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Abstract: Although there is an extensive literature on the maxima of
Gaussian processes, there are relatively few non-asymptotic bounds on their
lower-tail probabilities. The aim of this paper is to develop such a bound,
while also allowing for many types of dependence. Let (ξ1, . . . , ξN ) be a
centered Gaussian vector with standardized entries, whose correlation ma-
trix R satisfies maxi �=j Rij ≤ ρ0 for some constant ρ0 ∈ (0, 1). Then, for
any ε0 ∈ (0,

√
1− ρ0), we establish an upper bound on the probability

P(max1≤j≤N ξj ≤ ε0
√

2 log(N)) in terms of (ρ0, ε0, N). The bound is also
sharp, in the sense that it is attained up to a constant, independent of
N . Next, we apply this result in the context of high-dimensional statistics,
where we simplify and weaken conditions that have recently been used to
establish near-parametric rates of bootstrap approximation. Lastly, an in-
teresting aspect of this application is that it makes use of recent refinements
of Bourgain and Tzafriri’s “restricted invertibility principle”.
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1. Introduction

The maxima of Gaussian processes play an essential role in many aspects of
probability and statistics, and the literature describing them is highly devel-
oped [e.g. LLR83, Adl90, Lif95, LT13, Tal14]. Within this area, a variety of
questions are related to showing that the maximum of a process is unlikely to
deviate far above, or below, its mean. However, in comparison to the set of tools
for handling the upper tail of a maximum, there are relatively few approaches
for the lower tail. (Additional commentary related to this distinction may be
found in [Tal14, p.viii] [LS01, Sec.4.2] [Lif95, Sec.18].)

In this paper, our goal is to derive lower-tail bounds for Gaussian maxima
that are motivated by statistical applications involving bootstrap methods in
high dimensions. We desire bounds that are general enough to handle many
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types of correlation structures, yet also precise enough to yield explicit rates of
convergence in distributional approximation results.

To describe the setting of our lower-tail bounds, let ξ = (ξ1, . . . , ξN ) be
Gaussian vector with a correlation matrix R ∈ R

N×N , as well as E(ξj) = 0 and
var(ξj) = 1 for all 1 ≤ j ≤ N . We will consider the situation where there is a
fixed constant ρ0 ∈ (0, 1) such that

max
i �=j

Rij ≤ ρ0. (1.1)

In addition, we will consider some relaxations of this condition, where ρ0 = 1,
or where only subset of the off-diagonal entries of R are bounded above by a
given constant. (See Corollary 2.1 and Theorem 2.3.) It is also worth noting
that (1.1) does not require R to be invertible. Letting the maximum entry of ξ
be denoted as

MN (ξ) = max
1≤j≤N

ξj ,

we seek non-asymptotic upper bounds on the probability P(MN (ξ) ≤ t), where
t is a suitable point in the lower tail.

1.1. Background

We now briefly review some leading results on lower-tail bounds for MN (ξ).
Under the preceding conditions, the well-known concentration inequality for
Lipschitz functions of Gaussian vectors implies that for any s > 0,

P

(
MN (ξ) ≤ med(MN (ξ))− s

)
≤ e−s2/2, (1.2)

where med(·) is any median [ST74, Bor75]. Although this bound is broadly appli-
cable, it can fail to describe lower-tail probabilities smaller than O(N−1). To see
this, consider using (1.2) to bound the probability P(MN (ξ) ≤ δ0med(MN (ξ)))
for some fixed δ0 ∈ (0, 1). If the entries of ξ are independent, then the standard
fact that med(MN (ξ)) =

√
2 log(N)(1+o(1)) as N → ∞ implies that (1.2) can-

not give a bound better than O(N−1) in this case. Furthermore, such a bound
is far too large. In fact, when the entries of ξ are independent, this probability
is O(exp(−aN b)), for some fixed constants a, b > 0 that may depend on δ0 but
not N [cf. Sch07, Section 2]. More recently, an important result of Paouris and
Valettas [PV18] went beyond (1.2), showing that the inequality

P

(
MN (ξ) ≤ med(MN (ξ))− s

)
≤ 1

2 exp
(
− π

1024
s2

var(MN (ξ))

)
(1.3)

holds for any s > 0, which can improve upon (1.2) in situations where
var(MN (ξ)) is small. For further variations and related results, we refer to the
papers [PV19, Tan19, Val19].)

Despite the progress achieved by the bound (1.3), it can still be quite chal-
lenging to obtain precise control on the variance var(MN (ξ)) in the exponent.
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Indeed, it is often the case that bounds on var(MN (ξ)) have implicit depen-
dence on the correlation matrix R that is difficult to quantify, and such bounds
usually involve constants that are unspecified or conservative. (Note that since
var(MN (ξ)) appears in the exponent, the constant in a variance bound will typ-
ically affect the rate of the tail bound.) We refer to the books [BLM13, Cha14]
for further background on variance bounds related to MN (ξ).

Contributions. With regard to the considerations above, a few other works
have developed lower-tail bounds for MN (ξ) that provide insight into the role of
the correlation structure [Har14, DEZ15, Tan15]. However, a limitation shared
by all of these works is that they do not explicitly quantify the rate at which
probabilities of the form P(MN (ξ) ≤ ε0

√
2 log(N)) decrease with respect to N

for a fixed value ε0 ∈ (0,
√
1− ρ0). For instance, this limitation can arise from

unspecified constants in the exponents of the bounds. See also the discussion
after Theorem 2.1 below for more details.

In light of this, an important contribution of our lower-tail bounds is that
they provide rates with explicit constants in their exponents. Also, our work goes
further by showing that the rates are sharp (as in (2.3) and (2.4) of Theorem 2.1).
Moreover, the proof techniques used here are entirely different from those used
in the previously mentioned works. In particular, we extend and apply our lower-
tail bounds by leveraging recent refinements of Bourgain and Tzafriri’s restricted
invertibility principle (Section 2.1), which has been a topic of substantial interest
in contemporary mathematics. Conventionally, this principle is understood as a
functional-analytic result that guarantees the existence of special submatrices
within large matrices. Hence, our use of this result to serve the quite different
purpose of enhancing tail bounds may be viewed as another notable aspect of
our work.

In addition to these contributions, Theorem 3.1 in Section 3 shows how our
lower-tail bounds can be applied in the context of high-dimensional statistics, in
order to simplify and weaken conditions that are sufficient for near-parametric
rates of bootstrap approximation. Specifically, Theorem 3.1 advances the state
of the art on such results for “max statistics” in settings where the data satisfy
a condition known as “variance decay”. Also, a second application of our results
has recently been developed by [Yi21] in connection with stochastic PDEs. Brief
descriptions of both applications are given below.

1.2. Applications

Bootstrap methods in high dimensions. In recent years, inference prob-
lems related to max statistics have attracted significant attention in the high-
dimensional statistics literature. The prototypical example of a max statistic is
the coordinate-wise maximum of a sum of random vectors X1, . . . , Xn ∈ R

p, say

T = max
1≤j≤p

1√
n

n∑

i=1

Xij . (1.4)
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Statistics of this type arise often in the construction of hypothesis tests and con-
fidence regions, and consequently, the performance of many inference procedures
is determined by how accurately the distribution L(T ) can be approximated.

Bootstrap methods are a general approach to construct such approximations
in a data-driven way, and they are designed to generate a random variable
T ∗ whose conditional distribution given the data, denoted L(T ∗|X), is close
to L(T ). In this context, accuracy is commonly measured with respect to the
Kolmogorov metric dK, and the challenge of developing non-asymptotic up-
per bounds on dK(L(T ∗|X),L(T )) has stimulated an active line of work [e.g.
CCKK19, CCK20, DZ20, LLM20, Lop20]. As an application of our lower-tail
bounds, we will consider a recent bootstrap approximation result of this type
from [LLM20], and we will improve upon it by showing that it holds under as-
sumptions that are simpler and less restrictive.

Macroscopic properties of solutions to stochastic PDEs. In the study of
stochastic partial differential equations, it is of interest to determine whether or
not solutions exhibit high peaks over large regions at different scales. Solutions
having this property are said to be “multifractal at macroscopic scales”. In
order to demonstrate that a solution has this property in a precise sense, it
is necessary to analyze regions where a solution rises above a certain height
(exceedance sets), and quantify the “macroscopic Hausdorff dimension” of such
regions.

During the last few years, a growing number of results have demonstrated
that solutions to fundamental stochastic PDEs possess this multifractical prop-
erty [e.g. KKX17, KKX18, Kim19, Yi21]. Quite recently, our first main result
(Theorem 2.1) was used in [Yi21] to establish this property for certain versions of
the stochastic heat and wave equations. Specifically, the lower-tail bound in our
Theorem 2.1 was sharp enough to enable exact calculations of the macroscopic
Hausdorff dimension of exceedence sets of certain Gaussian random fields. (See
Theorems 1.1 and 1.3, as well as Section 3.2 in [Yi21].)

1.3. Notation

In order to simplify presentation, we always implicitly assume that N ≥ 2, and
we allow symbols for constants such as c, C, c0, C0, . . . to change values with each
appearance. When dealing with iterated logarithms, we use the abbreviation
�2(N) := max{1, log log(N)}. For a real matrix A, define ‖A‖F =

√
tr(A�A),

‖A‖1 =
∑

i,j |Aij |, and also define ‖A‖op to be the largest singular value of

A. For a real vector x, we write ‖x‖2 for the Euclidean norm. If A ∈ R
N×N

is symmetric, its sorted eigenvalues are λmax(A) = λ1(A) ≥ · · · ≥ λN (A) =
λmin(A). The identity matrix of size N×N is IN , and the standard basis vectors
in R

N are e1, . . . , eN . For the distribution of a random variable V , we write L(V ),
and we define its ψ1-Orlicz norm as ‖V ‖ψ1 = inf{t > 0 |E[exp(|V |/t)] ≤ 2}. If
ζ is a Gaussian random vector with mean 0 and covariance matrix Σ, we write
ζ ∼ N (0,Σ). For the univariate standard Gaussian distribution, the symbols Φ
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and φ denote the distribution function and density. Lastly, if a and b are real
numbers, we use the notation a ∨ b = max{a, b} and a ∧ b = min{a, b}.

2. Lower-tail bounds

To clarify the statements of our main results, we first state a basic proposition
describing the sizes of E(MN (ξ)) and med(MN (ξ)) under condition (1.1). This
proposition shows that the value

√
2(1− ρ0) log(N) is a natural reference level

for a lower-tail bound. Although this fact might be considered well-known among
specialists, it is not easily referenced in the form given below, and so we provide
a short proof at the end of Section 4.

Proposition 2.1. Let μN stand for either E(MN (ξ)) or med(MN (ξ)). If the
condition (1.1) holds for some ρ0 ∈ (0, 1), then there is a universal constant
c0 > 0 such that

μN ≥
√
2(1− ρ0) log(N)− c0

√
�2(N). (2.1)

Furthermore, if Rij = ρ0 for all i 
= j, then

μN ≤
√
2(1− ρ0) log(N). (2.2)

The following is our first main result, which will be extended and refined later
in Corollary 2.1 and Theorem 2.3. The proof is deferred to Section 4.

Theorem 2.1. Fix two constants δ0, ρ0 ∈ (0, 1) with respect to N , and suppose
the condition (1.1) holds. Then, there is a constant C > 0 depending only on
(δ0, ρ0), such that

P

(
MN (ξ) ≤ δ0

√
2(1− ρ0) log(N)

)
≤ C N

−(1−ρ0)(1−δ0)
2

ρ0 (log(N))
1−ρ0(2−δ0)−δ0

2ρ0 .

(2.3)

Furthermore, the bound (2.3) is sharp in the sense that if Rij = ρ0 for all i 
= j,
then there is a constant c > 0 depending only on (δ0, ρ0), such that

P

(
MN (ξ) ≤ δ0

√
2(1− ρ0) log(N)

)
≥ cN

−(1−ρ0)(1−δ0)
2

ρ0 (log(N))
1−ρ0(2−δ0)−δ0

2ρ0 .

(2.4)

Remarks. To comment on some basic features of the theorem, first note that
the dominant exponent −(1 − ρ0)(1 − δ0)

2/ρ0 takes larger negative values as
ρ0 becomes smaller. Hence, the bound respects the fact that the lower-tail
probability decays faster than any power of N−1 when the entries of ξ are
independent. Also, the theorem conforms with the reference level motivated by
Proposition 2.1, since (2.3) implies that med(MN (ξ)) cannot be much less than√
2(1− ρ0) log(N).
Regarding other recent lower-tail bounds for MN (ξ), their relation to (2.3)

and (2.4) can be summarized as follows (in the setting of Theorem 2.1 with ρ0
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and δ0 regarded as fixed with respect to N). First, the paper [DEZ15, The-
orem 1.6] gives a two-sided tail bound for MN (ξ), implying that if a and
b are positive constants satisfying E(MN (ξ)) ≥ a

√
log(N) and b ≤ a/100,

then the probability P(MN (ξ) ≤ E(MN (ξ)) − b
√
log(N)) is at most of order

N−b2/(2−c(a)), for an unspecified constant c(a) > 0. Second, the paper [Tan15,
Proposition 7] gives a two-sided tail bound implying that for any constant
b > 0, the probability P(MN (ξ) ≤ E(MN (ξ)) − b

√
log(N)) is at most of or-

der exp(− cb√
ρ0

√
log(N)), where c > 0 is an unspecified constant. (Note that

even if c were specified, this bound would be of larger order than N−ε for
any ε ∈ (0, 1).) Third, the paper [Har14, Theorem 3.4] develops a lower-tail
bound of the form P(MN (ξ) ≤ tN (α)) ≤ 2α for any α ∈ (0, 1/2), where
tN (α) is a threshold with a complex dependence on N , α, as well as other
parameters related to the correlation structure of ξ. In particular, Section 4 of
the paper explains that the threshold can be expressed in terms of the mini-
mum eigenvalue of R. For instance, when R satisfies Rij = ρ0 for all i 
= j,
the minimum eigenvalue is equal to 1 − ρ0, and in this case, Theorem 3.4
and the comments preceding equation (4.1) in [Har14] yield the following for-
mula: tN (α) =

√
1− ρ0[κN (α) −

√
log(κN (α)) +

√
ρ0Φ

−1(α)], where we put
κN (α) = log(N2/(2π)) − 2 log(− log(α)). However, it seems that this formula
for tN (α) is not quite correct, since it is missing a square root. (Note that the
quantity κN (α) scales like log(N), rather than

√
log(N), as a function of N .)

Apart from this issue, the intricate form of the threshold also makes our result
ostensibly easier to use. Lastly, in comparison to our work, none of the three
mentioned papers resolve the question of whether or not the lower-tail bounds
yield sharp rates.

Extra correlation structure. We now present a direct corollary of Theo-
rem 2.1 that allows for extra structure in the matrix R to be used. If the matrix
R satisfies maxi �=j Rij = ρ0, but “most” off-diagonal entries are substantially
less than ρ0, then we can gain considerable improvement. Roughly speaking, if
there is a number ρ1 ∈ (0, ρ0) such that a large number of off-diagonal entries
satisfy Rij ≤ ρ1, then Theorem 2.1 can be improved by effectively replacing ρ0
with the better value ρ1.

Corollary 2.1. Fix two constants δ1, ρ1 ∈ (0, 1) with respect to N . Suppose
there is an index set J ⊂ {1, . . . , N} with cardinality |J | ≥ 2, such for any
distinct i, j ∈ J , the bound Rij ≤ ρ1 holds. Then, there is a constant C > 0
depending only on (δ1, ρ1) such that

P

(
MN (ξ) ≤ δ1

√
2(1− ρ1) log(|J |)

)
≤ C |J |

−(1−ρ1)(1−δ1)
2

ρ1 (log(|J |))
1−ρ1(2−δ1)−δ1

2ρ1 .

Another point worth noting about this corollary is that it remains applicable
even in situations where some variables are perfectly correlated and ρ0 = 1.
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2.1. Further improvements using the restricted invertibility

principle

In order to leverage the full strength of Corollary 2.1, we need an index set
J ⊂ {1, . . . , N} with large cardinality, such that the off-diagonal entries Rij

with i, j ∈ J are uniformly small. Quite remarkably, it turns out that such an
index set is guaranteed to exist under rather general conditions, as a consequence
of a seminal result known as the restricted invertibility principle [BT87]. Over
the past decade, this result has received considerable attention, due to its close
links with the solution of the longstanding Kadison-Singer problem by Marcus,
Spielman and Srivastava [MSS15]. Below, we will apply a recent refinement of
the restricted invertibility principle, established in a companion paper by the
same group [MSS21].

To introduce some notation, define the stable rank r(A) of a non-zero positive
semidefinite matrix A as

r(A) =
[tr(A)]2

‖A‖2F
.

This quantity always satisfies

1 ≤ r(A) ≤ rank(A),

and has the useful property that it approximately counts the number of dom-
inant eigenvalues of A. In terms of the notion of stable rank, the restricted
invertibility principle roughly says that for any matrix L ∈ R

N×N , there exists
an index set J ⊂ {1, . . . , N} with cardinality |J | ≈ r(L�L), such that the col-
umn submatrix of L indexed by J has (non-trivial) singular values that are well
separated from zero.

Theorem 2.2 (Restricted invertibility principle [MSS21]). Let L ∈ R
N×N be

a non-zero matrix. Then, for any positive integer k ≤ r(L�L), there exists
an index set J ⊂ {1, . . . , N} with cardinality |J | = k, such that the following
inequality holds for any real numbers (aj)j∈J ,

∥∥∥∥
∑

j∈J

ajLej

∥∥∥∥
2

2

≥ ‖L‖2F
N

·
(
1−

√
k

r(L�L)

)2

·
∑

j∈J

a2j . (2.5)

We will apply the restricted invertibility principle above with R1/2 playing the
role of L. Note that because R is a correlation matrix, we have ‖R1/2‖2F /N = 1
and r(R) = N2/‖R‖2F . To simplify the inequality (2.5), let R(J) ∈ R

|J|×|J|

denote the submatrix of R with entries indexed by J ×J . Also, suppose there is

an integer k ≥ 2 and a scalar ε ∈ (0, 1), such that k ≤ ε2

4 r(R). In this case, the
restricted invertibility principle ensures there is a choice of J with cardinality
equal to k such that

λmin(R(J)) ≥ (1− ε/2)2.
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In turn, this implies that the off-diagonal entries of R(J) are uniformly small,
i.e.

max
i �=j

Rij(J) = 1−min
i �=j

1
2 (ei − ej)

�R(J)(ei − ej)

≤ 1− λmin(R(J))

≤ ε.

The next theorem combines this information about J with Corollary 2.1. Later
on, this connection will be used in our application dealing with rates of bootstrap
approximation in high dimensions.

Theorem 2.3. Fix two constants δ, ε ∈ (0, 1) with respect to N , and consider a
Gaussian random vector ξ ∼ N (0, R) for some correlation matrix R ∈ R

N×N .
Then, there is a constant C > 0 depending only on (δ, ε) such that the following

inequality holds for any integer k ≥ 2 satisfying k ≤ ε2

4 r(R),

P

(
MN (ξ) ≤ δ

√
2(1− ε) log(k)

)
≤ C k

−(1−ε)(1−δ)2

ε (log(k))
1−ε(2−δ)−δ

2ε . (2.6)

Remarks. To discuss the choice of k, consider a basic situation where the
root mean square of eigenvalues, say λrms(R) = 1√

N

√
λ1(R)2 + · · ·+ λN (R)2,

is upper bounded by a constant C. For instance, this condition is quite natural
in the context of principal components analysis, where the matrix R may only
have a handful of dominant eigenvalues. Note too that this condition is much
weaker than requiring ‖R‖op ≤ C, since it is possible for the largest eigenvalue
of R to diverge while λrms(R) remains bounded as N → ∞. Due to the fact that
R is a correlation matrix, the condition λrms(R) ≤ C implies

r(R) ≥ N
C2 ,

and consequently, the integer k in Theorem 2.3 may be chosen to be of order
N . This leads to an upper bound in (2.6) of order N−(1−ε)(1−δ)2/ε, up to a
logarithmic factor. To see why this illustrates the benefit of the restricted in-
vertibility principle, note that it enables us to bypass an assumption of the form
maxi �=j Rij ≤ ε, which would have been necessary if Theorem 2.1 had been used
directly. Indeed, a condition like λrms(R) ≤ C is often more appealing from a
statistical standpoint, because it allows for many off-diagonal entries of R to be
close to 1.

3. Application to bootstrap methods in high dimensions

Preliminaries. Let X1, . . . , Xn ∈ R
p be centered i.i.d. observations with a

standardized sum denoted as Sn = n−1/2
∑n

i=1 Xi. In addition, define the
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coordinate-wise variances σ2
j = var(X1j) for each j = 1, . . . , p, which are as-

sumed to be positive, and define the partially standardized max statistic

M = max
1≤j≤p

Sn,j/σ
τ
j ,

where τ ∈ [0, 1) is a tuning parameter. This type of max statistic was studied
previously in [LLM20], and reduces to the basic example (1.4) in the case when
τ is chosen to be 0.

In order to analyze bootstrap approximations of L(M), we will focus on the
“Gaussian multiplier bootstrap method” popularized in [CCK13]. To describe
the method, define the sample mean X̄ = 1

n

∑n
i=1 Xi, the sample covariance

matrix Σ̂ = 1
n

∑n
i=1(Xi − X̄)(Xi − X̄)�, and the coordinate-wise sample vari-

ances σ̂2
j = Σ̂jj for j = 1, . . . , p. The bootstrapped statistic M	 is constructed

by generating a Gaussian random vector S	
n ∼ N (0, Σ̂), and defining1

M	 = max
1≤j≤p

S	
n,j/σ̂

τ
j .

Here, the key point is that it is possible in practice to directly simulate the
conditional distribution of M	 given the data, denoted L(M	|X). Accordingly,
the multiplier bootstrap method uses L(M	|X) as an approximation to L(M).

As one last preliminary item, we will adopt the standard convention in high-
dimensional statistics of considering a sequence of models indexed by n, in which
all parameters may depend on n, except when stated otherwise. In particular,
the dimension p = p(n) is allowed to have arbitrary dependence on n. Likewise,
if a parameter does not depend on n, then it does not depend on p either. To
simplify notation, we will write an � bn for two sequences of real numbers an
and bn if there is a constant c > 0 not depending on n such that an ≤ cbn
holds for all large n. In the case when both an � bn and bn � an hold, we write
an � bn.

3.1. A brief review of bootstrap approximation under variance decay

Recently, the paper [LLM20] analyzed how well L(M	|X) approximates L(M)
in the setting of “variance decay”, where the sorted coordinate-wise variances
σ2
(1) ≥ · · · ≥ σ2

(p) have a polynomial decay profile. This means that there is a

constant γ > 0 not depending on n such that the condition σ(j) � j−γ holds for
all j = 1, . . . , p. (The constant γ is allowed to be arbitrarily large or small.) For
instance, the structure of variance decay arises naturally in a variety of high-
dimensional statistical applications related to principal components analysis,
count data, and the Fourier coefficients of functional data. Under the assumption
of variance decay, as well as some additional assumptions on the correlation and
tail-behavior of the covariates, Theorem 3.2 in the paper [LLM20] established
the following bootstrap approximation result. Namely, for any fixed δ ∈ (0, 1/2),
there is a constant C > 0 not depending on n such that the bound

1The expression S�
n,j/σ̂

τ
j is regarded as 0 in the exceptional case σ̂j = 0.
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sup
t∈R

∣∣∣P(M	 ≤ t|X)− P(M ≤ t)
∣∣∣ ≤ Cn− 1

2+δ (3.1)

holds with probability at least 1− C/n.
The result (3.1) has some significant distinguishing features in relation to

the other recent works [Lop20, CCK20] that have obtained near n−1/2 rates of
bootstrap approximation for max statistics in high-dimensional settings. First,
the use of variance decay makes it possible for the bound (3.1) to hold inde-
pendently of p, whereas the other works do not use this structure and obtain
rates with polylogarithmic dependence on p. Second, the other works require
that the correlation matrix cor(X1) ∈ R

p×p be either positive definite or well-
approximated by a positive definite matrix, whereas the bound (3.1) does not.
Nevertheless, the bound (3.1) does rely on some other assumptions about the
matrix cor(X1). Below, we outline these assumptions, and later in Section 3.2,
we will show how these assumptions can be simplified and weakened by applying
our work from Section 2.

To introduce some notation, consider an arbitrary index d ∈ {1, . . . , p}, and
let J(d) ⊂ {1, . . . , p} denote a set of indices corresponding to the d largest
coordinate-wise variances, i.e. {σ2

(1), . . . , σ
2
(d)} = {σ2

j | j ∈ J(d)}. Next, let R(d)

denote the d × d correlation matrix of the variables (X1j)j∈J(d), and let the

matrix R+(d) ∈ R
d×d be the non-negative part, R+

ij(d) = Rij(d) ∨ 0. Lastly,

define the integer mn = �(log(n))3 ∧ p�, which always satisfies 1 ≤ mn ≤ p.
In terms of this notation, the paper [LLM20] makes the following three cor-

relation assumptions in order to establish (3.1):

(a) There is a constant ε0 ∈ (0, 1) not depending on n such that

max
i �=j

Rij(mn) ≤ 1− ε0.

(b) The matrix R+(mn) is positive semidefinite.

(c) The condition ‖R(mn)‖1 � mn holds.

Concerning assumption (b), this is non-trivial because the operation of taking
the entrywise non-negative part of a matrix does not generally preserve positive
semidefiniteness [GR15, Theorem 4.11].

3.2. Bootstrap approximation result with relaxed correlation

assumptions

In this subsection, we will present a result of the form (3.1) in which the pre-
vious correlation assumptions (a) and (b) are removed, and in which (c) will
be replaced by a version involving a weaker norm. Apart from the correlation
structure, the following conditions on the data-generating model and the vari-
ance decay profile are slightly simplified versions of the ones used in [LLM20].

Assumption 3.1 (Data-generating model and variance decay).
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(i) There is a positive semidefinite matrix Σ ∈ R
p×p, such that the observa-

tions X1, . . . , Xn ∈ R
p are generated as

Xi = Σ1/2Zi

for each i = 1, . . . , n, where Z1, . . . , Zn are i.i.d. random vectors, with
E(Z1) = 0, E(Z1Z

�
1 ) = Ip, as well as sup‖u‖2=1 ‖Z�

1 u‖ψ1 � 1.

(ii) The parameters σ(1) ≥ · · · ≥ σ(p) are positive, and there is a constant
γ > 0 not depending on n such that the condition

σ(j) � j−γ

holds for all j = 1, . . . , p.

The following is the main result of the current section, and the proof will be
given in Section 5.

Theorem 3.1 (Bootstrap approximation). Fix any constants δ ∈ (0, 1/2) and
τ ∈ [0, 1) with respect to n, and define κ = 4 ∨ (3γ(1 − τ)) as well as ln =⌈
nδ/κ∧p

⌉
. In addition, suppose that Assumption 3.1 holds, and that the condition

‖R(ln)‖2F � l2−δ
n . (3.2)

holds. Then, there is a constant C > 0 not depending on n such that the event

sup
t∈R

∣∣∣P(M	 ≤ t|X)− P(M ≤ t)
∣∣∣ ≤ Cn− 1

2+δ (3.3)

holds with probability at least 1− C/n.

Remarks. To interpret the correlation assumption (3.2), it should be empha-
sized that the upper bound ‖R(ln)‖2F ≤ l2n holds under all circumstances, be-
cause any positive semidefinite matrix A satisfies ‖A‖2F ≤ [tr(A)]2. So, given
that δ may be taken to be arbitrarily small, it is not possible to substantially
weaken (3.2) in general. Furthermore, it is worth noting that the condition (3.2)
only applies to the small set of variables indexed by J(ln), while all other vari-
ables indexed by {1, . . . , p} \ J(ln) have a correlation structure that is unre-
stricted.

A large class of examples of correlation matrices satisfying (3.2) can be con-
structed in the following way. Let f : [0,∞) → [0, 1] be any continuous convex
function that satisfies f(0) = 1, as well as f(t) ≤ ct−δ for some fixed constants
c > 0, δ ∈ (0, 1/2), and all t ≥ 0. Then, by Pólya’s criterion [Pól49, Theorem
1], any matrix with entries defined by Rij = f(|i − j|) will be a correlation
matrix that satisfies (3.2). Moreover, any other correlation matrix obtained by
permuting the rows and columns will continue to satisfy (3.2). For additional
discussion of such matrices, and some of their connections to high-dimensional
statistics, we refer to [BL08].

With regard to our lower-tail bounds from Section 2, the connection with
Theorem 3.1 can be explained as follows. Overall, the proof of this result is based
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on a dimension-reduction strategy that involves showingM is well approximated
by a statistic of the form M ′ = maxj∈J ′ Sn,j/σ

τ
j , where J ′ ⊂ {1, . . . , p} is an

index set with cardinality much less than p. In order to show that M = M ′

holds with high probability, we will localize the maximizing index for M to the
set J ′. That is, if ĵ is a random index such that M = Sn,̂j/σ

τ
ĵ , then we will

show that ĵ falls into J ′ with high probability. It is in this localization step that
the lower-tail bound from Theorem 2.3 will be used: Two values x < y will be
determined, such that M ′ is likely to be above y, while the maximum of Sn,j/σ

τ
j

over the indices j 
∈ J ′ is likely to be below x. Hence, the first of these items
requires a lower-tail bound, because it involves showing that the probability
P(M ′ ≤ y) is small.

4. Proof of Theorem 2.1

Throughout the proofs, we always assume that N is sufficiently large for any
given expression to make sense — since this can be accommodated by an adjust-
ment of the constants C and c in the statement of Theorem 2.1. The symbols c
and C will also be frequently be re-used with the understanding that they never
depend on N (and similarly with respect to the sample size n in Section 5). In
addition, it will simplify presentation to introduce the the quantities

α0 = (1−ρ0)(1−δ0)
2

ρ0
and β0 = (1−ρ0)(1−δ0)

ρ0
,

so that the bounds in Theorem 2.1 are proportional to N−α0(log(N))
β0−1

2 .

Proof of the upper bound (2.3). Let tN = δ0
√
2(1− ρ0) log(N), and let

ξ′ ∼ N (0, R′) be a Gaussian vector in R
N , where R′ is a correlation matrix

satisfying R′
ij = ρ0 for all i 
= j. Due to the assumption that maxi �=j Rij ≤ ρ0,

it follows from Slepian’s Lemma [Sle62] that

P(MN (ξ) ≤ tN ) ≤ P(MN (ξ′) ≤ tN ).

To control the larger probability, let ζ0, ζ1, . . . , ζN denote independent N (0, 1)
random variables, and note that the coordinates of ξ′ may be jointly represented
in distribution as

ξ′j =
√
ρ0ζ0 +

√
1− ρ0ζj . (4.1)

This yields the following representation of the maximum

MN (ξ′) =
√
ρ0ζ0 +

√
1− ρ0 max

1≤j≤N
ζj , (4.2)

which allows us to view MN (ξ′) as the convolution of the two independent
random variables on the right side. Consequently, a direct calculation may be
used to obtain the exact formula

P
(
MN (ξ′) ≤ tN

)
=

∫ ∞

−∞
ψN (s)ds, (4.3)
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where the integrand is defined by

ψN (s) = φ(s)ΦN
( tN−√

ρ0s√
1−ρ0

)
,

with φ and Φ being the standard normal density and distribution function.
The remainder of the proof consists in bounding integral

∫∞
−∞ ψN (s)ds over the

intervals (−∞,−cN ], [−cN , 0], and [0,∞), where we define

cN =
√

2(1−ρ0) log(N)
ρ0

{
1− δ0 −

1
4 
2(N)

log(N)

}
. (4.4)

Remarks. Our choice of the cut-off point cN is a crucial element of the proof.
To give a sense of how delicate this is, a close inspection of the proof shows that
the 1/4 coefficient on the trailing term �2(N)/ log(N) is needed to obtain both
the upper and lower bounds in Theorem 2.1. Some intuition for the definition
of cN can be given as follows. First, define bN =

√
2 log(N)− �2(N)/

√
8 log(N)

and the random variable GN =
√
2 log(N)(max1≤j≤N ζj − bN ), which has the

property that GN + log(
√
4π) converges weakly to a standard Gumbel distribu-

tion as N → ∞ [LLR83, Theorem 1.5.3]. Based on this notation and (4.2), it
can be checked that

P(MN (ξ′) ≤ tN ) = P

(
ζ0 +

√
1−ρ0

2ρ0 log(N)GN ≤ −cN

)
. (4.5)

Next, the probability on the right can be approximated heuristically by drop-
ping the random variable

√
(1− ρ0)/(2ρ0)GN/

√
log(N), because it is of order

1/
√
log(N) (in probability), and hence asymptotically negligible compared to

ζ0. After this heuristic is used, some further calculation then leads to the sur-

mise that P(MN (ξ′) ≤ tN ) should be of order N−α0 log(N)
β0−1

2 . However, this
line of reasoning will not be used in the formal proof, because the bounds in
Theorem 2.1 are non-asymptotic. Also, note that this asymptotic heuristic sup-
presses the fact that 1/

√
log(N) approaches 0 very slowly, which matters much

more from a non-asymptotic standpoint.

Returning to the main thread, the problem of upper bounding the integral
of ψN (s) over the interval [−cN , 0] is the most involved part of the proof, and
is postponed to Lemma 4.1 later on. (The reason for this difficulty is that the
function ψN (s) is especially sensitive to small changes in s over [−cN , 0]. In
particular, this stage of the analysis involves developing separate bounds over
two sub-intervals of [−cN , 0] in order to account for changes in the local be-
havior of the function.) Once the proof of that lemma is complete, it will be
straightforward to control the integral over [0,∞), which is done subsequently
in Lemma 4.2. For the moment, we only handle the interval (−∞,−cN ], since
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it requires no further preparation. Indeed, we have

∫ −cN

−∞
ψN (s)ds ≤

∫ −cN

−∞
φ(s)ds

≤ e−c2N/2

√
2πcN

(Mill’s inequality)

≤ C√
log(N)

N−α0 exp
{

β0

2 �2(N)
}

≤ CN−α0(log(N))
β0−1

2 ,

(4.6)

where C only depends on δ0 and ρ0. This proves the upper bound (2.3).

Proof of the lower bound (2.4). It suffices to derive a lower bound on the

integral
∫ −cN
−∞ ψN (s)ds. Using the fact that ΦN

(
tN−√

ρ0s√
1−ρ0

)
is decreasing in s, we

have ∫ −cN

−∞
ψN (s)ds ≥ ΦN

(
tN+

√
ρ0cN√

1−ρ0

)
Φ(−cN ). (4.7)

If we define the number

rN =
tN+

√
ρ0cN√

1−ρ0

=
√

2 log(N)
{
1−

1
4 
2(N)

log(N)

}
,

(4.8)

then Mill’s inequality gives

Φ(rN ) ≥ 1− 1√
2πrN

e−r2N/2

≥ 1− C
N .

(4.9)

Hence, the limit (1−C/N)N → exp(−C) as N → ∞ shows that ΦN (rN ) is lower
bounded by a positive constant for all large N . Finally, regarding the factor
Φ(−cN ) in (4.7), the lower-bound version Mill’s inequality [Dur05, Theorem
1.4] gives

Φ(−cN ) ≥
{

1
cN

− 1
c3N

}
1√
2π

e−
1
2 c

2
N

≥ cN−α0(log(N))
1
2 (β0−1),

(4.10)

where the second step follows from a calculation very similar to (4.6). This
completes the proof of the lower bound (2.4) and the theorem.

Lemma 4.1. There is a constant C > 0 depending only on (ρ0, δ0) such that

∫ 0

−cN

ψN (s)ds ≤ C N−α0(log(N))
1
2 (β0−1). (4.11)
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Proof. To simplify the analysis of ψN (s), we will introduce a change of variable
and write s as function of a number δ lying in an interval denoted as

IN =
[
0 , 1− δ0 −

1
4 
2(N)

log(N)

]
.

Specifically, we write s = sN (δ) = −aNδ, where aN =
√

2(1−ρ0) log(N)
ρ0

. Also

note that sN (·) maps IN to the interval [−cN , 0]. As a means of simplifying the

factor ΦN
( tN−√

ρ0s√
1−ρ0

)
in the definition of ψN (s), let

uN (δ) =
tN−√

ρ0sN (δ)√
1−ρ0

=
√

2 log(N)(δ0 + δ). (4.12)

It follows that for all δ ∈ IN ,

logψN (sN (δ)) = − (1−ρ0) log(N)δ2

ρ0
+N log Φ(uN (δ))− log(

√
2π). (4.13)

Due to the lower-bound form of Mill’s inequality, we have

Φ(uN (δ)) ≤ 1− 1√
2π

{
1

uN (δ) − 1
u3
N (δ)

}
exp(−1

2uN (δ)2)

= 1− wN (δ),

(4.14)

where wN (δ) is defined by the last line. When N is sufficiently large, it is simple
to check that the condition 0 < wN (δ) < 1 holds for all δ ∈ IN , which gives
log(1 − wN (δ)) ≤ −wN (δ). Combining the last few steps, the following bound
holds for all δ ∈ IN ,

N log Φ(uN (δ)) ≤ −N wN (δ)

≤ −cN√
log(N)

exp
{
− log(N)(δ0 + δ)2

}
.

(4.15)

The work up to this point provides us with a useful majorant for ψN . By
looking at the equation (4.13) and the bound (4.15), it is clear that if we define
the function

fN (δ) = (1−ρ0) log(N)δ2

ρ0
+ cN√

log(N)
exp

{
− log(N)(δ0 + δ)2

}
, (4.16)

then the bound
ψN (sN (δ)) ≤ exp{−fN (δ)} (4.17)

holds for all δ ∈ IN . Integrating this bound gives

∫ 0

−cN

ψN (s)ds ≤ aN

∫

IN

exp{−fN (δ)}dδ. (4.18)

We now introduce another change of variable, and write δ as a function of a
positive number η using

δ = δN (η) = 1− δ0 − η
2(N)
log(N) .
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If we define the interval JN =
[
1
4 ,

(1−δ0) log(N)

2(N)

]
, then δN (·) maps JN to IN ,

and the integral bound (4.18) becomes

∫ 0

−cN

ψN (s)ds ≤ aN 
2(N)
log(N)

∫

JN

exp{−fN (δN (η))}dη. (4.19)

The remainder of the proof will be divided into two parts, in which the
integral over JN is decomposed with the subintervals

J ′
N =

[
1
4 ,

(log(N))1/4


2(N)

]
and J ′′

N =
[
(log(N))1/4


2(N) , (1−δ0) log(N)

2(N)

]
.

In handling these subintervals below, it will be convenient to label the summands
of fN in line (4.16) according to

fN (δ) = gN (δ) + hN (δ),

where

gN (δ) = (1−ρ0) log(N)δ2

ρ0

hN (δ) = cN√
log(N)

exp
{
− log(N)(δ0 + δ)2

}
.

The integral over J ′
N . By expanding out the square δN (η)2, and dropping

the smallest positive term, the following bound holds for any η,

exp
{
−gN (δN (η))

}
≤ N−α0 exp

{
2β0�2(N)η

}
.

In addition, if we expand the square (δ0 + δN (η))2, and use the fact that every
η ∈ J ′

N is bounded above by (log(N))1/4/�2(N), then a short calculation gives

−hN (δN (η)) ≤ −ce
2(N)(2η− 1
2 ),

for small enough c > 0. Directly combining the last two steps gives

exp
{
−fN (δN (η))

}
≤ N−α0 exp

{
2β0η�2(N)− ce
2(N)(2η− 1

2 )
}
. (4.20)

To simplify the previous bound, define x(η) = 2η− 1
2 . Since x(η) is non-negative

for all η ∈ J ′
N , we may approximate exp{�2(N)x(η)} from below using a second-

order Taylor expansion 1 + �2(N)x(η) + 1
2�2(N)2x(η)2. After some arithmetic,

the bound (4.20) becomes

exp
{
−fN (δN (η))

}
≤ e

β0
2 
2(N) · e−c ·N−α0 · ϕN (x(η)), (4.21)

where we define the function

ϕN (x) = exp
{
−
[
c
2�2(N)2

]
x2 +

[
(β0 − c)�2(N)

]
x
}
.
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Integrating the bound (4.21) over J ′
N , we obtain

aN �2(N)

log(N)

∫

J ′

N

exp{−fN (δN (η))}dη ≤ C · �2(N) · (log(N))
1
2
(β0−1) ·N−α0

∫ ∞

0
ϕN (x)dx.

(4.22)

To handle the last integral, note that the function ϕN (x) can be written in
the form ϕN (x) = exp(−ax2 + bx), and that the elementary Gaussian integral
bound ∫ ∞

0

e−ax2+bxdx ≤
√
π√
a
exp

(
b2

4a

)

holds for any a > 0 and b ∈ R. Therefore,
∫ ∞

0

ϕN (x)dx ≤ C

2(N) .

Combining this with the bound (4.22) completes the work on J ′
N .

The integral over J ′′
N . First note that exp{−fN (δ)} ≤ exp{−hN (δ)}. Also,

the function exp{−hN (δN (η))} is decreasing in η, and so if we denote the left
endpoint of J ′′

N as

ηN = (log(N))1/4/�2(N),

then we have the following height-width integral bound

aN 
2(N)
log(N)

∫

J ′′

N

exp
{
−fN (δN (η))

}
dη ≤ aN 
2(N)

log(N) · |J ′′
N | · exp{−hN (δN (ηN ))}

≤ C ·
√
log(N) · exp

{
−c√
log(N)

e2(log(N))1/4
}
.

This bound is of smaller order than N−α0(log(N))
1
2 (β0−1), which completes the

proof of Lemma 4.1.

Lemma 4.2. There is a constant C > 0 depending only on (δ0, ρ0) such that
∫ ∞

0

ψN (s)ds ≤ C N−α0(log(N))
1
2 (β0−1). (4.23)

Proof. The function ΦN
(

tN−√
ρ0s√

1−ρ0

)
is decreasing in s, and so

∫ ∞

0

ψN (s)ds ≤ ΦN
(

tN√
1−ρ0

)
.

Then, the inequality (4.15) gives

ΦN
(

tN√
1−ρ0

)
≤ exp(−hN (0))

= exp
{

−cN1−δ20√
log(N)

}
,

(4.24)

which is clearly of smaller order than the stated bound.
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Proof of Proposition 2.1. We first show (2.1) in the case where μN =
E(MN (ξ)). Let R′ ∈ R

N×N be a correlation matrix with R′
ij = ρ0 for all i 
= j,

and let ξ′ ∼ N (0, R′). Based on the assumed condition (1.1), it follows from
Slepian’s lemma that

E(MN (ξ)) ≥ E(MN (ξ′)). (4.25)

Next, the representation (4.2) gives

E
[
MN (ξ′)

]
=

√
1− ρ0 E

[
max

1≤j≤N
ζj
]

≥
√

2(1− ρ0) log(N)− c0
√

�2(N)

(4.26)

for some universal constant c0 > 0, where the second step can be obtained
from [Mas07, p.66]. To handle μN = med(MN (ξ)), note that

∣∣∣E(MN (ξ))−med(MN (ξ))
∣∣∣ ≤

√
var(MN (ξ))

≤ 1,

(4.27)

where the second step uses the Gaussian Poincaré inequality [BLM13, Theorem
3.20]. To show the upper bound (2.2), note that we may take ξ = ξ′. When
μN = E(MN (ξ′)), the result follows from the first part of (4.26) and the stan-
dard inequality E(max1≤j≤N ζj) ≤

√
2 log(N). When μN = med(MN (ξ′)), the

result follows from the fact that med(MN (ξ′)) ≤ E(MN (ξ′)), since MN (·) is a
continuous convex function [Kwa94].

5. Proof of Theorem 3.1

Let Σ = E(X1X
�
1 ) be the population covariance matrix, and let Σ̂ be the sample

covariance matrix defined in Section 3, with σ̂2
j = Σ̂jj for every j = 1, . . . , p.

Recall that S	
n denotes a Gaussian random vector drawn from N (0, Σ̂), and

define a corresponding Gaussian vector S̃n ∼ N (0,Σ). For each index d ∈
{1, . . . , p}, let the index set J(d) be as defined in Section 3 and define three
associated max statistics

Md = max
j∈J(d)

Sn,j/σ
τ
j

M̃d = max
j∈J(d)

S̃n,j/σ
τ
j

M	
d = max

j∈J(d)
S	
n,j/σ̂

τ
j .

To compare these statistics, we will use the Kolmogorov metric, defined for
generic random variables U and V as

dK(L(U),L(V )) = sup
t∈R

∣∣P(U ≤ t)− P(V ≤ t)
∣∣.
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In this notation, the proof amounts to showing there is a constant C > 0 not
depending on n such that the event

dK(L(Mp),L(M	
p |X)) ≤ Cn− 1

2+δ

holds with probability at least 1− C/n. The overall structure of the proof will
decomposed into two parts by considering the triangle inequality

dK(L(Mp),L(M	
p |X)) ≤ dK(L(Mp),L(M̃p)) + dK(L(M̃p),L(M	

p |X))

and then separately bounding the two distances on the right. Hence, it suffices
to prove the following proposition.

Proposition 5.1. Suppose the conditions of Theorem 3.1 hold. Then,

dK(L(Mp),L(M̃p)) � n− 1
2+δ, (i)

and there is a constant C > 0 not depending on n, such that the event

dK(L(M̃p),L(M	
p |X)) ≤ C n− 1

2+δ (ii)

holds with probability at least 1− C/n.

The next two subsections will give the proofs of (i) and (ii) respectively.

5.1. Proof of Proposition 5.1(i)

Recall ln =
⌈
nδ/κ ∧ p

⌉
in Theorem 3.1, and define the integer

kn = l2n ∧ p.

We proceed by considering the bound

dK
(
L(Mp),L(M̃p)

)
≤ In + IIn + IIIn,

where the terms on the right are defined by

In = dK
(
L(Mp),L(Mkn)

)
(5.1)

IIn = dK
(
L(Mkn),L(M̃kn)

)
(5.2)

IIIn = dK
(
L(M̃kn),L(M̃p)

)
. (5.3)

In the remainder of this subsection, we will focus on establishing the bound

In � n− 1
2+δ. (5.4)

This will be sufficient to prove Proposition 5.1(i), because the quantity IIIn can
be bounded using the same argument as for In, and because the bound

IIn � n− 1
2+δ (5.5)
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follows from Lemma 5.1 of Section 5.3.
Going forward, including in Section 5.2, we may assume without loss of gen-

erality that kn < p, because if p ≤ kn, then p = kn and the quantities In and
IIIn become identically 0. Furthermore, the argument for bounding IIn does
not depend on the relationship between kn and p. To proceed, first notice that
the definition of In gives

In = sup
t∈R

∣∣∣P
(

max
1≤j≤p

Sn,j/σ
τ
j ≤ t

)
− P

(
max

j∈J(kn)
Sn,j/σ

τ
j ≤ t

)∣∣∣

= sup
t∈R

P
(
A(t) ∩B(t)

)
,

where we define the following events for arbitrary t ∈ R,

A(t) =
{

max
j∈J(kn)

Sn,j/σ
τ
j ≤ t

}
and B(t) =

{
max

j∈J(kn)c
Sn,j/σ

τ
j > t

}
.

For any real numbers t1,n and t2,n satisfying t1,n ≤ t2,n, it can be checked that
the following inclusion holds simultaneously for all t ∈ R,

A(t) ∩B(t) ⊂ A(t2,n) ∪B(t1,n).

Therefore, a union bound gives

In ≤ P
(
A(t2,n)

)
+ P

(
B(t1,n)

)
. (5.6)

In order to choose suitable values of t1,n and t2,n, define the parameter

ω = 2δ2/κ,

which satisfies ω ∈ (0, δ) for any choice of δ ∈ (0, 1/2). Also, define the integer

dn =
⌊
( ω2

4 r(R(ln))) ∨ 1
⌋
.

Note that since r(R(ln)) ≤ ln, it is clear that the inequalities dn ≤ ln ≤ kn ≤ p
hold for all n. Also, using the assumptions of Theorem 3.1, we have the following
lower bound on dn,

dn � r(R(ln)) =
l2n

‖R(ln)‖2
F

� lδn � nδ2/κ, (5.7)

which will be used later.
To finish the proof of (5.4), it suffices to exhibit values t1,n and t2,n that

satisfy the following three conditions:

t1,n ≤ t2,n holds for all large n (5.8)

P(B(t1,n)) � n−1 (5.9)

P(A(t2,n)) � n−1/2+δ. (5.10)
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In order to specify such values of t1,n and t2,n, we will take them to be of the
form

t1,n = c1 · k−γ(1−τ)
n · log(n)

t2,n = c2 · l−γ(1−τ)
n ·

√
log(dn),

for certain constants c1, c2 > 0 that do not depend on n. First, the condi-
tion (5.8) holds for any fixed choices of c1 and c2, due to the definitions of kn,
ln, and dn.

Second, to establish (5.9), define the parameter q = max{2/(γ(1 − τ)),
log(n), 3}. For any t > 0, we have the tail bound

P
(
B(t)

)
≤ t−q

∥∥∥ max
j∈J(kn)c

Sn,j/σ
τ
j

∥∥∥
q

q
, (5.11)

where ‖ · ‖q denotes the usual Lq norm of a random variable. Due to Lemma 5.2
in Section 5.3, we have ‖ 1

σj
Sn,j‖q ≤ cq for all j = 1, . . . , p, and so

∥∥∥ max
j∈J (kn)c

Sn,j/σ
τ
j

∥∥∥
q

q
≤

∑

j∈J(kn)c

‖Sn,j/σ
τ
j ‖qq

≤ (cq)q
∑

j∈J(kn)c

σ
q(1−τ)
j

� (cq)q
p∑

j=kn+1

j−qγ(1−τ)

�
(cq)q

qγ(1− τ)− 1
k−qγ(1−τ)+1
n .

One can check that q � log(n) and c
(qγ(1−τ)−1)1/q

k
1/q
n � 1. Therefore, if we take

t = e ·
∥∥∥ max

j∈J (kn)c
Sn,j/σ

τ
j

∥∥∥
q

in (5.11), then there is a choice of c1 for which t1,n satisfies

t ≤ t1,n,

and furthermore,

P(B(t1,n)) ≤ P(B(t)) ≤ e−q ≤ n−1,

as needed for (5.9).
Third, we now turn to (5.10). Observe that

P(A(t2,n)) ≤ P

(
max

j∈J(kn)
S̃n,j/σ

τ
j ≤ t2,n

)
+ IIn

� P

(
max

j∈J(ln)
S̃n,j/σ

τ
j ≤ t2,n

)
+ n−1/2+δ

(5.12)
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where the second step follows from (5.5) and the inclusion J(ln) ⊂ J(kn).
As a preparatory step towards applying Theorem 2.3 to the last line of (5.12),

we need the following basic observation. Let (Yj)j∈J(ln) be a generic set of ran-
dom variables, and let (aj)j∈J(ln) be positive numbers satisfying the condition
maxj∈J(ln) aj ≤ b, for some number b. It is straightforward to check that

P

(
max

j∈J(ln)
Yj ≤ t2,n

)
≤ P

(
max

j∈J(ln)
ajYj ≤ b t2,n

)
. (5.13)

Based on Assumption 3.1, there is a positive constant c0 not depending on

n such that the inequality σ
−(1−τ)
j ≤ l

γ(1−τ)
n /c0 holds for all j ∈ J(ln). Ac-

cordingly, we will use (5.13) with the choices aj = σ
−(1−τ)
j , b = l

γ(1−τ)
n /c0, and

Yj = S̃n,j/σ
τ
j . Also, we may choose c2 in the definition of t2,n to have the value

c2 = ωc0
√
2(1− ω), which implies b t2,n = ω

√
2(1− ω) log(dn). Under these

choices, the inequality (5.13) becomes

P

(
max

j∈J(ln)
S̃n,j/σ

τ
j ≤ t2,n

)
≤ P

(
max

j∈J(ln)
S̃n,j/σj ≤ ω

√
2(1− ω) log(dn)

)
.

Now, we apply Theorem 2.3 to the right side, with (ln, dn, ω, ω) playing the
roles of (N, k, ε, δ) in that statement of that result. (Under these choices, the
application of Theorem 2.3 is justified because ω ∈ (0, 1) and the inequalities
dn ≤ (ω2/4)r(R(ln)) and dn ≥ 2 hold for all large n.) Hence,

P

(
max

j∈J(ln)
S̃n,j/σ

τ
j ≤ t2,n

)
� d

−(1−ω)(1−ω)2

ω
n (log(dn))

1−ω(2−ω)−ω
2ω .

Furthermore, using the lower bound on dn from (5.7), there is a constant c not
depending on n such that

P

(
max

j∈J(ln)
S̃n,j/σ

τ
j ≤ t2,n

)
�

(
nδ2/κ)−(1−ω)3

ω · (log(n))c

= n−
(1−ω)3

2 · (log(n))c

� n− 1
2
+3ω

� n− 1
2
+δ

which completes the proof.

5.2. Proof of Proposition 5.1(ii)

The proof of part (ii) is structured mostly along the same lines as the proof
of part (i), and so we only sketch out the main steps for the sake of brevity.
The current proof will also continue to use the same notation. Consider the
inequality

dK
(
L(M̃p),L(M	

p |X)
)

≤ I
′
n + II

′
n(X) + III

′
n(X),
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where we define

I
′
n = dK

(
L(M̃p),L(M̃kn)

)
(5.14)

II
′
n(X) = dK

(
L(M̃kn),L(M	

kn
|X)

)
(5.15)

III
′
n(X) = dK

(
L(M	

kn
|X),L(M	

p |X)
)
. (5.16)

Note that I′n is non-random, whereas II′n(X) and III
′
n(X) are random.

Establishing a bound on I
′
n of order n−1/2+δ requires no further work, because

I
′
n is equal to IIIn in the proof of part (i). Next, it follows from Lemma 5.1 in
Section 5.3 that the event

II
′
n(X) ≤ C n− 1

2+δ (5.17)

holds with probability at least 1− C/n. So, it remains to establish a bound on
III

′
n(X) of order n−1/2+δ. For this purpose, let t′1,n and t′2,n be any real numbers

satisfying t′1,n ≤ t′2,n. The reasoning leading up to (5.6) can be re-used to show
that the following bound holds almost surely

III
′
n(X) ≤ P(A′(t′2,n)|X) + P(B′(t′1,n)|X), (5.18)

where we define the following events for arbitrary t ∈ R,

A′(t) =
{

max
j∈J(kn)

S	
n,j/σ̂

τ
j ≤ t

}
and B′(t) =

{
max

j∈J(kn)c
S	
n,j/σ̂

τ
j > t

}
.

To bound the two probabilities on the right side of (5.18), we will use values
t′1,n and t′2,n having the form

t′1,n = c′1 · k−γ(1−τ)
n · (log(n))3/2

t′2,n = c′2 · l−γ(1−τ)
n ·

√
log(dn),

for certain constants c′1, c
′
2 > 0 that do not depend on n. (Note that for any

such choices, the condition t′1,n ≤ t′2,n will hold for all large n.)
The probability P(A′(t′2,n)|X) can be handled using the argument after (5.12)

in the proof of part (i), together with the bound (5.17). Specifically, it can be
shown that there are constants C and c′2 such that

P(A′(t′2,n)|X) ≤ P

(
max

j∈J(ln)
S̃n,j/σ

τ
j ≤ t′2,n

)
+ II

′
n(X)

≤ Cn− 1
2+δ

holds with probability at least 1− C/n. Finally, an argument analogous to the
one used to establish (5.9) earlier shows there are constants C and c′1 such that

P(B′(t′1,n)|X) ≤ n−1

holds with probability at least 1−C/n. (A more detailed version of this argument
can be found in the proof of Lemma C.1 part (b) in [LLM20].)
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5.3. Background results

The two bounds (5.19) and (5.20) below follow from the proofs of Propositions
B.1 and C.1 in [LLM20]. These proofs can be applied in the setting of Theo-
rem (3.1) in this paper with no essential changes.

Lemma 5.1. Fix any δ ∈ (0, 1/2), and suppose the conditions of Theorem 3.1
hold. Also, let IIn and II

′
n(X) be as defined in (5.2) and (5.15) respectively.

Then,
IIn � n

1
2+δ, (5.19)

and there is a constant C > 0 not depending on n such that the event

II
′
n(X) ≤ Cn− 1

2+δ (5.20)

holds with probability at least 1− C/n.

For the next lemma, recall that ‖ · ‖q denotes the Lq norm of a random
variable. This lemma is effectively a restatement of Lemma D.4 in [LLM20], and
the proof given there can be applied in the same manner under the conditions
used here.

Lemma 5.2. Suppose the conditions of Theorem 3.1 hold, and define the pa-
rameter q = max{2/(γ(1− τ)), log(n), 3}. Then,

max
1≤j≤p

‖ 1
σj
Sn,j‖q � q.
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