Knowledge Authoring with Factual English*

Yuheng Wang Giorgian Borca-Tasciuc Nikhil Goel
Paul Fodor Michael Kifer

Department of Computer Science, Stony Brook University
Stony Brook, NY, USA

{yuhewang,gborcatasciu,nigoel,pfodor,kifer}@cs.stonybrook.edu

Knowledge representation and reasoning (KRR) systems represent knowledge as collections of facts
and rules. Like databases, KRR systems contain information about domains of human activities like
industrial enterprises, science, and business. KRRs can represent complex concepts and relations,
and they can query and manipulate information in sophisticated ways. Unfortunately, the KRR tech-
nology has been hindered by the fact that specifying the requisite knowledge requires skills that most
domain experts do not have, and professional knowledge engineers are hard to find. One solution
could be to extract knowledge from English text, and a number of works have attempted to do so
(OpenSesame, Google’s Sling, etc.). Unfortunately, at present, extraction of logical facts from unre-
stricted natural language is still too inaccurate to be used for reasoning, while restricting the grammar
of the language (so-called controlled natural language, or CNL) is hard for the users to learn and use.
Nevertheless, some recent CNL-based approaches, such as the Knowledge Authoring Logic Machine
(KALM), have shown to have very high accuracy compared to others, and a natural question is to
what extent the CNL restrictions can be lifted. In this paper, we address this issue by transplanting
the KALM framework to a neural natural language parser, nSTANZA. Here we limit our attention to
authoring facts and queries and therefore our focus is what we call factual English statements. Au-
thoring other types of knowledge, such as rules, will be considered in our followup work. As it turns
out, neural network based parsers have problems of their own and the mistakes they make range from
part-of-speech tagging to lemmatization to dependency errors. We present a number of techniques
for combating these problems and test the new system, KALMT™ (i.e., KALM for factual language),
on a number of benchmarks, which show KALMFL achieves correctness in excess of 95%.

1 Introduction

Much of the human knowledge can be captured in knowledge representation and reasoning (KRR) sys-
tems that are based on logical facts and rules. Unfortunately, translating human knowledge into the logic
form that can be used by KRR systems requires well-trained domain experts who are hard to come by.
One popular idea is to use natural language (NL) to represent knowledge, but current technology (e.g.
OpenSesame [13], SLING [12]) for converting such statements into logic has rather low accuracy. A
possible fix to this problem is to author knowledge via sentences in controlled natural languages (CNLs),
such as ACE used in Attempto [6]. These CNLs are fairly rich and algorithms exist for converting CNL
sentences into logic facts. Unfortunately, CNLs are also very restrictive, hard to extend, and require
significant training to use. Furthermore, both CNLs and the more general NLP systems cannot recognize
sentences with identical meaning but different syntactic forms. For example, “Mary buys a car” and
“Mary makes a purchase of a car” would be translated into totally different logical representations by

“Research partially funded by the NSF Grant 1814457. We would also like to thank Nathanael Payen for his contribution to
software development for this work.

Y. Lierler, J.F. Morales, C. Dodaro, V. Dahl, M. Gebser, T. Tekle (Eds.): © Wang, Borca-Tasciuc, Goel, Fodor, & Kifer
International Conference on Logic Programming 2022 (ICLP’22). This work is licensed under the
EPTCS 72, 2022, pp. 107-122, doi:10.4204/EPTCS.??7.10 Creative Commons Attribution License.

108 Knowledge Authoring with Factual English

most systems, which renders logical inference mechanisms unreliable at best. This problem is known as
semantic mismatch [7].

Recently, the Knowledge Authoring Logic Machine (KALM) [8] was introduced to solve the above
semantic mismatch problem, but KALM was based on Attempto’s ACE and therefore inherited all the
aforesaid problems with CNLs. In this paper, we address the problems associated with controlled lan-
guages by transplanting the KALM framework to a neural NL parser, mSTANZA, which is a modified
STANZA [11] version with multiple, ranked outputs. Of course, to turn English into an authoring tool for
KR one still needs to impose some restrictions on the language. For instance, “Go fetch more water” is a
command that does not convey any factual information that can be recorded in a knowledge base (except,
perhaps, those based on rather esoteric logics). In this paper, we focus on English sentences suitable for
expressing facts and queries and correspondingly identify a class of English sentences, which we call
factual. These sentences can be translated into logic and the aforesaid semantic mismatch problem is
solved for such sentences. Unlike CNLs, factual sentences need little training as long as the author keeps
focus on knowledge representation rather than fine letters.!

To increase the accuracy, we had to mitigate a slew of issues that are common to neural parsers,
and we describe our solutions. These include the mistakes in part-of-speech and dependency parsing.
The new system, KALMF (KALM for factual language)?, is tested on a number of benchmarks, which
show that KALMF for factual English achieves correctness in excess of 95%, very close to the original
KALM for the Attempto’s CNL.

The paper is organized as follows: Section 2 reviews the KALM framework, Section 3 defines fac-
tual sentences, Section 4 proposes mSTANZA and the new KALM framework, Section 5 shows the
evaluation settings and results, Section 7 concludes the paper.

2 The KALM Framework

KALM [7] is a semantic framework for scalable knowledge authoring. KALM users author knowledge
using CNL sentences (Attempto’s ACE, to be specific) and KALM ensures that semantically equiva-
lent sentences have identical logical representations through the use of the frame semantics [4]. The
framework is depicted in Fig. 1.

v

Frame-based Role-filler Constructing
Syntactic Parsing — Parsing —> pi sambiguation —> " Logical
epresentations

Figure 1: The KALM framework

onstructed LVP

Input Sentences

I

Syntactic Parsing. KALM uses Attempto Parsing Engine (APE) to extract the syntactical informa-
tion from sentences, including the part-of-speech (POS) for each word and the grammatical dependency
relations between pairs of words. All extracted information is represented by a set of logical terms known
as Discourse Representation Structure (DRS) [5]. Here is an example of a DRS.

Example 1 DRS for the sentence “Mary buys a car”.

object (A,mary,uncountable,na,eq,1)-1/1. predicate(C,buy,A,B)-1/2.
object (B, car,countable,na,eq,1)-1/4.

10ur followup work will consider more general sentences, such as those suitable for expressing rules.
Zhttps://github.com/yuhengwangl/kalm-f1

Y. Wang, G. Borca-Tasciuc, N. Goel, P. Fodor, & M. Kifer 109

where A and B are identifiers for the Mary- and car-entities, respectively, and C is the buy-event. The DRS
also relies on the predicates object/6 and predicate/4 (in p/N, N denotes the number of arguments in
predicate p). An object-fact represents an entity—a noun-word with some properties (e.g., countable
or uncountable, quantity). A predicate-fact represents an event—a verb-word and its participating
entities. Additional predicates, property/3, relation/3, modifier_adv/3, modifier_pp/3, and
has_part/2, are also used in DRS for representing other syntactic relations. An expression like 1/4 in
a DRS object-fact indicates the sentence Id (i.e., 1) and the token Id (here 4) described by the object
fact in question.

Logical Valence Pattern. Frame-based parsing requires logical valence patterns (LVPs), which are
constructed from training sentences annotated by knowledge engineers. Inspired by FrameNet [1], the
semantics of each training sentence is represented by a frame. Each frame defines one or more related
semantic relationships among entities, where each entity plays a particular role. A frame can be triggered
by its associated “triggering words,” called lexical units (LU). Below is an example of a training sentence
annotated with frame semantics.

Example 2 The training sentence “Mary buys a car”.

train(’Mary buys a car’,’Commerce_buy’,’LUIndex’=2,
[’Buyer’=1+required, ’Goods’=4+required] , [[purchase,verb], [acquire,verb]]).

The above says several things. (i) “Mary buys a car” is represented by the Commerce_buy frame, (ii)
the LU is the 2nd word, buy.verb, (iii) the 1st word Mary fills the role Buyer and the 4th word car
fills the role Goods, and (iv) the words purchase.verb and acquire.verb can also trigger this frame.
Combining this and the DRS in Example 1, KALM learns that starting from the LU buy.verb (i.e.,
predicate(C,buy,A,B)), the Buyer Mary (i.e., object (A,mary,uncountable,na,eq,1)) can be
found by locating the subject (i.e., the 3rd argument in predicate/4) of buy.verb. As a result,
the pattern verb->subject for finding the role-filler for Buyer is learned. Similarly, the pattern
verb->object to find Goods can be learned. This allows us to construct the following LVP, where
the first 3 arguments identify the LU, the POS of the LU, and the frame.

lvp(buy,verb, ’Commerce_buy’, [pattern(’Buyer’,’verb->subject’,required),
pattern(’Goods’,’verb->object’,required)]).

Frame-based Parsing. Once the LVPs are constructed, they can be used to extract logical relations
from sentences. Namely, when a new sentence comes in, KALM tries to find the triggered LVPs which
are then applied to the sentence to get candidate parses.

Example 3 Consider the sentence “A customer buys a watch,” whose DRS is as follows:

object (A, customer,countable,na,eq,1)-1/2. predicate(C,buy,A,B)-1/3.
object(B,watch,countable,na,eq,1)-1/5.

The word buy . verb triggers the LVP in Example 2. Following the pattern verb->subject that extracts
the roll-filler of Buyer, KALM starts from the LU buy.verb (i.e., predicate(C,buy,A,B)), and then
finds the subject of the LU, which is the 3rd argument of predicate(C,buy,A,B) (i.e., the identifier
). Finally, the word identified by A (i.e., customer) is extracted as the role-filler for Buyer. In this way,
KALM applies all patterns to all extract role-fillers and finally we have the following candidate parse:

p(’Commerce_buy’, [role(’Buyer’,’customer’) ,role(’Goods’,’watch’)]).

Role-Filler Disambiguation. Generally, a word is associated with several meanings. The goal of
role-filler disambiguation is to find the most appropriate sense for each role-filler with respect to the
roles in particular logical frames. Role-filler disambiguation is done via a walk through the BabelNet

110 Knowledge Authoring with Factual English

knowledge graph [10]. BabelNet combines the words with similar meanings into synset nodes. Edges
represent semantic relations (hypernym, hyponym, etc.) and strength of the different relationships is
specified via weights.

Consider the candidate parse of “A customer buys a watch” in Example 3. In BabelNet, the role-
filler watch has several meanings like “A small portable timepiece” (bn:00077172n), “A period of time
(4 or 2 hours) during which some of a ship’s crew are on duty” (bn:00080550n), and more. Since
Goods (with the synset bn:00021045n) is much more semantically related to a timepiece than to a
period of time, watch should be disambiguated with the synset bn:00077172n denoting a timepiece.
Starting from Goods’s synset bn:00021045n, KALM uses breadth first search to reach watch’s synsets
bn:00077172n and bn:00080550n respectively, computes the costs based on the edge weights, and
ends up with the synset that has the lowest cost, which is bn: 00077172n (“A small portable timepiece”)
in this case.

Constructing Logic Representation. Ultimately, the disambiguated candidate parses are translated
into unique logical representation (ULR), which gives the true meaning to the original CNL sentence
and is suitable for querying. ULR uses the predicates frame/2 and role/2 for representing instances
of the frames and the roles. The predicates synset/2 and text/2 are used to specify synset and textual
information. For example, “A customer buys a watch” will be converted into the ULR shown below:

frame(id_1,’Commerce_buy’).
role(id_1,’Buyer’,id_2). synset(id_2,’bn:00019763n’). text(id_2,’customer’).
role(id_1,’Goods’,id_3). synset(id_3,’bn:00077172n’). text(id_3,’watch’).

3 Factual Sentences

In knowledge authoring, we are not interested in fine letters but rather in sentences that express or query
knowledge, such as facts, queries, rules, modalities. In this paper we limit ourselves to facts and queries
and more advanced types of knowledge is left to followup papers. Consequently, here we focus on
sentences for specifying and querying sets of facts, which we call factual sentences. Non-factual sen-
tences, like “Go fetch more water,” do not express any factual information and can be thus excluded from
consideration.

Before defining factual sentences, we first remind some key grammatical concepts. A clause is a
unit of grammatical organization that contains a verb and usually other components. A main clause® is
a clause that can form a complete sentence standing alone and having a subject and a predicate. A sub-
ordinate clause depends on a main clause for its meaning. Together with the main clause, a subordinate
clause forms part of a complex sentence. There are 4 types of subordinate clauses including adnominal
clauses, adverbial clauses, clausal complements and clausal subjects. A coordination is a syntactic struc-
ture that links together two or more elements with connectives such as “and” and “or” (e.g., a car and a
watch). When the elements are main clauses, a compound sentence is formed (e.g., “Mary wants the car
and the car is available”™).

Examination of various datasets shows that main clauses, compound sentences, and sentences with
adnominal clauses (e.g. “Mary bought a car made in USA”) are by far the most common constructs in
datasets that contain data and queries. In contrast, clausal complements and other types of subordinate
clauses are typically non-factual or they are used to describe other kinds of logical statements, such as
rules, which will be the subject of our followup work. For the same reason, connectives other than “and”

Shttps://www.lexico.com/en/definition/main_clause

Y. Wang, G. Borca-Tasciuc, N. Goel, P. Fodor, & M. Kifer 111

and “or” are also eliminated. We then define factual sentence for knowledge authoring as follows:
Definition 1 A factual sentence is

1. a factual main clause with subordinate adnominal clauses (if any), and no other subordinate
clauses; or

2. a compound sentence where the connectives connect only the clauses of the kind described in 1.
Definition 2 A main clause is factual® if
* it has a verb with a subject (e.g., “Mary bought a car’); or

* it has a nominal word (or an adjective) with a subject and a linking verb (e.g., “Mary is rich,”
where an adjective rich has a subject Mary and linking verb is)

3.1 Grammatical Properties of Factual Sentences

We now use POS tags (part of speech) and universal dependencies to describe six grammatical properties
for factual sentences that follow from the aforesaid factual restriction on the English sentences, and thus
are necessary conditions for sentences to be factual. We then use these properties to discover and correct
errors made by the STANZA parser. We use the superscripts U and X to refer to universal POS> (UPOS)
tags, Penn Treebank extended POS® tags (XPOS), and UD will refer to universal dependency’ labels.
Property 1 If the main clause is factual, then

« the main clause has a verb with a subject. That is, the clause has a word with an incoming root"
edge tagged with VERBY and an outgoing nsubj" edge); or

* the main clause has a nominal word (or an adjective) with a subject and a linking verb. Thus, the
clause has a word with an incoming root edge that is (i) tagged with NOUNU, PRONY, PROPNY, or
ADJY; (ii) has an outgoing nsubj’ edge; and (iii) has an outgoing cop’ edge (copula).

Property 2 If a word W is the last element of a coordination (e.g., “watch” in “a car or a watch”), then
this coordination must be an and- or an or-coordination. That is, W has an incoming conj’ edge and a
outgoing cc’ edge pointing to “and” or “or.”

Property 3 If a verb V has one or more auxiliary verbs V{,...,V,4, and V/ (tagged with AUX") is the
closest auxiliary verb to V' (e.g., in the sentence “A car has been bought by Mary,” V{' = has, V! =V =
been, V = bought), then

e continuous tense (V¢ is be — V is a present participle): V¢ has an incoming aux" edge starting
from V, and V is tagged with VBGX; or

» perfect tense (V¢ is have — V is a past participle): V¢ has an incoming aux" edge starting from V,
and V is tagged with VBN%; or

* past, present, and future tense (V' is can/do/may/must/ought/should/will —V in base form): V,* has
an incoming aux" starting at V, and V is tagged with VBX; or

* passive voice (V9 is be/get —V is a past participle): V¢ has an incoming aux : pass' edge starting
from V, and V is tagged with VBNX

Property 4 For a verb V without auxiliary verbs (no outgoing aux"’/aux:pass’ edges):

4According to https://www.lexico.com/en/definition/main_clause, all main clauses are factual.
Shttps://universaldependencies. org/u/pos/

Shttps://www. ling.upenn.edu/courses/Fall_2003/1ing001/penn_treebank_pos.html
"https://universaldependencies. org/u/dep/

112 Knowledge Authoring with Factual English

1. if V is a present or past participle (i.e., tagged with VBGX*/VBNY), then

e V occurs in a coordination (i.e., has an incoming conj’ edge); or
e V occurs in adnominal clauses (i.e., has an incoming ac1" edge)

2. if V is in present or past tense (i.e., tagged with VBPX/VBZ*/VBD¥), then
e V occurs in a coordination (i.e., has an incoming conj’ edge); or
* V occurs in main/adnominal clauses (i.e., has an incoming root"/ac1’/ acl:relc1”™
edge) and have a subject (i.e., an outgoing nsubj’ edge)
3. if V is in the base form (i.e., tagged with VBX), then
e V occurs in a coordination (i.e., has an incoming conj’ edge); or
* V occurs in adnominal clauses with infinitive form (i.e., has an incoming ac1" edge and an
outgoing mark" edge pointing to “t0”)
Property 5 If a non-verb word W has one or more auxiliary verbs V{,...,V,?, where V, is the closest
auxiliary verb to W (e.g., in the sentence “Mary has been rich,” V{* =has, V5' = been,” W = rich, and
been is the closest auxiliary verb to rich), then V,¥ and W must satisfy these properties:
1. W is a nominal word or an adjective (i.e., tagged with NOUNY/PRONY/PROPNY/ADJY)

2. V4 is the copula of W (i.e., V. has an incoming cop’ edge starting from W)

3. W has a subject (i.e., has an outgoing nsubj’ edge)
Property 6 The sentence must be projective. Given a parse, if there are crossing edges (e.g., the incoming
edges for “of” and “Winston” in Fig. 2), the sentence is called non-projective, otherwise it is projective.
Property 6 expresses the belief held by linguists that well-constructed English sentences are typically
projective, and so are factual sentences.

punct

case
obj nmod
PROPNJ - °™P°U"I~pRoPN]" "U*) \VERB ‘@rg\ prROPNY "*\PROPN) TPUNCT
G lotisla ; o A5 2 Gy Bt

Cambridge Press releases a memoir of Winston Churchill

Figure 2: A example of a non-projective parse

4 KALM for Factual Language

We now briefly describe a neural parser multi-STANZA (mSTANZA) that generates several ranked parses
for input sentences and is a modification of the original STANZA. Then we describe KALMFL, a product
of adaptation of the KALM framework to factual English sentences—a language that is significantly less
restricted than any known CNL, and is much easier to learn. The KALM! framework is shown in Fig. 3.

4.1 Multi-STANZA

STANZA [11] is a pipelined neural parser with state-of-the-art performance, which was designed to return
only the top parse for each sentence. Unfortunately, we found that it frequently errs in POS tagging, and
these errors then propagate to universal dependencies. We then noticed that nearly top parses often
give correct POS tags where the top parses err and so we modified STANZA to return also some non-
top-ranked parses. We called the result mSTANZA. Figure 4 shows the architecture. Each stage adds
multiple sets of annotations, creating a new Document object for each set. These Document objects
are then passed downstream. Unlike STANZA, the output of mSTANZA is a list of annotated Document
objects ranked in the order of decreasing confidence.

Y. Wang, G. Borca-Tasciuc, N. Goel, P. Fodor, & M. Kifer 113

POS Tagging
Error Detection [—»f
and Correction

N R e R A o R S B o {

Constructing Role-filler Frame-based
Logical) €—] Disambiguation ol Parsing [«— Paraparsing onstructed LVPs,
Representations

Figure 3: The KALMF! framework

_— . o Sentiment Named Entity Dependency k-Best Labeled
Input Document Tokenization —» POS Tagging —»| Lemmatization —» Analysis > Recognition > Parsing Document

Figure 4: The architecture of mSTANZA

Re-parsing with there val N Prompt
New POS Tags parse? Warning

Syntactic
Input Sentences Parsing with
Multi-Stanza

4.1.1 POS Tagger and Dependency Parser

The Part-of-Speech (POS) tagger adds POS tags to each word. As each POS tag has a finite number of
categories, it is straightforward to extract the k-best POS tags for each word, along with their confidences.
mSTANZA allows a user to provide a function to dynamically modify the list of k-best POS tags according
to their needs. In terms of dependency parsing, mSTANZA generates a dependency parse by generating
a fully connected directed graph, and generating the weights of the edges using a neural network. The
neural network learns to assign the weight of the edge based on the type of edge and the relationship
between the vertices. Then, the minimum spanning arborescence is found and used as the dependency
parse. Multiple possible dependency parses for each sentence are combined in order to generate the
next-best parse for the entire document.

4.1.2 Error Detection and Correction Based on Multi-STANZA

KALM checks STANZA parses for being factual using the necessary conditions of Section 3.1. If any
of the checks don’t pass, KALMFL attempts to correct the parse by conjecturing that some of the POS
tags are wrong (a fairly common problem with STANZA in our experience). This is done by using other
nearly top parses provided by mSTANZA. If the correction attempt fails, the user is asked to rephrase the
sentence. Details of the error correction algorithm are given in A.

4.2 Paraparsing

Paraparsing is a set of corrective steps that modify the original parse (see Appendix A). The aim here
is to eliminate possible semantic mismatches that were the original motivation for KALM, as explained
in the introduction. The mismatches handled here arise from the possibility that the same information
may be described via passive or active voice, via a different order of elements in a coordination, via the
different ways to attach adnominal clauses, and more. Note that all these corrections became possible in
KALM'™ due to the use of dependency parsing and were not possible in the original CNL-based KALM.

4.2.1 Passive Voice

mSTANZA handles the active and passive voices separately. For a pair of active/passive voice sentences
with the same meaning, such as “Mary buys a car” and “A car is bought by Mary,” STANZA gives

114 Knowledge Authoring with Factual English

two completely different parses shown in Fig. 5; it does not attempt to reconcile the semantic mis-
match between them so that they would yield the same logical representation. To address this problem,
KALMFY first recognizes passive voice by the aux:pass’™ edge in the parse, then modifies the edges
of passive voice parses to make the parses equivalent to their active voice counterparts. If the sentence
is in active voice, keep the parse unchanged. Otherwise, convert it into n parses in active voice (n is the
number of by-phrases in the clause, since every by-phrase could be the subject of the real active voice
counterpart of this passive voice sentence) by modifying (i) nsubj: pass® to obl:by and (ii) 7 obl: by
edges to nsubjP one by one.

punct punct
. obj nsubj:pass obl:
PROPN]“"*“*/ \VERB e \pioun ot -‘” et NOUN] m‘” VERB) ADPI"C*
— L — =
Mary buys a car i bought by Mary

(a) Active voice (b) Passive voice

Figure 5: Semantic mismatch caused by passive voice

4.2.2 Coordination

Elements in STANZA coordinations are not treated equally. For example, in the parse of “KFC is a cheap,
clean, and delicious restaurant” shown in Fig. 6a, cheap directly depends on restaurant, but clean and
delicious mutually depend on cheap instead of restaurant. In this case, if cheap and clean are swapped,
the meaning of the sentence stays unchanged, but the parse will be different as shown in Fig. 6b. This
phenomenon will lead to a semantic mismatch.

!' é_ pun[(& conj——~ punct% ‘
[PROPH] AUX. gml \Pur»lcrf"’“”“ VADI| PUNCT gcgrgf“ ADI \EDUN(PUNCIpPUNCT) BROPNI AUX @/Am PUNCr "“"“‘ADJ PUNCTIcconi T ““N aDJ INOUN} V" —pUNCT

KFC is a cheap |, clean , and delicious restaurant 3 KFC is a clean , cheap , and delicious restaurant

() (b)

Figure 6: Semantic mismatch caused by coordination

KALMF treats coordination elements equally by modifying their edges. The procedure is shown
below, and all examples refer to Fig. 6a.

1. Locate the root element el,,,; of the coordination. It is a word that has outgoing conj"® edges to
other elements, which have incoming conj" edges (e.g. el is cheap, while clean and delicious
are the other two elements)

2. Copy the incoming edge of el to each non-root element and delete the edge conj’ (e.g. copy
amod™ to replace conjP that goes to clean and delicious)

3. Copy the outgoing edges of el (other than the deleted conjP) to each non-root element (in our
example, cheap has no outgoing edges, so no need to copy anything)

4.2.3 Adnominal Clause

An adnominal clause describes a fact about the nominal word it modifies. For example, “Mary bought a
car that was made in USA” represents two facts: “Mary bought a car,” and “The car was made in USA”.
However, the second fact is parsed differently when it is in an adnominal clause than when it is in a

Y. Wang, G. Borca-Tasciuc, N. Goel, P. Fodor, & M. Kifer 115

sentence by itself, and such phenomena lead to semantic mismatch. As shown in Fig. 7a, the subject of
“a car that was made in USA” is “that” whereas the real subject should be “car” like the parse in Fig. 7b.

punct

acl: fElCl
% nsubl pass obl \ nsubj:pass obl:
[PROP* nSUOI\VERB) m}“ det PRON [Aux"a“" pa“*vem ADPT-Case PUNCT) m"“e' {NODN] [AUXT“ % Pa“\:vsna ADPT P ROPN PROPN) PUNCT]
USA :

Mary bought a car that was made in : The car was made in

() (b)

Figure 7: Semantic mismatch caused by adnominal clause

KALMF recognizes the real roles (e.g., subject, object, etc.) that the modified word plays in the
adnominal clause, so that the adnominal clause can be seen as a complete sentence all by itself. This is
done via the following transformation.

e if a word V| has an incoming ac1’ edge e; that starts at V, and has no outgoing nsubj"
nsubj:pass’ edges, then
— if Vj is a present participle or a base-form verb tagged with VBG* or VBX, flip the direction of
e1 and change the label to nsubj’
— if V| is a past participle tagged with VBN*, flip the direction of e; and change the label to
nsubj:pass™
« if a word V; has an incoming acl:relcl™ edge e that starts at V,, then
— if V| has an outgoing nsubj", nsubj:pass’ or obj" edge pointing to an introductory
word Wiy, “that/wholwhich,” replace Wiy, with V;

— if V; has an outgoing mark’’ edge pointing to an introductory word W;,;,, where/when/whyl/
which replace Wj,;,, with V5 and modify mark" to ob1"

4.2.4 Other Semantic Mismatches

Besides the most frequent semantic mismatch issues solved above, KALMF! also tackles other types of
semantic mismatch caused by lemmatization, particle verbs, prepositional phrases, named entities, indi-
rect objects, and so forth. As shown in Fig. 3, after the Paraparsing step, the ultimate parse is delivered
to Frame-based Parsing and undergoes further processing to ultimately yield a unique disambiguated
logical representation.

4.3 Representing Dependencies in Logic Programming Systems

The original KALM used DRS to represent extracted information. In this paper, the parses are repre-
sented by much more general graphs, so we introduce an appropriate logical representation for them.
Here is an example shown below:

Example 4 The KALMF representation for the sentence “Mary buys a car’.

token(index(1,1,1) ,mary, [edge(index(1,2), jbusn)],edge(index(1,2) ,nsubj),
propn,nnp,index(1,2),s_person,accepted).

token(index(1,2,1) ,buy, [edge(index(1,1) ,nsubj) ,edge(index(1,4),0bj)],edge(index(1,0) ,root),
verb,vbz,index(1,2),0,accepted) .

token(index(1,3,1),a, [edge(index(1,4) ,ted)],edge(index(1,4) ,det),
det,dt,index(1,2),0,accepted).

token(index(1,4,1),car, [edge (index(1,3) ,det) ,edge(index(1,2),jbo)],edge(index(1,2),0bj),
noun,nn,index(1,2),0,accepted) .

116 Knowledge Authoring with Factual English

where a sentence is represented by a set of token/9 predicates and each token/9 predicate represents a
token ¢. The 1st argument in a token/9 predicate includes sentence ID, candidate parse ID, and #’s ID.
The 2nd argument is the lemma of #. The 3rd argument is a list of edges that connect ¢ to other tokens,
and an edge/?2 predicate representing a specific edge e includes the index of the other token on e, and
the edge type (reversed if it is an in-coming one). The 4th argument is the one and only in-coming edge
that # has. The 5th, 6th are #’s UPOS and XPOS tags, respectively. The 7th argument is the index of the
root token in the whole sentence, namely, “buys” in Example 4. Finally, the 8th and 9th arguments are
the named entity and validation tags, where the latter indicates if the parse is factual (accepted) or not.

4.4 Role-filler Disambiguation and Unique Logical Representations

In KALM, a clause represents a complete fact so each clause has only one parse, the one with the highest
semantic score after disambiguation. In KALMFL, coordinations and adnominal clauses are introduced
and their meanings can be captured accordingly, which is further explained in Section 4.4.1 and 4.4.2.

For logical representations, KALMF" uses ulr/3 and role/4 for representing instances of final
parses after disambiguation. Consider theses sentences: “Mary bought a car for John” and “Mary made
a purchase of a car for John”. Although they have different syntactic structures, they are ultimately con-
verted into exactly the same parse and their role-fillers are assigned exactly the same synsets. Therefore,
they must be translated into a unique logical representation (ULR). And indeed, the ULR for sentences
“Mary bought a car for John” and “Mary made a purchase of a car for John” is the same:

ulr(fid_1,’Commerce_buy’, [role(rid_1, ’Buyer’ ,mary, ’bn:00046516n’),
role(rid_2,’Goods’,car,’bn:00007309n°),
role(rid_3, ’Recipient’, john,’bn:00046516n’)]) .

The first argument £id_1 is the unique ID of this buying event, the second argument, ’Commerce_buy’,
is the frame name, and argument 3 is a list of role descriptors.

4.4.1 ULR for Factual Sentences with Coordinations

Generally, a sentence can have a mixture of and- and or-coordinations, whose meaning is quite hard
to describe. For simplicity, we focus on the case where C has only one type of coordination, i.e., all
connectives are and or all are or.

Let [Cy,...,Cy] be the list of all coordinations in a sentence S. A coordinated choice is a list 6 =
lely,...,el,] of coordination elements such that el; € C; for all i = 1,...,n. Let S5 be S where each co-
ordination, C;, and its elements is replaced with the corresponding element el; from . Thus, for each
coordinated choice ¢ for S, the above replacement operation constructs another sentence, Ss, which has
no coordinations. Next, we collect S, for all the different ¢’s and organize these sentences as elements
of a new homogeneous coordination of the same type as each of the original coordination C;. The result
is a sentence S’ with only one coordination, found at the root of the parse for the sentence.

For example, for the sentence “Mary bought and sold a car and a watch”, the coordinated choices
includes o) = [bought,car|, 6, = [bought,watch], oz = [sold,car], o4 = [sold,watch]. Based on the
coordinated choices, we can construct 4 sentences without coordinations: “Mary bought a car,” “Mary
bought a watch,” “Mary sold a car,” and “Mary sold a watch,” which are organized into a new and-
coordination. Thus, we have the final ULR for this and-coordination shown below:

ulr(fid_1,’Commerce_buy’, [role(rid_1, ’Buyer’ ,mary, ’bn:00046516n’),
role(rid_2,’Goods’,car,’bn:00007309n°)]) .
ulr(fid_2,’Commerce_buy’, [role(rid_1, ’Buyer’ ,mary, bn:00046516n’),

Y. Wang, G. Borca-Tasciuc, N. Goel, P. Fodor, & M. Kifer 117

role(rid_3,’Goods’ ,watch,’bn:00077172n’)]) .
ulr(fid_3,’Commerce_sell’, [role(rid_1,’Seller’ ,mary, ’bn:00046516n’),

role(rid_2,’Goods’,car,’bn:00007309n°)]).
ulr(fid_4,’Commerce_sell’, [role(rid_1,’Seller’ ,mary, ’bn:00046516n’),

role(rid_3,’Goods’ ,watch,’bn:00077172n’)]).

4.4.2 ULR for Factual Sentences with Adnominal Clauses

An adnominal clause always describes the nominal word it modifies. This means that an adnominal
clause expresses a complete fact about the nominal word. In other words, the facts represented by
adnominal clauses and by the main clause must both hold. Thus, the ULRs for clauses must be in
conjunction. For example, the sentence “/Mary bought a car|y.i, [made in the country],gnomina [that
John lives in]aanomina” has a main clause and two adnominal clauses, one modifying the word “car” and
the other the word “country.” The ULR then is given below:
ulr(fid_1,’Commerce_buy’, [role(rid_1, ’Buyer’ ,mary, bn:00046516n’),
role(rid_2,’Goods’,car,’bn:00007309n°)]) .
ulr(fid_2, ’Manufacturing’, [role(rid_2, ’Product’,car, bn:00007309n’),
role(rid_3,’Place’,country, >bn:00023236n’)]) .

ulr(£id_3, ’Residence’, [role(rid_4, ’Resident’, john, >bn:00046516n’),
role(rid_3,’Location’,country, bn:00023236n’)]) .

5 Evaluation

We use four datasets to demonstrate the high performance of KALMF as a knowledge authoring ma-
chine for factual English.

5.1 Datasets

* CNLD. [8] uses CNL sentences, largely inspired by FrameNet, to evaluate the original KALM.
We call this dataset the CNL Dataset (CNLD). CNLD contains 250 short CNL sentences in present
tense, such as “Kate purchases a house.” This dataset is captured via 50 logical frames and 317
LVPs constructed from 213 training sentences.

* CNLDM. This dataset is obtained from CNLD by changing the voice of some sentences from
active to passive and vice versa. In addition, some sentences are changed to past or future tense.
Thus, CNLDM contains sentences like “A house was purchased by Kate,” with mixed voice and
tense. Our evaluation uses the same LVPs as in CNLD.

* MetaQA. This dataset [14] has queries that use complex adnominal clauses. These queries neatly
fall into several different templates. Within each template, the queries differ only in the entity
names. Also, all named entities are pre-annotated. For example, the queries “who directed the
movies written by [Thomas lan Griffith]” and “who directed the movies written by [Frank De Fe-
litta]” belong to the same template “who directed the movies written by [MASK],” where [MASK]
is a placeholder for pre-annotated named entities. In this evaluation, we use 2- and 3-hop tem-
plates directly instead of the original queries, because with named entities annotated, different
queries that fall into a same template have exactly the same mSTANZA parse. Only 3 frames are
needed to represent the semantics of all such queries: Movie, Inequality, and Coop(eration).
Acting as knowledge engineers, we designed 85 training sentences and used the approach of [9] to
understand 2- and 3-hop queries.

118 Knowledge Authoring with Factual English

* NLD. NLD uses part of the dataset from FrameNet. NLD includes 250 sentences which look like:
“GDA has purchased the site from Laing Homes and plans are being prepared for an 80 million
dollar mixed development for business, media and leisure activities”, which is the original sentence
of the CNLD sentence “Kate purchases a house”. NLD sentences have much more complicated
structures that goes beyond factual sentences. Besides factual parts, most of the NLD sentences
have non-factual parts that are not usable for knowledge acquisition. In view of this, we ignore all
the non-factual parts in NLD sentences. Another approach could be highlighting the non-factual
parts and letting the user to correct them or eliminate them.

For the original KALM, all these datasets have to be manually modified to eliminate future/past tense,
to put adnominal clauses in a certain canonical form, restrict the vocabulary for the controlled natural
language parser, particle verbs, appositives and compound nouns also had to be manually modified. In
KALMFL, all this is done automatically, and therefore, it can handle a much bigger share of natural
language sentences.

5.2 Comparison Systems

We compare KALM'™ with the original KALM as well as three other frame-based parsers: SEMAFOR
[2], SLING [12], and OpenSesame [13]. SEMAFOR and SLING have been previously shown to be inac-
curate in [7], so we will not repeat these findings and instead focus on the recently proposed OpenSesame
system. Unlike KALMFL OpenSesame is a three-staged pipeline involving target (i.e., LU) identifica-
tion, frame identification and argument (i.e., role-filler) identification—each stage is essentially a neural
network trained independently of the others. In addition, we consider the neural system DrKIT [3] as
another comparison system, which achieves the best performance on MetaQA among neural models.

5.3 Results
The evaluation is based on the following metrics:

1. Frame-level Micro-F1: the ratio of sentences that (i) correctly trigger all the applicable frames,
and (ii) do not trigger wrong frames.

2. Role-level Micro-F1: the ratio of sentences that (i) correctly trigger all the applicable frames with
all roles correctly identified, and (ii) do not trigger wrong frames.

3. Synset-level Micro-F1: the ratio of sentences that (i) correctly trigger all the applicable frames
with all roles correctly identified and disambiguated, and (ii) do not trigger wrong frames. Note
this metric applies only to KALM and KALMF"; other systems do not attempt to give semantics
with this level of precision.

Table 1: Micro-F1 score comparisons on different datasets

CNLD CNLDM MetaQA NLD

F R S F R S F R S F R S

KALM 099 099 097 - - - 1.00 1.00 1.00 - - -
OpenSesame 0.61 0.17 - 059 0.11 - 049 0.00 - 056 0.12

KALMME 099 099 097 0.99 099 097 095 095 095 0.99 0.98 0.95
DeKIT - - - - - - - 086 - - - -

Y. Wang, G. Borca-Tasciuc, N. Goel, P. Fodor, & M. Kifer 119

Results for the different levels of F1 scores are presented in Table 1. In the table, F, R, and S refer to the
frame, role, and synset-level F1 scores, respectively. Note that the results reported in the literature for
DrKIT [3] can be interpreted as pertaining the role-level Micro-F1 metric. The results in the table are
summarized below.

1. CNLD: This dataset has only CNL sentences and KALMF! achieves the same high F1 scores as
the original KALM in all metric levels. OpenSesame’s 0.61 frame-level F1 score shows that it has
difficulty even to recognize correct frames.

2. CNLDM: Perturbation of the tenses and voices of CNLD sentences took this dataset outside of
the Attempto’s APE CNL, thus the original KALM cannot handle some of the CNLDM sentences
even though the meaning of these sentence did not change.

3. MetaQA: KALM performs perfectly, but only after changing the sentences so they comply with
the ACE CNL. In contrast, KALMF" gets the 0.95 synset F1 score even without any preprocessing.
OpenSesame fails on MetaQA with 0 role-level F1 score—probably because it was never trained
on the movie domain. In the comparison between DrKIT and KALMFL DrKIT [3] achieved 0.871
and 0.876 accuracy on 2- and 3-hop query answering respectively. For KALMFY, the 333 out of
350 correctly parsed templates covers 128,784 2-hop queries and 119,923 3-hop queries, which
results in 0.962 and 0.933 accuracy on 2- and 3-hop query answering and outperforms DrKIT.

4. NLD: The original KALM fails since this dataset breaks the CNL restrictions on the input lan-
guage. In contrast, KALMF does well and easily outperforms OpenSesame, especially when it
comes to handling of adnominal clauses.

It is surprising that OpenSesame’s role level F1 scores are extremely low on the three FrameNet-
related datasets. Error analysis shows that even for simple CNLD sentences like “Mary buys a laptop,”
OpenSesame has hard time extracting all roles. For instance, “laptop” is not extracted as a role-filler for
the role Goods.

6 Limitations and Future Work

Although KALMF! has been shown to have high accuracy, limitations still exist. For example,

» KALM' accepts various tenses based on Property 3, but currently this and other temporal infor-
mation is ignored and is planned for future work.

« KALMF" doesn’t handle anaphora because the quality of the parses is highly dependent on the
quality of the chosen off-the-shelf anaphora resolver.

o KALMFL treats sentences with quantifiers, like “Every pet has an owner,” as facts rather than
rules, which points to an issue with the definition of factual sentences.
For future work, we plan to address some of the aforesaid problems and to extend KALMF with

quantifiers, rules, temporal information, and other advanced features that have direct counterparts in
natural languages.

7 Conclusion

The original KALM [7, 8, 9] was proposed as a solution to the problem of semantic mismatch in knowl-
edge authoring using natural languages, but this solution was limited to CNLs, which is a severe limita-
tion both in expressiveness and human training. In this paper, we introduced KALMF™, an NLP system

120

that

Knowledge Authoring with Factual English

is not chained by CNL limitations. The only restriction is that the sentences used for knowledge

authoring must be factual, i.e., express factual information as opposed to, say, feelings, allegories, hyper-
bolas, etc. Benchmarking shows that this approach captures the meanings of factual sentences with very
high accuracy: the 0.95 F1 score for both facts and queries.

References

(1]

(2]

[10]

[11]

[14]

Collin F Baker, Charles J Fillmore & John B Lowe (1998): The berkeley framenet project. In: 36th Annual
Meeting of the Association for Computational Linguistics and 17th International Conference on Computa-
tional Linguistics, Volume 1, pp. 86-90, doi:10.3115/980845.980860.

Dipanjan Das, Desai Chen, André FT Martins, Nathan Schneider & Noah A Smith (2014): Frame-semantic
parsing. Computational linguistics 40(1), pp. 9-56, doi:10.1162/COLI_a_00163.

Bhuwan Dhingra, Manzil Zaheer, Vidhisha Balachandran, Graham Neubig, Ruslan Salakhutdinov &
William W Cohen (2020): Differentiable reasoning over a virtual knowledge base. arXiv preprint
arXiv:2002.106401, doi:10.48550/arXiv.2002.10640.

Charles J Fillmore et al. (2006): Frame semantics. Cognitive linguistics: Basic readings 34, pp. 373—400,
doi:10.1515/9783110199901.373.

Norbert E Fuchs, Stefan Hoefler, Kaarel Kaljurand, Tobias Kuhn, Gerold Schneider & Uta Schwertel
(2006): Discourse Representation Structures for ACE 5. ifi Technical Reports 1(ifi2006. 10), doi:10.5167/
uzh-62058.

Norbert E Fuchs & Rolf Schwitter (1996): Attempto controlled english (ace). arXiv preprint cmp-1g/9603003
1, doi:10.48550/arXiv.cmp-1g/9603003.

Tiantian Gao, Paul Fodor & Michael Kifer (2018): High accuracy question answering via hybrid controlled
natural language. In: 2018 IEEE/WIC/ACM International Conference on Web Intelligence (WI), IEEE, pp.
17-24,d0i:10.1109/WI.2018.0-112.

Tiantian Gao, Paul Fodor & Michael Kifer (2018): Knowledge authoring for rule-based reasoning. In:
OTM Confederated International Conferences” On the Move to Meaningful Internet Systems”, Springer, pp.
461-480,d0i:10.1007/978-3-030-02671-4_28.

Tiantian Gao, Paul Fodor & Michael Kifer (2019): Querying Knowledge via Multi-Hop English Questions.
Theory and Practice of Logic Programming 19(5-6), pp. 636—653, d0i:10.1017/S1471068419000103.

Roberto Navigli & Simone Paolo Ponzetto (2012): BabelNet: The automatic construction, evaluation and
application of a wide-coverage multilingual semantic network. Artificial Intelligence 193, pp. 217-250,
doi:10.1016/j.artint.2012.07.001.

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton & Christopher D Manning (2020): Stanza: A python
natural language processing toolkit for many human languages. arXiv preprint arXiv:2003.07082 1, doi:10.
18653/v1/2020.acl-demos.14.

Michael Ringgaard, Rahul Gupta & Fernando CN Pereira (2017): SLING: A framework for frame semantic
parsing. arXiv preprint arXiv:1710.07032 1, doi:10.48550/arXiv.1710.07032.

Swabha Swayamdipta, Sam Thomson, Chris Dyer & Noah A Smith (2017): Frame-semantic parsing with
softmax-margin segmental rnns and a syntactic scaffold. arXiv preprint arXiv:1706.09528 1, doi:10.48550/
arXiv.1706.09528.

Yuyu Zhang, Hanjun Dai, Zornitsa Kozareva, Alexander J] Smola & Le Song (2018): Variational reasoning
for question answering with knowledge graph. In: Thirty-second AAAI conference on artificial intelligence,
pp- 6069-6076, doi:10.48550/arXiv.1709.04071.

Y. Wang, G. Borca-Tasciuc, N. Goel, P. Fodor, & M. Kifer 121

A Error Detection and Correction

Fig. 8 illustrates one of the errors in STANZA POS tagging. Here, the word protests is wrongly tagged as
a noun and the dependencies related to protests are also wrong.

punct:

nmod
det case:
e f ﬂj UNCT)
[MOuNT oUN) (ADP (DET NGU PUNCT)

A student protésts against the government

Figure 8: The best mSTANZA parse for “A student protests against the government”

Fortunately, the six properties that stem from the factual sentence requirement can detect and help
correct some of these mis-taggings. Denote the mSTANZA parse with the highest confidence score
as parsey = [wi,...,w,] where n is the number of the words, w; contains all parsing information such
as POS tag, dependency relation of the i-th word in the sentence. Let Upos = [upos,...,upos,] and
X pos = [xposy, ...,xpos,] be the UPOS and XPOS taggings of the sentence.

Algorithm 1 POS Tagging Error Detection and Correction

Input: upos;, xpos;, the second best UPOS tag upos! for w;, and the second best XPOS tag upos’ for w;.
Output: The corrected UPOS upos; and XPOS Xpos; for w;.
1: Upos;,Xpos; <— upos;,xpos;
2: if upos;.score < 0.9 then
3 if upos; == NOUNV and upos; == VERBY then
4 upos; <+ VERBY
5: xpos; < VBP*/VBZ*/VBD*
6 else if upos; == VERBY and upos; == AUX' then
7 upos; + AUXY
8 xpos; < VBP*/VBZ*/VBD*
9 else if upos; == PRON" and upos; == DET' then
10: upos; < DETY
11: xpos; < WDTX/PDTX/DTX
12: else if upos; == SCONJY and upos: == ADV' then
13: upos; + ADVY
14: xXpos; < WRBX/IN¥
15: else if xpos;.score < 0.9 then
16: if xpos; == VBD* and xpos; == VBN* then

17: xpos; < VBN%

18: else if xpos; == VBN* and xpos: == xposVBD then
19: xpos; < VBDX

20: else if xpos; ; == VBP* and xpos; == VB* then

21 xpos; < VBY

22: return upos;,xpos;

Detection and correction of POS tags. As shown in the dotted box of Fig. 3, this step starts
with parsey. If parseg satisfies all the above-mentioned factual properties, parsey is assumed to be
error-free and is directly sent to the Paraparsing step. Otherwise, following Algorithm 1, if a possibly

122 Knowledge Authoring with Factual English

wrong (with confidence < 0.9) POS tag belongs to a certain type of frequent POS tagging errors (e.g.,
mSTANZA relatively frequently mis-tags verbs as nouns, and this is what happened with protests in
Fig. 8), KALMF then asserts the tag is wrong and corrects it. Lines 2 and 3 in Algorithm 1 capture such
type of errors and assign corrected POS tags. Note that in Lines 5, 8, 11, and 14, the algorithm faces
multiple options like VBP*/VBZ*/VBD* and chooses the one with the highest confidence score.

Re-parsing with new POS tags. Having re-tagged the words in the above step, the new POS tags,
U pos = [uposy,...,upos,| and X pos = [xposy, ..., Xpos,), are fed to the mSTANZA dependency parser to
re-generate a new dependency parse Parse, ranked by confidence scores.

Selecting a corrected parse. In this step, KALMF goes through the parses in Parse, from the
highest confidence score to lowest, looking for a parse, parse’, that satisfies all the properties of factual
sentences. If parse’ is found, it is taken as a corrected parse, parse = parse’. If parse’ is not found, the
algorithm assumes the sentence in question is not factual, so it asks the user to paraphrase the sentence.

	Introduction
	The KALM Framework
	Factual Sentences
	Grammatical Properties of Factual Sentences

	KALM for Factual Language
	Multi-Stanza
	POS Tagger and Dependency Parser
	Error Detection and Correction Based on Multi-Stanza

	Paraparsing
	Passive Voice
	Coordination
	Adnominal Clause
	Other Semantic Mismatches

	Representing Dependencies in Logic Programming Systems
	Role-filler Disambiguation and Unique Logical Representations
	ULR for Factual Sentences with Coordinations
	ULR for Factual Sentences with Adnominal Clauses

	Evaluation
	Datasets
	Comparison Systems
	Results

	Limitations and Future Work
	Conclusion
	Error Detection and Correction

