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ABSTRACT
Algorithms are now routinely used to make consequential decisions

that affect human lives. Examples include college admissions, med-

ical interventions or law enforcement. While algorithms empower

us to harness all information hidden in vast amounts of data, they

may inadvertently amplify existing biases in the available datasets.

This concern has sparked increasing interest in fair machine learn-

ing, which aims to quantify andmitigate algorithmic discrimination.

Indeed, machine learning models should undergo intensive tests to

detect algorithmic biases before being deployed at scale. In this pa-

per, we use ideas from the theory of optimal transport to propose a

statistical hypothesis test for detecting unfair classifiers. Leveraging

the geometry of the feature space, the test statistic quantifies the

distance of the empirical distribution supported on the test samples

to the manifold of distributions that render a pre-trained classi-

fier fair. We develop a rigorous hypothesis testing mechanism for

assessing the probabilistic fairness of any pre-trained logistic classi-

fier, and we show both theoretically as well as empirically that the

proposed test is asymptotically correct. In addition, the proposed

framework offers interpretability by identifying the most favorable

perturbation of the data so that the given classifier becomes fair.

CCS CONCEPTS
• Applied computing→ IT governance; Law; • Social and pro-
fessional topics → Race and ethnicity; Geographic charac-
teristics; Sexual orientation; Gender; Age; • Theory of com-
putation→Mathematical optimization.
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1 INTRODUCTION
The past decade witnessed data and algorithms becoming an inte-

grative part of the human society. Recent technological advances

are now allowing us to collect and store an astronomical amount of

unstructured data, and the unprecedented computing power is en-

abling us to convert these data into decisional insights. Nowadays,

machine learning algorithms can uncover complex patterns in the

data to produce an exceptional performance that can match, or even

surpass, that of humans. These algorithms, as a consequence, are

proliferating in every corner of our lives, from suggesting us the

next vacation destination to helping us create digital paintings and

melodies. Machine learning algorithms are also gradually assisting

humans in consequential decisions such as deciding whether a stu-

dent is admitted to college, picking which medical treatment to be

prescribed to a patient, and determining whether a person is con-

victed. Arguably, these decisions impact radically many people’s

lives, together with the future of their loved ones.

Algorithms are conceived and function following strict rules of

logic and algebra; it is hence natural to expect that machine learn-

ing algorithms deliver objective predictions and recommendations.

Unfortunately, in-depth investigations reveal the excruciating real-

ity that state-of-the-art algorithmic assistance is far from being free

of biases. For example, a predictive algorithm widely used in the

United States criminal justice system is more likely to misclassify
African-American offenders into the group of high recidivism risk

compared to white-Americans [12, 46]. The artificial intelligence

tool developed by Amazon also learned to penalize gender-related

keywords such as “women’s” in the profile screening process, and

thus may prefer to recommend hiring male candidates for soft-

ware development and technical positions [17]. Further, Google’s

ad-targeting algorithm displayed advertisements for higher-paying

executive jobs more often to men than to women [18].

There are several possible explanations for why cold, soulless

algorithms may trigger biased recommendations. First, the data

used to train machine learning algorithms may already encrypt hu-

man biases manifested in the data collection process. These biases

arise as the result of a suboptimal design of experiments, or from

historically biased human decisions that accumulate over centuries.

Machine-learned algorithms, which are apt to detect underlying

patterns from data, will unintentionally learn and maintain these
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existing biases [9, 43]. For example, secretary or primary school

teacher are professions which are predominantly taken by women,

thus, natural language processing systems are inclined to associate

female attributes to these jobs. Second, training a machine learn-

ing algorithm typically involves minimizing the prediction error

which privileges the majority populations over the minority groups.

Clinical trials, for instance, typically involve very few participants

from the minority groups such as indigenous people, and thus med-

ical interventions recommended by the algorithms may not align

perfectly to the characteristics and interests of patients from the

minority groups. Finally, even when the sensitive attributes are

not used in the training phase, strong correlations between the

sensitive attributes and the remaining variables in the dataset may

be exploited to generate unjust actions. For example, the sensitive

attribute of race can be easily inferred with high accuracy based

on common non-sensitive attributes such as the travel history of

passengers or the grocery shopping records of customers.

The pressing needs to redress undesirable algorithmic biases

have propelled the rising field of fair machine learning
1
. A building

pillar of this field involves the verification task: given a machine

learning algorithm, we are interested in verifying if this algorithm

satisfies a chosen criterion of fairness. This task is performed in

two steps: first, we choose an appropriate notion of fairness, then

the second step invokes a computational procedure, which may

or may not involve data, to decide if the chosen fairness criterion

is fulfilled. A plethora of criteria for fair machine learning were

proposed in the literature, many of them are motivated by philo-

sophical or sociological ideologies or legal constraints. For example,

anti-discrimination laws may prohibit making decisions based on

sensitive attributes such as age, gender, race or sexual orienta-

tion. Thus, a naïve strategy, called fairness through unawareness,

involves removing all sensitive attributes from the training data.

However, this strategy seldom guarantees any fairness due to the

inter-correlation issues [27, 30], and thus potentially fails to gener-

ate inclusive outcomes [2, 6, 36, 41]. Other notions of fairness aim to

either promote individual fairness [21], prevent disparate treatment

[70] or avoid disparate mistreatment [23, 71] of the algorithms. To-

wards similar goals, notions of group fairness focus on reducing the

difference of favorable outcomes proportions among different sen-

sitive groups. Examples of group fairness notions include disparate

impact [70], demographic parity (statistical parity) [10, 21], equality

of opportunity [31] and equalized odds [31]. The notion of coun-

terfactual fairness [27] was also suggested as a measure of causal

fairness. Despite the abundance of available notions, there is un-

fortunately no general consensus on the most suitable measure to

serve as the industry standard. Moreover, except in trivial cases, it

is not possible for a machine learning algorithm to simultaneously

satisfy multiple notions of fairness [5, 37]. Therefore, the choice of

the fairness notion is likely to remain more an art than a science.

This paper focuses not on the normative approach to choosing

an ideal notion of machine learning fairness. We endeavor in this

paper to shed more light on the computational procedure to com-

plement the verification task. Concretely, we position ourselves in

the classification setting, which is arguably the most popular task

in machine learning. Moreover, we will focus on notions of group

1
Comprehensive surveys on fair machine learning can be found in [5, 13, 14, 44].

fairness, and we employ the framework of statistical hypothesis

test instead of algorithmic test.

Contributions. Our paper makes two concrete contributions to

the problem of fairness testing of machine learning’s classifiers.

(1) We propose the Wasserstein projection framework to perform

statistical hypothesis test of group fairness for classification

algorithms. We derive in details the computation of the test

statistic and the limiting distribution when fairness is measured

using the probabilistic equality of opportunity and probabilistic

equalized odds criteria.

(2) We demonstrate that the Wasserstein projection hypothesis test-

ing paradigm is asymptotically correct and can exploit additional

information on the geometry of the feature space. Moreover,

we also show that this paradigm promotes transparency and

interpretability through the analysis of the most favorable dis-

tributions.

The remaining of the paper is structured as follows. In Section 2,

we introduce the general problem of statistical hypothesis test of

classification fairness, and depict the current landscape of fairness

testing in the literature. Section 3 details ourWasserstein projection

approach to this problem. Sections 4 and 5 apply the proposed

framework to test if a pre-trained logistic classifier satisfies the

fairness notion of probabilistic equal opportunity and probabilistic

equalized odds, respectively. Numerical experiments are presented

in Section 6 to empirically validate the correctness and demonstrate

the power of our proposed paradigm. Section 7 concludes the paper

with outlooks on the broader impact of our Wasserstein projection

hypothesis testing approach.

All technical proofs are relegated to the Appendix.

2 STATISTICAL TESTING FRAMEWORK FOR
FAIRNESS AND LITERATURE REVIEW

We consider throughout this paper a generic binary classification

setting. Let X = R𝑑 and Y = {0, 1} be the space of feature inputs
and label outputs of interest. We assume that there is a single

sensitive attribute corresponding to each data point and its space is

denoted byA = {0, 1}. A probabilistic classifier is represented by a

functionℎ(·) : X → [0, 1] that outputs for each given sample 𝑥 ∈ X
the probability that 𝑥 belongs to the positive class. The deterministic

classifier predicts class 1 if ℎ(𝑥) ≥ 𝜏 and class 0 otherwise, where

𝜏 ∈ [0, 1] is a classification threshold. Note that the function ℎ

depends only on the feature 𝑋 , but not on the sensitive attribute 𝐴,

thus predicting 𝑌 using ℎ satisfies fairness through unawareness.

The central goal of this paper is to provide a statistical test to

detect if a classifier ℎ fails to satisfy a prescribed notion of machine

learning fairness. A statistical hypothesis test can be cast with the

null hypothesis being

H0: the classifier ℎ is fair,

against the alternative hypothesis being

H1: the classifier ℎ is not fair.

In this paper, we focus on statistical notions of group fairness, which
are usually defined using conditional probabilities. A prevalent

notion of fairness in machine learning is the criterion of equality of
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opportunity
2
, which requires that the true positive rate are equal

between subgroups.

Definition 2.1 (Equal opportunity [31]). A classifier ℎ(·) : X →
[0, 1] satisfies the equal opportunity criterion relative to Q if

Q(ℎ(𝑋 ) ≥ 𝜏 |𝐴 = 1, 𝑌 = 1) = Q(ℎ(𝑋 ) ≥ 𝜏 |𝐴 = 0, 𝑌 = 1),
where 𝜏 is the classification threshold.

Another popular criterion of machine learning fairness is the

equalized odds, which is more stringent than the equality of op-

portunity: it requires that the positive outcome is conditionally

independent of the sensitive attributes given the true label.

Definition 2.2 (Equalized odds [31]). A classifierℎ(·) : X → [0, 1]
satisfies the equalized odds criterion relative to Q if

Q(ℎ(𝑋 ) ≥𝜏 |𝐴=1,𝑌 =𝑦)=Q(ℎ(𝑋 ) ≥𝜏 |𝐴=0,𝑌 =𝑦) ∀𝑦 ∈Y,
where 𝜏 is the classification threshold.

Notice that the criteria of fairness presented in Definitions 2.1

and 2.2 are dependent on the distribution Q: a classifier ℎ can be

fair relative to a distribution Q1, but it may become unfair with

respect to another distribution Q2 ≠ Q1. If we denote by P the true
population distribution that governs the random vector (𝑋,𝐴,𝑌 ),
then it is imperative and reasonable to test for group fairness with

respect to P. For example, to test for the equality of opportunity,

we can reformulate a two-sample equal conditional mean test of

the null hypothesis

H0 : EP [1ℎ (𝑋 ) ≥𝜏 |𝐴 = 1, 𝑌 = 1] = EP [1ℎ (𝑋 ) ≥𝜏 |𝐴 = 0, 𝑌 = 1],
and one can potentially employ a Welch’s 𝑡-test with proper adjust-

ment for the randomness of the sample size. Unfortunately, deriving

the test becomes complicated when the null hypothesis involves an

equality of multi-dimensional quantities, which arises in the case

of equalized odds, due to the complication of the covariance terms.

Variations of the permutation tests were also proposed to detect

discriminatory behaviour of machine learning algorithms following

the same formulation of the one-dimensional two-sample equal-

ity of conditional mean test [19, 66]. However, these permutation

tests follow a black-box mechanism and are unable to be gener-

alized to multi-dimensional tests. Tests based on group fairness

notions can also be accomplished using an algorithmic approach

as in [19, 29, 35, 57].

From a broader perspective, deriving tests for fairness is an active

area of research, and many testing procedures have been recently

proposed to test for individual fairness [34, 68], for counterfactual

fairness [6, 27] and diverse other criteria [3, 66, 67].

Literature related to optimal transport. Optimal transport is

a long-standing field that dates back to the seminal work of Gas-

pard Monge [45]. In the past few years, it has attracted signif-

icant attention in the machine learning and computer science

communities thanks to the availability of fast approximation al-

gorithms [4, 8, 16, 20, 28]. Optimal transport is particularly suc-

cessful in various learning tasks, notably generative mixture mod-

els [38, 49], image processing [1, 24, 39, 50, 63], computer vision

and graphics [51, 52, 56, 61, 62], clustering [32], dimensionality

reduction [11, 25, 55, 58, 59], domain adaptation [15, 47], signal

2
We use two terms “equality of opportunity” and “equal opportunity” interchangeably.

processing [65] and data-driven distributionally robust optimiza-

tion [7, 26, 40, 72]. Recent comprehensive survey on optimal trans-

port and its applications can be found in [38, 53].

In the context of fair classification, ideas from optimal transport

have been used to construct fair logistic classifier [64], to detect

classifiers that does not obey group fairness notions, or to ensure

fairness by pre-processing [29], to learn a fair subspace embedding

that promotes fair classification [69], to test individual fairness [68],

or to construct a counterfactual test [6].

3 WASSERSTEIN PROJECTION FRAMEWORK
FOR STATISTICAL TEST OF FAIRNESS

We hereby provide a fresh alternative to the testing problem of

machine learning fairness. On that purpose, for a given classifier ℎ,

we define abstractly the following set of distributions

Fℎ = {Q ∈ P : the classifier ℎ is fair relative to Q} , (1)

where P denotes the space of all distributions on X × A × Y.
Intuitively, the set Fℎ contains all probability distributions under

which the classifier ℎ satisfies the prescribed notion of fairness. It is

trivial to see that ifFℎ contains the true data-generating distribution

P, then the classifier ℎ is fair relative to P. Thus, we can reinterpret

the hypothesis test of fairness using the hypotheses

H0: P ∈ Fℎ , H1: P ∉ Fℎ .
Testing the inclusion of P in Fℎ is convenient if P is endowed with

a distance. In this paper, we equip P with the Wasserstein distance.

Definition 3.1 (Wasserstein distance). The type-2 Wasserstein

distance between two probability distributions Q and Q′ supported
on Ξ is defined as

W(Q′,Q) = min

𝜋 ∈Π (Q′,Q)

√
E𝜋 [𝑐 (𝜉 ′, 𝜉)2],

where the setΠ(Q′,Q) contains all joint distributions of the random
vectors 𝜉 ′ ∈ Ξ and 𝜉 ∈ Ξ under which 𝜉 ′ and 𝜉 have marginal

distributions Q′ and Q, respectively, and 𝑐 : Ξ × Ξ → [0,∞]
constitutes a lower semi-continuous ground metric.

The type-2 Wasserstein distance
3
is a special instance of the

optimal transport. The squared Wasserstein distance between Q′

and Q can be interpreted as the cost of moving the distribution

Q′ to Q, where 𝑐 (𝜉 ′, 𝜉) is the cost of moving a unit mass from 𝜉 ′

to 𝜉 . Being a distance on P, W is symmetric, non-negative and

vanishes to zero if Q′ = Q. The Wasserstein distance is hence an

attractive measure to identify if P belongs to Fℎ . Using this insight,
the hypothesis test for fairness has the equivalent representation

H0: infQ∈Fℎ W(P,Q) = 0, H1: infQ∈Fℎ W(P,Q) > 0.

Even though P remains elusive to our knowledge, we are given

access to a set of i.i.d test samples {(𝑥𝑖 , 𝑎𝑖 , 𝑦𝑖 )}𝑁𝑖=1 generated from

the true distribution P. Thus we can rely on the empirical value

inf

Q∈Fℎ
W( ˆP𝑁 ,Q),

which is the distance from the empirical distribution supported on

the samples
ˆP𝑁 =

∑𝑁
𝑖=1 𝛿 (𝑥𝑖 ,𝑎𝑖 ,𝑦̂𝑖 ) to the set Fℎ . To perform the test,

it is sufficient to study the limiting distribution of the test statistic

using proper scaling under the null hypothesisH0. The outcome of

3
From this point, we omit the term “type-2” for brevity.
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the test is determined by comparing the test statistic to the quantile

value of the limiting distribution at a chosen level of significant

𝛼 ∈ (0, 1).
Advantages. The Wasserstein projection framework to hypothesis

testing that we described above offers several advantages over the

existing methods.

(1) Geometric flexibility: The definition of the Wasserstein distance

implies that there exists a joint ground metric 𝑐 on the space of

the features, the sensitive attribute and the label. If the modelers

or the regulators possess any structural information on an ap-

propriate metric on Ξ = X × A ×Y, then this information can

be exploited in the testing procedure. Thus, the Wasserstein pro-

jection framework equips the users with an additional freedom

to inject prior geometric information into the statistical test.

(2) Mutivariate generalizability: Certain notions of fairness, such

as equalized odds, are prescribed using multiple equalities of

conditional expectations. TheWasserstein projection framework

encapsulates these equalities simultaneously in the definition of

the set Fℎ , and provides a joint test of these equalities without
the hassle of decoupling and testing individual equalities as

being done in the currently literature.

(3) Interpretability: If we denote by Q★ the projection of the empir-

ical distribution
ˆP𝑁 onto the set of distributions Fℎ , i.e.,

Q★ = arg min

Q∈Fℎ
W( ˆP𝑁 ,Q),

then Q★ encodes the minimal perturbation to the empirical sam-

ples so that the classifier ℎ becomes fair. The distribution Q★ is

thus termed the most favorable distribution, and examining Q★

can reveal the underlying mechanism and explain the outcome

of the hypothesis test. The accessibility to Q★ showcases the

expressiveness of the Wasserstein projection framework.

Whilst theoretically sound and attractive, there are three poten-

tial difficulties with the Wasserstein projection approach to statis-

tical test of fairness. First, to project
ˆP𝑁 onto the set Fℎ , we need

to solve an infinite-dimensional optimization problem, which is

inherently difficult. Second, for many notions of machine learning

fairness such as the equality of opportunity and the equalized odds,

the corresponding set Fℎ in (1) is usually prescribed using nonlinear
constraints. For example, if we consider the equal opportunity cri-

terion in Definition 2.1, then the set Fℎ can be re-expressed using a

fractional function of the probability measure as

Fℎ =
Q ∈ P such that

Q(ℎ(𝑋 ) ≥ 𝜏,𝐴 = 1, 𝑌 = 1)
Q(𝐴 = 1, 𝑌 = 1) =

Q(ℎ(𝑋 ) ≥ 𝜏,𝐴 = 0, 𝑌 = 1)
Q(𝐴 = 0, 𝑌 = 1)

 .

Apart from involving nonlinear constraints, it is easy to verify that

the set Fℎ is also non-convex, which amplifies the difficulty of

computing the projection onto Fℎ . Finally, the limiting distribution

of the test statistic is difficult to analyze due to the discontinuity

of the probability function at the set {𝑥 ∈ X : ℎ(𝑥) = 𝜏}. The
asymptotic analysis with this discontinuity is of a combinatorial

nature, and is significantly more problematic than the asymptotic

analysis of smooth quantities.

While these difficulties may be overcome via various ways, in

this paper we choose the following combination of remedies. First,

we will use a relaxed notion of fairness termed probabilistic fairness,
which was originally introduced in [54]. Second, when computing

the Wasserstein distances between distributions on X ×A ×Y, we
use

𝑐
(
(𝑥 ′, 𝑎′, 𝑦′), (𝑥, 𝑎,𝑦)

)
= ∥𝑥 − 𝑥 ′∥ + ∞|𝑎 − 𝑎′ | + ∞|𝑦 − 𝑦′ | (2)

as the ground metric, where ∥ · ∥ is a norm on R𝑑 . This case corre-
sponds to having an absolute trust in the label and in the sensitive

attribute of the training samples. This absolute trust restriction is

common in the literature of fair machine learning [64, 68].

We now briefly discuss the advantage of using the ground met-

ric of the form (2). Denote by 𝑝 ∈ R |A |×|Y |++ the array of the true

marginals of (𝐴,𝑌 ), in particular, 𝑝𝑎𝑦 = P(𝐴 = 𝑎,𝑌 = 𝑦) for all
𝑎 ∈ A and 𝑦 ∈ Y. Further, let 𝑝𝑁 ∈ R |A |×|Y |++ be the array of the

empirical marginals of (𝐴,𝑌 ) under the empirical measure
ˆP𝑁 , that

is, 𝑝𝑁𝑎𝑦 = ˆP𝑁 (𝐴 = 𝑎,𝑌 = 𝑦) for all 𝑎 ∈ A and 𝑦 ∈ Y. Through-
out this paper, we assume that the empirical marginals are proper,

that is, 𝑝𝑁𝑎𝑦 ∈ (0, 1) for any (𝑎,𝑦) ∈ A × Y. We define temporar-

ily the simplex set Δ B {𝑝 ∈ R |A |×|Y |++ :

∑
𝑎∈A,𝑦∈Y 𝑝𝑎𝑦 = 1}.

Subsequently, for any marginals 𝑝 ∈ Δ, we define the marginally-

constrained set of distributions

Fℎ (𝑝) ≜
{
Q ∈ P :

ℎ is fair relative to Q
Q(𝐴 = 𝑎,𝑌 = 𝑦) = 𝑝𝑎𝑦 ∀(𝑎,𝑦) ∈ A × Y

}
.

Using these notations, one can readily verify that Fℎ = ∪𝑝∈ΔFℎ (𝑝) .
Moreover, the next result asserts that in order to compute the pro-

jection of
ˆP𝑁 onto Fℎ , to suffices to project onto the marginally-

constrained set Fℎ (𝑝𝑁 ).

Lemma 3.2 (Projection with marginal restrictions). Suppose that

the ground metric is chosen as in (2). If a measure Q ∈ Fℎ satisfies

W( ˆP𝑁 ,Q) < ∞, then Q ∈ Fℎ (𝑝𝑁 ).

A useful consequence of Lemma 3.2 is that

inf

Q∈Fℎ
W( ˆP𝑁 ,Q) = inf

Q∈Fℎ (𝑝𝑁 )
W( ˆP𝑁 ,Q), (3)

where the feasible set of the problem on the right-hand side is the

marginally-constrained set Fℎ (𝑝𝑁 ) using the empirical marginals

𝑝𝑁 . For two notions of probabilistic fairness that we will explore in

this paper, projecting
ˆP𝑁 onto Fℎ (𝑝𝑁 ) is arguably easier than onto

Fℎ . Thus, this choice of ground metric improves the tractability

when computing the test statistic.

Third, and finally, we will focus on the logistic regression setting,

which is one of the most popular classification methods [33]. In this

setting, the conditional probability P[𝑌 = 1|𝑋 = 𝑥] is modelled by

the sigmoid function ℎ𝛽 (𝑥) = (1 + exp(−𝛽⊤𝑥))−1, where 𝛽 ∈ R𝑑
is the regression parameter. Moreover, a classifier with 𝛽 = 0, is

trivially fair. Thus, it suffices to consider 𝛽 ≠ 0.

Notations. We use ∥ · ∥∗ to denote the dual norm of ∥ · ∥. For any
integer 𝑁 , we define [𝑁 ] B {1, 2, . . . , 𝑁 }. Given 𝑁 test samples

(𝑥𝑖 , 𝑎𝑖 , 𝑦𝑖 )𝑁𝑖=1, we use I𝑦 ≜ {𝑖 ∈ [𝑁 ] : 𝑦𝑖 = 𝑦} to denote the index

set of observations with label 𝑦. The parameters 𝜆𝑖 are defined as

∀𝑖 ∈ [𝑁 ] : 𝜆𝑖 =


(𝑝𝑁

11
)−1 if (𝑎𝑖 , 𝑦𝑖 ) = (1, 1),

−(𝑝𝑁
01
)−1 if (𝑎𝑖 , 𝑦𝑖 ) = (0, 1),

(𝑝𝑁
10
)−1 if (𝑎𝑖 , 𝑦𝑖 ) = (1, 0),

−(𝑝𝑁
00
)−1 if (𝑎𝑖 , 𝑦𝑖 ) = (0, 0) .

(4)
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4 TESTING FAIRNESS FOR PROBABILISTIC
EQUAL OPPORTUNITY CRITERION

In this section, we use the ingredients introduced in the previous

section to concretely construct a statistical test for the fairness of a

logistic classifier ℎ𝛽 . Specifically, we will employ the probabilistic

equal opportunity criterion which was originally proposed in [54].

Definition 4.1 (Probabilistic equal opportunity criterion [54]). A

logistic classifier ℎ𝛽 : X → [0, 1] satisfies the probabilistic equal-
ized opportunity criteria relative to a distribution Q if

EQ [ℎ𝛽 (𝑋 ) |𝐴 = 1, 𝑌 = 1] = EQ [ℎ𝛽 (𝑋 ) |𝐴 = 0, 𝑌 = 1] .

The probabilistic equal opportunity criterion, which serves as

a surrogate for the equal opportunity criterion in Definition 2.1,

depends on the smooth and bounded sigmoid function ℎ𝛽 but is

independent of the classification threshold 𝜏 . Motivated by [42],

we empirically illustrate in Figure 1 that the probabilistic surrogate

provides a good approximation of the equal opportunity criterion.

Figure 1a plots the absolute difference of the classification probabil-

ities |P(ℎ(𝑋 ) ≥ 1

2
|𝐴 = 1, 𝑌 = 1) −P(ℎ(𝑋 ) ≥ 1

2
|𝐴 = 0, 𝑌 = 1) |, while

Figure 1b plots the absolute difference of the sigmoid expectations

|EP [ℎ(𝑋 ) |𝐴 = 1, 𝑌 = 1]−EP [ℎ(𝑋 ) |𝐴 = 0, 𝑌 = 1] |. One may observe

that the regions of 𝛽 so that the absolute differences fall close to

zero are similar in both plots. This implies that a logistic classifier

ℎ𝛽 which is equal opportunity fair is also likely to be probabilistic
equal opportunity fair, and vice versa.

2 0 2
2

2

1

0

1

2

1

0.0

0.2

0.4

(a) Equal opportunity

2 0 2
2

2

1

0

1

2

1

0.2

0.4

(b) Probabilistic equal opportunity
Figure 1: Comparison of fairness notions for 𝑑 = 2 and
ℎ𝛽 (𝑥) = 1/(1 + exp( 1

3
− 𝛽1𝑥1 − 𝛽2𝑥2)).

We use the superscript “opp” to emphasize that fairness is mea-

sured using the probabilistic equal opportunity criterion. Conse-

quentially, the set of distributions F opp

ℎ𝛽
that makes the logistic

classifier ℎ𝛽 fair is

F opp

ℎ𝛽
=

{
Q ∈ P such that :

EQ [ℎ𝛽 (𝑋 ) |𝐴 = 1, 𝑌 = 1]=EQ [ℎ𝛽 (𝑋 ) |𝐴 = 0, 𝑌 = 1]

}
.

The statistical hypothesis test to verify whether the classifier ℎ𝛽 is

fair is formulated with the null and alternative hypotheses

Hopp

0
: P ∈ F opp

ℎ𝛽
, Hopp

1
: P ∉ F opp

ℎ𝛽
.

The remainder of this section unfolds as follows. In Section 4.1,

we delineate the computation of the projection of
ˆP𝑁 onto F opp

ℎ𝛽
.

Section 4.2 studies the limiting distribution of the test statistic,

while Section 4.3 examines the most favorable distribution.

4.1 Wasserstein Projection
Lemma 3.2 suggests that it is sufficient to consider the projection

onto the marginally-constrained set F opp

ℎ𝛽
(𝑝𝑁 ), where 𝑝𝑁 is the

empirical marginals of the empirical distribution
ˆP𝑁 . In particular,

F opp

ℎ𝛽
(𝑝𝑁 ) is

F opp

ℎ𝛽
(𝑝𝑁 )

=


Q ∈ P such that :

(𝑝𝑁
11
)−1EQ [ℎ𝛽 (𝑋 )1(1,1)(𝐴,𝑌 )]= (𝑝𝑁01)

−1EQ [ℎ𝛽 (𝑋 )1(0,1)(𝐴,𝑌 )]
Q(𝐴 = 𝑎,𝑌 = 𝑦)=𝑝𝑁𝑎𝑦 ∀(𝑎,𝑦) ∈ A × Y

,
where the equality follows from the law of conditional expectation.

Notice that the set F opp

ℎ𝛽
(𝑝𝑁 ) is prescribed using linear constraints

of Q, and thus it is more amenable to optimization than the set

F opp

ℎ𝛽
. It is also more convenient to work with the squared distance

function R whose input is the empirical distribution
ˆP𝑁 and its

corresponding vector of empirical marginals 𝑝𝑁 by

Ropp ( ˆP𝑁 , 𝑝𝑁 ) B
inf W(Q, ˆP𝑁 )2
s.t. EQ [ℎ𝛽 (𝑋 ) ((𝑝𝑁11)

−1
1(1,1)(𝐴,𝑌 )−(𝑝𝑁01)

−1
1(0,1)(𝐴,𝑌 ))]=0

EQ [1(𝑎,𝑦) (𝐴,𝑌 )] = 𝑝𝑁𝑎𝑦 ∀(𝑎,𝑦) ∈ A × Y .
Notice that the constraints of the above infimum problem are linear

in the measure Q, but the functions inside the expectation opera-

tors are possibly nonlinear functions of 𝑝𝑁 . Using the equivalent

characterization (3), the following relation holds

inf

Q∈Fopp
ℎ𝛽

W( ˆP𝑁 ,Q) = inf

Q∈Fopp
ℎ𝛽
(𝑝𝑁 )

W( ˆP𝑁 ,Q) =
√
Ropp ( ˆP𝑁 , 𝑝𝑁 ) .

We now proceed to show how computing the projection can be

reduced to solving a finite-dimensional optimization problem.

Proposition 4.2 (Dual reformulation). The squared projection

distance Ropp ( ˆP𝑁 , 𝑝𝑁 ) equals to the optimal value of the following

finite-dimensional optimization problem

sup

𝛾 ∈R

1

𝑁

∑
𝑖∈I1

inf

𝑥𝑖 ∈X

{
∥𝑥𝑖 − 𝑥𝑖 ∥2 + 𝛾𝜆𝑖ℎ𝛽 (𝑥𝑖 )

}
. (5)

While Proposition 4.2 asserts that computing the squared pro-

jection distance Ropp ( ˆP𝑁 , 𝑝𝑁 ) is equivalent to solving a finite-

dimensional problem, unfortunately, this saddle point problem is

in general difficult. Indeed, because ℎ𝛽 is non-convex, even finding

the optimal inner solution 𝑥★
𝑖
for a fixed value of the outer variable

𝛾 ∈ R is generally NP-hard [48]. The situation can be partially

alleviated if ∥ · ∥ is an Euclidean norm on R𝑑 .

Lemma 4.3 (Univariate reduction). Suppose that ∥ · ∥ is the Eu-
clidean norm on R𝑑 , we have

Ropp ( ˆP𝑁 , 𝑝𝑁 ) =

sup

𝛾 ∈R

1

𝑁

∑
𝑖∈I1

min

𝑘𝑖 ∈[0, 1
8
]
𝛾2𝜆2𝑖 ∥𝛽 ∥

2

2
𝑘2𝑖 +

𝛾𝜆𝑖

1 + exp(𝛾𝜆𝑖 ∥𝛽 ∥2
2
𝑘𝑖 − 𝛽⊤𝑥𝑖 )

.

(6)

The proof of Lemma 4.3 follows trivially from application of

Lemma B.1 to reformulate the inner infimum problems for each
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𝑖 ∈ I1. Lemma 4.3 offers a significant reduction in the computa-

tional complexity to solve the inner subproblems of (5). Instead

of optimizing over 𝑑-dimensional vector 𝑥𝑖 , the representation in

Lemma 4.3 suggests that it suffices to search over a 1-dimensional

space for 𝑘𝑖 . While the objective function is still non-convex in 𝑘𝑖 ,

we can perform a grid search over a compact interval to find the

optimal solution for 𝑘𝑖 to high precision. The grid search operations

can also be parallelized across the index 𝑖 thanks to the indepen-

dent structure of the inner problems. Furthermore, the objective

function of the supremum problem is a point-wise minimum of

linear, thus concave, functions of 𝛾 . Hence, the outer problem is a

concave maximization problem in 𝛾 , which can be solved using a

golden section search algorithm.

4.2 Limiting Distribution
Wenow characterize the limit properties ofRopp ( ˆP𝑁 , 𝑝𝑁 ). The next
theorem assert that the limiting distribution is of the chi-square

type.

Theorem 4.4 (Limiting distribution – Probabilistic equal opportu-

nity). Suppose that (𝑥𝑖 , 𝑎𝑖 , 𝑦𝑖 ) are i.i.d. samples from P. Under the

null hypothesisHopp

0
, we have

𝑁 × Ropp ( ˆP𝑁 , 𝑝𝑁 ) 𝑑.−−→ 𝜃 𝜒2
1
,

where 𝜒2
1
is a chi-square distribution with 1 degree of freedom,

𝜃 =

(
EP

[



∇ℎ𝛽 (𝑋 ) (1(1,1) (𝐴,𝑌 )𝑝11
−
1(0,1) (𝐴,𝑌 )

𝑝01

)



2
∗

])−1
𝜎2
1

𝑝2
01
𝑝2
11

with 𝜎2
1
= Cov(𝑍1), and 𝑍1 is the random variable

𝑍1 = ℎ𝛽 (𝑋 )
(
𝑝011(1,1) (𝐴,𝑌 ) − 𝑝111(0,1) (𝐴,𝑌 )

)
+ 1(0,1) (𝐴,𝑌 )EP [1(1,1) (𝐴,𝑌 )ℎ𝛽 (𝑋 )]
− 1(1,1) (𝐴,𝑌 )EP [1(0,1) (𝐴,𝑌 )ℎ𝛽 (𝑋 )] .

Construction of the hypothesis test. Based on the result of The-

orem 4.4, the statistical hypothesis test proceeds as follows. Let

𝜂
opp

1−𝛼 denote the (1 − 𝛼) × 100% quantile of 𝜃 𝜒2
1
, where 𝛼 ∈ (0, 1) is

the predetermined significance level. By Theorem 4.4, the statistical

decision has the form

RejectHopp

0
if 𝑠

opp

𝑁
> 𝜂

opp

1−𝛼 ,

with

𝑠
opp

𝑁
= 𝑁 × Ropp ( ˆP𝑁 , 𝑝𝑁 ) .

The limiting distribution 𝜃 𝜒2
1
is nonpivotal because 𝜃 depends on

the true distribution P. Luckily, because the quantile function of

𝜃 𝜒2
1
is continuous in 𝜃 , if ˆ𝜃𝑁 is a consistent estimator of 𝜃 then it

is also valid to use the quantile of
ˆ𝜃𝑁 𝜒2

1
for the purpose of testing.

We thus proceed to discuss a consistent estimator
ˆ𝜃𝑁 constructed

from the available data. First, notice that 𝑝𝑁
01

and 𝑝𝑁
11

are consistent

estimator for 𝑝01 and 𝑝11. Similarly, the law of large numbers asserts

that the denominator term in the definition of 𝜃 can be estimated

by the sample average

EP

[



∇ℎ𝛽 (𝑋 ) (1(1,1) (𝐴,𝑌 )𝑝11
−
1(0,1) (𝐴,𝑌 )

𝑝01

)



2
∗

]
≈ 𝑇𝑁 =

∥𝛽 ∥2∗
𝑁

𝑁∑
𝑖=1

ℎ𝛽 (𝑥𝑖 )2(1−ℎ𝛽 (𝑥𝑖 ))2
(
1(1,1)(𝑎𝑖 , 𝑦𝑖 )
(𝑝𝑁

11
)2

+
1(0,1)(𝑎𝑖 , 𝑦𝑖 )
(𝑝𝑁

01
)2

)
.

Under the null hypothesisHopp

0
,𝑍1 hasmean 0. The sample average

estimate of 𝜎2
1
is 𝜎2

1
≈ (𝜎̂𝑁 )2 with

(𝜎̂𝑁
1
)2 = 1

𝑁

𝑁∑
𝑖=1

[
ℎ𝛽 (𝑥𝑖 )

(
𝑝011(1,1) (𝑎𝑖 , 𝑦𝑖 ) − 𝑝111(0,1) (𝐴,𝑌 )

)
+ 1(0,1) (𝑎𝑖 , 𝑦𝑖 )

( 𝑁∑
𝑗=1

1(1,1) (𝑎 𝑗 , 𝑦 𝑗 )ℎ𝛽 (𝑥 𝑗 )
)

(7)

− 1(1,1) (𝑎𝑖 , 𝑦𝑖 )
( 𝑁∑
𝑗=1

1(0,1) (𝑎 𝑗 , 𝑦 𝑗 )ℎ𝛽 (𝑥 𝑗 )
) ]2

.

Using a nested arguments involving the continuous mapping theo-

rem and Slutsky’s theorem, the estimator

ˆ𝜃𝑁 =
(𝜎̂𝑁

1
)2

𝑇𝑁 (𝑝𝑁
01
)2 (𝑝𝑁

11
)2

is consistent for 𝜃 . Let the corresponding (1 − 𝛼) × 100% quantile

of the random variable
ˆ𝜃𝑁 𝜒2

1
be 𝜂

opp

1−𝛼 . The statistical test decision
using the plug-in consistent estimate becomes

RejectHopp

0
if 𝑠

opp

𝑁
> 𝜂

opp

1−𝛼 .

4.3 Most Favorable Distributions
We now discuss the construction of the most favorable distribution

Q★, the projection of the empirical distribution
ˆP𝑁 onto the set

F opp

ℎ𝛽
. Intuitively,Q★ is the distribution closest to

ˆP𝑁 that makesℎ𝛽

a fair classifier under the equal opportunity criterion. If ∥ · ∥ is the
Euclidean norm, the information about Q★ can be recovered from

the optimal solution of problem (6) by the result of the following

lemma.

Lemma 4.5 (Most favorable distribution). Suppose that ∥ · ∥ is
the Euclidean norm. Let 𝛾★ be the optimal solution of problem (6),

and for any 𝑖 ∈ I1, let 𝑘★𝑖 be a solution of the inner minimization

of (6) with respect to 𝛾★. Then the most favorable distribution

Q★ = arg min

Q∈Fopp
ℎ𝛽

W( ˆP𝑁 ,Q) is a discrete distribution of the form

Q★ =
1

𝑁

( ∑
𝑖∈I0

𝛿 (𝑥𝑖 ,𝑎𝑖 ,𝑦̂𝑖 ) +
∑
𝑖∈I1

𝛿 (𝑥𝑖−𝑘★𝑖 𝛾★𝜆𝑖𝛽,𝑎𝑖 ,𝑦̂𝑖 )
)
.

By using the result of Lemma 4.3, it is easy to verify that Q★

satisfies W(Q★, ˆP𝑁 )2 = Ropp ( ˆP𝑁 , 𝑝𝑁 ). Moreover, one can also

show that Q★ ∈ F opp

ℎ𝛽
. These two observations imply that Q★ is

the projection of
ˆP𝑁 onto F opp

ℎ𝛽
. The detailed proof is omitted.

Lemma 4.5 suggests that in order to obtain the most favorable

distribution, it suffices to perturb only the data points with positive

label. This is intuitively rational because the notion of probabilistic

equality of opportunity only depends on the positive label, and thus

the perturbation with a minimal energy requirement should only
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move sample points with 𝑦𝑖 = 1. When the underlying geometry

is the Euclidean norm, the optimal perturbation of the point 𝑥𝑖 is

to move it along a line dictated by 𝛽 with a scaling factor 𝑘★
𝑖
𝛾★𝜆𝑖 .

Notice that 𝜆𝑖 defined in (4) are of opposite signs between samples

of different sensitive attributes, which implies that it is optimal to

perturb 𝑥𝑖 in opposite directions dependent on whether 𝑎𝑖 = 0 or

𝑎𝑖 = 1. This is, again, rational because moving points in opposite

direction brings the clusters of points closer to the others, which

reduces the discrepancy in the expected value of ℎ𝛽 (𝑋 ) between
subgroups.

As a final remark, we note that Q★ is not necessarily unique.

This is because of the non-convexity of the inner problem over 𝑘𝑖
in (6), which leads to the non-uniqueness of the optimal solution

𝑘★
𝑖
(see Appendix B and Figure 5).

5 TESTING FAIRNESS FOR PROBABILISTIC
EQUALIZED ODDS CRITERION

In this section, we extend the Wasserstein projection framework to

the statistical test of probabilistic equalized odds for a pre-trained

logistic classifier.

Definition 5.1 (Probabilistic equalized odds criterion [54]). A lo-

gistic classifier ℎ𝛽 (·) : X → [0, 1] satisfies the probabilistic equal-
ized odds criteria relative to Q if

EQ [ℎ𝛽 (𝑋 ) |𝐴 = 1, 𝑌 = 𝑦] = EQ [ℎ𝛽 (𝑋 ) |𝐴 = 0, 𝑌 = 𝑦] ∀𝑦 ∈ Y .

The notion of probabilistic equalized odds requires that the con-

ditional expectation of ℎ𝛽 to be independent of 𝐴 for any label

subgroup, thus it is more stringent than the probabilistic equal

opportunity studied in the previous section. We use the superscript

“odd” in this section to emphasize on this specific notion of fairness.

The definition of the probabilistic equalized odds prescribes the

following set of distributions

F odd

ℎ𝛽
=


Q ∈ P such that :

EQ [ℎ𝛽 (𝑋 ) |𝐴 = 1, 𝑌 = 1] = EQ [ℎ𝛽 (𝑋 ) |𝐴 = 0, 𝑌 = 1]
EQ [ℎ𝛽 (𝑋 ) |𝐴 = 1, 𝑌 = 0] = EQ [ℎ𝛽 (𝑋 ) |𝐴 = 0, 𝑌 = 0]

.
Correspondingly, the Wasserstein projection hypothesis test for

probabilisitc equalized odds can be formulated as

Hodd

0
: P ∈ F odd

ℎ𝛽
, Hodd

1
: P ∉ F odd

ℎ𝛽
.

In the sequence, we study the projection onto the manifold F odd

ℎ𝛽

in Section 5.1. Section 5.2 examines the asymptotic behaviour of

the test statistic, and we close this section by studying the most

favorable distribution Q★ in Section 5.3.

5.1 Wasserstein Projection
Following a similar strategy as in Section 4, we define the set

F odd

ℎ𝛽
(𝑝𝑁 )

=


Q ∈ P such that :

(𝑝𝑁
11
)−1EQ [ℎ𝛽 (𝑋 )1(1,1)(𝐴,𝑌 )]= (𝑝𝑁01)

−1EQ [ℎ𝛽 (𝑋 )1(0,1)(𝐴,𝑌 )]
(𝑝𝑁

10
)−1EQ [ℎ𝛽 (𝑋 )1(1,0)(𝐴,𝑌 )]= (𝑝𝑁00)

−1EQ [ℎ𝛽 (𝑋 )1(0,0)(𝐴,𝑌 )]
Q(𝐴 = 𝑎,𝑌 = 𝑦)=𝑝𝑁𝑎𝑦 ∀(𝑎,𝑦) ∈ A × Y


,

and the squared distance function

Rodd ( ˆP𝑁 , 𝑝𝑁 ) =

inf W(Q, ˆP𝑁 )2

s.t. EQ [ℎ𝛽 (𝑋 ) ((𝑝𝑁11)
−1
1(1,1)(𝐴,𝑌 )−(𝑝𝑁01)

−1
1(0,1)(𝐴,𝑌 ))]=0

EQ [ℎ𝛽 (𝑋 ) ((𝑝𝑁10)
−1
1(1,0)(𝐴,𝑌 )−(𝑝𝑁00)

−1
1(0,0)(𝐴,𝑌 ))]=0

EQ [1(𝑎,𝑦) (𝐴,𝑌 )]=𝑝𝑁𝑎𝑦 ∀(𝑎,𝑦) ∈ A × Y .

The equivalent relation (3) suggests that the projection onto the set

of distributions F odd

ℎ𝛽
satisfies

inf

Q∈Fodd
ℎ𝛽

W( ˆP𝑁 ,Q) = inf

Q∈Fodd
ℎ𝛽
(𝑝𝑁 )

W( ˆP𝑁 ,Q) =
√
Rodd ( ˆP𝑁 , 𝑝𝑁 ) .

The squared distance Rodd ( ˆP𝑁 , 𝑝𝑁 ) can be computed by solving

the saddle point problem in the following proposition.

Proposition 5.2 (Dual reformulation). The squared projection

distance Rodd ( ˆP𝑁 , 𝑝𝑁 ) equals to the optimal value of the following

finite-dimensional optimization problem

sup

𝛾 ∈R,𝜁 ∈R

1

𝑁

𝑁∑
𝑖=1

inf

𝑥𝑖 ∈X

{
∥𝑥𝑖−𝑥𝑖 ∥2+(𝛾𝜆𝑖11 (𝑦𝑖 ) + 𝜁𝜆𝑖10 (𝑦𝑖 ))ℎ𝛽 (𝑥𝑖 )

}
.

(8)

To complete this section, we now discuss an efficient way to

compute Rodd ( ˆP𝑁 , 𝑝𝑁 ). The next lemma reveals that computing

Rodd ( ˆP𝑁 , 𝑝𝑁 ) can be decomposed into two subproblems of similar

structure.

Lemma 5.3 (Univariate reduction). We have

Rodd ( ˆP𝑁 , 𝑝𝑁 ) = Ropp ( ˆP𝑁 , 𝑝𝑁 ) +𝑈𝑁 ,

where𝑈𝑁 is computed as

𝑈𝑁 = sup

𝜁 ∈R

1

𝑁

∑
𝑖∈I0

inf

𝑥𝑖 ∈X

{
∥𝑥𝑖 − 𝑥𝑖 ∥2 + 𝜁𝜆𝑖ℎ𝛽 (𝑥𝑖 )

}
.

Furthermore, if ∥ · ∥ is the Euclidean norm on R𝑑 , then

𝑈𝑁 =

sup

𝜁 ∈R

1

𝑁


∑
𝑖∈I0

min

𝑘𝑖 ∈[0, 1
8
]
𝜁 2𝜆2𝑖 ∥𝛽 ∥

2

2
𝑘2𝑖 +

𝜁𝜆𝑖

1 + exp(𝜁𝜆𝑖 ∥𝛽 ∥2
2
𝑘𝑖−𝛽⊤𝑥𝑖 )

 .

(9)

Notice that problem (9) has a similar structure to problem (6):

the mere difference is that the summation in the objective function

of (9) runs over the index set I0 = {𝑖 ∈ [𝑁 ] : 𝑦𝑖 = 0} instead of

I1 in (6). Solving for 𝑈𝑁 thus incurs the same computational com-

plexity as, and can also be performed in parallel with, computing

Ropp ( ˆP𝑁 , 𝑝𝑁 ).

5.2 Limiting Distribution
The next result asserts that the squared projection distance Rodd
has the 𝑂 (𝑁−1) convergence rate.
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Theorem 5.4 (Limiting distribution – Probabilistic equalized odds).
Suppose that (𝑥𝑖 , 𝑎𝑖 , 𝑦𝑖 ) are i.i.d. samples from P. Under the null

hypothesisHodd

0
, we have

𝑁 × Rodd ( ˆP𝑁 , 𝑝𝑁 ) 𝑑.−−→

sup

𝛾,𝜁

{
𝛾𝐻1 + 𝜁𝐻0+

EP

[




(𝛾𝜁 )⊤(𝑝−111 1(1,1) (𝐴,𝑌 )−𝑝−101 1(0,1) (𝐴,𝑌 )𝑝−1
10
1(1,0) (𝐴,𝑌 )−𝑝−100 1(0,0) (𝐴,𝑌 )

)
∇ℎ𝛽 (𝑋 )






2
∗

]}
,

where ∇ℎ𝛽 (𝑋 ) = ℎ𝛽 (𝑋 ) (1−ℎ𝛽 (𝑋 )𝛽 , and𝐻𝑦 = N(0, 𝜎2𝑦)/(𝑝1𝑦𝑝0𝑦)
with 𝜎2𝑦 = Cov(𝑍𝑦), and 𝑍𝑦 are random variables

𝑍𝑦 = ℎ𝛽 (𝑋 )
(
𝑝0𝑦1(1,𝑦) (𝐴,𝑌 ) − 𝑝1𝑦1(0,𝑦) (𝐴,𝑌 )

)
+ 1(0,𝑦) (𝐴,𝑌 )EP [1(1,𝑦) (𝐴,𝑌 )ℎ𝛽 (𝑋 )]
− 1(1,𝑦) (𝐴,𝑌 )EP [1(0,𝑦) (𝐴,𝑌 )ℎ𝛽 (𝑋 )] .

Construction of the hypothesis test. Contrary to the explicit

chi-square limiting distribution for the probabilistic equal oppor-

tunity fairness in Theorem 4.4, the limiting distribution for the

probabilistic equalized odds fairness is not available in closed form.

Nevertheless, the limiting distribution in this case can be obtained

by sampling 𝐻0 and 𝐻1 and solving a collection of optimization

problems for each sample. Notice that the objective function of the

supremum problem presented in Theorem 5.4 is continuous in 𝐻1

and 𝐻0, one thus can define

𝐻̂𝑦 = N(0, 𝜎̂2𝑦)/(𝑝𝑁1𝑦𝑝
𝑁
0𝑦),

where 𝜎̂2𝑦 is the sample average estimate of 𝜎2𝑦 , which can be com-

puted using an equation similar to (7). The limiting distribution

can be computed by solving the optimization problem with plug-in

values

sup

𝛾,𝜁

{
𝛾𝐻̂1 + 𝜁 𝐻̂0+

E
ˆP𝑁

[ 





(
𝛾

𝜁

)⊤((𝑝𝑁
11
)−11(1,1)(𝐴,𝑌 )−(𝑝𝑁01)

−1
1(0,1)(𝐴,𝑌 )

(𝑝𝑁
10
)−11(1,0)(𝐴,𝑌 )−(𝑝𝑁00)

−1
1(0,0)(𝐴,𝑌 )

)
∇ℎ𝛽 (𝑋 )







2

∗

]}
.

Notice that the expectation in taken over the empirical distribution

ˆP𝑁 , and can be written as a finite sum. The last optimization prob-

lem can be solved efficiently using quadratic programming for any

realization of 𝐻̂1 and 𝐻̂0. The objective values can be collected to

compute the (1 − 𝛼) × 100%-quantile estimate 𝜂odd
1−𝛼 of the limiting

distribution. The statistical test decision using the plug-in estimate

becomes

RejectHodd

0
if 𝑠odd

𝑁
> 𝜂odd

1−𝛼 ,

where 𝑠odd
𝑁

= 𝑁 × Rodd ( ˆP𝑁 , 𝑝𝑁 ).

5.3 Most Favorable Distributions
If the feature space X is endowed with an Euclidean norm, then the

most favorable distributionQ★, defined in this section as the projec-

tion of
ˆP𝑁 onto F odd

ℎ𝛽
, can be constructed by exploiting Lemma 5.3.

Lemma 5.5 (Most favorable distribution). Suppose that ∥ · ∥ is
the Euclidean norm. Let 𝛾★ and 𝜁★ be the optimal solution of

problems (6) and (9), respectively. For any 𝑖 ∈ I1, let 𝑘★𝑖 be the

solution of the inner minimization of (6) with respect to 𝛾★, and

for any 𝑖 ∈ I0, let 𝑘★𝑖 be a solution of the inner minimization

of (9) with respect to 𝜁★. Then the most favorable distribution

Q★ = arg min

Q∈Fodd
ℎ𝛽

W( ˆP𝑁 ,Q) is a discrete distribution of the form

Q★ =
1

𝑁

( ∑
𝑖∈I0

𝛿 (𝑥𝑖−𝑘★𝑖 𝜁★𝜆𝑖𝛽,𝑎𝑖 ,𝑦̂𝑖 ) +
∑
𝑖∈I1

𝛿 (𝑥𝑖−𝑘★𝑖 𝛾★𝜆𝑖𝛽,𝑎𝑖 ,𝑦̂𝑖 )
)
.

The proof of Lemma 5.5 follows from verifying that Q★ ∈ F odd

ℎ𝛽

and that W(Q★, ˆP𝑁 )2 = Rodd ( ˆP𝑁 , 𝑝𝑁 ) using Lemma 5.3, the de-

tailed proof is omitted. For probabilistic equalized odds, the most

favorable distribution Q★ alters the locations of both 𝑖 ∈ I0 and
𝑖 ∈ I1. The directions of perturbation are dependent on 𝜆𝑖 , which

is determined using (4). Notice that 𝜆𝑖 carry opposite signs corre-

sponding to whether 𝑎𝑖 = 0 or 𝑎𝑖 = 1, thus the perturbations will

move 𝑥𝑖 in opposite directions based on the value of the sensitive

attribute 𝑎𝑖 .

6 NUMERICAL EXPERIMENT
All experiments are run on an Intel Xeon based cluster composed

of 287 compute nodes each with 2 Skylake processors running at

2.3 GHz with 18 cores each. We only use 2 nodes of this cluster

and all optimization problems are implemented in Python version

3.7.3. In all experiments, we use the 2-norm to measure distances

in the feature space. Moreover, we focus on the hypothesis test of

probabilistic equal opportunity, and thus theWasserstein projection,

the limiting distribution and the most favorable distribution follow

from the results presented in Section 4.

6.1 Validation of the Hypothesis Test
We now demonstrate that our proposed Wasserstein projection

framework for statistical test of fairness is a valid, or asymptotically

correct, test. We consider a binary classification setting in which

X is 2-dimensional feature space. The true distribution P has true
marginal values 𝑝𝑎𝑦 being

𝑝11 = 0.2, 𝑝01 = 0.1, 𝑝10 = 0.3, 𝑝00 = 0.4.

Moreover, conditioning on (𝐴,𝑌 ), the feature 𝑋 follows a Gaussian

distribution of the form

𝑋 |𝐴 = 1, 𝑌 = 1 ∼ N([6, 0], [3.5, 0; 0, 5]),
𝑋 |𝐴 = 0, 𝑌 = 1 ∼ N([−2, 0], [5, 0; 0, 5]),
𝑋 |𝐴 = 1, 𝑌 = 0 ∼ N([6, 0], [3.5, 0; 0, 5]),
𝑋 |𝐴 = 0, 𝑌 = 0 ∼ N([−4, 0], [5, 0; 0, 5]).

The true distribution P is thus a mixture of Gaussian, and under this

specification, a simple algebraic calculation indicates that a logistic

classifier with 𝛽 = (0, 1)⊤ is fair with respect to the probabilistic

equal opportunity criterion in Definition 4.1. We thus focus on

verifying fairness for this specific classifier. In the first experiment,

we empirically validate Theorem 4.4. To this end, we generate

𝑁 ∈ {100, 500} i.i.d. samples from P to be used as the test data,

and then calculate the squared projection distance Ropp ( ˆP𝑁 , 𝑝𝑁 )
using Proposition 4.2. The process is repeated 2,000 times to obtain

an empirical estimate of the distribution of 𝑁 × Ropp ( ˆP𝑁 , 𝑝𝑁 ).
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Figure 2: Empirical distribution of 𝑁 ×Ropp ( ˆP𝑁 , 𝑝𝑁 ) taken over 2,000 replications (histogram) versus the limiting distribution
𝜃 𝜒2

1
(blue curve) with different sample sizes 𝑁 . Fig. 2a-2b are density plots, Fig. 2c-2d are cumulative distribution plots.

We also generate another set of one million i.i.d. samples from

P to estimate the limiting distribution 𝜃 𝜒2
1
. Figure 2 shows that

the empirical distribution of 𝑁 × Ropp ( ˆP𝑁 , 𝑝𝑁 ) converges to the
limiting distribution 𝜃 𝜒2

1
as 𝑁 increases.

The second set of experiments aims to show that our proposed

Wasserstein projection hypothesis test is asymptotically valid. We

generate 𝑁 ∈ {100, 500, 1000} i.i.d. samples from P and calculate the

test statistic 𝑁 × Ropp ( ˆP𝑁 , 𝑝𝑁 ). The same data is used to estimate

ˆ𝜃𝑁 and compute the (1−𝛼)×100%-quantile of ˆ𝜃𝑁 𝜒2
1
to perform the

quantile based test as laid out in Section 4.2. We repeat this proce-

dure for 2,000 replications to keep track of the rejection projection

at different significant values of 𝛼 ∈ {0.5, 0.3, 0.1, 0.05, 0.01}. Table 1
summarizes the rejection probabilities of Wasserstein projection

tests for equal opportunity criterion under the null hypothesis

Hopp

0
. We can observe that at sample size 𝑁 > 100, the rejection

probability is close to the desired level 𝛼 , which empirically vali-

dates our testing procedure.

𝑁 = 100 𝑁 = 500 𝑁 = 1000 𝛼

0.511 0.4905 0.5 0.50

0.282 0.2895 0.299 0.30

0.048 0.0895 0.093 0.10

0.007 0.0425 0.0405 0.05

0.0 0.0065 0.005 0.01

Table 1: Comparison of the null rejection probabilities of
probabilistic equal opportunity tests with different signifi-
cance levels 𝛼 and test sample sizes 𝑁 .

6.2 Most Favorable Distribution Analysis
In this section, we visualize the most favorable distribution Q★

from Lemma 4.5 for a vanilla logistic regression classifier with

weight 𝛽 = (0.4, 0.12)⊤. We simply generate 28 samples with equal

subgroup proportions to form the empirical distribution
ˆP𝑁 . To find

the support of Q★, we solve problem (6), whose optimizer dictates

the transportation plan of each sample 𝑥𝑖 . Figure 3 visualizes the

original test samples that forms
ˆP𝑁 , along with the most favorable

distribution Q★. Green lines in the figure represent how samples

are perturbed. As we are testing for the probabilistic notion of

equal opportunity, only the samples with positive label 𝑦𝑖 = 1

Figure 3: Visualization of themost favorable distributionQ★

for a logistic classifier with weight 𝛽 = (0.4, 0.12)⊤. The black
arrow indicates the vector 𝛽 . Colors represent class, while
symbolic shapes encode the sensitive values. The green lines
show the transport plan of the empirical test samples from
their original positions (indicated with transparent colors)
to their ultimate destinations (with non-transparent colors).

presented in blue are perturbed in order to obtain Q★. Furthermore,

we observe that the positively-labeled test samples are transported

along the axis directed by 𝛽 (black arrow). Moreover, the samples

with different sensitive attributes, represented by different shapes,

move in opposite direction so that they get closer to each other,

which reduces the discrepancy in the expected value of ℎ𝛽 (𝑋 )
between the relevant subgroups.

6.3 The COMPAS Dataset
COMPAS (Correctional Offender Management Profiling for Alter-

native Sanctions)
4
is a commercial tool used by judges and parole

officers for scoring criminal defendant’s likelihood of recidivism.

The COMPAS dataset is used by the COMPAS algorithm to com-

pute the risk score of reoffending for defendants, and also contains

the criminal records within 2 years after the decision. The dataset

consists of 6,172 samples with 10 attributes including gender, age

category, race, etc. We concentrate on the subset of the data with

violent recidivism, and we use race (African-American and Cau-

casian) as the sensitive attribute. We split 70% of the COMPAS data

to train a Tikhonov-regularized logistic classifier, with the tuning

penalty parameter 𝜆 chosen in the range from 0 to 100 with 50

4
https://www.propublica.org/datastore/dataset/compas-recidivism-risk-score-data-

and-analysis
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Figure 4: Test statistic and accuracy of Tikhonov regularized
logistic regression on test data with rejection threshold 𝜂0.95.

equi-distant points. The remaining 30% of the data is used as the

test samples for auditing.

Figure 4 demonstrates the relation between the accuracy and

the degree of fairness with respect to the regularization parameter

𝜆. Strong regularization penalty (high values of 𝜆) results in small

values of the test statistic, but the classifier has low test accuracy. On

the contrary, weak penalization leads to undesirable fairness level

but higher prediction accuracy. The pink dashed line in Figure 4

shows the rejection threshold of the Wasserstein projection test at

significance level 𝛼 = 0.05 for varying value of the regularization

parameter 𝜆. We can observe that the Wasserstein projection test

recommends a rejection of the null hypothesis Hopp

0
for a wide

range of 𝜆. Only at 𝜆 sufficiently large that the test fails to reject

the null hypothesis.

7 CONCLUDING REMARKS AND BROADER
IMPACT

In this paper, we propose a statistical hypothesis test for group

fairness of classification algorithms based on the theory of opti-

mal transport. Our test statistic relies on computing the projection

distance from the empirical distribution supported on the test sam-

ples to the manifold of distributions that renders the classifier fair.

When the notion of fairness is chosen to be either the probabilistic

equal opportunity or the probabilistic equalized odds, we show that

the projection can be computed efficiently. We provide the limit-

ing distribution of the test statistic and show that our Wasserstein

projection test is asymptotically correct. Our proposed test also

offers the flexibility to incorporate the geometric information of

the feature space into testing procedure. Finally, analyzing the most

favorable distribution can help interpreting the reasons behind the

outcome of the test.

The Wasserstein projection hypothesis test is the culmination

of a benevolent motivation and effort, and it aims to furnish the

developers, the regulators and the general public a quantitative

method to verify certain notions of fairness in the classification

setting. At the same time, we acknowledge the risks and limitations

of the results presented in this paper.

First, it is essential to keep in mind that this paper focuses

on probabilistic notions of fairness, in particular, we provide the

Wasserstein statistical test for probabilistic equality of opportunity

and probabilistic equalized odds. Probabilistic notions are only ap-

proximations of the original definitions, and the employment of

probabilistic notions are solely for the technical purposes. Due to

the sensitivity of the test result on the choice of fairness notions, a

test that is designed for probabilistic notions may not be applicable

to test for original notions of fairness due to the interplay with

the threshold 𝜏 and the radical difference of both the test statistic

and the limiting distribution. If a logistic classifier ℎ𝛽 is rejected

using our framework for probabilistic equal opportunity, it does

not necessarily imply that the classifier ℎ𝛽 fails to satisfy the equal

opportunity criterion, and vice versa. The same argument holds

when we test for probabilistic equalized odds.

Second, the outcome of the Wasserstein projection test is de-

pendent on the choice of the underlying metric on the feature, the

sensitive attribute and the label spaces. Indeed, the test outcome

can change if we switch the metric of the feature space, for example,

from the Euclidean norm to a 1-norm. In the scope of this paper,

we do not study how sensitive the test outcome is with respect to

the choice of the metric, nor can we make any recommendation

on the optimal choice of the metric. Nevertheless, it is reasonable

to recommend that the metric should be chosen judiciously, and

the action of tuning the metric in order to obtain favorable test

outcome should be prohibited.

Third, to simplify the computation, we have assumed absolute

trust on the sensitive attributes and the label. The users of our test

should be mindful if there is potential corruption to these values.

Moreover, our test is constructed under the assumption that there

is no missing values in the test data. This assumption, unfortu-

nately, may not hold in real-world implementations. Constructing

statistical test which is robust to adversarial attacks and missing

data using the Wasserstein projection framework is an interesting

research direction.

Fourth, the statistical test in this paper is for a simple null hy-

pothesis. In practice, the regulators may be interested in a relaxed

fairness test in which the difference of the conditional expectations

is upper bounded by a fixed positive constant 𝜖 . The extension of

the Wasserstein hypothesis testing framework for a composite null

hypothesis is non-trivial, thus we leave this idea for future study.

Finally, any auditing process for algorithmic fairness can become

a dangerous tool if it falls into the hand of unqualified or vicious

inspectors. The results in this paper are developed to broaden our

scientific understanding, and we recommend that the test and its

outcomes should be used as an informative reference, but not as
an absolute certification to promote any particular classifier or as a

justification for any particular classification decision.

We thus sincerely recommend that the tools proposed in this

paper be exercised with utmost consideration.
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A APPENDIX - PROOFS
A.1 Proofs of Section 2

Proof of Lemma 3.2. Because the fairness constraints are sim-

ilar in both sets Fℎ and Fℎ (𝑝𝑁 ), it thus suffice to verify that Q

satisfies the marginal conditions Q(𝐴 = 𝑎,𝑌 = 𝑦) = 𝑝𝑁𝑎𝑦 for all

(𝑎,𝑦) ∈ A × Y. By the definition of the Wasserstein distance and

the ground metric 𝑐 , there exists a coupling 𝜋 such that

W( ˆP𝑁 ,Q)2 = E𝜋 [(∥𝑋 ′ − 𝑋 ∥ + ∞|𝐴′ −𝐴| + ∞|𝑌 ′ − 𝑌 |)2]

and themarginal distribution of 𝜋 are
ˆP𝑁 andQ, respectively. By the

law of total probability and because
ˆP𝑁 is an empirical distribution,

we can write 𝜋 = 𝑁−1
∑𝑁
𝑖=1 𝛿 (𝑥𝑖 ,𝑎𝑖 ,𝑦̂𝑖 ) ⊗ Q𝑖 , where Q𝑖 denotes the

conditional distributions of (𝑋,𝐴,𝑌 ) given (𝑋 ′, 𝐴′, 𝑌 ′) = (𝑥𝑖 , 𝑎𝑖 , 𝑦𝑖 )
for all 𝑖 ∈ [𝑁 ].

Suppose without any loss of generality that there exists a tuple

(𝑎,𝑦) ∈ A × Y such that Q(𝐴 = 𝑎,𝑌 = 𝑦) > 𝑝𝑁𝑎𝑦 . This means

Q(𝐴 = 𝑎,𝑌 = 𝑦) = 1

𝑁

𝑁∑
𝑖=1

Q𝑖 (𝐴 = 𝑎,𝑌 = 𝑦)

>
1

𝑁

𝑁∑
𝑖=1

1(𝑎,𝑦) (𝑎𝑖 , 𝑦𝑖 ).

This implies that theremust exist an index 𝑖★ ∈ [𝑁 ] with (𝑎𝑖★, 𝑦𝑖★) ≠
(𝑎,𝑦), and that

Q𝑖★ (𝐴 = 𝑎,𝑌 = 𝑦) > 0.

However, this further implies that

W( ˆP𝑁 ,Q)2 = 1

𝑁

𝑁∑
𝑖=1

EQ𝑖 [(∥𝑥𝑖 − 𝑋 ∥ + ∞|𝑎𝑖 −𝐴| + ∞|𝑦𝑖 − 𝑌 |)
2]

≥ 1

𝑁
EQ𝑖★ [(∥𝑥𝑖★ − 𝑋 ∥ + ∞|𝑎𝑖★ −𝐴| + ∞|𝑦𝑖★ − 𝑌 |)

2]

≥ 1

𝑁
Q𝑖★ (𝐴 = 𝑎,𝑌 = 𝑦) (∞(𝑎𝑖★ − 𝑎) + ∞(𝑦𝑖★ − 𝑦))2

= ∞,

where the equality follows from the decomposition of 𝜋 using the

law of total probability and the first inequality follows because the

transportation cost is nonnegative. This contradicts the fact that

W( ˆP𝑁 ,Q) < ∞. □

A.2 Proofs of Section 4
Before proving Proposition 4.2, we first prove a preparatory lemma

that verifies the Slater condition of the conic optimization problem.

To shorten the notation, we write 𝜉 = (𝑋,𝐴,𝑌 ) and denote Ξ =

X × A × Y, Ξ̂𝑁 = {(𝑥𝑖 , 𝑎𝑖 , 𝑦𝑖 )}𝑁𝑖=1. We assume that 𝑁 ≥ 2 and

ˆ𝜉𝑖 = (𝑥𝑖 , 𝑎𝑖 , 𝑦𝑖 ) are distinct. We useM+ (Ξ × Ξ̂𝑁 ) to denote the set

of all nonnegative measures on Ξ × Ξ̂𝑁 .

Lemma A.1 (Slater condition - Probabilistic equal opportunity).
Suppose that 𝛽 ≠ 0, 𝑝𝑁

11
∈ (0, 1) and 𝑝𝑁

01
∈ (0, 1). Define the function

𝑓𝛽 (𝑋,𝐴,𝑌 ) ≜
1

𝑝𝑁
11

ℎ𝛽 (𝑋 )1(1,1) (𝐴,𝑌 ) −
1

𝑝𝑁
01

ℎ𝛽 (𝑋 )1(0,1) (𝐴,𝑌 ),

and let 𝑓 be a vector-valued function 𝑓 : Ξ × Ξ̂𝑁 → R𝑁+1

𝑓 (𝜉, 𝜉 ′) =

©­­­­­«
1
ˆ𝜉𝑖
(𝜉 ′)
.
.
.

1
ˆ𝜉𝑁
(𝜉 ′)

𝑓𝛽 (𝜉)

ª®®®®®¬
.

Then we have

©­­­­«
1/𝑁
.
.
.

1/𝑁
0

ª®®®®¬
∈ int

{
E𝜋 [𝑓 (𝜉, 𝜉 ′)] : 𝜋 ∈ M+ (Ξ × Ξ̂𝑁 )

}
.

Proof of Lemma A.1. It suffices to show that for any

𝑞 ∈
(
1

2𝑁
,
3

2𝑁

)𝑁
×

(
−1
4

,
1

4

)
,
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there exists a nonnegative measure 𝜋 ∈ M+ (Ξ× Ξ̂𝑁 ) such that 𝑞 =

E𝜋 [𝑓 (𝜉, 𝜉 ′)]. We will verify this claim by constructing 𝜋 explicitly.

To this end, define the following locations

𝑥𝑎𝑦 ∈ X ∀(𝑎,𝑦) ∈ A × Y,

and set 𝜋 ∈ M+ (Ξ × Ξ̂𝑁 ) explicitly as

𝜋 (𝜉 = (𝑥𝑎𝑖 𝑦̂𝑖 , 𝑎𝑖 , 𝑦𝑖 ), 𝜉
′ = (𝑥𝑖 , 𝑎𝑖 , 𝑦𝑖 )) = 𝑞𝑖 ,

and 𝜋 is 0 everywhere else. By construction, one can verify that

E𝜋 [1 ˆ𝜉𝑖
(𝜉 ′)] = 𝑞𝑖 for all 𝑖 ∈ [𝑁 ]. If we define the following index

sets I𝑎𝑦 = {𝑖 ∈ [𝑁 ] : 𝑎𝑖 = 𝑎,𝑦𝑖 = 𝑦}, then

E𝜋 [𝑓𝛽 (𝜉)] = (𝑝𝑁11)
−1ℎ𝛽 (𝑥11)

∑
𝑖∈I11

𝑞𝑖 − (𝑝𝑁01)
−1ℎ𝛽 (𝑥01)

∑
𝑖∈I01

𝑞𝑖 .

It now remains to find the locations of 𝑥11 and 𝑥01 to balance the

above equation. We have the following two cases.

(1) Suppose that 𝑞𝑁+1 ≥ 0. In this case, choose 𝑥01 ∈ X such that

ℎ𝛽 (𝑥01) = 1

6
. The condition E𝜋 [𝑓𝛽 (𝜉)] = 𝑞𝑁+1 requires that

ℎ𝛽 (𝑥11) =
𝑞𝑁+1 + 1

6
(𝑝𝑁

01
)−1 ∑

𝑖∈I01 𝑞𝑖

(𝑝𝑁
11
)−1 ∑

𝑖∈I11 𝑞𝑖
.

Because 𝑞𝑁+1 ≥ 0 and 𝑞𝑖 are strictly positive, the term on the

right hand side is strictly positive. Moreover, we have

(𝑝𝑁
01
)−1

∑
𝑖∈I01

𝑞𝑖 <
3

2

and (𝑝𝑁
11
)−1

∑
𝑖∈I11

𝑞𝑖 >
1

2

for any feasible value of 𝑞𝑖 , which implies that

0 <
𝑞𝑁+1 + 1

6
(𝑝𝑁

01
)−1 ∑

𝑖∈I01 𝑞𝑖

(𝑝𝑁
11
)−1 ∑

𝑖∈I11 𝑞𝑖
<

1

4
+ 1

4

1

2

= 1.

This implies the existence of 𝑥11 ∈ X so that E𝜋 [𝑓𝛽 (𝜉)] = 𝑞𝑁+1.
(2) Suppose that𝑞𝑁+1 < 0. In this case, we can choose 𝑥11 ∈ X such

that ℎ𝛽 (𝑥11) = 1

6
. A similar argument as in the previous case

implies the existence of 𝑥01 ∈ X such that E𝜋 [𝑓𝛽 (𝜉)] = 𝑞𝑁+1.

Combining the two cases leads to the postulated results. □

We are now ready to prove Proposition 4.2.

Proof of Proposition 4.2. For the purpose of this proof, we

define the function 𝜆 : A ×Y → R as

𝜆(𝑎,𝑦) =
1(1,1) (𝑎,𝑦)

𝑝𝑁
11

−
1(0,1) (𝑎,𝑦)

𝑝𝑁
01

. (10)

By definition of the squared distance function Ropp, we have

Ropp ( ˆP𝑁 , 𝑝𝑁 )

=


inf

Q∈P
W( ˆP𝑁 ,Q)2

s.t. (𝑝𝑁
11
)−1EQ [ℎ𝛽 (𝑋 )1(1,1) (𝐴,𝑌 )]
= (𝑝𝑁

01
)−1EQ [ℎ𝛽 (𝑋 )1(0,1) (𝐴,𝑌 )]

Q(𝐴 = 𝑎,𝑌 = 𝑦) = 𝑝𝑁𝑎𝑦 ∀𝑎 ∈ A, 𝑦 ∈ Y

=



inf

𝜋
E𝜋 [𝑐

(
(𝑋 ′, 𝐴′, 𝑌 ′), (𝑋,𝐴,𝑌 )

)
2]

s.t. 𝜋 ∈ P((X × A × Y) × (X × A ×Y))
E𝜋 [𝑓𝛽 (𝑋,𝐴,𝑌 )] = 0

𝜋 (𝐴 = 𝑎,𝑌 = 𝑦) = 𝑝𝑁𝑎𝑦 ∀𝑎 ∈ A, 𝑦 ∈ Y
E𝜋 [1(𝑥𝑖 ,𝑎𝑖 ,𝑦̂𝑖 ) (𝑋 ′, 𝐴′, 𝑌 ′)] = 1/𝑁 ∀𝑖 ∈ [𝑁 ],

where the function 𝑓𝛽 is defined as

𝑓𝛽 (𝑥, 𝑎,𝑦) ≜ (𝑝𝑁11)
−1ℎ𝛽 (𝑥)1(1,1) (𝑎,𝑦) − (𝑝𝑁01)

−1ℎ𝛽 (𝑥)1(0,1) (𝑎,𝑦)
= ℎ𝛽 (𝑥)𝜆(𝑎,𝑦), (11)

andP(S) denotes the set of all joint probabilitymeasures supported

on S. Because of the infinity individual cost on A and Y by the

definition of cost in (2), any joint measure 𝜋 with finite objective

value should satisfies 𝜋 (𝐴 = 𝑎,𝑌 = 𝑦) = ˆP𝑁 (𝐴′ = 𝑎,𝑌 ′ = 𝑦) = 𝑝𝑁𝑎𝑦
for any 𝑎 ∈ A and 𝑦 ∈ Y. Thus, the set of constraints 𝜋 (𝐴 = 𝑎,𝑌 =

𝑦) = 𝑝𝑁𝑎𝑦 can be eliminated without alternating the optimization

problem. We thus have

Ropp ( ˆP𝑁 , 𝑝𝑁 )

=


inf

𝜋
E𝜋 [𝑐

(
(𝑋 ′, 𝐴′, 𝑌 ′), (𝑋,𝐴,𝑌 )

)
2]

s.t. 𝜋 ∈ P((X × A × Y) × (X × A ×Y))
E𝜋 [𝑓𝛽 (𝑋,𝐴,𝑌 )] = 0

E𝜋 [1(𝑥𝑖 ,𝑎𝑖 ,𝑦̂𝑖 ) (𝑋 ′, 𝐴′, 𝑌 ′)]=1/𝑁 ∀𝑖 ∈ [𝑁 ] .

To shorten the notations, we use Ξ = X × A × Y and Ξ̂𝑁 =

{(𝑥𝑖 , 𝑎𝑖 , 𝑦𝑖 )}. Moreover, define the vector 𝑞 and the vector-valued

Borel measurable function on Ξ × Ξ̂𝑁 as

𝑞 =

©­­­­«
0

1/𝑁
.
.
.

1/𝑁

ª®®®®¬
𝑓 (𝜉, 𝜉 ′) =

©­­­­­«
𝑓𝛽 (𝜉)
1
ˆ𝜉𝑖
(𝜉 ′)
.
.
.

1
ˆ𝜉𝑁
(𝜉 ′)

ª®®®®®¬
.

By using the introduced notation, we can reformulate the above

optimization problem as

inf

{
E𝜋 [𝑐 (𝜉, 𝜉 ′)2] : 𝜋 ∈ M+ (Ξ × Ξ̂𝑁 ),E𝜋 [𝑓 (𝜉, 𝜉 ′)] = 𝑞

}
which is a problem of moments. By Lemma A.1, the above optimiza-

tion problem satisfies the Slater condition, thus the strong duality

result [60, Section 2.2] implies that

Ropp ( ˆP𝑁 , 𝑝𝑁 )

=



sup

1

𝑁

𝑁∑
𝑖=1

𝑏𝑖

s.t. 𝑏 ∈ R𝑁 , 𝛾 ∈ R
𝑁∑
𝑖=1

𝑏𝑖1(𝑥𝑖 ,𝑎𝑖 ,𝑦̂𝑖 ) (𝑥
′, 𝑎′, 𝑦′) − 𝛾 𝑓𝛽 (𝑥, 𝑎,𝑦)

≤ 𝑐
(
(𝑥 ′, 𝑎′, 𝑦′), (𝑥, 𝑎,𝑦)

)
2

∀(𝑥, 𝑎,𝑦), (𝑥 ′, 𝑎′, 𝑦′) ∈ X × A ×Y .

(12)

Note that the problem in (12) can be equivalently represented as
sup

1

𝑁

𝑁∑
𝑖=1

𝑏𝑖

s.t. 𝑏 ∈ R𝑁 , 𝛾 ∈ R
𝑏𝑖 − 𝛾 𝑓𝛽 (𝑥𝑖 , 𝑎𝑖 , 𝑦𝑖 ) ≤ 𝑐

(
(𝑥𝑖 , 𝑎𝑖 , 𝑦𝑖 ), (𝑥𝑖 , 𝑎𝑖 , 𝑦𝑖 )

)
2

∀(𝑥𝑖 , 𝑎𝑖 , 𝑦𝑖 ) ∈ X × A ×Y,∀𝑖 ∈ [𝑁 ]

= sup

𝛾 ∈R

1

𝑁

𝑁∑
𝑖=1

inf

𝑥𝑖 ∈X

{
∥𝑥𝑖 − 𝑥𝑖 ∥2 + 𝛾 𝑓𝛽 (𝑥𝑖 , 𝑎𝑖 , 𝑦𝑖 )

}
. (13)
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Because 𝑓𝛽 has the form (11), we have the equivalent problem

sup

𝛾 ∈R

1

𝑁

𝑁∑
𝑖=1

inf

𝑥𝑖 ∈X

{
∥𝑥𝑖 − 𝑥𝑖 ∥2 + 𝛾𝜆(𝑎𝑖 , 𝑦𝑖 )ℎ𝛽 (𝑥𝑖 )

}
.

For any 𝑖 ∈ I0, 𝜆(𝑎𝑖 , 𝑦𝑖 ) = 0, and in this case we have the optimal

solution of 𝑥𝑖 satisfies 𝑥
★
𝑖
= 𝑥𝑖 . As a consequence, the summation

collapses to a partial sum over I1. This observation completes the

proof. □

Proof of Theorem 4.4. Leveraging equation (13), we can ex-

press

Ropp ( ˆP𝑁 , 𝑝𝑁 ) =

sup

𝛾
E
ˆP𝑁

[
inf

Δ
𝛾ℎ𝛽 (𝑋 + Δ)

(
1(1,1) (𝐴,𝑌 )

𝑝𝑁
11

−
1(0,1) (𝐴,𝑌 )

𝑝𝑁
01

)
+ ∥Δ∥2

]
.

We define

𝐻𝑁 ≜
1

√
𝑁

𝑁∑
𝑖=1

ℎ𝛽 (𝑥𝑖 )
(
1(1,1) (𝑎𝑖 , 𝑦𝑖 )

𝑝𝑁
11

−
1(0,1) (𝑎𝑖 , 𝑦𝑖 )

𝑝𝑁
01

)
,

and using this expression we can reformulate Ropp ( ˆP𝑁 , 𝑝𝑁 ) as

sup

𝛾

{
1

√
𝑁
𝛾𝐻𝑁 + E

ˆP𝑁

[
inf

Δ
𝛾 [ℎ𝛽 (𝑋 + Δ) − ℎ𝛽 (𝑋 )]×(

1(1,1) (𝐴,𝑌 )
𝑝𝑁
11

−
1(0,1) (𝐴,𝑌 )

𝑝𝑁
01

)
+ ∥Δ∥2

]}
.

Because ℎ𝛽 is a sigmoid function, it is differentiable, and by the

fundamental theorem of calculus, we have for any 𝑥 ∈ X,

ℎ𝛽 (𝑥 + Δ) − ℎ𝛽 (𝑥) =
∫

1

0

∇ℎ𝛽 (𝑥 + 𝑡Δ) · Δd𝑡,

where · represents the inner product on R𝑑 . By applying variable

transformations 𝛾 ← 𝛾
√
𝑁 and Δ← Δ

√
𝑁 , we have

𝑁 × Ropp ( ˆP𝑁 , 𝑝𝑁 )

= sup

𝛾

{
𝛾𝐻𝑁 + E

ˆP𝑁

[
inf

Δ
𝛾

∫
1

0

∇ℎ𝛽
(
𝑋 + 𝑡 Δ

√
𝑁

)
· Δd𝑡(

1(1,1) (𝐴,𝑌 )
𝑝𝑁
11

−
1(0,1) (𝐴,𝑌 )

𝑝𝑁
01

)
+ ∥Δ∥2

]}
= sup

𝛾

{
𝛾𝐻𝑁 + 1

𝑁

𝑁∑
𝑖=1

inf

Δ𝑖

𝛾

∫
1

0

∇ℎ𝛽
(
𝑥𝑖 + 𝑡

Δ𝑖√
𝑁

)
· Δ𝑖d𝑡 ×(

1(1,1) (𝑎𝑖 , 𝑦𝑖 )
𝑝𝑁
11

−
1(0,1) (𝑎𝑖 , 𝑦𝑖 )

𝑝𝑁
01

)
+ ∥Δ𝑖 ∥2

}
,

where the second equality follows by the definition of the empirical

distribution
ˆP𝑁 . For any values of 𝑝𝑁

01
> 0 and 𝑝𝑁

11
> 0, we have

for any 𝛾 ≠ 0,

P

(




𝛾∇ℎ𝛽 (𝑋 )
(
1(1,1) (𝐴,𝑌 )

𝑝𝑁
11

−
1(0,1) (𝐴,𝑌 )

𝑝𝑁
01

)





∗
= 0

)
= P

(
(𝑝𝑁

11
)−11(1,1) (𝐴,𝑌 ) = (𝑝𝑁01)

−1
1(0,1) (𝐴,𝑌 )

)
= P(𝑌 = 0) < 1,

which implies that

P

(




𝛾∇ℎ𝛽 (𝑋 )
(
1(1,1) (𝐴,𝑌 )

𝑝𝑁
11

−
1(0,1) (𝐴,𝑌 )

𝑝𝑁
01

)





∗
> 0

)
> 0.

This coincides with Assumption A4 in [7]. Using the same argument

as in the proof of [7, Theorem 3], we can show that the optimal

solution for 𝛾 and Δ𝑖 belong to a compact set with high probability.

Moreover, we have

1(1,1) (𝑎𝑖 , 𝑦𝑖 )
𝑝𝑁
11

−
1(0,1) (𝑎𝑖 , 𝑦𝑖 )

𝑝𝑁
01

=
1(1,1) (𝑎𝑖 , 𝑦𝑖 )

𝑝11
(1 − 𝑜P (1)) −

1(0,1) (𝑎𝑖 , 𝑦𝑖 )
𝑝01

(1 − 𝑜P (1)) ,

and thus

𝑁 × Ropp ( ˆP𝑁 , 𝑝𝑁 )

= sup

𝛾

{
𝛾𝐻𝑁 + 1

𝑁

𝑁∑
𝑖=1

inf

Δ𝑖

𝛾

∫
1

0

∇ℎ𝛽
(
𝑥𝑖 + 𝑡

Δ𝑖√
𝑁

)
· Δ𝑖d𝑡 ×(

1(1,1) (𝑎𝑖 , 𝑦𝑖 )
𝑝11

−
1(0,1) (𝑎𝑖 , 𝑦𝑖 )

𝑝01

)
+ ∥Δ𝑖 ∥2 + 𝑜P (1)

}
.

In the next step, fix any tuple (𝑎,𝑦) ∈ A × Y, and denote the

following constant

𝑀1 = |𝑝−111 1(1,1) (𝑎,𝑦) − 𝑝
−1
01
1(0,1) (𝑎,𝑦) |.

We find

∥ [∇ℎ𝛽 (𝑥 + Δ) − ∇ℎ𝛽 (𝑥)] (𝑝−111 1(1,1) (𝑎,𝑦) − 𝑝
−1
01
1(0,1) (𝑎,𝑦))∥∗

=|ℎ𝛽 (𝑥 + Δ) − ℎ𝛽 (𝑥) − ℎ𝛽 (𝑥 + Δ)2 + ℎ𝛽 (𝑥)2 | ∥𝛽 ∥∗𝑀1

≤(|ℎ𝛽 (𝑥 + Δ) − ℎ𝛽 (𝑥) | + |ℎ𝛽 (𝑥 + Δ)2 − ℎ𝛽 (𝑥)2 |) ∥𝛽 ∥∗𝑀1 .

Because the sigmoid function is slope-restricted in the interval

[0, 1] [22, Proposition 2], we have

0 ≤
ℎ𝛽 (𝑥 + Δ) − ℎ𝛽 (𝑥)

𝛽⊤Δ
≤ 1,

which implies that

|ℎ𝛽 (𝑥 + Δ) − ℎ𝛽 (𝑥) | ≤ |𝛽⊤Δ| ≤ ∥𝛽 ∥∗∥Δ∥,

where the second inequality follows from Hölder inequality. Using

a similar argument, we have

|ℎ𝛽 (𝑥 + Δ)2 − ℎ𝛽 (𝑥)2 | = ≤ (ℎ𝛽 (𝑥 + Δ) + ℎ𝛽 (𝑥)) |ℎ𝛽 (𝑥 + Δ) − ℎ𝛽 (𝑥) |
≤ 2∥𝛽 ∥∗∥Δ∥.

Combining these inequalities, we conclude that

∥ [∇ℎ𝛽 (𝑥 + Δ) − ∇ℎ𝛽 (𝑥)] (𝑝−111 1(1,1) (𝑎,𝑦) − 𝑝
−1
01
1(0,1) (𝑎,𝑦))∥2

≤ 3∥𝛽 ∥2∗𝑀1∥Δ∥,
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and thus Assumption 6’ in [7] is satisfied. If 𝐻𝑁 𝑑.−−→ 𝑍 for some

random variable 𝑍 , then [7, Lemma 4] asserts that

𝑁 × Ropp ( ˆP𝑁 , 𝑝𝑁 )

𝑑.−−→ sup

𝛾 ∈R

{
𝛾𝑍 − 𝛾2

4

EP

[



∇ℎ𝛽 (𝑋 ) (1(1,1) (𝐴,𝑌 )𝑝11
−
1(0,1) (𝐴,𝑌 )

𝑝01

)



2
∗

]}
=

(
EP

[



∇ℎ𝛽 (𝑋 ) (1(1,1) (𝐴,𝑌 )𝑝11
−
1(0,1) (𝐴,𝑌 )

𝑝01

)



2
∗

])−1
𝑍 2,

where the equality sign follows from the fact that for any realization

of 𝑍 , the optimal solution of 𝛾 is

𝛾★(𝑍 )= 2𝑍

EP

[


∇ℎ𝛽 (𝑋 ) (1(1,1) (𝐴,𝑌 )𝑝11
− 1(0,1) (𝐴,𝑌 )

𝑝01

)


2
∗

] .

We now study the limit distribution 𝑍 . In the next step, we study

the limit of 𝐻𝑁
.

𝐻𝑁

=
1

√
𝑁

𝑁∑
𝑖=1

ℎ𝛽 (𝑥𝑖 )
(
1(1,1) (𝑎𝑖 , 𝑦𝑖 )

𝑝𝑁
11

−
1(0,1) (𝑎𝑖 , 𝑦𝑖 )

𝑝𝑁
01

)
=

1

𝑝𝑁
11
𝑝𝑁
01

× 1

√
𝑁

𝑁∑
𝑖=1

ℎ𝛽 (𝑥𝑖 )
(
𝑝𝑁
01
1(1,1) (𝑎𝑖 , 𝑦𝑖 ) − 𝑝𝑁111(0,1) (𝑎𝑖 , 𝑦𝑖 )

)
=

1

𝑝𝑁
11
𝑝𝑁
01

×
(

1

√
𝑁

𝑁∑
𝑖=1

ℎ𝛽 (𝑥𝑖 )
(
𝑝011(1,1) (𝑎𝑖 , 𝑦𝑖 ) − 𝑝111(0,1) (𝑎𝑖 , 𝑦𝑖 )

)
+
√
𝑁 (𝑝𝑁

01
− 𝑝01)

1

𝑁

𝑁∑
𝑖=1

1(1,1) (𝑎𝑖 , 𝑦𝑖 )ℎ𝛽 (𝑥𝑖 )

−
√
𝑁 (𝑝𝑁

11
− 𝑝11)

1

𝑁

𝑁∑
𝑖=1

1(0,1) (𝑎𝑖 , 𝑦𝑖 )ℎ𝛽 (𝑥𝑖 )
)

By Slutsky’s theorem, we have

√
𝑁 (𝑝𝑁

01
− 𝑝01)×

1

𝑁

𝑁∑
𝑖=1

(
1(1,1) (𝑎𝑖 , 𝑦𝑖 ) ℎ𝛽 (𝑥𝑖 ) − EP [1(1,1) (𝐴,𝑌 )ℎ𝛽 (𝑋 )]

)
= 𝑜P (1),

√
𝑁 (𝑝𝑁

11
− 𝑝11)×

1

𝑁

𝑁∑
𝑖=1

(
1(0,1) (𝑎𝑖 , 𝑦𝑖 )ℎ𝛽 (𝑥𝑖 ) − EP [1(0,1) (𝐴,𝑌 ) ℎ𝛽 (𝑋 )]

)
= 𝑜P (1).

Under the null hypothesisHopp

0
, we have

𝐻𝑁

=
1

𝑝𝑁
11
𝑝𝑁
01

×
[

1

√
𝑁

𝑁∑
𝑖=1

ℎ𝛽 (𝑥𝑖 )
(
𝑝011(1,1) (𝑎𝑖 , 𝑦𝑖 ) − 𝑝111(0,1) (𝑎𝑖 , 𝑦𝑖 )

)
+
√
𝑁

(
1

𝑁

𝑁∑
𝑖=1

1(0,1) (𝑎𝑖 , 𝑦𝑖 ) − 𝑝01

)
EP [1(1,1) (𝐴,𝑌 )ℎ𝛽 (𝑋 )]

−
√
𝑁

(
1

𝑁

𝑁∑
𝑖=1

1(1,1) (𝑎𝑖 , 𝑦𝑖 ) − 𝑝11

)
EP [1(0,1) (𝐴,𝑌 )ℎ𝛽 (𝑋 )]

]
+ 𝑜P (1)

=
1

𝑝𝑁
11
𝑝𝑁
01

×
[

1

√
𝑁

𝑁∑
𝑖=1

ℎ𝛽 (𝑥𝑖 )
(
𝑝011(1,1) (𝑎𝑖 , 𝑦𝑖 ) − 𝑝111(0,1) (𝑎𝑖 , 𝑦𝑖 )

)
+ 1

√
𝑁

𝑁∑
𝑖=1

(
1(0,1) (𝑎𝑖 , 𝑦𝑖 ) − 𝑝01

)
EP [1(1,1) (𝐴,𝑌 )ℎ𝛽 (𝑋 )]

− 1

√
𝑁

𝑁∑
𝑖=1

(
1(1,1) (𝑎𝑖 , 𝑦𝑖 ) − 𝑝11

)
EP [1(0,1) (𝐴,𝑌 )ℎ𝛽 (𝑋 )]

]
+ 𝑜P (1)

𝑑.−−→ 𝑍,

where 𝑍 ∼ 1

𝑝11𝑝01
N(0, 𝜎2), 𝜎2 = Cov(𝑍 ), where 𝑍 is defined as in

the theorem statement. Defining 𝜃 completes the proof. □

A.3 Proofs of Section 5
The proof of Proposition 5.2 necessitates the following preparatory

lemma. We use the same notations with Lemma A.1.

Lemma A.2 (Slater condition - Probabilistic equalized odds). Sup-

pose that 𝛽 ≠ 0 and 𝑝𝑁𝑎𝑦 ∈ (0, 1) for all (𝑎,𝑦) ∈ A × Y. Define the
functions

𝑓𝛽 (𝑋,𝐴,𝑌 ) ≜
1

𝑝𝑁
11

ℎ𝛽 (𝑋 )1(1,1) (𝐴,𝑌 ) −
1

𝑝𝑁
01

ℎ𝛽 (𝑋 )1(0,1) (𝐴,𝑌 ),

𝑔𝛽 (𝑋,𝐴,𝑌 ) ≜
1

𝑝𝑁
10

ℎ𝛽 (𝑋 )1(1,0) (𝐴,𝑌 ) −
1

𝑝𝑁
00

ℎ𝛽 (𝑋 )1(0,0) (𝐴,𝑌 ),

and let 𝑓 be a vector-valued function 𝑓 : Ξ × Ξ̂𝑁 → R𝑁+2

𝑓 (𝜉, 𝜉 ′) =

©­­­­­­­«

1
ˆ𝜉𝑖
(𝜉 ′)
.
.
.

1
ˆ𝜉𝑁
(𝜉 ′)

𝑓𝛽 (𝜉)
𝑔𝛽 (𝜉)

ª®®®®®®®¬
Then we have

©­­­­­­«

1/𝑁
.
.
.

1/𝑁
0

0

ª®®®®®®¬
∈ int

{
E𝜋 [𝑓 (𝜉, 𝜉 ′)] : 𝜋 ∈ M+ (Ξ × Ξ̂𝑁 )

}
.

Proof of Lemma A.2. It suffices to show that for any

𝑞 ∈
(
1

2𝑁
,
3

2𝑁

)𝑁
×

(
−1
4

,
1

4

)
2

,
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there exists a nonnegative measure 𝜋 ∈ M+ (Ξ × Ξ̂𝑁 ) such that

𝑞 = E𝜋 [𝑓 (𝜉, 𝜉 ′)]. The proof follows a similar argument as that of

Lemma A.1 by noticing that

E𝜋 [𝑔𝛽 (𝜉)] = (𝑝𝑁10)
−1ℎ𝛽 (𝑥10)

∑
𝑖∈I10

𝑞𝑖 − (𝑝𝑁00)
−1ℎ𝛽 (𝑥00)

∑
𝑖∈I00

𝑞𝑖 ,

and the specification of 𝑥10 and 𝑥00 can be achieved using similar

steps. □

Proof of Proposition 5.2. To ease the exposition, we let the

function Λ : A ×Y → R2 be defined as

Λ(𝑎,𝑦) =
(
(𝑝𝑁

11
)−11(1,1) (𝑎,𝑦) − (𝑝𝑁01)

−1
1(0,1) (𝑎,𝑦)

(𝑝𝑁
10
)−11(1,0) (𝑎,𝑦) − (𝑝𝑁00)

−1
1(0,0) (𝑎,𝑦)

)
.

Moreover, we define 𝑓𝛽 as in (11), and additionally define 𝑔𝛽 as

𝑔𝛽 (𝑥, 𝑎,𝑦) = (𝑝𝑁10)
−1ℎ𝛽 (𝑥)1(1,0) (𝑎,𝑦) − (𝑝𝑁00)

−1ℎ𝛽 (𝑥)1(0,0) (𝑎,𝑦) .

From the definition of Rodd ( ˆP𝑁 , 𝑝𝑁 ), we have

Rodd ( ˆP𝑁 , 𝑝𝑁 )

=



inf

Q∈P
W( ˆP𝑁 ,Q)2

s.t. (𝑝𝑁
11
)−1EQ [ℎ𝛽 (𝑋 )1(1,1) (𝐴,𝑌 )]
= (𝑝𝑁

01
)−1EQ [ℎ𝛽 (𝑋 )1(0,1) (𝐴,𝑌 )]

(𝑝𝑁
10
)−1EQ [ℎ𝛽 (𝑋 )1(1,0) (𝐴,𝑌 )]
= (𝑝𝑁

00
)−1EQ [ℎ𝛽 (𝑋 )1(0,0) (𝐴,𝑌 )]

Q(𝐴 = 𝑎,𝑌 = 𝑦) = 𝑝𝑁𝑎𝑦 ∀𝑎 ∈ A, 𝑦 ∈ Y

=



inf

𝜋
E𝜋 [𝑐

(
(𝑋 ′, 𝐴′, 𝑌 ′), (𝑋,𝐴,𝑌 )

)
2]

s.t. 𝜋 ∈ P((X × A × Y) × (X × A ×Y))
E𝜋 [𝑓𝛽 (𝑋,𝐴,𝑌 )] = 0

E𝜋 [𝑔𝛽 (𝑋,𝐴,𝑌 )] = 0

𝜋 (𝐴 = 𝑎,𝑌 = 𝑦) = 𝑝𝑁𝑎𝑦 ∀𝑎 ∈ A, 𝑦 ∈ Y
E𝜋 [1(𝑥𝑖 ,𝑎𝑖 ,𝑦̂𝑖 ) (𝑋 ′, 𝐴′, 𝑌 ′)] = 1/𝑁 ∀𝑖 ∈ [𝑁 ] .

To shorten the notations, we use Ξ = X × A × Y and Ξ̂𝑁 =

{(𝑥𝑖 , 𝑎𝑖 , 𝑦𝑖 )}. Moreover, define the vector 𝑞 and the vector-valued

Borel measurable function on Ξ × Ξ̂𝑁 as

𝑞 =

©­­­­­­«

0

0

1/𝑁
.
.
.

1/𝑁

ª®®®®®®¬
𝑓 (𝜉, 𝜉 ′) =

©­­­­­­­«

𝑓𝛽 (𝜉)
𝑔𝛽 (𝜉)
1
ˆ𝜉𝑖
(𝜉 ′)
.
.
.

1
ˆ𝜉𝑁
(𝜉 ′)

ª®®®®®®®¬
.

By using the introduced notation, we can reformulate the above

optimization problem as

inf

{
E𝜋 [𝑐 (𝜉, 𝜉 ′)2] : 𝜋 ∈ M+ (Ξ × Ξ̂𝑁 ),E𝜋 [𝑓 (𝜉, 𝜉 ′)] = 𝑞

}
which is a problem of moments. By Lemma A.2, the above optimiza-

tion problem satisfies the Slater condition, thus the strong duality

result [60, Section 2.2] implies that

Rodd ( ˆP𝑁 , 𝑝𝑁 )

=



sup

1

𝑁

𝑁∑
𝑖=1

𝑏𝑖

s.t. 𝑏 ∈ R𝑁 , 𝛾 ∈ R, 𝜁 ∈ R
𝑁∑
𝑖=1

𝑏𝑖1(𝑥𝑖 ,𝑎𝑖 ,𝑦̂𝑖 ) (𝑥
′, 𝑎′, 𝑦′) − 𝛾 𝑓𝛽 (𝑥, 𝑎,𝑦) − 𝜁𝑔𝛽 (𝑥, 𝑎,𝑦)

≤ 𝑐
(
(𝑥 ′, 𝑎′, 𝑦′), (𝑥, 𝑎,𝑦)

)
2

∀(𝑥, 𝑎,𝑦), (𝑥 ′, 𝑎′, 𝑦′) ∈ X × A ×Y

=



sup

1

𝑁

𝑁∑
𝑖=1

𝑏𝑖

s.t. 𝑏 ∈ R𝑁 , 𝛾 ∈ R, 𝜁 ∈ R
𝑏𝑖 − 𝛾 𝑓𝛽 (𝑥𝑖 , 𝑎𝑖 , 𝑦𝑖 ) − 𝜁𝑔𝛽 (𝑥𝑖 , 𝑎𝑖 , 𝑦𝑖 )

≤ 𝑐
(
(𝑥𝑖 , 𝑎𝑖 , 𝑦𝑖 ), (𝑥𝑖 , 𝑎𝑖 , 𝑦𝑖 )

)
2

∀(𝑥𝑖 , 𝑎𝑖 , 𝑦𝑖 ) ∈ X × A ×Y,∀𝑖 ∈ [𝑁 ]

= sup

𝛾,𝜁

1

𝑁

𝑁∑
𝑖=1

inf

𝑥𝑖 ∈X

{
∥𝑥𝑖 − 𝑥𝑖 ∥2 + 𝛾 𝑓𝛽 (𝑥𝑖 , 𝑎𝑖 , 𝑦𝑖 ) + 𝜁𝑔𝛽 (𝑥𝑖 , 𝑎𝑖 , 𝑦𝑖 )

}
,

By definition of 𝑓𝛽 , 𝑔𝛽 and the parameters 𝜆𝑖 , we have

𝛾 𝑓𝛽 (𝑥𝑖 , 𝑎𝑖 , 𝑦𝑖 ) + 𝜁𝑔𝛽 (𝑥𝑖 , 𝑎𝑖 , 𝑦𝑖 ) = (𝛾𝜆𝑖11 (𝑦𝑖 ) + 𝜁𝜆𝑖10 (𝑦𝑖 ))ℎ𝛽 (𝑥𝑖 ) .

The proof is complete. □

Proof of Lemma 5.3. Because [𝑁 ] = I0 ∪ I1, we can write

Rodd ( ˆP𝑁 , 𝑝𝑁 )

= sup

𝛾 ∈R

1

𝑁

∑
𝑖∈I1

inf

𝑥𝑖 ∈X

{
∥𝑥𝑖 − 𝑥𝑖 ∥2 + 𝛾𝜆𝑖ℎ𝛽 (𝑥𝑖 )

}
+ sup
𝜁 ∈R

1

𝑁

∑
𝑖∈I0

inf

𝑥𝑖 ∈X

{
∥𝑥𝑖 − 𝑥𝑖 ∥2 + 𝜁𝜆𝑖ℎ𝛽 (𝑥𝑖 )

}
.

Note that the first supremum coincides with Ropp ( ˆP𝑁 , 𝑝𝑁 ), and the
second supremum is 𝑈𝑁 . Under the Euclidean norm assumption,

we can use Lemma B.1 to reformulate the inner infimum problems

for𝑈𝑁 , which leads to (9). □

Proof of Theorem 5.4. By applying a similar duality argument

as in the proof of Theorem 4.4, we can reformulate Rodd ( ˆP𝑁 , 𝑝𝑁 )
as

Rodd ( ˆP𝑁 , 𝑝𝑁 )

=sup
𝛾,𝜁

E
ˆP𝑁

infΔ

𝛾ℎ𝛽 (𝑋 + Δ)

(1(1,1) (𝐴,𝑌 )
𝑝𝑁
11

− 1(0,1) (𝐴,𝑌 )
𝑝𝑁
01

)
+𝜁ℎ𝛽 (𝑋 + Δ)

(1(1,0) (𝐴,𝑌 )
𝑝𝑁
10

− 1(0,0) (𝐴,𝑌 )
𝑝𝑁
00

)
+ ∥Δ∥2




= sup

𝛾,𝜁

{
1

√
𝑁
(𝜁𝐻𝑁

0
+ 𝛾𝐻𝑁

1
)+

E
ˆP𝑁

infΔ
©­­­«
𝛾 [ℎ𝛽 (𝑋 + Δ) − ℎ𝛽 (𝑋 )]

(1(1,1) (𝐴,𝑌 )
𝑝𝑁
11

− 1(0,1) (𝐴,𝑌 )
𝑝𝑁
01

)
+𝜁 [ℎ𝛽 (𝑋 + Δ) − ℎ𝛽 (𝑋 )]

(1(1,0) (𝐴,𝑌 )
𝑝𝑁
10

− 1(0,0) (𝐴,𝑌 )
𝑝𝑁
00

)
+∥Δ∥2

ª®®®¬



663



A Statistical Test for Probabilistic Fairness FAccT ’21, March 1–10, 2021, Virtual Event, Canada

with the random variables 𝐻𝑁
0

and 𝐻𝑁
1

being defined as

𝐻𝑁
0
≜

1

√
𝑁

𝑁∑
𝑖=1

ℎ𝛽 (𝑥𝑖 )
(1(1,0) (𝑎𝑖 , 𝑦𝑖 )

𝑝𝑁
10

−
1(0,0) (𝑎𝑖 , 𝑦𝑖 )

𝑝𝑁
00

)
,

𝐻𝑁
1
≜

1

√
𝑁

𝑁∑
𝑖=1

ℎ𝛽 (𝑥𝑖 )
(1(1,1) (𝑎𝑖 , 𝑦𝑖 )

𝑝𝑁
11

−
1(0,1) (𝑎𝑖 , 𝑦𝑖 )

𝑝𝑁
01

)
.

Notice that the condition

P

(


 (
𝛾1
𝛾0

)⊤
Λ(𝐴,𝑌 )∇ℎ𝛽 (𝑋 )





∗
> 0

)
> 0

is satisfied for any (𝛾0, 𝛾1) ≠ 0. Using the same argument as in the

proof of [7, Theorem 3], we can show that the optimal solution

for 𝛾 , 𝜁 and Δ𝑖 belong to a compact set with high probability. As

𝑝𝑎𝑦 − 𝑝𝑎𝑦 = 𝑜P (1) for any (𝑎,𝑦) ∈ A × Y, we have

𝑁 × Rodd ( ˆP𝑁 , 𝑝𝑁 )

= sup

𝛾,𝜁

{
𝛾𝐻𝑁

1
+ 𝜁𝐻𝑁

0
+ 1

𝑁

𝑁∑
𝑖=1

inf

Δ𝑖

𝛾

∫
1

0

∇ℎ𝛽
(
𝑥𝑖 + 𝑡

Δ𝑖√
𝑁

)
· Δ𝑖d𝑡 ×(

𝛾

𝜁

)⊤ (
𝑝−1
11
1(1,1) (𝑎𝑖 , 𝑦𝑖 ) − 𝑝−101 1(0,1) (𝑎𝑖 , 𝑦𝑖 )

𝑝−1
10
1(1,0) (𝑎𝑖 , 𝑦𝑖 ) − 𝑝−100 1(0,0) (𝑎𝑖 , 𝑦𝑖 )

)
+ ∥Δ𝑖 ∥2 + 𝑜P (1)

}
.

Using a similar argument, we can bound

∥ [∇ℎ𝛽 (𝑥 + Δ) − ∇ℎ𝛽 (𝑥)] (𝑝−110 1(1,0) (𝑎,𝑦) − 𝑝
−1
00
1(0,0) (𝑎,𝑦))∥2

≤ 3∥𝛽 ∥2∗𝑀0∥Δ∥

for some constant𝑀0, and thus Assumption 6’ in [7] is satisfied. If

𝐻𝑁
0

𝑑.−−→ 𝐻0 and 𝐻
𝑁
1

𝑑.−−→ 𝐻1 for some random variables 𝐻0 and 𝐻1,

then [7, Lemma 4] asserts that

𝑁 × Rodd ( ˆP𝑁 , 𝑝𝑁 ) 𝑑.−−→
sup

𝛾,𝜁

{𝛾𝐻1 + 𝜁𝐻0+

EP

[


(𝛾
𝜁

)⊤(
𝑝−1
11
1(1,1) (𝐴,𝑌 )−𝑝−101 1(0,1) (𝐴,𝑌 )

𝑝−1
10
1(1,0) (𝐴,𝑌 )−𝑝−100 1(0,0) (𝐴,𝑌 )

)
∇ℎ𝛽 (𝑋 )




2
∗

]}
.

Using the same limiting argument as in the proof of Theorem 4.4,

we have the characterization of 𝐻1 and 𝐻0 as in the statement of

the theorem. □

B APPENDIX - AUXILIARY RESULT
The following lemma is used repeatedly to prove Lemmas 4.3

and 5.3.

Lemma B.1. For any 𝜔 ∈ R, 𝑥 ∈ R𝑝 and 𝛽 ∈ R𝑝 , we have

inf

𝑥 ∈R𝑝
∥𝑥 − 𝑥 ∥2

2
+ 𝜔

1 + exp(−𝛽⊤𝑥)
= min

𝑘∈[0, 1
8
]
𝜔2∥𝛽 ∥2

2
𝑘2 + 𝜔

1 + exp(−𝛽⊤𝑥 + 𝑘𝜔 ∥𝛽 ∥2
2
)
. (14)

Proof of Lemma B.1. Any 𝑥 ∈ R𝑝 can be written using the

orthogonal decomposition as 𝑥 = 𝑥 − 𝑘𝜔𝛽 − 𝑘 ′𝛽⊥ for some 𝑘 ∈ R,

𝑘 ′ ∈ R and 𝛽⊥ perpendicular to 𝛽 , that is, 𝛽⊤ (𝛽⊥) = 0. Optimizing

over 𝑥 is equivalent to jointly optimizing over 𝑘 , 𝑘 ′ and 𝛽⊥ as

inf ∥𝑘𝜔𝛽 + 𝑘 ′𝛽⊥∥2
2
+ 𝜔

1 + exp(−𝛽⊤𝑥 + 𝑘𝜔 ∥𝛽 ∥2
2
)

s.t. 𝑘 ∈ R, 𝑘 ′ ∈ R, 𝛽⊥ ∈ R𝑝 , 𝛽⊤ (𝛽⊥) = 0.

After extending the norm, and by noticing that the optimal solution

in 𝑘 ′ and 𝛽⊥ should satisfy 𝑘 ′𝛽⊥ = 0, the above optimization

problem is equivalent to

inf 𝑘2𝜔2∥𝛽 ∥2
2
+ 𝜔

1 + exp(−𝛽⊤𝑥 + 𝑘𝜔 ∥𝛽 ∥2
2
)

s.t. 𝑘 ∈ R.
Let 𝐿(𝑘) be the objective function of the above optimization prob-

lem, we have

∇𝑘𝐿(𝑘) = 2𝜔2∥𝛽 ∥2
2
𝑘 −

𝜔2∥𝛽 ∥2
2
exp(−𝛽⊤𝑥 + 𝑘𝜔 ∥𝛽 ∥2

2
)

(1 + exp(−𝛽⊤𝑥 + 𝑘𝜔 ∥𝛽 ∥2
2
))2

= 𝜔2∥𝛽 ∥2
2
(2𝑘 − 𝜎 (𝑘) (1 − 𝜎 (𝑘))) ,

where for the purpose of this proof, we define 𝜎 (𝑘) as

𝜎 (𝑘) ≜ 1

1 + exp(−𝛽⊤𝑥 + 𝑘𝜔 ∥𝛽 ∥2
2
)
∈ (0, 1) .

Notice that 𝜎 (𝑘) (1−𝜎 (𝑘)) ∈ (0, 1
4
) for any value of 𝑘 ∈ R. Because

∇𝑘𝐿(𝑘) is continuous in𝑘 ,∇𝑘𝐿(𝑘) ≤ 0 for any𝑘 ≤ 0, and∇𝑘𝐿(𝑘) ≥
0 for any 𝑘 ≥ 1

8
, one can conclude that there exists an optimal

solution 𝑘★ that lies in the compact range [0, 1
8
]. This completes

the proof. □

Let 𝐿(𝑘) be the objective function of the optimization prob-

lem (14). Figure 5 visualizes several instances of 𝐿(𝑘) for differ-
ent values of inputs 𝛽, 𝑥 and 𝜔 . Note that 𝐿(𝑘) is non-convex in 𝑘 ,

and the optimizer of 𝐿(𝑘) is not necessarily unique as indicated in

Figure 5d.

C APPENDIX - NUMERICAL RESULTS
We use the synthetic experiment from [71] to generate unfairness

landscapes provided in Figure 1. We set the true distributions of

the class labels P(𝑌 = 0) = P(𝑌 = 1) = 1/2, and conditioning on 𝑌 ,

the feature 𝑋 has

𝑋 |𝑌 = 1 ∼ N([2; 2], [5, 1; 1, 5]),
𝑋 |𝑌 = 0 ∼ N([−2;−2], [10, 1; 1, 3]) .

Then, we draw sensitive attribute of each sample 𝑥 from a Bernoulli

distribution, that is

P(𝐴=1|𝑋 =𝑥 ′)=𝑝𝑑 𝑓 (𝑥 ′ |𝑌 =1)/(𝑝𝑑 𝑓 (𝑥 ′ |𝑌 =1) + 𝑝𝑑 𝑓 (𝑥 ′ |𝑌 =0)),
where 𝑥 ′ = [cos(𝜋/4), sin(𝜋/4); sin(𝜋/4), cos(𝜋/4)]𝑥 is a rotated

version of the feature vector 𝑥 and 𝑝𝑑 𝑓 (·|𝑌 = 𝑦) is the Gaussian
probability density function of 𝑋 given 𝑌 = 𝑦.
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(a) 𝛽 = (0, 1)⊤, 𝑥 = (−2, 10)⊤, 𝜔 =17.6
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(b) 𝛽 = (−5, 5)⊤, 𝑥 = (3, 5)⊤, 𝜔 =4
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(c) 𝛽 = (−6, 5)⊤, 𝑥 = (3, 5)⊤, 𝜔 =4
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(d) 𝛽 = (−4.7, 5)⊤, 𝑥 = (3, 5)⊤, 𝜔 =4

Figure 5: Plots of 𝐿(𝑘) with respect to 𝑘 for different values of 𝛽, 𝑥 and 𝜔 .

665


	Abstract
	1 Introduction
	2 Statistical Testing Framework for Fairness and Literature Review
	3 Wasserstein Projection Framework for Statistical Test of Fairness
	4 Testing Fairness for Probabilistic Equal Opportunity Criterion
	4.1 Wasserstein Projection
	4.2 Limiting Distribution
	4.3 Most Favorable Distributions

	5 Testing Fairness for Probabilistic equalized odds Criterion
	5.1 Wasserstein Projection
	5.2 Limiting Distribution
	5.3 Most Favorable Distributions

	6 Numerical Experiment
	6.1 Validation of the Hypothesis Test
	6.2 Most Favorable Distribution Analysis
	6.3 The COMPAS Dataset

	7 Concluding Remarks and Broader Impact
	Acknowledgments
	References
	A Appendix - Proofs
	A.1 Proofs of Section 2
	A.2 Proofs of Section 4
	A.3 Proofs of Section 5

	B Appendix - Auxiliary Result
	C Appendix - Numerical Results

