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Abstract
The uncertainties associated with the large-scale integration of electric vehicles (EV) and renew-
able energy resources introduce new challenges to operating the unbalanced three-phase distribution
networks. In this paper, a data-driven distributionally robust optimization framework is proposed
for the operation of the distribution network considering the uncertainties associated with the inter-
connected EV fleets and solar photovoltaic (PV) generation. The proposed framework leverages the
column-and-constraint generation (C&CG) approach to minimize the operation cost considering the
worst-case probability distributions of PV generation, the available energy in EV fleets, the arrival
and departure times of EV fleets as well as their minimum and maximum energy capacities. The
proposed approach is applied to the modified three-phase unbalanced IEEE 34-bus and IEEE 123-bus
networks. To evaluate the performance of the proposed distributionally robust optimization frame-
work, the results are compared to those procured by solving scenario-based stochastic programming
and robust optimization problems. Furthermore, the impact of vehicle-to-grid capability on the oper-
ation of the distribution network is investigated and the in-sample and out-of-sample performances of
the proposed framework are evaluated.

1. Introduction
The worldwide electric vehicle registration is increased

by 41% in 2020 as the vehicle sales are decreased by 16% in
2020 due to the global pandemic [1]. As the EV sales grow,
the share of gasoline vehicles’ sales is estimated to decline
from 94% in 2019 to 81% in 2050 [2]. Incentives for EVs in-
cluding sales tax reductions and exemptions as well as sub-
sidies for the charging assets are aimed to promote the tran-
sition toward sustainable mobility, reduce greenhouse gas
generation, and improve local air quality in urban areas [3].
The increase in the number and capacity of EV interconnec-
tion will increase the EV charging demand in the distribu-
tion feeder. The EV charging load increases the residential
demand peak and network loss and further increases the risk
of overloading, voltage drops, and power quality degrada-
tion [4, 5]. Capacity expansions, installing energy storage,
and regulating the EV charging profile are among the efforts
to mitigate the adverse effects of large-scale integration of
EVs in the distribution networks [6].

Solar photovoltaic (PV) generation is the prominent dis-
tributed renewable energy resource (DER) that could be in-
stalled close to the customers. The reduction in the capital
cost through the project lifetime, the changes in state regula-
tion and policies to promote PV technology (e.g., 100% re-
newable generation in California by 2045), and the tax incen-
tives [2] are expected to further promote this technology and
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increase its installed capacity in the distribution networks.
The growth in capacity of the uncertain and variable PV gen-
eration may lead to excessive voltage fluctuations, voltage
violations, and unbalanced loading and increase the vulner-
ability of the distribution networks to overloading and pro-
tection malfunctions. The vehicle-to-grid (V2G) technology
with considerable power injection capacity coupled with PV
generation in the distribution feeders could further increase
the probability of reverse power flow and voltage variations.
Coordinating the charging and discharging schedule of EV
clusters with DERs including PV generation and energy stor-
age systems (ESS) could decrease the risk of such undesir-
able conditions. Providing services such as peak shaving,
valley filling, reduction in load curtailment by EVs further
improve the energy economics and reliability in the distri-
bution networks [7], [8]. In [9], the coordination between
EVs and DERs is formulated and solved by a differential
evolution optimization algorithm to mitigate the unbalance
among phases, improve the voltage profile, and decrease the
distribution system loss. In [10] a hybrid optimization is pro-
posed to reduce the EV operation cost. The scheduling of EV
charging stations is coordinated with PV and battery storage
systems using the real-time empirical data.

The uncertainties associated with the operation and inter-
connection of EVs including the uncertainties in the daily
energy consumption, arrival and departure times, maximum
and minimum available energy, and the number of intercon-
nected EVs, introduce challenges to the operation of distri-
bution networks with EVs. Stochastic programming (SP)
and robust optimization (RO) problem formulations are used
in the literature to address the uncertainties associated with
the integration of EVs. In [11] a two-stage SP problem is
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Nomenclature

Parameters
𝑝̄(.),𝑘,𝑡 Maximum real power.
𝑞(.),𝑘,𝑡 Maximum reactive power.
𝑆̄𝑙,𝑘 Maximum complex power of branch 𝑙 on phase 𝑘.
𝜂𝑐ℎ𝑒 , 𝜂𝑑𝑐𝑒 Battery charging and discharging efficiency.
𝑝𝑖,𝑘,𝑔 Maximum power at segment 𝑔 of the generation

cost curve.
𝜙𝑙,𝑘 Availability of phase 𝑘 on branch 𝑙.
𝜌𝑓,𝑡 Price of electricity of feeder.

𝑉 , 𝑉 Squared lower and upper limits of nodal voltage.
𝐴𝐷𝑑,𝑏 Element of demand-bus incidence matrix.
𝐴𝐸𝑒,𝑏 Element of energy storage-bus incidence matrix.
𝐴𝐼𝑖,𝑏 Element of unit-bus incidence matrix.
𝐴𝐿𝑙,𝑏 Element of line-bus incidence matrix.
𝐴𝑁𝑓,𝑏 Element of feeder-bus incidence matrix.
𝐴𝑉𝑣,𝑏 Element of PV-bus incidence matrix.
𝑐𝑐 Cost of load curtailment.
𝐼𝑎𝑟𝑣
𝑒,𝑘,𝑡 Binary parameter for interconnection of EV cluster.

𝐼𝑑𝑒𝑝
𝑒,𝑘,𝑡 Binary parameter for interconnection of EV cluster.
𝑃𝐹𝑓 Power factor at distribution feeder 𝑓 .
𝑤𝑖,𝑔 Marginal cost of the unit 𝑖 in segment 𝑔.
𝐸̂𝑎𝑟𝑣

𝑒,𝑘,𝑡 Forecasted available energy at arrival time.

𝐸̂𝑑𝑒𝑝
𝑒,𝑘,𝑡 Forecasted available energy at departure time.

𝐸̂𝑚𝑎𝑥
𝑒,𝑘,𝑡 Forecasted maximum available energy for EV clus-

ter.
𝐸̂𝑚𝑖𝑛

𝑒,𝑘,𝑡 Forecasted minimum available energy for EV clus-
ter.

𝑝̂𝑐ℎ,𝑚𝑎𝑥,𝑚𝑒,𝑘,𝑡 Maximum charging power for EV cluster 𝑒.

𝑝̂𝑑𝑐,𝑚𝑎𝑥,𝑚𝑒,𝑘,𝑡 Maximum discharging power for EV cluster 𝑒.
𝐼𝑒,𝑘,𝑡 Binary parameter for interconnection of EV cluster.
Sets and Indecies
ℂ𝑠 Set of the closed switches in spanning tree 𝑠.
𝕆𝑠 Set of the open switches in spanning tree 𝑠.
𝕊 Set of all spanning trees.
𝑏 Index of bus.
𝑑 Index of demand.
𝑒 Index of electric vehicle cluster.
𝑓 Index of distribution feeder.
𝑖 Index of distributed generation.
𝑘 Index of phase.
𝑙 Index of distribution branch.
𝑚, 𝑛 Index of sample.
𝑠 Index of spanning tree.
𝑣 Index of PV generation unit.
Variables
𝐔𝐦

𝐛,𝐭 Squared voltage vector on bus 𝑏.
𝐸𝑚

𝑒,𝑘,𝑡 Energy capacity of EV cluster.
𝑝𝑚(.),𝑘,𝑡 Real power of a unit.

𝑝𝑐ℎ,𝑚𝑒,𝑘,𝑡 Real charging power for electric vehicle cluster 𝑒.

𝑝𝑑𝑐,𝑚𝑒,𝑘,𝑡 Real discharging power for electric vehicle cluster 𝑒.
𝑝𝑠𝑚𝑖,𝑘,𝑔,𝑡 Power in segment 𝑔 of the cost curve for a dis-

tributed generation.
𝑞𝑚(.),𝑘,𝑡 Reactive power of a unit.
𝑦𝑙,𝑡 Binary variable representing the status of the dis-

tribution branch, 1 if connected, and 0 otherwise.
𝑆𝑚
(.),𝑘,𝑡 Apparent power on phase 𝑘.

formulated to determine the location and capacity of public
EV charging stations considering the uncertainties in EVs’
arrival and departure times and their charging patterns, as
well as the preferred walking distance to the charge station.
The objective function is to maximize the availability and ac-
cess of EVs to the charging stations. In [12] the capacity of
EV chargers, solar PV panels, and battery energy storage in
the EV charging station is determined considering the uncer-
tainty associated with the EV mobility and charging demand,
PV generation, and electricity price. The problem is formu-
lated as a SP problem using scenarios. In [13], the dispatch
of EV charging stations equipped with PV generation and
energy storage systems is determined using a stochastic dy-
namic programming approach that captures the uncertainty
in electricity price, PV output, as well as electricity tariffs. In
[14] a RO problem is formulated to determine the charging
and discharging schedule of EV aggregators, considering the
uncertainty in the available energy of EVs that is affected by
mobility patterns and driver behaviors. The objective is to
minimize the operation cost of the system including the op-

eration cost of EV aggregators. In [15], the energy cost and
voltage deviation are minimized while capturing the uncer-
tainty in charging power and energy capacity, and the volatil-
ity in real and reactive demand. A RO problem is formulated
to determine the real and reactive power dispatch of EVs and
Benders’ decomposition technique is used to solve the prob-
lem.

While in the SP approach, the probability distribution func-
tions of the uncertain parameters are known to generate sce-
narios, formulating a RO problem eliminates the need for
this assumption. In the RO problem, the uncertainty is de-
fined as a set and the worst-case realization of uncertainty
is considered. In most cases, the estimated probability dis-
tribution function for uncertain variables may not be accu-
rate. Moreover, to accurately represent the uncertainties, a
large number of scenarios is required which further increases
the computation burden of solving the SP problems. Com-
pared to the solution procured by SP, the worst-case real-
ization of the uncertainty in the RO formulation provides
a more conservative solution and by regulating the budget
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of uncertainty, the conservativeness of the solution is ad-
justed [16]. In [16, 17] a hybrid stochastic and robust op-
timization approach is proposed to reduce the computation
burden of the SP problem by considering the uncertainty
sets. Distributionally robust optimization (DRO) is intro-
duced in [18, 19, 20] to capture the worst-case realization
of the probability distribution of the uncertain variables. In
[18], a decomposition framework is proposed to solve a two-
stage data-driven transmission expansion planning problem.
The 𝐿1 norm is used to construct the ambiguity set using the
empirical data, that represents the uncertainty in wind gener-
ation. In [19] a data-driven risk-averse stochastic unit com-
mitment problem formulation is proposed where 𝐿1 and 𝐿∞norms are used to construct the ambiguity set of probability
distributions for wind generation. The formulated problem
is solved using Bender’s decomposition technique. In [20] a
DRO framework for the unit commitment problem is pro-
posed where the Wasserstein metric is used as a measure
to construct the ambiguity set and the solution to the for-
mulated problem is compared to that of SP and RO prob-
lems. In [21] a two-stage DRO problem with the Kullback-
Divergence metric is presented for the planning of EV charg-
ing stations and renewable resources in the power network.
Here, the location of the charging stations is determined in
the first stage and the capacities of renewable generation and
energy storage are optimized in the second stage.
In this paper, a Wasserstein metric-based DRO problem is
formulated and solved for the unbalanced distribution net-
work operation considering the uncertainties associated with
EVs and PV generation. The formulated problem is a two-
stage optimization problem where the topology of the radial
distribution network is determined in the first stage problem,
and the distribution network operation cost is minimized con-
sidering the worst-case probability distribution of the uncer-
tainties in the second stage problem. The contributions of
this paper are summarized as follows:

– A data-driven DRO problem is proposed for the un-
balanced operation of the distribution networks con-
sidering the network switching, and the performance
of the procured solution is compared with the solu-
tions to the SP and RO counterparts.

– The uncertainties associated with forecasted PV gen-
eration as well as the EVs i.e. the available energy
at arrival and departure times, and the maximum and
minimum available energy and power for EVs were
considered.

– The V2G capability of EVs is addressed and the in-
sample and out-of-sample performance of DRO and
SP problems are compared.

The rest of the paper is organized as follows. In section 2, a
two-stage data-driven DRO problem is formulated using the
constructed ambiguity set. The ambiguity set is formed us-
ing the empirical data and the Wasserstein metric is used as
a distance measure. In section 3, the solution framework for
the proposed problem is presented. C&CG technique is used

to solve this problem. The numerical results and conclusion
are presented in sections 4 and 5 respectively.

2. Problem Formulation
In this section, first, the formed ambiguity set for the prob-

ability distribution of uncertain variables is presented and
later, the data-driven DRO problem is formulated using the
procured ambiguity set.
2.1. Forming the ambiguity set

The probability distributions of the forecasted PV gener-
ation, the maximum and minimum capacity of EV clusters,
the maximum power of EV clusters, and the available energy
at arrival and departure times are considered to be uncer-
tain. The historical data of PV generation and EV clusters’
characteristics are used to construct an empirical probability
distribution. Using the empirical data on the maximum and
minimum available energy (𝐸̂𝑚𝑎𝑥

𝑒,𝑘,𝑡 , 𝐸̂𝑚𝑖𝑛
𝑒,𝑘,𝑡), maximum power

consumption (𝑝̂𝑚𝑎𝑥𝑒,𝑘,𝑡), and the available energy at arrival and
departure times (𝐸̂𝑎𝑟𝑣

𝑒,𝑘,𝑡, 𝐸̂𝑑𝑒𝑝
𝑒,𝑘,𝑡) and the forecasted PV gener-

ation (𝑝̂𝑣,𝑘,𝑡), the empirical probability distribution for each
variable is formed. For a set of empirical data of size 𝑁 , the
probability distribution of empirical data is Λ̂ = (𝜃̂1, ..., 𝜃̂𝑛)where 𝜃̂𝑛 = 1∕𝑁 . Based on the empirical probability distri-
butions the unknown probability distributions of uncertain
variables associated with PVs and EV clusters are procured
with the confidence level 𝛽. Here, the Wasserstein metric
shown in (1), is used to quantify the distance 𝜈(Λ, Λ̂) be-
tween the unknown probability distribution and the empiri-
cal probability distribution.

𝜈(Λ, Λ̂) ∶= inf
𝜋

∑

|𝜈|

∑

|𝜈̂|
𝜋𝜈,𝜈̂ ⋅‖

‖

𝜈 − 𝜈̂‖
‖1 (1)

Here, 𝜈 and 𝜈̂ are the vectors of the uncertain variables with
unknown and empirical probability distributions, respectively.
Furthermore, |𝜈| and |𝜈̂| are the sizes of vectors 𝜈 and 𝜈̂ re-
spectively. Furthermore, 𝜋𝜈,𝜈̂ represents the joint probability
distribution of random variables 𝜈 and 𝜈̂. The ambiguity set
is defined as 𝔻 =

{

𝜈(Λ, Λ̂) ≤ 𝛼
}

where 𝛼 is the maximum
distance between the two probability distributions defined as
𝛼 = 𝐷

√

2
𝑁 ln 1

(1−𝛽) [20]. The ambiguity set is formed by
(2)-(5) where 𝑚 = 1, ..., 𝑁 and 𝑛 = 1, ..., 𝑁 are the indices
of the samples from unknown and empirical probability dis-
tributions, and 𝜋𝑚,𝑛 is the joint probability of 𝜃𝑚 (unknown
marginal probability of sample 𝑚) and 𝜃̂𝑛 (marginal proba-
bility of empirical data sample 𝑛). Here, the constraints (3)
and (4) are enforcing the relationship between the joint prob-
ability distribution 𝜋𝑛,𝑚 and the marginal probability distri-
butions of unknown and empirical data samples. Constraint
(5) shows the property of the unknown probability distribu-
tion.
∑

𝑛

∑

𝑚
𝜋𝑚,𝑛

|

|

𝜈𝑚 − 𝜈𝑛|
|

≤ 𝛼 (2)
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∑

𝑛
𝜋𝑚,𝑛 = 𝜃𝑚, ∀𝑚 (3)

∑

𝑚
𝜋𝑚,𝑛 = 𝜃̂𝑛, ∀𝑛 (4)

∑

𝑚
𝜃𝑚 = 1 (5)

2.2. Formulation of Data-driven DRO Problem
In this section, a two-stage data-driven optimization prob-

lem is formulated for the unbalanced operation of the distri-
bution network. In the first stage, the topology of the distri-
bution network is determined by procuring the state of the
switches in the network. In the second-stage problem, the
worst-case realization of the probability distribution of the
uncertain variables is determined within a bounded Wasser-
stein distance from the empirical probability distribution. The
rest of the decision variables include the real and reactive
power dispatch of DERs and the distribution feeder.

The states of the switches in the first-stage problem main-
tain the radial topology of the distribution network. Here,
the radial distribution system is represented as a graph 𝐆 =
(𝐕,𝐄), where 𝐕 denotes the set of vertices (buses) with 𝐾
vertices and 𝐄 denotes the set of edges (lines) with 𝑀 edges
where 𝐾 − 1 = 𝑀 . The spanning trees of the distribution
network include all possible radial topologies. The follow-
ing algorithm is developed to find the switching state of the
distribution lines that ensures the radial operation of the dis-
tribution network:

Step 1: In a distribution network graph 𝐺 with 𝐾 vertices
and 𝑀 edges, find all combinations of edges with 𝐾 − 1
number of edges.

Step 2: Check if all 𝐾 vertices are present in the selected
combinations in Step 1. If so, return these combinations as
spanning trees, otherwise, discard it.

Step 3: The spanning trees form a set 𝑆 in which in each
spanning tree 𝑠 ∈ 𝑆, the state of a switchable line that is
open i.e., 𝑙 ∈ 𝕆𝑠 is 0, i.e., 𝑦𝑙,𝑡 = 0. Similarly, the state of the
switchable line that is closed i.e., 𝑙 ∈ ℂ𝑠 is 1, i.e., 𝑦𝑙,𝑡 = 1.
As one of the spanning trees should be selected, constraint
(8) is enforced. The selected spanning tree is formed by a
certain combination of closed and open switches as shown
in (8).

min
𝑦𝑙,𝑡

𝟎 + max
Λ∈𝔻

𝑚𝑖𝑛
𝐩,𝐪,𝐔

𝐸𝜃

(

∑

𝑓

∑

𝑘

∑

𝑡
𝜌𝑓,𝑡 ⋅ 𝑝

𝑚
𝑓,𝑘,𝑡+

∑

𝑏

∑

𝑘

∑

𝑡

∑

𝑔

∑

𝑖
𝐴𝐼 𝑖,𝑏 ⋅𝑤𝑖,𝑔 ⋅ 𝑝𝑠

𝑚
𝑖,𝑘,𝑔,𝑡+

∑

𝑏

∑

𝑘

∑

𝑡
𝑐𝑐 ⋅ 𝐴𝐷𝑑,𝑏 ⋅

(

𝑝𝑑,𝑘,𝑡 − 𝑝𝑚𝑑,𝑘,𝑡
)

)

(6)

Subject to: (2)-(5),
𝐾−1
∑

𝑙=1
𝑦𝑙,𝑡 = 𝐾 − 1 (7)

∑

𝑠∈𝕊

⎛

⎜

⎜

⎝

∏

𝑙∈ℂ𝑠

𝑦𝑙,𝑡 ⋅
∏

𝑙∈𝕆𝑠

(

1 − 𝑦𝑙,𝑡
)

⎞

⎟

⎟

⎠

= 1 (8)

∑

𝑙
𝐴𝐿𝑙,𝑏 ⋅ 𝑝

𝑚
𝑙,𝑘,𝑡+

∑

𝑖
𝐴𝐼 𝑖,𝑏 ⋅ 𝑝

𝑚
𝑖,𝑘,𝑡+

∑

𝑣
𝐴𝑉 𝑣,𝑏 ⋅ 𝑝̂

𝑚
𝑣,𝑘,𝑡+

∑

𝑓
𝐴𝑁𝑓,𝑏 ⋅ 𝑝

𝑚
𝑓,𝑘,𝑡 +

∑

𝑒
𝐴𝐸𝑒,𝑏 ⋅ (𝑝

𝑑𝑐,𝑚
𝑒,𝑘,𝑡 − 𝑝𝑐ℎ,𝑚𝑒,𝑘,𝑡 )

=
∑

𝑑
𝐴𝐷𝑑,𝑏 ⋅ 𝑝

𝑚
𝑑,𝑘,𝑡 (9)

∑

𝑙
𝐴𝐿𝑙,𝑏 ⋅ 𝑞

𝑚
𝑙,𝑘,𝑡+

∑

𝑖
𝐴𝐼 𝑖,𝑏 ⋅ 𝑞

𝑚
𝑖,𝑘,𝑡+

∑

𝑓
𝐴𝑁𝑓,𝑏 ⋅ 𝑞

𝑚
𝑓,𝑘,𝑡

=
∑

𝑑
𝐴𝐷𝑑,𝑏 ⋅ 𝑞

𝑚
𝑑,𝑘,𝑡 (10)

𝑝𝑠𝑚𝑖,𝑘,𝑔,𝑡 ≤ 𝑝𝑖,𝑘,𝑔 (11)

𝑝𝑚𝑖,𝑘,𝑡 =
∑

𝑔
𝑝𝑠𝑚𝑖,𝑘,𝑔,𝑡 (12)

𝐴𝐿𝑙,𝑏⋅𝐔𝑚
𝑏,𝑡+2(𝐑̃𝑙⋅𝐩𝑚𝑙,𝑡+𝐗̃𝑙⋅𝐪𝑚𝑙,𝑡) ≤ 𝑀 ⋅(1−𝝓𝑙)

(13)

𝐴𝐿𝑙,𝑏 ⋅𝐔𝑚
𝑏,𝑡+2(𝐑̃𝑙 ⋅𝐩𝑚𝑙,𝑡+𝐗̃𝑙 ⋅𝐪𝑚𝑙,𝑡) ≥ −𝑀 ⋅(1−𝝓𝑙)

(14)
𝑉 ≤ 𝑈𝑚

𝑏,𝑘,𝑡 ≤ 𝑉 (15)

𝑝𝑚𝑙,𝑘,𝑡 ≥ −𝜙𝑙,𝑘 ⋅ 𝑦𝑙,𝑡 ⋅ 𝑆̄𝑙,𝑘 ⋅ cos(
𝜋
8
) (16)

𝑝𝑚𝑙,𝑘,𝑡 ≤ 𝜙𝑙,𝑘 ⋅ 𝑦𝑙,𝑡 ⋅ 𝑆̄𝑙,𝑘 ⋅ cos(
𝜋
8
) (17)

𝑞𝑚𝑙,𝑘,𝑡 ≥ −𝜙𝑙,𝑘 ⋅ 𝑦𝑙,𝑡 ⋅ 𝑆̄𝑙,𝑘 ⋅ cos(
𝜋
8
) (18)

𝑞𝑚𝑙,𝑘,𝑡 ≤ 𝜙𝑙,𝑘 ⋅ 𝑦𝑙,𝑡 ⋅ 𝑆̄𝑙,𝑘 ⋅ cos(
𝜋
8
) (19)

𝑝𝑚𝑙,𝑘,𝑡 + 𝑞𝑚𝑙,𝑘,𝑡 ≥ −𝜙𝑙,𝑘 ⋅ 𝑦𝑙,𝑡 ⋅ 𝑆̄𝑙,𝑘 ⋅ (sin(
𝜋
8
)+ cos(𝜋

8
)) (20)

𝑝𝑚𝑙,𝑘,𝑡 + 𝑞𝑚𝑙,𝑘,𝑡 ≤ 𝜙𝑙,𝑘 ⋅ 𝑦𝑙,𝑡 ⋅ 𝑆̄𝑙,𝑘 ⋅ (sin(
𝜋
8
) + cos(𝜋

8
)) (21)

𝑝𝑚𝑙,𝑘,𝑡 − 𝑞𝑚𝑙,𝑘,𝑡 ≥ −𝜙𝑙,𝑘 ⋅ 𝑦𝑙,𝑡 ⋅ 𝑆̄𝑙,𝑘 ⋅ (sin(
𝜋
8
)+ cos(𝜋

8
)) (22)

𝑝𝑚𝑙,𝑘,𝑡 − 𝑞𝑚𝑙,𝑘,𝑡 ≤ 𝜙𝑙,𝑘 ⋅ 𝑦𝑙,𝑡 ⋅ 𝑆̄𝑙,𝑘 ⋅ (sin(
𝜋
8
) + cos(𝜋

8
)) (23)

0 ≤ 𝑝𝑚𝑖,𝑘,𝑡 ≤ 𝑝̄𝑖,𝑘 (24)

−𝑞𝑖,𝑘 ≤ 𝑞𝑚𝑖,𝑘,𝑡 ≤ 𝑞𝑖,𝑘 (25)
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𝑝𝑚𝑑,𝑘,𝑡 ≤ 𝑝̄𝑑,𝑘,𝑡 (26)

𝑞𝑚𝑓,𝑘,𝑡 ≤ 𝑡𝑎𝑛 (cos−1 𝑃𝐹𝑓 ) ⋅ 𝑝𝑚𝑓,𝑘,𝑡 (27)

𝑞𝑚𝑓,𝑘,𝑡 ≥ −𝑡𝑎𝑛 (cos−1 𝑃𝐹𝑓 ) ⋅ 𝑝𝑚𝑓,𝑘,𝑡 (28)

𝐸̂𝑚𝑖𝑛,𝑚
𝑒,𝑘,𝑡 −𝑀 ⋅ (1 − 𝐼𝑒,𝑘,𝑡) ≤ 𝐸𝑚

𝑒,𝑘,𝑡 (29)

𝐸𝑚
𝑒,𝑘,𝑡 ≤ 𝐸̂𝑚𝑎𝑥,𝑚

𝑒,𝑘,𝑡 +𝑀 ⋅ (1 − 𝐼𝑒,𝑘,𝑡) (30)

𝐸𝑚
𝑒,𝑘,𝑡 ≤ 𝐸̂𝑎𝑟𝑣,𝑚

𝑒,𝑘 +𝑀 ⋅
(

1 − 𝐼𝑎𝑟𝑣𝑒,𝑘,𝑡

)

(31)

𝐸𝑚
𝑒,𝑘,𝑡 ≥ 𝐸̂𝑎𝑟𝑣,𝑚

𝑒,𝑘 −𝑀 ⋅
(

1 − 𝐼𝑎𝑟𝑣𝑒,𝑘,𝑡

)

(32)

𝐸𝑚
𝑒,𝑘,𝑡 ≤ 𝐸̂𝑑𝑒𝑝,𝑚

𝑒,𝑘 +𝑀 ⋅
(

1 − 𝐼𝑑𝑒𝑝𝑒,𝑘,𝑡

)

(33)

𝐸𝑚
𝑒,𝑘,𝑡 ≥ 𝐸̂𝑑𝑒𝑝,𝑚

𝑒,𝑘 −𝑀 ⋅
(

1 − 𝐼𝑑𝑒𝑝𝑒,𝑘,𝑡

)

(34)

𝐸𝑚
𝑒,𝑘,𝑡 − 𝐸𝑚

𝑒,𝑘,𝑡−1 − 𝜂𝑐ℎ𝑒 𝑝𝑐ℎ,𝑚𝑒,𝑘,𝑡+

𝑝𝑑𝑐,𝑚𝑒,𝑘,𝑡 ∕𝜂
𝑑𝑐
𝑒 ≤ 𝑀 ⋅

(

1 − 𝐼𝑒,𝑘,𝑡
) (35)

𝐸𝑚
𝑒,𝑘,𝑡 − 𝐸𝑚

𝑒,𝑘,𝑡−1 − 𝜂𝑐ℎ𝑒 𝑝𝑐ℎ,𝑚𝑒,𝑘,𝑡+

𝑝𝑑𝑐,𝑚𝑒,𝑘,𝑡 ∕𝜂
𝑑𝑐
𝑒 ≥ −𝑀 ⋅

(

1 − 𝐼𝑒,𝑘,𝑡
) (36)

0 ≤ 𝑝𝑐ℎ,𝑚𝑒,𝑘,𝑡 ≤ 𝐼𝑒,𝑘,𝑡 ⋅ 𝑝̂
𝑐ℎ,𝑚𝑎𝑥,𝑚
𝑒,𝑘,𝑡 (37)

0 ≤ 𝑝𝑑𝑐,𝑚𝑒,𝑘,𝑡 ≤ 𝐼𝑒,𝑘,𝑡 ⋅ 𝑝̂
𝑑𝑐,𝑚𝑎𝑥,𝑚
𝑒,𝑘,𝑡 (38)

𝑌𝑡 ≤ (𝑦𝑙,𝑡)𝑙∈𝕆𝑠
(39)

𝑌𝑡 ≤ (𝑦𝑙,𝑡)𝑙∈ℂ𝑠
(40)

𝑌𝑡 ≥ (𝑦𝑙,𝑡)𝑙∈ℂ𝑠
+ (𝑦𝑙,𝑡)𝑙∈𝕆𝑠

− 1 (41)
The objective function presented in (6), is the operation cost
of DERs, the cost of supplying electricity from the distri-
bution feeder and the penalty associated with the curtailed
demand. To maintain the radial topology, (7) enforces the
number of branches (edges) to be equal to 𝐾 − 1 and (8)
would lead to selecting one set of switchable lines that form
a spanning tree in the set 𝕊. The nonlinear terms appear in
(8) are linearized using (39)-(41). Here, 𝑌𝑡 is binary variable,
(39) and (40) ensure that 𝑌𝑡 is zero if (𝑦𝑙,𝑡)𝑙∈𝕆𝑠

or (𝑦𝑙,𝑡)𝑙∈ℂ𝑠is zero. The last constraint (40) ensures that 𝑌𝑡 is 1 if both
(𝑦𝑙,𝑡)𝑙∈𝕆𝑠

and (𝑦𝑙,𝑡)𝑙∈𝕆𝑠
are 1.

Here, (9) and (10) show the nodal real and reactive power

balance in the distribution network. The operation cost of the
distributed generation (DG) unit is formulated as a quadratic
function of the output power which is further linearized us-
ing a piece-wise linearization technique in (6), (11) and (12).
Constraints (13) and (14), present the real and reactive power
flow in distribution branch 𝑙, where, 𝜙𝑙,𝑘 ∈ 𝜙𝐥, 𝑈𝑚

𝑏,𝑘,𝑡 ∈ 𝐔𝐦
𝐛,𝐭 .The nodal voltage is limited by lower and upper bounds as

shown in (15). The voltage unbalance between the phases is
small and the loss in the distribution branches is neglected.
The real and reactive power flows satisfy a circular constraint
where the squared real power flow and the squared reactive
power flow on each branch are limited by the squared appar-
ent power capacity of the branch. The circular constraint is
further linearized by a convex polygon (16)-(23) using the
methods proposed in [22, 23]. As the number of sides in-
creases, the approximated polygon is a tighter representation
of the circular constraint. Here, an octagon is used where the
radius of the approximated enclosing circle of the octagon is
𝑆̄𝑙,𝑘 = 𝑆𝑚𝑎𝑥

𝑙,𝑘 ⋅
√

(2𝜋∕8)∕(sin(2𝜋∕8)). Similar constraints
could be written for the distribution feeder given the appar-
ent power capacity of the feeder. Constraints (24) and (25)
are limiting the real and reactive power for a DG unit by its
capacity. The served demand is less than the total demand
as enforced by (26). For distribution feeder 𝑓 , the reactive
power on each phase is limited by the acceptable power fac-
tor of the feeder as shown in (27)-(28). The limits on the
available energy in an EV cluster 𝑒 are shown in (29) and
(30). As shown in these constraints, the limits on the avail-
able energy are enforced once the vehicle clusters are con-
nected to the network, i.e. 𝐼𝑒,𝑘,𝑡 = 1. The available energy
at arrival time is limited by (31) and (32), where these con-
straints are enforced once the vehicle clusters are connected
to the network at the arrival time, i.e. 𝐼𝑎𝑟𝑣𝑒,𝑘,𝑡 = 1. Similarly,
the available energy at departure time is limited by (33) and
(34), where (33) and (34) are enforced once the vehicle clus-
ters are connected to the network at the departure time, i.e.
𝐼𝑑𝑒𝑝𝑒,𝑘,𝑡 = 1. Here, 𝐼𝑒,𝑘,𝑡 = 1 for all hours between the arrival
and departure times. The relationship between the available
energy and the power dispatch of each EV cluster is enforced
by (35) and (36). Constraint (37) and (38) enforce the limita-
tion of charging and discharging power for each EV cluster.
The data-driven DRO problem is formulated as (6)-(38), (2)-
(5) where the object function is reformulated as (42).

max
Λ∈𝔻

𝑚𝑖𝑛
𝐩,𝐪,𝐔

∑

𝑚
𝜃𝑚 ⋅

(

∑

𝑓

∑

𝑘

∑

𝑡
𝜌𝑓,𝑡 ⋅ 𝑝

𝑚
𝑓,𝑘,𝑡+

∑

𝑏

∑

𝑘

∑

𝑡

∑

𝑔

∑

𝑖
𝐴𝐼 𝑖,𝑏 ⋅𝑤𝑖,𝑔 ⋅ 𝑝𝑠

𝑚
𝑖,𝑔,𝑘,𝑡+

∑

𝑏

∑

𝑘

∑

𝑡
𝑐𝑐 ⋅ 𝐴𝐷𝑑,𝑏 ⋅

(

𝑝𝑑,𝑘,𝑡 − 𝑝𝑚𝑑,𝑘,𝑡
)

)

(42)

3. Solution Methodology
To solve the problem presented in (6)-(38), (2)-(5), the

following solution algorithm based on C&CG technique is
presented. Here, the abstract form of the problem is formu-
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lated as (43)-(47).
min
𝒚

𝟎 + max
Λ∈𝔻

min
𝒙

𝒃⊤𝒙 (43)

subject to:
𝑨𝒚 ≤ 𝒅 (44)

𝑭𝒙 − 𝑬𝒚 ≤ 𝒌 (45)

𝑮𝒙 −𝑲𝒚 = 𝒈 (46)

𝑱𝒙 = 𝒉 (47)
The proposed algorithm is presented in the following steps:
Step 1) Initialization: Initialize the upper bound 𝑈𝐵 = ∞,
lower bound 𝐿𝐵 = −∞, 𝜖 ≤ 10−3 and the iteration counter
𝑤 = 0.
Step 2) Solve the master problem: Solve the master problem
for each iteration as follows:

min
𝒚

𝟎 + 𝜂 (48)

subject to:
𝑨𝒚 ≤ 𝒅 (49)

𝜼 ≥ 𝜽∗𝐛⊤𝒙(𝑙), ∀𝑙 ≤ 𝑤 (50)

𝑭𝒙(𝑙) − 𝑬𝒚 ≤ 𝒌, ∀𝑙 ≤ 𝑤 (51)

𝑮𝒙(𝑙) −𝑲𝒚 = 𝒈, ∀𝑙 ≤ 𝑤 (52)

𝑱𝒙(𝑙) = 𝒉, ∀𝑙 ≤ 𝑤 (53)
Update the 𝐿𝐵 as the following equation (54):

𝐿𝐵 = 𝜂̂𝑤+1 (54)

Step 3) Solve the subproblem: The objective function of the
subproblem and it’s constraints are given as follows;

max
Λ∈𝔻

min
𝒙

𝒃⊤𝒙 (55)

subject to:
𝑭𝒙 ≤ 𝒌 + 𝑬𝒚∗ (56)

𝑮𝒙 = 𝒈 +𝑲𝒚∗ (57)

𝑱𝒙 = 𝒉 (58)

constraints (2)-(5)
Then, the subproblem presented in (55)-(58) is reformulated
using it’s dual form in (59)-(60):

𝑸(𝒚) = max
Λ∈𝔻,𝛾,𝜆,𝜇

(𝒌+ 𝑬𝒚∗)⊤𝜸+(𝒈+𝑲𝒚∗)⊤𝝀+𝒉⊤𝝁

(59)
subject to:

𝑭⊤𝜸 +𝑮⊤𝝀 + 𝑱⊤𝝁 ≤ 𝒃 (60)

constraints (2)-(5)
Where, 𝛾 , 𝜆 and 𝜇 are the dual variables for constraints (56),
(57) and (58) respectively. Then update the 𝑈𝐵 using (61)
and go to Step 4.

𝑈𝐵 = 𝑚𝑖𝑛{𝑈𝐵,𝑸(𝒚∗(𝑤+1))} (61)

Step 4) Check the convergence criterion: If 𝑈𝐵 − 𝐿𝐵 ≤ 𝜖
end the process, otherwise proceed to step 5.
step 5) Generate columns and constraints: Add (50)-(53) to
the master problem, set 𝑤 = 𝑤 + 1 and go back to step 2.

4. Numerical Results
In this section, the modified IEEE 34-bus and IEEE 123-

bus distribution systems are considered. The simulations are
carried out on a server with dual 14 Core Intel Xeon 2.6 GHz
and 380 GB of memory and CPLEX 12.8 is used as a solver.
Historical sample data are considered for PV generation and
EV cluster interconnections. The EV cluster data include
minimum and maximum energy capacity of EVs, the avail-
able energy at arrival and departure times, and the maximum
power of EV clusters. The arrival and departure times are
considered as parameters. Using a Gaussian probability dis-
tribution, sample data for PV generation are generated with
the mean value equal to the forecasted PV generation and
the standard deviation of 0.1 of the mean value. For EVs
clusters, the sample data of available energy at the arrival
and departure times, the maximum power output of EV clus-
ters as well as the maximum and minimum available energy
of EV clusters are generated using a Gaussian probability
distribution with a mean equal to the forecasted values and
the standard deviation equal to 0.1 of the mean value. The
maximum charging/discharging power for single-phase and
three-phase EVs are 7.4 kW and 22.2 kW, respectively. The
charging and discharging efficiencies for an EV cluster are
90%. The load curtailment cost is 20 $/kWh. The available
energy at the arrival time is 20% of the maximum energy ca-
pacity and the available energy at the departure time is 95%
of the maximum energy capacity of the EV clusters. For the
sake of simplicity, the arrival and departure times for all EV
clusters are 9:00 and 18:00 respectively.
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Table 1
Dispatchable DG units’ characteristics

DG Bus
𝑃 𝑚𝑖𝑛

(kW)
𝑃 𝑚𝑎𝑥

(kW)
𝑄𝑚𝑖𝑛

(kVAR)
𝑄𝑚𝑎𝑥

(kVAR)
1 4 0 150 -75 75
2 6 0 100 -50 50
3 24 0 50 -25 25

4.1. IEEE 34-bus system
The IEEE 34-bus distribution network supplies three-phase

and single-phase loads where the peak real demands on phase
A, phase B, and phase C are 606 kW, 584 kW, and 579 kW
respectively. Similarly, the peak reactive demands on these
phases are 357, 344, and 343 kVar respectively. Three 3-
phase PV generation units are connected to the distribution
network, where each has the maximum forecasted output
power of 126.92 kW. The maximum total PV generation is
21.52% of the total peak demand. Fig 1 shows the diagram
of the modified IEEE 34-bus distribution network and the
interconnection of PVs, DGs, and EV clusters. Here, the
switchable lines are shown as dashed lines. The characteris-
tics of the dispatchable DG units are shown in Table 1. Table
2 shows the operation cost of DG1-DG3 for each segment of
the linearized cost curve. The hourly electricity price is con-
sidered for the feeder. As shown in Fig. 1, four EV clusters
are considered. EV cluster 1 has a three-phase interconnec-
tion, while EV clusters 2, 3, and 4 are connected to the grid
on phases A, B, and C, respectively. Table 3 shows the char-
acteristics of the EV clusters.
The following cases are considered:
Case 1 – Deterministic operation of the distribution network
Case 2 – Scenario-based stochastic operation of the distri-
bution network
Case 3 – Robust operation of the distribution network
Case 4 – Data-driven distributionally robust operation of the
distribution network

Figure 1: Modified IEEE 34-bus distribution network

4.1.1. Case 1 - Deterministic operation of the
distribution network

In this case, the deterministic solutions of the distribution
network operation problem with and without EV intercon-

Table 2
The marginal cost of each segment for DGs ($/kWh)

DG 𝑤𝑖,1 𝑤𝑖,2 𝑤𝑖,3 𝑤𝑖,4
1 0.18 0.22 0.26 0.30
2 0.17 0.24 0.31 0.38
3 0.15 0.25 0.35 0.45

Table 3
Characteristics of EV clusters in the IEEE 34-bus system

EV
Number of
vehicles Bus

𝑃 𝑚𝑎𝑥

(kW)
𝐸𝑚𝑖𝑛

(kWh)
𝐸𝑚𝑎𝑥

(kWh)
1 40 4 888 360 3600
2 25 6 185 75 750
3 40 24 296 120 1200
4 30 16 222 90 900

Table 4
The status of switchable branches in Case 1 without EV inter-
connection
Switchable

branch Hours (24 hours)

B1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
B2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
B3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
B4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
B5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

nections are investigated. The operation cost of the distri-
bution network without EV interconnection is $4530.19 and
the operation cost increases to $5336.82 when EV clusters
are interconnected to the distribution network. Fig. 2 shows
the dispatch of feeder, PVs, DGs and charging and discharg-
ing power of EVs on phase A. The total energy provided by
the feeder and DGs is 11860 kWh. Tables 4 and 5 show the
state of the switchable lines in the network without and with
EV interconnection respectively.

Figure 2: The dispatch of feeder, DGs, PVs, and the charging
and discharging power of EVs on phase A in Case 1.

4.1.2. Case 2 – Scenario-based stochastic operation of
the distribution network

In this case, the uncertainty associated with the PV gen-
eration and EV clusters are considered using 40 scenarios.
The expected operation cost of the distribution network is in-
creased to $5364.58 compared to the deterministic solution
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Table 5
The status of switchable branches in Case 1 with EV intercon-
nection
Switchable
branches Hours (24 hours)

B1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
B2 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
B3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
B4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
B5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 6
The status of switchable branches in Case 2
Switchable

branch Hours (24 hours)

B1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
B2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
B3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
B4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
B5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

as a result of the imposed uncertainties in the operation hori-
zon. The switching states of the switchable lines are shown
in Table 6. As shown in this table, the branch connecting
buses 4 and 23 is closed and the branch connecting buses 9
to 13 is opened. The expected dispatch of feeder, PVs, DGs
and charging and discharging power of EVs on phase A is
shown in Fig. 3. Here, the total expected energy provided by
the feeder and DGs is 11885 kWh which is increased com-
pare to that in Case 1.

Figure 3: The expected dispatch of feeder, DGs, PVs, and
charging and discharging power of EVs on phase A in Case 2.

4.1.3. Case 3 – Robust operation of the distribution
network

In this section, a two-stage robust optimization problem
is formulated and solved using the C&CG algorithm. The
non-linear terms in the sub-problem are linearized using Mc-
Cormick envelopes. The uncertainty sets for the PV genera-
tion and EV cluster characteristics are formed using the up-
per and lower bounds of the empirical data. Fig. 4, shows the
worst-case dispatch of feeder, PVs, DGs, and charging and
discharging power of EVs on phase A. In this case, the total
energy output of DGs and feeder is increased to 12392 kWh,
which is larger than those in Cases 1 and 2. The operation

Table 7
The status of switchable branches in Case 4
Switchable
branches Hours (24 hours)

B1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
B2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
B3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
B4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0
B5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

cost of the distribution network is $11834.53 which is more
than those in Cases 1 and 2. As expected, the solution to
the robust optimization problem is more conservative com-
pared to the solution to the SP and deterministic problems.
The switching states of the switchable branches in the dis-
tribution system are the same as those in Case 2, except for
hours 5 and 7, where branch 1 is closed and branches 2 and 3
are opened. The total demand curtailment is 348.3650 kWh
which is more than those in Cases 1 and 2.

Figure 4: The worst-case dispatch of feeder, DGs, PVs, and
charging and discharging of EVs in Case 3 on phase A.

4.1.4. Case 4 – Data-driven distributionally robust
operation of the distribution network

In this section, the worst-case probability distributions of
uncertain variables are procured given the 40 sample data for
each variable. Fig. 5, shows the expected dispatch of feeder,
PVs, DGs, and charging and discharging power of EVs for
phase A, considering the worst-case probability of each sce-
nario. The total expected energy output of feeder and DGs
in this case is 12117 kWh which is less than that in Case 3
and more than that in Cases 1 and 2. The switching states
of distribution branches are given in Table 7. Here, without
switchable branches, the maximum voltage deviation during
the operation horizon on phases A, B, and C, is 0.052; how-
ever, with switching capability, such deviation will decrease
to 0.016. In this case, the impacts of the size of the histori-
cal data and selected confidence level, V2G capability in EV
clusters, and the out-of-sample performance of DRO are in-
vestigated in the IEEE-34 distribution network.
a) The impacts of sample size and confidence level

Table 8, shows the impact of the number of samples on the
total in-sample operation cost of the distribution network in
this case. The results are compared to those presented in
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Figure 5: The expected dispatch of feeder, DGs, PVs, and
charging and discharging of EVs on phase A in Case 4, consid-
ering the worst-case probability distribution of uncertain vari-
ables.

Case 2. As shown in this table the expected operation cost
of the distribution network as the solution to the data-driven
DRO problem, converges to the solution to the SP problem as
the size of sample data increases. As shown in Table 8, the
solution to the formulated DRO problem i.e., the expected
operation cost of the distribution network, for different sizes
of sample data, is greater than the solution to the SP prob-
lem. This shows that solving the DRO problem provides a
more conservative solution compared to the SP solutions.
Furthermore, it is shown in this case that the solution to the
SP problem i.e., the expected operation cost of the distribu-
tion network, increases as the number of samples increases;
however, the solution to the DRO problem decreases as the
number of samples increases. The solution to the DRO prob-
lem is less conservative compared to the solution to the RO
problem. Here, the expected operation cost of the distri-
bution network is $8019.10 that is increased to $11834.53
when the distribution network operation problem is solved
as a RO problem. Table 9 shows the solution time with dif-
ferent sizes of sample data in Cases 2 and 4. As shown in this
table, the solution time for solving the DRO problem (Case
4) is higher than that for the SP problem (Case 2). Further-
more, as the number of samples increases the solution time
increases.
The total demand curtailments on all phases are shown in Ta-
ble 10. The total demand curtailments on phases A, B, and C
are increased by 41.638 kWh, 87.714 kWh, and 27.534 kWh
in this case compared to those in Case 1. Furthermore, the
demand curtailments on phases A, B, and C are increased
by 40.608 kWh, 84.6 kWh, and 26.80 kWh in this case com-
pared to those in Case 2. The demand curtailments on all
phases, in this case, are less than those in Case 3.

As the size of the sample data increases, the Wasserstein
radius 𝛼 decreases; however, the Wasserstein radius is also
affected by the confidence level 𝛽. As the confidence level
increases the Wasserstein radius increases. Table 11, shows
the impact of the confidence level on the solution of the DRO
problem (i.e., the expected operation cost of the distribution
network) for 40 data samples. As the confidence level in-
creases, the increase in the Wasserstein radius will lead to
considering the probability distributions of uncertain vari-
ables that are further away from the probability distribution

Table 8
The expected operation cost ($) in Cases 2 and 4 with different
sizes of sample data

Case Size of sample data
20 40 60 80 100

Case 2 5544.47 5364.58 5331.19 5307.90 5320.40
Case 4 8019.10 7922.62 7915.80 7924.46 7907.78

Table 9
Solution times for Cases 2 and 4 with different sizes of sample
data

Case Size of sample data
20 40 60 80 100

Case 2 00:00:32 00:00:52 00:01:27 00:01:59 00:02:32
Case 4 00:03:52 01:42:58 24:42:57 31:19:39 33:47:54

Table 10
The total curtailment on each phase in all cases

Cases Total Curtailment (kWh)
Phase A Phase B Phase C

Case 1 0 0 0
Case 2 1.03 3.114 0.731
Case 3 97.254 194.332 56.779
Case 4 41.638 87.714 27.534

Table 11
The expected operation cost in Case 4 with different confidence
levels

Confidence level Wasserstein radius Cost ($)
0.99 5.758 7922.62
0.95 4.644 7920.70
0.9 4.072 7914.41
0.8 3.404 7908.74
0.7 2.944 7896.95
0.6 2.568 7847.02
0.5 2.234 7815.14

of the empirical data which results in the higher expected
operation costs.
b) The impacts of V2G capability in EV clusters
In this section the impacts of the V2G capability of the EVs
on the operation cost are investigated. Table 12 presents the
operation cost for all cases with and without V2G capability
for EV clusters. As shown in this table, the operation cost
will decrease as EVs are equipped with the V2G capability.
Fig 6 shows the total available energy in EV clusters with
V2G capability.
c) Out-of-sample performance
In order to evaluate the out of sample performance of SP
and DRO problems, the dispatch of the distribution feeder is
considered as a first-stage decision which is not dependent
on samples and scenarios. The out-of-sample performance
of SP and DRO solutions are shown in Table 13. Here, the
out-of-sample performance of DRO solution is better than
that for SP as the operation cost of the distribution network
using DRO formulation is less than that using SP for out-
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Table 12
Distribution network operation cost with and without the V2G
capability

Cases Cost ($)
With V2G Without V2G

Case 1 5336.82 5378.49
Case 2 5364.58 5405.30
Case 3 10670.90 11834.53
Case 4 7922.618 7964.053

(a)

(b)

(c)
Figure 6: The total available energy in EV clusters in Cases 1
and 3 and the total expected available energy in Cases 2 and
4 connected to (a) phase A, (b) phase B and (c) phase C in

of-sample EV and PV generation data. Fig. 7 demonstrates
the distribution of out-of-sample cost for 40 sample data in
Cases 2 and 4. As shown in this figure, the probability dis-
tribution of out-of-sample operation cost using DRO is con-
centrated than the solution to the SP problem. This implies
that the solution to DRO problem is more robust compared
to the solution to the SP problem.

Table 13
The out-of-sample expected operation costs ($) in Cases 2 and
4 with different sizes of sample data

Cases Size of sample data
40 60 80 100

Case 2 5094.03 5096.25 5090.45 5098.52
Case 4 5015.10 4914.99 5008.95 5040.27

Figure 7: Out-of-sample distribution of operation cost in Case
2 and Case 4.

4.2. IEEE 123-bus system
The modified IEEE 123-bus test system with switchable

lines, is shown in Fig. 8. The peak real and reactive de-
mands on phase A are 1420 kW and 775 kVar, the peak real
and reactive demands on phase B are 915 kW and 515 kVar,
and the peak real and reactive demands on phase C are 1155
kW and 635 kVar, respectively. Table 14 shows the charac-
teristics of three-phase DG units. The marginal costs at each
segment of the DG units’ cost curves are shown in Table 15
and the hourly price of electricity at the distribution feeder
is similar to that for the IEEE 34-bus distribution system.
The characteristics of the EV clusters are given in Table 16.
The maximum total solar PV generation is 36.1% of the total
peak demand. The total PV generation and demand profiles
are shown in Fig. 9. The maximum total EV demand is
46.6% of the total peak demand. Similar to the IEEE 34-bus
network four case studies are considered.

Figure 8: The modified IEEE 123-bus system.
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Figure 9: PV generation and demand profiles for IEEE 123-bus
system

Table 14
Characteristics of DG units in the IEEE 123-bus system

DG Bus
𝑃 𝑚𝑖𝑛

(kW)
𝑃 𝑚𝑎𝑥

(kW)
𝑄𝑚𝑖𝑛

(kVAR)
𝑄𝑚𝑎𝑥

(kVAR)
1 29 0 200 -100 100
2 8 0 200 -100 100
3 44 0 100 -60 60
4 105 0 120 -60 60

Table 15
The marginal cost of each segment of DGs in the IEEE 123-
bus system ($/kWh)

DG 𝑤𝑖,1 𝑤𝑖,2 𝑤𝑖,3 𝑤𝑖,4
1 0.18 0.22 0.26 0.30
2 0.17 0.24 0.3 0.38
3 0.15 0.25 0.35 0.45
4 0.15 0.25 0.35 0.45

Table 16
Characteristics of EV fleets in IEEE 123-bus system

EV
Number of
vehicles Bus

𝑃 𝑚𝑎𝑥

(kW)
𝐸𝑚𝑖𝑛

(kWh)
𝐸𝑚𝑎𝑥

(kWh)
1 75 18 555 225 2250
2 60 23 444 180 1800
3 90 62 666 270 270
4 150 53 1110 450 4500
5 60 123 444 180 1800

4.2.1. Case 1 – Deterministic operation of the
distribution network

In this case, once the EV interconnection is ignored the
operation cost of the distribution network is $8183.75. The
interconnection of EVs to the distribution network will in-
crease the operation cost to $9545.05. Table 17 shows the
switching states of the switchable branches considering the
EV interconnection.
4.2.2. Case 2 – Scenario-based stochastic operation of

the distribution network
In this case, the expected operation cost for 40 scenar-

ios is $9576.46, and the switching states of the switchable

Table 17
The status of switchable branches with EV interconnection in
Case 1 for the IEEE 123-bus system

Switchable
branches Hours (24 hours)

B1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
B2 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
B3 0 1 0 0 0 0 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1
B4 1 0 1 1 1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
B5 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0
B6 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 1
B7 0 1 0 1 1 1 1 1 0 1 1 1 0 1 0 0 1 0 1 0 0 1 1 1
B8 1 0 1 0 0 0 0 0 1 0 0 0 1 0 1 1 0 1 0 1 1 0 0 0

Table 18
The status of switchable branches in Case 2 for the IEEE 123-
bus system

Switchable
branches Hours (24 hours)

B1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
B2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
B3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
B4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
B5 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
B6 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
B7 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
B8 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 19
The status of switchable branches in Case 3 for the IEEE 123-
bus system

Switchable
branches Hours (24 hours)

B1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
B2 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
B3 0 1 0 0 0 0 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1
B4 1 0 1 1 1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
B5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
B6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
B7 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
B8 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

branches are shown in Table 18. Similar to the previous case
study, the expected operation cost is higher compared to op-
eration cost in Case 1 (solution to the deterministic problem).

4.2.3. Case 3 – Robust operation of the distribution
network

In the RO problem formulation, the uncertainty sets for
solar PV generation and EVs are determined using the upper
and lower values of the empirical data. The total operation
cost is $24067.32, which is higher than the operation costs
in Cases 1 and 2. The states of the switchable branches are
given in Table 19.
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Table 20
Total demand curtailments on all phases in the IEEE 123-bus
system

Cases Total Curtailment (kWh)
Phase A Phase B Phase C

Case 1 0 0 0
Case 2 0 0 0
Case 3 567.919 0 172.346
Case 4 388.970 14.867 11.528

Table 21
The status of the switchable branches in Case 4 for the IEEE
123-bus system

Switchable
branches Hours (24 hours)

B1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1
B2 0 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0
B3 1 1 1 0 0 1 1 1 0 0 1 0 0 1 1 1 0 0 1 1 1 0 1 1
B4 0 0 0 1 1 0 0 0 1 1 0 1 1 0 0 0 1 1 0 0 0 1 0 0
B5 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 1 0 0 0 1 0 0
B6 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 0 1 1 1 0 1 1
B7 1 1 1 0 1 0 1 1 1 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1
B8 0 0 0 0 0 1 0 0 0 0 1 1 1 0 1 1 1 1 0 1 1 1 1 0

4.2.4. Case 4 – Data-Driven Distributionally robust
operation of the distribution network

In this case, the expected operation cost of the distribu-
tion network considering the worst-case probability distri-
bution of the uncertain variables with 40 data samples, is
$17305.01. The expected operation cost of the distribution
network in this case (the solution to the DRO problem) is
higher than those in Cases 1 and 2, and less than that in Case
3. The total demand curtailments in Cases 1-4 are shown in
Table 20. As shown in this table, the total demand curtail-
ments on all phases in Cases 1 and 2 are zero. The total
demand curtailment in Case 3 is the highest and the total de-
mand curtailment in Case 4 is higher than those in Cases 1
and 2. Table 21, demonstrates the sates of the switchable
branches in this case and Table 22 shows the expected oper-
ation cost of the distribution network as the number of data
samples increases from 20 to 100. As shown in Table 22,
with the increase in the number of samples, the value of the
objective function of the DRO problem is decreasing and
gets closer to that of the SP problem. Moreover, the solution
to the SP problem increases with the increase in the number
of sample data. However, similar to the previous case study,
the value of the objective function in the DRO problem i.e.,
the expected operation cost of the distribution network de-
creases as the number of data samples increases.

Considering 40 data samples, the expected operation cost
of the distribution network with V2G capability for the in-
terconnected EVs is $17305.01. The expected operation cost
increases to $17612.28 once the EV clusters do not have the
V2G capability. The total operation cost of the distribution
network with and without V2G capability of EVs in all cases
are shown in Table 23.

Table 22
The expected operation cost of the IEEE 123-bus system with
different numbers of empirical data samples

Cases Size of Historical Data
20 40 60 80 100

Case 2 14591 14706 14675 14767 14901
Case 4 17310 17305 17298 17290 17288

Table 23
The operation cost of the IEEE 123-bus system with and with-
out V2G capability in EVs

Cases Distribution network operation cost ($)
With V2G capability Without V2G capability

Case 1 9545.05 9879.51
Case 2 14705.52 15000.06
Case 3 24067.32 27475.95
Case 4 17305.01 17612.28

5. Conclusion
In this paper, the data-driven distributionally robust oper-

ation of the distribution network with high penetration of PV
generation and EV interconnection is evaluated. The pro-
posed formulation captures the uncertainty in PV generation
and the characteristics of the interconnected EV clusters. A
solution algorithm based on the C&CG approach is used to
solve the proposed formulation. It is shown that the expected
operation cost of the distribution network using the proposed
DRO formulation converges to the solution of the SP prob-
lem as the number of data samples increases. Moreover, in-
creasing the confidence level will increase the Wasserstein
radius and therefore, increase the operation of the distribu-
tion network. The solution to the DRO problem is compared
to those of SP and RO problems. It is shown that the op-
eration cost of the distribution network is highest once the
operation problem is formulated as a RO problem. The so-
lution to the distributionally robust operation of the distri-
bution network is less conservative compared to the solution
to the RO problem and therefore, the operation cost of the
distribution network using the DRO formulation is less than
that using the RO formulation. The demand curtailment of
the distribution network is compared to the SP and RO solu-
tions. It is shown that the demand curtailment is the highest,
once the distribution network operation problem is formu-
lated as a RO problem. Furthermore, the out-of-sample per-
formance of the DRO problem is compared to that of the SP
problem. It is shown that the distributionally robust opera-
tion of the distribution network would lead to a more con-
servative solution once it is exposed to unseen uncertainties.
Therefore the out-of-sample performance of the DRO solu-
tion is better than that for the SP. The impact of V2G on the
operation cost of the distribution network is further inves-
tigated. It is shown that the V2G capability of EV clusters
will reduce the operation cost of the distribution network.
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