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ABSTRACT

Algorithms are now routinely used to make consequential decisions
that affect human lives. Examples include college admissions, med-
ical interventions or law enforcement. While algorithms empower
us to harness all information hidden in vast amounts of data, they
may inadvertently amplify existing biases in the available datasets.
This concern has sparked increasing interest in fair machine learn-
ing, which aims to quantify and mitigate algorithmic discrimination.
Indeed, machine learning models should undergo intensive tests to
detect algorithmic biases before being deployed at scale. In this pa-
per, we use ideas from the theory of optimal transport to propose a
statistical hypothesis test for detecting unfair classifiers. Leveraging
the geometry of the feature space, the test statistic quantifies the
distance of the empirical distribution supported on the test samples
to the manifold of distributions that render a pre-trained classi-
fier fair. We develop a rigorous hypothesis testing mechanism for
assessing the probabilistic fairness of any pre-trained logistic classi-
fier, and we show both theoretically as well as empirically that the
proposed test is asymptotically correct. In addition, the proposed
framework offers interpretability by identifying the most favorable
perturbation of the data so that the given classifier becomes fair.
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1 INTRODUCTION

The past decade witnessed data and algorithms becoming an inte-
grative part of the human society. Recent technological advances
are now allowing us to collect and store an astronomical amount of
unstructured data, and the unprecedented computing power is en-
abling us to convert these data into decisional insights. Nowadays,
machine learning algorithms can uncover complex patterns in the
data to produce an exceptional performance that can match, or even
surpass, that of humans. These algorithms, as a consequence, are
proliferating in every corner of our lives, from suggesting us the
next vacation destination to helping us create digital paintings and
melodies. Machine learning algorithms are also gradually assisting
humans in consequential decisions such as deciding whether a stu-
dent is admitted to college, picking which medical treatment to be
prescribed to a patient, and determining whether a person is con-
victed. Arguably, these decisions impact radically many people’s
lives, together with the future of their loved ones.

Algorithms are conceived and function following strict rules of
logic and algebra; it is hence natural to expect that machine learn-
ing algorithms deliver objective predictions and recommendations.
Unfortunately, in-depth investigations reveal the excruciating real-
ity that state-of-the-art algorithmic assistance is far from being free
of biases. For example, a predictive algorithm widely used in the
United States criminal justice system is more likely to misclassify
African-American offenders into the group of high recidivism risk
compared to white-Americans [12, 46]. The artificial intelligence
tool developed by Amazon also learned to penalize gender-related
keywords such as “women’s” in the profile screening process, and
thus may prefer to recommend hiring male candidates for soft-
ware development and technical positions [17]. Further, Google’s
ad-targeting algorithm displayed advertisements for higher-paying
executive jobs more often to men than to women [18].

There are several possible explanations for why cold, soulless
algorithms may trigger biased recommendations. First, the data
used to train machine learning algorithms may already encrypt hu-
man biases manifested in the data collection process. These biases
arise as the result of a suboptimal design of experiments, or from
historically biased human decisions that accumulate over centuries.
Machine-learned algorithms, which are apt to detect underlying
patterns from data, will unintentionally learn and maintain these
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existing biases [9, 43]. For example, secretary or primary school
teacher are professions which are predominantly taken by women,
thus, natural language processing systems are inclined to associate
female attributes to these jobs. Second, training a machine learn-
ing algorithm typically involves minimizing the prediction error
which privileges the majority populations over the minority groups.
Clinical trials, for instance, typically involve very few participants
from the minority groups such as indigenous people, and thus med-
ical interventions recommended by the algorithms may not align
perfectly to the characteristics and interests of patients from the
minority groups. Finally, even when the sensitive attributes are
not used in the training phase, strong correlations between the
sensitive attributes and the remaining variables in the dataset may
be exploited to generate unjust actions. For example, the sensitive
attribute of race can be easily inferred with high accuracy based
on common non-sensitive attributes such as the travel history of
passengers or the grocery shopping records of customers.

The pressing needs to redress undesirable algorithmic biases
have propelled the rising field of fair machine learning!. A building
pillar of this field involves the verification task: given a machine
learning algorithm, we are interested in verifying if this algorithm
satisfies a chosen criterion of fairness. This task is performed in
two steps: first, we choose an appropriate notion of fairness, then
the second step invokes a computational procedure, which may
or may not involve data, to decide if the chosen fairness criterion
is fulfilled. A plethora of criteria for fair machine learning were
proposed in the literature, many of them are motivated by philo-
sophical or sociological ideologies or legal constraints. For example,
anti-discrimination laws may prohibit making decisions based on
sensitive attributes such as age, gender, race or sexual orienta-
tion. Thus, a naive strategy, called fairness through unawareness,
involves removing all sensitive attributes from the training data.
However, this strategy seldom guarantees any fairness due to the
inter-correlation issues [27, 30], and thus potentially fails to gener-
ate inclusive outcomes [2, 6, 36, 41]. Other notions of fairness aim to
either promote individual fairness [21], prevent disparate treatment
[70] or avoid disparate mistreatment [23, 71] of the algorithms. To-
wards similar goals, notions of group fairness focus on reducing the
difference of favorable outcomes proportions among different sen-
sitive groups. Examples of group fairness notions include disparate
impact [70], demographic parity (statistical parity) [10, 21], equality
of opportunity [31] and equalized odds [31]. The notion of coun-
terfactual fairness [27] was also suggested as a measure of causal
fairness. Despite the abundance of available notions, there is un-
fortunately no general consensus on the most suitable measure to
serve as the industry standard. Moreover, except in trivial cases, it
is not possible for a machine learning algorithm to simultaneously
satisfy multiple notions of fairness [5, 37]. Therefore, the choice of
the fairness notion is likely to remain more an art than a science.

This paper focuses not on the normative approach to choosing
an ideal notion of machine learning fairness. We endeavor in this
paper to shed more light on the computational procedure to com-
plement the verification task. Concretely, we position ourselves in
the classification setting, which is arguably the most popular task
in machine learning. Moreover, we will focus on notions of group

1Comprehensive surveys on fair machine learning can be found in [5, 13, 14, 44].
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fairness, and we employ the framework of statistical hypothesis
test instead of algorithmic test.

Contributions. Our paper makes two concrete contributions to
the problem of fairness testing of machine learning’s classifiers.

(1) We propose the Wasserstein projection framework to perform
statistical hypothesis test of group fairness for classification
algorithms. We derive in details the computation of the test
statistic and the limiting distribution when fairness is measured
using the probabilistic equality of opportunity and probabilistic
equalized odds criteria.

(2) We demonstrate that the Wasserstein projection hypothesis test-
ing paradigm is asymptotically correct and can exploit additional
information on the geometry of the feature space. Moreover,
we also show that this paradigm promotes transparency and
interpretability through the analysis of the most favorable dis-
tributions.

The remaining of the paper is structured as follows. In Section 2,
we introduce the general problem of statistical hypothesis test of
classification fairness, and depict the current landscape of fairness
testing in the literature. Section 3 details our Wasserstein projection
approach to this problem. Sections 4 and 5 apply the proposed
framework to test if a pre-trained logistic classifier satisfies the
fairness notion of probabilistic equal opportunity and probabilistic
equalized odds, respectively. Numerical experiments are presented
in Section 6 to empirically validate the correctness and demonstrate
the power of our proposed paradigm. Section 7 concludes the paper
with outlooks on the broader impact of our Wasserstein projection
hypothesis testing approach.

All technical proofs are relegated to the Appendix.

2 STATISTICAL TESTING FRAMEWORK FOR
FAIRNESS AND LITERATURE REVIEW

We consider throughout this paper a generic binary classification
setting. Let X = R? and Y = {0, 1} be the space of feature inputs
and label outputs of interest. We assume that there is a single
sensitive attribute corresponding to each data point and its space is
denoted by A = {0, 1}. A probabilistic classifier is represented by a
function h(-) : X — [0, 1] that outputs for each given sample x € X
the probability that x belongs to the positive class. The deterministic
classifier predicts class 1 if h(x) > 7 and class 0 otherwise, where
7 € [0,1] is a classification threshold. Note that the function h
depends only on the feature X, but not on the sensitive attribute A,
thus predicting Y using h satisfies fairness through unawareness.

The central goal of this paper is to provide a statistical test to
detect if a classifier A fails to satisfy a prescribed notion of machine
learning fairness. A statistical hypothesis test can be cast with the
null hypothesis being

Ho: the classifier h is fair,
against the alternative hypothesis being
H;: the classifier h is not fair.

In this paper, we focus on statistical notions of group fairness, which
are usually defined using conditional probabilities. A prevalent
notion of fairness in machine learning is the criterion of equality of
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opportunity?, which requires that the true positive rate are equal
between subgroups.

Definition 2.1 (Equal opportunity [31]). A classifier A(:) : X —
[0, 1] satisfies the equal opportunity criterion relative to Q if

Qh(X)27lA=1,Y=1)=Q(h(X) > 1]A=0,Y = 1),
where 7 is the classification threshold.

Another popular criterion of machine learning fairness is the
equalized odds, which is more stringent than the equality of op-
portunity: it requires that the positive outcome is conditionally
independent of the sensitive attributes given the true label.

Definition 2.2 (Equalized odds [31]). A classifier A(-) : X — [0, 1]
satisfies the equalized odds criterion relative to Q if

Q(h(X)>1]A=1Y=y)=Q(h(X)>7|A=0,Y=y) Vy eV,
where 7 is the classification threshold.

Notice that the criteria of fairness presented in Definitions 2.1
and 2.2 are dependent on the distribution Q: a classifier h can be
fair relative to a distribution Q1, but it may become unfair with
respect to another distribution Q2 # Qj. If we denote by P the true
population distribution that governs the random vector (X, A, Y),
then it is imperative and reasonable to test for group fairness with
respect to P. For example, to test for the equality of opportunity,
we can reformulate a two-sample equal conditional mean test of
the null hypothesis

Ho :E]P[]lh(X)Zz"A =1,Y=1] = E]P[]lh(X)ZT|A =0,Y=1],

and one can potentially employ a Welch’s t-test with proper adjust-
ment for the randomness of the sample size. Unfortunately, deriving
the test becomes complicated when the null hypothesis involves an
equality of multi-dimensional quantities, which arises in the case
of equalized odds, due to the complication of the covariance terms.
Variations of the permutation tests were also proposed to detect
discriminatory behaviour of machine learning algorithms following
the same formulation of the one-dimensional two-sample equal-
ity of conditional mean test [19, 66]. However, these permutation
tests follow a black-box mechanism and are unable to be gener-
alized to multi-dimensional tests. Tests based on group fairness
notions can also be accomplished using an algorithmic approach
as in [19, 29, 35, 57].

From a broader perspective, deriving tests for fairness is an active
area of research, and many testing procedures have been recently
proposed to test for individual fairness [34, 68], for counterfactual
fairness [6, 27] and diverse other criteria [3, 66, 67].

Literature related to optimal transport. Optimal transport is
a long-standing field that dates back to the seminal work of Gas-
pard Monge [45]. In the past few years, it has attracted signif-
icant attention in the machine learning and computer science
communities thanks to the availability of fast approximation al-
gorithms [4, 8, 16, 20, 28]. Optimal transport is particularly suc-
cessful in various learning tasks, notably generative mixture mod-
els [38, 49], image processing [1, 24, 39, 50, 63], computer vision
and graphics [51, 52, 56, 61, 62], clustering [32], dimensionality
reduction [11, 25, 55, 58, 59], domain adaptation [15, 47], signal

2We use two terms “equality of opportunity” and “equal opportunity” interchangeably.
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processing [65] and data-driven distributionally robust optimiza-
tion [7, 26, 40, 72]. Recent comprehensive survey on optimal trans-
port and its applications can be found in [38, 53].

In the context of fair classification, ideas from optimal transport
have been used to construct fair logistic classifier [64], to detect
classifiers that does not obey group fairness notions, or to ensure
fairness by pre-processing [29], to learn a fair subspace embedding
that promotes fair classification [69], to test individual fairness [68],
or to construct a counterfactual test [6].

3 WASSERSTEIN PROJECTION FRAMEWORK
FOR STATISTICAL TEST OF FAIRNESS

We hereby provide a fresh alternative to the testing problem of
machine learning fairness. On that purpose, for a given classifier h,
we define abstractly the following set of distributions

Frn={Q € P : the classifier h is fair relative to Q}, (1)

where # denotes the space of all distributions on X X A x Y.
Intuitively, the set ¥, contains all probability distributions under
which the classifier h satisfies the prescribed notion of fairness. It is
trivial to see that if 3, contains the true data-generating distribution
P, then the classifier A is fair relative to P. Thus, we can reinterpret
the hypothesis test of fairness using the hypotheses

Ho: P € Fp, Hi: P ¢ Fy,.
Testing the inclusion of P in #7, is convenient if # is endowed with
a distance. In this paper, we equip # with the Wasserstein distance.

Definition 3.1 (Wasserstein distance). The type-2 Wasserstein
distance between two probability distributions Q and Q” supported
on = is defined as

W(Q'.Q = neﬁr}%‘/ 0 VEx[e(&. &)1,

where the set II(Q’, Q) contains all joint distributions of the random
vectors & € = and ¢ € = under which ¢ and ¢ have marginal
distributions Q” and Q, respectively, and ¢ : E X & — [0, o]
constitutes a lower semi-continuous ground metric.

The type-2 Wasserstein distance® is a special instance of the

optimal transport. The squared Wasserstein distance between Q’
and Q can be interpreted as the cost of moving the distribution
Q’ to Q, where c(&, £) is the cost of moving a unit mass from &
to & Being a distance on £, W is symmetric, non-negative and
vanishes to zero if Q" = Q. The Wasserstein distance is hence an
attractive measure to identify if P belongs to #3,. Using this insight,
the hypothesis test for fairness has the equivalent representation
Ho: ianETh W(P,Q) =0, Hi: ianETh W(P,Q) > o.
Even though P remains elusive to our knowledge, we are given
access to a set of i.i.d test samples {(%;, d;, g,)}{il generated from
the true distribution P. Thus we can rely on the empirical value
inf W(PN,Q),
Qefh

which is the distance from the empirical distribution supported on
the samples PN = Zfil 8(z,,a5,9;) to the set Fp. To perform the test,
it is sufficient to study the limiting distribution of the test statistic
using proper scaling under the null hypothesis Hj. The outcome of

3From this point, we omit the term “type-2” for brevity.
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the test is determined by comparing the test statistic to the quantile
value of the limiting distribution at a chosen level of significant
a € (0,1).

Advantages. The Wasserstein projection framework to hypothesis
testing that we described above offers several advantages over the
existing methods.

(1) Geometric flexibility: The definition of the Wasserstein distance
implies that there exists a joint ground metric c on the space of
the features, the sensitive attribute and the label. If the modelers
or the regulators possess any structural information on an ap-
propriate metric on £ = X X A X Y, then this information can
be exploited in the testing procedure. Thus, the Wasserstein pro-
jection framework equips the users with an additional freedom
to inject prior geometric information into the statistical test.
Mutivariate generalizability: Certain notions of fairness, such
as equalized odds, are prescribed using multiple equalities of
conditional expectations. The Wasserstein projection framework
encapsulates these equalities simultaneously in the definition of
the set ¥, and provides a joint test of these equalities without
the hassle of decoupling and testing individual equalities as
being done in the currently literature.

Interpretability: If we denote by Q* the projection of the empir-

—
N
~

—
W
=

ical distribution PN onto the set of distributions 7, i.e.,
Q* = arg min W(BN,Q),
Qefn

then Q* encodes the minimal perturbation to the empirical sam-
ples so that the classifier A becomes fair. The distribution Q* is
thus termed the most favorable distribution, and examining Q*
can reveal the underlying mechanism and explain the outcome
of the hypothesis test. The accessibility to Q* showcases the
expressiveness of the Wasserstein projection framework.

Whilst theoretically sound and attractive, there are three poten-
tial difficulties with the Wasserstein projection approach to statis-
tical test of fairness. First, to project PV onto the set 7, we need
to solve an infinite-dimensional optimization problem, which is
inherently difficult. Second, for many notions of machine learning
fairness such as the equality of opportunity and the equalized odds,
the corresponding set 7, in (1) is usually prescribed using nonlinear
constraints. For example, if we consider the equal opportunity cri-
terion in Definition 2.1, then the set ¥, can be re-expressed using a
fractional function of the probability measure as

ﬁ:
Q € P such that
Qh(X)21,A=1Y=1) Qh(X)>71,A=0Y=1)
QA=1Y=1) B QA=0,Y=1)

Apart from involving nonlinear constraints, it is easy to verify that
the set 7}, is also non-convex, which amplifies the difficulty of
computing the projection onto ¥ Finally, the limiting distribution
of the test statistic is difficult to analyze due to the discontinuity
of the probability function at the set {x € X : h(x) = r}. The
asymptotic analysis with this discontinuity is of a combinatorial
nature, and is significantly more problematic than the asymptotic
analysis of smooth quantities.

While these difficulties may be overcome via various ways, in
this paper we choose the following combination of remedies. First,
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we will use a relaxed notion of fairness termed probabilistic fairness,
which was originally introduced in [54]. Second, when computing
the Wasserstein distances between distributions on X X A X Y, we
use

()

as the ground metric, where || - || is a norm on R4 This case corre-
sponds to having an absolute trust in the label and in the sensitive
attribute of the training samples. This absolute trust restriction is
common in the literature of fair machine learning [64, 68].

We now briefly discuss the advantage of using the ground met-
RIAXIYI
++

e((x,a" ). (x,a,y)) = llx = x'[| + o0la — a’| + eoly = ¢/]

ric of the form (2). Denote by p € the array of the true
marginals of (A,Y), in particular, pay = P(A = a,Y = y) for all
a € Aandy € Y. Further, let pV € RLT'lel be the array of the
empirical marginals of (A, Y) under the empirical measure PN, that
is, ﬁé\]y =PN(A=gaY =y) foralla € Aandy € Y. Through-
out this paper, we assume that the empirical marginals are proper,
that is, [)% € (0,1) for any (a,y) € A X Y. We define temporar-
ily the simplex set A = {p € RK”XWl : YaeA,yeY Pay = 1}
Subsequently, for any marginals p € A, we define the marginally-
h is fair relative to Q

constrained set of distributions
Fn(p) = EP: A .
h(D) {Q Q(A:a,yzy):payv(a,y)eﬂxy }
Using these notations, one can readily verify that 7, = UpeaFr (D).
Moreover, the next result asserts that in order to compute the pro-
jection of PV onto 7, to suffices to project onto the marginally-
constrained set 7, (pN).

Lemma 3.2 (Projection with marginal restrictions). Suppose that
the ground metric is chosen as in (2). If a measure Q € ¥}, satisfies
W(PN,Q) < oo, then Q € 77, (pN).

A useful consequence of Lemma 3.2 is that

. SN _ SN
@?% W(ET,Q) = WP, Q),

inf
QeFn(PN)
where the feasible set of the problem on the right-hand side is the
marginally-constrained set 7, (p™) using the empirical marginals
N For two notions of probabilistic fairness that we will explore in
this paper, projecting PN onto %, (pN) is arguably easier than onto
Fp- Thus, this choice of ground metric improves the tractability
when computing the test statistic.

Third, and finally, we will focus on the logistic regression setting,
which is one of the most popular classification methods [33]. In this
setting, the conditional probability P[Y = 1|X = x] is modelled by
the sigmoid function hg(x) = (1+ exp(—fTx))~!, where 8 € R4
is the regression parameter. Moreover, a classifier with f = 0, is
trivially fair. Thus, it suffices to consider § # 0.

Notations. We use || - || to denote the dual norm of || - ||. For any
integer N, we define [N] := {1,2,...,N}. Given N test samples
(X3, @i, g),-){il, we use Iy = {i € [N] : §; = y} to denote the index
set of observations with label y. The parameters A; are defined as

N1 i (i) = (1,1),
=(BN)™Yif (@i i) = (0,1),
PNt if (a1, 9:) = (1,0),
=)™ if (@i gi) = (0,0).

©)

Vie [N]: A= (4)
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4 TESTING FAIRNESS FOR PROBABILISTIC
EQUAL OPPORTUNITY CRITERION

In this section, we use the ingredients introduced in the previous
section to concretely construct a statistical test for the fairness of a
logistic classifier hg. Specifically, we will employ the probabilistic
equal opportunity criterion which was originally proposed in [54].

Definition 4.1 (Probabilistic equal opportunity criterion [54]). A
logistic classifier hg : X — [0,1] satisfies the probabilistic equal-
ized opportunity criteria relative to a distribution Q if

EQ[hﬁ(X”A =1,Y=1]= EQ[hﬁ(X”A =0,Y=1].

The probabilistic equal opportunity criterion, which serves as
a surrogate for the equal opportunity criterion in Definition 2.1,
depends on the smooth and bounded sigmoid function hg but is
independent of the classification threshold 7. Motivated by [42],
we empirically illustrate in Figure 1 that the probabilistic surrogate
provides a good approximation of the equal opportunity criterion.
Figure 1a plots the absolute difference of the classification probabil-
ities [P(h(X) > $]A=1,Y = 1)-P(h(X) > 3|A =0,Y = 1)|, while
Figure 1b plots the absolute difference of the sigmoid expectations
|[Ep[A(X)|A =1,Y = 1]-Ep[h(X)|A = 0,Y = 1]|. One may observe
that the regions of f so that the absolute differences fall close to
zero are similar in both plots. This implies that a logistic classifier
hg which is equal opportunity fair is also likely to be probabilistic
equal opportunity fair, and vice versa.

2 2
0.4
! 0.4 !
Q0 & 0
0.2 0.2
-1 -1
25 0 2 0.0 25 0 2

B2
(b) Probabilistic equal opportunity
2 and

B
(a) Equal ;pportunity
Figure 1: Comparison of fairness notions for d
hg(x) = 1/(1+exp(§ — frx1 — fax2)).

We use the superscript “opp” to emphasize that fairness is mea-
sured using the probabilistic equal opportunity criterion. Conse-
quentially, the set of distributions 7"}231) that makes the logistic

I

The statistical hypothesis test to verify whether the classifier hg is
fair is formulated with the null and alternative hypotheses

classifier h 5 fair is

opp _

Q € P such that :
hg

Eglhp(X)|A=1Y = 1]=Eq[hg(X)|A=0,Y = 1]

HP 2 e O HOP P g P
B B

The remainder of this section unfolds as follows. In Section 4.1,
we delineate the computation of the projection of PV onto ?;z();)p'

Section 4.2 studies the limiting distribution of the test statistic,
while Section 4.3 examines the most favorable distribution.
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4.1 Wasserstein Projection

Lemma 3.2 suggests that it is sufficient to consider the projection
onto the marginally-constrained set Tho;p ($N), where pN is the

empirical marginals of the empirical distribution PN . In particular,
RO ()i
Ty (BV)

Q € P such that :
= (ﬁf{)ilEQ[hﬂ(X)]lA(l,l)(AsY)]:(ﬁé\{)ilEQ[hﬁ(x)l(o,l)(A:Y)] ,

QA=aY= y):p% Y(a,y) e AxY
where the equality follows from the law of conditional expectation.
Notice that the set 7_-h0pp (pN) is prescribed using linear constraints

of Q, and thus it is more amenable to optimization than the set
‘7';105 P Tt is also more convenient to work with the squared distance

function R whose input is the empirical distribution PN and its
corresponding vector of empirical marginals #V by

ROPP (ISPN, ﬁN) =
inf  W(Q,BN)2
st Eglhs(X) (A1) L (1,1)(A V)= () T 1 (0,1)(A V)] =0
Egll(ay (A =5, Y(ay) eAxY.
Notice that the constraints of the above infimum problem are linear
in the measure Q, but the functions inside the expectation opera-

tors are possibly nonlinear functions of ﬁN . Using the equivalent
characterization (3), the following relation holds

. SN _

ér%ﬁpp WEY,Q) =

WEN, Q) = RoPP (BN, pN).
g

We now proceed to show how computing the projection can be
reduced to solving a finite-dimensional optimization problem.

inf
Qe (5Y)

Proposition 4.2 (Dual reformulation). The squared projection
distance ROPP (PN, pN)) equals to the optimal value of the following
finite-dimensional optimization problem

1
— inf {||x; — %i||* + yAihg(xi)} .
sup NiGELxliréx{”x’ %ill* + yAihg (xi) }

()

While Proposition 4.2 asserts that computing the squared pro-
jection distance ROPP(PN, #N) is equivalent to solving a finite-
dimensional problem, unfortunately, this saddle point problem is
in general difficult. Indeed, because h 5 is non-convex, even finding
the optimal inner solution x* for a fixed value of the outer variable
Yy € R is generally NP-hard [48]. The situation can be partially
alleviated if || - || is an Euclidean norm on R¥.

Lemma 4.3 (Univariate reduction). Suppose that || - || is the Eu-
clidean norm on Rd, we have

ROpp(PN,ﬁN) —

1 .
N Z k mor,lg]

iel i€l

\Z
1+ exp(yAil|flIZki — BT %:)
(6)

The proof of Lemma 4.3 follows trivially from application of
Lemma B.1 to reformulate the inner infimum problems for each

sup Y227 1BISKS +

YeR
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i € I;. Lemma 4.3 offers a significant reduction in the computa-
tional complexity to solve the inner subproblems of (5). Instead
of optimizing over d-dimensional vector x;, the representation in
Lemma 4.3 suggests that it suffices to search over a 1-dimensional
space for k;. While the objective function is still non-convex in k;,
we can perform a grid search over a compact interval to find the
optimal solution for k; to high precision. The grid search operations
can also be parallelized across the index i thanks to the indepen-
dent structure of the inner problems. Furthermore, the objective
function of the supremum problem is a point-wise minimum of
linear, thus concave, functions of y. Hence, the outer problem is a
concave maximization problem in y, which can be solved using a
golden section search algorithm.

4.2 Limiting Distribution

We now characterize the limit properties of R%PP (PN, 5. The next
theorem assert that the limiting distribution is of the chi-square

type.

Theorem 4.4 (Limiting distribution - Probabilistic equal opportu-
nity). Suppose that (%, d;, §;) are i.i.d. samples from P. Under the
null hypothesis 7{(;) PP we have

N x ROPP(EN, 5N) L, g2,

where )(12 is a chi-square distribution with 1 degree of freedom,

]l(l,l) (A, Y) _ ]].(0!1) (A, Y)) 2

_1 0.%
P11 po1 pglpfl

- (E

Vhy(X) (

*

with af = Cov(Z1), and Z; is the random variable

Z1 = hg(X) (p01]l(1,1)(A, Y) - p1il(gq) (A Y))
+1(g,1) (A V)Ep[L(1,1) (A Y)hg(X)]
= 11,1 (A YV)Ep[L (o1 (A V)hg(X)].

Construction of the hypothesis test. Based on the result of The-
orem 4.4, the statistical hypothesis test proceeds as follows. Let
r]i’gi denote the (1 — a) X 100% quantile of 9)(%, where a € (0,1) is
the predetermined significance level. By Theorem 4.4, the statistical
decision has the form

. Opp . AOPp opp
Reject H ™ if ;% > 7
with

S0P = N x ROPP(PN, pN).

The limiting distribution 6 )(12 is nonpivotal because 6 depends on
the true distribution P. Luckily, because the quantile function of
0 )(f is continuous in 0, if éN is a consistent estimator of 9 then it
is also valid to use the quantile of On )(12 for the purpose of testing.
We thus proceed to discuss a consistent estimator éN constructed
from the available data. First, notice that ﬁé\{ and ﬁﬁ are consistent
estimator for po; and p1;. Similarly, the law of large numbers asserts
that the denominator term in the definition of € can be estimated
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by the sample average

11,1 (AY) B L(o,1) (4 Y))
pu po1

2

Ep

Vhy(X) (

*

T oL@ i) Loy (@i gi)
~ TN =222 N (2)%1-h (xi))z( )
N ; p b

(P1y)*? (Ppy)?
Under the null hypothesis 7—((;) PP 7\ has mean 0. The sample average
estimate of of is of ~ (6N)2 with

N
. 1 . U
(67 = % > |t (por L a) (@.90) = P01 (A1)
i=1

N
# 101y (@ 8 (D 11,1y (@5, 9)hp (%)) (7)
j=1

A A N A A A 2
= L @90 Y Lo (@5 8)hp(E)) |
J=1

Using a nested arguments involving the continuous mapping theo-
rem and Slutsky’s theorem, the estimator

(@

TN (po)? (h1))?

is consistent for 6. Let the corresponding (1 — @) X 100% quantile
of the random variable 6N )(12 be ﬁfﬁi The statistical test decision
using the plug-in consistent estimate becomes

: OPD . JOPP _ AODP
Reject H ™ if $° > 7,7,

4.3 Most Favorable Distributions

We now discuss the construction of the most favorable distribution
Q*, the projection of the empirical distribution PV onto the set
7‘;10; P Intuitively, Q* is the distribution closest to PN that makes h 5

a fair classifier under the equal opportunity criterion. If || - || is the
Euclidean norm, the information about Q* can be recovered from
the optimal solution of problem (6) by the result of the following
lemma.

Lemma 4.5 (Most favorable distribution). Suppose that || - || is

the Euclidean norm. Let y* be the optimal solution of problem (6),

and for any i € I3, let ki* be a solution of the inner minimization

of (6) with respect to y*. Then the most favorable distribution

Q* = arg min W(PN ,Q) is a discrete distribution of the form
QeF*

hp
1
* _
Q= N( Z 5(ﬁi,di»_l7i) + Z 5(32i*k?)/*ﬂiﬁ,di,yi))'
iely ielh
By using the result of Lemma 4.3, it is easy to verify that Q*

satisfies W(Q*, PN)2 = Ropp (PN,ﬁN). Moreover, one can also
show that Q* € ?-:pp . These two observations imply that Q* is

the projection of PN onto '7’;:27}). The detailed proof is omitted.

Lemma 4.5 suggests that in order to obtain the most favorable
distribution, it suffices to perturb only the data points with positive
label. This is intuitively rational because the notion of probabilistic
equality of opportunity only depends on the positive label, and thus
the perturbation with a minimal energy requirement should only
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move sample points with §; = 1. When the underlying geometry
is the Euclidean norm, the optimal perturbation of the point X; is
to move it along a line dictated by f§ with a scaling factor kXy* ;.
Notice that A; defined in (4) are of opposite signs between samples
of different sensitive attributes, which implies that it is optimal to
perturb X; in opposite directions dependent on whether d; = 0 or
d; = 1. This is, again, rational because moving points in opposite
direction brings the clusters of points closer to the others, which
reduces the discrepancy in the expected value of hg(X) between
subgroups.

As a final remark, we note that Q* is not necessarily unique.
This is because of the non-convexity of the inner problem over k;
in (6), which leads to the non-uniqueness of the optimal solution
k) (see Appendix B and Figure 5).

5 TESTING FAIRNESS FOR PROBABILISTIC
EQUALIZED ODDS CRITERION

In this section, we extend the Wasserstein projection framework to
the statistical test of probabilistic equalized odds for a pre-trained
logistic classifier.

Definition 5.1 (Probabilistic equalized odds criterion [54]). A lo-
gistic classifier hg(-) : X — [0, 1] satisfies the probabilistic equal-
ized odds criteria relative to Q if

EQ[hﬁ(X)lA =1Y=y] ZEQ[hﬁ(X”A =0,Y=y] Vyel.

The notion of probabilistic equalized odds requires that the con-
ditional expectation of hg to be independent of A for any label
subgroup, thus it is more stringent than the probabilistic equal
opportunity studied in the previous section. We use the superscript
“odd” in this section to emphasize on this specific notion of fairness.
The definition of the probabilistic equalized odds prescribes the
following set of distributions

Q € P such that :
Eglhg(X)|A=1Y =1]

,7_—h()dd -
B
EQ[hﬁ(XﬂA =1,Y=0]

= EQ[hﬂ(X)|A =0,Y=1]

= EQ[hﬁ(XﬂA =0,Y=0]
Correspondingly, the Wasserstein projection hypothesis test for
probabilisitc equalized odds can be formulated as

HU P e M i g Ao

In the sequence, we study the projection onto the manifold ‘7"’;"1‘1

in Section 5.1. Section 5.2 examines the asymptotic behaviour of
the test statistic, and we close this section by studying the most
favorable distribution Q* in Section 5.3.

5.1 Wasserstein Projection

Following a similar strategy as in Section 4, we define the set
T (5™)
Q € P such that :
(PN Eqlhs(X) L1 1(AY)] = (B Eqlhs(X) Lg1)(AY)]
VBN B [hp(X) 11,0((AY)] = (5N) ~Eq [hs (X) Lo,0(AN] [
QA=aY=y)=pyy, V(ay) € AxY

654

FAccT ’21, March 1-10, 2021, Virtual Event, Canada

and the squared distance function
RO (BN 5Ny
inf W(Q,PN)?
st EglhgCO (A1) 1 (1,1)(A V)= (po) M 01y (A, V)] =
Eq [ () ((BN) ™ 1 (1,0(A Y) = (Bh) " 1 (0,0)(A, V)] =
Egll(ay) (A Y)]=pay Y(ay) e AxY.

The equivalent relation (3) suggests that the projection onto the set
of distributions 7"}:’ﬁdd satisfies

inf W(PN Q= inf WM, Q)= RPN pN).
Qe7t QeFRt (BY)

The squared distance R34 (BN, pN) can be computed by solving
the saddle point problem in the following proposition.

Proposition 5.2 (Dual reformulation). The squared projection
distance R°44(PN, 5N equals to the optimal value of the following
finite-dimensional optimization problem

sup —Z inf {llxi=%l*+ (i L1 () + ChLo(30)hy ()
yeRJeR i X ®
8

To complete this section, we now discuss an efficient way to
compute R°44(PN 5N The next lemma reveals that computing
R4 (BN 5N can be decomposed into two subproblems of similar
structure.

Lemma 5.3 (Univariate reduction). We have
ROV(EN, pN) = ROPP (BN, pN) + U,

where Uy is computed as

1
Un = sup + Z inf {Ilxi = 2ill® + LAk (x) } -

Jer IEI
Furthermore, if || - || is the Euclidean norm on R¢, then
UN =
2,2 2 JAi
sup— rmn gv A ||ﬂ|| ks + -
¢er N ,EZ}— ki€ 1+ exp({AillfllSki— fT %)

©)

Notice that problem (9) has a similar structure to problem (6):
the mere difference is that the summation in the objective function
of (9) runs over the index set 7y = {i € [N] : §; = 0} instead of
11 in (6). Solving for Uy thus incurs the same computational com-
plexity as, and can also be performed in parallel with, computing
ROPP (PN, ﬁN)

5.2 Limiting Distribution

The next result asserts that the squared projection distance Rodd
has the O(N~1) convergence rate.
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Theorem 5.4 (Limiting distribution — Probabilistic equalized odds).
Suppose that (%;, d;, §;) are i.i.d. samples from P. Under the null
hypothesis ‘Hé)dd, we have

N x RPN 5Ny L,

sup {yHl + {Ho+
189
E; (}/) T(pl_ll 1 (1,1) (A, Y) _Pall 1 (0,1) (A’ Y)) Vh (X) ’
PN P Loy (A V) =pog Loy (A Y)) P AS

where Vhg(X) = hg(X)(1-hg(X)B, and Hy = N(0, ai)/(plypoy)
with 05 = Cov(Zy), and Z;, are random variables

Zy = hp(X) (poy (1.9 (A V) = pryL 0 (AY))
+ 10,4 (A Y)Ep[L(1,y) (4 V)hg(X)]
= 11,5 (A V)Ep[1 (g5 (4 V)hg(X)].

Construction of the hypothesis test. Contrary to the explicit
chi-square limiting distribution for the probabilistic equal oppor-
tunity fairness in Theorem 4.4, the limiting distribution for the
probabilistic equalized odds fairness is not available in closed form.
Nevertheless, the limiting distribution in this case can be obtained
by sampling Hy and H; and solving a collection of optimization
problems for each sample. Notice that the objective function of the
supremum problem presented in Theorem 5.4 is continuous in Hy
and Hy, one thus can define

Hy = N(0,6%)/ (51 Boy):

where 5'5 is the sample average estimate of o2, which can be com-
puted using an equation similar to (7). The limiting distribution
can be computed by solving the optimization problem with plug-in
values

sup

124
y [ (y)T(@ﬁ)11(1,1)<A,Y)—<zsgvl>111<o,1)<A,Y> }
N NN 1 (10 (A1) = (BN) 1 (0,0(A) '

Notice that the expectation in taken over the empirical distribution

{YHI +{Ho+
2
Vhg(X)

*

PN and can be written as a finite sum. The last optimization prob-
lem can be solved efficiently using quadratic programming for any
realization of H; and Hy. The objective values can be collected to
compute the (1 — @) X 100%-quantile estimate ﬁ‘fﬂi of the limiting
distribution. The statistical test decision using the plug-in estimate
becomes

sodd

Reject ‘}(gdd if §]‘{?d > 775,

where §1‘{?d = N x Rodd(BN 5Ny,

5.3 Most Favorable Distributions

If the feature space X is endowed with an Euclidean norm, then the
most favorable distribution Q*, defined in this section as the projec-
tion of PN onto ?;loﬁdd, can be constructed by exploiting Lemma 5.3.

Lemma 5.5 (Most favorable distribution). Suppose that || - || is
the Euclidean norm. Let y* and {* be the optimal solution of
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problems (6) and (9), respectively. For any i € Iy, let k}' be the

solution of the inner minimization of (6) with respect to y*, and

for any i € Ip, let kl.* be a solution of the inner minimization

of (9) with respect to {*. Then the most favorable distribution

Q* = arg mggldd W (BN, Q) is a discrete distribution of the form
€

hp
Q= %( Z 5(3?"_ki*§*/1iﬁ’&i,yi) + Z 5(J‘ci—ki*y*/1,-ﬁ,ai,gi)).
iel iel

The proof of Lemma 5.5 follows from verifying that Q* € Th";d

and that W(Q*,PN)2 = Rodd(BN 5Ny ysing Lemma 5.3, the de-
tailed proof is omitted. For probabilistic equalized odds, the most
favorable distribution Q* alters the locations of both i € 7y and
i € I7. The directions of perturbation are dependent on A;, which
is determined using (4). Notice that A; carry opposite signs corre-
sponding to whether d; = 0 or @; = 1, thus the perturbations will
move X; in opposite directions based on the value of the sensitive
attribute ;.

6 NUMERICAL EXPERIMENT

All experiments are run on an Intel Xeon based cluster composed
of 287 compute nodes each with 2 Skylake processors running at
2.3 GHz with 18 cores each. We only use 2 nodes of this cluster
and all optimization problems are implemented in Python version
3.7.3. In all experiments, we use the 2-norm to measure distances
in the feature space. Moreover, we focus on the hypothesis test of
probabilistic equal opportunity, and thus the Wasserstein projection,
the limiting distribution and the most favorable distribution follow
from the results presented in Section 4.

6.1 Validation of the Hypothesis Test

We now demonstrate that our proposed Wasserstein projection
framework for statistical test of fairness is a valid, or asymptotically
correct, test. We consider a binary classification setting in which
X is 2-dimensional feature space. The true distribution P has true
marginal values p,y being

p11 =0.2, po1 = 0.1, p1o = 0.3, poo = 0.4.

Moreover, conditioning on (A, Y), the feature X follows a Gaussian
distribution of the form

X|A=1Y =1~ N([60],[3.50;0,5]),
X|A=0,Y =1~ N([-20], [5,0;0,5]),
X|A=1,Y =0~ N([60],[3.5,0;0,5]),
X|A=0,Y =0~ N([-4,0],5,0;0,5]).

The true distribution P is thus a mixture of Gaussian, and under this
specification, a simple algebraic calculation indicates that a logistic
classifier with 8 = (0,1) T is fair with respect to the probabilistic
equal opportunity criterion in Definition 4.1. We thus focus on
verifying fairness for this specific classifier. In the first experiment,
we empirically validate Theorem 4.4. To this end, we generate
N € {100,500} i.i.d. samples from P to be used as the test data,
and then calculate the squared projection distance ROPP (BN, 5V
using Proposition 4.2. The process is repeated 2,000 times to obtain
an empirical estimate of the distribution of N x RPP(PN pN),
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Figure 2: Empirical distribution of N x R°PP (PN, #N) taken over 2,000 replications (histogram) versus the limiting distribution
0 )(f (blue curve) with different sample sizes N. Fig. 2a-2b are density plots, Fig. 2c-2d are cumulative distribution plots.

We also generate another set of one million i.i.d. samples from
P to estimate the limiting distribution )(f. Figure 2 shows that
the empirical distribution of N x RPP (BN pN) converges to the
limiting distribution 0 )(12 as N increases.

The second set of experiments aims to show that our proposed
Wasserstein projection hypothesis test is asymptotically valid. We
generate N € {100, 500, 1000} i.i.d. samples from P and calculate the
test statistic N x ROPP (PN, HN). The same data is used to estimate
6N and compute the (1—a) X 100%-quantile of 6N )(f to perform the
quantile based test as laid out in Section 4.2. We repeat this proce-
dure for 2,000 replications to keep track of the rejection projection
at different significant values of @ € {0.5,0.3,0.1,0.05,0.01}. Table 1
summarizes the rejection probabilities of Wasserstein projection
tests for equal opportunity criterion under the null hypothesis
ngp. We can observe that at sample size N > 100, the rejection
probability is close to the desired level «, which empirically vali-
dates our testing procedure.

[N=100 N=500 N=1000 a [
0.511  0.4905 05 050
0282 0.2895 0299  0.30
0.048  0.0895  0.093  0.10
0.007  0.0425  0.0405  0.05

0.0 0.0065  0.005  0.01

Table 1: Comparison of the null rejection probabilities of
probabilistic equal opportunity tests with different signifi-
cance levels o and test sample sizes N.

6.2 Most Favorable Distribution Analysis

In this section, we visualize the most favorable distribution Q*
from Lemma 4.5 for a vanilla logistic regression classifier with
weight 8 = (0.4,0.12) . We simply generate 28 samples with equal
subgroup proportions to form the empirical distribution V. To find
the support of Q*, we solve problem (6), whose optimizer dictates
the transportation plan of each sample %;. Figure 3 visualizes the
original test samples that forms PN, along with the most favorable
distribution Q*. Green lines in the figure represent how samples
are perturbed. As we are testing for the probabilistic notion of
equal opportunity, only the samples with positive label §; = 1
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Figure 3: Visualization of the most favorable distribution Q*
for a logistic classifier with weight f = (0.4,0.12) T. The black
arrow indicates the vector S. Colors represent class, while
symbolic shapes encode the sensitive values. The green lines
show the transport plan of the empirical test samples from
their original positions (indicated with transparent colors)
to their ultimate destinations (with non-transparent colors).

presented in blue are perturbed in order to obtain Q*. Furthermore,
we observe that the positively-labeled test samples are transported
along the axis directed by f (black arrow). Moreover, the samples
with different sensitive attributes, represented by different shapes,
move in opposite direction so that they get closer to each other,
which reduces the discrepancy in the expected value of hg(X)
between the relevant subgroups.

6.3 The COMPAS Dataset

COMPAS (Correctional Offender Management Profiling for Alter-
native Sanctions)? is a commercial tool used by judges and parole
officers for scoring criminal defendant’s likelihood of recidivism.
The COMPAS dataset is used by the COMPAS algorithm to com-
pute the risk score of reoffending for defendants, and also contains
the criminal records within 2 years after the decision. The dataset
consists of 6,172 samples with 10 attributes including gender, age
category, race, etc. We concentrate on the subset of the data with
violent recidivism, and we use race (African-American and Cau-
casian) as the sensitive attribute. We split 70% of the COMPAS data
to train a Tikhonov-regularized logistic classifier, with the tuning
penalty parameter A chosen in the range from 0 to 100 with 50

“https://www.propublica.org/datastore/dataset/compas-recidivism-risk-score-data-
and-analysis
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Figure 4: Test statistic and accuracy of Tikhonov regularized
logistic regression on test data with rejection threshold 7 5.

equi-distant points. The remaining 30% of the data is used as the
test samples for auditing.

Figure 4 demonstrates the relation between the accuracy and
the degree of fairness with respect to the regularization parameter
A. Strong regularization penalty (high values of 1) results in small
values of the test statistic, but the classifier has low test accuracy. On
the contrary, weak penalization leads to undesirable fairness level
but higher prediction accuracy. The pink dashed line in Figure 4
shows the rejection threshold of the Wasserstein projection test at
significance level a = 0.05 for varying value of the regularization
parameter A. We can observe that the Wasserstein projection test
recommends a rejection of the null hypothesis 7—(5’ PP for a wide
range of A. Only at A sufficiently large that the test fails to reject
the null hypothesis.

7 CONCLUDING REMARKS AND BROADER
IMPACT

In this paper, we propose a statistical hypothesis test for group
fairness of classification algorithms based on the theory of opti-
mal transport. Our test statistic relies on computing the projection
distance from the empirical distribution supported on the test sam-
ples to the manifold of distributions that renders the classifier fair.
When the notion of fairness is chosen to be either the probabilistic
equal opportunity or the probabilistic equalized odds, we show that
the projection can be computed efficiently. We provide the limit-
ing distribution of the test statistic and show that our Wasserstein
projection test is asymptotically correct. Our proposed test also
offers the flexibility to incorporate the geometric information of
the feature space into testing procedure. Finally, analyzing the most
favorable distribution can help interpreting the reasons behind the
outcome of the test.

The Wasserstein projection hypothesis test is the culmination
of a benevolent motivation and effort, and it aims to furnish the
developers, the regulators and the general public a quantitative
method to verify certain notions of fairness in the classification
setting. At the same time, we acknowledge the risks and limitations
of the results presented in this paper.

First, it is essential to keep in mind that this paper focuses
on probabilistic notions of fairness, in particular, we provide the
Wasserstein statistical test for probabilistic equality of opportunity
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and probabilistic equalized odds. Probabilistic notions are only ap-
proximations of the original definitions, and the employment of
probabilistic notions are solely for the technical purposes. Due to
the sensitivity of the test result on the choice of fairness notions, a
test that is designed for probabilistic notions may not be applicable
to test for original notions of fairness due to the interplay with
the threshold 7 and the radical difference of both the test statistic
and the limiting distribution. If a logistic classifier hy is rejected
using our framework for probabilistic equal opportunity, it does
not necessarily imply that the classifier hg fails to satisfy the equal
opportunity criterion, and vice versa. The same argument holds
when we test for probabilistic equalized odds.

Second, the outcome of the Wasserstein projection test is de-
pendent on the choice of the underlying metric on the feature, the
sensitive attribute and the label spaces. Indeed, the test outcome
can change if we switch the metric of the feature space, for example,
from the Euclidean norm to a 1-norm. In the scope of this paper,
we do not study how sensitive the test outcome is with respect to
the choice of the metric, nor can we make any recommendation
on the optimal choice of the metric. Nevertheless, it is reasonable
to recommend that the metric should be chosen judiciously, and
the action of tuning the metric in order to obtain favorable test
outcome should be prohibited.

Third, to simplify the computation, we have assumed absolute
trust on the sensitive attributes and the label. The users of our test
should be mindful if there is potential corruption to these values.
Moreover, our test is constructed under the assumption that there
is no missing values in the test data. This assumption, unfortu-
nately, may not hold in real-world implementations. Constructing
statistical test which is robust to adversarial attacks and missing
data using the Wasserstein projection framework is an interesting
research direction.

Fourth, the statistical test in this paper is for a simple null hy-
pothesis. In practice, the regulators may be interested in a relaxed
fairness test in which the difference of the conditional expectations
is upper bounded by a fixed positive constant €. The extension of
the Wasserstein hypothesis testing framework for a composite null
hypothesis is non-trivial, thus we leave this idea for future study.

Finally, any auditing process for algorithmic fairness can become
a dangerous tool if it falls into the hand of unqualified or vicious
inspectors. The results in this paper are developed to broaden our
scientific understanding, and we recommend that the test and its
outcomes should be used as an informative reference, but not as
an absolute certification to promote any particular classifier or as a
justification for any particular classification decision.

We thus sincerely recommend that the tools proposed in this
paper be exercised with utmost consideration.
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A APPENDIX - PROOFS
A.1 Proofs of Section 2

PrOOF OF LEMMA 3.2. Because the fairness constraints are sim-
ilar in both sets 7, and 7,(pN), it thus suffice to verify that Q
satisfies the marginal conditions Q(A = a,Y = y) = ﬁlavy for all
(a,y) € A x Y. By the definition of the Wasserstein distance and
the ground metric ¢, there exists a coupling 7 such that

WEN, Q)2 =E-[(IX" - X|| +o0]A” — Al + c0]Y’ — Y|)?]

and the marginal distribution of r are PNV and Q, respectively. By the
law of total probability and because PN is an empirical distribution,
we can write 7 = N1 Zl{\il 8(%:.a:,5:) ® Qi, where Q; denotes the
conditional distributions of (X, A, Y) given (X', A”, Y’) = (%, d;, §i)
foralli € [N].
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Suppose without any loss of generality that there exists a tuple
(a,y) e AXY suchthat Q(A=a, Y =y) > ﬁ{z\[y. This means

N
QA=ay=y = Gld=aY=y)
i=1

1 N
> N ; Tay (@i, 9i).

This implies that there must exist an index i* € [N] with (d;«, j*) #
(a,y), and that
Qx(A=aY=y)>0.

However, this further implies that

N
- 1 . . .
WEN.Q)F = - > Bo, L% — X + eolds — Al + eolgi = Y]
i=1

[\

1 N N .
NEQ [(1%i = Xl + 0oldjs — A + 00| — Y)?]

[\

S (A=a =y) (oldp —a) + (Gix —y)?

00,

where the equality follows from the decomposition of 7 using the
law of total probability and the first inequality follows because the
transportation cost is nonnegative. This contradicts the fact that

W(EN, Q) < . o

A.2 Proofs of Section 4

Before proving Proposition 4.2, we first prove a preparatory lemma
that verifies the Slater condition of the conic optimization problem.
To shorten the notation, we write £ = (X, A,Y) and denote =
XXAXY, By = {(fci,&i,;)i)}ﬁl. We assume that N > 2 and
fl- = (X, 4;, 9;) are distinct. We use M4 (E X EN) to denote the set
of all nonnegative measures on = X 2.

Lemma A.1 (Slater condition - Probabilistic equal opportunity).
Suppose that § # 0, ﬁfi € (0,1)and f)ﬁ € (0, 1). Define the function

1 1
fpX A Y) = < hp(X)L(11) (A Y) = —hg(X)L (1) (A Y),
P11 pOl

and let f be a vector-valued function f : E x 5 — RN*!
N !
1 (&)
fee=|
&y (&)
f5(&)
Then we have
1/N

€ int{E;[f(&&)] : 7€ Mu(EXEN)}.
1/N

0

Proor oF LEMMmaA A.1. It suffices to show that for any

o[ 3N>< 11
152N 2N 44
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there exists a nonnegative measure 7 € M, (E X =x) such that q=

Ex[f(& &)]. We will verify this claim by constructing 7 explicitly.

To this end, define the following locations
Xay €X Y(ay) e AxY,
and set 7 € M, (E x Ex) explicitly as
7(& = (x4, 4, @i 1), & = (%1, 41, 71)) = i

and 7 is 0 everywhere else. By construction, one can verify that

[]l (§ )] = gq; for all i € [N]. If we define the following index
setsfay ={i € [N]:a; = a,§; =y}, then

Ex[fp(O)] = (51D T hpxin) D qi— (50D " hpxo) ) g
iely iely

It now remains to find the locations of x1; and xy; to balance the
above equation. We have the following two cases.

(1) Suppose that gn4+1 = 0. In this case, choose xg; € X such that
hp(xo01) = %. The condition Ex[f3(£)] = gn+1 requires that
an+1 + 2B Sien, ai
(AN B Zze]u qi

Because gn+1 = 0 and g; are strictly positive, the term on the
right hand side is strictly positive. Moreover, we have

)12q1<é and (p )12q1>—

iely iely

hﬁ(xll) =

for any feasible value of g;, which implies that

1 aNy-1 1,1

N1+ 5 (o) Rier 91 _ 3+ 3
AN\ — 1

(Pn) IZiGIu qi 2

=1.

This implies the existence of x11 € X so that Ex [ fg(£)] = gn+1-

(2) Suppose that gn+1 < 0.In this case, we can choose x11 € X such
that hg(x11) = %. A similar argument as in the previous case
implies the existence of xo1 € X such that Ex[f5(&)] = gn+1-

Combining the two cases leads to the postulated results. ]
We are now ready to prove Proposition 4.2.
PRrOOF OF PrOPOSITION 4.2. For the purpose of this proof, we
define the function A : A XY — Ras
]1(1 1) (a.y) _ ]1(0,1) (a.,y)

AMay) = — ~
{\{ Por

(10)

By definition of the squared distance function R°PP, we have
ROpp(PN)ﬁN)

drel; W(EN,Q)?
1 st (N IEQ[hﬁ(X)lu n(AY)]

= (P~ 1EQ[hﬁ(X)]l(0 1) (A V)]

Q(A=a, Y y) = pay Yae A yelY

inf B [c((X,A,Y),(X,AY))%]
st. TEP((XXAXY)X (X XAXY))
= ]E,,[fﬁ(X,A,Y)] =(3N oA vey
t(A=aY=1y) = a € A,
]E,(,[]l(,ziﬁi’gi)zg(’,i?,yY’)] =1/N Vie [N],y
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where the function fg is defined as

fe(roay) = (A1) Thp(x) L) (@y) — (o) hg(x)L(01)(ay)
= hg(x)A(ay), (11)

and P (S) denotes the set of all joint probability measures supported
on 8. Because of the infinity individual cost on A and Y by the
definition of cost in (2), any joint measure & with finite objective
value should satisfies 7(A=a,Y =y) =PN(A’ = a,Y' = ¢) = ﬁ]a\]y
for any a € A and y € Y. Thus, the set of constraints 7(A=a,Y =
y) = plavy can be eliminated without alternating the optimization
problem. We thus have

Ropp(@N,ﬁN)
inf Exlc((X), A", Y"), (X, A Y))%]
st. TEP(XXAXY)X(XXxAxXY))

Eﬂ [fﬁ(X:As Y)] = 0
E”[]]‘(J?iﬁi,gi) (X’,A’,Y")]=1/N Vi€ [N].

To shorten the notations, we use = = X X A x Y and éN =
{(%i, di, §;i) }. Moreover, define the vector ¢ and the vector-valued
Borel measurable function on E X =p as

0 15(&)
1/N Lg (&)
q=| . fEe) = .
1/N L, (&)

By using the introduced notation, we can reformulate the above
optimization problem as

inf {Br[c(& &)%) : 1 € ML(EXEN).Ex[f(£E)] =g}

which is a problem of moments. By Lemma A.1, the above optimiza-
tion problem satisfies the Slater condition, thus the strong duality
result [60, Section 2.2] implies that

ROPP (PN, pN)

1
sup ﬁ Z bi
s.t. be RN) Y €R
= N o (12)
Z bil (3,459 (X', @ Y") — vfp(x.a.9)
i=1

<c((x.a’y"), (x.a,y))?
V(x,ay). (x".ay") e XX AXY.

Note that the problem in (12) can be equivalently represented as

sup —Zb
s.t. bERN, yeR

—yfp(xiaiyi) < o(Gi di 9i). (xi, ai, o))
V(x,-,a,-,yl-) eXXAXY,Vie [N]
N

1
=sup — » inf {|lxi — %l + A, 0i) } - 13
P ;:1 xliréx{llxl 2ill* +yfp(xi, a1, 90) } (13)
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Because fz has the form (11), we have the equivalent problem

N
1 R .12 A

sup — > inf {|lx; — %1 +yA(as, §i)hg(xi) | -

yER N ;xie{\’{ ﬁ }
For any i € 1y, A(a;,§;) = 0, and in this case we have the optimal
solution of x; satisfies xl.* = x;j. As a consequence, the summation
collapses to a partial sum over 7. This observation completes the
proof. o

PRrooF oF THEOREM 4.4. Leveraging equation (13), we can ex-
press

ROPP (]@N, [)N) —_

. T (AY) Ln(AY)
sup Egy 1nfyhﬁ(X+A) ( ( 12N _ EN +]IAl1%].
Y A P Py
We define

N
1
HY £ — h(fc-)( - -
\/N;’“ N P

and using this expression we can reformulate ROPP (PN, pN) as

Loy (@ngs) 11(0,1)(@,!?1‘))

sup {LYHN +Egn [irAlfy[hﬁ(X+ A) = hp(X)]x
Y

VN
1 AY 1 AY
( (131)( ) (0’1)( ))+||/\||2]}

Y Y
P11 Por

Because hﬁ is a sigmoid function, it is differentiable, and by the
fundamental theorem of calculus, we have for any x € X,

1
hp(x+A) —hg(x) = / Vhg(x +tA) - Adt,
0
where - represents the inner product on R By applying variable

transformations y « y\/ﬁ and A — AVN, we have
N x ROPP (BN 5N

1 A
= sup { yHN +Esy | inf / Vh (X+t—)-Adt
Yp{y EPN[AY L i~

(1(1,1>(A, D _Lon@n) Anz]}

SN
sup HN+1iinfy/1Vh (J?+tAi) Adt X
= Suj Y. —_ . RN .
y N&n T Jo PN

Y

P11 Py

L1080 9:)  L(o,1)(4i 9i)

( QD20 ZODR )l
P11 Po1

where the second equality follows by the definition of the empirical
distribution BN . For any values of ﬁg > 0 and ﬁﬁ > 0, we have

forany y # 0,
P({yVh (X)( - - = o)
( g oy oy,
=P((N) L1y (A Y) = (BY) L (01) (A Y))
=P(Y=0)<1,

L (AY) B Lo (AY)
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which implies that

1 AY 1 AY
P( YVhs(X) “’121(\] ) _ (0’121(\, | . o) > 0.
P11 Por *

This coincides with Assumption A4 in [7]. Using the same argument
as in the proof of [7, Theorem 3], we can show that the optimal
solution for y and A; belong to a compact set with high probability.
Moreover, we have

Lo (@i gi) L) (@i gi)
Y ‘N
P11 Po1

1 dj, Ui
S D
P11

1 i, Ui
Lon@9) oy,
po1

and thus

N x RPP(BN 5N

N 1
N 1 . / N Ai
=supyyH" + — infy Vhg % +t—] - Ajdt X
Y { N;Al 0 ﬁ l N l

(1(1,1)(631', i) Loy (ai, 9i)
P11 po1

) + 1812 +0P(1)}.

In the next step, fix any tuple (a,y) € A X Y, and denote the
following constant

M = |Pf11]l(1,1)(a, y) —P&I]l(o,l)(fl, y)l.
We find
I[Vhg(x +A) = Vhg ()] (P11 L(1,1) (@ y) = poi Loy (& 9)lls

=lhg(x + A) = hp(x) = hg(x + A)% + hg(x)?[|Bll M
<(hg(x+ ) = hg(x)] + lhg(x + A)2 = hp(x)?DIBlM:.

Because the sigmoid function is slope-restricted in the interval
[0, 1] [22, Proposition 2], we have

h —
o< BN B
pTA

which implies that
lhp(x +8) = hg(x)| < |BTAl < [IBlllIAIl

where the second inequality follows from Hélder inequality. Using
a similar argument, we have

|hﬁ(x + A)Z - hﬁ(x)2| =< (h/;(x+ A) + hﬁ(x))|hﬂ(x + A) - hﬁ(x)|
< 2[IBlI«lIA]l-

Combining these inequalities, we conclude that

I[Vhs(x+A) = Vhg()] (pii L 11y (@) = Py Lo, (@ )12
< 3lIBIEM AL
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d. -~
and thus Assumption 6° in [7] is satisfied. If HN — Z for some
random variable Z, then [7, Lemma 4] asserts that

N x ROPP(BN, pN)

2 1 AY) 1 A YY)\
d. sup 47 — Y—E]p Vhg(X) ( 1) (AY) Lo ))
yeR p11 po1 "
-1
T (AY)  LopA )P .
(1,1) (0,1) 2
=(Ep ||[Vhg(X - A
( : 4 )( 1 po1 ) *

where the equality sign follows from the fact that for any realization
of Z, the optimal solution of y is

. 27
r(2)= Lan(AY)  LenAL12]
Ep [“wm( NI )*]

We now study the limit distribution Z. In the next step, we study
the limit of HV.

N
3 (]1(11) (@,9) Loy (di,ﬁi))
I
N
:_ —— hg(%;) (P11 (ai, i) — P N1 (di, i)
N A pXi) \Po1+(1,1) 11+(0,1)
PN NN Z; (o )

hp (%) (Po1L(1,1) (41, 9i) = p11l(o,1) (@i, §i))

&Mz

1
e
1 N
VNG =~ pon) g D, Ly (@ Gi)hg (52)
i=1

N
- 1 U .
- VNN —Pn)ﬁ Z 1 (o,1) (dis yi)h/s(xl'))
i=1
By Slutsky’s theorem, we have

VNN ~ por)x
N
% ; (11(1,1) (a1, 91) hg(%:) —Ep[1(1,1) (A Y)hﬁ(X)]) = op(1),

VNN - pr)x
N
% Z (11(0,1)(di, Gi)hg(Xi) —Ep[1(,) (A Y) hﬂ(X)]) = op(1).

i=1
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Under the null hypothesis 7—(5 PP we have

where Z ~

p 11701 N(0,6?%), 6% = Cov(Z), where Z is defined as in
the theorem statement. Defining 6 completes the proof. O

A.3 Proofs of Section 5

The proof of Proposition 5.2 necessitates the following preparatory
lemma. We use the same notations with Lemma A.1.

Lemma A.2 (Slater condition - Probabilistic equalized odds). Sup-
pose that f # 0 and ﬁ{l\fy € (0,1) for all (a,y) € A X Y. Define the
functions

1
XA Y) = —whg(X)L(1,1)(AY) -

1
(X)) 1L(01)(AY),
11 p

01

1 1
gp(X,AY)= ﬁ_Nhﬁ(X)Jl(l,o) (AY) = —hp(X)L(0,0) (A Y),

10 00
and let f be a vector-valued function f : & x Ex — RN+2
1&.(5’)
fEE) = L (g )
fﬁ(gf)
95(&)

Then we have

1/N

N | €int (BxLFEE)] 7 € MoExEn)}
0
0

Proor oF LEMMaA A.2. It suffices to show that for any

e 3N>< 11\
1°\2n 2N Y
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there exists a nonnegative measure 7 € My (E X Zx) such that
q=Ex[f(&&)]. The proof follows a similar argument as that of
Lemma A.1 by noticing that

Exlgp(®)] = () hp(x10) Y. ai = (Boy) " hp(xo0) Y ais

i€l i€y
and the specification of x1¢9 and xp¢ can be achieved using similar

steps. O

PRrROOF OF PrROPOSITION 5.2. To ease the exposition, we let the
function A : A X Y — R? be defined as

(P()l) 1]1(0 1) (a, y)
(p()()) ]]-(0,0) ((l y)

(ﬁﬁ)_ll(l,l) (a,y) -

Ala,y) =| N _
(@y) (P10) L (1,0) (@) -

Moreover, we define fz as in (11), and additionally define g4 as

gp(x.a,y) = (p1) " hp ()1 (10 (@ y) — (o)) " hp(x) L (00 (a y).

From the definition of R4 (BN, ), we have

ROdd(PN) pN)

énf;) W(BN, Q)2
st (pN)” 1EQ[hﬂ(X)Jl(11)(A Y)]

(POI) "Eglhg(X)1(0.1) (A Y)]
N~ EQ[hﬁ(X)]l(Lo)(A V)]
= (pg0) " Bglhg(X)1(00) (A V)]
QA=aY=y)=ppy YacA yeY
inf  Bale((X,4,Y"), (XA Y))’]
TEP(XXAXY)X (X XAXY))
[ fp(X.AY)] =0
Erxlgp(X.A Y)] =0
ﬂ(A:a,Y:y)=[3%
Ex[1 (4,459 (X", ALY")] =1/N

s.t.

VaeA yelY
Vi e [N].

To shorten the notations, we use & = X X A x Y and 2y
{(%i, di, U;) }. Moreover, define the vector g and the vector-valued

Borel measurable function on E X Zp as
0 15(&)
0 9p(&)
=[N ree-| e
1N 1 (@)

By using the introduced notation, we can reformulate the above
optimization problem as

inf {Ex[c(£E)%] : 1 € My(EXEN),Ex[f(£E)] = g}

which is a problem of moments. By Lemma A.2, the above optimiza-
tion problem satisfies the Slater condition, thus the strong duality
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result [60, Section 2.2] implies that

ROdd (I?PN AN)

sup — Z b;
s.t. beRN, YER (€R
Z bill 5,44 (¥ @5 y) = (%, a,1) - {gp(x,a.y)
i=1
<c((x,a",y'), (x,a y))2
V(x,ay), (x',d,y)) e XX AXY
sup — Z bi
_J st beRN, YER (€R
= vfp(xi, ai, Y1) — £gp(xi, ai, yi)
< (%1 s 9), (i @i, yi))*
Y(xi, a1,y;) € X X AX Y, Vi€ [N]

N
1 . . 112 R U
_S;LP N;xliré&{llxl' = %ill® + yfpCxir i, 02) + {9p(xi. 41, 5i) }

By definition of fg, g5 and the parameters A;, we have

vfp(xi, i §i) + {gp(xi, i, §i) = (yAil1(gi) + {AiLo(Gi))hp(xi).

The proof is complete. O

ProoF OF LEMMA 5.3. Because [N] = 1y U 71, we can write

Rodd (ISPN, ﬁN)

=sup lz

inf {|lx; — %:l|% + yAihg (x;
JeR xl-ré/\’{HXI il YA ﬁ(xl)}

ie, 7"

1
+sup — > inf {|lxi — ill* + {ihp(xi) } -
P Nj;ﬁégn = 2l + {dihg (xi)}

Note that the first supremum coincides with RPP (PN, 5N) and the
second supremum is Uy. Under the Euclidean norm assumption,
we can use Lemma B.1 to reformulate the inner infimum problems
for Uy, which leads to (9). O

ProoF oF THEOREM 5.4. By applying a similar duality argument
as in the proof of Theorem 4.4, we can reformulate Rodd (PN M)
as
ROdd (PN ﬁN )

A\{]l(l HAY)

Lo,) (4, Y))
N
N Doy
(1,0) (A Y)  Lwg(AY)
N

oy Poo

Yhﬁ (X +
=sup Egy [inf
129 A

+§hﬁ(X+A)( ) +11A]12

= sup

! {\/Lﬁ(gHéV +yH1N)+
Y

](]1(11)(14 ,Y) ]1(0,1)(A)Y))

by
L (AY) )
by

ylhp(X + A) — hp(X)
Epn |0f | 12[hp(X +A) ~ kg (O] (
+IA1?

1 (1,0) (A,Y)
N
10
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with the random variables Hé\] and H{V being defined as

1 (a 0i) L0y (di, Gi)
N & (10) i» Ji (0,0) y
Hy = Zhﬂ( 1) - ﬁ(f)\(l) ))
1 1 1)(ai, 9i) Lo (di0i)
HN 2 — % hp(s) (—= - ).
'WN ; F N B

Notice that the condition
T
P (” (Yl) AA, Y)Vhﬁ(X)“ > o) >0
Yo *

is satisfied for any (yo, y1) # 0. Using the same argument as in the
proof of [7, Theorem 3], we can show that the optimal solution
for y, { and A; belong to a compact set with high probability. As
Pay — pay = op(1) for any (a,y) € A X Y, we have

N X ROdd(PN *N)

1 . A;
{yHN+§HN+—Zlnf)// Vhﬁ (xi+t\/—§)-Aidt><

= sup

124

4

Using a similar argument, we can bound

plO ]l(l,()) (@, i) - poo 1(0,0) (@i, §i)

I[Vhg(x +A) = Vhg(0)] (P10 L(1,0) (@ y) = poo L00) (@) l2
< 3[IBIEMolIAN

for some constant My, and thus Assumption 6 in [7] is satisfied. If

d. d.
H(I)V —> Hy and H{V —> Hj for some random variables Hy and Hy,
then [7, Lemma 4] asserts that
N x RPN 5Ny 2L,
sup {yH1 + {Ho+

Pl (AY) Poll(o (4 Y)) 2
Ep [”( ) (ploll(l’o)(A Y)=pyi L(o0) (A Y) W’ﬁ(x)“*] '

Using the same limiting argument as in the proof of Theorem 4.4,
we have the characterization of H; and Hj as in the statement of
the theorem. o

B APPENDIX - AUXILIARY RESULT

The following lemma is used repeatedly to prove Lemmas 4.3
and 5.3.

Lemma B.1. Forany w € R, £ € R” and € R?, we have

inf |x-#P+—"3
xeRP 2" 1+exp(—fTx)
. 2 2,2 w
= min °||p|l5k" + — . (14)
kel0,1] Az 1+exp(—fT% + kal|BII2)

Proor oF LEMMA B.1. Any x € RP can be written using the
orthogonal decomposition as x = £ — kw8 — k' for some k € R,

(Y) (pll ]l(l 1) (@i, 9i) - P01 ]]'(0 1) (ai, yl)) + ”Al”Z + OP(l)}.
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k’ € R and + perpendicular to 3, that is, 87 (8+) = 0. Optimizing
over x is equivalent to jointly optimizing over k, k’ and A+ as

w
inf ||kwB+k B2+ -
21+ exp(-fTx + ka)||ﬁ||%)
st. keR k' eR, preRP, T (p+) =0.

After extending the norm, and by noticing that the optimal solution
in k’ and B+ should satisfy kA1 = 0, the above optimization
problem is equivalent to

inf  k20?||pll3 +

«w

1+exp(=fT% + kol Bl3)

s.t. keR.

Let L(k) be the objective function of the above optimization prob-
lem, we have

@? | BII3 exp(=pT % + kol BlI3)
(1+exp(=fTx +kaollBlI3))?
= W?[IBlI (2k = o (k) (1 - o(K))),

where for the purpose of this proof, we define o (k) as

1
o(k) = - € (0,1).
1+exp(=fTx +kollBlI3)
Notice that o(k)(1—0o(k)) € (0, %) for any value of k € R. Because
ViL(k)is continuous ink, Vi L(k) < Oforany k < 0,and Vi L(k) >
0 for any k > z, one can conclude that there exists an optimal

ViL(k) = 20° | pll3k —

solution k* that lies in the compact range [0, 8] This completes
the proof. O

Let L(k) be the objective function of the optimization prob-
lem (14). Figure 5 visualizes several instances of L(k) for differ-
ent values of inputs f, x and w. Note that L(k) is non-convex in k,
and the optimizer of L(k) is not necessarily unique as indicated in
Figure 5d.

C APPENDIX - NUMERICAL RESULTS

We use the synthetic experiment from [71] to generate unfairness
landscapes provided in Figure 1. We set the true distributions of
the class labels P(Y = 0) = P(Y = 1) = 1/2, and conditioning on Y,
the feature X has

XY =1~ N([22],[51:1,5]),

X|Y =0~ N([-2;-2],[10,1;1,3]).
Then, we draw sensitive attribute of each sample x from a Bernoulli
distribution, that is

P(A=1|X=x")=pdf (x'|Y=1)/(pdf (x"|Y =1) + pdf (x'|Y =0)),
where x” = [cos(r/4), sin(r/4);sin(r/4), cos(m/4)]x is a rotated
version of the feature vector x and pdf(:|Y = y) is the Gaussian
probability density function of X given Y = y.



FAccT °21, March 1-10, 2021, Virtual Event, Canada Bahar Taskesen, Jose Blanchet, Daniel Kuhn, and Viet Anh Nguyen

22 12
21 10
I~ I~
=20 = 8
19 6
18 4
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.00 0.02 0.04 0.06 0.08 0.10 0.12
k k
@) p=(0,1)7, £=(-2,10)7, ©0=17.6 () f=(-5,5)T, £=(3,5)7, w=4
12
14 11
12 10
10 9
< < 8
4 8 ]
7
6
6
4 5
2 4
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.00 0.02 0.04 0.06 0.08 0.10 0.12
k k
(€) f=(-6,5T, 2=(3,5)7, w=4 @) p=(-4.7,5T, 2=(3,5)7, w=4

Figure 5: Plots of L(k) with respect to k for different values of 8, * and w.
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