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ARTICLE INFO ABSTRACT

Keywords: Emergencies, such as pandemics (e.g., COVID-19), warrant urgent production and distribution of goods under
Supply chains disrupted supply chain conditions. An innovative logistics solution to meet the urgent demand during emer-
Urgent demand gencies could be the factory-in-a-box manufacturing concept. The factory-in-a-box manufacturing concept de-

Factory-in-a-box
Vehicle routing problem
Metaheuristics

Hybrid algorithms

ploys vehicles to transport containers that are used to install production modules (i.e., factories). The vehicles
travel to customer locations and perform on-site production. Factory-in-a-box supply chain optimization is
associated with a wide array of decisions. This study focuses on selection of vehicles for factory-in-a-box
manufacturing and decisions regarding the optimal routes within the supply chain consisting of a depot, sup-
pliers, manufacturers, and customers. Moreover, in order to contrast the options of factory-in-a-box
manufacturing with those of conventional manufacturing, the location of the final production is determined
for each customer (i.e., factory-in-a-box manufacturing with production at the customer location or conventional
manufacturing with production at the manufacturer locations). A novel multi-objective optimization model is
presented for the vehicle routing problem with a factory-in-a-box that aims to minimize the total cost associated
with traversing the edges of the network and the total cost associated with visiting the nodes of the network. A
customized multi-objective hybrid metaheuristic solution algorithm that directly considers problem-specific
properties is designed as a solution approach. A case study is performed for a vaccination project involving
factory-in-a-box manufacturing along with conventional manufacturing. The case study reveals that the devel-
oped solution method outperforms the e-constraint method, which is a classical exact optimization method for
multi-objective optimization problems, and several well-known metaheuristics.

1. Introduction deadlier [1]. Such predictions are in accordance with pandemic occur-
rences over the past decades. Indeed, the frequency of pandemics, epi-
In October 2020, the United Nations Educational, Scientific and demics, and outbreaks has increased over the years. The 21st century has

Cultural Organization (UNESCO) reported that the frequency of pan- already experienced some major outbreaks, such as SARS (2003), HIN1
demics is expected to increase under the existing projections. It is also (2009), MERS (2012), Ebola (2014), Zika (2015), and COVID-19 (2019)
anticipated that the future pandemics would be more infectious and [2-5]. As of January 2022, the ongoing COVID-19 pandemic has taken
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Fig. 1. Typical factory-in-a-box manufacturing routes.

more than 5.5 million lives, and more than 315 million cases have been
reported [6]. Mitigating the effects of pandemics require extensive
measures, such as production of medical supplies (e.g., personal pro-
tective equipment, testing kits, vaccines). An urgent demand for medical
supplies occurs due to continuous losses of lives. At the same time,
pandemics create emergencies and significant supply chain disruptions
due to lockdowns, closure of distribution facilities, lack of personnel,
and so on. Hence, meeting urgent demand during emergencies becomes
challenging. Therefore, there is a need for effective logistics solutions to
meet the customer demand during emergencies.

Creative logistics solutions can be effective in meeting urgent de-
mand. One such solution could be the factory-in-a-box manufacturing
concept, which deploys vehicles to transport containers that are used to
install production modules (i.e., mobile factories). The vehicles travel to
customer locations and perform on-site production. Typically, the
vehicle routes involved with factory-in-a-box manufacturing start from a
depot, traveling to supplier locations to pick up raw materials, moving to
manufacturer locations to collect semi-finished products, and then
stopping at customer locations for on-site production. Factory-in-a-box
manufacturing could be helpful not only to address the challenges due
to pandemics but also to meet the urgent demand during natural di-
sasters or for military applications (e.g., production of military supplies
during wars). Examples of typical factory-in-a-box manufacturing routes
are depicted in Fig. 1. Factory-in-a-box supply chain optimization in-
volves different decisions, which can be categorized into two groups.
The first group of decisions is applicable to the pre-transport stage,
which includes determination of raw materials for suppliers, decompo-
sition of sub-assembly, assigning manufacturers to sub-assembly mod-
ules, and task-manufacturer assignment. The second group of decisions
is made for the transport of sub-assembly modules. This study focuses on
the latter group of decisions, which comprise selection of vehicles and
decisions regarding the optimal routes within the supply chain consist-
ing of a depot, suppliers, manufacturers, and customers.

The factory-in-a-box manufacturing concept has been applied in
various industries. GE Healthcare has a system named KUBio that ap-
plies the factory-in-a-box concept for mass-production of therapeutics
[7]. Furthermore, Nokia has employed the factory-in-a-box concept by
packaging production modules in containers and shipping them to
customer locations for production [8]. While factory-in-a-box
manufacturing has a number of benefits, its necessity should be exam-
ined for specific cases. For instance, this manufacturing concept pro-
vides extended flexibility and mobility through on-site production at
customer locations and by not spending a significant amount of time at

manufacturer locations. On the other hand, in conventional
manufacturing, the final products are produced by manufacturers, some
of which may have an advantage of faster production than on-site pro-
duction at customer locations (e.g., certain products may require a sig-
nificant amount of time when manufacturing them at the customer
locations using mobile factories as compared to traditional
manufacturing at manufacturer locations that have the appropriate
equipment and manufacturing resources). Hence, the options of factory-
in-a-box manufacturing and conventional manufacturing for each
customer need to be examined.

Furthermore, throughout factory-in-a-box supply chain planning,
decision makers may have to compromise conflicting objectives. For
example, selection of particular routes may minimize the total travel
cost but, in the meantime, cause violation of the previously negotiated
time windows at customer locations. Factory-in-a-box supply chain
optimization has been assessed by only a few studies in the past [9,10].
However, no study has contrasted the options of factory-in-a-box
manufacturing with those of conventional manufacturing in multi-
objective settings. To fulfill this gap in the state-of-the-art, this study
proposes a novel multi-objective optimization model for the vehicle
routing problem with a factory-in-a-box, which captures the options of
factory-in-a-box manufacturing and conventional manufacturing for
each customer. A customized multi-objective hybrid metaheuristic so-
lution algorithm is developed to solve the model. Numerical experi-
ments are further performed to evaluate the proposed multi-objective
hybrid metaheuristic solution algorithm and draw some managerial
implications based on the solutions obtained. The remainder of this
manuscript is organized as follows. The following section conducts a
holistic review of the closely-related literature. The third section pro-
vides a detailed description of the problem studied herein, while the
fourth section contains a mathematical formulation for the studied
problem. The fifth section describes the primary solution approach
employed, and the sixth section conducts some numerical experiments
in order to analyze the proposed solution approach. The seventh section
concludes this study.

2. Literature review
This section presents a review of the relevant literature, focusing on

the following areas: (i) factory-in-a-box manufacturing; and (ii) recent
studies on the vehicle routing problem.
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2.1. Factory-in-a-box manufacturing

As indicated earlier, the factory-in-a-box manufacturing concept has
been investigated by only a few studies. Bengtsson et al. [11] suggested
that maintenance as well as monitoring could help achieving mobility,
speed, and flexibility in case of factory-in-a-box manufacturing. Hede-
lind et al. [12] presented a project in Sweden that implemented factory-
in-a-box manufacturing in order to perform on-demand mobile pro-
duction. The project involved four other underlying projects and a total
of five demonstrators, which were developed with industrial partners,
for factory-in-a-box manufacturing. It was revealed that factory-in-a-box
manufacturing was able not only to perform on-demand mobile pro-
duction but also to implement a fast setup and increase production. The
study underlined that the factory-in-a-box concept could assist with an
effective reconfiguration of the existing manufacturing system and could
enhance the production capacity when necessary. However, more
comprehensive studies should be still administered to properly evaluate
this innovative manufacturing concept. Jackson and Zaman [13] dis-
cussed that factory-in-a-box manufacturing could help fulfill uncertain
demand through mobility and capacity improvement. Moreover, it was
stated that the mobility and flexibility, obtained through factory-in-a-
box manufacturing, could help companies reduce production cost.

Olsson et al. [14] analyzed three sub-systems that acted altogether as
an enabler for factory-in-a-box manufacturing. The three sub-systems
were: (1) cell configurator; (2) monitor agent; and (3) experience
reuse server. Winroth and Jackson [15] highlighted three key features of
factory-in-a-box manufacturing, which include: (1) mobility; (2) flexi-
bility; and (3) speed. Based on a number of factory-in-a-box projects,
Jackson et al. [16] examined the prospects of obtaining a product-
service system. Various industrial advantages were found to be associ-
ated with factory-in-a-box manufacturing, such as improved service. It
was also indicated that factory-in-a-box manufacturing could be an
effective tool to reduce the global carbon dioxide emissions. Granlund
et al. [17] examined the factory-in-a-box manufacturing concept for
small and medium-sized enterprises. A case study was performed for a
small company, which featured small volumes and craftsmanship. The
study demonstrated factory-in-a-box manufacturing as an effective
concept for small and medium-sized enterprises to realize product-
service systems and achieve competitiveness.

Jiang et al. [9] implied that in case of vehicles making trips to various
sites, factory-in-a-box manufacturing could pose some decision prob-
lems for supply chain network design. The major decisions were iden-
tified to be sub-assembly planning and supply chain reconfiguration. In
order to address these decisions, the study presented a mathematical
model, which had the objective of minimizing the sum of reconfigura-
tion costs and production costs. Finally, some guidelines were provided
for supply chain network design and reconfiguration under the scope of
factory-in-a-box manufacturing. McHauser et al. [18] asserted that
factory-in-a-box was an immersive manufacturing environment for in-
dustry personnel to develop new skills. Such skills spanned from digital
technologies to lean manufacturing. Hence, the study analyzed factory-
in-a-box manufacturing from a learning perspective. A simulation
environment was created, so that a group of participants could learn
different aspects of a factory-in-a-box manufacturing model. In spite of
technical complexities, the model was proved to be a useful tool. Pasha
et al. [10] presented a mathematical model and a set of optimization
algorithms to optimize a factory-in-a-box supply chain. The model
aimed to minimize the total supply chain cost. Numerical experiments
exhibited the efficiency of the proposed solution algorithms and
demonstrated some important managerial implications.

2.2. Recent studies on the vehicle routing problem
The vehicle routing problem (VRP) is one of the well-studied deci-

sion problems in operations research. This section provides a concise
review of some of the recent and relevant efforts on the VRP. For more

Advanced Engineering Informatics 52 (2022) 101623

comprehensive state-of-the-art reviews regarding the VRP, interested
readers can refer to Braekers et al. [19], Elshaer and Awad [20], and Mor
and Speranza [21]. There are many different VRP variations. For
example, under the open VRP, vehicles do not go back to the depot after
serving customers [22-24]. The open VRP would be the closest one to
the VRP with a factory-in-a-box, as vehicles transporting production
modules in containers do not necessarily have to travel back to the depot
after they visit the last customer assigned. Brandao [22] presented an
iterated local search algorithm for the multi-depot open VRP. In order to
define perturbation procedures, the algorithm utilized the search
memory. The latter strategy assisted with improving the local search
procedure through counting the number of moves for each customer.
Numerical experiments indicated that the algorithm could examine
potentially better regions of the search space and avoid cycling.
Sanchez-Oro et al. [23] assessed a multi-objective open VRP. A total of
three objectives were considered, including minimization of the total
cost, makespan, and number of vehicles. Variable Neighborhood Search
was used to tackle the problem, whose performance was compared with
that of Non-Dominated Sorting Genetic Algorithm II. Numerical exper-
iments revealed that the developed Variable Neighborhood Search was
the superior of the two tested algorithms. Lalla-Ruiz and Mes [24]
presented a two-index-based mathematical formulation for the multi-
depot open VRP. The mathematical formulation attempted to enhance
sub-tour elimination constraints with the objective of minimizing the
total travel cost for delivery of goods. The proposed model was solved
with CPLEX, while the maximum CPU time was set to 2 h. It was stated
that the proposed methodology could reduce the associated computa-
tional complexity and provide good-quality solutions.

A number of studies have addressed the VRP with soft time windows
[25,26] and strict time windows [27,28]. Li and Li [25] implied that
travel times and service times in the real world could present a random
state due to being impacted by various factors, such as inclement
weather, congestion, traffic accidents, and so on. Therefore, the study
considered stochastic travel times and service times for the VRP with
soft time windows. A stochastic programming model was presented to
minimize the total distribution cost. A greedy algorithm that was based
on Tabu Search was developed to solve the model. The effectiveness of
the proposed algorithm was verified via computational experiments. To
obtain vehicle routes considering soft time windows, Zhang et al. [26]
utilized a reinforcement learning algorithm. The developed problem
tackled the VRP with soft time windows as a vehicle tour generation
process. In order to generate tours, an encoder-decoder framework was
proposed that featured attention layers. It was demonstrated that the
algorithm performed better than Google OR-Tools. Keskin et al. [27]
assessed the electric VRP with strict time windows. Queuing times at
charging stations were modeled as stochastic. A bi-stage linear pro-
gramming model was presented to generate vehicle routes. A heuristic
algorithm was employed for solution, which involved simulation to
model stochasticity. Pan et al. [28] considered strict time windows and
time-dependent speed for the VRP. Multiple trips were allowed, but a
maximum trip duration was imposed. The proposed model had the
objective of minimizing the total travel distance. It was indicated that
the proposed model was solvable with exact optimization solvers (e.g.,
CPLEX).

A number of studies have concluded that the VRP along with its
variants are classified as NP-hard problems. Therefore, due to compu-
tational complexity of the VRP mathematical formulations, heuristics
[27,29,30], metaheuristics [20,23,31], and hybrid algorithms [32-35]
have been applied by most of the studies to solve the problem. Espe-
cially, hybrid algorithms considering problem-specific features could be
efficient in solving large-size instances of the VRP.

2.3. Literature summary and contributions

A review of the relevant literature implies that very few studies have
addressed the factory-in-a-box manufacturing concept, while only one



J. Pasha et al.

_.—-_N:
-

7 Processing Time
/ = 3 hours

Processing Time \

=10 hours \\\____‘
o |

Processing Time *
=2 hours \

Depot | Depot - ) Suppliers
[ oz ]

Advanced Engineering Informatics 52 (2022) 101623

m@<———_—§\\
~

Processing Time h \
= 20 hours \
|
P ﬂ
// Processing Time
| =3 hours

|
-
[ oy ]
A Processing Time
/ =2 hours

# Manufacturers @ Customers

Fig. 2. Conventional manufacturing and typical factory-in-a-box manufacturing.

study has provided a supporting model for vehicle routing with a
factory-in-a-box [10], which the relevant supply chain stakeholders
could employ. Moreover, the benefits of vehicle routing with factory-in-
a-box manufacturing have not been contrasted with those of conven-
tional manufacturing in multi-objective settings. Hence, this study aims
to make the following contributions to the state-of-the-art:

e A novel mathematical model is formulated for the VRP, which
directly captures the options of factory-in-a-box manufacturing and
conventional manufacturing for each customer.

A multi-objective framework is presented to analyze the trade-offs
between minimizing the total cost associated with traversing the
edges of the network and minimizing the total cost associated with
visiting the nodes of the network.

Complex supplier-to-customer along with manufacturer-to-customer
relationships are captured.

A novel customized nature-inspired Hybrid Multi-Objective Evolu-
tionary Algorithm is developed to solve the problem. The proposed
algorithm relies on evolutionary operators for route generation and
an exact optimization approach to optimize the locations of the final
production.

Numerical experiments are conducted to examine the computational
performance of the developed hybrid multi-objective algorithm in
comparison with an exact optimization method along with alterna-
tive metaheuristics.

A detailed analysis is performed for the solutions provided by the
developed hybrid multi-objective algorithm for the proposed math-
ematical model.

3. Problem description

The generic VRP involves two types of nodes, including a depot node
and customer nodes. Since this research studies a special variant of the
VRP, which is associated with factory-in-a-box manufacturing, it in-
volves four basic categories of nodes. These categories of nodes include:
(1) the depot (which is further divided into the depot and the dummy
depot for mathematical convenience); (2) the suppliers; (3) the manu-
facturers; and (4) the customers. Similar to the generic VRP, the vehicles
will be deployed from the depot node (denoted as “0”). Once deployed,
they will visit the suppliers and collect raw materials and then travel to
the manufacturers to load semi-processed goods. Unlike typical factory-
in-a-box manufacturing, this study weighs the options of factory-in-a-

box manufacturing and conventional manufacturing for each
customer. In other words, the final products can be manufactured at the
manufacturer locations, picked up by the designated vehicle, and
delivered to the assigned customer (i.e., conventional manufacturing).
Alternatively, semi-finished goods could be collected from the manu-
facturers by one of the vehicles available, which will travel to the cus-
tomers afterwards, where the factory will be assembled (i.e., factory-in-
a-box manufacturing). After serving the last customer, the vehicles will
go to the dummy depot. Note that all time and cost components, asso-
ciated with the dummy depot, are zero (which resembles open vehicle
routing).

According to the graph theory, the studied problem may be modeled
using a directed graph G = (N, E), where N stands for the set of all nodes,
and E = {(i,j),i € N,j € N} denotes the set of all edges. Each edge (i,j) €
E involves a travel time tj,i € N,j € N (hours). Every node in the
considered graph is associated with a demand g;,i € N (lbs). Positive
demand of a node indicates linehaul (i.e., pick-up demand), whereas
negative demand implies backhaul (i.e., delivery demand). The set of all
nodes can be construed as follows: N = N U {0} U {m}, where N' =
N°*UN™UN°. Note that N° = {1,2,3,---,m!}, N® = {1,2,3,..-,m?}, and
N¢={1,2,3,-.-,m®} denote the sets of supplier, manufacturer, and
customer nodes, respectively. Node {0} denotes the depot node, and {m}
stands for the dummy depot node. The fleet of vehicles, all of which
carry a factory-in-a-box, is denoted by K = {1,2,3, .-, m*}. The vehicles
are heterogeneous and have a load carrying limit Qi, k € K (lbs), along
with a unit travel cost ¢}, k € K (USD/hour).

A real-world organization may manufacture various products.
However, a unique product is manufactured from specific raw materials
and semi-finished goods from specific suppliers and manufacturers,
respectively. Hence, this study dictates that if a vehicle is assigned to
serve a given customer (that can even be involved in manufacturing the
product demanded by the customer in case of factory-in-a-box
manufacturing), it first visits the associated suppliers and manufac-
turers, respectively. In order to ensure this relationship, two binary
parameters bfj?,i € N°,je N° and bg?“,i € N™ j € N° are employed. If
supplier i must be visited before serving customer j, then, the value of b§f
equals to 1 (=0 otherwise). Similarly, if manufacturer i must be visited
before serving customer j, then, the value of b equals to 1 (=0 other-
wise). Furthermore, in an attempt to ensure a specific order of visits, a
precedence level pl;,i € N is enforced for each node. Multiple nodes may
have the same precedence level. Nonetheless, nodes with decreasing
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precedence levels cannot be visited.

This study permits vehicle arrivals outside a (soft) time window |[a;,
bi],i € N (hours) at a node, in exchange of extra costs. Therefore, an early
arrival cost (¢{,i € N - USD/hour) is incurred for vehicle arrivals before
the time window begins at a node, and a late arrival cost (cl,i € N-USD/
hour) must be paid in case of vehicle arrivals after the time window ends
at a node. Furthermore, each node is associated with a processing time
(tp;,i € N - hours), which further involves a loading/unloading time
(tli,i € N - hours) and a manufacturing time (tm;,i € N — hours). In case
of the supplier nodes, processing times will be equal to loading times.
However, the location where the final products will be manufactured is
unknown. If the final products are manufactured at a manufacturer
location, then, the processing time at the manufacturer location will be
the sum of the loading time and the manufacturing time at that location,
and the processing time at the associated customer location will be the
unloading time at that location. This option is similar to conventional
manufacturing, as indicated earlier. On the other hand, if the final
products are manufactured at a customer location, then, the processing
time at the manufacturer location will be the loading time at that
location, and the processing time at the associated customer location
will be the sum of the unloading time and the manufacturing time at that
location. This option is a typical factory-in-a-box manufacturing process.

Note that the owner of the location where the final products are
manufactured, whether they are a manufacturer or a customer, will be
paid a compensation cost (c{,i € N — USD/hour) for manufacturing the
final products to compensate for the use of required resources. Fig. 2
illustrates two vehicle routes, where the route on the left side of the
depot resembles conventional manufacturing, and the route on the right
side of the depot signifies typical factory-in-a-box manufacturing. In the
conventional manufacturing route (i.e., the route on the left), the vehicle
spends a longer time at the manufacturer location, as the final products
are manufactured there. On the other hand, in the typical factory-in-a-
box manufacturing route (i.e., the route on the right), the vehicle
spends a shorter time at the manufacturer location, which is required
only for loading semi-finished goods into the vehicle. In the meantime,
the vehicle will have to spend a longer time at the customer location, as
the final products will be manufactured there. The decision regarding
the type of manufacturing (i.e., conventional manufacturing vs. factory-
in-a-box manufacturing) should be made considering different factors,
including the following: the time required to manufacture the products
at the manufacturer locations, the time required to manufacture the
products at the customer locations, the associated compensation costs,
the early and late arrival costs at nodes, as well as the vehicle routing
choices. For instance, it could be faster to manufacture the products at
the manufacturer location but will incur a higher compensation cost as
compared to manufacturing the products at the customer location. On
the other hand, manufacturing the products at the customer location can
be cheaper than manufacturing the products at the manufacturer loca-
tion but may take more time, which may not be viewed as desirable from
the customer perspective. Furthermore, time savings at the manufac-
turer nodes in case of factory-in-a-box manufacturing can be used to
reduce or even prevent time window violations at subsequent nodes
during the journey of a given vehicle.

The goal of this study involves minimizing four cost components,
which include: (1) the total travel cost; (2) the total early arrival cost; (3)
the total late arrival cost; and (4) the total compensation cost. If routes
are planned to minimize the total travel time, then, they might incur
significant violations of the previously negotiated time windows at the
nodes as well as high compensation cost. On the other hand, a route
could incur insignificant time window violations at the nodes as well as
low compensation cost; however, the associated travel time might be
substantial. Therefore, this study groups the cost components into two
potentially conflicting objective functions. One objective function is
associated with traversing the edges of transportation network by the
available vehicles and aims to minimize the total travel cost. On the
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other hand, the second objective function is associated with operations
at the nodes of transportation network and aims to minimize the sum of
the total early arrival cost, the total late arrival cost, and the total
compensation cost.

4. Mathematical model
This section of the manuscript presents a mathematical formulation

for the Multi-Objective Factory-in-a-Box Routing (MOFIBR) model
along with the adopted nomenclature.

4.1. Nomenclature

Sets

set of supplier nodes (nodes)

set of manufacturer nodes (nodes)

set of customer nodes (nodes)

set of supplier, manufacturer, and customer nodes (nodes)
set of all nodes (nodes)

set of edges (edges)

N ={1,2,3,--,m'}
N™ ={1,2,3,...,m?}
N¢ ={1,2,3,--,m®}
N =N UN"UN°
N =N u{0}u{m}
E ={(i,j),i €N,
Jj €N}
K ={1,2,3,--,m*}
Decision Variable
xjx € BYie N,j €N,
keK
Auxiliary Variables
zx EBYie N ,keK
yx ER'VieNkeK
sx € R"Vie Nk e K
ex € R'Vie Nke K
Iy e R'Vie NNke K

set of vehicles (vehicles)

=1 if vehicle k traverses edge (i,j) (=0 otherwise)

=1 if vehicle k visits node i (=0 otherwise)

current load on vehicle k upon arrival at node i (Ibs)
service start time at node i by vehicle k (hours)
early arrival time at node i by vehicle k (hours)

late arrival time at node i by vehicle k (hours)

tp; e R'VieN processing time at node i (hours)

mF; € BYie N =1 if the final production is done at manufacturer node i
(=0 otherwise)

cF;e BYie N =1 if the final production is done at customer node i (=0
otherwise)

TTC € RT total travel cost (USD)

TEAC € R" total early arrival cost (USD)

TLAC € R* total late arrival cost (USD)

TCC € R* total compensation cost (USD)

F' e R* total cost associated with traversing the edges of the
network (USD)

F? e Rt total cost associated with visiting the nodes of the network
(USD)

Parameters

meN total number of nodes (nodes)

m! € N number of supplier nodes (nodes)

m? e N number of manufacturer nodes (nodes)

m® e N number of customer nodes (nodes)

m* e N maximum number of vehicles (vehicles)

Q€ R'VkeK load carrying limit of vehicle k (Ibs)

g€ RVie N demand at node i (Ibs)

aeRYVieN time window start at node i (hours)

bieR'VieN time window end at node i (hours)

tj € R'VieNjeN time to travel from node i to node j (hours)

th e R"Vie N loading/unloading time at node i (hours)

tm; e R'Vie N manufacturing time at node i (hours)

plieNVie N precedence level of node i (precedence level)

binary relationship parameter denoting if supplier i must be
visited before visiting customer j

binary relationship parameter denoting if manufacturer i
must be visited before visiting customer j

unit travel cost of vehicle k (USD/hour)

bif € Bvie N°,j € N°
bg.“e[BvieNm,jeN‘

¢ eR'VkeK

¢ e R*Yie N unit early arrival cost at node i (USD/hour)
c% cRYVieN unit late arrival cost at node i (USD/hour)

c € R*Yie N unit compensation cost at node i (USD/hour)
MeR" large positive number

4.2. Model formulation

The mathematical formulation for the MOFIBR optimization model
with two conflicting objective functions can be presented as follows.
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minF' = TTC (@]
min F? = TEAC 4+ TLAC +TCC @
TTC = ZZZthijxijk 3
iEN jeN keK
TEAC =) clex (4
ieN keK
TLAC =) > "clly (%)
iEN kek
TCC = citm(mF; + cF)) (6)
ieN

The objective function (1) aims to minimize the total travel cost,
while the objective function (2) aims to minimize the sum of the total
early arrival cost, the total late arrival cost, and the total compensation
cost. Constraints (3) to (6) quantify the total travel cost, the total early
arrival cost, the total late arrival cost, and the total compensation cost,
respectively. Note that the unit cost components c}, c¢, c., and c¢ play the
role of normalizing coefficients within the MOFIBR mathematical
model. Relevant stakeholders may differently perceive the total travel
time, the total early arrival time, the total late arrival time, and the total
manufacturing time (e.g., stakeholders can be more sensitive to the total
manufacturing time rather than the total early arrival time from the
operational perspective). Therefore, it may not be appropriate to sum
the total early arrival time, the total late arrival time, and the total
manufacturing time without application of normalizing coefficients.

The MOFIBR mathematical model involves a number of operational
constraints to incorporate various features of factory-in-a-box
manufacturing within the framework of the VRP. In particular, a total
of four groups of constraints are included in this model. The first group
of constraints [constraints (7) to (12)] applies some basic routing rules
of the MOFIBR mathematical model. Constraints (7) ensure that routes
are not generated between one single node. Constraints (8) indicate that
each node, except the depot and the dummy depot, is served by a single
vehicle and only once. Constraints (9) imply that each node, except the
depot and the dummy depot, is visited to and from by the same vehicle.
Constraints (10) guarantee that each vehicle starts its journey from the
depot. Constraints (11) and (12) ensure that a vehicle cannot go to the
dummy depot directly after serving a supplier or a manufacturer,
respectively.

X =0Vie NkeK @)
3> xp=1VenN ®)
ieN kekK

D> xp=> xuVieN kek 9
ieN ieN

D xp=1vi=0kek a0
JEN

D xp=0Yj=mkek an
ieN*®

Zx,-jk =0Vj=mkeckK 12)
iEN™

The second group of constraints [constraints (13) and (14)] regulates
the current loads on the vehicles. Constraints (13) guarantee that a ve-
hicle’s load carrying limit is never exceeded throughout a journey of that
vehicle. Constraints (14) ensure that when a vehicle traverses edge (i,j),
the sum of the current load on the vehicle upon arrival at node i and the
demand at node i should not exceed the current load on the vehicle upon
arrival at node j.
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Y SO Vie N ke K 13)

Yu+qi—M(1—xpu) <y, VieNjeNkek a4

The third group of constraints [constraints (15) to (22)] deals with
the time components of the MOFIBR mathematical model. Constraints
(15) indicate that when a vehicle traverses edge (i,j), the sum of the
service start time at node i, the processing time at node i, and the time to
travel from node i to node j should not exceed the service start time at
node j. Constraints (16) and (17) compute the early and late arrival
times, respectively. Constraints (18) to (22) estimate the processing time
at each node.

Si+1p;+1;—M(1—x) <sgVieN,jEN, k€K (15)
e >a;—sg—M(1—zx)Vie Nke K (16)
li >su—bi—M(1—z4)Vie Nyke K an
tp,=0Yi=0 18)
tp,=0Vi=m 19
tp, =t;Vie N’ (20)
tp; = tl; + tmmF,;¥i € N" 21
tp; = tl; +tm;cF,; Vi € N° (22)

The fourth group of constraints [constraints (23) to (30)] satisfies
various production requirements. Constraints (23) to (26) indicate that
the final production can be done either at a manufacturer node or the
associated customer node. Constraints (27) check if a vehicle has served
a supplier, manufacturer, or customer node. Constraints (28) and (29)
indicate that if a vehicle is assigned to serve a given customer, it first
visits the associated suppliers and manufacturers of that particular
customer, respectively. Constraints (30) indicate that the nodes with
decreasing precedence levels cannot be visited by a vehicle.

mF;+ bicF; < bevie N” (23)

JENE JjENE
mF;+ bcF; > 1Vie N" 24

JENC
> by mF;+cF; <y bV € NG (25)
ieN™ ieN™
> by mF;+cF; > 1V € N° (26)
ienm
= xpVieN kek (27)

JeN
s D Zi .
Zx,»jkzz—“_ijeN‘,keK (28)
ieN EieN‘ btj
DT

S wp= ONECLAL P Vje N keK (29)
ieN E[EN’” bij
pli—M(1—xu) <pl,VieN,jeNkekK (30)

5. Solution approach

The solution approach employed by this study is presented in this
section of the manuscript. Since MOFIBR has multiple objective func-
tions, it is associated with a set of non-dominated solutions (i.e., Pareto
Front — PF), instead of a single solution. In order to effectively solve
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Fig. 3. Main steps of the developed HMOEA.

large-size problem instances of MOFIBR, a customized Hybrid Multi-
Objective Evolutionary Algorithm (HMOEA) was developed that relies
on evolutionary operators for route generation and an exact optimiza-
tion approach to optimize the locations of the final production. The main
steps of HMOEA are outlined in Fig. 3. At the start, the algorithmic
parameters along with the input data for the MOFIBR mathematical
model are provided to HMOEA. Then, the locations of the final pro-
duction are optimized with an exact optimization approach. From this
point onward, the evolutionary algorithmic steps are executed. At first,
HMOEA generates the initial population, and all the chromosomes of the
initial population are evaluated. Then, the PF for the initial population is
determined. Afterwards, HMOEA enters a loop, which continues until
any of the stopping criteria is met. When a stopping criterion is met, the
best PF is returned. The stopping criteria in this study were defined as:
(1) a pre-defined number of generations; and (2) a specified consecutive
number of generations during which the best PF does not change [36].

As for the next step inside the loop, parent chromosomes are selected
using the Boltzmann selection. Then, the cycle crossover and a custom
mutation operator are performed to produce and mutate offspring
chromosomes. A repair operator is applied to infeasible offspring chro-
mosomes after crossover and mutation. Afterwards, all the offspring
chromosomes are evaluated, and survivor selection is performed. In
order to select survivors, the ranking selection is applied. Furthermore,
as a part of the survivor selection, the population is injected with the
solutions belonging to the best PF discovered along with the two solu-
tions with the best fitness functions (as MOFIBR has two objective
functions) found from all of the performed generations (i.e., the elitist
strategy). Then, the surviving population is evaluated. In the next step,
the PF for the current population is determined and compared with the

best PF discovered. The best PF is updated as the superior of the two
compared PFs. The loop is continued until any stopping criterion is met.

5.1. Chromosome representation

A 2-dimensional integer chromosome representation has been
selected for HMOEA, where the first row is used to denote vehicles and
the second row represents the order of nodes to be visited. A chromo-
some representation with 2 vehicles and 14 nodes is shown in Fig. 4.
Based on Fig. 4, the order of visits for vehicle “1” is nodes “4”, “5”, “7”,
“12”, “6”, “97, and “13”. Moreover, the order of visits for vehicle “2” is
nodes “37, “27, “10”, “8”, and “11”. Nodes “2”, “3”, “4”, “5”, and “6” are
the supplier nodes, whereas nodes “7”, “8”, “9”, and “10” are the
manufacturer nodes. Furthermore, nodes “11”, “12”, and “13” are the
customer nodes. Note that nodes “1” and “14” represent the depot and
the dummy depot, respectively, and do not appear in the chromosome
(even though each vehicle is deployed from the depot). The proposed
solution algorithm was specifically customized for the MOFIBR opti-
mization model. In particular, the adopted solution representation al-
lows generating feasible solutions for the MOFIBR optimization model
that clearly show the assignment of the vehicles to the nodes of the
transportation network and the order in which the nodes should be
visited by the assigned vehicles.

5.2. Initial population generation

The initial population generation comprises two steps. At first, a
hybridization procedure within the developed algorithm (i.e., optimi-
zation of the locations of the final production with an exact optimization

—
—

Vehicles — 1 1 1

1 1 2 2 2 2 2

Nodes — 4 5 7 12 6

9 13 | 3 2 10 | 8 11

EI Suppliers

Manufacturers

Customers

Fig. 4. The chromosome representation.
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Fig. 5. Sample binary data structures denoting the pre-specified suppliers and manufacturers for each customer.

approach) is performed. Then, a stochastic operator is deployed for the
chromosome generation (i.e., generation of routes for vehicles).

5.2.1. Optimizing locations of final production with exact optimization

In order to obtain the locations of the final production, the Final
Production Location Identification Problem (FPLIP) should be solved. A
mathematical formulation of the FPLIP decision problem, which is
essentially a relaxation of the original MOFIBR model, can be formu-
lated as follows:

Final Production Location Identification Problem (FPLIP):

TCC = Zc§'tm;(mF,- +cF;)

ieN

(36)

The objective function (31) of FPLIP is to minimize the total
compensation cost. Constraints (32) to (35) indicate that the final pro-
duction can be done either at a manufacturer node or the associated
customer node, while constraint (36) quantifies the total compensation
cost. Due to fairly low computational complexity, the FPLIP decision
problem can be optimally solved in a reasonable computational time
using exact mixed-integer programming methods (e.g., CPLEX). The
total compensation cost and the locations of the final production are
obtained from the solution of this model. Then, the processing time at
each node (#;,i € N — hours) can be estimated from the following
equation:

tp; = tl; + tm;(mF; + cF;)Vi € N 37)

Note that the proposed hybridization procedure optimizes the cost
that is paid for manufacturing the final product either at a manufacturer
location or at a customer location (i.e., the total compensation cost —
TCC), which serves as a component of the objective function F2.
Therefore, the deployment of the proposed hybridization procedure will
not affect the objective function F'. In other words, optimization of the
location selection for the final production will not affect the total travel
time of vehicles traversing the edges of the transportation network and

2 2

min (TCC) (€20)]
Subject to:
mF;+ bycF; < brVie N” (32)
jene jene
mF;+ bycF; > 1Vi € N" (33)
jene
> brmF; +cF; <y bV € N° (34)
ieNm ieN™
> bmF; +cF; > 1Vj € N° (35)
iEN™
2 2
3 2

10 8 11

(a) Fraction of a chromosome for customer “1” as well as its suppliers and customers
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(b) State of a chromosome after generating a route for customer “2”
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(c) State of a chromosome after generating a route for customer “3”

Fig. 6. Chromosome generation.
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Fig. 7. Cycle crossover.

the total number of vehicles deployed.

5.2.2. Chromosome generation

Fig. 5 shows an illustrative example of the binary data structures that
can be potentially used for the supplier-to-customer relationship (bjf,i €
N°,j € N°) and the manufacturer-to-customer relationship (b, i € N™,
Jj € N°), where the products that were previously requested by customer
“1” (i.e., node “11”) require the raw materials from suppliers “1” and “2”
(i.e., nodes “2” and “3”, respectively) as well as the semi-finished
products from manufacturers “2” and “4” (i.e., nodes “8” and “107”,
respectively). Based on the number of vehicles, a vehicle is randomly
assigned to a customer, and the same vehicle is assigned to the cus-
tomer’s suppliers and manufacturers. In case of customer “1” (i.e., node
“11”), vehicle “2” is assigned randomly. After determining the suppliers
for a customer, the order of those suppliers is randomly permuted to
increase the population diversity. Thus, the order of visits for customer
“1” suppliers is randomly permuted to nodes “3” and then “2”. The order
of visits for manufacturers is generated in a similar fashion (i.e., nodes
“10” and then “8”). Therefore, the order of visits of nodes for customer
“1” (i.e., node “117) is “37, “2”, “10”, “8”, and “11”. The construction of
the chromosome is started after this step. The top row indicates the
index of the vehicle serving the group of nodes (e.g., vehicle “2” for the
group of nodes corresponding to customer “1”). The bottom row is filled
with the order of node visits for that particular group. The fraction of the
chromosome for customer “1” along with its suppliers and manufac-
turers is depicted by Fig. 6(a).

The same steps are repeated for the rest of customers. However, the
respective fractions of the chromosome are appended to the right side of
the previously constructed chromosome. Fig. 6(b) illustrates the state of
the chromosome after generating a route for customer “2” (i.e., node
“12”), which is randomly assigned to vehicle “1”. Similarly, Fig. 6(c)
illustrates the state of the chromosome after generating a route for
customer “3” (i.e., node “137). Finally, the nodes are sorted based on the
assigned vehicles (see Fig. 4). All the other chromosomes in the popu-
lation are also generated following the aforementioned steps.

5.3. Fitness function

The MOFIBR model has two objective functions: F! and F2, which
are reflected by two fitness functions. The fitness values (Fitgg and Fitfg)
of chromosome c, belonging to the set of chromosomes Chrm = {1, -,
PopSize}, in generation g, which belongs to the set of generations Gen =
{1,---,gens}, are computed based on the following equations:

Fit}, = F} +ad,Vc € Chrm,g € Gen (38)

Fit}, = F%,+ad Vc € Chrm, g € Gen 39)

Here, a is the penalty coefficient, and 9 is the cumulative violation
of the vehicular load carrying limits for chromosome c in generation g,
which can be estimated from the load carrying limit (Q,) and the current
load (yx) of vehicle k as follows:

1 1 1 1 2 2 2
7 6 5 12 9 4 13
Offspring 2
9 = ZZZmax{O; (¥ — Ox)xj Ve € Chrm, g € Gen (40)

i€EN jeN keK

Note that for each chromosome, the selection operators of HMOEA
use the sum of normalized fitness values instead of two fitness values.

Algorithm 1 Boltzmann Selection

In: Pop, — population in generation g Fitg — sum of normalized fitness values of
chromosomes in generation g; T° — initial temperature; dT - temperature interval; NC
— normalizing coefficient
Out: Parentsy — parent chromosomes in generation g
1: Parents; = @ < Initialization
2: T = max{1; T° —dT e g} < Determine the temperature
3: k =1 < Choose the first chromosome from the population

4: while }Parentng‘Popg‘ do
. ( —Fity,
“P\TeNCs mean{Fit, }

|Pop, | oxp —Fit,
a1 T o NC o mean{Fit, }
chosen chromosome
6: if P, > rand{0;1} then
7: Parents, = Parentsy U Popg < Assign the chosen chromosome as a parent
8: end if
9 k=ke min{l: abs (k - ‘Popg‘ ) } +1 < Choose the next chromosome from the

< Estimate selection probability of the

population
10: end while
11: return Parentsg

5.4. Parent selection

The Boltzmann selection was applied in this study to select the parent
chromosomes that are used to produce the offspring chromosomes. The
Boltzmann selection was chosen due to its capability to alter the selec-
tion pressure throughout different generations. At earlier generations,
low-quality chromosomes could survive since the selection pressure is
reduced by using a high temperature. On the other hand, at later gen-
erations, only high-quality chromosomes could survive since the selec-
tion pressure is increased by using a low temperature. The steps of the
Boltzmann selection are outlined in Algorithm 1 [36]. In step 2, the
minimum value of the temperature (T) is assumed to be 1, as the
MOFIBR mathematical model has minimization objective functions. For
the same reason, a (-)ve sign is used to estimate the selection probability
(Py) of chromosome k in step 5. The Boltzmann selection iteratively
selects chromosomes depending on the assigned temperature in steps
4-10 until the required number of parent chromosomes have been
selected.

5.5. Crossover and mutation operators

Crossover and mutation operators are generally used within Evolu-
tionary Algorithms for exploration and exploitation of the search space,
respectively (i.e., during diversification and intensification phases) [36].
The cycle crossover operator was adopted in this study to produce
offspring chromosomes in order to explore the search space. An illus-
trative example of the cycle crossover is shown in Fig. 7. Based on the
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crossover probability, a pair of randomly selected parent chromosomes
is used for crossover. The first allele (i.e., value) of the first parent
chromosome (i.e., node “4”) is appended to the cycle, and the first allele
of the second parent chromosome (i.e., node “7”) is identified. Then, the
locus (i.e., location) of the gene of the first parent chromosome, which
contains node “7” (i.e., locus “3”) is determined, and node “7” is
appended to the cycle. Afterwards, the allele of locus “3” of the second
parent chromosome is identified (i.e., node “5”). Then, the locus of the
gene of the first parent chromosome, which contains node “5” (i.e., locus
“6”) is determined, and node “5” is appended to the cycle. Afterwards,
the allele of locus “6” of the second parent chromosome is identified (i.
e., node “4”). However, node “4” is already included in the cycle, and so,
the cycle determination process is terminated. Therefore, the cycle
comprises nodes “4”, “7”, and “5”. The genes of the alleles that match the
cycle are copied to the first offspring from the first parent, while the rest
of the genes are adopted from the second parent. Similarly, the genes of
the alleles that match the cycle are copied to the second offspring from
the second parent, while the rest of the genes are adopted from the first
parent. The cycle crossover would be effective in changing the order of
visited nodes for a vehicle as well as altering the assignment of vehicles
to nodes.

In order to efficiently exploit the search space, a custom mutation
operator was employed by this study to mutate offspring chromosomes.
Under this custom mutation operator, a row of a given offspring chro-
mosome is randomly selected (from the top and bottom rows), which
will undergo mutation. Then, either inversion mutation or swap muta-
tion is randomly chosen, and the chosen mutation is applied to the
selected row (see Fig. 8, where inversion mutation was applied for nodes
“127, “3”, and “2”, whereas swap mutation was applied for vehicles “1”
and “2”). The same approach is applied for each chromosome of the
population.

5.6. Repair operator

After crossover and mutation, a repair operator is applied to
offspring chromosomes, in case of infeasibility. Fig. 9 presents an
example of the application of the repair operator. Here, vehicle “1”
serves customer nodes “12” and then “13”, while vehicle “2” serves

customer node “11”. Vehicle “3” serves two nodes; however, they are
not customer nodes. The route of vehicle “1” is infeasible, based on the
supplier-to-customer relationships and as well as the manufacturer-to-
customer relationships shown in Fig. 5. Hence, the route of vehicle “1”
is reconstructed by including (permutations of) the supplier and
manufacturer nodes of customer node “12” and then including (per-
mutations of) the supplier and manufacturer nodes of customer node
“13”. The route of vehicle “2” is also infeasible, and so, it is recon-
structed in the same manner. Since vehicle “3” does not serve any
customer nodes, its route is removed from the chromosome. Finally, the
nodes are sorted based on the assigned vehicles (i.e., vehicle “1” appears
before vehicle “2”). The developed repair operator is applied to every
infeasible chromosome in the HMOEA population.

Algorithm 2 Ranking Selection

In: Off, - offspring chromosomes in generation g Fity — sum of normalized fitness

est

values of offspring chromosomes in generation g; P. - chromosomes belonging to

the best PF discovered from all of the performed generations; cFi' _ chromosome
with the best value of the first fitness function found from all of the performed

generations; cFi® _ chromosome with the best value of the second fitness function
found from all of the performed generations
Out: Survivorsg — survivor chromosomes in generation g

1: Survivors, = PFP®t U ¢fit' U cFi* 4 Initialization

2: 0 g“"d = Off, U Off, < Create the list of candidate chromosomes

3: Fit{’é“"d = Fit, U Fit, < For each candidate chromosome, assign the sum of
normalized fitness values

4: while |Surviv0rsg‘<)0ffg‘ do

5 ¢ = argmm{Fitg""d} < Locate the fittest chromosome

6:  Survivors, = Survivorsg U {O) Ci‘g,'d} < Assign the fittest chromosome as a survivor
7: Off;“"‘i = Off;‘"‘d —{off Ci’;d} < Update the list of candidate chromosomes
8

9

: end while
: return Survivors,

5.7. Survivor selection

This study applied the ranking selection to choose offspring chro-
mosomes that will survive in the current generation and be transferred
to the following generation, where they could become parent
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Fig. 10. PF construction (a) and evaluation of PFs (b).

chromosomes. The steps of the ranking selection are outlined in Algo-
rithm 2 [36,37]. In step 1, the ranking selection procedure ensures that
the chromosomes belonging to the best PF discovered along with the two
chromosomes with the best fitness functions (as MOFIBR has two
objective functions) found from all of the previous generations will be
selected as survivors (i.e., the elitist strategy). Note that in step 2, two
copies of the offspring chromosomes are used to develop a pool of the
candidate chromosomes for the survivor selection. More copies could be
used; however, that would lead to a reduction in the selection pressure,
which may not be desirable (especially, at the beginning of the search
process). In step 3, the sum of normalized fitness values is assigned to
each candidate chromosome. Then, the required number of fittest
chromosomes are selected from the pool of candidate chromosomes in
steps 4-8 that will be further used as surviving chromosomes for the
following generation.

5.8. PF construction and evaluation

In order to construct the PF for the population in a given generation,
the non-dominated solutions (i.e., chromosomes) are separated from the
dominated solutions. Here, the dominated solutions indicate the ones,
whose both fitness values (i.e., Fitgg and Fitfg) are worse than at least one
of the considered solutions — see Fig. 10(a). In each generation, two PFs
are compared, and the superior of the compared PFs is considered as the
best PF onwards. For the comparison of two PFs, this study estimates the
surface area beneath normalized objective/fitness functions [38,39]. At
first, the fitness functions of the PFs are normalized, such that they range
from O to 1. Then, the points of each PF are joined. Afterwards, the
surface area under each PF is computed. The PF with the smaller surface
area is considered as the superior one. An illustrative example of the
comparison between two PFs is shown in Fig. 10(b). Since the surface
area under the second PF is smaller, the second PF is considered superior
to the first PF.

6. Numerical experiments

A set of numerical experiments are presented in this section to
demonstrate the applicability and performance of the MOFIBR mathe-
matical model and the developed HMOEA algorithm. Several other
metaheuristic algorithms were employed for comparison with HMOEA.
In particular, Non-Dominated Sorting Genetic Algorithm II [40], which
is a well-known multi-objective optimization algorithm, and multi-

11

objective versions of Simulated Annealing [41], Tabu Search [42], and
Variable Neighborhood Search [43] were employed to evaluate the
HMOEA performance. Each of these algorithms was hybridized with an
exact optimization approach to optimize the locations of the final pro-
duction (see section 5.2.1 for details). Hence, the hybridized versions of
the algorithms were named as Hybrid Non-Dominated Sorting Genetic
Algorithm II (HNSGA-II), Hybrid Multi-Objective Simulated Annealing
(HMOSA), Hybrid Multi-Objective Tabu Search (HMOTS), and Hybrid
Multi-Objective Variable Neighborhood Search (HMOVNS), respec-
tively. However, as a part of the numerical experiments, all the hy-
bridized algorithms will be compared against their non-hybridized
versions (as will be discussed more in detail in section 6.3.1 of the
manuscript).

Small-size problem instances were generated to contrast the perfor-
mances of HMOEA, HMOSA, HMOTS, HMOVNS, and HNSGA-II with
that of the e-constraint method (ECON), which is a well-known exact
optimization approach for multi-objective optimization problems. A
thorough description of ECON can be found in Mavrotas [44] and
Dulebenets [45]. The desired number of PF points was set to 5 for ECON,
while the maximum CPU time was set to 24 min for generating each PF
point. Thus, the overall CPU time limit was 2 h for ECON. Furthermore,
large-size problem instances were generated to select the superior al-
gorithm among HMOEA, HMOSA, HMOTS, HMOVNS, and HNSGA-IIL.
The rationale behind conducting the experiments for two sets of in-
stances consists in the fact that the exact optimization method (i.e.,
ECON) might be able to produce optimal PFs only for the small-size
instances due to the computational complexity of the MOFIBR optimi-
zation model. However, for the large-size problem instances where the
ECON method is not able to obtain the optimal PFs, the developed
HMOEA algorithm was evaluated based on the comparative analysis
against the alternative metaheuristic algorithms.

In this study, ECON was executed with CPLEX (the target optimality
gap was set to 1% at each iteration of ECON), and HMOEA, HMOSA,
HMOTS, HMOVNS, and HNSGA-II were encoded in MATLAB (version
2016a). The same CPLEX settings were used to solve the FPLIP mathe-
matical model at the initial population generation stage (see section
5.2.1 for details). The numerical experiments were conducted on an Intel
(R) Core™ j7-7700 K processor with a 32 GB RAM. The following sec-
tions of the manuscript elaborate on the case study that was considered
during the experiments, tuning of the parameters for the considered
algorithms, evaluation of the considered algorithms in terms of different
performance indicators, and managerial insights from the solutions
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Table 1
The parameter values adopted for the case study.
Parameter Value
Number of supplier nodes (nodes): m! € N [3;80]
Number of manufacturer nodes (nodes): m? € N [3;80]
Number of customer nodes (nodes): m®> € N [3;80]
Maximum number of vehicles (vehicles): m* € N 20
Load carrying limit of vehicle k (Ibs): Qx € R*Vk € K U[6,000; 6,300]
Demand at supplier node i (Ibs): g; € R"Vi € N° U[280; 420]
Demand at manufacturer node i (Ibs): q; € R*Vi e N" U[1,320;1,980]
Demand at customer node i (Ibs): g; € R™Vi € N° —U[1,600; 2,
400]
Duration of time window at node i (hours): [b; — q;] € R"Vie N 10
Time to travel from node i to node j (hours): t; € R"Vie N,j € N’ U[5;10]
Loading/unloading time at node i (hours): tl; € R*Vi € N’ U[1.5;2.5]
Manufacturing time at manufacturer/customer node i (hours): U4;5]
tm; € RYVi € N UN°®
Precedence level of node i (precedence level): pl; € NVi € N [0; 4]
Binary relationship parameter denoting if supplier i must be U0;1]
visited before visiting customer j: b € BVi € N*,j € N°
Binary relationship parameter denoting if manufacturer i must be ~ U[0; 1]
visited before visiting customer j: b € B¥i € N™,j € N°
Unit travel cost of vehicle k (USD/hour): ¢} € R*vk € K U[900; 950]
Unit early arrival cost at node i (USD/hour): ¢¢ € R*Vi € N’ U[0.1;100]
Unit late arrival cost at node i (USD/hour): ¢} € R*Vi € N’ U[0.1;100]
Unit compensation cost at manufacturer/customer node i (USD/ U[5;10]
hour): ¢ € RTVi € N" UN®
Large positive number: M € R* 1,000,000

returned by the most promising metaheuristic algorithm.
6.1. Case study

A case study was performed for a vaccination project involving
factory-in-a-box manufacturing along with conventional manufacturing,
where raw products (i.e., seeding liquids) were picked up from sup-
pliers. Semi-finished products (i.e., vials) could be picked up from
manufacturers for factory-in-a-box manufacturing, or the final products
(i.e., vaccines) could be directly manufactured at manufacturer loca-
tions (i.e., conventional manufacturing). The vaccination projects, as the
one considered in the present study, play a critical role for many
geographical locations around the globe due to devastating impacts of
the COVID-19 pandemic [6]. The parameter values adopted for the case
study are shown in Table 1 [10]. The maximum number of supplier/
manufacturer/customer nodes was set to 17 for small-size problem in-
stances and 80 for large-size problem instances. Throughout the nu-
merical experiments, a maximum of 20 vehicles were allowed for
utilization, even though all of them might not be used.

6.2. Parameter tuning

Parameter tuning is essential to ensure adequate performance of
metaheuristics [46-48]. A parameter tuning analysis was performed to
select the appropriate parameter values for HMOEA, HMOSA, HMOTS,
HMOVNS, and HNSGA-II using a total of 5 problem instances generated
based on the data reported in Table 1. The 3* factorial design method
was employed, where an algorithm had k parameters, and each
parameter was tested with 3 candidate values. Table 2 underlines the
parameter tuning analysis results for the considered hybrid multi-
objective algorithms. HMOEA has a number of parameters, including
the population size (PopSize), initial temperature (T°), temperature in-
terval (dT), and normalizing coefficient (NC) for Boltzmann selection,
crossover probability (¢¢), mutation probability (¢™), maximum number
of generations the algorithm is allowed to run for (MaxGens), and
maximum consecutive number of generations during which the best PF
does not change (ConGens). The best values of these parameters were
found to be 200, 1,000, 1.00, 0.10, 0.25, 0.10, 500, and 100, respec-
tively. Unlike HMOEA, HMOSA, HMOTS, HMOVNS, and HNSGA-II have

12

Table 2
Parameter tuning analysis for the hybrid multi-objective algorithms.
Algorithm  Parameter Candidate Best
Values Value
HMOEA Population size (PopSize) [50; 100; 200] 200
Initial temperature (19 [500; 1,000; 1,000
2,000]
Temperature interval (dT) [0.25; 0.50; 1.00
1.00]
Normalizing coefficient (NC) [0.10; 0.15; 0.10
0.20]
Crossover probability (¢¢) [0.20; 0.25; 0.25
0.30]
Mutation probability (¢™) [0.02; 0.05; 0.10
0.10]
Maximum number of generations [250; 500; 500
(MaxGens) 1,000]
Maximum consecutive number of [100; 250; 100
generations during which the best PF 500]
does not change (ConGens)
HMOSA Population size (PopSize) [50; 100; 200] 100
Initial temperature (T°) [500; 1,000; 1,000
2,000]
Temperature interval (dT) [0.25; 0.50; 1.00
1.00]
Normalizing coefficient (NC) [0.10; 0.15; 0.10
0.20]
Maximum number of iterations [500; 1,000; 1,000
(MaxlIters) 2,000]
Maximum consecutive number of [100; 250; 100
iterations during which the best PF does  500]
not change (Conlters)
HMOTS Population size (PopSize) [50; 100; 200] 100
Maximum number of iterations [500; 1,000; 1,000
(MaxTIters) 2,000]
Maximum consecutive number of [100; 250; 100
iterations during which the best PF does ~ 500]
not change (Conlters)
HMOVNS Population size (PopSize) [50; 100; 200] 100
Maximum number of iterations [500; 1,000; 1,000
(MaxTIters) 2,000]
Maximum consecutive number of [100; 250; 100
iterations during which the best PF does ~ 500]
not change (Conlters)
HNSGA-II Population size (PopSize) [50; 100; 200] 200
Crossover probability (¢¢) [0.20; 0.25; 0.25
0.30]
Mutation probability (6™) [0.02; 0.05; 0.10
0.10]
Maximum number of generations [250; 500; 500
(MaxGens) 1,000]
Maximum consecutive number of [100; 250; 100
generations during which the best PF 500]

does not change (ConGens)

fewer parameters, and their best values are reported in Table 2.
6.3. Algorithmic performance evaluation

A total of 15 small-size problem instances as well as 15 large-size
problem instances were developed to assess the performance of the so-
lution algorithms. For small-size problem instances, the number of
supplier/manufacturer/customer nodes was increased from 3 in
instance S-1 to 17 in instance S-15, with an increment of 1 node per
small-size problem instance. On the other hand, for large-size problem
instances, the number of supplier/manufacturer/customer nodes was
increased from 52 in instance L-1 to 80 in instance L-15, with an
increment of 2 nodes per large-size problem instance. A detailed eval-
uation of algorithmic performances for the aforementioned problem
instances is exhibited in this section of the manuscript. Since MOFIBR is
a multi-objective optimization model, several multi-objective optimi-
zation performance indicators were examined for the candidate solution
algorithms, including the following:

Quality Metric (QM): This metric combines the PF points obtained
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Table 3

Mean of F? for the PFs returned by the hybridized and non-hybridized versions of the metaheuristic algorithms.
Problem HMOEA MOEA HMOSA MOSA HMOTS MOTS HMOVNS MOVNS HNSGA-II NSGA-II
Instance (USD) (USD) (USD) (USD) (USD) (USD) (USD) (USD) (USD) (USD)
S-1 68.39 71.08 68.66 71.35 68.44 71.13 68.64 71.33 68.50 71.19
S-2 91.48 95.61 91.48 95.62 91.50 95.63 91.52 95.65 91.48 95.61
S-3 115.25 119.38 115.54 119.67 115.83 119.97 115.37 119.50 115.22 119.35
S-4 138.13 143.74 137.90 143.51 138.03 143.63 138.21 143.81 137.84 143.44
S-5 163.00 168.68 163.07 168.74 162.70 168.38 163.05 168.72 163.18 168.86
S-6 184.77 191.93 186.20 193.35 185.45 192.53 186.51 193.66 186.67 193.82
S-7 209.01 216.63 209.64 217.26 208.72 216.34 208.54 215.95 209.04 216.52
S-8 231.00 241.13 233.02 243.48 234.26 244.73 232.79 243.32 234.46 244.99
S-9 255.08 266.20 255.94 266.67 256.62 267.01 255.51 266.70 254.99 266.18
S-10 277.14 288.30 281.18 292.30 279.92 290.90 280.84 292.00 279.34 290.57
§-11 300.94 312.33 307.14 319.13 303.46 314.11 306.00 317.10 308.17 319.51
S-12 325.91 338.87 327.48 339.67 335.16 346.58 331.27 343.27 333.89 345.95
S-13 351.09 363.12 357.12 370.79 357.89 370.55 360.80 373.44 358.64 370.30
S-14 375.80 389.33 376.73 389.33 378.10 391.20 379.60 393.52 384.27 397.52
s-15 398.16 411.63 400.64 414.75 406.29 419.71 403.89 418.86 398.94 412.51
L-1 1,327.76 1,361.29 1,427.50 1,460.56 1,405.80 1,439.32 1,385.96 1,418.32 1,362.30 1,396.08
L-2 1,367.89 1,400.95 1,422.21 1,455.77 1,471.07 1,505.30 1,446.15 1,481.61 1,395.84 1,428.84
L3 1,445.88 1,480.39 1,495.80 1,531.01 1,522.55 1,557.99 1,522.81 1,556.00 1,479.32 1,514.03
L-4 1,488.91 1,524.38 1,590.96 1,626.95 1,530.64 1,566.16 1,607.51 1,642.50 1,525.82 1,561.64
L-5 1,558.56 1,595.07 1,669.92 1,706.80 1,650.19 1,687.96 1,658.62 1,695.52 1,564.09 1,601.89
L-6 1,606.15 1,646.40 1,753.14 1,790.99 1,748.40 1,786.05 1,697.07 1,733.87 1,630.81 1,668.66
L7 1,655.39 1,694.36 1,763.34 1,802.35 1,799.16 1,837.67 1,793.62 1,830.76 1,677.62 1,715.70
L-8 1,756.21 1,795.97 1,832.86 1,872.24 1,876.97 1,917.55 1,902.72 1,942.53 1,802.07 1,843.43
L-9 1,773.41 1,814.52 1,916.75 1,958.67 1,899.27 1,940.94 1,973.69 2,013.78 1,789.92 1,830.54
110 1,824.92 1,867.41 2,033.22 2,074.79 2,003.35 2,045.52 2,016.54 2,058.19 1,946.55 1,988.29
L-11 1,906.06 1,948.85 1,995.39 2,037.49 2,161.89 2,205.78 2,086.48 2,128.57 1,963.62 2,006.81
L-12 1,984.36 2,027.32 2,110.59 2,156.75 2,117.63 2,161.81 2,162.33 2,205.60 2,025.26 2,068.65
113 2,017.78 2,061.75 2,141.42 2,186.29 2,163.48 2,207.48 2,107.31 2,149.85 2,053.39 2,099.18
L-14 2,140.07 2,185.57 2,250.29 2,296.28 2,286.34 2,332.51 2,209.22 2,254.16 2,139.88 2,184.66
L-15 2,171.12 2,219.28 2,307.40 2,353.78 2,288.21 2,334.88 2,376.40 2,424.33 2,207.31 2,255.75

from all the candidate algorithms and constructs a Pareto Set from those

points. Then, the number of points from each candidate algorithm I maxF! — minF! \’ maxF? — minF? 1\’ 43

belonging to that Pareto Set is estimated [49,50]. A high QM indicates N (maxF‘“” - minF‘“”> + (masz"" — minF””) 43

better performance.

Spacing Metric (SM): This metric determines the uniformity in dis-
tribution of PF points. A low SM indicates better performance. SM can be
estimated from the Euclidean distance between two consecutive PF
points (d;), the mean of such Euclidean distances (d), and the number of
PF points (N) as follows [49,50]:

N-17
SM = Zi:l Id d1| (41)

(N—1)d

Mean Ideal Distance (MID): This metric signifies the closeness be-
tween the PF points of a candidate algorithm and the ideal points (this
study assumes that the ideal points are the ones that belong to the
optimal PF generated by the ECON method for a given problem
instance). A low MID indicates better performance. MID can be obtained
from the values of the objective functions for a given PF point of a
candidate algorithm (F}, F?), the ideal points (FLel iy and the
maximum and minimum values of each objective function obtained
from combining the PF points of all the candidate algorithms (maxF'™,

minF Y, maxF2™, minF2™) as follows [50,517:

pl_pideal 2 2 _ pideal 2
S (tetm) + (e
i=1 maxF1 " —minf1 7 max P2 —minF2"
MID = 42)
N

Diversification Metric (DM): This metric determines the diversity of
PF points distributed in the search space. A high DM indicates better
performance. DM can be estimated from the maximum and minimum
values of the objective functions returned by a candidate algorithm
(maxF!, minF', maxF?, minF?) as follows [49,50]:
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The following sections of the manuscript elaborate more on the re-
sults from numerical experiments and focus on the assessment of the
effects of hybridization for the considered multi-objective metaheuristic
algorithms, analysis of the algorithmic performance for small-size
problem instances, and analysis of the algorithmic performance for
large-size problem instances.

6.3.1. Assessment of the effects of hybridization

Each of the metaheuristic algorithms was hybridized with an exact
optimization approach to optimize the locations of the final production.
Since the locations of the final production are associated with the second
objective function of the MOFIBR mathematical model (F?), an
improvement in F? was noted due to hybridization. The effects of hy-
bridization can be captured by comparing the mean of F? for the PFs
returned by HMOEA, HMOSA, HMOTS, HMOVNS, and HNSGA-II with
that of their non-hybridized versions, including the following: (1) Multi-
Objective Evolutionary Algorithm (MOEA); (2) Multi-Objective Simu-
lated Annealing (MOSA); (3) Multi-Objective Tabu Search (MOTS); (4)
Multi-Objective Variable Neighborhood Search (MOVNS); and (5) Non-
Dominated Sorting Genetic Algorithm I (NSGA-II). All the considered
hybridized algorithms and their non-hybridized versions were executed
10 times for the developed small-size and large-size problem instances to
estimate the mean values of F2, and the results are presented in Table 3.
Based on the conducted analysis, it can be observed that hybridized
metaheuristic algorithms HMOEA, HMOSA, HMOTS, HMOVNS, and
HNSGA-II consistently outperformed their non-hybridized versions and
returned lower F2 values for all the developed problem instances. The
objective improvements of up to ~5% were recorded during the
computational experiments. Hence, the hybridization technique pro-
posed in this study could be considered as effective in enhancing the
quality of produced PFs.
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Fig. 11. PFs generated for the small-size problem instances.

Table 4

The QM values for the candidate algorithms and small-size problem instances.
Problem Instance Total Points ECON % HMOEA % HMOSA % HMOTS % HMOVNS % HNSGA-II %
S-1 6 5 83.33 1 16.67 0 0.00 0 0.00 0 0.00 0 0.00
S-2 9 5 55.56 3 33.33 1 11.11 0 0.00 0 0.00 0 0.00
S-3 5 5 100.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00
S-4 8 4 50.00 2 25.00 1 12.50 2 25.00 0 0.00 0 0.00
S-5 9 5 55.56 3 33.33 1 11.11 0 0.00 0 0.00 0 0.00
S-6 9 1 11.11 4 44.44 2 22.22 1 11.11 1 11.11 1 11.11
S-7 12 3 25.00 9 75.00 0 0.00 0 0.00 0 0.00 0 0.00
S-8 12 1 8.33 10 83.33 0 0.00 0 0.00 0 0.00 1 8.33
S-9 16 1 6.25 10 62.50 2 12.50 0 0.00 0 0.00 3 18.75
S-10 9 1 11.11 8 88.89 0 0.00 0 0.00 0 0.00 0 0.00
S-11 10 1 10.00 9 90.00 0 0.00 0 0.00 0 0.00 0 0.00
S-12 11 1 9.09 7 63.64 3 27.27 0 0.00 0 0.00 0 0.00
S-13 27 1 3.70 18 66.67 0 0.00 3 11.11 0 0.00 5 18.52
S-14 20 1 5.00 16 80.00 2 10.00 1 5.00 0 0.00 0 0.00
Mean: 2.43 31.00 7.14 54.49 0.86 7.62 0.50 3.73 0.07 0.79 0.71 4.05

6.3.2. Analysis of small-size problem instances
As a part of the numerical experiments, the developed HMOEA,

Table 5 HMOSA, HMOTS, and HMOVNS metaheuristic algorithms were evalu-

The SM values for the candidate algorithms and small-size problem instances. ated against the ECON algorithm, which is a well-known exact multi-
Problem ECON HMOEA HMOSA HMOTS HMOVNS  HNSGA- objective .optlmlzatlon algorithm, for all the c0n§1dered small-size
Instance o problem instances, where the number of supplier/manufacturer/
s1 0.386 1103 0.843 1224 0.467 1148 customer nodes was increased from 3 in 1nstance3 S-1to17in 1nstance. S-
52 0.282 1.131 0.696 0.610 0.837 0.381 15. The PFs generated by all the solution algorithms for the small-size
s-3 0.797  0.912 0.399 0.466 0.159 0.659 problem instances are plotted in Fig. 11. Fig. 11 demonstrates that
S-4 0.135  0.577 0.846 0.607 0.381 0.634 ECON generally performed better than the metaheuristic algorithms in
55 0.591 0677 0577 0.704 0.212 0.349 instances S-1 through S-5, even though the objective functions of the
S-6 0.149  1.046 0.677 0.816 0.000 0.629 heuristic aleorith ) h ¢ ECON (i h
s7 0132 0526 0.274 0.648 0.508 0.805 @eta euristic a gorithms were close to those o (i.e., they pro-
s-8 _ 0.832 0.711 0.667 0.338 0.682 vided good-quality solutions). The ECON performance started to decline
S-9 - 0.674 0.559 0.413 0.497 0.364 from instance S-6. In fact, ECON could not provide solutions for the
5-10 - 0.581 0.972 0.725 0.581 0.335 required 5 PF points for instance S-6 within the CPU time limit of 24 min
21; - g'ggg g'izg g'zgg g‘;z; g'zgi per PF point. Moreover, ECON was not able to provide even one PF point
s13 _ 0.751 0572 0777 1.072 1.015 for instance S-15 or larger within the CPU time limit. Hence, the results
S-14 - 0.925 0.613 0.231 0.345 0.718 for instance S-15 were not plotted. Thus, the ECON algorithm, which is a
Mean: - 0.801 0.651 0.662 0.485 0.658 classical exact optimization method for multi-objective optimization
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Table 6

The MID values for the candidate algorithms.
Problem Instance HMOEA HMOSA HMOTS HMOVNS HNSGA-II
S-1 0.443 0.671 0.526 0.787 0.713
S-2 0.928 0.864 0.872 0.907 1.041
S-3 0.631 0.827 1.028 0.632 0.754
S-4 0.712 0.633 0.673 0.818 0.793
S-5 0.736 0.760 0.651 0.766 0.808
Mean: 0.690 0.751 0.750 0.782 0.822

Table 7

The DM values for the candidate algorithms and small-size problem instances.
Problem ECON HMOEA HMOSA HMOTS HMOVNS  HNSGA-
Instance I
S-1 0.664 0.724 0.207 0.820 0.521 1.308
S-2 1.303 0.624 0.193 0.104 0.194 0.820
S-3 1.123 0.610 0.397 0.634 0.391 0.745
S-4 1.131 0.621 0.590 0.615 0.472 1.058
S-5 0.986 0.660 0.156 0.524 0.052 0.376
S-6 0.998 0.516 0.350 0.492 0.303 0.378
S-7 0.538 0.839 0.444 0.399 0.202 0.587
S-8 - 0.367 0.624 0.442 0.133 0.570
S-9 - 0.845 0.156 0.781 0.654 0.554
S-10 - 0.382 0.318 0.256 0.424 0.278
S-11 - 0.553 0.309 0.247 0.307 0.450
S-12 - 0.286 0.217 0.189 0.478 0.234
S-13 - 0.935 0.403 0.199 0.818 0.496
S-14 - 0.289 0.095 0.199 0.361 0.675
Mean: - 0.589 0.319 0.421 0.379 0.609

problems, would not be able to handle large-size problem instances
because of the computational complexity of the MOFIBR mathematical
model. On the other hand, the performance of developed metaheuristic
algorithms remained consistent.

As for multi-objective optimization performance indicators, HMOEA
exhibited the best values of QM when comparing to the ECON, HMOSA,
HMOTS, HMOVNS, and HNSGA-II algorithms (see Table 4). HMOEA on
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average contributed more than 50% of the total PF points for the
considered small-size problem instances. Furthermore, the HMOEA PFs
were found to be the closest ones to the optimal PFs obtained by the
ECON method based on the estimated MID values (see Table 6). Note
that the MID values were only computed for the small-size problem in-
stances S-1 through S-5, as ECON was not able to generate a full PF with
5 points for the rest of small-size problem instances within the CPU time
limit imposed due to the computational complexity of the MOFIBR
mathematical model. Throughout the numerical experiments, it was
noticed that HMOEA did not demonstrate the superiority in terms of the
best SM and DM performance indicators (see Tables 5 and 7), as some of
the PF points generated by HMOEA were located close to each other.
However, the SM and DM values recorded for HMOEA still can be
viewed as acceptable, when comparing to other solution algorithms.

As for the computational time, on average over 10 replications,
ECON required 2,402.75 s per small-size problem instance, whereas
HMOEA, HMOSA, HMOTS, HMOVNS, and HNSGA-II required only
34.92 s, 28.00 s, 19.26 s, 23.88 s, and 37.50 s, respectively. Therefore,
based on the numerical experiments conducted for the developed small-
size problem instances, HMOEA was found to be superior to the ECON
method and metaheuristic algorithms considered, taking into account
the shapes of PFs obtained, recorded values of multi-objective optimi-
zation performance indicators, and average computational time
incurred.

6.3.3. Analysis of large-size problem instances

As a part of the numerical experiments, the developed HMOEA,
HMOSA, HMOTS, and HMOVNS metaheuristic algorithms were evalu-
ated against the HNSGA-II algorithm, which is a well-known multi-
objective optimization algorithm with advanced operators (e.g., non-
dominated sorting, crowding distance sorting, genetic operators), for
all the considered large-size problem instances, where the number of
supplier/manufacturer/customer nodes was increased from 52 in
instance L-1 to 80 in instance L-15. The PFs generated by all the meta-
heuristic algorithms for the large-size problem instances are plotted in
Fig. 12. As indicated earlier, the ECON method was not able to generate

0 HMOEA - HMOSA ~+~ HMOTS &~ HMOVNS -+ HNSGA-II

Fig. 12. PFs generated for the large-size problem instances.
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Table 8
The QM values for the candidate algorithms and large-size problem instances.
Problem Instance Total Points HMOEA % HMOSA % HMOTS % HMOVNS % HNSGA-II %
L1 12 11 91.67 0 0.00 0 0.00 1 8.33 0 0.00
L2 11 11 100.00 0 0.00 0 0.00 0 0.00 0 0.00
L-3 15 15 100.00 0 0.00 0 0.00 0 0.00 0 0.00
L4 24 12 50.00 4 16.67 8 33.33 0 0.00 0 0.00
L5 12 12 100.00 0 0.00 0 0.00 0 0.00 0 0.00
L-6 12 12 100.00 0 0.00 0 0.00 0 0.00 0 0.00
L7 14 14 100.00 0 0.00 0 0.00 0 0.00 0 0.00
L-8 10 10 100.00 0 0.00 0 0.00 0 0.00 0 0.00
L9 7 7 100.00 0 0.00 0 0.00 0 0.00 0 0.00
L-10 22 22 100.00 0 0.00 0 0.00 0 0.00 0 0.00
L-11 10 10 100.00 0 0.00 0 0.00 0 0.00 0 0.00
112 13 11 84.62 0 0.00 0 0.00 0 0.00 2 15.38
113 10 10 100.00 0 0.00 0 0.00 0 0.00 0 0.00
L-14 11 11 100.00 0 0.00 0 0.00 0 0.00 0 0.00
L-15 21 20 95.24 0 0.00 0 0.00 1 4.76 0 0.00
Mean: 12.53 94.77 0.27 1.11 0.53 2.22 0.13 0.87 0.13 1.03
values of the QM performance indicator. HMOEA on average contrib-
Table 9 . . . . uted more than 90% of the total PF points for the considered large-size
The SM values for the candidate algorithms and large-size problem instances. .
problem instances (see Table 8).
Problem Instance  HMOEA  HMOSA  HMOTS HMOVNS  HNSGA-II When considering other multi-objective optimization performance
L-1 0.636 0.749 0.801 0.532 1.009 indicators (i.e., SM and DM), all the developed hybridized metaheuristic
L-2 0.571 0.583 1.019 0.846 0.787 algorithms demonstrated similar performance. In particular, the average
t'i 1'822 (1)‘221 ég;g (1)'883 g'zgz values of the SM indicator varied between ~0.700 and ~0.800 (see
Ls 0.817 0724 0.599 1.216 0.799 Table 9). On the other hand, the average values of the DM indicator
L-6 0.807 0.645 0.901 0.672 0.760 ranged between ~0.400 and ~0.500 (See Table 10). As for the compu-
L-7 0.721 0.548 0.799 0.864 0.772 tational time, on average over 10 replications, HMOEA, HMOSA,
L-8 0.690 0.780 0.825 0.845 0.735 HMOTS, HMOVNS, and HNSGA-II required 366.74 s, 217.14s,177.11 s,
L9 0.314 1.339 1.110 0813 0.856 173.23 s, and 406.58 s, respectively, per large-size problem instance.
L-10 0.734 0.796 0.912 0.716 0.567 o g
L1 1.089 0.852 0.722 0.805 0.717 Hence, all of the metaheuristic algorithms were able to tackle the large-
L-12 0.983 0.841 0.993 0.364 0.773 size problem instances in a reasonable amount of time. Therefore, based
113 0.672 1.101 0.540 0.686 0.516 on the numerical experiments conducted for the developed large-size
L-14 L.082 0.775 0.531 1139 0.626 problem instances, HMOEA was found to be superior to HNSGA-II and
L5 0741 0.852 0810 0.582 0.782 other metaheuristic algorithms considered, taking into account the
Mean: 0.796 0.815 0.842 0.800 0.724 . 8 » taking in AT
shapes of PFs obtained, recorded values of multi-objective optimization
performance indicators, and average computational time incurred.
Table 10 . . .
The DM values for the candidate algorithms and large-size problem instances. 6.4. Detailed analysis of solutions
Problem Instance HMOEA  HMOSA HMOTS HMOVNS  HNSGA-II . . . . .
This section of the manuscript performs a comprehensive analysis of
L1 0.388 0.441 0.264 0.438 0.393 the solutions provided by the HMOEA algorithm, which was found to be
L-2 0.469 0.589 0.674 0.433 0.633 the most promising hybridized metaheuristic algorithm based on the
L-3 0.798 0.625 1.021 0.274 0.485 . . . .
L-4 0.217 0.449 0.183 0.591 0.214 conducted numerical experiments, for large-size problem instances of
L5 0.357 0.583 0.601 0.744 0.490 the MOFIBR mathematical model. Table 11 shows the average values of
L-6 0.530 0.418 0.482 0.384 0.342 the total travel time, the total early arrival time, the total late arrival
L7 0.261 0.277 0.695 0.398 0.308 time, and the total manufacturing time over 10 replications obtained by
L8 0.349 0.635 0.461 0.818 0.535 HMOEA for all th idered 1 . blem inst d
L9 0161 0.597 0.554 0.315 0.225 EA for all the considered large-size pro > em 1n:; ances and corner
L-10 0.832 0.204 0.341 0.153 0.447 PF points (i.e., the points with the minimum F* and F* values). Based on
L-11 0.278 0.336 0.309 0.195 0.400 the conducted numerical experiments, it can be generally noticed that
L-12 0.369 0.459 0.242 0.278 0.489 there was a gradual increase in the total travel time, the total early
113 0.551 0.227 0.259 0.333 0.275 arrival time, and the total manufacturing time after increasing the
114 0.191 0.155 0.331 0.565 0.385 . . .
L-15 0.335 0.416 0.676 0.284 0.182 number of nodes. The late arrival times, on the other hand, remained
Mean: 0.406 0.427 0.473 0.414 0.387 fairly constant and close to zero. The total travel time for the corner PF

even one PF point for the considered large-size problem instances within
the CPU time limit imposed; hence, its results are not reported. Fig. 12
demonstrates that HMOEA outperformed HNSGA-II in terms of both of
the objective functions of the MOFIBR mathematical model in 14 out of
the 15 large-size problem instances and in terms of the second objective
function (F?) in instance L-12. In fact, HMOEA provided superior solu-
tions with respect to all of the candidate metaheuristic algorithms in
terms of one or both of the objective functions in all of the large-size
problem instances. Such a finding can be also justified by the recorded

points with the minimum F! values was found to be smaller than that of
the corner PF points with the minimum F? values. The latter finding can
be explained by the fact that F! specifically minimizes the total travel
cost, whereas F2 minimizes the total early arrival cost, the total late
arrival cost, and the total compensation cost.

On the other hand, smaller total early arrival times and total late
arrival times were observed at the corner PF points with the minimum
F? values than those of the corner PF points with the minimum F!
values. However, the total manufacturing time remained the same for all
the corner PF points, as it was pre-optimized through hybridization at
the population initialization step. Hence, the developed HMOEA algo-
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Table 11
The values of time components at the corner PF points.

Advanced Engineering Informatics 52 (2022) 101623

Instance Travel Time Early Arrival Time Late Arrival Time Manufacturing Time
min(F') min(F?) min(F') min(F?) min(F') min(F?) min(F') min(F?)
L-1 855.18 857.27 32,706.04 30,066.32 0.00 0.00 232.58 232.58
L-2 887.80 889.45 29,250.56 27,983.75 0.00 0.00 241.53 241.53
L-3 919.56 923.86 37,570.85 34,035.92 0.00 0.00 250.37 250.37
L-4 953.25 954.67 35,565.33 34,404.95 0.00 0.00 259.40 259.40
L-5 986.89 988.93 41,207.66 39,799.53 0.00 0.00 268.48 268.48
L-6 1,018.94 1,021.32 43,214.94 39,719.89 1.00 0.00 277.39 277.39
L-7 1,052.52 1,054.29 45,473.14 39,988.61 0.00 0.00 286.26 286.26
L-8 1,086.12 1,086.94 62,750.36 51,070.36 0.00 0.00 295.22 295.22
L9 1,118.82 1,120.04 50,965.95 44,012.21 0.00 0.00 304.26 304.26
L-10 1,149.30 1,156.87 69,288.63 39,894.81 0.00 0.00 313.27 313.27
L-11 1,183.18 1,185.35 60,863.68 54,769.66 0.00 0.00 322.23 322.23
L-12 1,216.87 1,218.67 66,452.19 63,292.65 0.00 0.00 331.15 331.15
L-13 1,247.07 1,252.58 62,670.22 59,309.47 0.29 0.00 340.06 340.06
L-14 1,283.39 1,284.75 80,913.95 76,726.48 0.00 0.00 349.03 349.03
L-15 1,318.07 1,319.83 76,587.96 75,128.91 0.00 0.00 357.85 357.85
Mean 1,085.13 1,087.66 53,032.10 47,346.90 0.09 0.00 295.27 295.27

rithm would assist decision makers with an effective analysis of trade-
offs between conflicting objectives throughout factory-in-a-box supply
chain planning (i.e., minimize the total travel time of vehicles vs.
minimize the total violation of the previously negotiated time windows
at customer locations).

7. Conclusions

The frequency and severity of pandemics (e.g., COVID-19) is ex-
pected to increase under the existing projections. Pandemics warrant
urgent production and distribution of medical supplies under disrupted
supply chain conditions. An innovative logistics solution to meet the
urgent demand during emergencies could be the factory-in-a-box
manufacturing concept. Factory-in-a-box manufacturing could also be
helpful to meet the urgent demand during natural disasters or for mili-
tary applications (e.g., production of military supplies during wars). To
obtain extensive flexibility and mobility, this manufacturing concept
deploys vehicles to transport containers that are used to install pro-
duction modules (i.e., factories). The vehicles travel to customer loca-
tions and perform on-site production. However, conventional
manufacturing could also be useful in some situations due to faster
production at manufacturer locations. Furthermore, throughout factory-
in-a-box supply chain planning, decision makers may have to compro-
mise conflicting objectives. For example, selection of particular routes
may minimize the total travel cost but, in the meantime, cause violation
of the previously negotiated time windows at customer locations.
However, no study contrasted the options of factory-in-a-box
manufacturing with those of conventional manufacturing in multi-
objective settings.

To fulfill this gap in the state-of-the-art, this study proposed a novel
multi-objective optimization model for the vehicle routing problem with
a factory-in-a-box, which captures the options of factory-in-a-box
manufacturing and conventional manufacturing for each customer.
The objectives of the model were to minimize the total travel cost and to
minimize the sum of the total early arrival cost, the total late arrival cost,
and the total compensation cost. A customized multi-objective hybrid
metaheuristic solution algorithm was developed to solve the model. The
algorithm was hybridized with an exact optimization approach to
optimize the locations of the final production. On the other hand,
various evolutionary operators (i.e., Boltzmann selection, cycle cross-
over, custom mutation operator, and ranking selection) were employed
for route generation. A case study was performed for a vaccination
project involving factory-in-a-box manufacturing along with conven-
tional manufacturing. The developed HMOEA metaheuristic algorithm
was compared against the ECON method, which is a well-known exact
optimization approach for multi-objective optimization problems, and
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some of the well-known metaheuristic algorithms, including HMOSA,
HMOTS, HMOVNS, and HNSGA-IIL.

A set of numerical experiments revealed that hybridized meta-
heuristic algorithms consistently outperformed their non-hybridized
versions with up to ~5% objective improvements. The analysis of
small-size instances indicated that HMOEA obtained the PFs that were
close to the optimal ones produced by ECON. However, ECON was not
able to handle large-size problem instances because of the computa-
tional complexity of the proposed mathematical model. On the other
hand, HMOEA and other developed metaheuristic algorithms demon-
strated consistent performance in terms of the computational time not
only for small-size problem instances but for large-size problem in-
stances as well. Moreover, based on the numerical experiments con-
ducted for the developed large-size problem instances, HMOEA was
found to be superior to HNSGA-II and other metaheuristic algorithms
considered, taking into account the shapes of PFs obtained, recorded
values of multi-objective optimization performance indicators, and
average computational time incurred. Last but not least, a detailed
analysis of HMOEA solutions revealed that the proposed algorithm can
assist with an effective analysis of trade-offs between conflicting ob-
jectives throughout factory-in-a-box supply chain planning (i.e., mini-
mize the total travel time of vehicles vs. minimize the total violation of
the previously negotiated time windows at customer locations).

This research may be extended further in several ways. First, deter-
mination of raw materials for suppliers, decomposition of sub-assembly,
assigning manufacturers to sub-assembly modules, and task-
manufacturer assignment could be studied. Second, the developed
optimization model was tested in deterministic settings. Various sources
of uncertainties could be captured and evaluated as a part of the future
research (e.g., uncertainties in vehicle travel times due to roadway
closures, traffic congestion, inclement weather conditions, etc.). Third,
multiple depots could be considered for more flexibility. Fourth, alter-
native multi-objective solution methodologies (e.g., hybrid versions of
the ECON method, Multi-Objective Social Engineering Optimizer, Multi-
Objective Red Deer Algorithm, Strength Pareto Evolutionary Algorithm,
Multi-Objective Bacterial Swarm Optimization, Pareto Archived Evolu-
tion Strategy, Multi-Objective Keshtel Algorithm) could be developed to
solve the proposed model [52-56].
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