
layers during scanning the newly added layer during the layer-by-layer fabrication. It is
assumed that the sintering effect and the layer-interaction behavior can be transferred
from a small patch to a long track as long as the size of the small patch is larger than the
HAZ size. With the above assumption, we will train yNet based on dataset of small
128x128 patches (> maximum HAZ depth of 117 pixels) and then demonstrate its spatial
scalability to handling multiple layers of long tracks. Dataset of standard patches are
obtained by cropping as-received simulation results every 10 pixels; see Fig. 6a. The

detailed training and testing procedure can be found in Supplementary Note 1.

Testing on small standard patches

Fig. 6a illustrates the data generation of standard patches for training and testing
from raw simulation results. The generated dataset is split into training and testing parts
based on laser power and scanning speed sample points, i.e., 75 [P, V] conditions
randomly selected for training and the other 25 for testing; see detailed partition of [P, V]
points in Fig. S6. Fig. 6b shows 5 testing results on standard patches. yNet prediction
results closely resemble physics-based simulations and only minor morphological error
(see last row of Fig.6b) can be observed through pixel-wise comparison of their phase
variables. In addition to visual resemblance, we examine the pixel-wise global accuracy
(i.e., percentage of correct pixels) for such two-phase high-contrast fields. yNet achieves

an as high as 99.13% similarity to ground truth in average for all 43500 testing results.
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Fig.6 Testing of yNet on small standard patches. (a) pre-pocessing raw simulation
results for dataset of standard patches. (b) testing results of yNet on standard patches. We
randomly selected 5 out of 42750 testing results.

Testing on long tracks and spatial extrapolation

The as-trained yNet is scalable to perform large- or even extreme-scale simulation

in space, such as multiple layers of long tracks. To validate step-by-step, we first examine
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the spatial extrapolation of the trained yNet to handling a single-layer long track; see Fig.
7a. Fig. 7b compares the accuracy of yNet in modeling small patches of original size and
long tracks. For different laser power conditions, yNet consistently shows a comparably
high accuracy in dealing with long tracks. On average, yNet achieves a pixel-wise
accuracy of 99.04% in modeling long tracks, which is close to 99.24% in modeling small
patches. The root reason for its scalability to track of any length is that yNet essentially
learns sintering effect associated with laser conditions and independent from track length.
The second step is the further validation of sintering multi-layer long tracks that involves
inter-layer interaction. Fig. S7 show an example of detailed simulation process for several
layers. By adopting such layer-wise simulation, we obtain the multi-layer sintering results
by yNet and physics-based model under different laser conditions; see Fig. 7c. By
increasing laser power, we can observe that results by yNet and physics-based model
both show a transition from layer-scale unsintered region (see top-left inset) to small
scattered unsintered areas (see bottom-left inset) and, eventually, to a fully sintered state
(see bottom-right inset). The unsintered regions are located in between layers, due to
insufficient sintering depth under small laser powers. The quantitative results of
measured unsintered regions (see top-right figure) further prove the good agreement

between yNet-based and physical multi-layer simulations.
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Fig. 7 Testing of yNet on extrapolating prediction for long tracks. (a) schematic
illustration of as-trained yNet for predicting sintering of long track. (b) testing results of
yNet for predicting sintering of long track under different laser conditions. (¢) further
extension of yNet to predicting sintering of multi-layer long tracks under different laser
conditions. By following the workflow in Fig. S7, we perform sintering simulation of
multiple layers under three laser power conditions (P = 20, 25, and 30 W). Other settings
are the same as that used in Fig. S7. The overall sintering effect of multiple layers
(measured by fraction of unsintered region) as a function of laser power are then obtained
for yNet and physics-based model as shown. Note that, for unbiased measurement of
unsintered regions, unsintered regions are manually labeled and calculated by the third
party.

The above-validated spatial scalability can help address the computationally

daunting task of full-component SLS simulation. As an illustration, we use yNet to
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perform multi-layer sintering simulation of a practical 315-layer SLS component with
dimensions of 70.8x44.1 mm? (or 35416x22050 pixels). As depicted in Fig. S8, we
completely emulate the practical SLS process to perform the full-component simulation
layer-by-layer, i.e., generating a new layer of raw powder bed, CAD-model guided
selective sintering simulation of the newly added layer, and repeat the above two steps
until completing the whole component. It should be pointed out that computational cost
of raw powder bed generation increases exponentially with track length. For efficiency,
we simplify powder bed generation during full-component simulation, by depositing a
continuous series of mini-powder-beds till completing deposition of the entire layer. This
will numerically create large pores regularly observed in between adjunct mini-powder-
beds, as shown later. Fig. 8a shows the final SLS simulation result. Due to its extremely
large size, here we can only present a fraction of the detail of the whole simulation result;
see Fig. 8b. The periodically observed large pores are attributed to numerical artifacts due
to the aforementioned simplified powder-bed generation. Once available, a more efficient
powder bed generation model can be integrated with our yNet for better component-level
simulation. It is known that AM simulation is often limited to a single layer or even a
representative volume element (RVE). A practical simulation of the entire layer-by-layer
AM process is rarely achieved so far. Fig. 8a represents one of the first achievements of
component-level AM simulation to date. Fig. 8c summarizes the simulation size of some
of existing 2D sintering simulation research [51-55]. Although prior researches did not
report computation time and hardware used, Fig. 8c gives a rough yet direct insight into
the massively boosted simulation capability by yNet. The simulation size by yNet is

several orders of magnitude larger than previous physics-based simulation. yNet enabled
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component-level simulation would open up enormous possibilities in SLS practices. For
example, SLS has been intentionally used for fabricating porous structures with high
permeability and bio-compatibility [S6, 57]. The trained yNet permits extensive virtual
experiments in the pre-production phase, thus greatly facilitating structure design and

process planning for fabricating a SLS component with any desired porosity distribution.

Comparison of yNet with physics-based model

As discussed early, physics-based SLS simulation especially at the component
level is quite computationally demanding. It thus presents as an ideal case to demonstrate
the computational superiority of yNet over physics-based model. In this subsection, we
look into the computation time of yNet and the original physics-based SLS model. Again,
yNet and physics-based model are intentionally tested on the laptop used in the

benchmark study in Application 1.

Fig. 8d shows the computation time as a function of the length of modeled
powder bed. We can find that simulation of small tracks like 640-pixel long tracks in Fig.
7a is just a matter of tens of milliseconds by using yNet. In striking contrast, the original
physics-based model used in this study will take a few hours to complete the same task in
the same computational setting. The test for physics-based model stops at the length of
2048 pixels, because it can be foreseen that by modeling even longer track, the
computation time will increase rapidly to days. With such limited computational
resources, yNet can however easily handle extremely large layers with a maximum length
of ~21248 pixels. Modeling even this large layer remains to be nearly instant for yNet. In

this regarding, the component-level SLS simulation (i.e., hundreds of large layers), which
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is previously a formidable task even for high-end computing facilities, is now

accomplishable in a few minutes with yNet by simply using a laptop.
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Fig. 8 yNet enabled component-level SLS simulation. (a) Final result of yNet based
porosity simulation of a 315-layer high SLS component - block “M” logo of University
of Michigan (35416x22050 pixels). (b) Magnified image showing the sintering details of
a fraction of the SLS component. (¢) Relative simulation size of existing sintering
simulations to y-Net based component-level simulation. They are compared in terms of
dimensionless size in number of pixels. (d) Comparison of computation time between
yNet and physics-based model. In general, yNet is not only 5 to 6 orders of magnitude
faster than physics-based model, but also able to handle extremely long tracks with even
limited computational resource.

Application 3: stress field development

In this section, we quickly present another application of yNet to predicting stress
field development. The main objective of this application is to test the robustness of yNet

in (1) handling input and output field with striking difference and (2) extending the stress

25



field prediction for structures beyond the specific type of shape used in training. Stress
field development is a totally different type of field evolvement problem compared to the
previous two. The task in this application is to construct mapping between fields of
different physical meaning - structural field and stress field. Compared to standard field
evolvement of a certain type of field, the stress field development shows a radical
difference between input and output images. The input structure is a simple high-contrast
field, whereas the output stress field is characterized with complex texture and great
variability. Therefore, this application may further push the performance limit of the

proposed yNet in the tough application scenario of strong “field evolvement”.

Training and testing procedure

For illustration purpose, we trained yNet to predict stress field development within
typical perforation structure (i.e., 0.1mx0.1m solid structure with a hole), when subject to
compressive loading. Supplementary Note 2 describes the detailed training and testing
procedure. As illustrated in Fig. 9a, the basic idea is to train yNet with a specific type of
perforation structures, which all feature elliptic hole albeit with random combination of
hole orientation, size and aspect ratio. Once trained, yNet is expected to predict stress
field development for perforation structures with holes of not only elliptical shapes but

also other geometries.

We first routinely test yNet for perforation structures with elliptical holes unused
during training; see Fig. S11 for more details. Briefly, the prediction by yNet overall
agrees well with FE-based simulation. The RMSE for all 1000 testing results is as small
as 11.29 MPa. Therefore, although the input and output images are totally different and

display huge changes, yNet can still correctly predict those significant “evolvements”.
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Testing on other types of perforation structures (extrapolation???)

Besides the routine testing, we further test yNet for perforation structure with
other categories of holes, including triangle, rectangle, and polygonal ones. For the 5
random testing results in Fig. 9b, the RMSE is 20.97, 50.43, 49.66, 41.33, 51.71 MPa
respectively, which are relatively higher that of testing with respect to elliptical holes.
Although the predictive performance shows a small decrease, from the comparison of
detailed stress distribution, yNet still reasonably predict stress field development. It is
thus believed that yNet has learned the basic rule for stress field development. For
example, stress concentration tends to take place during sharp geometrical transitions
along the loading direction and also initiates from two bottom corners with increasing
loading (associated with fixed boundary at the bottom in the current modeling); the
discontinuous geometrical changes transverse to the loading direction will however not
serve as significant stress risers. Those rules are fully contained in the training dataset
and universally valid for perforation structures of any type. Learning those fundamental
rules thus endows yNet great extrapolation capability in coping with different perforation

structures.

Noteworthy is that, such a data-driven stress field prediction capability also
naturally addresses the data-driven prediction of stress hotspot. The prior art of this
research area is grain-wise stress-hotspot prediction for grain microstructures [58, 59],
which also relies on expert knowledge to hand-design contributing factors to stress
hotspot. The yNet trained herein can predict the detailed distribution of loading-
dependent stress field, thus allowing for direct pixel-level prediction of stress hotspot by

simply thresholding using the critical stress.
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Fig.9 Illustrates the extrapolation capability in predicting stress development of
various types of perforation structures. (a) yNet is trained based on simple dataset
containing ecliptic holes only. The as-trained yNet can predict stress field for other types
of holes. All of the holes used in training and testing are randomly generated based on the
descriptive methods as shown. (b) Testing of yNet on different types of perforation
structures. In this second-round testing, these perforation structures have completely
different types of holes than that in training dataset. Five randomly generated rectangle,
triangle and polygonal holes are tested.

28



Discussion

Future applications

The proposed yNet should be generally applicable to a plenty of condition-
dependent field evolvement and development problems. The presented applications have
helped comprehensively examine the reliability of yNet. Those different application
scenarios should cover many field evolvement and development problems across physical
science and engineering. As the results throughout this study show, the proposed yNet is
widely useful for simulating field evolvement in those different situations. The well-
tested yNet thus has an enormous potential in future applications in a lot of domains. For
example, Supplementary Note 3 describes another interesting application of yNet for
grain growth simulation. It again utilizes spatiotemporal scalability of yNet to enable
long-term, large-scale grain growth simulation (60K grains) based on a laptop. yNet can
be also easily extended to 3D modeling with simple modifications like adoption of 3D
convolutions and 3D pooling operations. It is known that computational cost of physical
simulation usually increases sharply for 3D, in which case yNet may become even more

invaluable.

Limitations

The main limitation of yNet is that the trained yNet is sometimes limited in
scaling to field of large and variable dimensions. In yNet-based component-level SLS
simulation, the scalability to long tracks relies on the assumption of globally uniform
evolving kinetics of porosity evolution in SLS. That is, the sintering effect depends on

applied laser condition and is consistent along the length of the sintered track for a given
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laser condition; see Fig. S9. The large-scale simulation of natural grain growth is also
based on its completely uniform evolving kinetics over modeling domain. This is
however not always the case, e.g., fluid dynamics simulation and stress field prediction
where such simple scalability may not hold. Other solutions are demanded for developing
more advanced scientific ConvNets. However, the core of yNet is still expected to play a

role whenever it comes to developing multi-input ConvNets and merging input signals.

Another limitation is that only parameter-type conditions are considered and
demonstrated in the current study. There are however higher-dimensional and more
complex conditions in various physical and engineering problems. For example, the
applied loading in stress-hotspot development case in Fig. 8a can be non-uniform, thus
not describable by a single scalar parameter. Also, besides natural grain growth in Fig. 8b,
grain growth in practice can be influenced by their living temperature field, as the
preferred growth direction is along the local thermal gradient [60]. Nonetheless, those
complex conditions, no matter how many dimensions they have, can be eventually
converted to an embedding vector of desired length. It would then allow for the adoption
of gating-based signal merging for efficient incorporation of their impacts on field

evolvement.

Conclusion

In summary, we have proposed a multi-input deep convolutional network, yNet,
which aims to solidly push our data-driven modeling capability to multi-input field-to-
field/image-to-image regression. It provides an ultra-fast way to realistically simulate

various condition-dependent field evolvements, by treating them as a purely data-driven
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regression problem. Experiments demonstrate that yNet enjoys extreme computational
efficiency against the physics-based model and significant computational advantage over
its ConvNet counterparts. The proposed yNet is applied to three representative data-
driven modeling problems - fluid dynamics, porosity evolution in selective laser sintering
(SLS), and stress field development. Those diverse applications have demonstrated the
general effectiveness of yNet in handling many types of field evolvements in physical
science and engineering. Therefore, the well-tested yNet may have a profound impact as
a conceptually simple, light-weight yet generally useful multi-input field-to-field

regression tool.
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Method

Physics-based fluid dynamics model

XX

Physics-based SLS model

Physics-based SLS simulation provides training and testing data. In this study, we
basically customize a phase-field-based sintering model [49] for applicability in SLS,
with further incorporation of heat transfer model and a Gaussian heat source model
describing the effective heat input from moving laser beam [61]. The sintering model
itself has properly taken into account multiple physical processes, by first reformulating

the effective diffusion coefficient as:

D" =D, 4(p)+D,,[1-9(p) |+ Dyp(1=p)+ Dy 3. > (11.11.:) 3)

a a'ta

where, Dvoi, Dvap, Dsy and Dgp are temperature-dependent diffusion coefficients in solid
volume, vapor, along surface, and grain boundary, respectively. 7, is phase variable that
describes the o-th particle. In addition, the non-conserved porosity evolution is partially
governed by the rigid body motion-induced advection velocity field, which is a

combination of the translation of rotation from all relevant particles,
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Voom = Z[vt (a)+v, (a)]. The velocit fields of rigid-body translation, v and rotation, v,

of the a-th particle are calculated by:

v, (r,a)= th F(a)n,(r) 4)

v (r.a)= -

Tl (@) () ®

where m: = 500 and m, = 1. The force, F, and torque, 7, acting on the powder particles

are associated with the their real-time structural envrionment.

The operating range of laser power is [25, 40] W and scanning speed [0.5, 2.5] m
s!. The alloy we used is stainless steel 316L. The spatial and temporal simulation
resolution are Ax = Ay = 2um and A¢ = 1ps, respectively. Full mathematical details of our

physical SLS model are reported in a separate paper on multi-physical SLS simulation

[50].
Powder generation model

In addition to sintering model for simulating porosity evolution, generation of
powder bed (i.e. initial porous structure) is simulated using a “rain” model [62]. The
basic mechanism of rain model is to add a powder particle to the lowest position on the
surface of the current powder layer, update the powder layer and repeat the above two
steps. This iterative process is terminated when the newly added particle reaches the user-
defined layer height. The mean and standard deviation of the diameter of deposited
powders are 25um and 0.5um, respectively. It should be pointed out that yNet in this

study will be trained to simulate porosity evolution and thus replace physics-based
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sintering model only. Powder bed generation model is a separate model that provides

initial structure for physical sintering simulation and yNet-based sintering simulation.

yNet

We use the yNet instantiated in fluid dynamics simulation as an illustrative
example. The detailed architecture is shown in Fig. Sla. The first layer of MLP is the
condition input (i.e, Reynolds number), the hidden layer is a fully connected layer with
256 neurons and the final layer 512 neurons. For the encoder, the input is vorticity flow
field at the current step in 256x64 image. Each green block represents a combo of
Conv+Relu operations and light green block means max-pooling. In this manner, encoder
finally yields 512 8x2 feature maps, which are passed to a dropout layer with rate of 0.5
before merging with MLP signal. The decoder just has a somewhat mirrored topology of
encoder, with each blue block representing a combo of Conv+Relu operations and dark
blue block up-sampling. For the other three applications, we basically use the above-
described yNet, but with potentially adjusted depth of encoder-decoder and width of

MLP depending on the modeling complexity.

Two types of loss functions are used in this study. For output field with strong

texture (i.e, flow field and stress field), we use mean squared error (MSE) to evaluate loss:
1 N iy =il
Loss:ﬁzizl‘f(a,X )—Y‘ (6)

where N is number of samples processed, a is the condition-parameter inputs, X is the

field input, f(a, X?) is the evolved field by prediction and Y is evolved field of ground
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truth. For output field that clearly displays two distinct phases (i.e., porosity structure and

grain structure), we use binary cross-entropy loss to better penalize predictive errors:

2

LOSS=—%ZZI f(ai’Xi)_logYi_I_(l_f(ai’Xi)).(l—lOgYi) (7)
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