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ABSTRACT

We describe the measurement and treatment of the telescope beams for the Atacama Cosmology
Telescope’s fourth data release, DR4. Observations of Uranus are used to measure the central portion
(< 12') of the beams to roughly —40 dB of the peak. Such planet maps in intensity are used to
construct azimuthally averaged beam profiles, which are fit with a physically motivated model before
being transformed into Fourier space. We investigate and quantify a number of percent-level correc-
tions to the beams, all of which are important for precision cosmology. Uranus maps in polarization
are used to measure the temperature-to-polarization leakage in the main part of the beams, which is
< 1% (2.5%) at 150 GHz (98 GHz). The beams also have polarized sidelobes, which are measured with
observations of Saturn and deprojected from the ACT time-ordered data. Notable changes relative
to past ACT beam analyses include an improved subtraction of the atmospheric effects from Uranus
calibration maps, incorporation of a scattering term in the beam profile model, and refinements to the
beam model uncertainties and the main temperature-to-polarization leakage terms in the ACT power

spectrum analysis.
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1. INTRODUCTION

The Atacama Cosmology Telescope (ACT) is a 6m
off-axis Gregorian telescope located at an altitude of
5190 m in the Atacama Desert of northern Chile. It is
designed for millimeter wavelength observations of the
cosmic microwave background (CMB) at arcminute res-
olution. The telescope and receiver are described in
Fowler et al. (2007) and Thornton et al. (2016) respec-
tively. This paper describes the treatment of the ACT
beams for its fourth data release, referred to as DRA4.
This data release includes temperature and polarization
data collected by ACT between 2013 and 2016, covering
seven regions of the sky spanning roughly 18,000 deg?,
in frequency bands centered on 98 and 150 GHz (Thorn-
ton et al. 2016). The DR4 data were obtained using two
150 GHz detector arrays, PA1 and PA2, and one dichroic
detector array, PA3, operating at 98 and 150 GHz. The
three array positions are not identical optically. Each
year of data is referred to as a season (S13-S16) and was
analyzed separately. The DR4 data products and some of
their analyses are presented in Choi et al. (2020), Aiola
et al. (2020), Darwish et al. (2020), Han et al. (2021),
Madhavacheril et al. (2020), Namikawa et al. (2020), and
Mallaby-Kay et al. (2021).

The beams of the telescope determine the instrument’s
response to different scales on the sky. Quantifying these
beams and the uncertainties on the beam measurements
is one of the most challenging aspects of characterizing
the instrument. An incorrect calibration of the beams
would bias virtually all of the ACT science analyses, in-
cluding the precision measurement of the CMB power
spectrum.

The previous paper that focused on ACT beams, Has-
selfield et al. (2013), dates from DR2, which included
data through 2010. The DR3 analysis papers (Louis
et al. 2017; Naess et al. 2014) referenced Hasselfield et al.
(2013) and described the small changes in methodology
since then. In recent years, there have been several mod-
ifications to our beam pipeline that merit further discus-
sion. This paper provides a comprehensive guide to the
analysis of the ACT beams for DRA4.

The paper is organized as follows. In §2 we describe
the planet observations used to measure the main portion
of the ACT beams. In §3 we explain how these observa-
tions are made into maps. In §4 we describe the steps of
the beam pipeline from planet maps to a model of the
ACT beams and their covariance. §5 accounts for the
polarization component of the beams. Finally, in §6 we
discuss the publicly released beam products, assumptions
made in the analysis, and future directions for ACT beam
analyses. Part of the information in this paper overlaps
with that in previous ACT papers, including Aiola et al.
(2020), Choi et al. (2020), and Hasselfield et al. (2013),
and is included here for clarity and completeness.

2. OBSERVATIONS

Observations of sufficiently bright point-like objects
are required in order to properly characterize the shape of
the beams out to large angles. For ACT, planets are the
best candidates for this purpose, though not all equally
so. The proximity of Mercury and Venus to the Sun
make them difficult to observe at night; Mars’ tempera-
ture is not sufficiently constant (see, for example, Wright

1976), so it intermittently becomes too bright; Jupiter’s
apparent size is too large, compared to the instrument’s
angular resolution, to be considered a point source (and
it is too bright, as is Saturn); Saturn, though suitable for
sidelobe analysis, is bright enough to induce a non-linear
detector response near peak amplitude, resulting in sig-
nal suppression within the main lobe of the beam;' Nep-
tune’s small angular diameter relative to the beamwidth
dilutes its brightness, reducing signal-to-noise. We have
thus chosen to base the majority of the ACT beam anal-
ysis on observations of Uranus, which achieves adequate
signal-to-noise without exceeding the dynamic range of
the instrument and can be approximately treated as a
point source.”? As described in §5.2, Saturn is used to
study the beam’s polarized sidelobes.

Planet observations are done by briefly interrupting
the CMB survey scans, changing the azimuth at which
the telescope is pointing, and scanning again at a fixed
elevation. Uranus is observed roughly once per night
during the observing season, but only the higher quality
observations are used to characterize the beam. Before
making maps of the observations, we apply the same data
selection criteria as for the main maps used for cosmolog-
ical analysis. For example, we discard data taken during
the daytime, data taken when the weather was particu-
larly bad, or data from detectors that do not meet cri-
teria summarized in Aiola et al. (2020) and detailed in
Diinner et al. (2013). Once maps of the observations are
made, further selection criteria are applied, as described
in §4.1.

3. PLANET MAP-MAKING
3.1. Filtering And Noise

Uranus maps were made using a special filter-and-bin
map-maker built on the same framework used for build-
ing our normal maximum-likelihood maps (enki).® The
reason we do not use maximume-likelihood maps for plan-
ets is that these are not robust to “model errors”, as
described in e.g. Naess (2019). The difference between
the true continuous sky and the pixelated model is inter-
preted as noise, leading to a bias which propagates along
the scan direction for a noise correlation length. This is
a significant effect for a bright, localized signal such as a
planet.

It is possible to make maximum-likelihood models ro-
bust to these effects at significant computational and im-
plementational cost (Piazzo 2017), but we here choose
a simpler method that exploits the compactness of the
planet signal relative to the atmospheric noise correlation
length to separate the two. The idea is to split the data
into two regions: a target region (including the planet)
which we want to map, and a reference region (the rest

1 Such detector non-linearity may have contributed to the ~7%
discrepancy between the Planck and ACT DR2 measurements of
Saturn’s temperature (Planck Collaboration Int. LII et al. 2017;
Hasselfield et al. 2013).

2 While not implemented for the current beam analysis, another
possibility being studied involves using observations of Uranus to
measure the central portion of the beam (where Saturn would in-
duce a non-linear response) and observations of Saturn to mea-
sure the parts of the beam further from the peak. This way, Sat-
urn’s brightness allows us to measure the outer parts of the beam
to greater signal-to-noise than when using observations of Uranus
alone.

3 GitHub repository: https://github.com/amaurea/enlib
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of the data) which is used to estimate the behavior of the
atmospheric noise.* The atmosphere in the target region
is then estimated by interpolating the atmospheric modes
from the reference region, and it is then subtracted from
the target region of the map.” To the extent that the
signal in the target region is uncorrelated with any sig-
nal in the reference region, then this subtraction will not
introduce bias on any scale in the target region. A point
source like Uranus is very close to fulfilling these criteria,
but in practice the outermost parts of the beam extend
into the reference region, introducing a slight bias that
we address in §3.2.

The target region must be large enough to capture
all of the main beam, but small enough that the atmo-
sphere’s behavior in the target region can be adequately
predicted using only data from the reference region. We
choose a 12’ radius area centered on the planet as the tar-
get region, and estimate the atmosphere’s behavior here
by exploiting its spatial correlation structure. Nearby
detectors see similar parts of the atmosphere, so if at
one moment in time some detectors are seeing the tar-
get region and some are seeing the reference region, the
data from the latter are used to help determine the at-
mospheric modes in the former.® This new interpola-
tion technique significantly improves the noise modelling
compared to the technique used in Louis et al. (2017),
which used a simpler variant of filter-and-bin where the
detector common mode was subtracted.

The resulting planet maps are cleaner and dominated
mostly by white noise. In addition, we now inverse vari-
ance weight the detectors when making the planet maps,
which was not done previously. This improved map-
ping has contributed to a more detailed understanding
of the temperature-to-polarization leakage, which will be
described in §5.1.

3.2. Bias From Map-Making

While it is approximately true that all the planet sig-
nal is contained inside the target region, a small part
of it extends into the reference region due to the faint
wings of the beams. This introduces a small but non-
negligible bias in the target region when the atmosphere
is subtracted.

To study this bias, a set of simulated beam-convolved
Uranus observations are processed through the map-
maker. The beam-convolved planet signal is simulated
using a 2D beam model” which uses the inverse Fourier
transforms of two-dimensional Zernike polynomials as
its basis set, similar to the 1D model of the beam de-
scribed in §4.2.3. This simulated planet signal is then
injected into several subsets of real time-domain data
taken from CMB observations. The resulting data are

4 The atmospheric fluctuations seen by ACT are described in
more detail in Morris et al. (2021).

5 For a previous implementation of a map-making method de-
signed to model and subtract the atmosphere from maps of planets,
see Hincks et al. (2010).

6 Ideally one would also use the temporal correlations of the
atmosphere, and solve the most probable value of the atmosphere
in the target region given the data in the reference region. This
technique may be employed in the future. In preliminary tests, this
only results in a mild improvement.

7 This model was developed as part of a larger, ongoing project
to fit the beams in two dimensions in order to capture their asym-
metry.

3

then processed through the planet map-making pipeline,
which includes estimating and subtracting the atmo-
spheric noise. Both the CMB observations alone and
the CMB observations with the planet signal injected are
mapped separately, and then the former are subtracted
from the latter. The result is a set of noise-free simulated
maps of Uranus observations.®

An example of a map of a simulated Uranus observa-
tion is shown in Figure 1. Radial profiles are constructed
by taking the azimuthal average of the input beam model
and the mean output of the simulated observations. The
difference between these two radial profiles represents the
bias due to the atmospheric subtraction. As seen in Fig-
ure 2, other than small residual fluctuations near the
center of the beam, the bias can be well approximated
by a constant offset.” In these simulations the target re-
gion for atmosphere subtraction was chosen to have a 16’
radius, but the qualitative conclusions we draw are appli-
cable to the final planet maps used for the beam analysis
which have a target region with a 12’ radius.'® As shown
in Figure 2, the effect of the atmosphere removal is al-
most exactly as expected: the value of the input beam
at the target radius (16’ in this case) is uniformly sub-
tracted within that radius to produce the output beam.

So the planet map-making bias is well approximated by
a constant offset in each map, determined by the value of
the Uranus signal at the edge of the target radius used for
noise estimation. This offset is estimated and subtracted
prior to analysis, as described in §4.2.1.

4. BEAM PIPELINE
4.1. Map Selection And Processing

A map of Uranus is made for each detector array, fre-
quency, and observation.'! Only a fraction of these maps
are used in the final beam analysis. We select maps made
from observations done at night (23-11 UTC) taken with
the secondary mirror in its final focus position for the
season in question. We pick the maps where there are
not too many zero-weight pixels (which are indicative of
poor scan coverage), where the signal-to-noise is suffi-
ciently high (> 10), and where there are not too many
horizontal stripes (determined by visual inspection of the
maps). This striping in the maps is caused by large-scale
variations due to residual atmosphere. The rejection of
maps with too much striping is new, and is done to sim-
plify the analysis. It results in fewer maps being selected

8 In the end, it was discovered that including the atmospheric
noise in the simulations does not affect the results, since the atmo-
sphere removal is approximately linear.

9 These small residual features only appear in the 7' maps when
solving for the maps in T, @, U simultaneously. When we solve
only for 7" and set Q = U = 0, the fluctuations disappear. This
seems to be due to an issue with the conditioning of the covariance
matrix in the simulations, and is not a physical effect.

10 During preliminary beam studies, maps of both Uranus and
Saturn were made, with target regions both of radius 12’ and 16’.
Saturn was found to be too bright. In the Uranus maps with a
target region of radius 16’, the signal-to-noise in the radial profiles
past 12’ was insufficient to be of use in the analysis. Hence, the
Uranus maps with a target region of radius 12’ were used, in order
to make the best possible prediction of the atmosphere in the region
of interest.

11 So we do not make any per-detector maps. For each detector
array, frequency, and observation of Uranus, we combine the data
from all the detectors that meet the quality criteria mentioned in
§2 into one map.
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F1a. 1.— Example of a simulated planet observation used to characterize the mapping transfer function. This example is for S16 PA2 at
150 GHz. (Left) The input 2D beam model. (Center) One simulated observation. (Right) The difference between the “input” beam model
(left) and the map of the “output” simulated observation (center). Note that in each case the color scale is a symmetrical log scale® in dB
(with a linear threshold of —50 dB for the input and output maps and —45 dB for the difference map) and negative values are enclosed
by parentheses. Here the target region where the atmosphere was estimated and removed during the map-making process was chosen to
have a radius of 16’. The large-scale residuals seen are mostly constant within this target region of the map. The slight asymmetry in the
beam (which may be safely ignored for DR4, as explained in §6.2) is due primarily to the positions of the telescope’s optics tubes in the

focal plane.

2A symmetrical log scale is logarithmic in both the positive and negative directions, with a small linear range around zero to avoid having
values tend to infinity (https://matplotlib.org/stable/api/scale_api.html#matplotlib.scale.SymmetricalLogScale).
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F1a. 2.— The average radial profile of the simulated Uranus ob-
servations for S16 PA2 at 150 GHz, comparing the azimuthal av-
erages of the “input” 2D beam model and the mean map of the
“output” simulated observations. The vertical dashed line indi-
cates the 16’ radius target region of the map within which the
atmosphere was estimated and subtracted. (For the Uranus maps
used to characterize the beam, a 12’ radius target region is used,
but the qualitative conclusions we draw here still apply.) Other
than the small (roughly —40 to —30 dB) variations near the beam
center, the difference is well approximated by a constant offset in
the region from 3.5’ to 10.0’ where we fit for it. As described in
§4.6, we adjust our beam covariance matrices to account for possi-
ble uncertainty due to variations in the range over which we fit the
offsets, exploring the three independent ranges of 3.5'-5.0", 5.0'—
7.0’, and 7.0’-10.0".

than in Louis et al. (2017). For each season, array, and
frequency, the number of maps discarded due to striping
ranges from 3 to 42 (on average 19), which represents
between 4% and 36% of the maps (on average 16%).
The number of Uranus maps used for the beam analysis
versus the total number of observations is shown in Fig-
ure 3 and Table 1. For example, in 2014 (S14) we made
129 observations of Uranus. In the case of PA2, we dis-
carded 34 observations because at the time the telescope
pointing was optimized for PA1 (so Uranus was not well
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Fic. 3.— Distribution of the total number of Uranus observations
that were made (faded colors) and ultimately became part of the
final beam analysis (solid colors) for all arrays combined, shown
by observing seasons from 2013-16. The shaded regions between
0 UTC and 11 UTC, as well as 23 and 24 UTC, demarcate the
ACT nighttime dataset (note that local time at the observing site
fluctuates between UTC-3 and UTC-4). See Table 1 for a summary
of the number of observations used vs total for each detector array
and season.

measured by PA2), 36 observations because the resulting
maps had too much striping, and 8 because the signal-to-
noise was too low. This leaves 51 Uranus observations to
measure the beam. An example “good” map which was
selected for the beam analysis and a “bad” map which
was discarded due to too much striping are shown in Fig-
ure 4. In S13, a large fraction of the Uranus maps were
thrown out because the observations were made in the
early commissioning phase of the telescope, before it had
achieved its final focus.

For the purposes of the beam measurements, we re-
center each Uranus map by fitting a 2D Gaussian in the
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TABLE 1
SUMMARY OF URANUS OBSERVATIONS - NUMBER USED/TOTAL.
Array (]éa}rf;l) Season Used | Total
S13 11 197
PA1 150 S14 45 129
S15 17 133
S14 51 129
PA2 150 S15 38 164
S16 11 86
PA3 150 S15 8 117
S16 6 78
PA3 08 S15 33 117
S16 9 78
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FiG. 4.— Two maps of individual Uranus observations for S15
PA2 at 150 GHz. (Top) A “good” map which was selected for
the beam analysis. (Bottom) A “bad” map which was thrown
out due to having too many horizontal stripes (caused by large-
scale variations due to residual atmosphere remaining after the
atmosphere subtraction described in §3.1). In each case, the color
scale is a symmetrical log scale in dB, with a linear threshold of
—30 dB and negative values enclosed by parentheses. Any slight
asymmetry visible here may be safely ignored for DR4, as explained
in §6.2, and is due primarily to the positions of the telescope’s
optics tubes in the focal plane.

vicinity of the planet. The amplitudes from these fits are
used to normalize the beam profiles to have peak values
of unity. We also estimate the noise level in each map
by computing the standard deviation of the pixel values
outside the target region (the 12’ radius area centered on
the planet, described in §3.1).

Normalized Amplitude

Radius [arcmin]

F1a. 5.— Example of the offset fit for the radial profile of one
Uranus observation for S14 PA2 at 150 GHz. The points are found
by taking the azimuthal average of the map for each radial bin.
Uncertainties on these points are not computed. The curve is
the best-fit model /63 + 3, where in this case a = 0.08934 and
£ = 0.00012.

4.2. Radial Profile Fitting
4.2.1. Radial Profiles

The instantaneous ACT beams are slightly ellipti-
cal. However, when fitting the beam we work with az-
imuthally averaged (“symmetrized”) radial beam pro-
files, treating the beams as if they were circular. In our
case, the cross-linking of the scans (visible in Figure 2 of
Choi et al. 2020) means that the telescope beams con-
tribute to the maps with roughly equal weight at two
different orientations that are approximately 90 degrees
apart for a large part of the ACT sky coverage. The
effective beams are thus circularized.'?

This symmetrizing effect works well in temperature,
but it does not help with the temperature-to-polarization
leakage caused by beam asymmetry. However, this effect
has been quantified and may be safely ignored for DR4,
as explained in §6.2.

The ACT beams are small enough that we use a flat sky
approximation for modeling them. We denote each beam
map by B(6,¢), where 0 is the radial distance from the
beam center and ¢ is the polar angle. We set B(0, ¢) = 1.
The symmetrized radial beam profile is then

BO) = 5= [ 46 B6.9). &

Each map, with a target region of radius 12/, is binned
into a symmetrized radial profile with bins of width 11”
out to a radius of 10’, for a total of 55 bins. The dominant
source of noise in the Uranus maps comes from variations
in the atmosphere which occur at relatively large angular
scales, so there is significant correlation between the bins
in each radial profile.

Before combining the radial profiles into one mean pro-
file for each season, array, and frequency, each map’s
profile must be corrected for the offset due to the bias

12 Tn reality, anisotropic noise weighting (due to ACT’s noise
being correlated along the scan direction) makes the beam sym-
metrization from the map-maker is different from what one gets by
simply averaging. The overall effect is to either make the circular-
ized beam smaller or larger than the naive prediction, depending
on the direction the raw beam is elongated relative to the scan-
ning direction. This effect is absorbed into the jitter correction
described in §4.5.
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induced by the planet map-maker that was described in
§3.2. This is done by fitting the model a/6% + 3 (mo-
tivated in §4.2.4) plus a scattering term (described in
§4.2.5) to each profile in the range 3.5’-10.0" and then
subtracting the measured offset, /3, from each. An exam-
ple of such a fit is shown in Figure 5.

We then compute an average radial profile indepen-
dently for each season, detector array, and frequency.
When averaging radial profiles, each profile is weighted
by 1/N where N is the white noise variance estimated
from the corresponding map. The averaged radial pro-
files extend to roughly —40 dB of the peak, or 35 dBi
(40 dBi) at 150 GHz (98 GHz).

An advantage of computing each radial profile then
taking the average, compared to making one average
Uranus map then computing its radial profile (as done in
Hincks et al. (2010), for example), is that it more easily
allows for the estimation of the full covariance matrix for
the averaged radial profile. The off-diagonal elements
of this matrix are important since there is significant
noise correlation between the radial bins, which prop-
agates into the low-¢ uncertainty of the beam window
function described in §4.3.

4.2.2. Radial Profile Covariance Matrix

As the averaged radial profile is computed for each sea-
son, array, and frequency, the covariance matrix between
the amplitudes of the 55 radial bins is also computed in
order to account for the covariant uncertainty on large
angular scales. Given the small sample size, with only
between 6 and 51 profile measurements used to estimate
each matrix, a shrinking algorithm (Schéfer & Strimmer
2005) is used to down-weight the off-diagonal terms of the
matrix. This method is described in detail in Appendix
A. In our case this shrinking procedure is necessary as
a standard estimate of the covariance matrix is often so
noisy it becomes ill-conditioned and cannot be inverted.

The shrinkage technique works by combining an em-
pirical estimate of the covariance matrix S (a high-
dimensional estimate of the underlying covariance with
little or no bias) with a model T (a low-dimensional es-
timate which may be biased but has much smaller vari-
ance) to minimize the total mean squared error (sum of
bias squared and variance) with respect to the true un-
derlying covariance:

C=XNT+(1-XS. (2)

Here \* is the parameter (often referred to as shrinkage

intensity) that determines the contribution of each ma-

trix. In our case, the covariance matrix S is an unbiased

empirical estimate of the covariance, the sample covari-

ance matrix, and the model matrix T is given by the
ifi=j

diagonal of S:
Sii
Tij = {0 ifi#j,

a common choice. We analytically calculate the optimal
combination of the low and high dimensional estimates

by determining \* from S:

S Zi# Var(S;;)
==z
2 iz i

(3)

(4)

where \//a\r(Sij) is an estimate of the variance of each

covariance matrix element. The derivation of \* can be
found in Appendix A. For the analysis presented here,

A* ranges from 0.24 to 1.

4.2.3. Core Model

Since ACT’s primary mirror has a diameter of
D = 6m, at a given wavelength A the diffraction limited
optical response of the telescope is restricted to spatial
frequencies below pax =~ 2wD/A. The Fourier trans-
form of each beam is therefore compact on a disk. Thus,
a natural choice of basis functions to model the beams in
harmonic space is the Zernike polynomials, an orthonor-
mal set of basis functions that is complete on the unit
disk.'3

Expressed in polar coordinates p and ¢ in the aper-
ture plane (where p is the radial distance 0 < p < 1,
and ¢ is the azimuthal angle 0 < ¢ < 27), the Zernike
polynomials may be written as

Vrzn(pa ¢) - an(p)eim¢ ) (5)

where m and n are integers such that n > |m| and R (p)
are a set of radial functions defined as

n—m

- (_1)k(” —k)! —2k
" fi
R pi(=m o
R:I:m _ ) k=0 2 2 n |m|
n"(p)= even

0 forn—|m|odd.
. . . (6)
For an azimuthally symmetric beam, it is only neces-
sary to consider the polynomials for which m = 0, which
may be expressed as

RY,(p) = Pa(2p* = 1), (7)

where P, (z) are Legendre polynomials (Born & Wolf
(1980)). The Fourier transform of these polynomials is

1
- , —1)"Jon41(0
8,00 = [ paperrong, (o) = L2 )
0
where Jo,+1 is a Bessel function of the first kind.
Motivated by this, and following previous analyses
(Hasselfield et al. 2013), we adopt the basis functions

J n egmax
FoOlas) = P21 O] o)

to fit the core of the beams in real space, where the pa-
rameter £, varies the scale of the function’s argument
and n is a non-negative integer.

4.2.4. Asymptotic Behavior

On scales smaller than a few arcminutes, the noise is
subdominant to the planetary signal, and so the beam
profiles are well measured even by a single observation
of Uranus. However, at larger angular scales, the noise

13 The Zernike polynomials are usually used to fit effects in the
electric field, not in intensity, but since they are a basis set, we can
use them to fit the intensitgl beams. So the asymptotic behavior
of f, in Equation 9 is 1/61°, not 1/63 as we expect for the beams
(as described in §4.2.4).



quickly becomes non-negligible. Thus, the asymptotic
behavior of the beams cannot be separated from the
background without making some assumptions about the
shape of the beams far from the core.

The illumination of the ACT optics is controlled by a
cryogenic Lyot stop. The beam’s Fraunhofer diffraction
pattern for monochromatic radiation is described by the
squared modulus of the Fourier transform of this circular
aperture (Born & Wolf 1980). The resulting intensity
response with angle, or Airy pattern, is

_ [2J1[k(D/2)sin6]72
L k(D/2)sin6 ’

where k = 2m/\ is the wavenumber.'* For ACT,
k(D/2) = wD/A is large, since the primary is several
thousand wavelengths across. When the argument of the
Bessel function is > 1 and real, as is the case for 6 > 2/,
we can make the approximation

Ji(z) = \/Zcos(x - 3;) (11)

(Abramowitz & Stegun 1972). In this regime, the Airy
pattern asymptotically approaches

_ 8cos?[k(D/2)sin 6 — 3m /4]
AB) = 7[k(D/2) sin 0]3 ’

such that the envelope of A(f) falls as 1/sin®6. This
implies that at angles larger than the “near sidelobes”
(described in §5.2) and neglecting the effects of scatter-
ing, the beams should fall as 1/sin® 6§ ~ 1/6°, since 6 is
small in the region considered for the beam models.

A different, more general, way to derive this asymp-
totic behavior of the beams comes from the geomet-
ric theory of diffraction from Keller (Keller 1956, 1959,
1962). As detailed in Page et al. (2003), for an illumi-
nated disk, the diffraction pattern from the rim, regard-
less of the interior, leads to a gain (response) of the shape

G(0) 1( LENG )2 (13a)

A(0) (10)

(12)

sin@ \sin@/2 =~ cos6/2
1
sin” 60

for an electric field parallel (4) or perpendicular (—) to
the edge, in the far field-limit. For unpolarized light, one
can simply average over both polarizations.

The beam behavior derived here assumes perfectly
smooth and uniform surfaces within the telescope (i.e.
perfect coherence). Nonuniformity, including mirror sur-
face roughness, leads to diffuse scattering (i.e. decoher-
ence of the fields), and thus a reduction in the telescope
gain (Ruze 1966). As described in the next section, an
additional term is included in our beam model to account
for this effect.

4.2.5. Scaltering

The primary telescope surface can be characterized by
an rms surface roughness, €, and a correlation length,

14 Note that this corresponds to the fo term from the core model
described in §4.2.3.
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c. We measured these properties for ACT using pho-
togrammetry,'® placing 284 targets on the corners of the
primary’s 71 panels where the panels join. The rms of the
raw measurements was found to be approximately 30 pm.
However, these measurements are not a representative
sample of the rms of the surface, since the targets are
at the most extreme points on the corners of the panels.
By fitting a polynomial surface to the measurements and
looking at the residuals over the entire surface, we find an
rms of € = 20 um. Using the photogrammetry software,
the uncertainty on the rms measurements is estimated to
be 10 um. This does not include any misalignments due
to macroscopic deformations of the telescope.

From these measurements, we can also compute the
correlation length, c. The correlation function is

Cd) =Y 2(f)z(r5) = Coe™ /", (14)
ij
where 7 is the position on the surface, z is the mean-
subtracted departure from the best-fit designed surface
(described in Section 3 of Fowler et al. 2007), d = |7 — 7|
is the separation, and the sum is over all measurement
pairs with a separation d. We find that the shape of the
correlation function follows the above form reasonably
well. By fitting the photogrammetry measurements with
Equation 14, for the ACT primary, we find ¢ = 280 mm.
This scattering leads to another angular scale (or shoul-
der) in the beam response, not governed by the diameter
of the Lyot stop.
For a beam B(#) normalized to unity at § = 0, the
corresponding solid angle ) is

Q:Zﬂ/ B(0)sinf df . (15)
0

The expression for the gain due to scattering off a rough
surface, G(6), given by Equation 8 in Ruze (1966)'° can
be re-written in terms of the unit-normalized beam for an
ideal reflector, Bo(#), its corresponding solid angle, g,
the total beam, B(0), and its corresponding solid angle,
Q, by using the relation G(0) = (47/Q)B(#). We then
obtain the equation

B(9) = QﬂBo(e)e*<52> +5(6), (16)

0

with the S(6) term given by

_ 2 2mey2 —(8?) e 52>n —(cmsin(6)/2)2/n
S(G)_élw()\)e — nonlC ’
(17)
where (62) = (4me/A)? is the variance in the surface

phase (and € and ¢ are the surface rms and correlation
length, as described earlier).

The sum converges quickly, with four terms sufficient
for our purposes. We have simulated the ACT beam by
taking the Fourier transform of a perturbed surface with

15 VSTARS by GSI, https://www.geodetic.com/v-stars/
16 There is a typo in this equation in the original paper. Inside
the summation, the variance 62 should be raised to the n*® power,

as written here, instead of being simply squared, as in Ruze (1966)
(Corkish 1990).
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deformations of a Gaussian shape and verified that we
indeed recover the Ruze equation as it is written above.!”

The first term in Equation 16 above is expected to de-
cay as 1/63, but the same does not hold true for S(6), so
the inclusion of this term in our fitting procedure is im-
portant as it affects how the beam fits are extrapolated.
This scattering term S(#), which we refer to as the Ruze
beam, contains roughly 1.5% of the solid angle of the
main beams at 150 GHz. The addition of this term to
the beam model is new to the DR4 analysis.

4.2.6. Beam Model Fitting

We separate the main beam for each season, array, and
frequency into two domains: the core, where we fit the
set of basis functions described in §4.2.3, and the wing,
where the model is composed of a 1/63 term in addition
to the Ruze beam (where we use the measured values for
€ and ¢ described in the previous section). As explained
in §4.2.1, a constant offset has already been subtracted
from each measured beam profile before combining them
into an average radial profile for each season, detector
array, and frequency. The full model for each averaged
beam profile can be written as

Nmode —1
> anfa(0lmax)  for 6 <6,
B(#) = n=0 (18)
a/0® + S(0) for 6, < 6.

The initial linear least squares fits are performed for
the a,, and « for a range of values of {1« 01, and Nyode
(allowing nmede to vary up to a maximum value of half
the number of data points in the core). We first sample
a range of values for the scaling parameter ¢, and then
allow this non-linear parameter to vary later on. Based
on the optics of the system, at 150 GHz (98 GHz) we
expect to have . ~ 27D/ ~ 19,000 (12,500). We
sample £, in integer steps from 1 to 30,000.

We fit the model out to 10’, a value which is cho-
sen because this is the radius out to which the beam
is measured to sufficient signal-to-noise. Despite the at-
mosphere subtraction in the target region that extends
out to 12/, residual modes remain, so the signal-to-noise
out to 12’ is not sufficient. By only fitting out to 10" we
ensure that the fit remains in the region where the mea-
surement is dominated by the beam, not atmosphere.

The model is fit to each averaged radial profile, with
its associated covariance matrix. We do not include con-
tinuity conditions at 67, but any small discontinuities are
well below ACT’s resolution.'®

17 More specifically, deformations of a Gaussian shape of width
(standard deviation) 250 mm were placed on a square grid of di-
mension 580 mm on a side to create deformations over a surface.
This gave 71 squares inside a diameter of 5500 mm, the effective
diameter of ACT’s primary. This is a reasonable approximation
given that the primary has 71 panels (Thornton et al. 2016). The
amplitudes of the deformations were drawn from a normal dis-
tribution, and the overall rms of the surface was adjusted to be
€ = 100 pm, and the modeled surface had ¢ = 440mm. The re-
sulting beam followed the Ruze equation for these values of € and
c.

18 For example, the fit shown in the top panel of Figure 6 may
have a slight discontinuity in amplitude at ;. However, as part of
the beam processing we take the harmonic transform of our beam
model and then transform back to radial space to obtain the final

In order to select the optimal number 7,04 for each
beam profile, we must strike the right balance between
minimizing the y? and not adding too many parame-
ters. To do this, we use the corrected Akaike information
criterion (AICc), which estimates the relative quality of
models based on both their goodness of fit and their sim-
plicity. For each choice of £i.x, 61 and nyode, the AICc
is computed for the best-fitting model.

The uncorrected AIC is given by

AIC = 2k — 21n(ﬁ) , (19)

where k is the number of estimated parameters in the

model and £ is the maximum value of the likelihood
function for the model (Akaike 1973, 1974). For small
sample sizes, as is the case here, the AIC can exhibit
a large bias. To account for this, we use the corrected
criterion AICc, where

2k2 + 2k
n—k—1"’

and n is the sample size (Hurvich & Tsai 1989).

We select the values for f.., 01, and nyoqe corre-
sponding to the lowest AICc.!?-2° For the DR4 beams,
the best-fit values for £,,,x range from 15,604 to 17,936
(from 10,960 to 11,285) at 150 GHz (98 GHz), the best-
fit values for #; range from 3.58' to 7.79’, and the best-fit
values for nmoqe range from 9 to 13. We then use MCMC
to sample the posterior distribution of the parameters
lmax, the a,, and «, assuming uniform priors (Metropo-
lis et al. 1953). This method produces an estimate of
the parameter means and the full covariance between all
the basis functions and wing parameters, including the
non-linear scaling parameter £;,,.

The term S(f) in Equation 18 depends on the beam’s
solid angle, 2, but the calculation of 2 depends on the
beam model. To get around this issue, the beam fit is
performed iteratively, first using a rough estimate for €2,
and then re-computing €2 once a beam model is obtained,
and then performing the fit again. In total, we fit the
beam four times, re-estimating €2 each time. By the last
iteration, the change in 2 becomes undetectable, and so
we have converged to a final value for the beam solid
angle.

We did test whether the data prefer an asymptotic
wing fit term that differs from /63, by fitting for a/6°
instead. While the best-fitting value for b often differs
(by 10-20%) from three, it is not strongly constrained
by the data. The AICc indicates that the addition of
this new parameter is not warranted.

An example of the beam model fit to radial profile data
is shown in Figure 6, for the S15 PA2 Uranus maps at
150 GHz, together with the residuals. The core func-

AICc = AIC + (20)

beam profiles shown in Figure 8. Any small discontinuity that may
have been present in the initial fit disappears due to the resolution
with which we do the transform.

19 In reality, this is not always precisely the case. ~When
there exists a set of values with nyo4e smaller by one (hence one
fewer parameter) and an AICc that is not significantly different
(AAICc < 2), we actually select the model with the slightly higher
AICc. We do this to avoid over-fitting the data, since in this case
the AICc does not justify the addition of the extra parameter.

20 Tp earlier analyses (Louis et al. 2017; Hasselfield et al. 2013),
we simply increased nyoge until the reduced-x? fell below 1.
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F1G. 6.— Top: Measured radial beam profile (blue) for S15 PA2 at
150 GHz and the best-fit model (red), with the (narrow) red shaded
region indicating the 1o model uncertainty bounds, and residuals
shown in the middle panel. Note that the bins are correlated.
Bottom: The terms in the model for the beam. Here the final
best-fit value of 61, where the model for the beam changes, is 5.59’.
The number of modes in the core fit (nmoqe) is 13.

tions, /62 term, and the Ruze beam are indicated in
the lower panel, with the core functions used out to a
radius of 1 = 5.59', then transitioning to the «/63 plus
Ruze beam model at larger radii, and using this model
to extrapolate past 10’. We measure the beam profiles
down to —40 dB from the peak, which would leave a few
percent of the beam’s solid angle unaccounted for if we
did not use our fit to extrapolate past 10’.

Figure 7 shows how the symmetrized model compares
to the average Uranus map data for this case. The full
set of radial profile fits for the S15 data is shown in
Figure 8 (with some small additional corrections, as de-
scribed in §4.4). We also obtained model fits for the S13,
S14 and S16 data that make up DR4. The solid angles,
gains, and FWHMs for all seasons are reported in Ta-
ble 2 (again, with the small corrections from §4.4). For
reference, 1 nsr ~ 0.0118 arcmin?.

Even though we make a high signal-to-noise measure-
ment of each beam, the uncertainty on the solid angle is
limited to ~ 2% because of the uncertainty in extrapola-
tion, which depends on the model. The fractional uncer-

TABLE 2
INSTANTANEOUS BEAM SOLID ANGLES, GAINS, AND FWHMSs
Band Solid Angle | Forward Gain FWHM
Array (GHz) Season (nsr) (dBi) (arcmin)
S13 | 201.5+3.8 | 77.94+0.08 | 1.33040.001
PA1 | 150 S14 | 198.5+3.3 | 78.01+£0.07 | 1.330£0.002
S15 | 196.5+8.8 | 78.06+0.19 | 1.321+0.002
S14 | 183.1+3.2 | 78.37£0.08 |1.3104+0.001
PA2 | 150 S15 | 187.8+4.7 | 78.26+0.11 | 1.31140.001
S16 | 185.4+4.8 | 78.31+£0.11 |1.3164+0.001
PA3 | 150 S15 269.645.5 | 76.68+0.09 | 1.46140.002
S16 | 237.5+8.5 | 77.24+£0.16 | 1.444+0.003
PA3 | 98 S15 |503.94+21.8 | 73.97+£0.19 | 2.001+0.004
S16 |476.3+21.8 | 74.21+£0.20 | 2.002+0.004

tainties in the solid angles at 98 GHz may be larger than
those at 150 GHz in part because at 98 GHz the beam
is broader, so a larger fraction of the beam is affected by
the uncertainty in our extrapolation.

When using the beam solid angle to calculate the flux
density of a point source, the uncertainty on the measure-
ment may be reduced by first applying a matched filter
to both the beam and the source in order to remove the
scales associated with the extrapolation uncertainty.

While much of this fitting method follows the approach
used in Hasselfield et al. (2013) and Louis et al. (2017),
notable improvements are the addition of the scattering
beam term in the model, the use of MCMC sampling
that includes estimating the non-linear parameter £, .,
the exploration of different radii (61) out to which the
core model is fit, and the use of the AICc to choose the
final best-fit model.

4.3. Beam Window Functions

In spherical harmonic space, the beam information is
encoded in the harmonic transform b, and the window
function wy = b% which describes the instrument’s re-
sponse to different multipoles, . This window function
is an essential component of the DR4 power spectrum
analysis in Choi et al. (2020).

The harmonic transform by is the Legendre transform,
or more accurately the Legendre polynomial transform,
of the beam radial profile:

1
by = %T B(0)Py(cos ) d(cosb) . (21)
-1
For small beams such as that of ACT, this is effectively a
Fourier transform. The derivation of the Legendre trans-
form and details about how the transform is computed
are presented in Appendix B.

We use by instead of By to indicate the division by
Q, which normalizes by to unity at £ = 0 (since Py = 1).
By = Qb has units of sr, whereas by is dimensionless. We
extrapolate the model beyond the fit radius of 10’ when
computing the transform. This is necessary to capture
the low-£ part of the window function, and to account
for the part of the beam solid angle that is beyond the
range we fit.

A subset of the beam transforms from DR4 is shown
in Figure 9. A similar figure in Aiola et al. (2020) shows

window functions, b7, which are used to correct the power
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F1c. 7.— Maps of the main beam for S15 PA2 (top) and PA3 (bottom) at 150 GHz. In each case, the color scale is a symmetrical log
scale in dB, with a linear threshold of —30 dB and negative values enclosed by parentheses. (Left) The weighted average of the Uranus
observations used to characterize the beam. (Center) The model which is fit to the radial profile of the measured beam. (Right) The
difference between the measured beam (left) and the beam model (center). Note that the color scale for the residuals is different from the
other two maps. Both PA2 and PA3 are shown here, since PA2 serves as an example of a less elliptical beam, and PA3 serves as an example
of a more elliptical one. The corresponding maps for S15 PA1 at 150 GHz resemble the ones shown for PA2 here, and the maps for S15
PA3 at 98 GHz are similar to the ones shown here for PA3 at 150 GHz, but broader. For each individual detector array, the residuals are
fairly constant from one season to the next. As shown in Figure 6 for PA2, the azimuthal average of the residuals is consistent with zero,
which is why the fit is successful, despite the residuals visible in the maps. These residuals are expected to have a quadrupole-like shape,
since we know our beams are slightly elliptical, and the quadrupole is the dominant asymmetric azimuthal mode for an elliptical beam.

spectra. For a given array and season, if the beam trans-
forms for PA1 and PA2 are, respectively, b1 and b5A2,
then for the auto-power spectrum of the PA1l or PA2
maps the window functions are (b1)2 and (b}A2)2, and
for the cross-spectrum of the PA1 and PA2 maps the

window function is bE’Alb?AQ.

4.4. Additional Corrections

The resulting beam models and covariance matrices
are an accurate description of the binned radial beam
profiles, but they must be corrected for some systematic
effects. Following the same approach as in Hasselfield
et al. (2013), corrections are applied to account for the
pixelization of the planet maps, the binning of the maps
into radial annuli, Uranus’ angular diameter, and the
planet’s effective frequency. The effect of each of these
corrections is shown in Figure 10 for S15 PA2 at 150 GHz,
as a typical example.

To correct for the pixelization of the planet maps,
we divide the beam transform by the azimuthal average
of the pixel window function, sinc(pk,/2) sinc(pk, /2),
where {k;,k,} are the spatial frequencies and p is the
pixel size in radians. This is a < 0.1% effect for
¢ <10, 000.

Then, we estimate and correct for the transfer function
induced due to binning the planet maps into radial an-
nuli. This is done by simulating planet maps, using the
best-fitting beam profile model as the input, and then
estimating their radial profiles following the same proce-
dure as with the data. Comparing the input model with
the output radial profile gives an estimate for the trans-
fer function resulting from the radial binning. This is a

< 1% effect for £ < 10, 000.

We also correct for Uranus’ angular diameter, since
Uranus is large enough that it cannot be treated as a
point source given the precision to which we measure the
beam. For each season, array, and frequency, we assume
Uranus is a disk with radius equal to the weighted mean
of the radii for all the Uranus observations contribut-
ing to the beam measurement. We then deconvolve this
shape in harmonic space using the function 2J; (¢r)/¢r,
where r is the radius of Uranus’ disk in radians. The
factor of 2 normalizes the function to unity as ¢ — 0.
This is a < 0.1% effect for £ < 10, 000.

The beam at this point describes the telescope’s re-
sponse to a point-like source with an approximately
Rayleigh-Jeans (RJ) spectrum. Near our frequencies, the
temperature spectrum of Uranus goes roughly as »~9-2%
(Planck Collaboration Int. LIT et al. 2017). It is suffi-
ciently close to the RJ limit (¢°) for our purposes. We ap-
ply a simple, first-order correction to obtain the relevant
beam for the CMB blackbody spectrum using the band
effective frequencies from Thornton et al. (2016).?! For
this radiation with a band effective frequency vcumg, the

21 For the foreground modeling in Choi et al. (2020), these ef-
fective frequencies were re-computed with improved passband data
and upgraded code (as described in Appendix C). Since the beam
analysis for DR4 was done before this new work on the effective
frequencies, the values from Thornton et al. (2016) were used.
Considering the uncertainties on the passbands, the two sets of
effective frequencies are consistent. In addition, given that the
uncertainty on the beams is subdominant in the power spectrum
analysis, whether one uses the effective frequencies from Thornton
et al. (2016) or Choi et al. (2020) for the beam spectral correction
does not have a significant effect on the results.
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F1G. 8.— The estimated instantaneous beam profiles for S15, for the three arrays (PA1, PA2 and PA3), and for both 98 GHz and 150 GHz
for PA3. The shaded bands indicate the 1o uncertainty bounds. The uncertainties are strongly correlated between radial bins. The S13,
S14 and S16 beam profiles are similar, and are included in the public data release. At 150 GHz, the beam for PA3 is quite different from
those for PA1 and PA2. This is because PA3 was not focused as well, due to its position, further off-axis, compared to PA1 and PA2.

beam is taken to be B'(¢{) = B(fvgs/vcms), where vgy
is the effective frequency for radiation with a Rayleigh-
Jeans spectrum. This is a < 1.5% effect for £ < 10, 000.

The resulting beam models are referred to as the “in-
stantaneous” beams, and it is in fact these corrected
beams that are shown in Figures 8 and 9.

4.5. Jitter Beams

In practice, the effective beam for a given sky region,
season, detector array, and frequency is broader than the
instantaneous beam. This is due to combining observa-
tions taken on multiple different nights throughout each
season, so the resulting effective beam for each map is not
as sharp as the beam inferred from planet observations
which have been carefully recentered before co-adding.
Broadening can be caused by variations in the pointing
and global alignment, as well as possible small changes
in the beam over the course of a season.

As described in Aiola et al. (2020), ACT’s blind point-
ing accuracy for DR4 is comparable to the average
beam FWHM. If left uncorrected, this would significantly
broaden the effective beams. Instead, as was done in
Louis et al. (2017), we correct the pointing by compar-
ing the observed positions of bright point sources to their
known catalog positions. This is done for each 10-minute
section of the time-ordered data from each detector array,
as described in Aiola et al. (2020). Instead of performing

the fit in the time domain as in Louis et al. (2017), due to
the larger data volume the fit is now performed in map-
space. The resulting fit is obtained more quickly, but is
slightly less accurate, leaving a larger residual variation
in the beam due to pointing uncertainty.

This residual variation is captured by the effective
beam, Bgﬁ, which is parametrized in terms of the instan-
taneous beam, By, and a correction term that is Gaussian
in ¢, as

Bs = By x e UHDV/2 (22)

If we were to interpret the Gaussian correction term
as arising purely from residual pointing errors, then V'
would be the residual pointing variance in square radi-
ans, which is why it is also referred to as “pointing jitter.”
This variance, which in practice also includes the addi-
tional errors due to alignment and seasonal changes in
the beam, is expected to be different for each sky region
used in the power spectrum analysis. These different re-
gions (Deepl, Deep5, Deep6, Deep56, Deep8, BOSS, and
AdvACT) are shown in Figure 2 of Choi et al. (2020).
To estimate V', in each region we create a catalog of
the brightest point sources that are found in the maps
using a matched filter, that have a signal-to-noise of at
least 10 in each map, and that are matched to catalogs
of known sources. For each of these sources, we then
obtain an estimate of the variance V and its associated



12

1.0
—— PAI1 150 GHz
—— PA2 150 GHz
0.81 —— PA3 150 GHz
—  PA398 GHz
0.6
<
0.4
0.2
0.0
_10.01
IS
<& 1.0+
>
“ 0.1
0 2000 4000 6000 8000 10000 12000
Multipole £

F1G. 9.— Instantaneous beam transforms and their uncertainties for the S15 data, for all the detector arrays. The uncertainties are
strongly correlated between multipoles. For context when looking at this figure along with Figure &, in the mapping from angle to
multipole (¢ ~ /), 1’ corresponds to £ ~ 10800, 1.8’ corresponds to £ ~ 6000, and 10.8’ corresponds to £ ~ 1000.
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F1G. 10.— Change in the beam transform (in %) due to applying
different corrections for S15 PA2 at 150 GHz. For this plot, the
beam transforms have all been normalized at £ = 1400. This corre-
sponds roughly to our effective calibration scale, so any change in
our beam at this multipole would be corrected by our subsequent
calibration to Planck.

uncertainty for each season, array, and frequency. To do
this, we crop a section (10’ x 10) of each map around
the source and remove large-scale variations by high-pass
filtering the data (by multiplying the data by 1—G, where
G is a Gaussian filter with a FWHM of 8). We then

compute the effective beam using Equation 22, multiply
this model by the local pixel-window of the cropped map,
transform it into map space, high-pass filter it, and then
compute the x? using an estimate of the local white noise
amplitude. An example of such an individual source fit
is shown in Figure 11.

This procedure was validated by verifying that when
simulated point sources convolved with Equation 22
(with a known value for V) are injected into real CMB
data and run through the pipeline, the input value for V'
is recovered.

For convenience, we exclude sources identified as galax-
ies, pairs of galaxies, and planetary nebulae in the known
source catalogs from this fitting procedure, as these types
of sources sometimes appear to ACT to be extended.
This leaves approximately 20 sources (for the smaller,
deep regions) to 520 (for the largest region) that are in-
cluded in the fits. They are primarily quasars and radio
sources.

Once all N sources have been fit using this method,
we use the resulting set of pointing jitter estimates d
and their uncertainties o to obtain an estimate for the
mean and intrinsic scatter, V and oy, of the effective
pointing jitter in each map. The likelihood for this is
written as

L(d, 0 |V,0v) = Ao, ov) e Zim BV /2(eitob)
(23)
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Fic. 11.— Example of the residual pointing variance, estimated
by fitting an effective beam to a point source. The top panels
compare the flux from the best-fitting model (right) to the data
(left), with the residuals (bottom left), and the reduced x2 as a
function of pointing variance (bottom right). In each case, the
data is high-pass filtered, and the colorbars are in units of pK. The
best-fit variance for this source is 41 + 93 arcsec?.

where A(o, oy ) = TV [2(0? +0%)] /2 is a normalization
factor. We estimate the posterior distribution for V' and
oy using MCMC with the Metropolis-Hastings algorithm
(Hastings 1970), assuming a uniform prior on V. An
example of these posterior distributions for one of the
maps is shown in Figure 12.

This likelihood, which was not used for previous ACT
analyses, better takes into account the intrinsic scatter in
the residual pointing variance, resulting in an improved
estimate.

After computing the pointing variance independently
in each map, we use Equation 22 to obtain an effective
beam, and associated covariance matrix, for each season,
region, detector array, and frequency. An example of
the effect of the pointing jitter correction on the beam
transform is shown in Figure 10. The jitter values and
uncertainties are given in Table 3 and the resulting solid
angles and uncertainties for the effective beams are given
in Table 4.

The jitter values for PA3 at 98 GHz are significantly
greater than those at 150 GHz. This empirical find-
ing serves as a useful reminder that this “jitter” encom-
passes not only pointing errors, but also any changes in
the beam throughout each season. These changes may
be greater at 98 GHz since that is where the beam is
broader.

Some of the best-fit jitter values for the Deep8 region
are negative, but considering their uncertainties, they are
consistent with positive values. We allow for negative jit-
ter values in the fits in order to account for all possible ef-
fects on the beams, not just those due to pointing. While
we have not investigated whether these negative values
are related to a data quality issue, it should be noted that
the data from Deep8 were not used in the cosmological
analysis due to the poor cross-linking in the region.

In Appendix C we provide the effective beam solid an-
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Fi1G. 12.— Distribution of the residual pointing variance, V', and
pointing variability, oy, for the S15 PA2 beam at 150 GHz in the
Deep56 region, resulting from fitting a pointing variance model to
point sources. Notice here that the intrinsic scatter (measured with
oy ) is significantly larger than the measurement uncertainty on V.

gles for beams at different frequencies. We applied the
first-order spectral correction from §4.4 with effective
central frequencies corresponding to synchrotron emis-
sion, dust, and the thermal Sunyaev-Zel’dovich effect.
These beam solid angles differ from the CMB estimates
by 0.3 to 5.3%.

4.6. Beam Transform Covariance Matriz

There have been several modifications since Hasselfield
et al. (2013) in how we estimate uncertainties in the beam
model. Previously, the non-linear scaling parameter £,
was varied in the fits, but the uncertainty in this pa-
rameter was not propagated to the covariance matrices.
We now estimate the covariance of each beam transform,
be, by computing the Legendre transform of the sam-
pled posterior distribution for the parameters describing
the radial profile, as in Equation 21, and then applying
the small-order corrections from §4.4. We then estimate
the covariance matrix from this suite of f-space beam
transforms and the added uncertainty associated with
the jitter correction. These matrices are large, since the
beam transforms are computed at each integer £ from 0 to
30,000, so we do not store them in their entirety. Rather,
we decompose each matrix into independent modes (via
singular value decomposition) and store the largest 10
modes. We find that this is sufficient to capture the ma-
jority of the covariance (we do not discard any modes
with a singular value larger than 10~3 of the maximum
value).

We include additional modes to account for possible
uncertainty due to variations in the surface rms e (which
enters into the calculation of the Ruze beam, as described

in §4.2.5, and was fixed to our estimate of 20 um),?? as

22 We do not account for possible variations in the other mea-
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TABLE 3
JITTER VALUES AND UNCERTAINTIES (ARCSEC?).
Array Band Season Deepl Deepb Deep6 Deep56 Deep8 BOSS AdvACT
S13 47.6 +£ 185 | 26.6 £89 | 30.3 £ 10.2 - - - -
PA1 150 GHz S14 - - 12.1 + 4.1 - - -

S15 - - 349 £ 44 -2.0+£ 154 30.8 + 3.3 -

S14 - - 22.5 £ 3.2 - - -
PA2 150 GHz S15 - - 33.4 + 3.7 42 +£6.9 13.3 + 3.3 -

S16 - - - - - 35.7 £ 24
PA3 150 GHz S15 - - 6.6 £ 5.8 -21.3 £ 24.1 65.1 + 6.8 -

S16 - - - - - 12.2 + 4.5
PA3 98 GHz S15 - - 190.9 &£ 7.0 | 163.2 £+ 18.5 | 246.0 = 7.2 -

S16 - - - - - 238.2 £ 5.8

TABLE 4
EFFECTIVE BEAM SOLID ANGLES AND UNCERTAINTIES (NSR).
Array Band Season Deepl Deep5 Deep6 Deep56 Deep8 BOSS AdvACT
S13 206.1 + 5.0 | 202.7 £ 4.1 | 203.3 = 4.2 - - - -
PA1 150 GHz S14 - - 197.2 + 3.4 - - -

S15 - - 199.0 £+ 8.9 193.0 = 9.0 198.3 + 8.9 -

S14 - - 183.9 + 3.3 - - -
PA2 150 GHz S15 - - 190.3 £+ 4.8 185.7 4+ 4.8 187.1 + 4.7 -

S16 - - - - - 188.2 4+ 4.8
PA3 150 GHz S15 - - 267.1 £ 5.5 262.0 + 6.9 278.0 &+ 5.8 -

S16 - - - - - 236.3 £ 8.5
PA3 93 GHz S15 - - 510.7 & 22.0 | 506.0 + 21.0 | 520.2 &+ 22.4 -

S16 - - - - - 490.3 £ 224
well as the range over which the model for each beam — Before
offset is fit (which initially was 3.5-10.0"). For the sur- ~ 25 o
face rms, the values explored are 20 ym and 30 um. For s After
the region over which the offsets are fit, the three inde- z 20
pendent ranges explored are 3.5'-5.0, 5.0'-7.0, and 7.0"- g
10.0’. We store the top 3 modes associated with these § L5
model variations. The final uncertainty for each beam is 2 10
thus composed of a total of 13 modes. These beam un- e
certainties are later added to the data covariance matrix Eo 05
as part of the power spectrum analysis pipeline. A

An example of the effect of these additional modes on 0.0
0 2000 4000 6000 8000 10000

the beam transform uncertainties is shown in Figure 13.
The significant increase in the uncertainty at low mul-
tipoles is mainly due to the inclusion of the different fit
ranges for the offsets. Previously, as described in Has-
selfield et al. (2013), the uncertainties were simply dou-
bled from their formal values to account for potential sys-
tematic variations due to different fitting ranges. Even
though this earlier method lead to a smaller estimate of
the beam uncertainties at low multipoles, this did not
have a significant effect on our results for DR3, since the
uncertainty on the beams is subdominant in the power
spectrum analysis, and a low-£ cutoff of 500 (350) was
applied to the TT (TE and EF) data.

Another difference compared to the DR3 analysis in
Louis et al. (2017) is the treatment of calibration un-
certainty. As described in Choi et al. (2020), for each
season, region, array, and frequency the angular power
spectra from ACT are calibrated to the Planck temper-

sured parameter for the Ruze beam, the correlation length ¢, since
it is well constrained by our measurements.

Multipole #

F1G. 13.— Uncertainties on the beam transform (in %) for S15
PA2 at 150 GHz, before (blue) and after (red) adding the additional
modes to account for different surface rms values and different fit
ranges for the beam offset levels. These uncertainties are included
in Figure 9.

ature maps in the range 600 < ¢ < 1800. The Louis
et al. (2017) analysis factored out the beam amplitude
and uncertainty at an “effective” calibration scale (cho-
sen in that case to be ¢ = 1400).?®> However, we have
changed this procedure for DR4 to reflect the fact that
we are not calibrating the data at a single ¢, but over a
range of ¢ values. We now simply normalize the beam to
unity at 6 = 0 and treat the calibration, and its uncer-
tainty, separately in the ACT analysis. This is why the
fractional beam uncertainties in Figure 9 are no longer

23 This procedure is described by Equation 11 of Hasselfield et al.
(2013).



smallest at ¢ = 1400, differing from those reported for
ACT DRS3.

5. POLARIZATION
5.1. Main Beam

Measurements of Uranus in polarization at visible
and near-infrared wavelengths have shown that its disk-
integrated polarization is less than 0.05% (Schmid et al.
2006). While we are not aware of any similarly precise
data at millimeter wavelengths, it is expected that the
relevant scattering effects in the planetary atmosphere
would be much weaker, resulting in net polarization lev-
els considerably lower than the measurement cited above.
Measurements by Planck at 100 and 143 GHz place 68%
(95%) confidence upper limits on the polarization frac-
tion of Uranus at 2.6% (3.6%) and 1.5% (2.0%), respec-
tively (Planck Collaboration Int. LII et al. 2017).

Since we do not expect Uranus to be significantly po-
larized in the bands observed by ACT, we interpret any
polarization response measured from Uranus as being
due to temperature-to-polarization (T-to-P) leakage. Al-
though this leakage is relatively small in magnitude, the
ACT DR4 data are now sensitive enough that we must
account for it in our analysis. To do this, we use ob-
servations of Uranus to build an ¢-space T-to-P leakage
function for each season, array, and frequency. This mea-
surement and correction for the leakage in the main part
of our beams is new to DR4 (see also Aiola et al. 2020;
Choi et al. 2020).

We begin by making maps of the @ and U Stokes pa-
rameters for the same set of Uranus observations chosen
in §4.1 to fit the main beam. We then convert each set of
{Q, U} polarization maps to the radial Stokes parameters
{Qr, U, } (following the third definition of cross polariza-
tion in Ludwig 1973) using the flat-sky approximation:

Q-(0) = Q(0) cos2¢y + U(0) sin 2¢y (24a)
U,(0) =U(0)cos2¢pg — Q(0) sin2¢y , (24b)

where 0 = (6, ¢y) are standard polar coordinates with
the beam centroid as their origin and ¢y increases clock-
wise from the positive y-axis (assuming that one uses
the convention in which +x points to the right and +y
points upward). Here @ and U follow the COSMO con-
vention (Gorski et al. 2005a), whereas for the ACT maps
released as part of DR4, the polarization components
are defined by the IAU convention (Hamaker & Breg-
man 1996). The polarization convention initially used
for {@,U} does not matter once we have transformed to
{QT7 UT}

While it is not obvious how the polarized E or B beams
ought to behave at larger radii, we do have some intu-
ition about @ and U. For an unpolarized point source
such as Uranus, any polarized signal will be the result
of beam differences between the two axes of a polarime-
ter. Although the beams may be slightly different, due to
e.g., differential ellipticity, we still expect each of them
to decay radially as 1/6% as they are part of the same
diffraction-limited optical system. The @ and U maps
are essentially just radially independent linear combina-
tions of the various detector axes in an array, appropri-
ately weighted by the map-maker, so the same asymp-
totic behavior should apply. This asymptotic behavior
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would then hold true for the @, and U, maps as well.
This was confirmed with simulations where the beams
for individual polarimeter axes were constructed using
an “elliptified” version of the azimuthally averaged in-
tensity beam for a given season and array. We thus use
the same basis functions in the core and the a/6® term
in the wing to fit the beam in polarization as we did for
the main beam in §4.2.6.

Since we are ultimately interested in how leakage man-
ifests itself in the angular power spectra, we need to
translate any polarized beam models of the azimuthally
averaged radial profiles of @, and U,, @, and U,, to an
{-space representation of E and B. Conveniently, Q,
and U, have a direct correspondence to the azimuthally

averaged (-space E and B transforms, F(¢) and B({).
As shown in Appendix D, there exists a simple relation
between these components, which in the flat-sky approx-
imation takes the form of a second-order Hankel trans-
form:

(B(0), B)} = —2r / (0,(60).0,(0)}Jo(¢6) 6 d6 . (25)

From the set of Uranus maps in the {Q,,U,} basis,
examples of which are shown in Figure 14, we thus con-
struct average radial profiles for each season, array, and
frequency, and we fit them in a similar way as the main
beam is fit in §4. While for the usual temperature beam
fitting pipeline we fit an offset to each individual Uranus
profile before taking an average, we do not do this in
polarization since we expect the mapping transfer func-
tion in that case to be zero.?* The only difference in the
fitting procedure here is that we do not include a scat-
tering term in the polarized beam model, since it is not
expected to matter to first order, and it is unclear how
it would vary for the different detector polarizations.?”
Examples of the radial profile model fits in polarization
are shown in Figure 15.

As can be seen in Figures 14 and 15, while our model
is a good fit to the @, and U, radial profiles, there are
significant, quadrupole-like residuals in the maps when
our model is subtracted. It turns out that the leakage
beams are far less azimuthally symmetric than the tem-
perature beams (as can be seen by comparing Figures 7
and 14). The treatment of this leakage will be revisited
for upcoming ACT beam analyses and may be improved
upon, for example, by fitting a 2D model to the polarized
beam profiles in order to properly capture the asymme-
try.?6 In the meantime, the fitting done here is sufficient.
The level of residuals seen in Figure 14 has an insignifi-
cant effect on the results of the power spectrum analysis
for DR4 (see §6.2). The features visible in the residual
maps can be expected to occur due to physical effects.
For example, we simulated the T-to-P leakage for a point
source due to both differential beam ellipticity between
the two axes of a polarimeter and a polarization angle off-

24 Even if the mapping transfer function were non-zero in polar-
ization, it would be a sub-percent-level effect in the measurement of
the leakage beam, which itself is percent-level in terms of our power
spectrum analysis and results, so the effect would be insignificant.

25 Again, this would be a sub-percent-level effect in the mea-
surement of the percent-level leakage beams, so there would be no
significant impact on our analysis and results.

26 Work on fitting the beams in 2D is in progress.
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set. The resulting maps of the simulated leakage beam
in @, and U, had strong quadrupole-like features. As
shown in Figure 15, the azimuthal averages of the resid-
uals in @, and U,. are close to zero, which is why the fits
works well, despite the appearance of the residuals in the
maps.

The @, and U, radial profiles fits and their uncertain-
ties are transformed to f-space using a similar approach
as for the temperature data, except using Equation 25 in-
stead of the usual Legendre transform. The transforms
for our example case are shown in Figure 16. These trans-
forms do not include corrections for small systematic ef-
fects, as was done for the main beam fitting pipeline
in §4.4. This is because we are ultimately interested in
the ratios of transfer functions for the leakage beams, in
which these ¢-space corrections cancel out. To determine
the polarization leakage beams, an example of which is
shown in Figure 17, we divide the E and B transforms by
their corresponding (uncorrected) T' transform. For PA1
and PA2 the leakage values are within 1.5% (comparable
to the leakage values for SPT-3G, Dutcher et al. 2021),
whereas for PA3, the leakage increases around ¢ ~ 4000—
6000, and reaches over 6% (4%) at £ ~10,000 at 150 GHz
(98 GHz). We attribute the higher leakage for PA3 to an
imperfectly optimized horn design in this first generation
of multichroic polarimeters.

The top 10 modes from the leakage beam covariance
matrices are stored. In addition, similar to the main
beam analysis, two modes are added to account for vari-
ations in the model for the temperature beam.?” The
final leakage beam uncertainties are thus comprised of
12 modes.

The leakage beams were used in the DR4 power spec-
trum likelihood, as explained in §5.3.

5.2. Polarized Sidelobes

As described in Louis et al. (2017) and Aiola et al.
(2020), we detect polarized sidelobes of the main ACT
beams. Although weak in amplitude, these sidelobes
cause noticeable T-to-P leakage. The sidelobes for PA1
and PA2 were shown in Louis et al. (2017). While PA3
was not used in that analysis, it was mentioned at the
time that polarized sidelobes were not detected for PA3.
However, using additional observations of Saturn to con-
duct a more thorough analysis, we have detected side-
lobes in PA3 at 150 GHz, with an amplitude roughly
10% that of the sidelobes in PA1 and PA2. The gen-
eral features of the sidelobes are common to all detector
arrays; they consist of a group of compact lobes, each
resembling a slightly elongated image of the main beam,
with approximate four-fold symmetry, strongly polarized
perpendicular to the radius from the beam center (which
corresponds to —@Q,.). This results in most of the leak-
age due to the sidelobes being from temperature into
FE-mode polarization rather than into B-mode polariza-
tion. These sidelobes are stable in time. We also observe
that sidelobes from Saturn are only seen if Saturn lies in
a focal plane’s field of view. As explained in Section 3.8
of Aiola et al. (2020), this is consistent with the sidelobes
being due to an optical effect inside the receiver.

27 We only consider variations in the range over which the beam
offsets are fit (3.5-5.0", 5.0'=7.0’, 7.0’-10.0"). The Ruze beam is a
smaller effect, so it is (safely) ignored here.

The sidelobes for PA1 and PA2 are at a distance of
roughly 15’ from the beam centroid, with an additional
set visible at 30" for PA1l. The sidelobes for PA3 are
located approximately 30" to 40" from the beam centroid.
This larger angular separation means the strongest T-
to-P leakage occurs at £ ~ 300 for PA3 compared to
¢ ~ 500 for PA1 and PA2. Also, since the sidelobes
only map to the sky when the main beam is also in the
field of view, fewer detectors are affected by each sidelobe
for PA3. We do not detect any sidelobes in PA3 at 98
GHz, which implies they must either be of significantly
lower amplitude than those at 150 GHz, or in a different
position. For PA1, PA2, and PA3, the amount of solid
angle contained in these sidelobes is roughly 1.2%, 3.4%,
and 0.15%, respectively, of that in the main beam.

Preliminary studies suggest that these sidelobes are
due to diffraction caused by the arrays of metal elements
that make up ACT’s optical filters. We note that simi-
lar filters (Ade et al. 2006) are also used for the South
Pole Telescope (SPT), POLARBEAR, and BICEP /Keck
(Padin et al. 2008; Arnold et al. 2010; Keating et al. 2003)
at varying locations in the optical path.?®

If the sidelobes were indeed due to diffraction from the
filters, we would expect them to occur at a larger ra-
dius for lower frequencies. Based on our calculations,
at 98 GHz, the sidelobes would appear starting at a dis-
tance of approximately 47’ from the beam centroid. Since
this is roughly the size of our field of view, the sidelobes
would then map to the sky for only a small fraction of
the detectors, the ones at the edges of the focal plane.
This is consistent with the lack of detectable sidelobes
at 98 GHz. We do not apply any sidelobe corrections to
the PA3 data at 98 GHz.

As mentioned in Aiola et al. (2020), to study the side-
lobes we use observations of Saturn. While Saturn’s
brightness appears to induce a non-linear response near
peak amplitude, it is useful for studying the relatively
weak sidelobes. There are no issues due to non-linearity
when observing the sidelobes. This is confirmed by the
fact that the amplitude of the sidelobes seen by a detec-
tor is consistent, whether they are seen before or after
the detector sees Saturn’s peak.

We apply the same treatment to the sidelobes for all
detectors at 150 GHz. In short, we model the sidelobes as
a sum of polarized, spatially shifted copies of the main
beam and fit the amplitudes of the T, @, and U com-
ponents of each beam instance using maps of Saturn.
We then use this model to deproject the sidelobes from
the time-ordered data prior to map-making. The idea is
to subtract the total flux in the sidelobes, even if their
shapes are not exactly zeroed out in the maps. It can be
shown that this removes the low-£ T-to-P leakage. Maps
of the sidelobes are shown in Figure 18, along with the
T-to-P leakage functions.

For PA1 and PA2, we re-use the sidelobe models from
DR3, constructed using observations of Saturn from
2014. For PA3, which was not part of DR3, we use Sat-
urn observations from 2015 to characterize the sidelobes

28 This issue with ACT is related to the location of the filters in
the optical path and the diffraction angle produced by the filters
relative to the effective view passed by the system at this location.
So other experiments may or may not see such an effect, depending
on the details of their optical implementation.
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F1G. 14.— Maps of the leakage beam in Q, (top) and U, (bottom) for S15 PA2 at 150 GHz. In each case, the color scale is a symmetrical
log scale in dB, with a linear threshold of —30 dB and negative values enclosed by parentheses. (Left) The weighted average of the Uranus
observations used to characterize the beam. (Center) The model that is fit to the radial profile of the measured beam. (Right) The
difference between the measured beam (left) and the beam model (center). Features in the residuals could arise due to physical effects, such
as differential beam ellipticity between the two axes of a polarimeter or a polarization angle offset (Hu et al. 2003). The level of residuals
seen in the last column has an insignificant effect on the results of the power spectrum analysis. As shown in Figure 15, the azimuthal
averages of the residuals are close to zero, which is why the fits are successful.

for DR4 in the same way as was done for DR3.

Looking more closely at how these sidelobe models are
constructed, we begin with a series of observations of
Saturn to which we apply the same data selection criteria
as we did to Uranus, as described in §2. We then map the
chosen observations with the moby22 map-maker (the
same map-maker that was used for the beam analysis
in Louis et al. 2017) and coadd the maps together to
produce one map of Saturn for each detector array (PA1,
PA2, PA3). The maps are coadded with weights based on
an estimate of their white noise level determined outside
the planet region.

We then visually identify regions in the maps contain-
ing compact polarized sidelobes. As can be seen in Fig-
ure 18, the pattern of the sidelobes in each map has ap-
proximate four-fold symmetry, with four groups of side-
lobes appearing at roughly equal distances from the beam
centroid. For each sidelobe we choose how many copies
of the main beam should be used to model it. Stronger,
elongated sidelobes are modelled by two copies of the
main beam, to capture the elongation; weaker sidelobes
are modelled with a single copy of the beam. Then for
each of the four groups of sidelobes we fit the position
and amplitude of the copies of the main beam. In theory
this fit could be done with any of the signals, but cur-
rently we perform this fit to a map of P = /Q2? + U2
because that is a bright, clear signal. With the model po-
sitions fixed, we then fit the amplitudes for each signal
(T, Qr, U,) independently. The result is a base model
for the sidelobes, but this model does not yet contain

29 GitHub repository:
https://github.com/ACTCollaboration/moby2

per-detector detail.

We next account for the fact that the sidelobes do not
always appear in all the detectors. This is relevant to
the extent that the per-detector weights in the planet
maps are different from the per-detector weights in the
survey maps (which are used for the CMB analysis, for
example). This could possibly be a significant (up to
tens of percent) effect, since the moby2 map-maker used
to make the planet maps doesn’t weight the detectors
by their noise, whereas the enki map-maker used for
the survey maps does. The sidelobes occur primarily in
the detectors at the periphery of the array, which is also
where the noise tends to be higher, so this is a correlated
effect.

To deproject the sidelobes from the per-detector time-
ordered data, we need to estimate whether or not the
sidelobes are seen by individual detectors, based on their
position on the focal plane. The parameter we want to
estimate is the radius of the “aperture”, or circle, around
a detector such that if Saturn falls within the circle, the
beam sidelobes are visible to that detector. To estimate
this radius, we first divide the detectors into subsets.
For PA3, the subsets are the three hexagonal wafers of
detectors, described in Thornton et al. (2016). For each
detector subset, we re-make maps of Saturn, and measure
the total sidelobe flux in the resulting coadded map. We
then compare these measurements to a model for the
sidelobe flux as a function of radius, which scales with
the fraction of detectors in each subset that would see
each sidelobe.

As for the main beam analysis in §4.4, small corrections
are made to the model to account for systematic effects.

The sidelobe removal described here is not perfect, so
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F1G. 15.— Measured radial polarization profiles (blue) in Q)
(top) and U, (bottom) for S15 PA2 at 150 GHz and the model we
fit to each profile (red), with the red shaded region indicating the
1o model uncertainty bounds. The profiles have been normalized
by the peak amplitude of the corresponding 7" beam (at the beam
centroid, # = 0). Note that the bins are correlated.

there is still residual T-to-P leakage in the ACT data
due to the sidelobes. The residual TE and T' B leakages,
shown in Figure 18, are estimated by making new maps
of Saturn after our sidelobe removal. Since the sidelobes
for PA3 are already significantly weaker than PA1 and
PA2, we do not compute residuals for PA3. We add the
residuals for PA1 and PA2 to the main beam leakage for
use in the power spectrum analysis, as described in the
next section.

The residual sidelobe leakage in Figure 18 can be com-
pared to the leakage in the main beam shown in Fig-
ure 17. The effect of each of these components on the
final spectra (if there is no leakage correction as in §5.3)
is shown in Figure 19. At low ¢, the residual sidelobe
leakage dominates, whereas the main beam leakage grows
larger by ¢ ~ 2000, and dominates at high /.

5.3. Leakage Correction
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F1c. 16.— The transform of the radial beam profiles in E (top)

and B (bottom) for S15 PA2 at 150 GHz. These transforms are
normalized by the amplitude of the corresponding T" beam trans-
form at £ = 0. The lower panels show the dominant independent
modes of each transform’s covariance matrix (in color) and the
magnitude of the diagonals (the gray shaded regions).

The main beam leakage and the residual leakage from
the sidelobes are included in the power spectrum likeli-
hood (see Section 12 of Choi et al. 2020) by making use
of a leakage-corrected model for the TE and EFE theory
spectra, computed each time the likelihood is estimated.
The corrected model spectra, TzE; and EiE;-, are related
to the input theory spectra, T;7;, T;F; and E; E;, via

T,E; = T,E; + T,Tjv; (26a)
EZEJ/ = EiEj + TiEj’}/i + TjEi’Vj + TiTj’yi’yj . (26b)

Here the ¢ and j subscripts denote different spectra
and the v factors encode the ¢-dependent leakage (the
sum of the main beam leakage from §5.1 and the residual
sidelobe leakage from §5.2) and are shown in Figure 20.
At 150 (98) GHz, the amplitude of v is never greater
than 0.0035 (0.038). Around ¢ ~ 1000-3000, this leakage
correction is roughly a few-percent (~ 1-4%) effect for
TE and a sub-percent (~ 0-0.4%) effect for EFE.

As explained in Choi et al. (2020), in the power spec-
trum analysis we first compute a power spectrum for each
season, sky region, detector array, and frequency. We
then coadd over seasons and arrays to obtain one spec-
trum per region and frequency. Finally, the regions are
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F1G. 17.— Measured temperature-to-polarization leakage in the main beams for S15 for all arrays, showing the temperature leaking into
E-mode and B-mode polarization. Note the different y-axis ranges. For PA1 and PA2 the leakage values are within 1.5%, whereas for
PA3, the leakage increases around ¢ ~ 4000-6000, and reaches over 6% (4%) at £ ~10,000 at 150 GHz (98 GHz). We attribute the higher
leakage for PA3 to an imperfectly optimized horn design in this first generation of multichroic polarimeters. The uncertainties (lower

panels) include the adjustments for model variability.

divided into two groups based on the detection thresh-
olds for point sources: deep (Deepl, Deepb, Deep6, and
Deep8) and wide (BOSS and AdvACT). The spectra for
the regions in these two groups are coadded, resulting in
a single deep and a single wide power spectrum at each
frequency.

To obtain the v factors, we coadd the leakage beams
for individual seasons and detector arrays using the same
weights used to coadd the spectra, giving an effective
leakage beam for both the deep and wide coadded spec-
tra at each frequency. The uncertainties in the  factors
are incorporated in the data covariance matrix by using
the main leakage beam uncertainties and the sidelobe
residuals to compute another covariance matrix (similar
to the main temperature beam covariance matrix) which
is then added (in quadrature) to the data covariance ma-
trix.

As described in Aiola et al. (2020); Choi et al. (2020),
including this leakage correction in the likelihood reduces
the residuals compared to the best-fitting ACDM model
but does not have a significant effect on the inferred cos-
mology. Choi et al. (2020) (in Section 12.3) also car-
ried out a test by fitting for two scaling factors (one at

150 GHz and one at 98 GHz), that multiply the nominal
values of the v factors. The data support the baseline
model, where the scaling factors are unity.

In the DR3 analysis in Louis et al. (2017) the residual
leakage from the sidelobes was similarly treated as a sys-
tematic uncertainty in the cosmological power spectrum
analysis, but the correction for the main beam polarized
leakage is new to DR4.%°

6. DISCUSSION
6.1. Beam Products

As part of DR4, several ACT data products were made
publicly available on the NASA Legacy Archive for Mi-

30 As described in Choi et al. (2020), for DR4 the ACT team
adopted a blinding strategy in an attempt to prevent confirmation
bias on the cosmological parameters. The analysis pre-unblinding
used maps that deprojected the polarized sidelobes, but did not
include the additional polarized leakage correction from the main
beam or the sidelobe residuals. The post-unblinding analysis re-
vealed some features in the T'E residuals to ACDM that led us to
a more thorough search for possible sources of systematic uncer-
tainty in the TE spectrum. As a result, it was at this point that
we added the correction in the likelihood for the T-to-P leakage
from both the polarized sidelobe residuals, and the main beam.
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Fic. 18.— Sidelobes in the PA1, PA2, and PA3 detectors at 150
GHz. (Left) Maps of the polarized sidelobes, obtained by stacking
observations of Saturn. The main part of the beam at the center
of each image is masked. In each the grayscale is linear, indicating
the sidelobe amplitude in the range from —0.002 (black) to +0.001
(white) relative to the main beam peak,® with positive (negative)
numbers corresponding to polarization parallel (perpendicular) to
the radial direction. The complementary polarization leakage (cor-
responding to T'B leakage) is smaller and not shown in the maps,
but it is also estimated. (Right) The effect of the sidelobes on our
measurements, expressed as beam transfer functions BZ"E and
BT—B_ Note that the scales on the right differ for all three arrays.
The sidelobes are projected out of the time-ordered data prior to
mapping, so the effective (residual) leakage is what affects our spec-
tra. Since the sidelobes for PA3 are significantly weaker than PA1
and PA2, we do not compute residuals for PA3. No sidelobes are
seen for PA3 at 98 GHz.

aSaturn’s brightness appears to compress the detector gain by a
few percent. The effect can be ignored here because it is a small
correction on the sidelobe leakage, which itself is a small effect.

crowave Background Data Analysis®*’ (LAMBDA) and
at the National Energy Research Scientific Computing
Center (NERSC). Details of all these data products are
given in Mallaby-Kay et al. (2021).

The beams described in this paper and used for the
analysis in Choi et al. (2020) and Aiola et al. (2020) are
included in the “ancillary products” section of the data
release. For each season/region/array/frequency combi-
nation, there are multiple beam files. Both the real-space
radial beam profiles and their harmonic-space transforms
are provided, both for the instantaneous beams and
for the beams with the jitter corrections included, and

31 lambda.gsfc.nasa.gov/product/act/actpol_prod_
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FiG. 19.— An example of the size of various effects on the in-

ferred spectra, compared to our final uncertainties. Here we used
the leakage in the main beam for S15 PA2 at 150 GHz, the resid-
ual sidelobe leakage for PA2 at 150 GHz, simulated leakage due to
asymmetry for S15 PA2 at 150 GHz, and the uncertainty in the
main beam for S15 PA2 deep56 at 150 GHz. The best fit ACDM
plus foreground model for the deep 150 x 150 GHz spectra for
ACT only from Choi et al. (2020) was used to compute the result-
ing change in DZTT7 D{E, and DZEE due to these elements. These

changes are then divided by the corresponding uncertainties G{T,

J{E, and afE on the final binned deep spectra. At larger mul-
tipoles, eventually the uncertainty on the main beam would come
to dominate. Note that we correct for the main beam leakage and
the residual sidelobe leakage in the power spectrum likelihood, as
explained in §5.3. The asymmetry leakage (simulated using an all-
sky beam convolution code, as mentioned in §6.2) is negligible for
all detector arrays. Sudden changes around ¢ = 2000, as can be
seen in the top panel, for example, are due to a change in the bin
width at this scale.
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F1G. 20.— The ~ factors encoding the ¢-dependent T-to-P leak-
age, used in the power spectrum likelihood for both the deep and
wide spectra at 150 GHz (top) and 98 GHz (bottom). The ~ factors
for 150 GHz include both the main beam leakage from §5.1 and the
residual sidelobe leakage from §5.2. Since no sidelobes are seen at
98 GHz, those ~ factors consist of only the main beam leakage.

in each case are available both with and without the
Rayleigh-Jeans-to-CMB spectral correction.

Note that the instantaneous beams are not region-
dependent, so only the jitter-corrected beams contain re-
gion flags in their filenames. The instantaneous beams
are suitable for time-domain analysis, but they should
not be used when analyzing maps. The maps released
as part of DR4 have not been corrected for the instru-
ment beam. When working with the maps, one should
use the jitter-corrected beams where the pointing vari-
ance and its uncertainty have been accounted for. The
beam harmonic-space transforms can be used to correct
for the beam effects in harmonic space (Bond & Efs-
tathiou 1987).

The TE and T'B harmonic-space leakage beams for the
main beam and the sidelobes and their residuals are also
included in the ancillary products for DRA4.

Since DR4 includes the data from DR3 as a subset, it
is possible to compare some of the DR4 beams with the
beams for the same season, sky region, detector array,
and frequency released as part of DR3. As shown in
Appendix E, despite the differences in the analyses, the
beams from DR3 and DR4 are consistent.

6.2. Beam Asymmetry

The asymmetry of the ACT main beams is relatively
well described as elliptical, with aspect ratios varying
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from 1% to 20% across the different arrays, as shown in
Table 1 of Choi et al. (2020). Here we give a brief sum-
mary of an investigation into this azimuthal asymmetry
and the associated spurious signal.

Beam asymmetry is, to leading order, responsible
for two effects. The asymmetric convolution creates
anisotropy in the sky maps that distorts the shape of
point sources and introduces statistical anisotropy in the
inferred CMB. The magnitude of the effect is reduced
by increased cross-linking: as the telescope observes a
position on the sky using approximately orthogonal scan
directions, the spurious signal from one scan roughly can-
cels with that of the other scan. The cross-linking in the
ACT maps is sufficient to reduce the contamination to
the power spectrum from this effect to an insignificant
amount.

The second effect of beam asymmetry is to introduce
T-to-P leakage. The beam asymmetry introduces a de-
pendency in the time-ordered data on the position angle
of the instrument: observations with different scan direc-
tions yield systematically different data. For asymmetric
beams with a quadrupole shape, which is the dominant
asymmetric azimuthal mode of our approximately ellip-
tical beams, the dependence on the position angle is in-
terpreted by the map-maker as a linearly polarized sky
component (Hu et al. 2003). In contrast to the first effect,
the T-to-P leakage is not averaged down by cross-linking.
Instead, the leakage is reduced by the instrument’s or-
thogonally polarized co-pointing detectors: the leakage
picked up by one detector approximately cancels with
the leakage picked up by its partner.?> As mentioned in
Choi et al. (2020) the residual leakage causes an additive
bias to the TE and T'B power spectra that is roughly
constant with multipole with an amplitude that is less
than 0.20 away from zero. No attempt to remove this
leakage has been made.

For the investigation described here, both effects were
simulated in the time domain using an all-sky beam con-
volution code similar to Wandelt & Gérski (2001); Rei-
necke et al. (2006); Prézeau & Reinecke (2010); Duiven-
voorden et al. (2019).

6.3. Conclusion

In this paper, we have presented the analysis of the
ACT beams for DR4, which includes data from 2013—
16. Improvements to the beam pipeline include: bet-
ter atmosphere subtraction for the Uranus maps, a new
scattering term in the model that is fitted to the main
beams, a better estimate of the uncertainty in these fits,
and residual T-to-P leakage terms that are included in
the ACT power spectrum likelihood. Considerable ef-
fort was spent developing a realistic model of the beams
(including optical effects) and the mapping process, in
order to study all elements of the analysis, including the
propagation of systematic uncertainties.

The DR4 beams presented here were also used for the
2013-16 data that were part of the ACT DR5 maps
(Naess et al. 2020). Finally, the pipeline presented here
was used to obtain preliminary beams for the 2017-18

32 This cancellation is not perfect for detector pairs with incor-
rect relative gain or pointing or for pairs with slightly different
beams, but these effects are small compared to the leakage from
detectors without a partner, which see no reduction.



22

Advanced ACT data included in DR5. Looking forward,
as we collect and analyze more ACT data and approach
the cosmic variance limit, we will become increasingly
sensitive to details of the instrument beams. While some
details may change®?, we expect to adopt similar meth-
ods as described here for analysis of the post-2016 ACT
data.
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APPENDIX
A. SHRINKING ALGORITHM FOR RADIAL PROFILE COVARIANCE MATRIX

In general, shrinkage is useful when estimating a covariance matrix (or any matrix, really) from a limited number of
data points (Schéfer & Strimmer 2005). This technique works by combining an empirical estimate of the covariance
matrix (a high-dimensional estimate of the underlying covariance with little or no bias) with a model (a low-dimensional
estimate which may be biased but has much smaller variance) to minimize the total mean squared error (sum of bias
squared and variance) with respect to the true underlying covariance. This is useful when the off-diagonal elements
of the covariance matrix are excessively noisy. One can analytically calculate the optimal combination of the low and
high dimensional estimates, parametrized by the shrinkage intensity. A review of covariance matrix shrinkage with an
example of application to cosmological analysis is given in Pope & Szapudi (2008). Shrinkage can result in a much
better estimation of the covariance matrix when few measurements are available, and it does not adversely affect the
covariance in the case of a large number of measurements. Since the method is computationally very simple, Pope &
Szapudi (2008) suggest it should always be employed.

The method works as follows. Suppose we have n sets of observations and each observation yields a data vector x of
length p. In the case of the beams analysis for DR4, for a given season, detector array, and frequency, the number of
observations n is between 6 and 51 (as listed in Table 1) and in each case the resulting data vector x (radial profile) is

of length p = 55. Let xgk) then represent the i*" element of the vector for the k" observation. The estimated empirical
mean of the i*" element across all observations is then #; = (1/n) > ,_, xl(-k).

If we define (k) (k) (k)
Wi = (z;” —7i)(x; " — 7)), (A1)
and
= I~ o
Wi =5 kZﬂWij ) (42

then an unbiased, empirical estimate of the covariance, S, of the data, is

Sij = 60\V<.’1?i,.’1?j) (A3a>
n JR—
- _ _
=—> @ —m) 7). (A3c)
k=1

We can also compute the covariance of the elements of this covariance matrix,

— n n JE— —
Cov(SijsSim) = (o135 2o WS = Wig) Wi = W) (A4)
k=1

writing the variance of an individual covariance matrix entry as \//a\r(Sl-j) = @(Sij, Sij)-
Let T be the target matrix, our model with fewer (or no) free parameters. An example of such a matrix could be
the identity matrix times a constant, or the target we use, which is described later, in Equation A7. Then we can

similarly write an equation for 6()\‘/(7}]-, S;j). The optimal shrinkage intensity, A\*, and resulting final estimate of the
covariance matrix C are then given by

o >, ; Var(8;) — Cov(T3;, Sij)
>i5(Tij — Sij)? 7

C=XT+(1-X)S. (A6)

(A5)

The expression for A* above is the practical estimator suggested by Schéfer & Strimmer (2005) in order to estimate
the optimal shrinkage intensity. This is based on the analytic solution for the optimal shrinkage intensity, A*, introduced

by Ledoit & Wolf (2003), which is identical to the expression above except the unbiased sample estimates Var and

Cov are replaced by the true underlying Var and Cov. Before this analytic solution, matrix shrinkage was much less
practical, since complex and computationally intensive methods were needed to find the optimal shrinkage intensity.
Looking more closely at Equation A5, the term Var(.S;;) in the numerator means that as the variances of the elements
of the empirical covariance matrix decrease (so, as n becomes much larger than p) the shrinkage intensity decreases
and our final estimate C of the covariance matrix approaches the empirical estimate S. In the case of our radial beam
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profile, n < p, which is precisely when shrinkage is the most important. The term Cov(Tj;,S;;) in the numerator
accounts for the fact that S and T are estimated from the same data, so if some elements of T are equal to elements
of S then the two terms in the numerator cancel for those elements, and they do not affect the estimate of A*. The
denominator in Equation A5 ensures that if our choice of T is very different from S, then A* will be small and C will
be close to S. A poor choice of target matrix should not therefore negatively affect C.

If Equation A5 leads to a value of \* that is greater than one, then we set A* = 1, which means our final estimate
of the covariance matrix is composed of only the target matrix. On the other hand, if the equation leads to a value
of A* that is less than zero, we set A* = 0, and our final estimate of the covariance matrix is equal to the empirical
covariance matrix.

Several common choices for the target matrix are listed in Table 2 of Schéfer & Strimmer (2005), along with simplified
expressions for the associated shrinkage intensities A*. In this analysis we use a “diagonal, unequal variance” target
matrix, that is, a matrix whose diagonal elements are equal to the diagonal elements of our empirical estimate S of
the covariance matrix and whose off-diagonal elements are zero:

Sy ifi=j
T _{0 ifitj. (A7)
In this case the expression for the shrinkage intensity simplifies to
A . Var(Sy;
A = Zz;ﬁ] ( 7/.7) . (AS)

i S5
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B. COMPUTING THE HARMONIC TRANSFORM OF THE BEAM

The spherical harmonics are functions defined on the sphere as
Y, (0, ¢) = P"(cos0) exp{imep} , (B1)

where P/” are the Legendre polynomials normalized for spherical harmonics. These are defined as

i jm|
P o) = (-0 2 R e e R ). (82)

where the Legendre polynomials Pj(x) are defined via the recurrence relation

Py(r) =1 (B3a)
Pi(z)=x (B3b)
nP,(z) = (2n — 1)zP,_1(x) — (n — 1) Pp_a(x) . (B3c)

The spherical harmonics are orthonormal, so they obey the relation

21 T
/ / Y (60, )Y (9, 6) sin 6 db do = 6116 | (B1)
0 0

where Z is the complex conjugate of z and d;; is the Kronecker symbol.
In a spherical harmonic transform, we compute the coefficients f/™ used to express a function f(6,¢) as

[e%s) l

F0,0)=>">" f"Y™(0,9). (B5)

=0 m=—1

The coefficients can be computed using the equation
27 T
fr= [ | 16.0)776.6)sin0 do o (B6)
0o Jo

2 T
= / / f(0,6)P™(cos @) exp{—ime}sinb df do . (B6b)
o Jo

If f(0,®) is independent of ¢ (as is the case for our beam), then we can write f(6,¢) = f(0) and the equation above
becomes

27 T
= / exp{—im¢}d¢/ f(O)P™(cosf)sinf db . (B7)
0 0
The integral over ¢ then simplifies to

27
/ e M dp = 210 - (B8)
0

So f;™ is only non-zero for m = 0, in which case we have

f=2n /O i f(0)Pi(cos ) sin 6 do (B9a)

=27 /_11 f(0)Py(cos ) dcos@ . (B9b)

This is the equation for the Legendre polynomial transform, presented as a means of converting the radial beam
profile B(#) to the harmonic transform B,. However, this can be time-consuming to compute. For small beams such
as ours, it is not necessary to work in the curved sky regime. We instead perform a 2D Fourier transform, which
effectively becomes a Hankel transform, as shown below. The difference between the Hankel and Legendre polynomial
transforms is less than a factor of 4 x 1075 between ¢ = 0 and ¢ = 10,000 and the Hankel transform is much faster to
compute.

Now let’s consider the 2D Fourier transform of a function f(z,y),

F(k;w,k;y):/_oo /_OO F@,y) exp{—i(ake + yk,)} dz dy . (B10)
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Introducing the polar coordinates

x = 0cos¢ y =60sing
ky = kcosy ky = ksiny

where 6 and ¢ here correspond to the 6 and ¢ in spherical coordinates used throughout the paper, we then have, in
the flat sky approximation,

o'} 27
F(kcost, ksiny) = F(k,¢) = / / (0, ¢) exp{—ifk(cos ¢ cos ) + sin ¢ sin)) }6 db d¢ . (B11)
o Jo

If our function is circularly symmetric, so independent of ¢ (as is the case for our beam model), we have
f(z,y) = f(0,¢) = f(0) and the equation above becomes

F(k,y) = /000 0f(0) /027r exp{—i0k(cos ¢ cos) + sin¢psiny)} db de (B12a)
= /00 0f(0) /QW exp{—i0k cos(¢p — )} db do (B12b)
0 0
oo 27
:/ 9f(9)/ exp{—ifk cosa} df da (B12c)
0 0
= / 0f(0) 2/ exp{—ifk cosa} df da . (B12d)
0 0

Using the integral representation

(=)"

Jn(2) = -

/ exp{iz cos ¢} cos(ny) dp (B13)
0

for the Bessel functions J,, of the first kind, we have

Jo(z) = 71T/07r exp{iz cosp} dy , (B14)

and so the final expression for the 2D Fourier transform of a circularly symmetric function f(6) may be written as
F(k)=2m 000 0f(6)Jo(—0k) do (B15a)
P /0 T 0£(0)Jo(0k) dO | (B15b)

which is a Hankel transform of order zero, and where the last line follows from the identity J,,(—z) = J,(z) for integer
n.
In order to compute the harmonic transform of our beam profile, we evaluate the expression above separately for
the three main terms in our beam profile fit: the core term (composed of the sum of basis functions), the scattering
term, and the 1/6% asymptotic term. The integrals for the core and scattering terms are computed numerically, but
we derive an analytic expression for the integral of the 1/63 term, shown below.

Given a fit amplitude a, the Hankel transform for the 1/ term may be written as

B I | B ° Jo(620)
Fijoa (k) = a/o e(ﬁ)Jo(eﬂ) o = a/o o o (B16)
The analytic expression we use for this integral is
Jo (04 020% +1 ol
/ 09(2 ) 4 — Z[Jl(%) - Jo(t%)( - ) -5 (HO(M)Jl(t%) - Hl(HZ)JO(t%))] , (B17)

where H,(z) is the Struve function.
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C. BEAM SOLID ANGLES FOR DIFFERENT EFFECTIVE FREQUENCIES

To indicate the effect of the passbands on the beams, we tabulate the solid angles for select effective frequencies.
The effective frequencies of the band centers are currently uncertain to approximately 2.4 GHz. However, since this is
in part due to systematic errors in the measurements, the relative uncertainties are smaller.

Similar to the correction we make to the main beams for use with the CMB, in each case we take the beam to
be B’'(¢) = B(fvrs/vs), where vy is the effective frequency for radiation with a Rayleigh-Jeans spectrum and vg is
the effective frequency for the source of interest (either CMB, synchrotron emission, dust, or the thermal Sunyaev-
Zel'dovich (tSZ) effect).

As described in §4.4, for the beam analysis for DR4, the effective frequencies from Thornton et al. (2016) were
used for the RJ-to-CMB beam spectral correction. Subsequently, the effective frequencies were re-computed for the
foreground modeling for DR4, using improved passband data and upgraded code, as detailed in Appendix D of Choi
et al. (2020). These updated frequencies are shown here in Table 5 and the corresponding beam solid angles are shown
in the following tables. Considering the uncertainties on the passbands, the frequencies from Thornton et al. (2016)
and Choi et al. (2020) are consistent. In addition, given that the uncertainty on the beams is subdominant in the
power spectrum analysis, which of these effective frequencies one uses for the beam spectral correction does not have
a significant effect on the results. Still, the solid angles for the CMB in Table 6 below are slightly different from those
in Table 4.

For any particular season/region/detector array/frequency, the uncertainty on the solid angles is 2-5%. This includes
both the instantaneous beam uncertainty and the uncertainty due to the region-dependent jitter correction. As is
apparent here, the derived solid angle and passband are intimately connected.

In addition, the beam and the passband are coupled, an effect which we considered for the first time in detail in
Madhavacheril et al. (2020), and described in Appendix A of said paper. In short, the beam shape evolves as a function
of frequency across the passband, and so our customary assumption of separability of these two components does not
hold to high precision. This beam-bandpass coupling was modeled as part of a systematic check of the DR4 results in
Choi et al. (2020) and was found to not have a significant effect on the inferred cosmological parameters.

TABLE 5
EFFECTIVE FREQUENCIES [GHz].

Array Band RJ CMB | tSZ dust | sync

PA1 150 GHz | 150.8 | 149.6 | 150.0 | 151.2 | 146.9

PA2 | 150 GHz | 151.2 | 149.9 | 150.4 | 151.6 | 147.3

PA3 | 150 GHz | 148.4 | 147.6 | 147.9 | 148.7 | 145.8

PA3 98 GHz 98.7 97.9 98.4 98.8 95.5

TABLE 6
EFFECTIVE BEAM SOLID ANGLES (NSR) FOR THE CMB.
Array Band Season Deepl Deepb Deep6 Deep56 Deep8 BOSS AdvACT
S13 213 209 210 - - - -
PA1 | 150 GHz S14 - - - 204 - - -
S15 - - - 206 199 205 -
S14 - - - 190 - - -
PA2 | 150 GHz S15 - - - 196 192 193 -
S16 - - - - - - 194
PA3 | 150 GHz S15 - - - 274 268 285 -
S16 - - - - - - 242
PA3 98 GHz S15 - - - 546 541 556 -
S16 - - - - - - 524




TABLE 7
EFFECTIVE BEAM SOLID ANGLES (NSR) FOR SYNCHROTRON EMISSION.

Array Band Season Deepl Deepb Deep6 Deep56 Deep8 BOSS AdvACT
S13 221 217 218 - - - -
PA1 | 150 GHz S14 - - - 211 - - -
S15 - - - 213 207 212 -
S14 - - - 196 - - -
PA2 | 150 GHz S15 - - - 203 198 200 -
S16 - - - - - - 201
PA3 150 GHz S15 - - - 281 275 292 -
S16 - - - - - - 248
PA3 98 GHz S15 - - - 575 569 585 -
S16 - - - - - - 552
TABLE 8
EFFECTIVE BEAM SOLID ANGLES (NSR) FOR DUSTY SOURCES.
Array Band Season Deepl Deepb Deep6 Deep56 Deep8 BOSS AdvACT
S13 208 205 205 - - - -
PA1 150 GHz S14 - - - 199 - - -
S15 - - - 201 195 200 -
S14 - - - 186 - - -
PA2 150 GHz S15 - - - 192 187 189 -
S16 - - - - - - 190
PA3 150 GHz S15 - - - 270 264 281 -
S16 - - - - - - 239
PA3 98 GHz S15 - - - 536 531 546 -
S16 - - - - - - 515
TABLE 9
EFFECTIVE BEAM SOLID ANGLES (NSR) FOR THE TSZ EFFECT.
Array Band Season Deepl Deepb Deep6 Deep56 Deep8 BOSS AdvACT
S13 212 208 209 - - - -
PA1 150 GHz S14 - - - 202 - - -
S15 - - - 204 198 204 -
S14 - - - 189 - - _
PA2 | 150 GHz S15 - - - 195 190 192 -
S16 - - - - - - 193
PA3 | 150 GHz S15 - - - 273 267 284 -
S16 - - - - - - 241
PA3 98 GHz S15 - - - 541 536 551 -
S16 - - - - - - 520
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D. TRANSFORMING FROM {Q.,U,} TO {E, B}

Instead of estimating the polarized ¢-space beams directly from non-local £ and B transform maps, we opt to use a
locally defined map-space polarization basis for this purpose. As we show below, the fields @, and U, turn out to be
a convenient choice; in the flat-sky limit, they are defined in terms of local linear combinations of the usual Q and U
maps as follows:

Qr(0) = Q(0) cos 2¢y + U(0) sin 2¢4 (D1)

U, (0) =U(0) cos 2¢g — Q(0) sin 2¢y (D2)

where 6 = (6, ¢y) are standard polar coordinates with the beam centroid as their origin and ¢y increasing clockwise
from the positive y-axis (assuming that one uses the convention in which +x points to the right and +y points upward).
Conversely, we may also define these fields in terms of their local contributions to both @ and U in the same coordinate
system:

Q(0) = Qr(0) cos 2¢9 — U,-(0) sin 269 (D3)

U(0) =U,(0) cos2¢g + Q,(0) sin 2¢y . (D4)

Since we are ultimately interested in how leakage manifests itself in the usual angular power spectra, we need to
translate any polarized beam models of @, and U, to an ¢-space representation of F and B. As it turns out, there
exists a simple relation between the azimuthally averaged versions of these components, which we derive here in the
flat-sky limit. We begin with the Fourier-space expressions for £ and B:

E(£) = Q(£) cos 2¢¢ + U (£) sin 26, (D5)
B(£) = U(£) cos 26, — Q(£) sin 2, (D6)

where £ = (£, ¢) is the Fourier conjugate of 8, and {Q, U} are just standard Fourier transforms of {Q, U}:
Qe) = [ Qo) odo = [ Q6. 6n)e 206 db doy (D7)
Ue) = / U(6)e“®do = / U (0, g )e™?<o5(@=00) 4o dpg . (D8)

Taking the azimuthal average of Equations D5 and D6, we get the one-dimensional transforms E and B:
B(O) = 5 [ QW cos20rdon+ 5 [ D(@)sin2r do (D9)
B0 = 5 [0 cos200 dor— o [ Qe)sin2on o (D10)

The expression for E in Equation D9 may be rewritten in terms of map-space ) and U with the help of Equations
D7 and D8:

1 ) 1 )
== / Q(0, ¢0)ezéecos(¢e—¢4)9 df deg cos2¢y dpp + o / U(b, ¢9)ez€9cos(¢e—¢e)9 d6 dgg sin2¢¢ dgy . (D11)
T T

Substituting for Q(0) and U(6) in Equation D11 using Equations D3 and D4, we obtain a relation between E and
{Q-, U, }:

B(0) =5~ / (Qu (0, 65) o5 26 — Uy (6, do) sin 269) %090 =9) df g cos 26 d

(D12)
+ — / 0, ¢o) cos 2¢g + Q.- (6, dg) sin 2¢9) 0 cos(¢o=90)g 40 deg sin 2¢; dey .
Grouping together the terms with @Q,-(0) and U, (), the equation above becomes:
. 1 ,
E() =5 / Q-(0, dg) ( cos 2¢g cos 2¢, + sin 2¢g sin 2@)6”9 cos(9e=00) 46 depy depy
(D13)

+ — / ¢9 €08 2¢g sin 2¢p — sin 2¢pg cos 2¢g) 0 cos(bo=de) g qdf depy doy .
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Then, making use of a simple trigonometric identity, Equation D13 may be written as:

E(0) :% / Q- (0, dg) cos2(g — pg) €09 =90 40 depg depy

1 (D14)
o / U (0, d6) sin 2(g — ér) €0 <=0=00 dg gy s, .
7r
And making the substitution ¢, = ¢9 — ¢¢, Equation D14 may be expressed as:
- 1 ,
E(t) =— / Q- (0, 0p) cos2¢, €059 0 df dpg db,
2T
1 (D15)
-5 / U (0, ¢g) sin2¢, e™C 5% 0 df dpg do, .
™
We are now able to write each of the two terms in the expression for E as three separate integrals:
~ 1 .
E(l) = / (52 / Q: (0, do) do) ( / cos 26, "% dg,)0 df
T (D16)

& Juv s s

Note that the integrals of @,.(0) and U,.(6) over ¢y — the first set of parentheses — are simply the azimuthal averages
@, and U,., while the integrals over ¢, - the second set of parentheses - turn out to have simple analytic counterparts:

/cos 2¢, 0% dp, = —2mJ5(10) (D17)

/ sin 2¢, €0 % d¢p, = 0. (D18)

So the azimuthally averaged ¢-space E beam is simply the second-order Hankel transform of the azimuthally averaged
map-space @, beam:

E(l) = —2n / Q. (0)J2(¢0) 0 db . (D19)

One can similarly show that the same relation exists between the azimuthally averaged ¢-space B and map-space U,
beams:

B(0) = —2x / U,(0)J2(£6) 6 d . (D20)

With Equations D19 and D20 in hand, we have a complete formalism for transforming the polarized beams using the

{Q/, U, } basis.
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E. DR3 VS DR4 BEAMS

The beam transforms made publicly available for the DR3 and DR4 releases have been compared for each season,

sky region, detector array, and frequency in common, as shown in Figure 21. Despite the changes in the analyses, the
beam transforms are consistent.
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FiG. 21.— Ratio of the beam transforms for DR3 and DR4 at 150 GHz, for S13 (top) and S14 (bottom). The shaded bands indicate the
1o uncertainty bounds, determined using the maximum uncertainty of the two transforms being compared. For these plots, the transforms
have been normalized at ¢ = 1400, which corresponds roughly to the effective calibration scale.
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