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Summary

Estimators based on Wasserstein distributionally robust optimization are obtained as solutions
of min-max problems in which the statistician selects a parameter minimizing the worst-case
loss among all probability models within a certain distance from the underlying empirical mea-
sure in a Wasserstein sense. While motivated by the need to identify optimal model parameters
or decision choices that are robust to model misspecification, these distributionally robust esti-
mators recover a wide range of regularized estimators, including square-root lasso and support
vector machines, among others. This paper studies the asymptotic normality of these distribu-
tionally robust estimators as well as the properties of an optimal confidence region induced by the
Wasserstein distributionally robust optimization formulation. In addition, key properties of min-
max distributionally robust optimization problems are also studied; for example, we show that
distributionally robust estimators regularize the loss based on its derivative, and we also derive
general sufficient conditions which show the equivalence between the min-max distributionally
robust optimization problem and the corresponding max-min formulation.

Some key words:Asymptotic normality; Confidence region; Distributionally robust optimization; Wasserstein distance.

1. Introduction

In recent years, distributionally robust optimization formulations based on Wasserstein dis-
tances have sparked a substantial amount of interest. One reason for this interest, as demonstrated
by a range of examples in statistical learning and operations research, is that these formulations
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provide a flexible way to quantify and hedge against the impact of model misspecification.
Motivated by those applications, this paper aims to understand their fundamental statistical
properties, such as asymptotic normality of the distributionally robust estimators and the
associated confidence regions deemed optimal in a suitable sense to be described shortly.

Before providing a review of Wasserstein distributionally robust optimization and its connec-
tions to several areas, such as artificial intelligence, machine learning and operations research,
we set the stage by first introducing the elements of a typical data-driven distributionally robust
estimation problem.

Suppose that {Xk : 1 � k � n} ⊂ R
m are independent and identically distributed samples from

an unknown distribution P∗.A typical nonrobust stochastic optimization formulation informed by
Pn focuses on minimizing empirical expected loss of the form EPn {�(X ; β)} = n−1 ∑n

i=1 �(Xi; β)

over the parameter choices β ∈ B ⊆ R
d . In this paper we take B to be a closed, convex subset of

R
d . Let the empirical risk minimization estimators be

βERM
n ∈ arg min

β∈B
EPn {�(X ; β)}. (1)

On the other hand, a distributionally robust formulation recognizes the distributional uncer-
tainty inherent in Pn being a noisy representation of an unknown distribution. Therefore, it
enriches the empirical risk minimization (1) by considering an estimator of the form

βDRO
n (δ) ∈ arg min

β∈B
sup

P ∈ Uδ(Pn)

EP {�(X ; β)}, (2)

where the set Uδ(Pn) is called the distributional uncertainty region and δ is the size of the distri-
butional uncertainty. Here, given a measurable function f (·), the notation EP{f (X )} denotes
expectation with respect to a probability distribution P. Wasserstein distributionally robust
formulations advocate choosing

Uδ(Pn) = {P ∈ P(�) : W (Pn, P) � δ1/2},

where W (Pn, P) is the Wasserstein distance between distributions Pn and P defined below, and
P(�) is the set of probability distributions supported on a closed set � ⊆ R

m.

Definition 1 (Wasserstein distances). Given a lower semicontinuous function c : �×� →
[0, ∞], the optimal transport cost Dc(P, Q) between any two distributions P, Q ∈ P(�) is defined
as

Dc(P, Q) = min
π∈�(P,Q)

Eπ {c(X , Y )},

where �(P, Q) denotes the set of all joint distributions of the random vector (X , Y ) with marginal
distributions P and Q, respectively. If we specifically take c(x, y) = d(x, y)2, where d(·) is a metric,
we obtain the Wasserstein distance of order 2 by setting W (P, Q) = {Dc(P, Q)}1/2 .

The quantity W (Pn, P) may be interpreted as the cheapest way to transport mass from the
distribution Pn to the mass of another probability distribution P while measuring the cost of
transportation from location x ∈ � to location y ∈ � in terms of the squared distance between
x and y. In this paper we shall work with Wasserstein distances of order 2, which explains why
it is natural to use δ1/2 to specify the distributional uncertainty region Uδ(Pn) as above. Since
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W (Pn, Pn) = 0, the empirical risk minimizing estimator in (1) can be seen as a special case of
the formulation (2) by setting δ = 0.

The need for selecting model parameters or making decisions using a data-driven approach
which is robust to model uncertainties has sparked a rapidly growing literature on Wasser-
stein distributionally robust optimization, via formulations such as (2); see, for example,
Gao & Kleywegt (2016), Chen et al. (2018), Gao et al. (2018), Mohajerin Esfahani & Kuhn
(2018), Zhao & Guan (2018) and Blanchet & Murthy (2019) for applications in operations
research, and Yang (2017, 2020) for examples specifically in stochastic control.

In principle, the min-max formulation (2) is distributionally robust in the sense that its solution
guarantees a uniform performance over all probability distributions in Uδn(Pn). Roughly speaking,
for every choice of parameter or decision β, the min-max game type formulation in (2) introduces
an adversary that chooses the most adversarial distribution from a class of distributions Uδn(Pn).
The goal of the procedure is to then choose a decision that also hedges against these adversarial
perturbations, thus introducing adversarial robustness into settings where the quality of optimal
solutions are sensitive to incorrect model assumptions.

Interestingly, the min-max formulation (2), which is derived from the above robustness view-
point, has been shown to recover many machine learning estimators when applied to suitable
loss functions �(·); some examples include the square-root lasso and support vector machines
(Blanchet et al., 2019a), the group lasso (Blanchet & Kang, 2017), adaptive regularization
(Volpi et al., 2018; Blanchet et al., 2019b), among others (Shafieezadeh-Abadeh et al., 2015;
Chen & Paschalidis, 2018; Duchi et al., 2020) and Gao et al., 2020. The utility of the distribu-
tionally robust formulation (2) has also been explored in adversarial training of neural networks;
see, for example, Staib & Jegelka (2017) and Sinha et al. (2018).

Generic formulations such as (2) are becoming increasingly tractable; see, for example,
Luo & Mehrotra (2017) and Mohajerin Esfahani & Kuhn (2018) for convex programming based
approaches, and Sinha et al. (2018) and Blanchet et al. (2020) for stochastic gradient descent
based iterative schemes.

Motivated by this wide range of applications, we investigate the asymptotic behaviour of the
optimal value and optimal solutions of (2). In order to specifically describe the contributions, we
introduce the following notation. For any positive integer n and δn > 0, let

�n(β) = sup
P ∈ Uδn (Pn)

EP {�(X ; β)}

denote the distributionally robust objective function in (2). Suppose that β∗ uniquely minimizes
the population risk. According to (1) and (2), we have βDRO

n and βERM
n minimize, respectively,

the distributionally robust loss �n(β) and the empirical loss in (1). Next, let

	δn(Pn) = {
β ∈ B : β ∈ arg min

β∈B
EP {�(X ; β)} for some P ∈ Uδn(Pn)

}
(3)

denote the set of choices of β ∈ B that are compatible with the distributional uncertainty region,
in the sense that for every β ∈ 	δn(Pn) there exists a probability distribution P ∈ Uδn(Pn) for
which β is optimal. In other words, if Uδn(Pn) represents the set of probabilistic models which are,
based on the empirical evidence, plausible representations of the underlying phenomena, then
each such representation induces an optimal decision and 	δn(Pn) encodes the set of plausible
decisions. Let 	+

δn
(Pn) be the closure of ∩ε>0	δn+ε(Pn). Typically, 	+

δn
(Pn) = 	δn(Pn), but

this is not always true as illustrated in Example 1. Asymptotically, as δn decreases to zero, the
distinction is negligible. However, choosing a set such as 	+

δn
(Pn) as a natural set of plausible

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/article/109/2/295/6239705 by Stanford M
edical C

enter user on 01 August 2022



298 J. Blanchet, K. Murthy AND N. Si

decisions is sensible because we guarantee that a distributionally robust solution belongs to this
region. Our main result also implies that all distributionally robust solutions are asymptotically
equivalent within op(n−1/2) distance from each other.

With the above notation, the key contributions of this article can be described as follows. We
first establish the convergence in distribution of the triplet

[
n1/2{βERM

n − β∗}, nγ̄ /2{βDRO
n (δn) − β∗}, n1/2{	+

δn
(Pn) − β∗

}]
(4)

for a suitable γ̄ ∈ (0, 1/2] that depends on the rate at which the size of the distributional
uncertainty, δn, is decreased to zero; see Theorem 1. We identify the joint limiting distributions of
the triplet (4). The third component of the triplet in (4), n1/2{	+

δn
(Pn) − β∗}, considers a suitably

scaled and centred version of the choices of β ∈ B which are compatible with the respective
distributional uncertainty region Uδn(Pn) in the sense described above. Therefore, 	+

δn
(Pn) is a

natural choice of the confidence region. We further develop an approximation for 	+
δn

(Pn).
Second, we utilize the limiting result of (4) to examine how the choice of the size of distribu-

tional ambiguity, δn, affects the qualitative properties of the distributionally robust estimators and
the induced confidence regions. Specifically, choosing δn = ηn−γ , we characterize the behaviour
of the solutions for different choices of η, γ ∈ (0, ∞) as n → ∞. It emerges that the canonical,
O(n−1/2), rate of convergence is achieved only if γ � 1, and the limiting distribution corres-
ponding to the distributionally robust estimator and that of the empirical risk minimizer are dif-
ferent only if γ � 1. Hence, to both obtain the canonical rate and tangible benefits from the
distributionally robust optimization formulation we must choose γ = 1, which corresponds to
the resulting γ̄ in (4) being equal to 1. Moreover, given any α ∈ (0, 1), utilizing the limiting
distribution of the triplet in (4) we are able to identify a positive constant ηα ∈ (0, +∞) such that
whenever η � ηα in the choice δn = η/n, the set 	+

δn
(Pn) is an asymptotic (1 − α)-confidence

region for β∗.
Finally, we establish the existence of an equilibrium game value. The distributionally robust

optimization formulation assumes that the adversary selects a probability model after the statis-
tician chooses a parameter. The equilibrium value of the game is attained if inf sup equals sup inf
in (2), namely, if we allow the statistician to choose a parameter optimally after the adversary
selects a probability model. We show in great generality that the equilibrium value of the game
exists.

We end the introduction with a discussion of related statistical results. The asymptotic normality
of M-estimators which minimize an empirical risk of the form EPn{�(X ; β)} was first established
in the pioneering work of Huber (1967). Subsequent asymptotic characterizations in the presence
of constraints on the choices of parameter vector β have been developed in Dupacova & Wets
(1988) and Shapiro (1989, 1991, 1993, 2000), again in the standard M-estimation setting. Our
work here is different because of the presence of the adversarial perturbation to the loss represented
by the inner maximization in (2).

Asymptotic normality in the related context of regularized estimators for least squares regres-
sion was established in Knight & Fu (2000). As mentioned earlier, distributionally robust
estimators of the form (2) recover lasso-type estimators as particular examples (Blanchet et al.,
2019a). In these cases, the inner max problem involving the adversary can be solved in closed
form, resulting in the presence of regularization. However, our results can be applied even in
the general context in which no closed-form solution to the inner maximization can be obtained.
Therefore, our results in this paper can be seen as extensions of the results by Knight & Fu (2000),
from a distributionally robust optimization perspective.
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We comment that some of our results involving convergence of sets may be of interest to
applications in the area of empirical likelihood (Owen, 1988, 1990, 2001). This is because 	δn(Pn)

can be characterized in terms of a function, namely, the robust Wasserstein profile function,
which resembles the definition of the empirical likelihood profile function. We refer the reader
to Blanchet et al. (2019a) for more discussion on the robust Wasserstein profile function and its
connections to empirical likelihood. We also refer to Cisneros-Velarde et al. (2020) for additional
applications, including graphical lasso, which could benefit from our results.

2. Preliminaries and assumptions

2.1. Convergence of closed sets

For a sequence {Ak : k � 1} of closed subsets of R
d , the inner and outer limits are defined,

respectively, by

Lin→∞ An = {
z ∈ R

d : there exists a sequence (an)n�1 with an ∈ An convergent to z}, and

Lsn→∞ An = {
z ∈ R

d : there exist positive integers n1 < n2 < n3 < · · · and ak ∈ Ank

such that the sequence (ak)k�1 is convergent to z
}
.

We clearly have Lin→∞ An ⊆ Lsn→∞ An. The sequence {An : n � 1} is said to converge to a set
A in the Painlevé–Kuratowski sense if

A = Lin→∞ An = Lsn→∞ An.

Since R
d is a locally compact Hausdorff space, the topology induced by Painlevé–Kuratowski

convergence on the space of closed subsets of R
d is completely metrizable, separable, and coin-

cides with the well-known topology of closed convergence, also known as Fell topology; see
Molchanov (2005, Ch. 1). The notion of convergence of sets we utilize here will be the above-
defined Painlevé–Kuratowski convergence. After equipping the space of closed subsets with the
Borel σ -algebra, we are able to define probability measures and further define the usual weak
convergence of measures; see, for example, Billingsley (2013, Ch. 1).

2.2. Notation and assumptions

Throughout the paper, we use A 	 0 to denote that a given symmetric matrix A is positive
definite, and the notation C◦ and cl(C) to denote the interior and closure of a subset C of Euclidean
space, respectively. In the case of taking expectations with respect to the data-generating distri-
bution P∗, we drop the subindex in the expectation operator as in EP∗ {f (X )} = E {f (X )}. We
use ⇒ to denote weak convergence and → to denote convergence in probability. We let I(·) be
the indicator function. Let ‖ · ‖p be the dual norm of ‖ · ‖q, where 1/p + 1/q = 1 for q ∈ (1, ∞),
and p = ∞ or 1 for q = 1 or ∞, respectively.

As mentioned in § 1, suppose that � is a closed subset of R
m and B is a closed, convex subset

of R
d . Assumptions 1 and 2 below are taken to be satisfied throughout the development, unless

indicated otherwise.

Assumption 1. The transportation cost c : �×� → [0, ∞] is of the form c(u, w) = ‖u−w‖2
q.

Assumption 2. The function � : � × B → R satisfies the following properties:
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(a) The loss function �(·) is twice continuously differentiable, and for each x, �(x, ·) is
convex.

(b) Let h(x, β) = Dβ�(x, β), and assume there exists β∗ ∈ B◦ satisfying the opti-
mality condition E{h(X , β∗)} = 0. In addition, E{‖h(X , β∗)‖2

2} < ∞, the matrix
C = E

{
Dβh(X , β∗)

} 	 0, E
{
Dxh(X , β∗)Dxh(X , β∗)T

} 	 0, and pr{‖Dx�(X , β∗)‖p >

0} > 0.
(c) For every β ∈ R

d , ‖Dxx�( · ; β)‖p is uniformly continuous and bounded by a con-
tinuous function M (β). Further, there exists a positive constant M ′ < ∞ such that
‖Dxh(x, β)‖q � M ′(1 + ‖x‖q) for β in a neighbourhood of β∗. In addition, Dxh(·) and
Dβh(·) satisfy the following locally Lipschitz continuity:

‖Dxh(x + �, β∗ + u) − Dxh(x, β∗)‖q � κ ′(x)
( ‖�‖q + ‖u‖q

)
,∥∥Dβh(x + �, β∗ + u) − Dβh(x, β∗)

∥∥
q � κ̄(x)

( ‖�‖q + ‖u‖q
)
,

for ‖�‖q + ‖u‖q � 1, where κ ′, κ̄ : R
m → [0, ∞) are such that E[{κ ′(Xi)}2] < ∞ and

E{κ̄2(Xi)} < ∞.

Assumption 1 covers most of the cases in the literature described in § 1. One exception that
does not immediately satisfy Assumption 1, but which can be easily adapted after a simple
change of variables, is the weighted l2 norm, also known as the Mahalanobis distance, namely
c(x, y) = (x − y)TA(x − y), where A 	 0; see Blanchet et al. (2020). The requirement that �(·)
is twice differentiable in Assumption 2(a) is useful in the analysis to identify a second-order
expansion for the objective in (2), which helps quantify the impact of adversarial perturbations.
The convexity of �(x, ·), together with C being positive definite in Assumption 2(b), implies
the uniqueness of β∗. The uniqueness of β∗ is a standard assumption in the derivation of rates
of convergence for estimators; see, for example, Huber (1967) and van der Vaart & Wellner
(1996, § 3.2.2). Assumption 2(b) also allows us to rule out redundancies in the underlying source
of randomness, e.g., collinearity in the setting of linear regression. The first part of Assump-
tion 2(c) ensures that the inner maximization in (2) is finite by controlling the magnitude of the
adversarial perturbations. The local Lipschitz continuity requirement in x arises with the optimal
transportation analysis technique in Blanchet et al. (2019a, cf. their Assumption A6). Analogous
regularity in β is useful in proving the confidence region limit theorem; see the discussion follow-
ing Theorem 3. Limiting results which study the impact of relaxing some of these assumptions
are given immediately after describing the main result in § 3.1.

3. Main results

3.1. The main limit theorem

In order to state our main results we introduce more definitions. Define

ϕ(ξ) = 4−1E
[∥∥{

Dxh(X , β∗)
}T

ξ
∥∥2

p

]
,

and its convex conjugate, ϕ∗(ζ ) = supξ∈Rd

{
ξ Tζ − ϕ(ξ)

}
. In addition, define

S(β) =
[
E

{
‖Dx�(X ; β)‖2

p

}]1/2
, (5)

fη,γ (x) = xI(γ � 1) − η1/2DβS(β∗)I(γ � 1) (6)
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for η � 0, γ � 0. By Assumption 2(b), we have that S(β) is differentiable at β∗. Recalling the
matrix C = E

{
Dβh(X , β∗)

}
introduced in Assumption 2(b), we define

	+
δn

(Pn) = cl
{∩ε>0	δn+ε(Pn)

}
,

which is the right limit of 	δn(Pn) defined in (3). Finally, define the sets

	η = {
u : ϕ∗(Cu) � η

}
, 	η,γ =

⎧⎪⎨
⎪⎩

	η if γ = 1,

R
d if γ < 1,

{0} if γ > 1.

(7)

We now state our main result.

Theorem 1. Suppose that Assumptions 1 and 2 are satisfied with q ∈ (1, ∞), � = R
m and

E
(‖X ‖2

2

)
< ∞. If H ∼ N [0, cov{h(X , β∗)}] and δn = n−γ η for some γ , η ∈ (0, ∞), then we

have the following joint convergence in distribution:[
n1/2(βERM

n − β∗
)
, nγ̄ /2{βDRO

n (δn) − β∗
}
, n1/2{	+

δn
(Pn) − β∗

}]
⇒ [

C−1H , C−1fη,γ (H ), 	η,γ + C−1H
]
,

where γ̄ = min{γ , 1} and 	η,γ is defined as in (7).

The proof of Theorem 1 is presented in § 5.3. For q = 1 or ∞, which corresponds to p = ∞
or 1, S(β) may not be differentiable at β∗, in which case the limited distribution presents a
discontinuity which makes it difficult to use in practice. Hence, we prefer not to cover this here.
Theorem 1 can be used as a powerful conceptual tool. For example, let us examine how a sensible
choice for the parameter δn can be obtained as an application of Theorem 1 by considering the
following cases.

Case 1, γ > 1: If nδn → 0, corresponding to the case γ > 1, we have f0,γ (H ) = H from the
definition of the parametric family in (6). Therefore, from Theorem 1,[

n1/2(βERM
n − β∗), nγ̄ /2{βDRO

n (δn) − β∗}, n1/2{	+
δn

(Pn) − β∗
}]

⇒ [
C−1H , C−1H , {C−1H }],

which implies that the influence of the robustification vanishes in the limit when δn = o(n−1).
Case 2, γ < 1: If nδn → ∞, corresponding to the case γ < 1, the rate of convergence for the

distributionally robust estimator is slower than the canonical O(n−1/2) rate:

βDRO
n (δn) = β∗ − η1/2n−γ /2C−1DβS(β∗) + op

(
n−γ /2), (8)

where nγ /2op(n−γ /2) → 0 in probability as n → ∞. The relationship (8) reveals an uninteresting
limit, n1/2{	+

δn
(Pn)−β∗} ⇒ R

d , exposing a slower than O(n−1/2) rate of convergence 	+
δn

(Pn).
In fact, (8) indicates that an O(n−γ /2) scaling will result in a nondegenerate limit.

Case 3, γ = 1: when δn = η/n, we have that all components in the triplet in Theorem 1 have
nontrivial limits.

Theorem 2 provides a geometric insight relating βDRO
n (δn), βERM

n and 	+
δn

(Pn), which justifies
a picture describing 	+

δn
(Pn) as a set containing both βDRO

n (δn) and βERM
n . The observation that
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βERM
n ∈ 	δn(Pn) is immediate because 	δ(Pn) is increasing in δ, so βERM

n ∈ 	0(Pn) ⊂ 	+
δn

(Pn).
On the other hand, the observation that βDRO

n (δn) ∈ 	+
δn

(Pn) is nontrivial and it relies on the
exchangeability of inf and sup in Theorem 2. An appropriate choice of η which results in the set
	+

δn
(Pn) also possessing desirable coverage for β∗ is prescribed in § 3.2.

Theorem 2. Suppose that Assumption 1 is enforced. We further assume that the loss function
�(·) is continuous and nonnegative, �(x, ·) is convex for each x, and EP∗{�(X , β)} has a unique
optimizer β∗ ∈ B◦. Then, for any δ > 0,

inf
β∈B

sup
P∈ Uδ(Pn)

EP {�(X ; β)} = sup
P∈ Uδ(Pn)

inf
β∈B

EP {�(X ; β)}, (9)

and there exists a distributionally robust estimator choice βDRO
n (δ) ∈ 	+

δ (Pn).

The proof of Theorem 2 is presented in the Supplementary Material. Example 1 demonstrates
that the set of minimizers of the distributionally robust formulation (2) is not necessarily unique,
and that the set 	δ(Pn) may not contain distributionally robust solutions. Theorem 2 indicates
that the right limit 	+

δ (Pn) contains a distributionally robust solution. Theorem 1 implies that
the minimizers of (2) differ by at most op(n−1/2) in magnitude, which indicates that they are
asymptotically equivalent and the inclusion of one solution of (2) in 	+

δ (Pn) is sufficient for the
scaling considered.

Example 1. Let the loss function be

�(x, β) = f (β) + {x2 − log(x2 + 1)}f (β − 4),

where f (β) = 3β2/4 − 1/8β4 + 3/8 for β ∈ [−1, 1], and f (β) = |β| otherwise. We have that
�(x, β) is twice differentiable and convex, satisfying Assumptions 1 and 2. Then, if the empirical
measure Pn is a Dirac measure centred at zero with n = 1, and δ = 1, we have the distributionally
robust estimators βDRO

n (δ) ∈ [1, 3]. Further, [1, 3] ⊂ 	+
δ (Pn), but [1, 3] ∩ 	δ(Pn) = ∅.

Next, we turn to the relationship between βERM
n and βDRO

n (δn) when δn = η/n. From the first
two terms in the triplet, we have

βDRO
n (δn) = βERM

n − η1/2C−1DβS(β∗)n−1/2 + op
(
n−1/2)

= βERM
n − δ1/2

n C−1DβS(βERM
n ) + op

(
δn

)
. (10)

The right-hand side of (10) points to the canonical O
(
n−1/2

)
rate of convergence of the Wasser-

stein distributionally robust estimator, and it can readily be used to construct confidence regions,
as we shall explain in § 3.2.

The relation (10) also exposes the presence of an asymptotic bias term, namely, S(β) =
[E{‖Dx�(X ; β)‖2

p}]1/2, which points towards selection of optimizers possessing reduced sen-
sitivity with respect to perturbations in data. A precise mathematical statement of this
sensitivity-reduction property is given in Corollary 1, and its proof is in the Supplementary
Material.

Corollary 1. Suppose that Assumptions 1 and 2 are in force, and consider

β̄DRO
n ∈ arg min

β∈B

(
EPn {�(X ; β)} + n−1/2

[
ηEPn

{
‖Dx�(X ; β)‖2

p

}]1/2
)

. (11)

Then, if δn = η/n, βDRO
n (δn) = β̄DRO

n + op(n−1/2).
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While the formulation on the right-hand side of (11) is conceptually appealing, it may not
be desirable from an optimization point of view due to the potentially nonconvex nature of the
objective involved. On the other hand, under Assumption 2, the distributionally robust objective
�n(β) is convex; see, for example, the reasoning in Blanchet et al. (2020, Theorem 2a), while
also enjoying the sensitivity-reduction property of the formulation in (11).

A result of a similar type to Corollary 1 is given in Gao et al. (2020), but the focus there is
on the objective function of (2) being approximated by a suitable regularization. The difference
between this type of result and Corollary 1 is that our focus is on the asymptotic equivalence of the
actual optimizers. Behind a result such as Corollary 1, it is key to have a more nuanced approxi-
mation which precisely characterizes the second-order term of size O(δn); see the Supplementary
Material.

We conclude this section with results which examine the effects of relaxing some assumptions
made in the statement of Theorem 1. Proposition 1 asserts that convergence of the natural con-
fidence region 	+

δn
(Pn), as identified in Theorem 1 holds even if the support of the probability

distributions in the uncertainty region Uδn(Pn) is constrained to be a strict subset � of R
d . For this

purpose, we introduce the following notation. For any set C ∈ R
m, let Cε = {x ∈ C : Bε (x) ⊂ C},

where Bε (x) is the neighbourhood around x defined as Bε (x) = {
y : ‖y − x‖2 � ε

}
. Thus, for

any probability measure P, we have limε→0 P (Cε) = P (C◦).

Proposition 1. Suppose that Assumptions 1 and 2 are satisfied with q ∈ [1, ∞] and
E

(‖X ‖2
2

)
< ∞. In addition, suppose that the data-generating measure P∗ satisfies P∗(�◦) = 1.

If we take H ∼ N (0, cov{h(X , β∗)}) and δn = n−γ η for some γ , η ∈ (0, ∞), then the following
convergence holds as n → ∞: n1/2{	δn(Pn) − β∗} ⇒ 	η,γ + C−1H.

The steps involved in proving Proposition 1 are presented in § 5.1. A discussion on the valid-
ity of a central limit theorem for the estimator βDRO

n in the presence of constraints restricting
transportation within the support set � is presented in § 6.

In the case where the unique minimizer β∗ may not necessarily lie in the interior of the set B,
as opposed to the requirement in Assumption 2(b), one may obtain the extension in Proposition 2
as the limiting result for the estimator βDRO

n (δn). As in the previous results, we take h(x, β) =
Dβ�(x; β). The proofs of all the subsequent propositions are given in the Supplementary Material.

Proposition 2. Suppose that Assumptions 1, 2(a) and 2(c) are satisfied, and that β∗ is the
unique minimizer of minβ∈B E{�(X , β)}. Suppose that the set B is compact, and there exist ε > 0
and twice continuously differentiable functions gi(β) such that

B ∩ Bε(β∗) = {
β ∈ Bε(β∗) : gi(β) = 0, i ∈ I , gj(β) � 0, j ∈ J

}
,

where I , J are finite index sets and gi(β∗) = 0 for all i ∈ J . With this identification of the set B,
suppose that the following so-called Mangasarian–Fromovitz constraint qualification is satisfied
at β∗: the gradient vectors {Dgi(β∗) : i ∈ I } are linearly independent, and there exists a vector
w such that wTDgi(β∗) = 0 for all i ∈ I and wTDgj(β∗) < 0 for all j ∈ J .

Suppose that 	0 is the set of Lagrange multipliers satisfying the first-order optimality condi-
tions and the following second-order sufficient conditions: λ ∈ 	0 if and only if DβL(β∗, λ) = 0,
λi � 0 for i ∈ J and maxλ∈	0 wTDββL(β∗, λ)w > 0 for all w ∈ C, where L(β, λ) =
E{�(X , β)} + ∑

i∈I∪J λigi(β) is the Lagrangian function associated with the minimization
minβ∈B E{�(X , β)}, and

C = [
w : wTDgi(β∗) = 0, i ∈ I , wTDgj(β∗) � 0, j ∈ J , wTE{h(X , β∗)} � 0

]
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is the nonempty cone of critical directions. In addition, suppose that ω(ξ) is the unique min-
imizer of minu∈C

{
ξ Tu + 2−1q(u)

}
, where q(u) = max

{
uTDββL(β∗, λ)u : λ ∈ 	0

}
. Then, if

δn = ηn−1 for η ∈ (0, ∞), E{‖h(X , β∗)‖2
2} < ∞ and E{Dβh(X , β∗)} 	 0, we have the following

convergence as n → ∞:

n1/2 {
βDRO

n (δn) − β∗
} ⇒ ω

{−H + η1/2DβS(β∗)
}
,

where H ∼ N [0, cov{h(X , β∗)}].
The Mangasarian–Fromovitz constraint qualification conditions and the necessary and suffi-

cient conditions in the statement of Proposition 2 are standard in the literature if the optimal β∗
lies on the boundary of the set B; see, for example, Shapiro (1989). Please refer to the discussion
following Theorem 3.1 in Shapiro (1989) for sufficient conditions under which ω(ξ) is unique.

Proposition 3 extends the sensitivity reduction property in Corollary 1 to settings where the
minimizer for minβ∈B EP∗{�(X ; β)} is not unique.

Proposition 3. Suppose that Assumptions 1, 2(a) and 2(c) are satisfied, the set B is compact
and the choice of the radii (δn : n � 1) is such that nδn → η ∈ (0, ∞). Let the set B∗ be
arg minβ∈B EP∗{�(X ; β)}. Then, the distributionally robust optimization objective �n(β) satisfies

n1/2 [�n(β) − E{�(X ; β)}] ⇒ Z(β) + η1/2S(β),

where Z(·) is a zero-mean Gaussian process with covariance function cov{Z(β1), Z(β2)} =
cov{�(X , β1), �(X , β2)}. The above weak convergence holds, as n → ∞, on the space of
continuous functions equipped with the uniform topology on compact sets. Consequently, if
arg minβ∈B∗{Z(β) + η1/2S(β)} is singleton with probability one, we have, as n → ∞,

βDRO
n (δn) ⇒ arg minβ∈B∗

{
Z(β) + η1/2S(β)

}
.

3.2. Construction of Wasserstein distributionally robust confidence regions

As mentioned in § 1, for suitably chosen δn, the set 	+
δn

(Pn) represents a natural confidence
region. In particular, 	+

δn
(Pn) possesses an asymptotically desired coverage, say at level at least

1 − α, if and only if

1 − α � lim
n→∞ pr

{
β∗ ∈ 	+

δn
(Pn)

}
= pr[−C−1H ∈ {u : ϕ∗(Cu) � η}],

or, equivalently, if η � ηα , where ηα is the (1 − α)-quantile of the random variable ϕ∗(H ).
Recall the earlier geometric insight describing 	+

δn
(Pn) as a set containing both βDRO

n (δn) and
βERM

n , as a consequence of Theorem 2. Following this, if we let η � ηα , we then have

lim
n→∞ pr

{
β∗ ∈ 	+

δn
(Pn), βDRO

n ∈ 	+
δn

(Pn), βERM
n ∈ 	+

δn
(Pn)

} = lim
n→∞ pr

{
β∗ ∈ 	+

δn
(Pn)

}
� 1 − α,

which presents the picture of 	+
δn

(Pn) as a confidence region simultaneously containing β∗, βERM
n

and βDRO
n (δn) with a desired level of confidence.
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The function ϕ∗(H ) can be computed in closed form in some settings. But, typically, computing
ϕ∗(·) may be challenging. We now describe how to obtain a consistent estimator for ηα . Define
the empirical version of ϕ(ξ), namely

ϕn(ξ) = 1

4
EPn

[∥∥{Dxh(X , β∗)}T ξ
∥∥2

p

]
= 1

4n

n∑
i=1

∥∥{Dxh(X , β∗)}T ξ
∥∥2

p ,

and the associated empirical convex conjugate, ϕ∗
n(ζ ) = supξ∈Rd

{
ξ Tζ − ϕn(ξ)

}
. Proposition 4

provides a basis for computing a consistent estimator for ηα .

Proposition 4. Let �n be any consistent estimator of cov{h (X , β)}, and write �̄n for any
factorization of �n such that �̄n�̄

T
n = �n. Let Z be a d-dimensional standard Gaussian random

vector independent of the sequence (Xn : n � 1). Then, (i) the distribution of ϕ∗(Z) is continuous,
(ii) ϕ∗

n(·) ⇒ ϕ∗(·) as n → ∞ uniformly on compact sets, and (iii) ϕ∗
n(�̄nZ) ⇒ ϕ∗(H ).

Given the collection of samples {Xi}n
i=1, we can generate independent and identically dis-

tributed copies of Z and use Monte Carlo to estimate the (1 − α)-quantile, ηα (n), of ϕ∗
n(�̄nZ).

The previous proposition implies that ηα (n) = ηα +op (1) as n → ∞. This is sufficient to obtain
an implementable expression for βDRO

n {ηα(n)/n} which is asymptotically equivalent to (10), as
it differs only by an error of maginutude op(n−1/2).

Next, we provide rigorous support for the approximation 	+
δn

(Pn) ≈ βERM
n + n−1/2	η, which

can be used to approximate 	+
δn

(Pn), providing we can estimate 	η.

Corollary 2. Under the assumptions of Theorem 1, and with γ = 1,

n1/2
{
	+

δn
(Pn) − βERM

n

}
⇒ 	η.

Moreover, if η (n) = η + o (1) and Cn → C, then 	n
η(n) = {u : ϕ∗

n(Cnu) � η (n)} → 	η.

Proof of Corollary 2. Following directly from Theorem 1 and an application of the continuous
mapping theorem,

n1/2
{
	+

δn
(Pn) − βERM

n

}
= n1/2

{
	+

δn
(Pn) − β∗

}
− n1/2 {

βERM
n − β∗

}
⇒ 	η + C−1H − C−1H .

The second part of the result follows from the regularity results in Proposition 4. �

The next result, as we shall explain, allows us to obtain computationally efficient approxima-
tions of the set 	η. A completely analogous result can be used to estimate 	n

η(n), simply replacing
ϕ∗(·), ϕ(·) and C by ϕ∗

n(·), ϕn(·) and Cn.

Proposition 5. The support function of the convex set 	η = {u : ϕ∗(Cu) � η} is h	η(v) =
2{ηϕ(C−1v)}1/2, where the support function of a convex set A is defined as hA(x) = sup{x · a :
a ∈ A}.

Remark 1. Proposition 5 can be used to obtain a tight envelope of the set 	η by evaluating
an intersection of hyperplanes that enclose 	η. Recall from the definition of a support function
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that 	η = ∩u{v : u · v � h	η (u)}. Therefore, for any u1, . . . , um, we have that 	η is contained
in ∩u1,...um{v : ui · v � h	η (ui)} and that 	n

η(n) is contained in ∩u1,...um{v : ui · v � h	n
η(n)

(ui)}.

4. Numerical examples: geometry and coverage probabilities

4.1. Distributionally robust linear regression

We first offer a brief introduction to the distributionally robust version of the linear regression
problem considered in Blanchet et al. (2019a). Specifically, the data is generated by Y = βT∗X +ε,
where X ∈ R

d and ε are independent, C = E(XX T) and ε ∼ N (0, σ 2). We consider square loss
�(x, y; β) = 1/2(y − βTx)2 and take the cost function c : R

d+1 × R
d+1 → [0, ∞] to be

c{(x, y), (u, v)} =
{ ‖x − u‖2

q
∞

if y = v,
otherwise.

(12)

Then, from Blanchet et al. (2019a, Theorem 1), we have

min
β∈Rd

sup
P:Dc(P,Pn)�δn

EP [�(X , Y ; β)] = 1

2
min
β∈Rd

[
EPn

{
(Y − βTX )2}1/2 + δ1/2

n ‖β‖p
]2, (13)

where p satisfies 1/p + 1/q = 1. Following Corollary 2, an approximate confidence region
is 	+

δn
(Pn) ≈ n−1/2	ηα + βERM

n , where 	ηα = {θ : ϕ∗(Cθ) � ηα}, ϕ(ξ) = 4−1E{‖eξ −
(ξ TX )β∗‖2

p}, the constant ηα is such that pr{ϕ∗(H ) � 1 − α} = ηα for H ∼ N (0, Cσ 2) and
δn = ηα/n. By performing a change of variables via linear transformation in the analysis of
the case c(x, y) = ‖x − y‖2

2, Theorem 1 can be directly adapted to the choice c(x, y) being a
Mahalanobis metric as in

c (x, y) = (x − y)T A (x − y), (14)

for some matrix A 	 0. The respective 	ηα = {θ : ϕ∗(Cθ) � ηα} is computed in terms
of ϕ(ξ) = 4−1E

{‖ξ TDxh(X , β∗)A−1/2‖2
2

}
. For the choice c (x, y) = (x − y)T A (x − y), the

relationship between distributionally robust and regularized estimators, as in (13), is

min
β∈Rd

sup
P:Dc(P,Pn)�δn

EP {l(X , Y ; β)} = 1

2
min
β∈Rd

[
EPn

{
(Y − βTX )2}1/2 + δ−1/2

n

∥∥A−1/2β
∥∥

2

]2
.

See Blanchet et al. (2019b) for an account of improved out-of-sample performance resulting from
Mahalanobis cost choices.

4.2. Shape of confidence regions

The goal of this section is to provide some numerical implementations to gain intuition about
the geometry of the set 	η for different transportation cost choices. We use the empirical set
	n

ηα
= {θ : ϕ∗

n(Cnθ) � n−1/2η̃α}, to approximate the desired confidence region as in Corollary 2.
In the above expression, ϕn(ξ) = 4−1EPn{‖eξ − (ξ TX )βERM

n ‖2
p}, ηα(n) is such that pr(ϕ̃∗

n(H ) �
1 − α) = ηα(n) for H ∼ N (0, Cnσ

2
n ), Cn = EPn

[
XX T

]
, and σ 2

n = EPn[{(Y − (βERM
n )TX )}2].
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Fig. 1. Confidence regions for different norm choices and the central limit theorem based confidence region plotted
together with the respective βDRO

n (red circle) estimators and βERM
n (black dot). The blue cross represents the true value.

In panel (f) the following estimators are included: �1 DRO (red triangle), �3/2 DRO (red star), �2 DRO (red cross)
and �3 DRO (red diamond).

In the following numerical experiments, the data is sampled from a linear regression model
with parameters σ 2 = 1, β∗ = [0.5, 0.1]T, n = 100 and

X ∼ N
(

0,
[

1 ρ

ρ 1

])
, (15)

with ρ = 0.7. In Figs. 1(a)–1(e) we show the 95% confidence region corresponding to the choices
p = 1, 3/2, 2, 3, ∞, q = ∞, 3, 2, 3/2 by means of support functions defined in Proposition 5. In
addition, a confidence region for β∗ resulting from the asymptotic normality of the least-squares
estimator, n1/2(βERM

n − β∗) ⇒ N (0, C−1σ 2), is

	CLT(Pn) = n−1/2{θ : θTCθ/σ 2 � χ2
1−α(d)} + βERM

n ,

where χ2
1−α(d) is the (1 − α)-quantile of the chi-squared distribution with d degrees of freedom.

One can select the matrix A in the Mahalanobis metric (14) such that the resulting confidence
region coincides with 	CLT(Pn). Namely, A is chosen by solving the equation

E
[{

eξ − (
ξTX

)
β∗

}
A−1 {

eξ − (
ξ TX

)
β∗

}T
]

= Cσ 2.
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Table 1. Coverage probability
β0 ρ �2-confidence region CLT confidence region

Coverage for βDRO
n Coverage for β∗ Coverage for βDRO

n Coverage for β∗[
0.5
0.5

] 0.95 100.0% 94.5% 99.4% 94.6%
0 100.0% 94.0% 97.1% 93.5%

−0.95 100.0% 94.8% 75.8% 94.4%

[
1.0
0.0

] 0.95 100.0% 94.6% 93.7% 95.4%
0 100.0% 94.6% 100% 94.1%

−0.95 100.0% 95.3% 91.2% 94.9%

–2
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3

ρ = 0.95
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0

1

2

3

ρ = 0

–2 –1 0 1 2 3 –2 –1 0 1 2 3 –2 –1 0 1 2 3

–2

–1

0

1

2

3

ρ = −0.95

(a) (b) (c)

Fig. 2. Scatter plots of βERM
n (black circles) and βDRO

n (red circles) for β0 = [0.5, 0.5]T. The blue cross represents the
true value.

Figure 1(f) gives the confidence region for the choice p = 2 and 	CLT(Pn) superimposed with
various distributionally robust minimizers along with the empirical risk minimizer. It is evident
from the figures that p = 1 gives a diamond shape, p = 2 gives an elliptical shape and p = ∞ gives
a rectangular shape. Furthermore, we see that the distributionally robust optimization solutions
all reside in their respective confidence regions, but may lie outside of the confidence regions of
other norms.

We find that the induced confidence regions constructed by the Wasserstein distributionally
robust optimization formulations are somewhat similar across the various lp norms, but they are
all different to the standard central limit theorem based confidence region. The Mahalanobis cost
can be calibrated to exactly match the standard central limit theorem confidence region.

4.3. Coverage probabilities and distributionally robust optimization solutions

We now test the scenario in which the covariates are highly correlated. Specifically, the data
is sampled from a linear regression model with parameters σ 2 = 1, n = 100, p = 2. The
random vector X is taken to be distributed in (15), considering three different values for ρ:
ρ = 0.95, 0, −0.95. We consider the following two cases for the underlying parameter β∗:
β∗ = [0.5, 0.5]T and β∗ = [1, 0]T. In Table 1 we report the coverage probabilities of the underlying
β∗ and βDRO

n (δn) in both the �2 confidence region and the central limit theorem based confidence
regions. Specifically, we report the following four probabilities: pr{βDRO

n ∈ 	+
δn

(Pn)}, pr{β∗ ∈
	+

δn
(Pn)}, pr{βDRO

n ∈ 	CLT(Pn)} and pr{β∗ ∈ 	CLT(Pn)}.
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Fig. 3. Scatter plots of βERM
n (black circles) and βDRO

n (red circles) for β0 = [1.0, 0.0]T. The blue cross represents the
true value.

Figures 2 and 3 show scatterplots of the estimators βERM
n and βDRO

n when the underlying
β∗ takes the values [0.5, 0.5]T and [1, 0]T, respectively. In the near-collinearity cases where
ρ = 0.95 or −0.95, the lower spreads for the distributionally robust estimators reveal their
better performance over the empirical risk-minimizing solutions. The utility of the proposed
�2 confidence region emerges in light of the better performance of the distributionally robust
estimator βDRO

n and its aforementioned lack of membership in 	CLT(Pn).
We sample 1000 datasets and report the coverage probabilities in Table 1. We observe that for

β∗, both the �2 confidence region and the central limit theorem based confidence region achieve
the target 95% coverage. Furthermore, the coverage for the distributionally robust estimator of
the �2 confidence region is 100%, which validates our theory. However, when ρ = −0.95 and
β∗ = [0.5, 0.5]T, the coverage for the distributionally robust estimator in the central limit theorem
based confidence region is only 75.8%. In this example, the asymptotic results developed indicate
that this coverage probability converges to zero, when n tends to infinity.

5. Proofs of main results

5.1. Preliminaries

Theorem 1 is obtained by considering appropriate level sets involving auxiliary functionals.
Following Blanchet et al. (2019a), we define the robust Wasserstein profile function, associated
with the estimation of β∗ by solving EPn{Dβh(X , β)} = 0, as follows:

Rn(β) = inf
P∈P(�)

[
Dc(P, Pn) : β ∈ arg min

β∈B
EP {�(X ; β)}].

This definition, as noted in Blanchet et al. (2019a), allows us to characterize the set 	+
δ (Pn) in

terms of an associated level set; in particular, we have

	+
δ (Pn) = cl{β : Rn(β) � δ},

where cl(·) denotes closure. Indeed, this is because

	+
δ (Pn) = cl

[ ∩ε>0
{
β ∈ B : β ∈ arg min

β∈B
EP{�(X ; β)} for some P ∈ Uδn+ε(Pn)

}]
.

If β ∈ B◦, we have Rn(β) = inf P∈P(�)[Dc(P, Pn) : EP {h(X , β)} = 0].
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Next, for the sequence of radii δn = n−γ η, for some positive constants η, γ , define functions
V DRO

n : R
d → R and V ERM

n : R
d → R, as below, by considering suitably scaled versions of the

distributionally robust and empirical risk objective functions, namely

V DRO
n (u) = nγ̄

{
�n

(
β∗ + n−γ̄ /2u

) − �n(β∗)
}

and

V ERM
n (u) = n

[
EPn

{
�(X ; β∗ + n−1/2u)

} − EPn

{
�(X ; β∗)

}]
,

where γ̄ = min {γ , 1} is defined in Theorem 1. Moreover, define V : R
d × R

d → R via
V (x, u) = xTu+2−1uTCu. The following result, as we shall see, can be used to establish Theorem 1
directly.

Theorem 3. Suppose that the assumptions made in Theorem 1 hold. Then,

{
V ERM

n (·), V DRO
n (·), nRn

(
β∗ + n−1/2 × · )}

⇒ {
V (−H , ·), V {−fη,γ (H ), ·}, ϕ∗(H − C × · )}

on the space C(Rd ; R)3 equipped with the topology of uniform convergence in compact sets.

Ensuring smoothness of Dβh(x+�, β) and Dxh(x+�, β) around β = β∗ as inAssumption 2(c)
is useful towards investigating the behaviour of nRn

( · ) in the neighbourhood of β∗, as required
in the third component in the triplet in Theorem 3.

5.2. Proof of Theorem 3

Throughout this section we suppose that the assumptions imposed in Theorem 1 hold. Let Hn =
n−1/2 ∑n

i=1 h (Xi, β∗). The following sequence of results will be useful in proving Theorem 3
and Proposition 1. Propositions 6 and 7 hold true for � = R

d , while Propositions 8–12 hold true
for general � under the assumption P∗(�◦) = 1 in Proposition 1.

Proposition 6. Fix α ∈ [0, 1]. Given ε, ε′, K > 0, there exists a positive integer n0 such that

pr
[∣∣nα−1V ERM

n {n(1−α)/2u} − nα/2H T
n u − 2−1uTCu

∣∣ � ε′] � 1 − ε

for every n > n0 and ‖u‖2 � K. Specifically, if α = 1,

pr
{∣∣V ERM

n (u) − H T
n u − 2−1uTCu

∣∣ � ε′} � 1 − ε. (16)

Proposition 7. Given ε, ε′, K > 0, there exists a positive integer n0 such that

pr
{∣∣V DRO

n (u) + fη,γ (−Hn)
Tu − 2−1uTCu

∣∣ � ε′} � 1 − ε (17)

for every n > n0 and ‖u‖2 � K.

Proposition 8. Define the set � ⊂ R
d as � = {β ∈ B◦ : 0 ∈ conv[{h(x, β) | x ∈ �}]◦},

where conv(S) denotes the convex hull of the set S. For β∗ + n−1/2u ∈ �, nRn
(
β∗ + n−1/2u

) =
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maxξ

{−ξ THn − Mn(ξ , u)
}
, where

Mn(ξ , u) = 1

n

n∑
i=1

max
�:Xi+n−1/2�∈�

{
ξ T

∫ 1

0
Dxh

(
Xi + n−1/2t�, β∗ + n−1/2tu

)
� dt

+ ξT

∫ 1

0
Dβh

(
Xi + n−1/2t�, β∗ + n−1/2tu

)
u dt − ‖�‖2

q

}
.

Furthermore, there exists a neighbourhood of β∗, Bε(β∗), such that Bε(β∗) ⊂ �.

Proposition 9. Consider any ε, ε′, K > 0. Then there exists b0 ∈ (0, ∞) such that, for any
b � b0, c0 > 0, ε0 > 0, we have a positive integer n0 such that

pr

[
sup

‖u‖2�K

{
nRn

(
β∗ + n−1/2u

) − fup(Hn, u, b, c)
}

� ε′
]

� 1 − ε

for all n � n0, and fup(Hn, u, b, c) equals

max
‖ξ‖p�b

( − ξ THn − E
[
4−1‖{Dxh(X , β∗)}Tξ‖2

p + ξ TDβh(X , β∗)u
]
I(X ∈ Cε0

0 )
)
,

with C0 = {x ∈ � : ‖x‖p � c0}.
Proposition 10. For any ε, ε′, K , b > 0, there exists a positive integer n0 such that

pr

[
sup

‖u‖2�K

{
nRn

(
β∗ + n−1/2u

) − flow(Hn, u, b)
}

� −ε′
]

� 1 − ε

for all n > n0, where

flow(Hn, u, b) = max
‖ξ‖p�b

(
−ξ THn − E

[
4−1‖{Dxh(X , β∗)}T ξ‖2

p + ξ TDβh(X , β∗)u
])

.

Proposition 11. For any ε > 0 there exist constants a, n0 > 0 such that, for every n � n0,
pr {nRn(β∗) � a} � 1 − ε.

Proposition 12. For any ε, ε′, K > 0, there exist positive constants n0, δ such that

sup
‖u1−u2‖2�δ

‖ui‖2�K

∣∣nRn
(
β∗ + n−1/2u1

) − nRn
(
β∗ + n−1/2u2

)∣∣ � ε′

with probability exceeding 1 − ε for every n > n0.

With the statements of these results, we proceed with the proof of Theorem 3.

Proof of Theorem 3. Since E{h(X , β∗)} = 0, it follows from the central limit theorem that
Hn ⇒ −H , where H ∼ N [0, E{h(X , β∗)h(X , β∗)T}]. Since the inequalities (17) and (16) are
associated with the same Hn, it follows from Propositions 6 and 7 that

V ERM
n (·) ⇒ V ERM(·) = V (−H , ·), V DRO

n (·) ⇒ V DRO(·) = V {−fη,γ (H ), ·} (18)

jointly on the space topologized by uniform convergence on compact sets.
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To prove convergence of the third component of the triplet considered in Theorem 3, observe
from the definitions of ϕ∗(·) and C that

ϕ∗(H − Cu) = max
ξ

(
ξ T[H − E{Dβh(X , β∗)}u] − 4−1E‖{Dxh(X , β∗)}Tξ‖2

p

)
. (19)

Consider any fixed K ∈ (0, +∞). Due to the weak convergence Hn ⇒ −H , applications of the
continuous mapping theorem to the bounds in Propositions 9 and 10 result in

fup(Hn, u, b, c) ⇒ max
‖ξ‖p�b

(
ξ TH − E

[
4−1

∥∥{
Dxh(X , β∗)

}T
ξ
∥∥2

p + ξ TDβh(X , β∗)u
]
I(X ∈ Cε0

0 )
)
,

(20)

flow(Hn, u, b) ⇒ max
‖ξ‖p�b

(
ξ TH − E

[
4−1‖{Dxh(X , β∗)}Tξ‖2

p + ξ TDβh(X , β∗)u
])

(21)

for any u satisfying ‖u‖2 � K . Since the bounds in Propositions 9 and 10 hold for arbitrarily
large choices of the constants b, c, and an arbitrarily small choice for constant ε0, combining with
the assumption that P∗(�◦) = 1, we conclude from (19), (20) and (21) that

nRn
(
β∗ + n−1/2u

) ⇒ ϕ∗(H − Cu) (22)

for any u satisfying ‖u‖2 � K . Finally, from Propositions 11 and 12, the collection {nRn(β∗ +
n−1/2 × · )} is tight; see, for example, Billingsley (2013, Theorem 7.4). As a consequence of
this tightness and the finite-dimensional convergence in (22), we have nRn

(
β∗ + n−1/2 × · ) ⇒

ϕ∗(H −C ×· ). Combining this observation with those in (18), we obtain the desired convergence
result in Theorem 3. Furthermore, since flow(Hn, u, b) and fup(Hn, u, b) are associated with the
same Hn as inequalities (17) and (16), we have the three terms converging jointly. �

5.3. Proof of Theorem 1

Theorem 1 is proved by considering suitable level sets of the component functions in the triplet
{V ERM

n (·), V DRO
n (·), nRn(β∗ + n−1/2 × · )} considered in Theorem 3. To reduce the clutter in

expressions, from here onwards we refer to the distributionally robust estimator (2) simply as
βDRO

n , with the dependence on the radius δn to be understood from the context. To begin, consider
the following tightness result.

Proposition 13. The sequences {arg minu V ERM
n (u) : n � 1} and {arg minu V DRO

n (u) : n �
1} are tight.

Observe that V ERM
n (·) and V DRO

n (·) are minimized, respectively, at n1/2(βERM
n − β∗) and

nγ̄ /2(βDRO
n −β∗). Furthermore, due to the positive definiteness of C in Assumption 2(b), we have

that V ERM(·) and V DRO(·) are strongly convex with respect to u and have unique minimizers,
with probability 1. Therefore, due to the tightness of the sequences {n1/2(βERM

n − β∗)}n�1 and
{nγ̄ /2(βDRO

n − β∗)}n�1, see Proposition 13, and the weak convergence of V ERM
n (·) and V DRO

n (·)
in Theorem 3, we have the following convergences:

n1/2(βERM
n − β∗) ⇒ arg min

u
V (−H , u) = C−1H ,

nγ̄ /2(βDRO
n − β∗) ⇒ arg min

u
V DRO(u) = C−1fη,γ (H ).

(23)
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Finally, to prove the convergence of the sets 	+
δn

(Pn), we proceed as follows. Define Gn(u) =
nRn(β∗ + n−1/2u), G(u) = ϕ∗(H − Cu) and αn = nδn. For any function f : B → R and
α ∈ [0, +∞], let lev(f , α) denote the level set {x ∈ R

d : f (x) � α}.
Proposition 14. If δn = n−1η, then cl{lev(Gn, αn)} ⇒ lev(G, η).

Proposition 15. If δn = n−γ η for some γ > 1, then cl{lev(Gn, αn)} ⇒ {C−1H }.
Proposition 16. If δn = n−γ η for some γ < 1, then cl{lev(Gn, αn)} ⇒ R

d .

Propositions 14–16 allow us to complete the proof of Theorem 1 as follows. From the definition
of Rn(β),	+

δn
(Pn) = {β : Rn(β) � δn} = β∗+n−1/2 {u : Gn(u) � αn}. From Propositions 14–16,

n1/2
{
	+

δn
(Pn) − β∗

}
= {u : Gn(u) � αn} ⇒

⎧⎪⎨
⎪⎩

lev(G, η) if γ = 1,

R
d if γ < 1,

{C−1H } if γ > 1.

Observe that ϕ∗(u) = ϕ∗(−u). Therefore, lev(G, η) = {u : ϕ∗(H − Cu) � η} = C−1H + {u :
ϕ∗(Cu) � η}. Since the three terms in Theorem 3 converge jointly, we have the three terms in
Theorem 1 also converging jointly. This completes the proof of Theorem 1.

Proposition 1 follows by adopting exactly the same steps used to establish the convergence of

n1/2
{
	+

δn
(Pn) − β∗

}
in the proof of Theorem 1.

6. Discussion

We discuss the subtleties in deriving a limit theorem for the distributionally robust estimator
βDRO

n when the support of the random vector X is a strict subset of R
m. Suppose that the support

of X is constrained to be contained in the set � = {x ∈ R
m : Ax � b} specified in terms of linear

constraints involving an l × m matrix A and b ∈ R
l . For the sake of clarity, we discuss here only

the nondegenerate case where δn = η/n.
Considering the transportation cost c(x, y) = ‖x − y‖2

2 in Definition 1, we demonstrate in
the Supplementary Material that the central limit theorem, n1/2{βDRO

n (δn) − β∗} ⇒ C−1H −
η1/2C−1DβS(β∗), continues to hold, for example, in the elementary case where the matrix A
has linearly independent rows, X has a probability density which is absolutely continuous with
respect to the Lebesgue measure on R

m and the support � is compact. A key element which
emerges in the verification is that the fraction of samples which get transported to the boundary
of the set � stays at Op(n−1/2) as n → ∞.

On the other hand, when the set � = {x ∈ R
m : Ax � b} has equality constraints, as in,

for example, � = {(x1, x2, . . . , xm) ∈ R
2 : x1 − x2 = 0}, the bias term in the limit theorem

gets affected due to the constraint binding all the samples {X1, . . . , Xn}, and the fraction of
samples which get transported to the boundary of the set � is 1. This can be easily seen in
the linear regression example in § 4, where �(x, y; β) = (y − βTx)2 and the support is taken as
� = {(x1, x2) ∈ R

2 : x1 = x2}. For this elementary example, we instead have

n1/2{βDRO
n (δn) − β∗

} ⇒ C−1H − η1/2C−1Dβ S̃(β∗), (24)
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where S̃(β) is different from the term S(β), as in S̃(β∗) = 21/2−1/q|βT1|‖β‖−1
p S(β). Here, recall

the earlier definition S(β) = [E{‖Dx�(X ; β)‖2
p}]1/2 in (5) for the unconstrained support case.

The computations required to arrive at the above conclusion are presented in the Supplementary
Material. In the presence of general support constraints of the form � = {x ∈ R

m : Ax = b},
we show that (24) holds with S̃(β) = ‖PN (A)β‖2 for quadratic losses of the form �(x; β) =
a + βTx + βTCβ; here, A is taken to be a matrix with linearly independent rows and PN (A)

denotes the projection operator onto the null space of A. The bias term here is again different
when compared to the term resulting from S(β) = ‖β‖2 exhibited in Theorem 1. As reasoned
above, the presence of equality constraints for the support � introduces new challenges to be
tackled in another study.
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