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A B S T R A C T   

Emergencies, such as pandemics (e.g., COVID-19), warrant urgent production and distribution of goods under 
disrupted supply chain conditions. An innovative logistics solution to meet the urgent demand during emer
gencies could be the factory-in-a-box manufacturing concept. The factory-in-a-box manufacturing concept de
ploys vehicles to transport containers that are used to install production modules (i.e., factories). The vehicles 
travel to customer locations and perform on-site production. Factory-in-a-box supply chain optimization is 
associated with a wide array of decisions. This study focuses on selection of vehicles for factory-in-a-box 
manufacturing and decisions regarding the optimal routes within the supply chain consisting of a depot, sup
pliers, manufacturers, and customers. Moreover, in order to contrast the options of factory-in-a-box 
manufacturing with those of conventional manufacturing, the location of the final production is determined 
for each customer (i.e., factory-in-a-box manufacturing with production at the customer location or conventional 
manufacturing with production at the manufacturer locations). A novel multi-objective optimization model is 
presented for the vehicle routing problem with a factory-in-a-box that aims to minimize the total cost associated 
with traversing the edges of the network and the total cost associated with visiting the nodes of the network. A 
customized multi-objective hybrid metaheuristic solution algorithm that directly considers problem-specific 
properties is designed as a solution approach. A case study is performed for a vaccination project involving 
factory-in-a-box manufacturing along with conventional manufacturing. The case study reveals that the devel
oped solution method outperforms the ε-constraint method, which is a classical exact optimization method for 
multi-objective optimization problems, and several well-known metaheuristics.   

1. Introduction 

In October 2020, the United Nations Educational, Scientific and 
Cultural Organization (UNESCO) reported that the frequency of pan
demics is expected to increase under the existing projections. It is also 
anticipated that the future pandemics would be more infectious and 

deadlier [1]. Such predictions are in accordance with pandemic occur
rences over the past decades. Indeed, the frequency of pandemics, epi
demics, and outbreaks has increased over the years. The 21st century has 
already experienced some major outbreaks, such as SARS (2003), H1N1 
(2009), MERS (2012), Ebola (2014), Zika (2015), and COVID-19 (2019) 
[2–5]. As of January 2022, the ongoing COVID-19 pandemic has taken 
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more than 5.5 million lives, and more than 315 million cases have been 
reported [6]. Mitigating the effects of pandemics require extensive 
measures, such as production of medical supplies (e.g., personal pro
tective equipment, testing kits, vaccines). An urgent demand for medical 
supplies occurs due to continuous losses of lives. At the same time, 
pandemics create emergencies and significant supply chain disruptions 
due to lockdowns, closure of distribution facilities, lack of personnel, 
and so on. Hence, meeting urgent demand during emergencies becomes 
challenging. Therefore, there is a need for effective logistics solutions to 
meet the customer demand during emergencies. 

Creative logistics solutions can be effective in meeting urgent de
mand. One such solution could be the factory-in-a-box manufacturing 
concept, which deploys vehicles to transport containers that are used to 
install production modules (i.e., mobile factories). The vehicles travel to 
customer locations and perform on-site production. Typically, the 
vehicle routes involved with factory-in-a-box manufacturing start from a 
depot, traveling to supplier locations to pick up raw materials, moving to 
manufacturer locations to collect semi-finished products, and then 
stopping at customer locations for on-site production. Factory-in-a-box 
manufacturing could be helpful not only to address the challenges due 
to pandemics but also to meet the urgent demand during natural di
sasters or for military applications (e.g., production of military supplies 
during wars). Examples of typical factory-in-a-box manufacturing routes 
are depicted in Fig. 1. Factory-in-a-box supply chain optimization in
volves different decisions, which can be categorized into two groups. 
The first group of decisions is applicable to the pre-transport stage, 
which includes determination of raw materials for suppliers, decompo
sition of sub-assembly, assigning manufacturers to sub-assembly mod
ules, and task-manufacturer assignment. The second group of decisions 
is made for the transport of sub-assembly modules. This study focuses on 
the latter group of decisions, which comprise selection of vehicles and 
decisions regarding the optimal routes within the supply chain consist
ing of a depot, suppliers, manufacturers, and customers. 

The factory-in-a-box manufacturing concept has been applied in 
various industries. GE Healthcare has a system named KUBio that ap
plies the factory-in-a-box concept for mass-production of therapeutics 
[7]. Furthermore, Nokia has employed the factory-in-a-box concept by 
packaging production modules in containers and shipping them to 
customer locations for production [8]. While factory-in-a-box 
manufacturing has a number of benefits, its necessity should be exam
ined for specific cases. For instance, this manufacturing concept pro
vides extended flexibility and mobility through on-site production at 
customer locations and by not spending a significant amount of time at 

manufacturer locations. On the other hand, in conventional 
manufacturing, the final products are produced by manufacturers, some 
of which may have an advantage of faster production than on-site pro
duction at customer locations (e.g., certain products may require a sig
nificant amount of time when manufacturing them at the customer 
locations using mobile factories as compared to traditional 
manufacturing at manufacturer locations that have the appropriate 
equipment and manufacturing resources). Hence, the options of factory- 
in-a-box manufacturing and conventional manufacturing for each 
customer need to be examined. 

Furthermore, throughout factory-in-a-box supply chain planning, 
decision makers may have to compromise conflicting objectives. For 
example, selection of particular routes may minimize the total travel 
cost but, in the meantime, cause violation of the previously negotiated 
time windows at customer locations. Factory-in-a-box supply chain 
optimization has been assessed by only a few studies in the past [9,10]. 
However, no study has contrasted the options of factory-in-a-box 
manufacturing with those of conventional manufacturing in multi- 
objective settings. To fulfill this gap in the state-of-the-art, this study 
proposes a novel multi-objective optimization model for the vehicle 
routing problem with a factory-in-a-box, which captures the options of 
factory-in-a-box manufacturing and conventional manufacturing for 
each customer. A customized multi-objective hybrid metaheuristic so
lution algorithm is developed to solve the model. Numerical experi
ments are further performed to evaluate the proposed multi-objective 
hybrid metaheuristic solution algorithm and draw some managerial 
implications based on the solutions obtained. The remainder of this 
manuscript is organized as follows. The following section conducts a 
holistic review of the closely-related literature. The third section pro
vides a detailed description of the problem studied herein, while the 
fourth section contains a mathematical formulation for the studied 
problem. The fifth section describes the primary solution approach 
employed, and the sixth section conducts some numerical experiments 
in order to analyze the proposed solution approach. The seventh section 
concludes this study. 

2. Literature review 

This section presents a review of the relevant literature, focusing on 
the following areas: (i) factory-in-a-box manufacturing; and (ii) recent 
studies on the vehicle routing problem. 

Fig. 1. Typical factory-in-a-box manufacturing routes.  
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2.1. Factory-in-a-box manufacturing 

As indicated earlier, the factory-in-a-box manufacturing concept has 
been investigated by only a few studies. Bengtsson et al. [11] suggested 
that maintenance as well as monitoring could help achieving mobility, 
speed, and flexibility in case of factory-in-a-box manufacturing. Hede
lind et al. [12] presented a project in Sweden that implemented factory- 
in-a-box manufacturing in order to perform on-demand mobile pro
duction. The project involved four other underlying projects and a total 
of five demonstrators, which were developed with industrial partners, 
for factory-in-a-box manufacturing. It was revealed that factory-in-a-box 
manufacturing was able not only to perform on-demand mobile pro
duction but also to implement a fast setup and increase production. The 
study underlined that the factory-in-a-box concept could assist with an 
effective reconfiguration of the existing manufacturing system and could 
enhance the production capacity when necessary. However, more 
comprehensive studies should be still administered to properly evaluate 
this innovative manufacturing concept. Jackson and Zaman [13] dis
cussed that factory-in-a-box manufacturing could help fulfill uncertain 
demand through mobility and capacity improvement. Moreover, it was 
stated that the mobility and flexibility, obtained through factory-in-a- 
box manufacturing, could help companies reduce production cost. 

Olsson et al. [14] analyzed three sub-systems that acted altogether as 
an enabler for factory-in-a-box manufacturing. The three sub-systems 
were: (1) cell configurator; (2) monitor agent; and (3) experience 
reuse server. Winroth and Jackson [15] highlighted three key features of 
factory-in-a-box manufacturing, which include: (1) mobility; (2) flexi
bility; and (3) speed. Based on a number of factory-in-a-box projects, 
Jackson et al. [16] examined the prospects of obtaining a product- 
service system. Various industrial advantages were found to be associ
ated with factory-in-a-box manufacturing, such as improved service. It 
was also indicated that factory-in-a-box manufacturing could be an 
effective tool to reduce the global carbon dioxide emissions. Granlund 
et al. [17] examined the factory-in-a-box manufacturing concept for 
small and medium-sized enterprises. A case study was performed for a 
small company, which featured small volumes and craftsmanship. The 
study demonstrated factory-in-a-box manufacturing as an effective 
concept for small and medium-sized enterprises to realize product- 
service systems and achieve competitiveness. 

Jiang et al. [9] implied that in case of vehicles making trips to various 
sites, factory-in-a-box manufacturing could pose some decision prob
lems for supply chain network design. The major decisions were iden
tified to be sub-assembly planning and supply chain reconfiguration. In 
order to address these decisions, the study presented a mathematical 
model, which had the objective of minimizing the sum of reconfigura
tion costs and production costs. Finally, some guidelines were provided 
for supply chain network design and reconfiguration under the scope of 
factory-in-a-box manufacturing. McHauser et al. [18] asserted that 
factory-in-a-box was an immersive manufacturing environment for in
dustry personnel to develop new skills. Such skills spanned from digital 
technologies to lean manufacturing. Hence, the study analyzed factory- 
in-a-box manufacturing from a learning perspective. A simulation 
environment was created, so that a group of participants could learn 
different aspects of a factory-in-a-box manufacturing model. In spite of 
technical complexities, the model was proved to be a useful tool. Pasha 
et al. [10] presented a mathematical model and a set of optimization 
algorithms to optimize a factory-in-a-box supply chain. The model 
aimed to minimize the total supply chain cost. Numerical experiments 
exhibited the efficiency of the proposed solution algorithms and 
demonstrated some important managerial implications. 

2.2. Recent studies on the vehicle routing problem 

The vehicle routing problem (VRP) is one of the well-studied deci
sion problems in operations research. This section provides a concise 
review of some of the recent and relevant efforts on the VRP. For more 

comprehensive state-of-the-art reviews regarding the VRP, interested 
readers can refer to Braekers et al. [19], Elshaer and Awad [20], and Mor 
and Speranza [21]. There are many different VRP variations. For 
example, under the open VRP, vehicles do not go back to the depot after 
serving customers [22–24]. The open VRP would be the closest one to 
the VRP with a factory-in-a-box, as vehicles transporting production 
modules in containers do not necessarily have to travel back to the depot 
after they visit the last customer assigned. Brandão [22] presented an 
iterated local search algorithm for the multi-depot open VRP. In order to 
define perturbation procedures, the algorithm utilized the search 
memory. The latter strategy assisted with improving the local search 
procedure through counting the number of moves for each customer. 
Numerical experiments indicated that the algorithm could examine 
potentially better regions of the search space and avoid cycling. 
Sánchez-Oro et al. [23] assessed a multi-objective open VRP. A total of 
three objectives were considered, including minimization of the total 
cost, makespan, and number of vehicles. Variable Neighborhood Search 
was used to tackle the problem, whose performance was compared with 
that of Non-Dominated Sorting Genetic Algorithm II. Numerical exper
iments revealed that the developed Variable Neighborhood Search was 
the superior of the two tested algorithms. Lalla-Ruiz and Mes [24] 
presented a two-index-based mathematical formulation for the multi- 
depot open VRP. The mathematical formulation attempted to enhance 
sub-tour elimination constraints with the objective of minimizing the 
total travel cost for delivery of goods. The proposed model was solved 
with CPLEX, while the maximum CPU time was set to 2 h. It was stated 
that the proposed methodology could reduce the associated computa
tional complexity and provide good-quality solutions. 

A number of studies have addressed the VRP with soft time windows 
[25,26] and strict time windows [27,28]. Li and Li [25] implied that 
travel times and service times in the real world could present a random 
state due to being impacted by various factors, such as inclement 
weather, congestion, traffic accidents, and so on. Therefore, the study 
considered stochastic travel times and service times for the VRP with 
soft time windows. A stochastic programming model was presented to 
minimize the total distribution cost. A greedy algorithm that was based 
on Tabu Search was developed to solve the model. The effectiveness of 
the proposed algorithm was verified via computational experiments. To 
obtain vehicle routes considering soft time windows, Zhang et al. [26] 
utilized a reinforcement learning algorithm. The developed problem 
tackled the VRP with soft time windows as a vehicle tour generation 
process. In order to generate tours, an encoder-decoder framework was 
proposed that featured attention layers. It was demonstrated that the 
algorithm performed better than Google OR-Tools. Keskin et al. [27] 
assessed the electric VRP with strict time windows. Queuing times at 
charging stations were modeled as stochastic. A bi-stage linear pro
gramming model was presented to generate vehicle routes. A heuristic 
algorithm was employed for solution, which involved simulation to 
model stochasticity. Pan et al. [28] considered strict time windows and 
time-dependent speed for the VRP. Multiple trips were allowed, but a 
maximum trip duration was imposed. The proposed model had the 
objective of minimizing the total travel distance. It was indicated that 
the proposed model was solvable with exact optimization solvers (e.g., 
CPLEX). 

A number of studies have concluded that the VRP along with its 
variants are classified as NP-hard problems. Therefore, due to compu
tational complexity of the VRP mathematical formulations, heuristics 
[27,29,30], metaheuristics [20,23,31], and hybrid algorithms [32–35] 
have been applied by most of the studies to solve the problem. Espe
cially, hybrid algorithms considering problem-specific features could be 
efficient in solving large-size instances of the VRP. 

2.3. Literature summary and contributions 

A review of the relevant literature implies that very few studies have 
addressed the factory-in-a-box manufacturing concept, while only one 
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study has provided a supporting model for vehicle routing with a 
factory-in-a-box [10], which the relevant supply chain stakeholders 
could employ. Moreover, the benefits of vehicle routing with factory-in- 
a-box manufacturing have not been contrasted with those of conven
tional manufacturing in multi-objective settings. Hence, this study aims 
to make the following contributions to the state-of-the-art:  

• A novel mathematical model is formulated for the VRP, which 
directly captures the options of factory-in-a-box manufacturing and 
conventional manufacturing for each customer.  

• A multi-objective framework is presented to analyze the trade-offs 
between minimizing the total cost associated with traversing the 
edges of the network and minimizing the total cost associated with 
visiting the nodes of the network.  

• Complex supplier-to-customer along with manufacturer-to-customer 
relationships are captured. 

• A novel customized nature-inspired Hybrid Multi-Objective Evolu
tionary Algorithm is developed to solve the problem. The proposed 
algorithm relies on evolutionary operators for route generation and 
an exact optimization approach to optimize the locations of the final 
production.  

• Numerical experiments are conducted to examine the computational 
performance of the developed hybrid multi-objective algorithm in 
comparison with an exact optimization method along with alterna
tive metaheuristics.  

• A detailed analysis is performed for the solutions provided by the 
developed hybrid multi-objective algorithm for the proposed math
ematical model. 

3. Problem description 

The generic VRP involves two types of nodes, including a depot node 
and customer nodes. Since this research studies a special variant of the 
VRP, which is associated with factory-in-a-box manufacturing, it in
volves four basic categories of nodes. These categories of nodes include: 
(1) the depot (which is further divided into the depot and the dummy 
depot for mathematical convenience); (2) the suppliers; (3) the manu
facturers; and (4) the customers. Similar to the generic VRP, the vehicles 
will be deployed from the depot node (denoted as “0”). Once deployed, 
they will visit the suppliers and collect raw materials and then travel to 
the manufacturers to load semi-processed goods. Unlike typical factory- 
in-a-box manufacturing, this study weighs the options of factory-in-a- 

box manufacturing and conventional manufacturing for each 
customer. In other words, the final products can be manufactured at the 
manufacturer locations, picked up by the designated vehicle, and 
delivered to the assigned customer (i.e., conventional manufacturing). 
Alternatively, semi-finished goods could be collected from the manu
facturers by one of the vehicles available, which will travel to the cus
tomers afterwards, where the factory will be assembled (i.e., factory-in- 
a-box manufacturing). After serving the last customer, the vehicles will 
go to the dummy depot. Note that all time and cost components, asso
ciated with the dummy depot, are zero (which resembles open vehicle 
routing). 

According to the graph theory, the studied problem may be modeled 
using a directed graph G = (N, E), where N stands for the set of all nodes, 
and E = {(i, j), i ∈ N, j ∈ N} denotes the set of all edges. Each edge (i, j) ∈

E involves a travel time tij, i ∈ N, j ∈ N (hours). Every node in the 
considered graph is associated with a demand qi, i ∈ N (lbs). Positive 
demand of a node indicates linehaul (i.e., pick-up demand), whereas 
negative demand implies backhaul (i.e., delivery demand). The set of all 
nodes can be construed as follows: N = N’ ∪ {0} ∪ {m}, where N’ =

Ns ∪ Nm ∪ Nc. Note that Ns = {1,2,3,⋯,m1}, Nm = {1,2,3,⋯,m2}, and 
Nc = {1, 2, 3, ⋯, m3} denote the sets of supplier, manufacturer, and 
customer nodes, respectively. Node {0} denotes the depot node, and {m}

stands for the dummy depot node. The fleet of vehicles, all of which 
carry a factory-in-a-box, is denoted by K = {1,2,3,⋯,m4}. The vehicles 
are heterogeneous and have a load carrying limit Qk, k ∈ K (lbs), along 
with a unit travel cost cv

k, k ∈ K (USD/hour). 
A real-world organization may manufacture various products. 

However, a unique product is manufactured from specific raw materials 
and semi-finished goods from specific suppliers and manufacturers, 
respectively. Hence, this study dictates that if a vehicle is assigned to 
serve a given customer (that can even be involved in manufacturing the 
product demanded by the customer in case of factory-in-a-box 
manufacturing), it first visits the associated suppliers and manufac
turers, respectively. In order to ensure this relationship, two binary 
parameters bsc

ij , i ∈ Ns, j ∈ Nc and bmc
ij , i ∈ Nm, j ∈ Nc are employed. If 

supplier i must be visited before serving customer j, then, the value of bsc
ij 

equals to 1 (=0 otherwise). Similarly, if manufacturer i must be visited 
before serving customer j, then, the value of bmc

ij equals to 1 (=0 other
wise). Furthermore, in an attempt to ensure a specific order of visits, a 
precedence level pli, i ∈ N is enforced for each node. Multiple nodes may 
have the same precedence level. Nonetheless, nodes with decreasing 

Fig. 2. Conventional manufacturing and typical factory-in-a-box manufacturing.  
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precedence levels cannot be visited. 
This study permits vehicle arrivals outside a (soft) time window [ai,

bi], i ∈ N (hours) at a node, in exchange of extra costs. Therefore, an early 
arrival cost (ce

i , i ∈ N – USD/hour) is incurred for vehicle arrivals before 
the time window begins at a node, and a late arrival cost (cl

i, i ∈ N – USD/ 
hour) must be paid in case of vehicle arrivals after the time window ends 
at a node. Furthermore, each node is associated with a processing time 
(tpi, i ∈ N – hours), which further involves a loading/unloading time 
(tli, i ∈ N – hours) and a manufacturing time (tmi, i ∈ N – hours). In case 
of the supplier nodes, processing times will be equal to loading times. 
However, the location where the final products will be manufactured is 
unknown. If the final products are manufactured at a manufacturer 
location, then, the processing time at the manufacturer location will be 
the sum of the loading time and the manufacturing time at that location, 
and the processing time at the associated customer location will be the 
unloading time at that location. This option is similar to conventional 
manufacturing, as indicated earlier. On the other hand, if the final 
products are manufactured at a customer location, then, the processing 
time at the manufacturer location will be the loading time at that 
location, and the processing time at the associated customer location 
will be the sum of the unloading time and the manufacturing time at that 
location. This option is a typical factory-in-a-box manufacturing process. 

Note that the owner of the location where the final products are 
manufactured, whether they are a manufacturer or a customer, will be 
paid a compensation cost (cc

i , i ∈ N – USD/hour) for manufacturing the 
final products to compensate for the use of required resources. Fig. 2 
illustrates two vehicle routes, where the route on the left side of the 
depot resembles conventional manufacturing, and the route on the right 
side of the depot signifies typical factory-in-a-box manufacturing. In the 
conventional manufacturing route (i.e., the route on the left), the vehicle 
spends a longer time at the manufacturer location, as the final products 
are manufactured there. On the other hand, in the typical factory-in-a- 
box manufacturing route (i.e., the route on the right), the vehicle 
spends a shorter time at the manufacturer location, which is required 
only for loading semi-finished goods into the vehicle. In the meantime, 
the vehicle will have to spend a longer time at the customer location, as 
the final products will be manufactured there. The decision regarding 
the type of manufacturing (i.e., conventional manufacturing vs. factory- 
in-a-box manufacturing) should be made considering different factors, 
including the following: the time required to manufacture the products 
at the manufacturer locations, the time required to manufacture the 
products at the customer locations, the associated compensation costs, 
the early and late arrival costs at nodes, as well as the vehicle routing 
choices. For instance, it could be faster to manufacture the products at 
the manufacturer location but will incur a higher compensation cost as 
compared to manufacturing the products at the customer location. On 
the other hand, manufacturing the products at the customer location can 
be cheaper than manufacturing the products at the manufacturer loca
tion but may take more time, which may not be viewed as desirable from 
the customer perspective. Furthermore, time savings at the manufac
turer nodes in case of factory-in-a-box manufacturing can be used to 
reduce or even prevent time window violations at subsequent nodes 
during the journey of a given vehicle. 

The goal of this study involves minimizing four cost components, 
which include: (1) the total travel cost; (2) the total early arrival cost; (3) 
the total late arrival cost; and (4) the total compensation cost. If routes 
are planned to minimize the total travel time, then, they might incur 
significant violations of the previously negotiated time windows at the 
nodes as well as high compensation cost. On the other hand, a route 
could incur insignificant time window violations at the nodes as well as 
low compensation cost; however, the associated travel time might be 
substantial. Therefore, this study groups the cost components into two 
potentially conflicting objective functions. One objective function is 
associated with traversing the edges of transportation network by the 
available vehicles and aims to minimize the total travel cost. On the 

other hand, the second objective function is associated with operations 
at the nodes of transportation network and aims to minimize the sum of 
the total early arrival cost, the total late arrival cost, and the total 
compensation cost. 

4. Mathematical model 

This section of the manuscript presents a mathematical formulation 
for the Multi-Objective Factory-in-a-Box Routing (MOFIBR) model 
along with the adopted nomenclature. 

4.1. Nomenclature  

Sets  

Ns = {1,2, 3, ⋯,m1} set of supplier nodes (nodes) 
Nm = {1,2, 3, ⋯, m2} set of manufacturer nodes (nodes) 
Nc = {1,2, 3, ⋯,m3} set of customer nodes (nodes) 
N’ = Ns ∪ Nm ∪ Nc set of supplier, manufacturer, and customer nodes (nodes) 
N = N’ ∪ {0} ∪ {m} set of all nodes (nodes) 
E = {(i, j), i ∈ N,

j ∈ N}

set of edges (edges) 

K = {1,2, 3, ⋯, m4} set of vehicles (vehicles) 
Decision Variable  
xijk ∈ B∀i ∈ N, j ∈ N,

k ∈ K 
=1 if vehicle k traverses edge (i, j) (=0 otherwise) 

Auxiliary Variables  
zik ∈ B∀i ∈ N’,k ∈ K =1 if vehicle k visits node i (=0 otherwise) 
yik ∈ R+∀i ∈ N, k ∈ K current load on vehicle k upon arrival at node i (lbs) 
sik ∈ R+∀i ∈ N, k ∈ K service start time at node i by vehicle k (hours) 
eik ∈ R+∀i ∈ N, k ∈ K early arrival time at node i by vehicle k (hours) 
lik ∈ R+∀i ∈ N, k ∈ K late arrival time at node i by vehicle k (hours) 
tpi ∈ R+∀i ∈ N processing time at node i (hours) 
mFi ∈ B∀i ∈ N =1 if the final production is done at manufacturer node i 

(=0 otherwise) 
cFi ∈ B∀i ∈ N =1 if the final production is done at customer node i (=0 

otherwise) 
TTC ∈ R+ total travel cost (USD) 
TEAC ∈ R+ total early arrival cost (USD) 
TLAC ∈ R+ total late arrival cost (USD) 
TCC ∈ R+ total compensation cost (USD) 
F1 ∈ R+ total cost associated with traversing the edges of the 

network (USD) 
F2 ∈ R+ total cost associated with visiting the nodes of the network 

(USD) 
Parameters  
m ∈ N total number of nodes (nodes) 
m1 ∈ N number of supplier nodes (nodes) 
m2 ∈ N number of manufacturer nodes (nodes) 
m3 ∈ N number of customer nodes (nodes) 
m4 ∈ N maximum number of vehicles (vehicles) 
Qk ∈ R+∀k ∈ K load carrying limit of vehicle k (lbs) 
qi ∈ R∀i ∈ N demand at node i (lbs) 
ai ∈ R+∀i ∈ N time window start at node i (hours) 
bi ∈ R+∀i ∈ N time window end at node i (hours) 
tij ∈ R+∀i ∈ N, j ∈ N time to travel from node i to node j (hours) 
tli ∈ R+∀i ∈ N loading/unloading time at node i (hours) 
tmi ∈ R+∀i ∈ N manufacturing time at node i (hours) 
pli ∈ N∀i ∈ N precedence level of node i (precedence level) 
bsc

ij ∈ B∀i ∈ Ns, j ∈ Nc binary relationship parameter denoting if supplier i must be 
visited before visiting customer j 

bmc
ij ∈ B∀i ∈ Nm, j ∈ Nc binary relationship parameter denoting if manufacturer i 

must be visited before visiting customer j 
cv

k ∈ R+∀k ∈ K unit travel cost of vehicle k (USD/hour) 
ce

i ∈ R+∀i ∈ N unit early arrival cost at node i (USD/hour) 
cl

i ∈ R+∀i ∈ N unit late arrival cost at node i (USD/hour) 
cc

i ∈ R+∀i ∈ N unit compensation cost at node i (USD/hour) 
M ∈ R+ large positive number  

4.2. Model formulation 

The mathematical formulation for the MOFIBR optimization model 
with two conflicting objective functions can be presented as follows. 
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min F1 = TTC (1)  

min F2 = TEAC + TLAC + TCC (2)  

TTC =
∑

i∈N

∑

j∈N

∑

k∈K
cv

ktijxijk (3)  

TEAC =
∑

i∈N

∑

k∈K
ce

i eik (4)  

TLAC =
∑

i∈N

∑

k∈K
cl

ilik (5)  

TCC =
∑

i∈N
cc

i tmi(mFi + cFi) (6) 

The objective function (1) aims to minimize the total travel cost, 
while the objective function (2) aims to minimize the sum of the total 
early arrival cost, the total late arrival cost, and the total compensation 
cost. Constraints (3) to (6) quantify the total travel cost, the total early 
arrival cost, the total late arrival cost, and the total compensation cost, 
respectively. Note that the unit cost components cv

k, ce
i , cl

i, and cc
i play the 

role of normalizing coefficients within the MOFIBR mathematical 
model. Relevant stakeholders may differently perceive the total travel 
time, the total early arrival time, the total late arrival time, and the total 
manufacturing time (e.g., stakeholders can be more sensitive to the total 
manufacturing time rather than the total early arrival time from the 
operational perspective). Therefore, it may not be appropriate to sum 
the total early arrival time, the total late arrival time, and the total 
manufacturing time without application of normalizing coefficients. 

The MOFIBR mathematical model involves a number of operational 
constraints to incorporate various features of factory-in-a-box 
manufacturing within the framework of the VRP. In particular, a total 
of four groups of constraints are included in this model. The first group 
of constraints [constraints (7) to (12)] applies some basic routing rules 
of the MOFIBR mathematical model. Constraints (7) ensure that routes 
are not generated between one single node. Constraints (8) indicate that 
each node, except the depot and the dummy depot, is served by a single 
vehicle and only once. Constraints (9) imply that each node, except the 
depot and the dummy depot, is visited to and from by the same vehicle. 
Constraints (10) guarantee that each vehicle starts its journey from the 
depot. Constraints (11) and (12) ensure that a vehicle cannot go to the 
dummy depot directly after serving a supplier or a manufacturer, 
respectively. 

xiik = 0 ∀i ∈ N, k ∈ K (7)  

∑

i∈N

∑

k∈K
xijk = 1 ∀j ∈ N ′ (8)  

∑

i∈N
xijk =

∑

i∈N
xjik ∀j ∈ N ′, k ∈ K (9)  

∑

j∈N
xijk = 1 ∀i = 0, k ∈ K (10)  

∑

i∈Ns

xijk = 0 ∀j = m, k ∈ K (11)  

∑

i∈Nm

xijk = 0 ∀j = m, k ∈ K (12) 

The second group of constraints [constraints (13) and (14)] regulates 
the current loads on the vehicles. Constraints (13) guarantee that a ve
hicle’s load carrying limit is never exceeded throughout a journey of that 
vehicle. Constraints (14) ensure that when a vehicle traverses edge (i, j), 
the sum of the current load on the vehicle upon arrival at node i and the 
demand at node i should not exceed the current load on the vehicle upon 
arrival at node j. 

yik ≤ Qk ∀i ∈ N, k ∈ K (13)  

yik + qi − M
(
1 − xijk

)
≤ yjk ∀i ∈ N, j ∈ N, k ∈ K (14) 

The third group of constraints [constraints (15) to (22)] deals with 
the time components of the MOFIBR mathematical model. Constraints 
(15) indicate that when a vehicle traverses edge (i, j), the sum of the 
service start time at node i, the processing time at node i, and the time to 
travel from node i to node j should not exceed the service start time at 
node j. Constraints (16) and (17) compute the early and late arrival 
times, respectively. Constraints (18) to (22) estimate the processing time 
at each node. 

sik + tpi + tij − M
(
1 − xijk

)
≤ sjk ∀i ∈ N, j ∈ N, k ∈ K (15)  

eik ≥ ai − sik − M(1 − zik) ∀i ∈ N, k ∈ K (16)  

lik ≥ sik − bi − M(1 − zik) ∀i ∈ N, k ∈ K (17)  

tpi = 0 ∀i = 0 (18)  

tpi = 0 ∀i = m (19)  

tpi = tli ∀i ∈ Ns (20)  

tpi = tli + tmimFi ∀i ∈ Nm (21)  

tpi = tli + tmicFi ∀i ∈ Nc (22) 

The fourth group of constraints [constraints (23) to (30)] satisfies 
various production requirements. Constraints (23) to (26) indicate that 
the final production can be done either at a manufacturer node or the 
associated customer node. Constraints (27) check if a vehicle has served 
a supplier, manufacturer, or customer node. Constraints (28) and (29) 
indicate that if a vehicle is assigned to serve a given customer, it first 
visits the associated suppliers and manufacturers of that particular 
customer, respectively. Constraints (30) indicate that the nodes with 
decreasing precedence levels cannot be visited by a vehicle. 

mFi +
∑

j∈Nc

bmc
ij cFj ≤

∑

j∈Nc

bmc
ij ∀i ∈ Nm (23)  

mFi +
∑

j∈Nc

bmc
ij cFj ≥ 1 ∀i ∈ Nm (24)  

∑

i∈Nm

bmc
ij mFi + cFj ≤

∑

i∈Nm

bmc
ij ∀j ∈ Nc (25)  

∑

i∈Nm

bmc
ij mFi + cFj ≥ 1 ∀j ∈ Nc (26)  

zik =
∑

j∈N
xijk ∀i ∈ N ′, k ∈ K (27)  

∑

i∈N
xijk =

∑
i∈Ns bsc

ij zik
∑

i∈Ns bsc
ij

∀j ∈ Nc, k ∈ K (28)  

∑

i∈N
xijk =

∑
i∈Nm bmc

ij zik
∑

i∈Nm bmc
ij

∀j ∈ Nc, k ∈ K (29)  

pli − M
(
1 − xijk

)
≤ plj ∀i ∈ N, j ∈ N, k ∈ K (30)  

5. Solution approach 

The solution approach employed by this study is presented in this 
section of the manuscript. Since MOFIBR has multiple objective func
tions, it is associated with a set of non-dominated solutions (i.e., Pareto 
Front – PF), instead of a single solution. In order to effectively solve 
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large-size problem instances of MOFIBR, a customized Hybrid Multi- 
Objective Evolutionary Algorithm (HMOEA) was developed that relies 
on evolutionary operators for route generation and an exact optimiza
tion approach to optimize the locations of the final production. The main 
steps of HMOEA are outlined in Fig. 3. At the start, the algorithmic 
parameters along with the input data for the MOFIBR mathematical 
model are provided to HMOEA. Then, the locations of the final pro
duction are optimized with an exact optimization approach. From this 
point onward, the evolutionary algorithmic steps are executed. At first, 
HMOEA generates the initial population, and all the chromosomes of the 
initial population are evaluated. Then, the PF for the initial population is 
determined. Afterwards, HMOEA enters a loop, which continues until 
any of the stopping criteria is met. When a stopping criterion is met, the 
best PF is returned. The stopping criteria in this study were defined as: 
(1) a pre-defined number of generations; and (2) a specified consecutive 
number of generations during which the best PF does not change [36]. 

As for the next step inside the loop, parent chromosomes are selected 
using the Boltzmann selection. Then, the cycle crossover and a custom 
mutation operator are performed to produce and mutate offspring 
chromosomes. A repair operator is applied to infeasible offspring chro
mosomes after crossover and mutation. Afterwards, all the offspring 
chromosomes are evaluated, and survivor selection is performed. In 
order to select survivors, the ranking selection is applied. Furthermore, 
as a part of the survivor selection, the population is injected with the 
solutions belonging to the best PF discovered along with the two solu
tions with the best fitness functions (as MOFIBR has two objective 
functions) found from all of the performed generations (i.e., the elitist 
strategy). Then, the surviving population is evaluated. In the next step, 
the PF for the current population is determined and compared with the 

best PF discovered. The best PF is updated as the superior of the two 
compared PFs. The loop is continued until any stopping criterion is met. 

5.1. Chromosome representation 

A 2-dimensional integer chromosome representation has been 
selected for HMOEA, where the first row is used to denote vehicles and 
the second row represents the order of nodes to be visited. A chromo
some representation with 2 vehicles and 14 nodes is shown in Fig. 4. 
Based on Fig. 4, the order of visits for vehicle “1” is nodes “4”, “5”, “7”, 
“12”, “6”, “9”, and “13”. Moreover, the order of visits for vehicle “2” is 
nodes “3”, “2”, “10”, “8”, and “11”. Nodes “2”, “3”, “4”, “5”, and “6” are 
the supplier nodes, whereas nodes “7”, “8”, “9”, and “10” are the 
manufacturer nodes. Furthermore, nodes “11”, “12”, and “13” are the 
customer nodes. Note that nodes “1” and “14” represent the depot and 
the dummy depot, respectively, and do not appear in the chromosome 
(even though each vehicle is deployed from the depot). The proposed 
solution algorithm was specifically customized for the MOFIBR opti
mization model. In particular, the adopted solution representation al
lows generating feasible solutions for the MOFIBR optimization model 
that clearly show the assignment of the vehicles to the nodes of the 
transportation network and the order in which the nodes should be 
visited by the assigned vehicles. 

5.2. Initial population generation 

The initial population generation comprises two steps. At first, a 
hybridization procedure within the developed algorithm (i.e., optimi
zation of the locations of the final production with an exact optimization 

Fig. 3. Main steps of the developed HMOEA.  

Fig. 4. The chromosome representation.  
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approach) is performed. Then, a stochastic operator is deployed for the 
chromosome generation (i.e., generation of routes for vehicles). 

5.2.1. Optimizing locations of final production with exact optimization 
In order to obtain the locations of the final production, the Final 

Production Location Identification Problem (FPLIP) should be solved. A 
mathematical formulation of the FPLIP decision problem, which is 
essentially a relaxation of the original MOFIBR model, can be formu
lated as follows: 

Final Production Location Identification Problem (FPLIP): 

min (TCC) (31) 

Subject to: 

mFi +
∑

j∈Nc

bmc
ij cFj ≤

∑

j∈Nc

bmc
ij ∀i ∈ Nm (32)  

mFi +
∑

j∈Nc

bmc
ij cFj ≥ 1 ∀i ∈ Nm (33)  

∑

i∈Nm

bmc
ij mFi + cFj ≤

∑

i∈Nm

bmc
ij ∀j ∈ Nc (34)  

∑

i∈Nm

bmc
ij mFi + cFj ≥ 1 ∀j ∈ Nc (35)  

TCC =
∑

i∈N
cc

i tmi(mFi + cFi) (36) 

The objective function (31) of FPLIP is to minimize the total 
compensation cost. Constraints (32) to (35) indicate that the final pro
duction can be done either at a manufacturer node or the associated 
customer node, while constraint (36) quantifies the total compensation 
cost. Due to fairly low computational complexity, the FPLIP decision 
problem can be optimally solved in a reasonable computational time 
using exact mixed-integer programming methods (e.g., CPLEX). The 
total compensation cost and the locations of the final production are 
obtained from the solution of this model. Then, the processing time at 
each node (tpi, i ∈ N – hours) can be estimated from the following 
equation: 

tpi = tli + tmi(mFi + cFi) ∀i ∈ N (37) 

Note that the proposed hybridization procedure optimizes the cost 
that is paid for manufacturing the final product either at a manufacturer 
location or at a customer location (i.e., the total compensation cost – 
TCC), which serves as a component of the objective function F2. 
Therefore, the deployment of the proposed hybridization procedure will 
not affect the objective function F1. In other words, optimization of the 
location selection for the final production will not affect the total travel 
time of vehicles traversing the edges of the transportation network and 

Fig. 5. Sample binary data structures denoting the pre-specified suppliers and manufacturers for each customer.  

Fig. 6. Chromosome generation.  
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the total number of vehicles deployed. 

5.2.2. Chromosome generation 
Fig. 5 shows an illustrative example of the binary data structures that 

can be potentially used for the supplier-to-customer relationship (bsc
ij ,i ∈

Ns, j ∈ Nc) and the manufacturer-to-customer relationship (bmc
ij , i ∈ Nm,

j ∈ Nc), where the products that were previously requested by customer 
“1” (i.e., node “11”) require the raw materials from suppliers “1” and “2” 
(i.e., nodes “2” and “3”, respectively) as well as the semi-finished 
products from manufacturers “2” and “4” (i.e., nodes “8” and “10”, 
respectively). Based on the number of vehicles, a vehicle is randomly 
assigned to a customer, and the same vehicle is assigned to the cus
tomer’s suppliers and manufacturers. In case of customer “1” (i.e., node 
“11”), vehicle “2” is assigned randomly. After determining the suppliers 
for a customer, the order of those suppliers is randomly permuted to 
increase the population diversity. Thus, the order of visits for customer 
“1” suppliers is randomly permuted to nodes “3” and then “2”. The order 
of visits for manufacturers is generated in a similar fashion (i.e., nodes 
“10” and then “8”). Therefore, the order of visits of nodes for customer 
“1” (i.e., node “11”) is “3”, “2”, “10”, “8”, and “11”. The construction of 
the chromosome is started after this step. The top row indicates the 
index of the vehicle serving the group of nodes (e.g., vehicle “2” for the 
group of nodes corresponding to customer “1”). The bottom row is filled 
with the order of node visits for that particular group. The fraction of the 
chromosome for customer “1” along with its suppliers and manufac
turers is depicted by Fig. 6(a). 

The same steps are repeated for the rest of customers. However, the 
respective fractions of the chromosome are appended to the right side of 
the previously constructed chromosome. Fig. 6(b) illustrates the state of 
the chromosome after generating a route for customer “2” (i.e., node 
“12”), which is randomly assigned to vehicle “1”. Similarly, Fig. 6(c) 
illustrates the state of the chromosome after generating a route for 
customer “3” (i.e., node “13”). Finally, the nodes are sorted based on the 
assigned vehicles (see Fig. 4). All the other chromosomes in the popu
lation are also generated following the aforementioned steps. 

5.3. Fitness function 

The MOFIBR model has two objective functions: F1 and F2, which 
are reflected by two fitness functions. The fitness values (Fit1

cg and Fit2cg) 
of chromosome c, belonging to the set of chromosomes Chrm = {1, ⋯,

PopSize}, in generation g, which belongs to the set of generations Gen =

{1, ⋯, gens}, are computed based on the following equations: 

Fit1
cg = F1

cg + αϑcg ∀c ∈ Chrm, g ∈ Gen (38)  

Fit2
cg = F2

cg + αϑcg ∀c ∈ Chrm, g ∈ Gen (39) 

Here, α is the penalty coefficient, and ϑcg is the cumulative violation 
of the vehicular load carrying limits for chromosome c in generation g, 
which can be estimated from the load carrying limit (Qk) and the current 
load (yk) of vehicle k as follows: 

ϑcg =
∑

i∈N

∑

j∈N

∑

k∈K
max{0; (yk − Qk)xijk}∀c ∈ Chrm, g ∈ Gen (40) 

Note that for each chromosome, the selection operators of HMOEA 
use the sum of normalized fitness values instead of two fitness values.  

Algorithm 1 Boltzmann Selection 

In: Popg – population in generation g; Fitg – sum of normalized fitness values of 
chromosomes in generation g; T0 – initial temperature; dT – temperature interval;NC 
– normalizing coefficient 
Out: Parentsg – parent chromosomes in generation g 
1: Parentsg = ⊘ ◃ Initialization 
2: T = max{1; T0 −dT • g} ◃ Determine the temperature 
3: k = 1 ◃ Choose the first chromosome from the population 

4: while 
⃒
⃒Parentsg

⃒
⃒
〈⃒
⃒
⃒Popg

⃒
⃒
⃒ do 

5: Pk =

exp
(

−Fitk
T • NC • mean

{
Fitg

}

)

∑|Popg |
a=1 exp

(
−Fita

T • NC • mean
{

Fitg
}

)◃ Estimate selection probability of the 

chosen chromosome 
6: if Pk > rand{0; 1} then 
7: Parentsg = Parentsg ∪ Popgk ◃ Assign the chosen chromosome as a parent 
8: end if 

9: k = k • min
{

1; abs
(

k −

⃒
⃒
⃒Popg

⃒
⃒
⃒

) }
+1 ◃ Choose the next chromosome from the 

population 
10: end while 
11: return Parentsg  

5.4. Parent selection 

The Boltzmann selection was applied in this study to select the parent 
chromosomes that are used to produce the offspring chromosomes. The 
Boltzmann selection was chosen due to its capability to alter the selec
tion pressure throughout different generations. At earlier generations, 
low-quality chromosomes could survive since the selection pressure is 
reduced by using a high temperature. On the other hand, at later gen
erations, only high-quality chromosomes could survive since the selec
tion pressure is increased by using a low temperature. The steps of the 
Boltzmann selection are outlined in Algorithm 1 [36]. In step 2, the 
minimum value of the temperature (T) is assumed to be 1, as the 
MOFIBR mathematical model has minimization objective functions. For 
the same reason, a (-)ve sign is used to estimate the selection probability 
(Pk) of chromosome k in step 5. The Boltzmann selection iteratively 
selects chromosomes depending on the assigned temperature in steps 
4–10 until the required number of parent chromosomes have been 
selected. 

5.5. Crossover and mutation operators 

Crossover and mutation operators are generally used within Evolu
tionary Algorithms for exploration and exploitation of the search space, 
respectively (i.e., during diversification and intensification phases) [36]. 
The cycle crossover operator was adopted in this study to produce 
offspring chromosomes in order to explore the search space. An illus
trative example of the cycle crossover is shown in Fig. 7. Based on the 

Fig. 7. Cycle crossover.  
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crossover probability, a pair of randomly selected parent chromosomes 
is used for crossover. The first allele (i.e., value) of the first parent 
chromosome (i.e., node “4”) is appended to the cycle, and the first allele 
of the second parent chromosome (i.e., node “7”) is identified. Then, the 
locus (i.e., location) of the gene of the first parent chromosome, which 
contains node “7” (i.e., locus “3”) is determined, and node “7” is 
appended to the cycle. Afterwards, the allele of locus “3” of the second 
parent chromosome is identified (i.e., node “5”). Then, the locus of the 
gene of the first parent chromosome, which contains node “5” (i.e., locus 
“6”) is determined, and node “5” is appended to the cycle. Afterwards, 
the allele of locus “6” of the second parent chromosome is identified (i. 
e., node “4”). However, node “4” is already included in the cycle, and so, 
the cycle determination process is terminated. Therefore, the cycle 
comprises nodes “4”, “7”, and “5”. The genes of the alleles that match the 
cycle are copied to the first offspring from the first parent, while the rest 
of the genes are adopted from the second parent. Similarly, the genes of 
the alleles that match the cycle are copied to the second offspring from 
the second parent, while the rest of the genes are adopted from the first 
parent. The cycle crossover would be effective in changing the order of 
visited nodes for a vehicle as well as altering the assignment of vehicles 
to nodes. 

In order to efficiently exploit the search space, a custom mutation 
operator was employed by this study to mutate offspring chromosomes. 
Under this custom mutation operator, a row of a given offspring chro
mosome is randomly selected (from the top and bottom rows), which 
will undergo mutation. Then, either inversion mutation or swap muta
tion is randomly chosen, and the chosen mutation is applied to the 
selected row (see Fig. 8, where inversion mutation was applied for nodes 
“12”, “3”, and “2”, whereas swap mutation was applied for vehicles “1” 
and “2”). The same approach is applied for each chromosome of the 
population. 

5.6. Repair operator 

After crossover and mutation, a repair operator is applied to 
offspring chromosomes, in case of infeasibility. Fig. 9 presents an 
example of the application of the repair operator. Here, vehicle “1” 
serves customer nodes “12” and then “13”, while vehicle “2” serves 

customer node “11”. Vehicle “3” serves two nodes; however, they are 
not customer nodes. The route of vehicle “1” is infeasible, based on the 
supplier-to-customer relationships and as well as the manufacturer-to- 
customer relationships shown in Fig. 5. Hence, the route of vehicle “1” 
is reconstructed by including (permutations of) the supplier and 
manufacturer nodes of customer node “12” and then including (per
mutations of) the supplier and manufacturer nodes of customer node 
“13”. The route of vehicle “2” is also infeasible, and so, it is recon
structed in the same manner. Since vehicle “3” does not serve any 
customer nodes, its route is removed from the chromosome. Finally, the 
nodes are sorted based on the assigned vehicles (i.e., vehicle “1” appears 
before vehicle “2”). The developed repair operator is applied to every 
infeasible chromosome in the HMOEA population.  

Algorithm 2 Ranking Selection 

In: Offg – offspring chromosomes in generation g; Fitg – sum of normalized fitness 
values of offspring chromosomes in generation g; PFBest – chromosomes belonging to 
the best PF discovered from all of the performed generations; cFit1 – chromosome 
with the best value of the first fitness function found from all of the performed 
generations; cFit2 – chromosome with the best value of the second fitness function 
found from all of the performed generations 
Out: Survivorsg – survivor chromosomes in generation g 
1: Survivorsg = PFBest ∪ cFit1 ∪ cFit2 ◃ Initialization 
2: Offcand

g = Offg ∪ Offg ◃ Create the list of candidate chromosomes 

3: Fitcand
g = Fitg ∪ Fitg ◃ For each candidate chromosome, assign the sum of 

normalized fitness values 

4: while 
⃒
⃒Survivorsg

⃒
⃒
〈⃒
⃒
⃒Offg

⃒
⃒
⃒ do 

5: c* = argmin{Fitcand
g } ◃ Locate the fittest chromosome 

6: Survivorsg = Survivorsg ∪ {Offcand
c*g } ◃ Assign the fittest chromosome as a survivor 

7: Offcand
g = Offcand

g −{Offcand
c*g } ◃ Update the list of candidate chromosomes 

8: end while 
9: return Survivorsg   

5.7. Survivor selection 

This study applied the ranking selection to choose offspring chro
mosomes that will survive in the current generation and be transferred 
to the following generation, where they could become parent 

Fig. 8. Custom mutation operator.  

Fig. 9. Repair operator.  
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chromosomes. The steps of the ranking selection are outlined in Algo
rithm 2 [36,37]. In step 1, the ranking selection procedure ensures that 
the chromosomes belonging to the best PF discovered along with the two 
chromosomes with the best fitness functions (as MOFIBR has two 
objective functions) found from all of the previous generations will be 
selected as survivors (i.e., the elitist strategy). Note that in step 2, two 
copies of the offspring chromosomes are used to develop a pool of the 
candidate chromosomes for the survivor selection. More copies could be 
used; however, that would lead to a reduction in the selection pressure, 
which may not be desirable (especially, at the beginning of the search 
process). In step 3, the sum of normalized fitness values is assigned to 
each candidate chromosome. Then, the required number of fittest 
chromosomes are selected from the pool of candidate chromosomes in 
steps 4–8 that will be further used as surviving chromosomes for the 
following generation. 

5.8. PF construction and evaluation 

In order to construct the PF for the population in a given generation, 
the non-dominated solutions (i.e., chromosomes) are separated from the 
dominated solutions. Here, the dominated solutions indicate the ones, 
whose both fitness values (i.e., Fit1

cg and Fit2cg) are worse than at least one 
of the considered solutions – see Fig. 10(a). In each generation, two PFs 
are compared, and the superior of the compared PFs is considered as the 
best PF onwards. For the comparison of two PFs, this study estimates the 
surface area beneath normalized objective/fitness functions [38,39]. At 
first, the fitness functions of the PFs are normalized, such that they range 
from 0 to 1. Then, the points of each PF are joined. Afterwards, the 
surface area under each PF is computed. The PF with the smaller surface 
area is considered as the superior one. An illustrative example of the 
comparison between two PFs is shown in Fig. 10(b). Since the surface 
area under the second PF is smaller, the second PF is considered superior 
to the first PF. 

6. Numerical experiments 

A set of numerical experiments are presented in this section to 
demonstrate the applicability and performance of the MOFIBR mathe
matical model and the developed HMOEA algorithm. Several other 
metaheuristic algorithms were employed for comparison with HMOEA. 
In particular, Non-Dominated Sorting Genetic Algorithm II [40], which 
is a well-known multi-objective optimization algorithm, and multi- 

objective versions of Simulated Annealing [41], Tabu Search [42], and 
Variable Neighborhood Search [43] were employed to evaluate the 
HMOEA performance. Each of these algorithms was hybridized with an 
exact optimization approach to optimize the locations of the final pro
duction (see section 5.2.1 for details). Hence, the hybridized versions of 
the algorithms were named as Hybrid Non-Dominated Sorting Genetic 
Algorithm II (HNSGA-II), Hybrid Multi-Objective Simulated Annealing 
(HMOSA), Hybrid Multi-Objective Tabu Search (HMOTS), and Hybrid 
Multi-Objective Variable Neighborhood Search (HMOVNS), respec
tively. However, as a part of the numerical experiments, all the hy
bridized algorithms will be compared against their non-hybridized 
versions (as will be discussed more in detail in section 6.3.1 of the 
manuscript). 

Small-size problem instances were generated to contrast the perfor
mances of HMOEA, HMOSA, HMOTS, HMOVNS, and HNSGA-II with 
that of the ε-constraint method (ECON), which is a well-known exact 
optimization approach for multi-objective optimization problems. A 
thorough description of ECON can be found in Mavrotas [44] and 
Dulebenets [45]. The desired number of PF points was set to 5 for ECON, 
while the maximum CPU time was set to 24 min for generating each PF 
point. Thus, the overall CPU time limit was 2 h for ECON. Furthermore, 
large-size problem instances were generated to select the superior al
gorithm among HMOEA, HMOSA, HMOTS, HMOVNS, and HNSGA-II. 
The rationale behind conducting the experiments for two sets of in
stances consists in the fact that the exact optimization method (i.e., 
ECON) might be able to produce optimal PFs only for the small-size 
instances due to the computational complexity of the MOFIBR optimi
zation model. However, for the large-size problem instances where the 
ECON method is not able to obtain the optimal PFs, the developed 
HMOEA algorithm was evaluated based on the comparative analysis 
against the alternative metaheuristic algorithms. 

In this study, ECON was executed with CPLEX (the target optimality 
gap was set to 1% at each iteration of ECON), and HMOEA, HMOSA, 
HMOTS, HMOVNS, and HNSGA-II were encoded in MATLAB (version 
2016a). The same CPLEX settings were used to solve the FPLIP mathe
matical model at the initial population generation stage (see section 
5.2.1 for details). The numerical experiments were conducted on an Intel 
(R) Core™ i7-7700 K processor with a 32 GB RAM. The following sec
tions of the manuscript elaborate on the case study that was considered 
during the experiments, tuning of the parameters for the considered 
algorithms, evaluation of the considered algorithms in terms of different 
performance indicators, and managerial insights from the solutions 

Fig. 10. PF construction (a) and evaluation of PFs (b).  
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returned by the most promising metaheuristic algorithm. 

6.1. Case study 

A case study was performed for a vaccination project involving 
factory-in-a-box manufacturing along with conventional manufacturing, 
where raw products (i.e., seeding liquids) were picked up from sup
pliers. Semi-finished products (i.e., vials) could be picked up from 
manufacturers for factory-in-a-box manufacturing, or the final products 
(i.e., vaccines) could be directly manufactured at manufacturer loca
tions (i.e., conventional manufacturing). The vaccination projects, as the 
one considered in the present study, play a critical role for many 
geographical locations around the globe due to devastating impacts of 
the COVID-19 pandemic [6]. The parameter values adopted for the case 
study are shown in Table 1 [10]. The maximum number of supplier/ 
manufacturer/customer nodes was set to 17 for small-size problem in
stances and 80 for large-size problem instances. Throughout the nu
merical experiments, a maximum of 20 vehicles were allowed for 
utilization, even though all of them might not be used. 

6.2. Parameter tuning 

Parameter tuning is essential to ensure adequate performance of 
metaheuristics [46–48]. A parameter tuning analysis was performed to 
select the appropriate parameter values for HMOEA, HMOSA, HMOTS, 
HMOVNS, and HNSGA-II using a total of 5 problem instances generated 
based on the data reported in Table 1. The 3k factorial design method 
was employed, where an algorithm had k parameters, and each 
parameter was tested with 3 candidate values. Table 2 underlines the 
parameter tuning analysis results for the considered hybrid multi- 
objective algorithms. HMOEA has a number of parameters, including 
the population size (PopSize), initial temperature (T0), temperature in
terval (dT), and normalizing coefficient (NC) for Boltzmann selection, 
crossover probability (σc), mutation probability (σm), maximum number 
of generations the algorithm is allowed to run for (MaxGens), and 
maximum consecutive number of generations during which the best PF 
does not change (ConGens). The best values of these parameters were 
found to be 200, 1,000, 1.00, 0.10, 0.25, 0.10, 500, and 100, respec
tively. Unlike HMOEA, HMOSA, HMOTS, HMOVNS, and HNSGA-II have 

fewer parameters, and their best values are reported in Table 2. 

6.3. Algorithmic performance evaluation 

A total of 15 small-size problem instances as well as 15 large-size 
problem instances were developed to assess the performance of the so
lution algorithms. For small-size problem instances, the number of 
supplier/manufacturer/customer nodes was increased from 3 in 
instance S-1 to 17 in instance S-15, with an increment of 1 node per 
small-size problem instance. On the other hand, for large-size problem 
instances, the number of supplier/manufacturer/customer nodes was 
increased from 52 in instance L-1 to 80 in instance L-15, with an 
increment of 2 nodes per large-size problem instance. A detailed eval
uation of algorithmic performances for the aforementioned problem 
instances is exhibited in this section of the manuscript. Since MOFIBR is 
a multi-objective optimization model, several multi-objective optimi
zation performance indicators were examined for the candidate solution 
algorithms, including the following: 

Quality Metric (QM): This metric combines the PF points obtained 

Table 1 
The parameter values adopted for the case study.  

Parameter Value 

Number of supplier nodes (nodes): m1 ∈ N [3; 80]

Number of manufacturer nodes (nodes): m2 ∈ N [3; 80]

Number of customer nodes (nodes): m3 ∈ N [3; 80]

Maximum number of vehicles (vehicles): m4 ∈ N 20 
Load carrying limit of vehicle k (lbs): Qk ∈ R+∀k ∈ K U[6,000; 6,300]

Demand at supplier node i (lbs): qi ∈ R+∀i ∈ Ns U[280; 420]

Demand at manufacturer node i (lbs): qi ∈ R+∀i ∈ Nm U[1,320; 1,980]

Demand at customer node i (lbs): qi ∈ R−∀i ∈ Nc −U[1, 600; 2,

400]

Duration of time window at node i (hours): [bi − ai] ∈ R+∀i ∈ N 10 
Time to travel from node i to node j (hours): tij ∈ R+∀i ∈ N, j ∈ N’ U[5; 10]

Loading/unloading time at node i (hours): tli ∈ R+∀i ∈ N’ U[1.5; 2.5]

Manufacturing time at manufacturer/customer node i (hours): 
tmi ∈ R+∀i ∈ Nm ∪ Nc 

U[4; 5]

Precedence level of node i (precedence level): pli ∈ N∀i ∈ N [0; 4]

Binary relationship parameter denoting if supplier i must be 
visited before visiting customer j: bsc

ij ∈ B∀i ∈ Ns, j ∈ Nc 
U[0; 1]

Binary relationship parameter denoting if manufacturer i must be 
visited before visiting customer j: bmc

ij ∈ B∀i ∈ Nm, j ∈ Nc 
U[0; 1]

Unit travel cost of vehicle k (USD/hour): cv
k ∈ R+∀k ∈ K U[900; 950]

Unit early arrival cost at node i (USD/hour): ce
i ∈ R+∀i ∈ N’ U[0.1; 100]

Unit late arrival cost at node i (USD/hour): cl
i ∈ R+∀i ∈ N’ U[0.1; 100]

Unit compensation cost at manufacturer/customer node i (USD/ 
hour): cc

i ∈ R+∀i ∈ Nm ∪ Nc 
U[5; 10]

Large positive number: M ∈ R+ 1, 000, 000  

Table 2 
Parameter tuning analysis for the hybrid multi-objective algorithms.  

Algorithm Parameter Candidate 
Values 

Best 
Value 

HMOEA Population size (PopSize) [50; 100; 200] 200 
Initial temperature (T0) [500; 1,000; 

2,000] 
1,000 

Temperature interval (dT) [0.25; 0.50; 
1.00] 

1.00 

Normalizing coefficient (NC) [0.10; 0.15; 
0.20] 

0.10 

Crossover probability (σc) [0.20; 0.25; 
0.30] 

0.25 

Mutation probability (σm) [0.02; 0.05; 
0.10] 

0.10 

Maximum number of generations 
(MaxGens) 

[250; 500; 
1,000] 

500 

Maximum consecutive number of 
generations during which the best PF 
does not change (ConGens) 

[100; 250; 
500] 

100 

HMOSA Population size (PopSize) [50; 100; 200] 100 
Initial temperature (T0) [500; 1,000; 

2,000] 
1,000 

Temperature interval (dT) [0.25; 0.50; 
1.00] 

1.00 

Normalizing coefficient (NC) [0.10; 0.15; 
0.20] 

0.10 

Maximum number of iterations 
(MaxIters) 

[500; 1,000; 
2,000] 

1,000 

Maximum consecutive number of 
iterations during which the best PF does 
not change (ConIters) 

[100; 250; 
500] 

100 

HMOTS Population size (PopSize) [50; 100; 200] 100 
Maximum number of iterations 
(MaxIters) 

[500; 1,000; 
2,000] 

1,000 

Maximum consecutive number of 
iterations during which the best PF does 
not change (ConIters) 

[100; 250; 
500] 

100 

HMOVNS Population size (PopSize) [50; 100; 200] 100 
Maximum number of iterations 
(MaxIters) 

[500; 1,000; 
2,000] 

1,000 

Maximum consecutive number of 
iterations during which the best PF does 
not change (ConIters) 

[100; 250; 
500] 

100 

HNSGA-II Population size (PopSize) [50; 100; 200] 200 
Crossover probability (σc) [0.20; 0.25; 

0.30] 
0.25 

Mutation probability (σm) [0.02; 0.05; 
0.10] 

0.10 

Maximum number of generations 
(MaxGens) 

[250; 500; 
1,000] 

500 

Maximum consecutive number of 
generations during which the best PF 
does not change (ConGens) 

[100; 250; 
500] 

100  
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from all the candidate algorithms and constructs a Pareto Set from those 
points. Then, the number of points from each candidate algorithm 
belonging to that Pareto Set is estimated [49,50]. A high QM indicates 
better performance. 

Spacing Metric (SM): This metric determines the uniformity in dis
tribution of PF points. A low SM indicates better performance. SM can be 
estimated from the Euclidean distance between two consecutive PF 
points (di), the mean of such Euclidean distances (d), and the number of 
PF points (N) as follows [49,50]: 

SM =

∑N−1
i=1 |d − di|

(N − 1)d
(41) 

Mean Ideal Distance (MID): This metric signifies the closeness be
tween the PF points of a candidate algorithm and the ideal points (this 
study assumes that the ideal points are the ones that belong to the 
optimal PF generated by the ECON method for a given problem 
instance). A low MID indicates better performance. MID can be obtained 
from the values of the objective functions for a given PF point of a 
candidate algorithm (F1

i , F2
i ), the ideal points (F1 ideal, F2 ideal), and the 

maximum and minimum values of each objective function obtained 
from combining the PF points of all the candidate algorithms (maxF1all, 
minF1all, maxF2all, minF2all) as follows [50,51]: 

MID =

∑N
i=1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
F1

i −F1 ideal

maxF1 all
−minF1 all

)2

+

(
F2

i −F2 ideal

maxF2 all
−minF2all

)2
√

N
(42) 

Diversification Metric (DM): This metric determines the diversity of 
PF points distributed in the search space. A high DM indicates better 
performance. DM can be estimated from the maximum and minimum 
values of the objective functions returned by a candidate algorithm 
(maxF1, minF1, maxF2, minF2) as follows [49,50]: 

DM =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(

maxF1 − minF1

maxF1all
− minF1all

)2

+

(
maxF2 − minF2

maxF2all
− minF2all

)2
√

(43) 

The following sections of the manuscript elaborate more on the re
sults from numerical experiments and focus on the assessment of the 
effects of hybridization for the considered multi-objective metaheuristic 
algorithms, analysis of the algorithmic performance for small-size 
problem instances, and analysis of the algorithmic performance for 
large-size problem instances. 

6.3.1. Assessment of the effects of hybridization 
Each of the metaheuristic algorithms was hybridized with an exact 

optimization approach to optimize the locations of the final production. 
Since the locations of the final production are associated with the second 
objective function of the MOFIBR mathematical model (F2), an 
improvement in F2 was noted due to hybridization. The effects of hy
bridization can be captured by comparing the mean of F2 for the PFs 
returned by HMOEA, HMOSA, HMOTS, HMOVNS, and HNSGA-II with 
that of their non-hybridized versions, including the following: (1) Multi- 
Objective Evolutionary Algorithm (MOEA); (2) Multi-Objective Simu
lated Annealing (MOSA); (3) Multi-Objective Tabu Search (MOTS); (4) 
Multi-Objective Variable Neighborhood Search (MOVNS); and (5) Non- 
Dominated Sorting Genetic Algorithm II (NSGA-II). All the considered 
hybridized algorithms and their non-hybridized versions were executed 
10 times for the developed small-size and large-size problem instances to 
estimate the mean values of F2, and the results are presented in Table 3. 
Based on the conducted analysis, it can be observed that hybridized 
metaheuristic algorithms HMOEA, HMOSA, HMOTS, HMOVNS, and 
HNSGA-II consistently outperformed their non-hybridized versions and 
returned lower F2 values for all the developed problem instances. The 
objective improvements of up to ≈5% were recorded during the 
computational experiments. Hence, the hybridization technique pro
posed in this study could be considered as effective in enhancing the 
quality of produced PFs. 

Table 3 
Mean of F2 for the PFs returned by the hybridized and non-hybridized versions of the metaheuristic algorithms.  

Problem 
Instance 

HMOEA 
(USD) 

MOEA 
(USD) 

HMOSA 
(USD) 

MOSA 
(USD) 

HMOTS 
(USD) 

MOTS 
(USD) 

HMOVNS 
(USD) 

MOVNS 
(USD) 

HNSGA-II 
(USD) 

NSGA-II 
(USD) 

S-1  68.39  71.08  68.66  71.35  68.44  71.13  68.64  71.33  68.50  71.19 
S-2  91.48  95.61  91.48  95.62  91.50  95.63  91.52  95.65  91.48  95.61 
S-3  115.25  119.38  115.54  119.67  115.83  119.97  115.37  119.50  115.22  119.35 
S-4  138.13  143.74  137.90  143.51  138.03  143.63  138.21  143.81  137.84  143.44 
S-5  163.00  168.68  163.07  168.74  162.70  168.38  163.05  168.72  163.18  168.86 
S-6  184.77  191.93  186.20  193.35  185.45  192.53  186.51  193.66  186.67  193.82 
S-7  209.01  216.63  209.64  217.26  208.72  216.34  208.54  215.95  209.04  216.52 
S-8  231.00  241.13  233.02  243.48  234.26  244.73  232.79  243.32  234.46  244.99 
S-9  255.08  266.20  255.94  266.67  256.62  267.01  255.51  266.70  254.99  266.18 
S-10  277.14  288.30  281.18  292.30  279.92  290.90  280.84  292.00  279.34  290.57 
S-11  300.94  312.33  307.14  319.13  303.46  314.11  306.00  317.10  308.17  319.51 
S-12  325.91  338.87  327.48  339.67  335.16  346.58  331.27  343.27  333.89  345.95 
S-13  351.09  363.12  357.12  370.79  357.89  370.55  360.80  373.44  358.64  370.30 
S-14  375.80  389.33  376.73  389.33  378.10  391.20  379.60  393.52  384.27  397.52 
S-15  398.16  411.63  400.64  414.75  406.29  419.71  403.89  418.86  398.94  412.51 
L-1  1,327.76  1,361.29  1,427.50  1,460.56  1,405.80  1,439.32  1,385.96  1,418.32  1,362.30  1,396.08 
L-2  1,367.89  1,400.95  1,422.21  1,455.77  1,471.07  1,505.30  1,446.15  1,481.61  1,395.84  1,428.84 
L-3  1,445.88  1,480.39  1,495.80  1,531.01  1,522.55  1,557.99  1,522.81  1,556.00  1,479.32  1,514.03 
L-4  1,488.91  1,524.38  1,590.96  1,626.95  1,530.64  1,566.16  1,607.51  1,642.50  1,525.82  1,561.64 
L-5  1,558.56  1,595.07  1,669.92  1,706.80  1,650.19  1,687.96  1,658.62  1,695.52  1,564.09  1,601.89 
L-6  1,606.15  1,646.40  1,753.14  1,790.99  1,748.40  1,786.05  1,697.07  1,733.87  1,630.81  1,668.66 
L-7  1,655.39  1,694.36  1,763.34  1,802.35  1,799.16  1,837.67  1,793.62  1,830.76  1,677.62  1,715.70 
L-8  1,756.21  1,795.97  1,832.86  1,872.24  1,876.97  1,917.55  1,902.72  1,942.53  1,802.07  1,843.43 
L-9  1,773.41  1,814.52  1,916.75  1,958.67  1,899.27  1,940.94  1,973.69  2,013.78  1,789.92  1,830.54 
L-10  1,824.92  1,867.41  2,033.22  2,074.79  2,003.35  2,045.52  2,016.54  2,058.19  1,946.55  1,988.29 
L-11  1,906.06  1,948.85  1,995.39  2,037.49  2,161.89  2,205.78  2,086.48  2,128.57  1,963.62  2,006.81 
L-12  1,984.36  2,027.32  2,110.59  2,156.75  2,117.63  2,161.81  2,162.33  2,205.60  2,025.26  2,068.65 
L-13  2,017.78  2,061.75  2,141.42  2,186.29  2,163.48  2,207.48  2,107.31  2,149.85  2,053.39  2,099.18 
L-14  2,140.07  2,185.57  2,250.29  2,296.28  2,286.34  2,332.51  2,209.22  2,254.16  2,139.88  2,184.66 
L-15  2,171.12  2,219.28  2,307.40  2,353.78  2,288.21  2,334.88  2,376.40  2,424.33  2,207.31  2,255.75  
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6.3.2. Analysis of small-size problem instances 
As a part of the numerical experiments, the developed HMOEA, 

HMOSA, HMOTS, and HMOVNS metaheuristic algorithms were evalu
ated against the ECON algorithm, which is a well-known exact multi- 
objective optimization algorithm, for all the considered small-size 
problem instances, where the number of supplier/manufacturer/ 
customer nodes was increased from 3 in instance S-1 to 17 in instance S- 
15. The PFs generated by all the solution algorithms for the small-size 
problem instances are plotted in Fig. 11. Fig. 11 demonstrates that 
ECON generally performed better than the metaheuristic algorithms in 
instances S-1 through S-5, even though the objective functions of the 
metaheuristic algorithms were close to those of ECON (i.e., they pro
vided good-quality solutions). The ECON performance started to decline 
from instance S-6. In fact, ECON could not provide solutions for the 
required 5 PF points for instance S-6 within the CPU time limit of 24 min 
per PF point. Moreover, ECON was not able to provide even one PF point 
for instance S-15 or larger within the CPU time limit. Hence, the results 
for instance S-15 were not plotted. Thus, the ECON algorithm, which is a 
classical exact optimization method for multi-objective optimization 

Fig. 11. PFs generated for the small-size problem instances.  

Table 4 
The QM values for the candidate algorithms and small-size problem instances.  

Problem Instance Total Points ECON % HMOEA % HMOSA % HMOTS % HMOVNS % HNSGA-II % 

S-1 6 5  83.33 1  16.67 0  0.00 0  0.00 0  0.00 0  0.00 
S-2 9 5  55.56 3  33.33 1  11.11 0  0.00 0  0.00 0  0.00 
S-3 5 5  100.00 0  0.00 0  0.00 0  0.00 0  0.00 0  0.00 
S-4 8 4  50.00 2  25.00 1  12.50 2  25.00 0  0.00 0  0.00 
S-5 9 5  55.56 3  33.33 1  11.11 0  0.00 0  0.00 0  0.00 
S-6 9 1  11.11 4  44.44 2  22.22 1  11.11 1  11.11 1  11.11 
S-7 12 3  25.00 9  75.00 0  0.00 0  0.00 0  0.00 0  0.00 
S-8 12 1  8.33 10  83.33 0  0.00 0  0.00 0  0.00 1  8.33 
S-9 16 1  6.25 10  62.50 2  12.50 0  0.00 0  0.00 3  18.75 
S-10 9 1  11.11 8  88.89 0  0.00 0  0.00 0  0.00 0  0.00 
S-11 10 1  10.00 9  90.00 0  0.00 0  0.00 0  0.00 0  0.00 
S-12 11 1  9.09 7  63.64 3  27.27 0  0.00 0  0.00 0  0.00 
S-13 27 1  3.70 18  66.67 0  0.00 3  11.11 0  0.00 5  18.52 
S-14 20 1  5.00 16  80.00 2  10.00 1  5.00 0  0.00 0  0.00 
Mean: 2.43 31.00  7.14 54.49  0.86 7.62  0.50 3.73  0.07 0.79  0.71 4.05  

Table 5 
The SM values for the candidate algorithms and small-size problem instances.  

Problem 
Instance 

ECON HMOEA HMOSA HMOTS HMOVNS HNSGA- 
II 

S-1  0.386  1.103  0.843  1.224  0.467  1.148 
S-2  0.282  1.131  0.696  0.610  0.837  0.381 
S-3  0.797  0.912  0.399  0.466  0.159  0.659 
S-4  0.135  0.577  0.846  0.607  0.381  0.634 
S-5  0.591  0.677  0.577  0.704  0.212  0.349 
S-6  0.149  1.046  0.677  0.816  0.000  0.629 
S-7  0.132  0.526  0.274  0.648  0.508  0.805 
S-8  –  0.832  0.711  0.667  0.338  0.682 
S-9  –  0.674  0.559  0.413  0.497  0.364 
S-10  –  0.581  0.972  0.725  0.581  0.335 
S-11  –  0.639  0.890  0.745  0.473  0.795 
S-12  –  0.839  0.483  0.639  0.922  0.694 
S-13  –  0.751  0.572  0.777  1.072  1.015 
S-14  –  0.925  0.613  0.231  0.345  0.718 
Mean:  –  0.801  0.651  0.662  0.485  0.658  

J. Pasha et al.                                                                                                                                                                                                                                   



Advanced Engineering Informatics 52 (2022) 101623

15

problems, would not be able to handle large-size problem instances 
because of the computational complexity of the MOFIBR mathematical 
model. On the other hand, the performance of developed metaheuristic 
algorithms remained consistent. 

As for multi-objective optimization performance indicators, HMOEA 
exhibited the best values of QM when comparing to the ECON, HMOSA, 
HMOTS, HMOVNS, and HNSGA-II algorithms (see Table 4). HMOEA on 

average contributed more than 50% of the total PF points for the 
considered small-size problem instances. Furthermore, the HMOEA PFs 
were found to be the closest ones to the optimal PFs obtained by the 
ECON method based on the estimated MID values (see Table 6). Note 
that the MID values were only computed for the small-size problem in
stances S-1 through S-5, as ECON was not able to generate a full PF with 
5 points for the rest of small-size problem instances within the CPU time 
limit imposed due to the computational complexity of the MOFIBR 
mathematical model. Throughout the numerical experiments, it was 
noticed that HMOEA did not demonstrate the superiority in terms of the 
best SM and DM performance indicators (see Tables 5 and 7), as some of 
the PF points generated by HMOEA were located close to each other. 
However, the SM and DM values recorded for HMOEA still can be 
viewed as acceptable, when comparing to other solution algorithms. 

As for the computational time, on average over 10 replications, 
ECON required 2,402.75 s per small-size problem instance, whereas 
HMOEA, HMOSA, HMOTS, HMOVNS, and HNSGA-II required only 
34.92 s, 28.00 s, 19.26 s, 23.88 s, and 37.50 s, respectively. Therefore, 
based on the numerical experiments conducted for the developed small- 
size problem instances, HMOEA was found to be superior to the ECON 
method and metaheuristic algorithms considered, taking into account 
the shapes of PFs obtained, recorded values of multi-objective optimi
zation performance indicators, and average computational time 
incurred. 

6.3.3. Analysis of large-size problem instances 
As a part of the numerical experiments, the developed HMOEA, 

HMOSA, HMOTS, and HMOVNS metaheuristic algorithms were evalu
ated against the HNSGA-II algorithm, which is a well-known multi- 
objective optimization algorithm with advanced operators (e.g., non- 
dominated sorting, crowding distance sorting, genetic operators), for 
all the considered large-size problem instances, where the number of 
supplier/manufacturer/customer nodes was increased from 52 in 
instance L-1 to 80 in instance L-15. The PFs generated by all the meta
heuristic algorithms for the large-size problem instances are plotted in 
Fig. 12. As indicated earlier, the ECON method was not able to generate 

Table 6 
The MID values for the candidate algorithms.  

Problem Instance HMOEA HMOSA HMOTS HMOVNS HNSGA-II 

S-1  0.443  0.671  0.526  0.787  0.713 
S-2  0.928  0.864  0.872  0.907  1.041 
S-3  0.631  0.827  1.028  0.632  0.754 
S-4  0.712  0.633  0.673  0.818  0.793 
S-5  0.736  0.760  0.651  0.766  0.808 
Mean:  0.690  0.751  0.750  0.782  0.822  

Table 7 
The DM values for the candidate algorithms and small-size problem instances.  

Problem 
Instance 

ECON HMOEA HMOSA HMOTS HMOVNS HNSGA- 
II 

S-1  0.664  0.724  0.207  0.820  0.521  1.308 
S-2  1.303  0.624  0.193  0.104  0.194  0.820 
S-3  1.123  0.610  0.397  0.634  0.391  0.745 
S-4  1.131  0.621  0.590  0.615  0.472  1.058 
S-5  0.986  0.660  0.156  0.524  0.052  0.376 
S-6  0.998  0.516  0.350  0.492  0.303  0.378 
S-7  0.538  0.839  0.444  0.399  0.202  0.587 
S-8  –  0.367  0.624  0.442  0.133  0.570 
S-9  –  0.845  0.156  0.781  0.654  0.554 
S-10  –  0.382  0.318  0.256  0.424  0.278 
S-11  –  0.553  0.309  0.247  0.307  0.450 
S-12  –  0.286  0.217  0.189  0.478  0.234 
S-13  –  0.935  0.403  0.199  0.818  0.496 
S-14  –  0.289  0.095  0.199  0.361  0.675 
Mean:  –  0.589  0.319  0.421  0.379  0.609  

Fig. 12. PFs generated for the large-size problem instances.  
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even one PF point for the considered large-size problem instances within 
the CPU time limit imposed; hence, its results are not reported. Fig. 12 
demonstrates that HMOEA outperformed HNSGA-II in terms of both of 
the objective functions of the MOFIBR mathematical model in 14 out of 
the 15 large-size problem instances and in terms of the second objective 
function (F2) in instance L-12. In fact, HMOEA provided superior solu
tions with respect to all of the candidate metaheuristic algorithms in 
terms of one or both of the objective functions in all of the large-size 
problem instances. Such a finding can be also justified by the recorded 

values of the QM performance indicator. HMOEA on average contrib
uted more than 90% of the total PF points for the considered large-size 
problem instances (see Table 8). 

When considering other multi-objective optimization performance 
indicators (i.e., SM and DM), all the developed hybridized metaheuristic 
algorithms demonstrated similar performance. In particular, the average 
values of the SM indicator varied between ≈0.700 and ≈0.800 (see 
Table 9). On the other hand, the average values of the DM indicator 
ranged between ≈0.400 and ≈0.500 (see Table 10). As for the compu
tational time, on average over 10 replications, HMOEA, HMOSA, 
HMOTS, HMOVNS, and HNSGA-II required 366.74 s, 217.14 s, 177.11 s, 
173.23 s, and 406.58 s, respectively, per large-size problem instance. 
Hence, all of the metaheuristic algorithms were able to tackle the large- 
size problem instances in a reasonable amount of time. Therefore, based 
on the numerical experiments conducted for the developed large-size 
problem instances, HMOEA was found to be superior to HNSGA-II and 
other metaheuristic algorithms considered, taking into account the 
shapes of PFs obtained, recorded values of multi-objective optimization 
performance indicators, and average computational time incurred. 

6.4. Detailed analysis of solutions 

This section of the manuscript performs a comprehensive analysis of 
the solutions provided by the HMOEA algorithm, which was found to be 
the most promising hybridized metaheuristic algorithm based on the 
conducted numerical experiments, for large-size problem instances of 
the MOFIBR mathematical model. Table 11 shows the average values of 
the total travel time, the total early arrival time, the total late arrival 
time, and the total manufacturing time over 10 replications obtained by 
HMOEA for all the considered large-size problem instances and corner 
PF points (i.e., the points with the minimum F1 and F2 values). Based on 
the conducted numerical experiments, it can be generally noticed that 
there was a gradual increase in the total travel time, the total early 
arrival time, and the total manufacturing time after increasing the 
number of nodes. The late arrival times, on the other hand, remained 
fairly constant and close to zero. The total travel time for the corner PF 
points with the minimum F1 values was found to be smaller than that of 
the corner PF points with the minimum F2 values. The latter finding can 
be explained by the fact that F1 specifically minimizes the total travel 
cost, whereas F2 minimizes the total early arrival cost, the total late 
arrival cost, and the total compensation cost. 

On the other hand, smaller total early arrival times and total late 
arrival times were observed at the corner PF points with the minimum 
F2 values than those of the corner PF points with the minimum F1 

values. However, the total manufacturing time remained the same for all 
the corner PF points, as it was pre-optimized through hybridization at 
the population initialization step. Hence, the developed HMOEA algo

Table 8 
The QM values for the candidate algorithms and large-size problem instances.  

Problem Instance Total Points HMOEA % HMOSA % HMOTS % HMOVNS % HNSGA-II % 

L-1 12 11  91.67 0  0.00 0  0.00 1  8.33 0  0.00 
L-2 11 11  100.00 0  0.00 0  0.00 0  0.00 0  0.00 
L-3 15 15  100.00 0  0.00 0  0.00 0  0.00 0  0.00 
L-4 24 12  50.00 4  16.67 8  33.33 0  0.00 0  0.00 
L-5 12 12  100.00 0  0.00 0  0.00 0  0.00 0  0.00 
L-6 12 12  100.00 0  0.00 0  0.00 0  0.00 0  0.00 
L-7 14 14  100.00 0  0.00 0  0.00 0  0.00 0  0.00 
L-8 10 10  100.00 0  0.00 0  0.00 0  0.00 0  0.00 
L-9 7 7  100.00 0  0.00 0  0.00 0  0.00 0  0.00 
L-10 22 22  100.00 0  0.00 0  0.00 0  0.00 0  0.00 
L-11 10 10  100.00 0  0.00 0  0.00 0  0.00 0  0.00 
L-12 13 11  84.62 0  0.00 0  0.00 0  0.00 2  15.38 
L-13 10 10  100.00 0  0.00 0  0.00 0  0.00 0  0.00 
L-14 11 11  100.00 0  0.00 0  0.00 0  0.00 0  0.00 
L-15 21 20  95.24 0  0.00 0  0.00 1  4.76 0  0.00 
Mean: 12.53 94.77  0.27 1.11  0.53 2.22  0.13 0.87  0.13 1.03  

Table 9 
The SM values for the candidate algorithms and large-size problem instances.  

Problem Instance HMOEA HMOSA HMOTS HMOVNS HNSGA-II 

L-1  0.636  0.749  0.801  0.532  1.009 
L-2  0.571  0.583  1.019  0.846  0.787 
L-3  1.056  1.081  1.370  1.009  0.707 
L-4  1.026  0.561  0.692  0.907  0.454 
L-5  0.817  0.724  0.599  1.216  0.799 
L-6  0.807  0.645  0.901  0.672  0.760 
L-7  0.721  0.548  0.799  0.864  0.772 
L-8  0.690  0.780  0.825  0.845  0.735 
L-9  0.314  1.339  1.110  0.813  0.856 
L-10  0.734  0.796  0.912  0.716  0.567 
L-11  1.089  0.852  0.722  0.805  0.717 
L-12  0.983  0.841  0.993  0.364  0.773 
L-13  0.672  1.101  0.540  0.686  0.516 
L-14  1.082  0.775  0.531  1.139  0.626 
L-15  0.741  0.852  0.810  0.582  0.782 
Mean:  0.796  0.815  0.842  0.800  0.724  

Table 10 
The DM values for the candidate algorithms and large-size problem instances.  

Problem Instance HMOEA HMOSA HMOTS HMOVNS HNSGA-II 

L-1  0.388  0.441  0.264  0.438  0.393 
L-2  0.469  0.589  0.674  0.433  0.633 
L-3  0.798  0.625  1.021  0.274  0.485 
L-4  0.217  0.449  0.183  0.591  0.214 
L-5  0.357  0.583  0.601  0.744  0.490 
L-6  0.530  0.418  0.482  0.384  0.342 
L-7  0.261  0.277  0.695  0.398  0.308 
L-8  0.349  0.635  0.461  0.818  0.535 
L-9  0.161  0.597  0.554  0.315  0.225 
L-10  0.832  0.204  0.341  0.153  0.447 
L-11  0.278  0.336  0.309  0.195  0.400 
L-12  0.369  0.459  0.242  0.278  0.489 
L-13  0.551  0.227  0.259  0.333  0.275 
L-14  0.191  0.155  0.331  0.565  0.385 
L-15  0.335  0.416  0.676  0.284  0.182 
Mean:  0.406  0.427  0.473  0.414  0.387  
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rithm would assist decision makers with an effective analysis of trade- 
offs between conflicting objectives throughout factory-in-a-box supply 
chain planning (i.e., minimize the total travel time of vehicles vs. 
minimize the total violation of the previously negotiated time windows 
at customer locations). 

7. Conclusions 

The frequency and severity of pandemics (e.g., COVID-19) is ex
pected to increase under the existing projections. Pandemics warrant 
urgent production and distribution of medical supplies under disrupted 
supply chain conditions. An innovative logistics solution to meet the 
urgent demand during emergencies could be the factory-in-a-box 
manufacturing concept. Factory-in-a-box manufacturing could also be 
helpful to meet the urgent demand during natural disasters or for mili
tary applications (e.g., production of military supplies during wars). To 
obtain extensive flexibility and mobility, this manufacturing concept 
deploys vehicles to transport containers that are used to install pro
duction modules (i.e., factories). The vehicles travel to customer loca
tions and perform on-site production. However, conventional 
manufacturing could also be useful in some situations due to faster 
production at manufacturer locations. Furthermore, throughout factory- 
in-a-box supply chain planning, decision makers may have to compro
mise conflicting objectives. For example, selection of particular routes 
may minimize the total travel cost but, in the meantime, cause violation 
of the previously negotiated time windows at customer locations. 
However, no study contrasted the options of factory-in-a-box 
manufacturing with those of conventional manufacturing in multi- 
objective settings. 

To fulfill this gap in the state-of-the-art, this study proposed a novel 
multi-objective optimization model for the vehicle routing problem with 
a factory-in-a-box, which captures the options of factory-in-a-box 
manufacturing and conventional manufacturing for each customer. 
The objectives of the model were to minimize the total travel cost and to 
minimize the sum of the total early arrival cost, the total late arrival cost, 
and the total compensation cost. A customized multi-objective hybrid 
metaheuristic solution algorithm was developed to solve the model. The 
algorithm was hybridized with an exact optimization approach to 
optimize the locations of the final production. On the other hand, 
various evolutionary operators (i.e., Boltzmann selection, cycle cross
over, custom mutation operator, and ranking selection) were employed 
for route generation. A case study was performed for a vaccination 
project involving factory-in-a-box manufacturing along with conven
tional manufacturing. The developed HMOEA metaheuristic algorithm 
was compared against the ECON method, which is a well-known exact 
optimization approach for multi-objective optimization problems, and 

some of the well-known metaheuristic algorithms, including HMOSA, 
HMOTS, HMOVNS, and HNSGA-II. 

A set of numerical experiments revealed that hybridized meta
heuristic algorithms consistently outperformed their non-hybridized 
versions with up to ≈5% objective improvements. The analysis of 
small-size instances indicated that HMOEA obtained the PFs that were 
close to the optimal ones produced by ECON. However, ECON was not 
able to handle large-size problem instances because of the computa
tional complexity of the proposed mathematical model. On the other 
hand, HMOEA and other developed metaheuristic algorithms demon
strated consistent performance in terms of the computational time not 
only for small-size problem instances but for large-size problem in
stances as well. Moreover, based on the numerical experiments con
ducted for the developed large-size problem instances, HMOEA was 
found to be superior to HNSGA-II and other metaheuristic algorithms 
considered, taking into account the shapes of PFs obtained, recorded 
values of multi-objective optimization performance indicators, and 
average computational time incurred. Last but not least, a detailed 
analysis of HMOEA solutions revealed that the proposed algorithm can 
assist with an effective analysis of trade-offs between conflicting ob
jectives throughout factory-in-a-box supply chain planning (i.e., mini
mize the total travel time of vehicles vs. minimize the total violation of 
the previously negotiated time windows at customer locations). 

This research may be extended further in several ways. First, deter
mination of raw materials for suppliers, decomposition of sub-assembly, 
assigning manufacturers to sub-assembly modules, and task- 
manufacturer assignment could be studied. Second, the developed 
optimization model was tested in deterministic settings. Various sources 
of uncertainties could be captured and evaluated as a part of the future 
research (e.g., uncertainties in vehicle travel times due to roadway 
closures, traffic congestion, inclement weather conditions, etc.). Third, 
multiple depots could be considered for more flexibility. Fourth, alter
native multi-objective solution methodologies (e.g., hybrid versions of 
the ECON method, Multi-Objective Social Engineering Optimizer, Multi- 
Objective Red Deer Algorithm, Strength Pareto Evolutionary Algorithm, 
Multi-Objective Bacterial Swarm Optimization, Pareto Archived Evolu
tion Strategy, Multi-Objective Keshtel Algorithm) could be developed to 
solve the proposed model [52–56]. 
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Table 11 
The values of time components at the corner PF points.  

Instance Travel Time Early Arrival Time Late Arrival Time Manufacturing Time 

min(F1) min(F2) min(F1) min(F2) min(F1) min(F2) min(F1) min(F2)

L-1  855.18  857.27  32,706.04  30,066.32  0.00  0.00  232.58  232.58 
L-2  887.80  889.45  29,250.56  27,983.75  0.00  0.00  241.53  241.53 
L-3  919.56  923.86  37,570.85  34,035.92  0.00  0.00  250.37  250.37 
L-4  953.25  954.67  35,565.33  34,404.95  0.00  0.00  259.40  259.40 
L-5  986.89  988.93  41,207.66  39,799.53  0.00  0.00  268.48  268.48 
L-6  1,018.94  1,021.32  43,214.94  39,719.89  1.00  0.00  277.39  277.39 
L-7  1,052.52  1,054.29  45,473.14  39,988.61  0.00  0.00  286.26  286.26 
L-8  1,086.12  1,086.94  62,750.36  51,070.36  0.00  0.00  295.22  295.22 
L-9  1,118.82  1,120.04  50,965.95  44,012.21  0.00  0.00  304.26  304.26 
L-10  1,149.30  1,156.87  69,288.63  39,894.81  0.00  0.00  313.27  313.27 
L-11  1,183.18  1,185.35  60,863.68  54,769.66  0.00  0.00  322.23  322.23 
L-12  1,216.87  1,218.67  66,452.19  63,292.65  0.00  0.00  331.15  331.15 
L-13  1,247.07  1,252.58  62,670.22  59,309.47  0.29  0.00  340.06  340.06 
L-14  1,283.39  1,284.75  80,913.95  76,726.48  0.00  0.00  349.03  349.03 
L-15  1,318.07  1,319.83  76,587.96  75,128.91  0.00  0.00  357.85  357.85 
Mean  1,085.13  1,087.66  53,032.10  47,346.90  0.09  0.00  295.27  295.27  
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