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A B S T R A C T   

Goal: This work aims at developing a novel calibration-free fast parallel MRI (pMRI) reconstruction method 
incorporate with discrete-time optimal control framework. The reconstruction model is designed to learn a 
regularization that combines channels and extracts features by leveraging the information sharing among 
channels of multi-coil images. We propose to recover both magnitude and phase information by taking advantage 
of structured convolutional networks in image and Fourier spaces. 
Methods: We develop a novel variational model with a learnable objective function that integrates an adaptive 
multi-coil image combination operator and effective image regularization in the image and Fourier spaces. We 
cast the reconstruction network as a structured discrete-time optimal control system, resulting in an optimal 
control formulation of parameter training where the parameters of the objective function play the role of control 
variables. We demonstrate that the Lagrangian method for solving the control problem is equivalent to back- 
propagation, ensuring the local convergence of the training algorithm. 
Results: We conduct a large number of numerical experiments of the proposed method with comparisons to 
several state-of-the-art pMRI reconstruction networks on real pMRI datasets. The numerical results demonstrate 
the promising performance of the proposed method evidently. 
Conclusion: The proposed method provides a general deep network design and training framework for efficient 
joint-channel pMRI reconstruction. 
Significance: By learning multi-coil image combination operator and performing regularizations in both image 
domain and k-space domain, the proposed method achieves a highly efficient image reconstruction network for 
pMRI.   

1. Introduction 

Magnetic resonance imaging (MRI) is one of the most prominent 
medical imaging technologies with extensive clinical applications. In 
clinical applications, an advanced medical MRI technique known as 
parallel MRI (pMRI) is widely used. PMRI surrounds the scanned objects 
with multiple receiver coils and collects k-space (Fourier) data in par
allel. PMRI can reduce the data acquisition time and has become the 
state-of-the-art technology in modern MRI applications. To accelerate 
the scan process, partial data acquisitions that increase the spacing be
tween read-out lines in k-space are implemented in pMRI. However, this 
results in aliasing artifacts, and a proper image reconstruction process is 
necessary to recover the high-quality artifact-free images from the par
tial data. 

Two major approaches are commonly addressed to image recon
struction in pMRI: the first approach is k-space method which in
terpolates the missing k-space data using the sampled ones across 
multiple receiver coils [12], such as the generalized auto-calibrating 
partially parallel acquisition (GRAPPA) [15] and simultaneous acquisi
tion of spatial harmonics (SMASH) [44]. The other approach is the class 
of image space method that eliminate the aliasing artifacts in the image 
domain by solving a system of equations that relate the image to be 
reconstructed and partial k-space data through coil sensitivities, such as 
SENSitivity Encoding (SENSE) [40]. Coil sensitivity maps are indis
pensable and required to be accurately pre-estimated in traditional 
SENSE-based methods. Traditional pMRI reconstruction methods in 
image space follows SENSE-based framework, which is formulated as an 
optimization problem that minimizes a summation of a data fidelity 
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term and a weighted regularization term. The detailed explanation 
about this formulation can be refer to [26]. 

In recent years, we have witnessed fast developments of SENSE- 
based pMRI reconstruction incorporate with deep-learning based 
methods [17,26,32,34,48]. There are two critical issues that need to be 
carefully addressed. The first issue is on the choice of regularization 
including the regularization weight. The regularization term is of 
paramount importance to the severely ill-posed inverse problem of pMRI 
reconstruction due to the significant undersampling of k-space data. In 
the past decades, most traditional image reconstruction methods employ 
handcrafted regularization terms, such as the total variation (TV). In 
recent years, a class of unrolling methods that mimic classical optimi
zation schemes are developed, where the regularization is realized by 
deep networks whose parameters are learned from data. However, the 
learned regularization is often cast as a black-box that is difficult to 
interpret, and the training can be very data demanding and prone to 
overfitting especially when the networks are over-parameterized 
[4,20,27]. 

The second issue is due to the unavailability of accurate coil sensi
tivities {si} in practice. Inaccurate coil sensitivity maps lead to severe 
biases that degrade the quality of reconstructed v. One way to eliminate 
this issue is to (regularize and) reconstruct multi-coil images, and 
combine channels into a full-body image in the final step by taking some 
hand-crafted methods such as the root of sum of squares (RSS). Different 
from RSS, our method proposed a learnable multi-coil combination 
operator to combine channel-wise multi-coil images. 

In this paper, we tackle the aforementioned issues in a discrete-time 
optimal control framework to optimize the variational pMRI recon
struction model. We highlight several main features of our framework as 
follows.  

1. Unlike most existing methods which regularize and reconstruct 
multi-coil images, we employ regularization in both image and 
Fourier spaces to improve reconstruction quality.  

2. Our method advocates a learned adaptive combination operator that 
first merges multi-coil images into a full-body image with a complete 
field of view (FOV), followed by an effective regularization on this 
image. This is in sharp contrast to existing methods which only 
combine reconstructed multi-coil images in the final step, whereas 
our regularizer leverages the combination operator in each iteration 
which improves parameter efficiency.  

3. We employ a complex-valued neural network as the coil combination 
operator to recover both magnitude and phase information of pMRI 
images when coil sensitivity is unavailable. This combination 
method benefits from the coil information shared among multiple 
channels, which is distinct from most hand-crafted coil combination 
methods.  

4. We propose a novel deep reconstruction network whose structure is 
determined by the discrete-time optimal control system for mini
mizing the objective function, which yields an optimal control 
formulation where the parameters of the combination and regulari
zation operators play the role of control variables of the discrete 
dynamic system. The optimal value of these parameters is obtained 
by a Lagrangian method which can be implemented using back- 
propagation. 

We consider two clinical pMRI sequences of knee images and verified 
the effective performance of the proposed combination operator, 
different initial reconstructions, complex convolutions, and domain- 
hybrid network in the Ablation Studies. The proposed network re
covers both magnitude and phase information of pMRI images. The ef
fect of the aforementioned techniques demonstrate evident 
improvement of reconstruction quality and parameter efficiency using 
our method. For reproducing the experiment, our code is available at 
https://github.com/1lol/pMRI_optimal_control. 

This remainder of the paper is organized as follows: In Section 2, we 

provide an overview of recent developments in pMRI, cross-domain 
reconstructions, complex-valued CNNs, and optimal control inspired 
deep training models that related to our work. We present our proposed 
problem settings and reconstruction network architecture in detail in 
Section 3. Extensive numerical experiments and analyses on a variety of 
clinical pMRI data are presented in Section 4. Section 5 concludes this 
paper. 

2. Related work 

In recent years, we have witnessed fast developments of medical 
imaging incorporate with deep-learning based methods [21–23]. Most 
existing deep-learning based methods rendering end-to-end neural net
works mapping from the partial k-space data to the reconstructed im
ages [35,41,51,59,60]. These approaches require an excessive amount 
of training data, and the designed networks are cast as black boxes 
whose underlying mechanism can be very difficult to interpret. To 
mitigate this issue, a number of unrolling methods were proposed to 
map existing optimization algorithms to structured networks where 
each phase of the networks correspond to one iteration of an optimi
zation algorithm [2,3,9,18,43,55,56,58]. In what follows, we focus on 
the recent developments in deep-learning based image reconstruction 
methods for pMRI. 

Variational Network (VN) [18] was introduced to unroll the gradient 
descent algorithm as a reconstruction network which requires pre
calculated sensitivities {si} as input. MoDL [3] proposed a weight 
sharing strategy in a recursive network to learn the regularization pa
rameters by unrolling the conjugate gradient method. Several methods 
explored different strategies to avoid using pre-calculated coil sensitivity 
maps for pMRI reconstruction. Blind-PMRI-Net [36] proposed pMRI 
model by regularizing sensitivity maps and MR image, where their 
network alternatively estimates coil images, sensitivities and single- 
body image by three subnets. De-Aliasing-Net [8] proposed a de- 
aliasing reconstruction model with that applied split Bregman itera
tion algorithm without explicit coil sensitivity calculation. The de- 
aliasing network explored cross-correlation among channels and 
spatial redundancy which provoked a desirable performance. LIND
BERG [50] explored calibration-free pMRI technique which uses adap
tive sparse coding to obtain joint-sparse representation precisely by 
equipping a joint sparsity regularization to extract desirable cross- 
channel relationship. This work proposed to alternatively update 
sparse representation, sensitivity encoded images, and K-space data. 
Adaptive-CS-Net [39] is a leading method in 2019 fastMRI challenge 
[57] that unrolled modified ISTA-Net+ [58]. The proposed calibration- 
free pMRI method distincts from above related works in terms of the 
learnable multi-coil combination operator to adaptively combine 
channels of the updated multi-coil images through iterations. 

Recently, cross-domain methods exhibits its significance in medical 
imaging [13,24,37,45–47,53,61] iteratively applied k-space CNN, 
image domain CNN and interleaved data consistency operation for 
single-coil image reconstruction. CDF-Net [37] further shows adding 
communication between spatial and frequency domain gives a boost in 
performance. Their results indicated that domain-specific network has 
individual strong points and disadvantages in restoring tissue-structure. 
Our reconstruction model is inspired of cross-domain reconstruction, the 
difference is that we solve for the reconstruction model with cross- 
domain regularization functions through a learnable optimization al
gorithm instead of an end-to-end network. 

Our network applies complex-valued convolutions and activation 
functions. MRI data are complex-valued, and the phase signals also carry 
important pathological information such as in quantitative susceptibility 
mapping [11,42]. Cole et al. [11] investigated the performance of 
complex-valued convolution and activation functions has better recon
struction over the model with real-valued convolution in various 
network architectures. DeepcomplexMRI [51] was developed to recover 
multi-coil images by unrolling an end-to-end complex-valued network. 
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In supervised learning, deep residual neural networks can be 
approximated as discretizations of a classical optimal control problem of 
a dynamical system, where training parameters can be viewed as control 
variables [28,31,54]. Control inspired learning algorithms introduced a 
new family of network training models which connect with dynamical 
systems. Pontryagin’s maximum principle (PMP) [16] was explored as 
necessary optimality conditions for the optimal control [29,30], these 
works devise the discrete method of successive approximations (MSA) 
[10] and its variance for solving PMP. Neural ODE [7] models the 
continuous dynamics of hidden states by some certain types of neural 
networks such as ResNet, the forward propagation is equivalent to one 
step of discretatized ordinary differential equations (ODE). Inspired by 
Neural ODE [7], Chen et al. [6] modeled ODE-based deep network for 
MRI reconstruction. In this paper, we model the optimization trajectory 
as a discrete dynamic process from the view of the method of Lagrangian 
Multipliers. 

The present work is a substantial extension of the preliminary work 
in [5] using domain-hybrid network with a trained initialization to solve 
for an optimal control pMRI joint-channel reconstruction problem when 
coil-sensitivity is unavailable. More comprehensive empirical study is 
conducted in this work. 

3. Proposed method 

3.1. Background 

PMRI as well as general MRI reconstruction can be formulated as an 
inverse problem. Consider a pMRI system with c receiver coils acquiring 
2D MR images at resolution m × n (we treat a 2D image v ∈ ℂm×n and its 
column vector form v ∈ ℂmn interchangeably hereafter). Let P ∈ ℝp×mn(p 
≤ mn) be the binary matrix representing the undersampling mask with p 
sampled locations in k-space, si ∈ ℂmn the coil sensitivity, and fi ∈ ℂp the 
partial k-space data at the i-th receiver coil for i=1,…, c. The partial data 
fi and the image v are related by fi = PF(si ⊙ v) + ni, where si is the 
(unknown) sensitivity map at the i-th coil and ⊙ denotes entrywise 
product of two matrices, F ∈ ℂmn×mn stands for the (normalized) discrete 
Fourier transform that maps an image to its Fourier coefficients, and ni is 
the unknown acquisition noise in k-space at the i-th receiver coil. Then 
the variational model for image reconstruction can be cast as an opti
mization problem as follows: 

min
v

∑c

i=1

1
2

‖ PF

(

si ⊙ v

)

− fi‖
2 + R(v), (1)  

where v ∈ ℂmn is the single full-body MR image to be reconstructed, R(v) 
is a regularization on the image v, and ‖w‖2 : = ‖ w‖2

2 =
∑

j=1
n ∣ wj∣2 for 

any complex vector w = (w1, …, wn)Τ ∈ ℂn. Our approach is based on 
uniform Cartesian k-space sampling. Table 1 displays the notations and 
their descriptions that we used in the paper. 

3.2. Problem settings 

We propose a unified deep neural network for calibration-free pMRI 
reconstruction by recovering images from individual receiver coils 
jointly that does not require any knowledge of coil-wise sensitivity 
profile. Denote that ui is the MR image at the i-th receiver coil and hence 
is related to the full body image v by ui = si ⊙ v. On the other hand, the 
image ui corresponds to the partial k-space data fi by fi = PFui + ni, and 
hence the data fidelity term is formulated as least squares 12

∑c
i=1 ‖ PFui −

fi‖
2. We also need a suitable regularization R on the images {ui}. 

However, these images have severely geometrically inhomogeneous 
contrasts due to the physical variations in the sensitivities across the 
image domain at different receiver coils. Therefore, it is more appro
priate and effective to apply regularization to the single full-body image 
v than to individual coil images in (u1, …, uc). 

To address the issue of proper regularization, we propose to learn a 
nonlinear operator J that combines {ui} into the image v =

J (u) ∈ ℂm×n, where u = (u1, …, uc) ∈ ℂm×n×c represents the channel- 
wise multi-coil MRI data that consists of ui for i=1,⋯, c. Then we 
apply a suitable R to the image v. We also introduce a k-space Rf on Fui 
to take advantage of Fourier information and enhance the model 
performance. 

We denote f = (f1, …, fc) ∈ ℂp×c as the partial k-space measurements 
at c sensor coils. Suppose that we are given N data pairs {(f(j), u*(j))}j=1

N 

for training the network, where u*(j) is the ground truth multi-coil MR 
data with index j ∈ {1,⋯, N}. Let Θ represents the parameters that need 
to be learned from network by minimizing the loss function ℓ. We 
formulate the network training as a bilevel optimization problem, where 
the lower level is to update u with fixed trainable parameters Θ and 
upper level is to update Θ that learned from the training data by mini
mizing loss function ℓ. 

min
Θ

1
N

∑N

j=1
ℓ

(
u(j)

Θ
)
, (2)  

s.t.u(j)
Θ = argminu(j) ϕΘ

(
u(j) )

, (3)  

with ϕΘ defined as below: 

ϕ(u) :=
1
2

∑c

i=1
‖ PFui − f i‖

2 + R(J (u) ) + Rf (Fui). (4) 

The objective function ϕ is the variational model for pMRI recon
struction, in which Θ is the set collects all the parameters that learned 
from the regularizers R∘J and Rf ∘ F, so ϕ is depending on Θ. Problem 2 is 
formulated in the scenario of reconstructing the multi-coil MRI data. The 
final reconstruction result uΘ is the forward network output that 
dependent on network parameters Θ. 

The deep learning approach for pMRI reconstruction in lower level 
problem (2b) can be cast and formulated as a discrete-time optimal 
control system. We use one data sample (f, u*) and omit the average and 
data indexes for notation simplicity. The architecture of deep unrolling 
method follows the iterations of optimization algorithms and solve for 
the minimizer of the following problem: 

Table 1 
Some notations and meanings that used throughout this paper.  

Expression Description 

c total number of receiver coils 
u = (u1, …, uc) multi-coil MRI data 
f = (f1, …, fc) partial k-space measurement 
s = (s1, …, sc) coil sensitivity map 
v full fov image that need to be reconstructed 
u* ground truth multi-coil MRI data 
v* ground truth single body MRI data 
F discrete Fourier transform 
FH inverse discrete Fourier transform 
P undersampling trajectory 
n measurement noise 
g algorithm unrolling network 
g0 initial network 
J , G , G̃ , J̃ image space convolutional operators in g 
K k-space convolutional operators in g 
K 0 k-space convolutional operator in g0 

h data fidelity term 
R regularization 
RSS square root of the sum of squares 
t=1,⋯, T phase number 
k=1,⋯, K number of iterations for Alg (1) 
U = (u(0),⋯, u(T))⊺ collection of predicted multi-coil images at each phase 
Θ = (θ(0),⋯, θ(T))⊺ collection of control variable (parameters) at each phase 
Λ = (λ(0),⋯, λ(T))⊺ collection of Lagrangian multipliers of (4)  
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min
Θ

ℓ(uΘ), (4a) 

s.t. u(t) = g(u(t − 1) , θ(t) ), t = 1, ⋯, T, (4b) 
u(0) = g0(f, θ(0) ), (4c)  

where Θ = (θ(0),⋯, θ(T))⊺ is the collection of control variables θ(t) at all 
time steps (phases) respectively. In (4a), uΘ = u(T), which is the output 
image from the last T-th phase of the entire network so that we want to 
find optimal u(T) that close to argminuϕΘ(u). Eqs. (4b), (4c) are inspired 
by deep unrolling algorithm for solving the lower level constraint (2b). 
Given θ(t), u(t) is the state of updated reconstruction multi-coil data 
from t-th phase for each t=0,⋯, T. g is a multi-phase unrolling network 
inspired by the proximal gradient algorithm, and the output of g( ⋅ ) ∈
ℂm×n×c is the updated multi-coil MRI data from each phase. The network 
g is the intermediate mapping from u(t) to u(t + 1) for t=0,⋯, T − 1, 
whose structure is explained in Section 3.4 for minimizing the varia
tional model (3). The network g0 with initial control parameter θ(0) 
maps the partial k-space measurement f to an initial reconstruction u(0) 
as the input of this optimal control system. 

To summarize in brief, we solve for the minimizer (reconstruction 
result) of the lower level problem (2b) in a discrete-time optimal control 
framework (4). The dynamic system (4b), (4c) as the constrain of (4a) is 
modeled as the optimal control system of the variational model (3). 

The loss function ℓ(u(T)) measures the discrepancy between the final 
state u(T) and the reference image u* obtained using full k-space data in 
the training data set. We set the loss function in (2a) and (4a) for the 
proposed method as: 

ℓ(uΘ) = ℓ(u(T) ) =
∑c

i=1
γ ‖ ui(T) − u*

i ‖ +

‖ ∣J (u(T) )∣ − RSS(u*) ‖ +η ‖ RSS(u(T) ) − RSS(u*) ‖,
(8)  

where RSS(u*) = (
∑

i=1
c ∣ ui*∣2)1/2 ∈ℝm×n is the pointwise root of sum of 

squares across the c channels of u*, ∣ ⋅ ∣ is the pointwise modulus, and γ, 
η>0 are prescribed weight parameters. 

The motivation of applying learnable image space regularization R∘ 
J and k-space regularization Rf ∘ F in model (3) is explained in the 
following: (i) Image domain network recovers the high spatial resolu
tion, but may not suppress some artifacts. Frequency domain network is 
more suitable to remove high-frequency artifacts. (ii) Image domain and 
k-space information are equivalent due to the global linear trans
formation, but adding nonlinear activations with CNNs can feasibly 
improve the efficacy of network learning and boost the reconstruction 
performance. We parametrize the combination operator J by CNNs 
since the partial k-space data were scanned by multiple coil arrays, and 
introduce cross-correlation among channels of coil-images which could 
be compatible for CNN structure. 

3.3. Design of g and g0 

Denote function h(u) as the data fidelity term, one of the famous 
traditional method for solving problem minuh(u) + R(u) is the proximal 
gradient algorithm [38]: 

bl = ul − αl∇h
(
ul), (6a) 

ul+1 = proxαlR
(
bl), (6b)  

where αl>0 is the step size, the proximity operator proxαR defined below: 

proxαR(b) := argmin
x

{
1

2α ‖ x − b‖2 + R(x)

}

, (7)  

where [x]i = xi ∈ ℂm×n for any x ∈ ℂm×n×c. The proposed network 
structure is inspired by (6) for solving (2b) which can be cast as an 
iterative procedure with T phases in the discrete dynamic system (4b) 
and (4c). We parametrize the t-th phase consists of three steps: 

bi(t) = ui(t) − ρtFHPΤ (PFui(t) − fi ), i = 1, ⋯, c, (8a) 

ui(t) =
[
proxρtR(J (⋅) )(b(t) )

]

i
, i = 1, ⋯, c, (8b) 

ui(t + 1) =
[
proxρt Rf (F(⋅) )(u(t) )

]

i
, i = 1, ⋯, c, (8c)  

for t=0,⋯, T − 1 and b(t) = (b1(t),…, bc(t)) ∈ ℂm×n×c, ρt>0 is the step 
size. F denotes the normalized discrete Fourier transform and FH the 
complex conjugate transpose (i.e., Hermitian transpose) of F, here FH is 
the inverse discrete Fourier transform. 

The step (8a) computes b(t) by applying the gradient decent algo
rithm to minimize the data fidelity term in (3) which is straightforward 
to compute. The first proximal update step (8b) equipped with the joint 
regularizer R(J (⋅)) and upgrades its input bi(t) to a multi-coil image 
ui(t). Ideally, the regularization R∘J can be parameterized as a deep 
neural network whose parameters can be adaptively learned from data, 
however, in such case proxρtR(J (⋅)) does not have closed form and can be 
difficult to compute. As an alternative, the proximity operator 
proxρtR(J (⋅)) can be directly parametrized as a learnable denoiser and 
solve (8b) in each iteration. For the similar reason, the proximity 
operator proxRf(F(⋅)) in (8c) can also be parametrized as CNNs, which 
further improves the accuracy of the k-space measurement. In both (8b) 
and (8c), the regularizers R∘J and Rf ∘ F extract complex features 
through neural networks and the proximity points can be learned in 
denoising network via ResNet [19] structure. 

We frame step (8b) incorporates joint reconstruction to update coil- 
images via ResNet [19]: u(t) = b(t) + M (b(t)), where M represents a 
multi-layer CNN by executing approximation to the proximal mapping 
in the image space. We propose to first learn a nonlinear operator J that 
combines {bi} into the image z = J (b1, …, bc) ∈ ℂm×n with homoge
neous contrast. Then apply a nonlinear operator G on z with G (z) ∈

ℂm×n×Nf to extract a Nf-dimensional features. The nonlinear operator J 

contains four convolutions with an activation function in between, each 
convolution obtains kernel size 3 × 3. The nonlinear operator G consists 
of three convolutions with filter size 9 × 9. For the sake of improving the 
capacity of the network, J̃ and G̃ are employed as adjoint operators of 
J and G respectively with symmetric structure and parameters are 
trained separately. G ∘J was designed in the sense of playing a role as an 
encoder and J̃ ∘G̃ as a decoder. Therefore, image domain network can 
be parametrized as compositions of four CNN operators: M = J̃ ∘G̃ ∘G ∘ 
J with output M (b(t)) ∈ ℂm×n×c. This step (8b) outputs the multi-coil 
data u = (u1, …, uc) ∈ ℂm×n×c from image domain network and we 
apply the combination operator J on u to obtain a full FOV MR single- 
channel image v = J (u) ∈ ℂm×n that we desired for reconstruction. 

Step (8c) leverages k-space information and further suppresses the 
high-frequency artifacts. The output u(t) from (8b) is passed to a k-space 
domain network by a ResNet structure u(t + 1) = u(t) + FHK (F(u(t) ) ), 
where FHK F is a CNN operator to refine and further improve the ac
curacy of the k-space data from each coil. The CNN K consists four 
convolutions, the last convolution kernel numbers meets the channel 
number of coil images. 

Therefore, (8) is proceed in the following scheme: 

bi(t) = ui(t) − ρtF
HPΤ (PFui(t) − fi ), i = 1, ⋯, c, (9a) 

ui(t) = bi(t) + M (bi(t) ), i = 1, ⋯, c, (9b) 
ui(t + 1) = ui(t) + FHK (F(ui(t) ) ), i = 1, ⋯, c, (9c)  

for t=0,⋯, T − 1. Now we can derive the function g described in (4) by 
combining (9): 

ui(t + 1) =
(
N − ρtFHPΤ PF − N

(
ρtFHPΤ PF

) )
ui(t)

+ ui(t) + ρtFHPΤ fi − N
(
ρtFHPΤ f i

)
(10a) 

= g(ui(t) ), (10b) 
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where N = M + FHK F + FHK FM , and the function g maps ui(t) to 
ui(t + 1) for t=0,⋯, T − 1 defined in (10a). 

Our proposed reconstruction network is composed of a prescribed T 
phases, the initial input of the network is designed as u(0) = g0(f, θ(0) ) :

= FH(f + K 0(f) ) where K 0 is a CNN operator applied to f in residual 
learning to interpolate the missing data and generate a pseudo full k- 
space. With the chosen initial {ui(0)} and partial k-space data {fi} as 
input, the network performs the update (9) in the t-th phase for t=0,⋯, T 
− 1 and finally the entire network reconstructs coil-images u(T) and 
J (u(T) ), which is the final single-body image reconstructed as a by- 
product (complex-valued). 

Fig. 1 displays the flowchart of our entire network procedure. The 
initial reconstruction suppresses artifacts caused by undersampling. We 
display the flowchart of these CNN structures of each phase in Fig. 2. We 
apply complex-valued convolutions where multiplications between 
complex numbers are performed and use componentwise complex- 
valued activation function ℂReLU(a + ib) = ReLU(a) + iReLU(b) as 
suggested in [11]. The Landweber update step (9a) plays a role in 
increasing communication between image space and k-space. The 
learnable step size ρt controls the speed and stability of the convergence. 
In the image space denoising step (9b), the operator J extracts feature 
across all the channels so that spatial resolution is improved and tissue 
details are recovered in the channel-combined image. The CNN M car
rying channel-integration J proceed T times with shared weights in 
every two phases therefore the spatial features across channels are 
learned in an efficient way. However, the oscillatory artifacts could be 
misinterpreted as real features, which might be sharpened. In the k- 
space denoising update step (9c), the k-space network K is compatible 
with low-frequency information, so it releases the high-frequency arti
facts and recovers the structure of the image [13,53]. Therefore iterating 
the networks M and K in different domains with their individual ef
fects, the performance compensates and the shortcomings of both net
works offset each other. We evaluate the effect of hybrid domain 
reconstruction in ablation studies. Furthermore, the prescribed denois
ing networks in (9b) and (9c) refine and update coil-images in each 
iteration. This iterative procedure triggers the reconstruction quality of 
J (u(t)) get successively enhancement. 

3.4. Network training from the view of the method of Lagrangian 
multipliers (MLM) 

The network parameters to be solved from (4) are Θ = {θ(t) : t=0,⋯, 
T}, where θ(t) = {ρt , J t , G t , G̃ t , J̃ t , K t} for t=1,⋯, T and θ(0) = K 0. 

The control problem (4) can be solved by using MLM. The corre
sponding Lagrangian function is 

L(U, Θ; Λ) = ℓ(u(T) ) + 〈λ(0) , u(0) − g0(f, θ(0) ) 〉

+
∑T

t=1
〈λ(t) , u(t) − g(u(t − 1) , θ(t) ) 〉,

(11)  

where U = (u(0),⋯, u(T))⊺ is the collection of all the states u(t), Λ =
(λ(0),⋯, λ(T))⊺ are Lagrangian multipliers of (4). The algorithm proceed 
in the iterative scheme to update Θk, for each training epoch k=0,⋯, K, 
Θk = (θk(0),⋯, θk(T))⊺, Uk = (uk(0),⋯, uk(T))⊺, and Λk = (λk(0),⋯, 
λk(T))⊺. 

If (U*, Θ*; Λ*) minimizes Lagrange function (11), by the first order 
optimality condition, we have 
⎧
⎨

⎩

∂UL(U*, Θ*; Λ*) = 0 (12a)

∂ΘL(U*, Θ*; Λ*) = 0 (12b)

∂ΛL(U*, Θ*; Λ*) = 0 (12c)

• Fix Θ = Θk, define (Uk,Λk) : = arg minU, ΛL(U,Θk;Λ), then by the 
first order optimality condition for minimizing L w.r.t λ(t) for t=0,⋯, T, 
(Uk, Λk) should satisfy 

∂λ(0)

〈
λ(0) , u(0) − g0(f ,θk(0)

)〉 ⃒
⃒
(uk(0) ,λk(0) )

= 0

⇒uk(0) = g0
(
f, θk(0)

) (13)  

∂λ(t)
〈
λ(t) , u(t) − g(u(t − 1) , θk(t).

)〉 ⃒
⃒
(uk(t) ,λk(t) )

= 0

⇒uk(t) = g
(
uk(t − 1) , θk(t)

)
, t = 1, ⋯, T.

(14) 

Then by the first order optimality condition for minimizing L w.r.t u 
(t), for t = T, we get 

∂u(T)

[
ℓ(u(T) ) +

〈
λ(t) , u(T)〉]

⃒
⃒
(uk(t) ,λk(t) )

= 0

⇒λk(T) = −∂u(T)ℓ
(
uk(T)

)
,

(15)  

for t=0,⋯, T − 1: 

∂u(t)
[〈

λ(t) , u(t)〉 − 〈λ(t+ 1) , g(u(t) ,θk(t + 1)
)〉] ⃒

⃒
(uk(t) ,λk(t) )

= 0

⇒λk(t) =
〈
λk(t + 1) , ∂u(t)g

(
uk(t) , θk(t + 1)

) 〉
,

(16) 

• Fix (Uk, Λk) for updating Θ, we compute the gradient ∂ΘL(Uk, Θ; Λk): 

∂θ(t)L
(
Uk, θ(t) ;Λk)

= ∂θ(t)
[

−
〈
λk(t) , g

(
uk(t − 1) , θ(t)

) 〉]

= −
〈
λk(t) , ∂θ(t) g

(
uk(t − 1) , θ(t)

) 〉
, t = 1, ⋯, T,

(17a) 

∂θ(0)L
(
Uk, θ(0) ;Λk)

= −
〈
λk(0) , ∂θ(0)g0(f, θ(0) )

〉
. (17b)  

Theorem 1. ∂ΘL(Uk, Θ; Λk) = ∂Θℓ(uk(T)(Θ)). 

Proof. First we show the following holds for t=0,⋯, T: 

λk(t) = − ∂u(t)ℓ
(
uk(T)

)
(18) 

From (15), (18) is true when t = T. Suppose (18) true for t = τ ∈ {1,⋯, 
T}. From (16), we have 

λk(τ − 1) =
〈
λk(τ) , ∂u(τ−1) g

(
uk(τ − 1) , θk(τ)

) 〉

=
〈

− ∂u(τ)ℓ
(
uk(T)

)
, ∂u(τ−1)uk(τ)

〉 (19a) 

= − ∂u(τ−1)ℓ
(
uk(T)

)
(19b) 

Thus, (18) holds for t = τ − 1. By the principle of induction, (18) is 
ture for all t=0,⋯, T. 

Hence, (17a) reduces to 

Fig. 1. The proposed framework paradigm for all phases.  

Fig. 2. The proposed framework paradigm at t + 1-th phase. W = Re (W) + iIm 
(W) representing complex convolution filter kernels. 
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∂θ(t)L
(
Uk, θ(t) ;Λk)

= −
〈
λk(t) , ∂θ(t) g

(
uk(t − 1) , θ(t)

) 〉

=
〈
∂u(t)ℓ

(
uk(

T
))

, ∂θ(t)uk(t)
〉 (20a) 

= ∂θ(t)ℓ
(
uk(T)

)
, t = 1, ⋯, T. (20b) 

Also (17b) gives ∂θ(0)L(Uk, θ(0);Λk) = ∂θ(0)ℓ(uk(T)). Therefore, we 
derive ∂ΘL(Uk, Θ; Λk) = ∂Θℓ(uk(T)(Θ)). □ 

This theorem further implies that: Since the gradients are the same, 
applying SGD Algorithms or its variance such as Adam [25] to minimize 
loss function ℓ is equivalent to perform the same algorithm on L. 
Network training algorithm using MLM can be summarized in Algorithm 
1. 

Algorithm 1. Network Training by MLM. 

4. Experimental results 

4.1. Data set 

The data in our experiments was acquired by a 15-channel knee coil 
array with two pulse sequences: a proton density weighting with (FSPD) 
and without (PD) fat suppression in the coronal direction from 
https://github.com/VLOGroup/mri-variationalnetwork. 
We used a regular Cartesian sampling mask with 31.56% sampling ratio 
as shown in the lower-right of Fig. 4. Each of the two sequences data 
includes images of 20 patients, we select 27–28 central image slices from 
19 patients, which amount to 526 images each of size 320 × 320 as the 
training dataset, and 15 central image slices are picked from one patient 
that is not included in the training data set as testing dataset. 

4.2. Implementation 

We evaluate classical methods GRAPPA [15], SPIRiT [33], and deep 
learning methods VN [18], De-AliasingNet [8], DeepcomplexMRI [51] 
and Adaptive-CS-Net [39] over the 15 testing Coronal FSPD and Coronal 
PD knee images with regular Cartesian sampling in terms of PSNR, 
structural similarity (SSIM) [52] and relative error RMSE. The following 
equations are computations of SSIM, PSNR and RMSE between recon
struction v = ∣J (u)∣ and ground truth single-body image v*: 

SSIM =
(2μvμv* + C1)(2σvv* + C2)

(
μ2

v + μ2
v* + C1

)(
σ2

v + σ2
v* + C2

), (21)  

where μv, μv* are local means of pixel intensity, σv, σv* denote the 
standard deviation and σvv* is covariance between v and v*, C1 = (k1L)2, 

C2 = (k2L)2 are two constants that avoid denominator to be zero, and 
k1=0.01,k2=0.03. L is the largest pixel value of the magnitude of coil- 
images. 

PSNR = 20log10

(

max(v*)

/
1
N

‖ v* − |J(u) |‖2
)

, (22)  

where N is the total number of pixels in the magnitude of ground truth. 

RMSE =‖ v* − ∣J (u)∣ ‖ / ‖ v* ‖ . (23) 

The relative error between the multi-coil reconstruction u and the 
ground truth u* is defined as 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑c

i=1
‖ u*

i − ui‖2

/
∑c

i=1
‖ u*

i ‖2

√
√
√
√ . (24) 

All the experiments are implemented and tested in TensorFlow [1] 
on a Windows workstation with Intel Core i9 CPU at 3.3GHz and an 
Nvidia GTX-1080Ti GPU with 11GB of graphics card memory. The pa
rameters in proposed networks are using Xavier initialization [14] to 
initialize θ0(t),t=0,⋯, T. Indeed, solving line 13 in the Algorithm 1 using 
any stochastic gradient descent algorithm such as Adam [25] has the 
same performance as minimizing loss function w.r.t θ(t) using the same 
algorithm to update θk+1(t), because of the equivalence of the gradients: 
∂ΘL(Uk, Θ; Λk) = ∂Θℓ(uk(T)(Θ)), which is proved by Theorem 1. Ten
sorFlow provides optimized APIs for automatic differentiation which 
helps to build highly performant input pipelines and keeps high GPU 
utilization. In order to implement a more stable gradient calculation, we 
replace line 13 by minimizing ℓ with the Adam algorithm. The network 
was trained with total epochs K=700 to update Θk. We apply expo
nentially decay learning rate 0.0001, β1=0.9,β2=0.999,ε=10−8 and 
mini-batch size of 2 is used in Adam optimizer. The initial step size is set 
to ρ0=1 for both real and imaginary parts and we choose γ=10−3, 
η=10−4 in (5). The proposed network was implemented with T=4 and 
parameters trained in the network M are shared for every two phases. 

4.3. Comparison with existing methods 

The average numerical performance with standard deviations of the 
proposed method and several state-of-the-art methods are summarized 
in Table 3. The proposed method achieves the best reconstruction 
quality in terms of PSNR/SSIM/RMSE. Our method is parameter effi
cient due to the network M share parameters in every two phases so that 
the entire network reduces more than 1/4 of learnable parameters. We 
listed the trained parameter numbers and inference time in Table 3. 
Fig. 3 and Table 2 indicate that reconstruction performance get 
improved progressively as t increases. GRAPPA and SPIRiT adopted 

Fig. 3. Reconstructed channel-combined images J (u(t)) for t=1,2,3,4 of pro
posed method. 

Table 2 
Tested Average PSNR for FSPD data and PD data for each phase.  

Phase number PSNR of FSPD data PSNR of PD data 

1 16.2007 15.5577 
2 33.7201 40.5228 
3 36.9523 42.6623 
4 40.7101 44.8120  
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calibration kernel size 5 × 5 and Tikhonov regularization in the cali
bration was set to be 0.01. Tikhonov regularization in the reconstruction 
was set as 10−3 for implementing SPIRiT, which took 30 iterations. In 
training and testing of VN and DeepcomplexMRI, the network and 
parameter settings are used as stated in their paper and code. We 
modified De-AliasingNet by increasing filter numbers to be 64 in 20 it
erations to improve the performance for fair competition. In the CDF- 
Net, we set 128 channels as an initial layer with a depth of 4 in all the 
three Frequency-Informed U-Nets. We choose σ to be Softplus activation 
function. We implemented Adaptive-CS-Net with a total of 15 recon
struction blocks including 2 of 16 filters with size 3 × 3, 3 of 32 filters 
with size 5 × 5, and 2 of 64 filters with size 5 × 5, the blocks are mixed 
with 2 and 3 scales, which was controlled as the largest tolerance of our 
GPU capacity. We input the data consistency as prior knowledge of 

training data to the network, neighboring slices with the center slice are 
used as input. For fair competitions, CDF-Net and Adaptive-CS-Net have 
employed complex convolutions and activation ℂReLU. 

VN applied precalculated coil sensitivities, and output full-body 
image. De-AliasingNet, DeepcomplexMRI, CDF-Net, and Adaptive-CS- 
Net both output multi-coil images and do not require coil sensitivity 
maps. DeepcomplexMRI uses the adaptive coil combination method 
[49], the other networks all applied RSS. CDF-Net and proposed network 
perform cross-domain reconstruction, other learning-based methods 
perform on image domain. Comparison between referenced pMRI 
methods and proposed methods are shown in Fig. 4 for PD images and 
FSPD images are in Fig. 5. We observe the evidence that deep learning- 
based methods significantly outperform classical methods GRAPPA and 
SPIRiT in reconstruction accuracy. In learning-based methods, the tested 
images from VN and De-AliasingNet are more blurry than other ones and 
lost sharp details in some complicated tissue, other methods display only 
slight differences in the detail. 

4.4. Ablation studies 

The experiments introduced in this section implemented only in the 
image domain, in which (9) is replaced by: 

bi(t) = ui(t) − ρtFHPΤ (PFui(t) − fi ), (25a) 

ui(t + 1) = bi(t) + J̃ ∘G̃ ∘S αt (G ∘J (bi(t) ) ). (25b) 

S αt represents soft shrinkage operator, we set α0=0 for both real and 
imaginary parts. Details for this model was explained in the conference 
paper [5]. The proximal operator is learned in residual update (25b) and 
only performs in the image domain. 

We conduct a series of experiments to test the effects of several 
important components in the network proposed. Table 6 displays the 
comparison of proposed ablation study. All the experiments in Table 6 
were implemented by (25) except for the last one “proposed” method 
which unrolled (9). To specify which of the components are employed, 
we append the labels shown in Table 5 with different variations of the 
ablated pMRI networks. For instance, the network with real-valued 

Table 3 
Quantitative evaluations of the reconstructions on the Coronal FSPD & PD data and reconstruction time for each of the referenced methods. Time (in seconds) refers to 
the testing time for each method.   

FSPD data PD data Time Parameters 

Method PSNR SSIM RMSE PSNR SSIM RMSE 

GRAPPA [15] 24.9251 ± 0.9341 0.4827 ± 0.0344 0.2384 ± 0.0175 30.4154 ± 0.5924 0.7489 ± 0.0207 0.0984 ± 0.0030 280 s N/A 
SPIRiT [33] 28.3525 ± 1.3314 0.6509 ± 0.0300 0.1614 ± 0.0203 32.0011 ± 0.7920 0.7979 ± 0.0306 0.0824 ± 0.0082 43 s N/A 
VN [18] 30.2588 ± 1.1790 0.7141 ± 0.0483 0.1358 ± 0.0152 37.8265 ± 0.4000 0.9281 ± 0.0114 0.0422 ± 0.0036 0.16 s 0.13 M 
De-AliasingNet [8] 36.1017 ± 1.2981 0.8941 ± 0.0269 0.0697 ± 0.0119 41.2151 ± 0.7872 0.9711 ± 0.0033 0.0285 ± 0.0015 0.92 s 0.34 M 
DeepcomplexMRI [51] 36.5706 ± 1.0215 0.9008 ± 0.0190 0.0654 ± 0.0049 41.5756 ± 0.6271 0.9679 ± 0.0031 0.0274 ± 0.0018 1.04 s 1.45 M 
CDF-Net [37] 40.0405 ± 1.5518 0.9520 ± 0.0182 0.0443 ± 0.0070 43.7943 ± 1.9888 0.9879 ± 0.0026 0.0215 ± 0.0042 0.47 s 3.44 M 
Adaptive-CS-Net [39] 40.1846 ± 1.4780 0.9534 ± 0.0175 0.0435 ± 0.0065 44.1131 ± 1.5596 0.9878 ± 0.0026 0.0206 ± 0.0027 1.57 s 5.59 M 
Proposed 40.7101 ±

1.5357 
0.9619 ±
0.0144 

0.0408 ±
0.0051 

44.8120 ±
1.3185 

0.9886 ±
0.0023 

0.0189 ±
0.0018 

0.52 s 2.92 M  

Table 4 
Mean square error between u and u* for PD data comparing to the 
methods that reconstruct multi-coil images.  

Method RMSE between u and u* 

De-AliasingNet [8] 0.1573 
DeepcomplexMRI [51] 0.1253 
CDF-Net [37] 0.1196 
Adaptive-CS-Net [39] 0.1096 
pMRI-ℂNet-K [26] 0.0538 
Proposed [5] 0.0505  

Table 5 
Labels of the variations of the proposed pMRI reconstruction network.  

Label Meaning 

-Net Real-valued convolution/activation 
-ℂNet Complex-valued convolution/activation 
-RSS Using root of sum of squares in place of J 

-ZF Zero-filling as initial u(0) 
-SP SPIRiT as initial u(0) 
-K FH(f + K (f)) as initial u(0)  

Table 6 
Quantitative evaluations of the reconstructions on the Coronal FSPD & PD data using different variations of the proposed methods (Labels of variations are explained in 
Tabel 5. The experiments without being labeled loss functions are trained with [27]).   

FSPD data PD data Phases T Parameters 

Method PSNR SSIM RMSE PSNR SSIM RMSE 

pMRI-ℂNet-RSS 36.4887 ± 0.9787 0.9002 ± 0.0197 0.0661 ± 0.0051 41.2897 ± 0.8430 0.9281 ± 0.0357 0.0285 ± 0.0037 5 5.03 M 
pMRI-Net-ZF 37.8475 ± 1.2086 0.9212 ± 0.0236 0.0568 ± 0.0069 42.4333 ± 0.8785 0.9793 ± 0.0023 0.0249 ± 0.0024 5 5.03 M 
pMRI-Net-SP 38.0205 ± 0.8125 0.9291 ± 0.0183 0.0555 ± 0.0057 42.7435 ± 0.4856 0.9754 ± 0.0047 0.0239 ± 0.0019 5 5.03 M 
pMRI-ℂNet-ZF 38.1157 ± 1.3776 0.9277 ± 0.0257 0.0552 ± 0.0085 42.7859 ± 1.1285 0.9818 ± 0.0026 0.0241 ± 0.0045 5 5.03 M 
pMRI-ℂNet-SP 38.3239 ± 1.1305 0.9282 ± 0.0269 0.0539 ± 0.0075 42.8924 ± 0.9336 0.9760 ± 0.0054 0.0237 ± 0.0034 5 5.03 M 
pMRI-Net-K 38.8717 ± 1.1330 0.9389 ± 0.0209 0.0504 ± 0.0057 42.9060 ± 0.8765 0.9802 ± 0.0028 0.0236 ± 0.0028 4 4.11 M 
pMRI-ℂNet-K [38] 38.9661 ± 1.4382 0.9421 ± 0.0177 0.0498 ± 0.0056 43.2604 ± 0.7610 0.9833 ± 0.0022 0.0226 ± 0.0022 4 4.11 M 
pMRI-ℂNet-K 39.3360 ± 1.1854 0.9497 ± 0.0208 0.0477 ± 0.0048 43.5653 ± 0.8265 0.9844 ± 0.0022 0.0217 ± 0.0010 4 4.11 M 
Proposed [8] 40.7101 ± 1.5357 0.9619 ± 0.0144 0.0408 ± 0.0051 44.8120 ± 1.3185 0.9886 ± 0.0023 0.0189 ± 0.0018 4 2.92 M  
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convolution and activation function with zero-filled initialization is 
denoted by pMRI-Net-ZF, etc. The complete structure of the network 
with the three types of initialization is shown in Fig. 6. 

We consider two types of training datasets in the ablation experi
ments and design a proper loss function for each of them in Section 4.4. 
In the first case, the ground truth is u*, we set loss function: 

ℓ(u) =
∑c

i=1
γ ‖ ui − u*

i ‖ + ‖ ∣J (u)∣ − RSS(u*) ‖

+β ‖ RSS(ui(0) ) − RSS
(
u*

i

)
‖,

(26) 

u means u(T) for simplicity. If the training dataset consists ground 
truth single-body image v* ∈ ℝm×n = RSS(u*), then we test our network 
performance using the loss function: 

ℓ(u) = γ ‖ RSS(u) − v* ‖ + ‖ ∣J (u)∣ − v* ‖ + β ‖ RSS(u(0) ) − v* ‖ .

(27) 

The loss functions are indicated in Tables 6 and 4 follow the exper
iments. We set γ=1,β=10−3 in (26) and (27) in the implementations. 

4.4.1. Combination operator J vs. RSS 
In order to justify the effectiveness of the learned nonlinear combi

nation operator J , we modified pMRI-ℂNet-ZF by substituting J with 
RSS which is widely used to combine multi-coil images into a single- 
body image. The other operators G , G̃ and J̃ remain to perform com
plex convolutions. Specifically, the output of RSS: (

∑
i=1

c ∣ ui(t)∣2)1/2 ∈

Fig. 4. Qualitative comparison results of reconstruction methods on the Coronal PD knee image. The top row shows reconstructed images and the referenced image, 
the second and third-row are corresponding zoomed-in ROIs of the red box area (draw on the rightmost ground truth image), the fourth row shows corresponding 
pointwise absolute error maps and the last row shows corresponding values and regular Cartesian sampling (31.56% rate) mask. (For interpretation of the references 
to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 5. Qualitative comparison results of reconstruction methods on the Coronal FSPD knee image. From top to bottom: reconstructed images of different methods 
and the reference image, corresponding zoomed-in ROIs, corresponding pointwise absolute error maps and color bar, corresponding evaluation metric values, and 
regular Cartesian sampling (31.56% rate) mask. 
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ℝmn is a single-channel real-valued image, which is input into both real 
and imaginary parts of the nonlinear operator G , so the output split into 
complex value. We refer pMRI-Net-ZF/pMRI-ℂNet-ZF as the networks 
with combination operator J and pMRI-ℂNet-RSS as the network with 
RSS, all other settings remain the same as before. 

The reconstructed images and average evaluation results of these 
two types of networks are shown in Fig. 5 and Table 6. pMRI-Net-ZF and 
pMRI-ℂNet-ZF outperform pMRI-ℂNet-RSS with mean improvements of 
1.36 dB and 1.63 dB in PSNR respectively. It indicates that the learned 
combination operator J gives more favorable performance compared 
with applying RSS. 

4.4.2. Effect of initialization 
The choice of the input of the reconstruction network u(0), also has 

impacts on the final reconstruction quality. Instead of directly using the 
partial k-space data f as the input of our network, we use three different 
choices of input u(0): (i) Zero-filling reconstruction FHf; (ii) SPIRiT [33] 
reconstruction; (iii) FH(f + K (f)), one can treat f + K (f) as an inter
polated pseudo full k-space. 

We observe that from Table 6, SPIRiT initial makes a slight 
improvement over the zero-filled initial, whereas the learned initial 
achieves the highest reconstruction quality compared to the other two 
initializations. Fig. 7 displays the three types of initials. We observe that 
both SPIRiT and the learned initial obtain higher spatial resolution over 
zero-filling. SPIRiT is a classical k-space method, this initial did a better 
job on reducing the aliasing artifacts and keeping edges compare to zero- 
filling and the learned initial, but SPIRiT introduces more noise. 

Comparing to zero-filling, the learned initial preserves structure 
features of major tissue thanks to the k-space network K . Comparing to 
the SPIRiT initial, the learned initial reduces resolution noises in the 
image space. Learning-based initial obtain a balanced performance be
tween zero-filling and SPIRiT in the sense of avoiding the weakness of 
these two initials. 

4.4.3. Complex convolutions 
In this experiment, we compared -Net and -ℂNet. The quantitative 

evaluation from Table 6 indicates that the proposed complex-valued 
networks are outstanding in terms of PSNR/SSIM/RMSE over pro
posed real-valued networks. Table 6 informs the complex convolutions 
extract the features in each ui and obtain the lowest RMSE. The phase 
image for one channel of the reconstructed coil-image is displayed in 
Fig. 8. These results demonstrate complex-valued networks are playing 
important roles in updating multi-coil images and preserving phase in
formation of each channel. 

4.4.4. Comparison with proposed image domain reconstruction and domain 
hybrid reconstruction 

The major difference between pMRI-ℂNet-K and the proposed 
network is that pMRI-ℂNet-K only iterates (25b) in the image domain, 
while the proposed method iterates (9) which conducts a domain hybrid 
reconstruction. The denoising network in (25b) is J̃ ∘G̃ ∘S αt (G ∘J ), and 
in the proposed network we use M + FHK F + FHK FM , where M = J̃ ∘ 
G̃ ∘G ∘J is the image domain network. The soft-thresholding operator 
S αt was eliminated in the proposed method since we found the results of 
adding the soft-thresholding does not make an obvious difference. 

The average reconstruction outcomes in Tables 6 and 4 suggest that 
domain hybrid approach achieves better performance. Comparing to the 
pMRI-ℂNet-K, our proposed method improved 0.598 dB in PSNR, 0.003 
in SSIM, and reduced 0.014 in RMSE, which shows in Table 6 for PD 
dataset. 

5. Conclusion 

This paper introduces a discrete-time optimal control framework for 
the calibration-free pMRI reconstruction model. We apply a convolu
tional combination operator to combine channels of the multi-coil im
ages and apply a parametrized regularization function to the channel- 
combined image to reconstruct channel-wise multi-coil images. The 
proposed method is inspired by the proximal gradient algorithm. The 
proximal point is learned by two denoising networks, which conducts in 

Fig. 6. The framework paradigm for all phases with three different initial 
reconstruction methods, including zero-filled initial, SPIRiT reconstruction 
initial, and the learned initial. For t=1,⋯, T, each phase follows the algorithm 
introduced in our previous work [5]. 

Fig. 7. The first row (from left to right) shows the RSS of initial u(0) for pMRI- 
Net-ZF/pMRI-ℂNet-ZF, pMRI-Net-SP/pMRI-ℂNet-SP, pMRI-Net-K/pMRI-ℂNet- 
K, and reference image on the Coronal PD knee image. The second row shows 
their pointwise error maps and color bar. 

Fig. 8. The first row shows phase information of one coil in the reconstructed coil-image for GRAPPA, SPIRiT, De-AliasingNet, DeepcomplexMRI, CDF-Net, Adaptive- 
CS-Net, pMRI-ℂNet-K with loss function (26), the proposed method and referenced image. The second row shows the corresponding pointwise error maps and color 
bar, the maximum error is 30◦. 
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the image domain and k-space domain. We cast the reconstruction 
network as a structured discrete-time optimal control system, resulting 
in an optimal control formulation of parameter training, which provides 
an interpretable and high-performance deep architecture for pMRI 
reconstruction. We design network training from the view of the Method 
of Lagrangian Multipliers. We showed that the method of Lagrangian 
multipliers is equivalent to back-propagation, and we can employ SGD 
based algorithms to obtain a solution satisfying the necessary condition 
of the optimal control problem. The reconstruction results are of high 
perceived quality demonstrate the superior performance of the proposed 
pMRI-Net. 
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