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Abstract— This paper adapts the invariant-set motion-

planner for safe spacecraft attitude control. The invariant-

set motion-planner is a motion-planning algorithm that

uses the positive-invariant sets of the closed-loop dynam-

ics to find a constraint admissible path to a desired tar-

get through an obstacle filled environment. We use the

invariant-set motion-planner to plan a sequence of refer-

ence quaternion waypoints that safely guides the space-

craft attitude around keep-out cones to a desired orienta-

tion. Our main contribution is the use of parametric opti-

mization to derive a computationally efficient method solv-

ing the non-convex safety certification optimization prob-

lem. The computational efficiency of our safety certification

is demonstrated in a numerical example.

Index Terms— Optimization, Aerospace, Constrained

control, Network analysis and control

I. INTRODUCTION

THE invariant-set motion-planner (ISMP) is an algorithm
for generating dynamically feasible trajectories from

an initial state to a target equilibrium through an obstacle-
filled environment [1]–[7]. Like other motion-planning al-
gorithms [8], [9], the ISMP abstracts the motion-planning
problem as a graph search. The defining feature of the ISMP
is that knowledge of the closed-loop system dynamics is
incorporated into the search graph using constraint admissible
positive invariant (PI) sets, which we call safe sets (also called
viable sets [10]). These safe sets describe regions of the state-
space where the system can safely track the corresponding
references. The ISMP uses a graph search to find a corridor
of safe sets that safely guides the system through the obstacle
filled environment to the target equilibrium.

The ISMP has several beneficial properties. It allows for
aggressive, but safe maneuvers since, by definition, the system
state will never leave the safe PI sets. It typically has low
online computational costs since the PI sets can be pre-
computed as they only depend on the time-invariant closed-
loop dynamics, rather than the time varying environment. It is
inherently robust since it incorporates feedback into the design
and the PI sets provide a natural buffer that can absorb tracking
errors due to model uncertainty and disturbances [6]. It reduces
the curse-of-dimensionality by sampling from the output-space
instead of the state-space. Indeed for this paper, we sample
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the orientation-space (quaternions) rather than the full state-
space, which also includes the spacecraft angular velocity.
Since it plans motion based on the closed-loop dynamics, the
ISMP does not require replacing the existing controller with a
customized controller. Indeed, one of the novel contributions
of this paper is adapting the ISMP for quaternion-based attitude
controllers, which are commonly used in practice.

This paper applies the ISMP to the problem of spacecraft
attitude control. The objective of the motion-planning problem
is to re-orient the spacecraft while avoiding undesirable orien-
tations, for instance, orientations that would point a sensitive
instrument at a bright object like the sun or earth. Although
the ISMP was previously applied to attitude control [1], this
paper has several crucial differences. This paper considers
a quaternion-based spacecraft attitude controller. This is an
important contribution since one of the primary advantages of
the ISMP is its potential compatibility with existing controllers
and quaternion attitude controllers are widely used for attitude
control [11]. However, this presents a unique challenge since
the quaternions are a double-cover of SO(3), which introduces
non-convexity that complicates the safety checks. Another
(minor) contribution of this paper is the use of semi-uniform
sampling of the search space. This is important since it reduces
the influence of the sampling-method, allowing the dynamics
and constraints to dictate the desired attitude trajectory of the
spacecraft.

The main contribution of this paper is a closed-form solution
for certifying the safety of the PI sets. We provide the neces-
sary and sufficient conditions for guaranteeing that the PI sets
are constraint admissible (also known as collision detection).
In previous work [1], safety certification was performed by
solving an optimization problem to find a safe level-set of
a Lyapunov function. This renders real-time safety certifica-
tion computationally difficult since it must be performed for
thousands of candidate safe sets. In contrast, this paper uses
parametric optimization to obtain a closed-form solution to
the non-convex safety certification optimization problem. We
demonstrate that this closed-form solution allows for more
than 100,000 safety checks in less than 3 milliseconds. Indeed,
using the method presented in this paper, safety certification
becomes faster than the graph search. This computationally
efficient safety certification can be useful for other attitude
control schemes, for instance, the formal-methods based ap-
proaches [12]. In summary, our contributions are:
• Computationally efficient and rigorous safety certification.
• Semi-uniform sampling of SO(3).
• Integration of quaternion control with the ISMP.



Notation and Definitions: A set O is positive invariant if
x(t0) 2 O ) x(t) 2 O 8t > t0. Level-sets {x : V (x)  l}
of Lyapunov functions are positive invariant. SO(3) ⇢ R3⇥3

is the group of rotation matrices i.e. R>R = RR> = I and
det(R) = +1. With abuse of terminology, we will use SO(3)
to refer to an abstract group isomorphic to SO(3). SE(3) =
SO(3) ⇥ R3. Sn = {x 2 Rn+1 : x>x = 1}. The quaternions
q = (q0, q1, q2, q3) 2 H are a group of hyper-complex numbers
with the Hamilton product q ⌦ p = (q0p0 � q>v pv, q0pv +
p0qv+qv⇥pv) where qv = (q1, q2, q3) is the vector part of q.
1 = (1, 0, 0, 0) 2 H is the identity quaternion. q̄ = (q0,�qv)
is the conjugate of q = (q0, qv). H̄ = H \ S3 denotes the
unit quaternions. The unit quaternions H̄ are a double-cover
of SO(3) since ±q 2 H̄ represent the same element of SO(3).
With abuse of notation, q ⌦ v is the quaternion product of
q 2 H and (0, v) 2 H where v 2 R3.

A directed graph G = (I,E) is a set of vertices I together
with a set of ordered pairs E ✓ I ⇥ I called edges. Vertices
i, j 2 I are called adjacent if (i, j) 2 E is an edge. A path is a
sequence of adjacent vertices. A graph search is an algorithm
for finding a path through a graph. A connected component
of a graph is subset of vertices which are connected by paths.

II. PROBLEM STATEMENT

A. Spacecraft Attitude Dynamics
The spacecraft attitude dynamics are modeled by

q̇(t) = 1
2q(t)⌦ !(t) (1a)

J !̇(t) = �!(t)⇥ J!(t) + ⌧(t) (1b)

where J 2 R3⇥3 is the spacecraft moment-of-inertia matrix,
q 2 H̄ and ! 2 R3 are the spacecraft orientation and
angular velocity, respectively, and ⌧ 2 R3 is the torque
applied to control the spacecraft attitude. The output-matrix
C = [I4, 0] 2 R4⇥7 extracts the orientation q = Cx 2 H̄ from
the state x = (q,!) 2 SE(3).

A standard quaternion attitude controller [11] is used to
orient the spacecraft

⌧(t) = !(t)⇥ J!(t)�Kpev(t)�Kd!(t) (1c)

where e(t) = ±q(t) ⌦ r̄ 2 H̄ is the error-quaternion between
the actual q(t) 2 H̄ and desired r 2 H̄ orientations of the
spacecraft. Importantly, we select the error quaternion ±e(t)
with e0 � 0 where H̄ is a double-cover of SO(3). The propor-
tional and derivative gains of the controller are Kp 2 R3⇥3

and Kd 2 R3⇥3, respectively. In practice, a torque allocation
algorithm will compute actuators commands to supply the
desired torque ⌧(t) e.g. from thrusters, reaction wheels, or
control moment gyroscopes. However, this is outside the scope
of this paper.

The asymptotic stability of the equilibrium (e,!) = (0, 0)
for the closed-loop system (1) is certified by the following
Lyapunov function [11]

V (e,!) =


e�1
!

�>
I 0
0 K�1

p J

� 
e�1
!

�
(2)

where 1 2 H̄ is the identity quaternion and e0 � 0.
The invariant-set motion-planner will use the Lyapunov func-
tion (2) to plan safe pointing maneuvers.

B. Pointing Constraints
The spacecraft is subject to state and input constraints. A

common type of state constraints are the keep-out constraints,
in which the spacecraft orientation q(t) is kept out q(t) 62 B ✓

H̄ of the cone

B(d, b, c) =
n
q 2 H̄ : d>R(q)b � c

o
(3)

where c = cos ✓ is the cone angle, d 2 S2 and b 2 S2
are unit-vectors in the inertial and body frames, respectively,
and R(q) is the rotation-matrix between these frames, which
depends on the spacecraft orientation q 2 H̄. The constraint
q(t) 62 B keeps the angle cos�1(d>R(q)b) between the
inertial-frame d and body-frame b unit-vectors sufficiently
large cos�1(d>R(q)b) > ✓. Keep-out constraints can be used
to ensure that a sensitive onboard instrument (e.g. a star-
tracker) is not pointed at a bright object (e.g. the sun, earth,
or moon) which could temporarily blind or even permanently
damage the instrument.

Another common type of state-constraints are keep-in con-
straints, in which the spacecraft orientation q(t) is kept inside
q(t) 2 Q a cone Q =

�
q 2 H̄ : d>QR(q)b > cos ✓Q

 
. Keep-in

constraints can be used to ensure that an onboard instrument
(e.g. a telescope) points in a particular direction within a given
bound. Keep-in constraints are equivalent to enforcing keep-
out constraints q(t) 62 H̄ \ Q on the complement B = H̄ \ Q

of the keep-in set Q. Note that the complement H̄ \Q has the
form (3) where d = �dQ and ✓ = ⇡� ✓Q. Thus, in this brief
paper we will focus only on enforcing keep-out constraints.

Bounds on the control torque ⌧ and angular velocity ! can
be enforced by limiting the size ` of the PI sets O, which can
be computed offline using the method from e.g. [1]. Thus, we
will not consider this solved problem in this paper.

III. INVARIANT-SET MOTION-PLANNER

The ISMP is described by Algorithm 1. The ISMP searches
an appropriately constructed directed graph G for a sequence
{r̄i}Ni=1 of intermediate references r̄i 2 H̄ that guide the
spacecraft (1) state x(t) = (q(t),!(t)) 2 SE(3) from an initial
state x(0) = x0 to a target equilibrium orientation r1 2 H̄
while enforcing keep-out constraints q(t) = Cx(t) 62 Bk. The
defining feature of the ISMP is that knowledge of the closed-
loop spacecraft dynamics (1) is incorporated into the graph G
using its PI sets. Associated with each node i 2 I is a safe
set Oi, which is constraint admissible COi \ Bk = ? and
positive invariant x(0) 2 Oi ) x(t) 2 Oi 8t > 0. The edges
(i, j) 2 E of the graph G= (I,E) indicate that the state (1)
will enter the j-th safe-set Oj while tracking the i-th node
without leaving the current safe-set Oi. Thus, the ISMP avoids
obstacles by moving the spacecraft state through a sequence
of safe-sets O�i for {�i}Ni=0.

In this section, we apply the ISMP (Algorithm 1) to space-
craft attitude control. We will describe the PI sets O and the
offline construction of the search graph G. Like other path
planning algorithms, safety certification (collision detection)
COi\Bk 6= ? is typically the most computationally expensive
operation. Thus, the main challenge addressed in this paper is
efficiently performing the safety checks COi \ Bk = ? in
line 1 of Algorithm 1 for all pairs (i, k) 2 I⇥K.



Algorithm 1 Invariant-Set Motion-Planner
1: Remove unsafe COi \ Bk 6= ? nodes i 2 I from G
2: Search the graph G for a path {r�0 , . . . , r�N } from r�0 =

q(0) to r�N = r1
3: set k  0
4: repeat
5: if x(t) 2 O�k+1 then
6: k  k + 1
7: end if
8: track current target state r(t) = r�k

9: until r(t) = r1

A. Invariant-Sets
The PI sets Oi of the closed-loop system (1) are level-sets

of the Lyapunov function (2)

O(r, `) =

⇢
q
!

�
2 SE(3) : V (q ⌦ r̄,!)  2� 2`

�
(4)

where the level ` > 0 of the Lyapunov function (2) is a tuning
parameter that will be used in the graph G construction, r 2 H̄
is the reference orientation for the PI set, and r̄ 2 H̄ is its
conjugate. The parametrization 2 � 2` of the level-sets will
simplify the notation later in the paper.

B. Search Graph Construction
The nodes i 2 I of the graph G = (I,E) index references

ri 2 H̄ and a corresponding PI set Oi such that (ri, 0) 2
Oi. The grid {ri}i2I should be dense and uniform to ensure
that graph G is connected to provide the Algorithm 1 with
alternative paths around potential obstacles (3). Furthermore,
a dense and uniform grid will ensure that any desired target
r1 2 H̄ is near an existing reference ri 2 H̄ in the grid i 2 I.

Producing a uniform grid on SO(3) is more challenging
than gridding a Euclidean space Rn. Exploiting the axis-angle
representation, a uniform grid on SO(3) can be produced by
uniformly gridding axes n 2 S2 ⇢ R3 and angles ✓ 2 S1 ⇢
R2 [13]. This approach was used in [1], albeit with non-
uniformly gridding of S2. Motivated by representing functions
on the sphere S2 (e.g. temperature distributions on earth),
many methods have been proposed for uniformly gridding
S2 [14]. In particular, a semi-uniform grid on S2 can be
obtained by gridding the facets of a regular polytope in R3

(i.e. the platonic solids) and then projecting those grid-points
onto the unit-sphere S2 [14] e.g. a geodesic dome is produced
by gridding the facets of an icosahedron. Unfortunately, we
have found that axis-angle grids are poorly suited for this
application. An axis-angle grid will move a body-frame vector
b along a collection great circle on S2 that intersect at b. The
resulting grid become sparser farther from b, making it difficult
to plan large maneuvers.

Instead, we propose extending the method [14] for gridding
S2 ⇢ R3 to grid S3 ⇢ R4 where the group H̄ is the set S3
equipped with the Hamilton product. Among the six regular
polytopes in R4, the unit-tesseract is the easiest to grid since
its 8 facets are unit-cubes in R3. Note that since H̄ is a
double-cover of SO(3), we only need to grid 4 of these

8 facets. In particular, our grid points have the form ri =
(1, r1i, r2i, r3i) 2 H where rji 2 R for j = 1, 2, 3 are sampled
from an N point grid of the scalar interval [�1, 1] ⇢ R. To
obtain grids for the other 3 facets, we transpose the position
of the 1 with rji for j = 1, 2, 3. To obtain unit-quaternions,
we project the grid-points ri 2 H onto the sphere S3 i.e.
ri  ri/krik 2 H̄. This produces a grid with |I| = 4N3

quaternions. This procedure is illustrated by Fig. 1.

(a) (b) (c) (d)

Fig. 1: (a) Rotations of z under axis-angle gridding of H̄.
(b) Rotations of z under tesseract gridding of H̄. (c) Gridding
facets of cube in R3. (d) Projecting grid points onto the sphere
S2. Analogous procedure used to grid S3.

The edges (i, j)2E of the graph G=(I,E) indicate that the
state x(t) of the spacecraft dynamics (1) will enter the safe set
Oj while tracking the i-th reference ri 2 H̄ without leaving
the current safe set Oi (see line 5 of Algorithm 1). This will
occur if the equilibrium state (ri, 0) 2 SE(3) is contained
(ri, 0) 2 int(Oj) in the interior int(Oj) of the j-th PI set Oj .
This can be efficiently checked using the expression

|r>i rj | > `i (5)

for i, j 2 I. This condition follows directly from Proposition 1
in Section V. According to (4), decreasing `i will produce a
larger PI set Oi, increasing the connectivity (5) of the graph,
but also increasing the chance of collision COi \ Bj 6= ?.

C. Safety Certification
Our main contribution is a computationally efficient method

for detecting when an invariant-set O is safe CO \ B = ?,
i.e., line 1 of Algorithm 1. Our method is described by the
following Theorem.

Theorem 1: The PI set O is safe CO(r, `)\B(d, b, c) = ?
if and only if r+ = 0 or r� 6= 0 and

kr+k < ` and
�
`kr+k+

p
1� `2kr�k

�2
< 1

2 + 1
2c (6)

where

r+ =
1

p
2 + 2d>b


0 1 + d>b

d+ b �d⇥ b

�>
r 2 R2 (7a)

r� =
1

p
2� 2d>b


0 1� d>b

d� b d⇥ b

�>
r 2 R2. (7b)

The proof is provided in Section V. Theorem 1 provides
the necessary and sufficient conditions for safety CO \ B 6=
?. The safety certification (6) is computationally inexpensive
since it only requires checking the norms of low-dimensional
vectors r+ , r� 2 R2. Furthermore, for each keep-out cone
B(d, b, c), the projections (7) can be vectorized so that the



safety condition (6) can be simultaneously checked for all the
PI sets O(ri, `i) for i 2 I.

IV. NUMERICAL EXAMPLE

In this section, we demonstrate Algorithm 1 for spacecraft
attitude control, with an emphasis on the computational effi-
ciency of the safety certification described by Theorem 1.

For this case study, the spacecraft will perform a 180�

rotation about its z-axis. It starts from the equilibrium state
x(0) = (q(0),!(0)) where it is initially stationary !(0) = 0
with q(0) = 1 2 H̄. The target equilibrium state is x1 =
(r1, 0) where r1 = (0, 0, 0, 1) 2 H̄. During the maneuver,
the x-axis of the spacecraft b1,2 = (1, 0, 0) must be kept
out of two cones (3) with d1 = (0, 1, 0), ✓1 = 30� and
d2 = (0,�1, 0), ✓2 = 5�. In addition, the z-axis b3 = (0, 0, 1)
must be kept in a 30� cone. This is equivalent to a keep-out
cone (3) with d3 = (0, 0,�1) and ✓3 = 180� � 45� = 135�.
The cones are shown in Fig. 2. The first cone is large, forcing
the spacecraft to rotate counter-clockwise about its z-axis. To
avoid the second cone, the spacecraft will need to rotate the
x-axis out of the xy-plane. The deviation from the xy-plane is
limited by the third cone, which limits the z-axis movement.

The graph G = (I,E) was constructed using the procedure
described in Section III-B with a grid density N = 21
and uniform level ` = cos 6�. Since the grid is only semi-
uniform, some of the nodes maybe disconnected for this
choice of `. After removing disconnected nodes using a
connected components algorithm, the resulting graph G had
|I| = 34,647 nodes and |E| = 843,137 edges, requiring 15.15
MB of memory to store. It required 9060 milliseconds to fully
construct using MATLAB on a 2020 MacBook Pro with a 2.6
GHz i7 processor and 16 GB of RAM. Note that since the
search graph only depends on the spacecraft dynamics, it can
be constructed offline and stored in memory for online use
in Algorithm 1. Table I compares the computation resources
required by Algorithm 1, which motivates the decision to
construct the graph G offline and store it in memory for online
use.

TABLE I: Computation-time and memory for Algorithm 1.
Computational resources required by Algorithm 1 Time / Memory
Construction of the search graph G = (I,E) 9060 ms
Storage of the search graph G = (I,E) and r, ` 15.15 MB
Removal of unsafe nodes i 2 I from G

Oi \ B1 = ? 8i 2 I 0.99 ms
Oi \ B2 = ? 8i 2 I 1.12 ms
Oi \ B3 = ? 8i 2 I 0.71 ms

Search graph G for path {r�1 , . . . , r�N } 26.67 ms

The first step of Algorithm 1 is the removal of unsafe
COi \Bk 6= ? nodes i 2 I. This was accomplished using the
method described in Theorem 1. The time required to perform
the |I| = 34,647 safety checks COi\Bk 6= ? for the |K| = 3
obstacles are reported in Table I. Using the proposed method,
the total computation-time 2.82 milliseconds for performing
the |I||K| = 103, 941 safety checks is nearly 10⇥ faster than
the graph search (typically a fast operation) and more than
3000⇥ faster than the graph construction. Note that our code
takes advantage of the vectorization provided by MATLAB for

efficient computation. The remaining 1600 safe nodes i 2 I
are shown in Fig. 2, which also shows the three keep-out
cones (3). The buffer around the keep-out cones is due to
the angle cos�1 ` = 6� of the PI sets (4).

Fig. 2: The trajectories of the spacecraft x-axis around the
keep-out cones and z-axis within the keep-in cone.

Searching the graph G produced a sequence {r�k}
28
k=1 ⇢ I

of 28 references r�k 2 H̄ that safely guides the spacecraft
from the initial state x0 = (q0, 0) 2 SE(3) to the target
equilibrium state x1 = (r1, 0) 2 SE(3). Following Al-
gorithm 1, the reference r�k tracked by the controller (1c)
is updated k  k + 1 each time the spacecraft (1) state
x(t) = (q(t),!(t) 2 SE(3) enters the next PI set O�k+1 ✓

SE(3). The switching condition x(t) 2 O�k+1 was checked
every 1 second. Between updates, the spacecraft dynamics (1)
were simulated using MATLAB’s ode45 solver. The resulting
state x(t) = (q(t),!(t)) and input ⌧(t) trajectories are shown
in Fig. 3. Note that the spacecraft converges to the desired
orientation r1 = ±(0, 0, 0, 1).

V. PROOF OF THEOREM 1

To prove Theorem 1, we first transform the sets (3) and (4)
into a form more amenable to checking safety CO \ B 6= ?.

Proposition 1: The obstacle set (3) and projected PI set (4)
can be written as

B =
�
q 2 H̄ : q>Pq � c

 
(8)

CO =
�
q 2 H̄ : q>r̄r̄>q � `2

 
(9)

where

P =


d>b �(d⇥ b)>

�d⇥ b db>+ bd>� d>bI

�
2 R4⇥4 (10)



Proof: Substituting the quaternion parametrization of
rotation matrices R(q) into the set description (3), yields

d>R(q)b = d>
�
q20I � 2q0q

⇥
v + qvq

>
v + (q⇥v )

2
�
b

where q⇥v 2 R3⇥3 is the pseudo-cross-product matrix of qv .
Through liberal use of the property x⇥ y = �y ⇥ x, we can
transform (3) into (8) where (10) depends on the unit-vectors
d and b.

Next, we derive (9). First, we project O ✓ SE(3) onto
the quaternion subspace CO ✓ H̄. Since the matrix in the
Lyapunov function (2) is block-diagonal, this is trivial

CO = {q 2 H̄ : (±q ⌦ r̄ � 1)>(±q ⌦ r̄ � 1)  2� 2`}.

Recall that we selected the error quaternion e = ±q⌦ r̄ from
the double-cover H̄ of SO(3) such that e0 � 0 i.e. e0 = |q>r̄|.
Expanding the quadratic, we obtain

(±q ⌦ r̄ � 1)>(±q ⌦ r̄ � 1) = (e0 � 1)2 + e21 + e22 + e23
= 2� 2e0 = 2� 2|q>r̄|

where e21 + e22 + e23 = 1 � e20 since e 2 H̄. Thus, q 2 CO

if and only if 2 � 2|q>r̄|  2 � 2` or equivalently |q>r̄| � `.
Since, both |q>r̄| and ` > 0 are positive, this is equivalent to
|q>r̄|2 = q>r̄r̄>q � `2.

Proposition 1 says that both CO and B are the sets of
quaternions outside a (degenerate) ellipsoid. From (9), it is
apparent that (rj , 0) 2 Oi if and only (5) holds.

Consider the following optimization problem which finds
the quaternion q 2 CO in the PI set closest to the obstacle B

J?(d, b, r, `) = maxq2H̄ q>Pq (11a)
s.t. q>r̄r̄>q � `2. (11b)

The following lemma relates this optimization problem (11)
with the safety certification problem CO \ B = ?.

Lemma 1: CO \ B = ? if and only if J?(d, b, r, `) < c.
Proof: We prove the contra-positive of each implication.

If CO\B 6= ? then there exists q 2 CO\B that satisfies (11b)
and q>Pq � c by Proposition 1. Thus, J?

� c.
Conversely, if J?

� c then there exists q? such that
q?>Pq? � c i.e. q? 2 B by Proposition 1. Furthermore, since
q? satisfies (11b), q? 2 CO. Thus, q? 2 CO \ B 6= ?.

Fig. 3: State (q(t),!(t)) 2 SE(3) and input ⌧(t) 2 R3 tra-
jectories for the pointing maneuver. The background shading
indicates when the waypoint ri is updated.

The proof of Theorem 1 is based on solving (11) paramet-
rically i.e. we will solve (11) when (11b) is both active and
inactive. Unfortunately, (11) is non-convex due to the non-
convex constraint (11b), which requires that q 2 H̄ is outside
the degenerate ellipsoid (9). Less obvious, the cost (11a) is
also non-convex (and non-concave), as shown by the following
proposition analyzing the eigenstructure of P .

Proposition 2: The matrix P 2 R4⇥4 defined in (10) has
eigenvalue �+ = +1 with multiplicity 2 and eigenvectors

P+ =
1

p
2 + 2d>b


0 1 + d>b

d+ b �d⇥ b

�
2 R4⇥2 (12a)

and eigenvalue �� = �1 with multiplicity 2 and eigenvectors

P� =
1

p
2� 2d>b


0 1� d>b

d� b d⇥ b

�
2 R4⇥2. (12b)

Proof: The proposition can be verified by direction
computation, noting that d ⇥ b is orthogonal to both d and
b, and (d>b)2 + kd⇥ bk2 = cos( )2 + sin( )2 = 1 where  
is the angle between the unit-vectors d and b.

According to Proposition 2, the matrix P is indefinite and
thus (11) is neither convex nor concave. Despite the non-
convexity, we will exploit the eigenstructure described in
Proposition 2 to solve (11) parametrically. First, we consider
the case when the sole constraint (11b) is inactive.

Lemma 2: If kr+k � ` then O is unsafe CO \ B 6= ?.
Proof: If the constraint (11b) is inactive then (11)

simplifies J?(d, b, r, `) = maxq2H̄ q>Pq. This non-convex
optimization problem has a closed-form solution, specifically
J? = �+ = 1 is the largest eigenvalue of P . Since c =
cos(✓)  1 = J?, CO \ B 6= ? by Lemma 1.

This solution is valid when q? satisfy (11b) where the non-
unique optimal solutions q? lie in the eigenspace of �+. By
Proposition 2 we have q? = P+↵+ 2 H̄ for some ↵+ 2 S1.
Thus, (11b) is equivalent to

(r>q?)2 = ↵>
+
P>

+
rr>P+↵+ = (r+↵+)

2
� `2.

where r+ = P>
+
r matches the definition (7). This constraint

holds for some ↵+ 2 S1 if and only if it holds for the best-case
↵+ = r+/kr+k 2 S1. Substituting, we obtain the condition
kr+k

2
� `2.

The contra-positive of Lemma 2 is the first portion of the
safety condition (6) in Theorem 1. Next, we consider the case
when the sole constraint (11b) is active.

Lemma 3: Let kr+k < `. Then, CO \ B = ? if and only
if r+ = 0 or r� 6= 0 and

�
`kr+k+

p
1� `2kr�k

�2
< 1

2 +
1
2c.

Proof: Define q+ = P>
+
q and q� = P>

� q as the projection
of q 2 H̄ onto the eigenspaces (12) of P . Then, (11) can be
written as

J? = max q>
+
q+ � q>�q� (13a)

s.t. (r>
+
q+ + r>�q�)

2 = `2 (13b)

q>
+
q+ + q>�q� = 1 (13c)

where r+ = P>
+
r and r� = P>

� r match the definition (7) and
q = P+q+ + P�q� . The new constraint (13c) represents the
fact that q>q = 1 since q 2 H̄ where the eigenvectors (12)



are orthogonal. The constraint (13b) is active according to
Lemma 2 since kr+k < `. Problem (13) can be rewritten as

J? = max 2q>
+
q+ � 1 (14a)

s.t. (r>
+
q+ + r>�q�)

2 = `2 (14b)

q>�q� = 1� q>
+
q+ . (14c)

To invoke Lemma 1, we only need the cost (14a) which only
depends on q+ 2 R2 in this formulation. For the degenerate
case when r� = 0, we immediately have q?� = 0 and q?>

+
q?
+
=

1 where kr+k
2 = 1� kr�k

2 = 1 and `  1. Thus, J? = 1 �
cos ✓ and CO \ B 6= ? by Lemma 1.

Otherwise for r� 6= 0, the feasibility of (14) requires the
existence of q� 2 R2 that satisfies the two scalar equality
constraints (14b) and (14c). In particular, (14) is feasible if and
only if one of the lines (14b) passes through the circle (14c)

1� q>
+
q+ � min q>�q� (15a)

s.t. r>
+
q+ + r>�q� = ±` (15b)

where q+ is considered a fixed parameter and q� is the
decision variable. We will solve this multi-parametric program
to obtain q?� as a function of q+ . The decision variable can
be parameterized as q?� = ↵?

�r� + ↵?
?
r? where r? 2 R2 is

the vector orthogonal to r� 2 R2. Since ↵? 6= 0 increases
the cost (15a) without helping satisfy the constraint (15b), we
can conclude ↵?

?
= 0. Substituting q?� = ↵?

�r� 2 R2, the
constraint (15b) we obtain

↵?
� =

±`� r>
+
q+

kr�k
2

where r� 6= 0 and ↵?
� = (` � |r>

+
q+ |)/kr�k

2 is the solution
with the lower cost (15a). Thus, (15) reduces to the constraint

1� q>
+
q+ � (↵?

�)
2
kr�k

2 = (`� |r>
+
q+ |)

2/kr�k
2

which can replace the constraints in (14), yielding

J? = max 2q>
+
q+ � 1

s.t. q>
+

�
kr�k

2I+r+r
>
+

�
q+�2`|r

>
+
q+ |  kr�k

2
�`2.

Note that the absolute value is redundant since the optimiza-
tion problem will not choose r>

+
q+ < 0 since �q+ has the

same cost and provides extra slack in the constraint. Thus,
we have obtained the following optimization problem which
is equivalent to (11) when kr+k < `

max 2q>
+
q+ � 1 (16a)

s.t. q>
+

�
kr�k

2I+r+r
>
+

�
q+�2`r

>
+
q+  kr�k

2
�`2. (16b)

This non-convex problem (16) has a semi-closed-form solu-
tion [15], specifically the extrema occur when the gradient
of the cost (16a) is aligned with the gradient of the con-
straint (16b) i.e.

µq?
+
=
�
kr�k

2 + r+r
>
+
)q?

+
� `r+

where µ 2 R typically must be iteratively computed so that q?
+

satisfies (16b). Fortunately, r+ is an eigenvector of the matrix

(|r�k
2
�µ)I+r+r

>
+

with eigenvalue � = kr+k
2+kr�k

2
�µ =

1� µ. Thus,

q?
+
=

`

1� µ
r+ = ⇢

r+

kr+k
(17)

for r+ 6= 0 where ⇢ = `kr+k/(1 � µ) is a parameter we
introduce to simplify the notation. To (non-iteratively) solve
for ⇢, we substitute (17) into (16b) and obtain

⇢2 � 2`kr+k⇢+ `2 � kr�k
2 = 0

where r+ is also an eigenvector of the matrix |r�k
2I + r+r

>
+

with eigenvalue � = 1. Using the quadratic formula and noting
that kr+k

2 = 1� kr�k
2, we obtain

⇢ = `kr+k±

p
1� `2kr�k.

The cost (16a) is then J? = 2⇢2 � 1 = 2(`kr+k +
p
1� `2kr�k)

2
� 1 where the + solution provides the larger

cost (16a). According to Lemma 1, CO \ B = ? if and only
if J? < c. Rearranging terms in J? we obtain the second part
of the statement of this lemma.

Finally, we consider the degenerate case when r+ = 0 in
which case (17) is invalid. Instead, we immediately obtain
q+ = 0 and thus J? = �1  c = cos ✓. Therefore, CO\B =
? by Lemma 1.

Proof: [Proof of Theorem 1] Follow directly from
Lemma 3.
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