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1. Introduction

Linear elliptic homogeneous partial differential equations (PDEs) play an important role in modeling many physical in-
teractions, including electrostatics, elastostatics, acoustic scattering, and viscous fluid flow. Ideas from potential theory allow
us to reformulate the associated boundary value problem (BVP) as an integral equation [31]. The solution to the BVP can
then be expressed as a surface convolution against the PDE’s fundamental solution called a layer potential. Discretizing this
boundary integral equation (BIE) formulation offers several advantages over commonly used PDE discretization methods
such as finite element or finite volume methods.

First, the system of equations uses asymptotically fewer variables because only the boundary of the PDE’'s domain
requires discretization. There is no need to directly discretize the domain itself, which is often time-consuming and
error-prone, especially when complex or unbounded domains are involved. This makes the boundary integral formulation
well-suited for electromagnetic problems [47] and indispensable for particulate flow simulations with changing, moving,
or deforming geometries [49]. Second, although the algebraic system resulting from discretization of BIE’s is dense, effi-
cient methods based on the Fast Multipole Method [26] can solve it in O(N) time. A suitable integral formulation can
yield a well-conditioned system that can be solved using an iterative method like GMRES in relatively few iterations. Third,
high-order quadrature rules can be leveraged to dramatically improve the accuracy of a given discretization size.

For elliptic problems with smooth domain boundaries, fast, high-order methods have a significant advantage over stan-
dard methods, drastically reducing the number of degrees of freedom needed to approximate a solution to a given accuracy.
However, achieving this with a BIE discretization presents a significant challenge. In particular, integral equation solvers
require accurate quadrature rules for singular integrals, as the formulation requires the solution of an integral equation in-
volving the singular fundamental solution of the PDE. Moreover, if the solution needs to be evaluated arbitrarily close to the
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boundary, then one must numerically compute nearly singular integrals with high-order accuracy (e.g., [13,36,75]). Precom-
puting high-order singular/near-singular quadrature weights also presents a considerable problem. Such weights necessarily
depend on the surface geometry, so each sample point requires a unique set of weights. Furthermore, the sampling density
required for accurate singular/near-singular integration is highly dependent on the boundary geometry. For example, two
nearly touching pieces of the boundary require a sampling density proportional to the distance between them. Applying
such a fine discretization globally would be prohibitively expensive, highlighting the need for adaptive refinement.

1.1. Contributions

Our main contribution is a high-order, boundary integral solver for non-oscillatory elliptic PDEs, and experimental eval-
uation of this solver. An earlier parallel version of this method is used in [42] to simulate red blood cell flows through
complex blood vessel with high numerical accuracy. More specifically, the main features of our solver include:

o Singular and near-singular quadrature scheme. We introduce an approximation-based singular/near-singular quadra-

ture scheme for single- and double-layer potentials in 3D: after computing the solution at a set of nearby check points,
placed along a line intersecting the target, we extrapolate the solution to the target point. We have named this scheme
hedgehog, for reasons that are apparent from Fig. 2. In order to ensure accuracy of the scheme for complex geometries,
a key component of our scheme is a set of geometric criteria for surface sampling needed for accurate integration.
Our approach is motivated by the near-singular evaluation scheme of [52,75], which implements a similar scheme that
includes an additional on-surface singular evaluation to allow for interpolation of the solution. We eliminate the need
for explicit on-surface singular evaluation. An important consequence of this includes the use of smooth quadrature rules
only, removing the need for an explicit singular quadrature scheme. This allows for much greater flexibility in the choice
of surface representation (e.g., the representation of [75] was explicitly designed to support singular quadratures).

o Surface representation. Our quadrature scheme enables us to use standard Bézier patches to define the domain bound-
ary, which simplifies the use of the solver on CAD geometry, increases the efficiency of surface evaluation and simplifies
parallelization. It also allows for adaptive quad-trees of patches to approximate complex surfaces with nonuniform cur-
vature distribution efficiently. Our method can be applied to other surface representations with minimal changes.

o Refinement for geometric admissibility and quadrature accuracy. An essential aspect of our method is a set of fast
adaptive geometry refinement algorithms to ensure that the assumptions required for the validity and accuracy of
hedgehog are satisfied. These conditions are similar in spirit to [54] and [68], but adapted to the geometry of our
particular quadrature scheme. To guarantee quadrature accuracy of our method, we detail an adaptive h-refinement
approach for the integral equation discretization points.

We evaluate hedgehog for a variety of problems on complex geometries to demonstrate high-order convergence and
compare to [75].

1.2. Related work

We restrict our discussion to elliptic PDE solvers in 3D using boundary integral formulations. The common schemes
to discretize boundary integral equations are the Galerkin method, the collocation method, and the Nystrém method [2].
Galerkin and collocation methods are usually referred as Boundary Element Methods (BEM). BEM has been applied to a
variety of problems in elastodynamics, electromagnetics and acoustics [1,16,17]. There are a variety of BEM implementations
available; one that is most notable is BEM ++, which includes high-order elements [57] with extensions for adaptivity added
in [8,12]. In this paper, we focus on the Nystrom discretization, in which the integral in the equation is replaced by its
quadrature approximation. The Nystrom method is simple, yet it enables very efficient methods to solve the discretized
integral equation. Compared to BEM methods, Nystrom methods tend to be more efficient, especially for changing or moving
surfaces. However, Nystrom methods are more difficult to apply to non-smooth surfaces (we do not consider high-order
methods for surfaces with sharp edges and corners in this work).

The key element of Nystrom methods for BIE equations is efficient quadrature rules for singular and near-singular inte-
grals. In the BIE literature, such integration schemes fall into one of the several categories: singularity cancellation, asymptotic
correction, singularity subtraction, custom quadratures or approximation-based quadrature schemes.

Singularity cancellation schemes apply a change of variables to remove the singularity in the layer potential, allowing for
the application of standard smooth quadrature rules. The first polar change of variables was detailed in the context of
acoustic scattering [13], which leveraged a partition of unity and a polar quadrature rule to remove the singularity in the
integrand of layer potential. The method was extended to open surfaces in [14]. This methodology was applied to general
elliptic PDEs in [75] and coupled with the kernel-independent fast multipole method [74] and a general C* surface repre-
sentation for complex geometries [76]. Its advantages and disadvantages compared to hedgehog are discussed in Section 6.
Recently, [44] demonstrated that the choice of partition of unity function used for the change of variables has a dramatic ef-
fect on overall convergence order. The first singularity cancellation scheme in 3D on general surfaces composed of piecewise
smooth triangles was presented in [10,11]. [25] introduced a change of variables method for acoustic scattering on 3D sur-
faces, parametrized by spherical coordinates by integrating over a rotated coordinate system that cancels out the singularity.
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Asymptotic correction methods study the inaccuracies due to the singular PDE kernel with asymptotic analysis and apply
a compensating correction. [9,15,63] compute the integral with a regularized kernel and add corrections for regularization
and discretization for the single and double layer Laplace kernel in 3D, along with the Stokeslet and stresslet in 3D. [18]
computes an asymptotic expansion of the kernel itself, which is used to remove the aliasing error incurred when applying
smooth quadrature rules to near-singular layer potentials. This method is extended to 3D in [19] and a complete asymp-
totic analysis of the double-layer integral is performed in [37]. Singularity subtraction methods [33,34] explicitly subtract the
singular component of the integrand analytically, which produces a smooth bounded integral that can be integrated with
standard quadrature rules. However, the analytic calculations involved in these approaches are often tailored to a particular
PDE and require recalculation for each new PDE of interest.

Custom quadrature rules aim to integrate a particular family of functions to high-order accuracy. This can allow for arbi-
trarily accurate and extremely fast singular integration methods, since the quadrature rules can be precomputed and stored
[5,73].

Our method falls into the final category: approximation-based quadrature schemes. The first use of a local expansion to
approximate a layer potential near the boundary of a 2D boundary was presented in [6]. By using a refined, or upsampled,
global quadrature rule to accurately compute coefficients of a Taylor series, the resulting expansion serves as a reasonable
approximation to the solution near the boundary where quadrature rules for smooth functions are inaccurate. This scheme
was then adapted to evaluate the solution both near and on the boundary, called Quadrature by Expansion (QBX) [21,36].
The first rigorous error analysis of the truncation error of QBX was carried out in [21].

A fast implementation of QBX in 2D, along with a set of geometric constraints required for well-behaved convergence,
was presented in [54]. However, the interaction of the expansions of QBX and the translation operator expansions of the
FMM resulted in a loss of accuracy, which required an artificially high multipole order to compensate for this additional
error. [67] addresses this shortcoming by enforcing a confinement criteria on the location of expansion disks relative to
FMM tree boxes. [3] provided extremely tight error heuristics for various kernels and quadrature rules in 2D using contour
integration and the asymptotic approach of [22]. [4] then leveraged these estimates in a QBX algorithm for Laplace and
Helmholtz problems in 2D that adaptively selects quadrature upsampling and the expansion order for each QBX expansion.
In the spirit of [74], [53] generalizes QBX to any elliptic PDE by using potential theory to form a local, least-squares solution
approximation using only evaluations of the PDE’s fundamental solution.

The first extension of QBX to 3D was [62], where the authors present a local, target-specific QBX method on spheroidal
geometries. In a local QBX scheme, an upsampled accurate quadrature is used as a local correction to the expansion coef-
ficients computed from the coarse quadrature rule over the boundary. This is in contrast with a global scheme, where the
expansion coefficients are computed from the upsampled quadrature with no need for correction. The first local QBX scheme
appears in [6] in 2D, but the notion of local FMM corrections dates back to earlier work such as [5,38]. The expansions in
[62] computed in a target-specific QBX scheme can only be used to evaluate a single target point, but each expansion can
be computed at a lower cost than a regular expansion valid in a disk. The net effect of both these algorithmic variations
are greatly improved constants, which are required for complicated geometries in 3D. [68] extends the QBX-FMM coupling
detailed in [67] to 3D surfaces, along with the geometric criteria and algorithms of [54] that guarantees accurate quadra-
ture. [69] improves upon this by adding target-specific expansions to [68], achieving a 40% speed-up and [70] provides a
thorough error analysis of the interaction between computing QBX expansions and FMM local expansions.

In addition to techniques described above, a singular quadrature scheme of [29], further extended to 2D Stokes flows in
[72] and to near-singular 3D line integrals in [35], does not fit into one of the above categories. While this method performs
exceptionally well in practice, it does not immediately generalize to 3D surfaces in an efficient manner.

Most techniques mentioned above assume smooth domain boundaries or use adaptive refinement to handle non-smooth
features. There has been a great deal of recent work on special quadratures for regions with corners [30,55,58-61]. Although
not yet generalized to 3D, this work has the potential to vastly improve the performance of 3D Nystréom boundary integral
methods on regions with corners and edges.

A way to avoid singular quadratures entirely is to use the method of fundamental solutions (MFS), which represents the
solution as a sum of point charges on an equivalent surface outside of the PDE domain. MFS was successfully applied in
2D [7] and in axis-symmetric 3D problems [40]. Recently, [27] has introduced an 2D approach similar in spirit to MFS,
but reformulated as a rational approximation problem. Eliminating the need for singular integration makes these methods
advantageous, but placing the point charges robustly can be challenging in practice and general 3D geometries remain a
challenge.

We also briefly mention the use of isogeometric analysis (IGA) [28] in the context of boundary integral equations. IGA
aims to use the same basis functions for geometry and solution representation, in particular, similar to our work, reducing
the gap between representations used in CAD, and those needed for high-order BEM. IGA has been successfully applied
to singular and hypersingular boundary integral equations with a collocation discretization [65]. A Nystrom IGA method
coupled with a regularized quadrature scheme is detailed in [77].

The rest of the paper is organized as follows: In Section 2, we briefly summarize the problem formulation, geometry
representation and discretization. In Section 3, we detail our singular evaluation scheme and with algorithms to enforce ad-
missibility, adaptively upsample the boundary discretization, and query surface geometry to evaluate singular/near-singular
integrals. In Section 4, we provide error estimates for hedgehog. In Section 5, we summarize the complexity of each of the
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Fig. 1. PATCH QUADRISECTION. Right: the standard domain Z? of a single surface or quadrature patch. Middle: a collection of subdomains D; of E, produced
by quadrisection. Each D; corresponds to a map #; such that D; = ;(Z?); a single D; is highlighted in bold. Left: the image of E, under the patch ;. The
final image of each subdomain is outlined, with the image of D; in bold.

algorithms described in Section 3. In Section 6, we detail convergence tests of our singular evaluation scheme and compare
against other state-of-the-art methods.

2. Formulation
2.1. Problem setup
We restrict our focus to interior Dirichlet boundary value problems of the form
Lu(x)=0, x€€, (1)
uX) = f(x), x€dQ=r, (2)
with multiply- or singly-connected domain  of arbitrary genus. Our approach applies directly to standard integral equation
formulations of exterior Dirichlet and Neumann problems; we include results for an exterior Dirichlet problem in Section 6.4.

Here L is a linear elliptic operator and f is at least CX. While our method can be applied to any non-oscillatory elliptic PDE,
we use the following equations in our examples:

Au Laplace
Lu={Au—Vp, V-u=0 Stokes (3)
Au+=VV.u Navier (linear elasticity)

We follow the approach of [75]. We can express the solution at a point x €  in terms of the double-layer potential

G (x,
u(x) = D[p] (%) = / #‘ﬁ(}')dhﬂ (4)
r

where G(x, y) is the fundamental solution or kernel of Eq. (2), n(y) is the normal at y on I' pointing into the exterior of
2, and ¢ is an unknown function, or density, defined on I'. We list the kernels associated with the PDEs in Eq. (3) in [46,
Section 1]. Using the jump relations for the interior and exterior limits of u(x) as & tends towards I'" [39,45,48,50], we know
that Eq. (4) is a solution to Eq. (2) if ¢ satisfies

<%H—D+M> [¢p1(®) = f(x),xc (5)
with identity operator I. We will refer to ¢ as the density and u(x) as the potential at x. The double-layer integrals in this
equation are singular, due to the singularity in the integrand of Eq. (4). Additionally, as ¥ approaches T", Eq. (4) becomes a
nearly singular integral.

The operator M completes the rank of %I + D to ensure invertibility of Eq. (5). If %I + D is full-rank, M = 0. When
%I + D has a non-trivial null space, M accounts for the additional constraints to complete the rank of the left-hand side

of Eq. (5). For example, for the exterior Laplace problem on ¢ multiply-connected domains, the null space of %I + D has

dimension ¢ [62]. The full set of cases for each kernel is considered in this work and their corresponding values of M have
been detailed in [75].
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2.2. Geometry representation

We assume that the smooth domain boundary I' is given by a quadrilateral mesh consisting of quadrilateral faces Qr,
referred to as quads. Each quad is associated with a parametric domain Z2 = [—1, 1]?> = E;, along with embeddings Vr
E; — R3 for each quad such that Q, = y;(E;). We assume that the quad mesh is conforming, i.e., two non-disjoint faces
either share a whole edge or a single vertex; examples of this are shown in Figs. 8 and 9. We assume that no two images
yr(Ey) intersect, except along the shared edge or vertex. The surface I" is the union of patches U,y;(E;) = U;Q,. We also
assume that T is sufficiently smooth to recover the solution of Eq. (2) up to the boundary [39] and is at least Ck.

To represent the surface geometry, we approximate I with a collection of Bézier patches, given by a linear combination
of tensor-product Bernstein polynomials

Pi(s.)=Y > af) BI(s)BR(®), (6)

£=0m=0

where Bj(t) = (Z)t”‘e(l —t)¢ for each ¢ are the n-th degree Bernstein polynomials, i denotes the index of a patch in
the collection and a% e R3. Each patch P is a vector function from 7% to R3, so s,t € [—1,1]. We will refer to this
approximation of T as [".

The domain E; of each embedding function y; is adaptively refined using quadrisection, i.e., splitting a square domain
into four square subdomains of equal size. Quadrisection induces a quadtree structure on each E;. The root of the quadtree
is the original domain Z2 and each node of the tree is related by a single quadrisection of a subdomain of E,. The leaves
of the quadtree form a collection of subdomains D; whose union equals E;, as shown in Fig. 1-middle. Given an indexing
scheme of all D;’s over all E,’s, we define the function r(i) that maps the leaf node index i to its root node index r in
the quadtree forest, indicating that D; C E;. For each r, E; can have a distinct sequence of associated quadrisections and
therefore a distinct quadtree structure. We refer to the process of refinement or refining a patch P as the construction of such
quadtrees for each E, subject to some set of criteria.

On each D; at the quadtree leaves, we define a Bézier patch and reparametrize each patch over Z2 by defining the affine
map n; : Z? — Eriy such that ni(T* =D; C E;). It follows that the set of subdomains {n; (I%)|r(i) = «} form a cover of
E and {y,(i(Z?)) |r(i) = «} likewise covers ¥, (E,). We summarize this setup in Fig. 1; examples of surfaces of this form
can be seen in Figs. 8, 9, 12 and 13.

2.3. Problem discretization

We use two collections of patches in the form described above: Pcoarse and Prpe. The patches in Peoarse, called surface
patches, determine ' from T and the set of patches Pgpe, called quadrature patches, are obtained by further quadrisection
of the surface patches in Peoarse. The geometry of [ is not changed by this additional refinement of Pcoarse, but the total
number of subdomains E;; is increased. We will detail the geometric criteria that Pcoarse and Prpe must satisfy in Sec-
tion 3.2. Discretizing [ with a quadrature rule based on Pgpe results in a denser sampling of [ than a similar discretization
of Peoarse. We will refer to Peoarse as the coarse discretization of [* and Prne as the upsampled or fine discretization of f.

We index the patches in P; € Peoarse by i = 1,...N; we can then rewrite Eq. (4) as a sum of integrals over surface
patches:

N

oG

uw=>" | af(‘y‘)”m )4y, (1)
i=1p,

We discretize functions defined on [, such as Eq. (7), at g-node composite tensor-product Clenshaw-Curtis quadrature
points on Z2 of patches in Peoarse. We refer to these points and weights on a single patch P; as x; and wfc respectively,
for j=1...q%. The quadrature point y,gl from P; is defined as y;; = Pi(ni(x;)). We assume that the boundary condition f
is given by a black-box evaluator on R” that can be used to obtain values at y;;. For clarity, we reindex the surface points
by a global index I =1, ..., q%N. We discretize the double layer integral Eq. (7) on Pcoarse to approximate the solution u(x):

G, ¥;) N oGy
u, P, ~ix,P — TV g g CC 2Tl gw 8
( coarse) 2 U( coarse) = 121:]2; an(y B U 12]: 311(}’1) d1wg ( )
with g;; being the determinant of the metric tensor of P; at x; and vAvl,qu = gijch.c. In other words, (X, Peoarse) =

D[¢](x), where D[¢](x) ~ D[¢](%).

We can also discretize functions with tensor-product Clenshaw-Curtis nodes on the domains of patches in Pfpe. The
values of functions on Pype are interpolated from their values on the quadrature nodes of Pcoarse rather than being computed
directly on Pgpe. We call this interpolation from Peoarse t0 Prne upsampling. We denote the quadrature nodes and weights
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on Pane by Xj and w; with a similar global index J and refer to them as the upsampled nodes and weights. Identical
formulas are used for computing quadrature on Pgpe With the nodes and weights X;, W; on Pgpe, denoted u(x, Pgpe) and
(X, Prine), respectively.

In the next section, we describe the algorithm to compute an accurate approximation to the singular/near-singular
double-layer integral in Eq. (4), using a quadrature rule for smooth functions (Eq. (8)) as a building block. This algorithm al-
lows us to compute the matrix-vector products A¢, for a vector of values ¢ defined at the quadrature points y;, where A is
the discrete operator obtained from the left-hand side of Eq. (5) after approximating D[¢](y) with the singular integration
scheme. As a result, we can solve the linear system using GMRES, which only requires a matrix-vector product

Ap=T, (9)

where f is the boundary condition sampled at the points y,;. The evaluation of these integrals is accelerated in a standard
manner using the fast multipole method (FMM) [26,43,74].

3. Algorithms

We now detail a set of algorithms to solve the integral equation in Eq. (5) and evaluate the solution via the double layer
integral in Eq. (4) at a given target point ¥ € Q2. As described in the previous section, both solving Eq. (5) and evaluating
Eq. (4) require accurate evaluation of singular/near-singular integrals of functions defined on the surface I'. We first outline
our unified singular/near-singular integration scheme, hedgehog, its relation to existing approximation-based quadrature
methods and geometric problems that can impede accurate solution evaluation. We then describe two geometry prepro-
cessing algorithms, admissibility refinement and adaptive upsampling, that address these issues to obtain the sets of patches

Peoarse and Pgpe used by hedgehog.
3.1. Singular and near-singular evaluation

We begin with an outline of the algorithm. For a point sy € ['ona patch P from Pcoarse that is closest to x, we first
upsample the density ¢ from Peoarse t0 Prne and compute the solution at a set of points ¢, s=1,...p called check points,
sampled along the surface normal at s, away from . We use Eq. (8) to approximate the solution at the check points. We
then extrapolate the solution to x.

For a given surface or quadrature patch P : Z? — R3, we define the characteristic length L(P) as the square root of the

surface area of P, i.e, L(P) = fp dyp. We use L =L(P) or Ly for y € P(D) to denote the characteristic length when P

is clear from context. For a point x € 2, we assume that there is a single closest point sy € [ to x; all points to which the
algorithm is applied will have this property by construction. Note that n(sy), the vector normal to [ at sy, is chosen to
point outside of .

We define three zones in 2 for which Eq. (4) is evaluated differently in terms of Eq. (8) and the desired solution
accuracy €arget. The far field QF = {x € Q| lu(x) — U(X; Peoarse) |2 < €target}, Where the quadrature rule corresponding to
Peoarse is sufficiently accurate, and the intermediate field Q; = {x € Q| [|u(x) — 01(X; Pfine) |2 < €target}, Where quadrature over
Prine is sufficiently accurate. The remainder of € is the near field Qn = Q \ Q.

Non-singular integration. To compute the solution at points x in QF, Eq. (8) is accurate to €garget, SO We can simply compute
(X, Pcoarse) directly. Similarly for points in €\ QF, we know by definition that (X, Pgpe) is sufficiently accurate, so it can
also be applied directly.

Singular/near-singular integration algorithm. For the remaining points in Qp, we need an alternative means of evaluating the
solution. In the spirit of the near-singular evaluation method of [75], we construct a set of check points co, ..., cp in Q; along
a line intersecting x to approximate the solution near x. However, instead of interpolating the solution as in [75], we instead
extrapolate the solution from the check points to x. We define two distances relative to sx: R(sx) =bLs, = |co — sxll2, the
distance from the first check point ¢( to f', and r(sx) =als, = ||c; — ¢ciy1]l2, the distance between consecutive check points.
We assume 0 <a,b < 1.

The overall algorithm for the unified singular/near-singular evaluation scheme is as follows. A schematic for hedgehog
is depicted in Fig. 2.

1. Find the closest point sy on [ to x.
2. Given values a and b, generate check points C = {cg, ..., €p}

€s =Sx — (R(sy) +sr(sx))n(sy), s=0,...,p (10)

The center of mass of these check points ¢ is called the check center for x. Note that Pgpe must satisfy the condition
that ¢ are in ; for a given choice of a and b.
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D (upsampled quadrature points

check points
. Eckp

Fig. 2. SCHEMATIC OF SINGULAR/NEAR-SINGULAR EVALUATION. A small piece of a boundary [ is shown, along with the set of patches Pcoarse (patch boundaries
are drawn in black). The target point x, in this case on f, is shown in green. The solution is evaluated at the check points ¢ (gray points off-surface) using
the fine discretization Pgpe (small dots on-surface). The distance from the first check point ¢p to " is R and the distance between consecutive check points
¢; and cj4q is r. In this example, Pgpe is computed from Peoarse With two levels of uniform quadrisection, producing 16 times more patches. The patch
length L is roughly proportional to the average edge length of the patch.

3. Upsample ¢. We interpolate the density values ¢; at x; on patches in Pcoarse to quadrature points X; on patches in
Phne With global indices I and | on Peoarse and Prpe respectively. If a patch P; in Peoarse iS split into m; patches in
Phine, We are interpolating from g2 points to m;q® points.

4. Evaluate the potential at check points via smooth quadrature with the upsampled density, i.e. evaluate i(cs) =
u(cs, Phne) for s=0,...,p.

5. Compute a Lagrange interpolant @i through the check points cq, ..., ¢, and values ii(cp), ..., {i(cy) and evaluate at the
interpolant at x:

P
(%) =Y " fi(es)Ls(ty). (11)
s=0
where {(x) is the sth Lagrange basis function through the points co, ..., cp, and ty € R is such that ¥ = sy — txn(sx)
(see Fig. 6 for a schematic of the check points). Since x lies between co and T, we are extrapolating when computing

u(x).

Ill-conditioning of the discrete integral operator. This evaluation scheme can be used directly to extrapolate all the way to the
surface and obtain the values of the singular integral in Eq. (5). However, in practice, due to a distorted eigenspectrum
of this approximate operator, GMRES tends to stagnate at a level of error corresponding to the accuracy of hedgehog
when it is used to compute the matrix-vector product. This is a well-known phenomenon of approximation-based singular
quadrature schemes; [36, Section 3.5][53, Section 4.2] present a more detailed study. To address this, we average the interior
and exterior limits of the solution at the quadrature nodes, computed via hedgehog, to compute the on-surface potential
and add %I to produce the interior limit. This shifts the clustering of eigenvalues from around zero to around % which
is ideal from the perspective of GMRES. We call this two-sided hedgehog, while the standard version described above is
called one-sided hedgehog. We observe stable and consistent convergence of GMRES when two-sided hedgehog is used
to evaluate the matrix-vector multiply to solve Eq. (9). In light of this, we always use two-sided hedgehog within GMRES
and set the stopping tolerance for GMRES to ecmres = 10712, regardless of the geometry, boundary condition or quadrature
order.

3.2. Geometric criteria for accurate quadrature

The accuracy of the method outlined above is controlled by two competing error terms: quadrature error incurred from
approximating the layer potential Eq. (4) with Eq. (8) in Step 4 and extrapolation error due to approximating the singular
integral with an extrapolated value in Step 5. Both errors are determined by the location of check points relative to the
patches in Peoarse and Prne (see Heuristic 4.1 and Theorem 4.2).

In Fig. 3, we show three examples of different choices of check point locations to evaluate the potential at a point with
hedgehog. In Fig. 3-left, c¢g is placed close to the target point, while in Fig. 3-middle, cq is far from the target point, but
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Fig. 3. POSSIBLE CHECK POINT CONFIGURATIONS. A 2D example depicting three choices of a and b in Eq. (10). Shown is the boundary f, with black tick marks
denoting patch boundaries of Pcoarse, green tick marks denoting patch boundaries of Pppe, the target point (red dots), its check points (blue dots) along
the normal closest to the target point, and the medial axis of £ (gray dotted line). Large (left) and small (middle) values of a and b can cause clustering
of check points near to I, which requires large amounts of upsampling to compute the potential accurately. Using the medial axis as a heuristic to for
admissibility (right), we can minimize the amount of adaptive upsampling required.

¢p is close to a non-local piece of [. Both cases will require excessive refinement of Pcoarse in order to resolve Eq. (8)
accurately with Pgpe. On the other hand, in Fig. 3-right, we can either perform one refinement step on Pgoarse OF adjust
a and b, which will result in fewer patches in Pfpe, and therefore provide a faster integral evaluation, while maintaining
accuracy.

In an attempt to strike this balance between speed and accuracy, we need certain constraints on the geometry of f
to ensure the efficient and accurate application of hedgehog, which we impose on the patch sets Pcoarse and Prpe. We
will first outline our constraints on the quadrature patch sets Pcoarse and Prne Which allow for accurate evaluation with
hedgehog.

3.2.1. Admissibility criteria
A set of patches P is admissible if the following statements are satisfied on each quadrature patch in P:

1 The error of a surface patch P; approximating an embedding y; is below some absolute target accuracy €g
2 The interpolation error of the boundary condition f is below some absolute target accuracy €¢
3 For each check center ¢; corresponding to the quadrature point y ; on the surface, the closest point on I' to Cjisy I3

Criterion 1 is required to ensure that f approximates I with sufficient accuracy to solve the integral equation. We
discuss how to choose €; in [46, Section 6]; for the tests in this paper, we simply choose €z < €target. Criterion 2 guarantees
that f can be represented at least as accurately as the desired solution accuracy. We therefore similarly choose €f < €target.
Criterion 3 balances the competing geometric constraints of cost and accuracy by flexibly placing check points as far as
possible from [ without causing too much upsampling on other patches. If a check point ¢ constructed from a surface
patch P is too close to another surface patch P’, Criterion 3 will indicate that P is inadmissible. If P is subdivided into
its children, new check points ¢’ generated from these children of P will be closer to P and further from P’. Since check
points are placed at distances proportional to L(P), repeated refinement of P will eventually satisfy Criterion 3.

3.2.2. Upsampling criteria

Once we have a set of admissible surface patches satisfying Criteria 1 to 3, we need to determine the upsampled quadra-
ture patches Prpe that ensure that the check points generated from Peoarse are in €, ie., [[u(c) — @i(c, Pne) |l < Etarget. TO
achieve this, we need a criterion to determine which patches are “too close” to a given check point for the error to be
below €target. We make the following assumption about the accuracy of our smooth quadrature rule: Eq. (8) is accurate to
€target at points further than L(P) from P, for €qrget > 1012, This is motivated by [3,6], which demonstrate the rapid con-
vergence of the layer potential quadrature error with respect to ||¥x — sx||2. For sufficiently high quadrature orders, such as
g = 20, this assumption seems to hold in practice. We say that a point x is near to P if the distance from x to P is less
than L(P); otherwise, x is far from P. We would like all check points required for the singular/near-singular evaluation of
the discretization of Eq. (4) using hedgehog to be far from all patches in Pgpe. If this is satisfied, then we know that the
Clenshaw-Curtis quadrature rule will be accurate to 10~12 at each check point.

3.3. Refinement algorithm preliminaries

Computing the distance from a check point to a given patch is a fundamental step in verifying the constraints on Pcoarse
and Prpe from Sections 3.2.1 and 3.2.2. Before detailing our refinement algorithms to enforce these criteria, we introduce
several geometric algorithms and data structures that will be used to compute the closest point on piecewise polynomial
surfaces.



M.J. Morse, A. Rahimian and D. Zorin Journal of Computational Physics 442 (2021) 110511

L50e AR

v~
Fig. 4. RELATIONSHIP BETWEEN CONTROL POINTS AND BOUNDING BOXES. Left: a patch in the tensor product Bézier basis, with control points (a;y’s from Eq. (6))
plotted. The convex hull of the control points of a patch is guaranteed to contain the patch. Center: The patch bounding box, computed from the control
points. Right: The near-zone bounding box of the patch from Section 3.5 computed by inflating the bounding box by L(P).

3.3.1. AABB trees

In order to implement our algorithms to enforce admissibility efficiently, we use a fast spatial data structure to find the
patches that are close to a query point x. In [54,68], the quadtree and octree within an FMM is extended to support the
geometric queries needed for a fast QBX algorithm. In this work, we use an axis-aligned bounding box (AABB) tree, which
is a type of bounding volume hierarchy [56], implemented in geogram [41]. An AABB is a tree with nodes corresponding
to bounding boxes and leaves corresponding to bounding boxes containing single objects. A bounding box By is a child of
another box B if By C B1; the root node is a bounding box of the entire domain of interest. Operations supported by AABB
trees include: (i) finding all bounding boxes containing a query point, (ii) finding all bounding boxes that intersect another
query box, (iii) finding the closest triangle to a query point (because triangles have trivial bounding boxes). By decoupling
geometric queries from fast summation, the individual algorithms can be more thoroughly optimized, in exchange for the
additional memory overhead of maintaining two distinct data structures. The query algorithm presented in [42] likely has
better parallel scalability, but AABB trees are faster for small to medium problem sizes on a single machine due to less
redundant computation.

To define an AABB tree for our patch-based surface [", we make use of the following fact: the control points of a Bézier
surface (a¢p,’s from Eq. (6)) form a convex hull around the surface that they define [24]. As a result, we can compute a
bounding box of a surface or quadrature patch P directly from the Bézier coefficients simply by computing the maximum
and minimum values of each component of the a;y’s, as shown in Fig. 4-middle. This bounding box can then be inserted
into the AABB tree as a proxy for a surface or quadrature patch.

3.3.2. Computing the closest point to a patch

To find a candidate closest patch P;, to x, we construct a fine triangle mesh and bounding boxes of each patch in Pcoarse
and insert them into an AABB tree. We can query the AABB tree for the nearest triangle to ¥ with the AABB tree, which
corresponds to P;,. We then compute the accurate true distance d;, to P;, using a constrained Newton method, presented
in detail in [46, Section 2].

However, there may be other patches whose distance to x is less than d;,, as shown in Fig. 5. To handle this case, we
then query the AABB tree for all patches P;,, ..., P;, that are distance at most d;, from x. This is achieved by forming
a query box centered at ¥ with edge length 2d;, and querying the AABB tree for all intersection bounding boxes. The
precise distance is then computed for each patch P;,,..., P; with [46, Section 2] and the smallest distance is chosen. We
summarize this process in Algorithm 1.

k

Algorithm 1: Compute the closest point to x.

Data: A set of quadrature patches P, a query point X, Newton method tolerance €opt

Result: The closest point sy on P to x

Construct an AABB tree Tt from a fine triangle mesh of the quadrature patches of P

Construct an AABB tree T from bounding boxes of quadrature patches in P.

To = closest triangle to ¥ computed with Tt

P;, = patch corresponding to 7o

Find the closest point sy o on Pj, to x with [46, Section 2].

diy = [1X — sx0ll2

Bdio (x) = a box centered a x with edge length 2d;,

Find the boxes Bj,,...B;

for Bij €Bj,,...Bj do
P;; = quadrature patch corresponding to Bj;
Find the closest point sy j on Pj; tox with [46, Section 2] to precision €qpt.
di; = 1% — s,jll2

, in Tp that intersect By, (%)

© 0 NSO A WN -

—
N = O

—
w

Jj* = argminj{d,-].}
return sy j-

—
£
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Fig. 5. A 2D SCHEMATIC OF NEAR-PATCH CANDIDATE SELECTION. A visual depiction of the quantities defined in lines 3-7 of Algorithm 1 (shown here in 2D for
simplicity), with notation matching Algorithm 4. The triangle-mesh proxy is drawn in as black lines and patches are drawn as gray curves. We have found
an initial closest triangle 7o to x corresponding to patch P;, and computed d(x, P;,) = d;,. We then query the AABB tree for all patches that intersect box
Bdio with edge length 2d;,, shown in blue. There is clearly a patch that is closer to x than P;, that will be returned from the query, which will be distance
dmin from x.

3.4. Admissibility algorithm

Our algorithm to enforce Criteria 1 to 3 proceeds as follows:

e To enforce Criterion 1, we adaptively fit a set of surface patches to the embeddings y; representing I'. We construct a
bidegree (n,n) piecewise polynomial least-squares approximation P; in the form of Eq. (6) to ¥; on I%. If P;’s domain
D; is obtained by refinement of E;, we fit P; o n; to ¥ on Z2, using 4n x 4n samples on Z2. If the pointwise error of
P; and its partial derivatives is greater than &g, then it is quadrisected and the process is repeated.

e Once the embeddings are resolved, we resolve f on each surface patch produced from the previous step in a similar
fashion to enforce Criterion 2. However, rather than a least-squares approximation in this stage, we use piecewise
polynomial interpolation.

e To enforce Criterion 3, we construct the set of check centers ¢; which correspond to the check points required to
evaluate the solution at the quadrature nodes y;. For each check center ¢;, we find the closest point S¢, € foIf lse, —
Y1l = €opt, we split the quadrature patch P containing y;. The tolerance €qp is used in the Newton’s method in [46,
Section 2]; we usually choose €qpt = 10714, Since d(¢;, [") is proportional to Ly , the new centers ¢; for the refined
patches will be closer to the surface. We use Algorithm 1 to compute sz . However, in the case of check points, we can
skip lines 1-6 to compute d;,, since ¢; is R +r(p + 1)/2 away from y; € P(D) by construction. We can apply lines 7-14
of Algorithm 1 with djy = R +r(p + 1)/2 to compute sg,.

We summarize the algorithm to enforce Criterion 3 in Algorithm 2. At each refinement iteration, the offending patches
are decreased by quadrisection, which reduces the distance from the quadrature point y; to its checkpoints. This eventually
satisfies Criterion 3 and the algorithm terminates.

3.5. Adaptive upsampling algorithm

Before detailing our upsampling algorithm to satisfy the criteria outlined in Section 3.2.2, we must define the notion
of a near-zone bounding box of a quadrature patch P, denoted Bpe,r(P). The near-zone bounding box of P is computed as
described in Section 3.3.1, but then is inflated by 2L(P), as shown in Fig. 4-right. This inflation guarantees that any point x
that is near P is contained in Bpear(P) and, for an admissible set of quadrature patches Pcoarse, that any x € Qn must be
contained in some quadrature patch’s near-zone bounding box. This means that by forming Bpear(P) for each quadrature
patch in Prpe, a check point is in Q; if it is not contained in any near-zone bounding boxes.

To compute the upsampled patch set from Pcoarse, We initially set Pgne = Peoarse, COMpute the near-zone bounding boxes
of each patch in Pgpe and insert them into an AABB tree. We also construct the set of check points C required to evaluate
our discretized layer-potential with hedgehog (Section 3.1). For each check point ¢ € C, we query the AABB tree for all
near-zone bounding boxes that contain c. If there are no such boxes, we know c is far from all quadrature patches and can
continue. If, however, there are near-zone bounding boxes B, ..., Bj, containing ¢, we compute the distances d;, from ¢ to
P;,,..., P using [46, Section 2]. If d;, < L(P;,), we replace P;, in Pgpe with its four children produced by quadrisection.

To improve the performance of this refinement procedure, we allow for the option to skip the Newton method in
Algorithm 1 and immediately refine all patches Pjy,...Pj,. This is advantageous in the early iterations of the algorithm,
when most check points are near to patches by design. We allow for a parameter ngp to indicate the number of iterations to
skip the Newton optimization and trigger refinement immediately. We typically set ngjp = 2. We summarize our algorithm
in Algorithm 3.

10
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Algorithm 2: Enforce admissibility Criterion 3 on a set of quadrature patches.

Data: A set of quadrature patches 7P, optimization tolerance €gpt
Result: An admissible set of quadrature patches P

1 P = Pcoarse

2 Mark all patches in P as inadmissible.

3 while any patch in ‘P is inadmissible do

4 Construct an AABB tree T as described in Section 3.3.2 from P
5 for P € P do
6 if P is inadmissible then
7 Construct a set of check centers Cp for each y; € P(D)
8 for ¢ € Cp do
9 diy=R+r(p+1)/2
10 Compute s; with lines 7-14 of Algorithm 1 with precision €opt and dj,.
1 if [Ise — ¥;ll2 < €opt then
12 | Mark P as admissible.
13 else
14 Mark P as inadmissible.
15 L break // only need one bad check center to mark P for refinement
16 for P € P do
17 if P isinadmissible then
18 L Split P into its four child patches, mark each as inadmissible, and replace P with its children in P.
19 return P

Algorithm 3: Adaptively upsample to accurately evaluate Eq. (8) at check points.

Data: An admissible patch set P, number of iterations ng;p before using [46, Section 2]
Result: An upsampled set of quadrature patches

1 Compute inflated near-zone bounding boxes Bi, ..., By of each P € P.
2 Construct an AABB tree T from the near-zone bounding boxes.
3 Construct all check points C required to evaluate the Eq. (5) on P.
4 Pfine =P
5 Mark all check points in C as near.
6i=0
7 while any ¢ € C is marked near do
8 for c € C do
9 if ¢ is marked near then
10 Query T for all bounding boxes Bj,, ...B;, containing c.
11 P;,,...Pj = patches corresponding to boxes Bj,, ...Bj,
12 Mark c as far
13 for Pc P; ,...P; do
14 if i > ngp then
15 Find the closest point s¢ on P to ¢ with Algorithm 1.
16 if ||sc —c|l2 < L(P) then
17 Split P and replace it in Pgpe with its children.
18 L Mark ¢ as near
19 else
20 Split P and replace it in Pgpe with its children.
21 L Mark ¢ as near
22 i=i+1

3.6. Marking target points for evaluation

Once we have solved Eq. (9) for ¢ on ', we need the ability to evaluate Eq. (4) at an arbitrary set of points in the
domain. For a target point ¥, in order apply the algorithm in Section 3.1, we need to determine whether or not x € Q and,
if so, whether x is in Qy, ; or QF. Both of these questions can be answered by computing the closest point sy on [ to x.
If n(syx) - (x —sx) <0, then x € Q. As we have seen in Section 3.2.2, the distance ||x — sx|| determines whether x € Qy, @
or Qr. However, for large numbers of target points, a brute force calculation of closest points on [ to all target points is
prohibitively expensive. We present an accelerated algorithm combining Algorithm 1 and an FMM evaluation to require only
constant work per target point.

11
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3.6.1. Marking and culling far points

A severe shortcoming of Algorithm 1 is that its performance deteriorates as the distance from x to [ increases. Consider
the case where [ is a sphere with radius r with x at its center. The first stage of Algorithm 1 returns a single quadrature
patch that is distance r from x; the next stage will return all quadrature patches. This will take O(N) time to check the
distance to each patch. Even on more typical geometries, we observe poor performance of Algorithm 1 when x is far from
r.

To address this, we use an additional FMM-based acceleration step to mark most points far from I before using applying
Algorithm 1. Our approach is based on computing the generalized winding number [32] of I" at the evaluation points. For
closed curves in R2, the winding number at a point counts the number of times the curve travels around that point. The
generalized winding number of a surface I" at a point x € R3 can be written as

wp =~ [ EZ 1y, (12)

r

We recognize this integral as the double-layer potential in Eq. (4) for a Laplace problem with ¢ = 1. Its values in R? are
[39]:

1 xeQ\l
wp(X)=11/2 xel (13)
0 xeR3\Q

Eq. (12) can be evaluated using the same surface quadrature in Eq. (8) using an FMM in O(N) time. While the quadrature
rule is inaccurate close to the surface, Qf is defined precisely as the zone where the quadrature rule is sufficiently accurate.
For this reason, we use

lwp (%) — 1] < €target (14)

to mark points x € QF C 2 and a similar relation

|wp (R)] < Etarget (15)

to mark points x ¢ . This approach is similar in spirit to the spectrally accurate collision detection scheme of [52, Section
3.5]. Unlike [52], however, we do not use singular integration to mark all points. This isn’'t possible since at this stage
since we do not yet know which target points require singular integration. We use the FMM evaluation purely as a culling
mechanism before applying the full marking algorithm.

Remark. Since the quadrature rule may be highly inaccurate for points close to the surface, due the near-singular nature of
the integrand, wp(x) may happen to be close to one or zero. We highlight that it is possible that points outside Q2 may be
mismarked, although we have not observed this in practice.

3.6.2. Full marking algorithm

We combine the algorithms of the previous two sections into a single marking pipeline for a general set of target points
in R3, by first applying the algorithm of Section 3.6.1 to mark all points satisfying Eq. (14) then passing the remaining
points to Algorithm 1. The full marking algorithm is summarized as Algorithm 4.

4. Error analysis

As with other approximation-based quadrature methods, hedgehog has two primary sources of error: the quadrature
error eq incurred as a result of evaluating potential at the check points and the extrapolation error eg due to evaluating
the polynomial approximation of the potential at the target point, assuming Pcoarse iS admissible. Let

p
eq(®) = | _(u(cs) — i(cs, Phine)) s (tx)| . (16)
s=0
p
er(®) = |u®) — Y _u(cs)s(ty), (17)
s=0
Chedgehog (¥) < eq (X) +eg(X), (18)
where u(x) and (X, Prne) are defined in Egs. (4) and (8) and £s(t) is the s-th Lagrange polynomial defined on the points
{0,1,..., p}. We define ty such that x = —n(y)(R + txr), SO ty = w. In this section, we first prove that we achieve

high-order accuracy with our singular/near-singular evaluation scheme in Section 3.1 with respect to extrapolation order p
and quadrature order q. We then detail the impact of surface approximation on overall solution accuracy.

12
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Algorithm 4: Mark points in regions Qp, Q; and Q.

Data: An admissible set of quadrature patches P, €target, target points X
Result: A marked set of target points X

1 ¢po=1

2 w; = Laplace FMM(P, X, ¢0)

3 for x<€ X do

4 if [0p (%) — 1] < €target then

5 Mark x as inside €.

6 Mark x as in Q.

7 else if |0 (X)| < €targer then

8 Mark x as outside Q.

9 for x€ X do
10 if x is unmarked then

11 Compute the closest point sy to ¥ with Algorithm 1
12 dmin:”Sx*xHZ

13 if dmin < Ls, then

14 | Mark x as in Qn

15 else

16 |_ Mark x as in

17 if n(sy) - (x —sy) <0 then
18 |_ Mark x as inside
19 Mark x as outside Q

4.1. Quadrature error

We briefly state a tensor-product variation of known Clenshaw-Curtis quadrature error results as applied to smooth
functions in 3D. This estimate is derived based on assumptions detailed in Appendix A that, in general, is difficult to verify
in practice and may not hold for all functions we consider. For this reason, we refer to it as a heuristic.

Heuristic 4.1. Let the boundary I" be discretized by quadrature patches over the domains [—h, h] and the boundary condition
f in Eq. (2) be at least C¥. Apply the g-th order Clenshaw-Curtis quadrature rule to the double-layer potential u(x) given in
Eq. (7) and let x be in the interior of Q2. Then for all sufficiently large g:

128hk+1
e®) < : (19)
15wk(2q + 1 — k)k
where
- 3P (3G(x, Pi(s, 1))
V= Pi(s,t (s, t 20
max | max au“a\/ﬂ( on @ (Pi(s,1))gp, (s, )) . (20)

gp is the determinant of the metric tensor of a patch P implicit in Eq. (7), < means “approximately less than or equal to,”

and [i¢llr = 11¢/v/1 = *2lx.

This heuristic captures the qualitative behavior of the error. We present the derivation of Heuristic 4.1 in Appendix A.
This heuristic is insufficient for direct application to Eq. (7). As x — I, the value of k required in Heuristic 4.1 grows rapidly
due to growing higher order derivatives of the integrand. Such large values of g and k imply that smooth quadrature rules
are cost-prohibitive; this is the problem that singular/near-singular quadrature schemes like hedgehog aim to address.
Moreover, this estimate is too loose to determine whether hedgehog or smooth quadrature is required to evaluate the
potential. The assumption in Section 3.2.2 addresses this problem by providing a cheap, reasonably robust criterion for
refinement that is motivated by existing analyses [3,6] instead of relying on Heuristic 4.1.

4.2. Extrapolation error

A reasonable critique of hedgehog is its reliance on an equispaced polynomial interpolant to extrapolate values of u to
the target point. Despite using the first-kind barycentric interpolation formula [71], polynomial interpolation and extrapo-
lation in equispaced points is well-known for an exponentially growing Lebesgue constant and poor stability properties as
the number of points p increases [51,66]. Recently [20] demonstrated stable extrapolation in equispaced p + 1 points using
least-squares polynomials of degree ,/p. However, these results are asymptotic in nature and don't tell the full story for
small to moderate values of p, as in the hedgehog context.

We begin our discussion with a simple representative experiment in equispaced extrapolation. Fig. 6 depicts a minimal
extrapolation setup in 3D of a simple singular function w(t) =1/||t — q|| along a line, with ¢ = (0,0,0) and p = —.1. We

13
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> ¥y

Fig. 6. DIAGRAM OF EXTRAPOLATION SETUP. The toy setup used to study the extrapolation error of a singular function. We choose a simple point singularity
() = "tlw where g = (p, 0, 0) (black star) with p = —.1. We choose samples at the points t; = (R +ir,0,0) for i =0, ..., p (black dots) and extrapolate

the values w(to), ..., u(tp) to t =0 (green dot).
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Fig. 7. EMPIRICAL EXTRAPOLATION ERROR BEHAVIOR. We sweep over a range of R and r values to vary Fig. 6 and plot the log of the relative error in Figs. 7a
to 7e, for values p =6,8,10, 12, 14, in increasing order, from (a) to (e). In these figures, the x-axis is the extrapolation distance R normalized by p and
the y-axis is the ratio rp/R. The top of the y-axis corresponds to r =R; rp/R =1 corresponds to our choice of the parameter a. Assuming that p = O (L),
r/R=a/b and R/p =b/A for some constant A.

extrapolate exact values of u from p points, located at t; = (R +ir, 0, 0), to the origin. This closely mimics the worse-case
extrapolation error in 1D of a function analytic in a Bernstein ellipse with a real axis intercept of p + R + rp/2. We repeat
this for a large range of values of r and R for various values of p. The log of the relative error is plotted in Figs. 7a to 7e as
a function of the relative extrapolation interval size rp/R and the scaled extrapolation distance R/ p.

As mentioned in [53, Section 3.4], the adaptive refinement of Pcoarse resolves the boundary data f, and therefore u and
¢, on the length scale L of the patch. This means we can reasonably assume that the distance of the nearest singularity is
O(L) from T, ie., p = AL for some A. In the context of hedgehog, we know that R =bL(P) and r = aL(P). Figs. 7a to 7e
are a study of extrapolation error as a function of a/b, b/A and p.

There are several important observations to make from these plots:

e Extrapolation error decreases as R/p decreases, as expected.

14
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e For a fixed value of R/p, the extrapolation error decreases rapidly as rp decreases, up to a certain value r*p. This is
somewhat counterintuitive, since this means placing points closer together and extrapolating a further distance relative
to rp. For a fixed p in exact arithmetic, letting the interpolation interval size tend to zero produces an order p Taylor
expansion of the solution u centered at the interval’s origin, which accounts for this phenomenon.

e Beyond r*p, the extrapolation error increases. The effects of finite precision eventually pollute the convergence behavior
described above. Moreover, the spacing r* appears to be a function of p. For p =6, r can be reduced to 1/p without
any numerical issues, but by p =14, only r > % is a safe choice for extrapolation.

We do not aim to rigorously analyze these phenomena in this work. We highlight them to provide empirical evidence that
equispaced extrapolation is a reasonable, but not optimal, choice for our problem of singular/near-singular integration and
to provide some intuition for our parameter choices.

The following simple result describes the behavior of the extrapolation error in Eq. (17).

Theorem 4.2. Let u(c(t)) be the solution to Eq. (2) given by Eq. (4), restricted to the line c(t) in 3D intersecting X, let c(t) be given by

c(t) =8y — (R +tr)n(sy), (21)

where sy is the closest point on [tox R= bLs,, r = aLs,, n(sx) is the outward surface normal at s, and let [uP (e(t))| be bounded
above by Cp, on the interval [-R, R + pr]. Let B(t) be the p-th order polynomial interpolant of u(c(t)) constructed from the check

points co, ..., ¢p, where ¢; = c(i). Then the extrapolation error associated with hedgehog behaves according to:
u(e(t) =Bl < — LR +1p)” = — L |b+ap] - [LIP, (22)
(r+D! (r+D!
where ty = w.

Proof. We know that for a smooth function f and points X, ...x, in a 1D interval Io, for some & € Ip, the following relation
holds for all x € Iy:

p
fP @)
X) —PXx)="—= X —Xj). 23
FO =R <p+1)!g( ) (23)
Let 3 be the pth order polynomial interpolating the points X, ...xp. In the hedgehog setup, since R+rp is the distance of
the furthest check point to y, we know that x — x; < R 4+ rp for each i. Since f(t) =u(c(t)) is harmonic, and therefore C°,
in , | fP(¢)| can be uniformly bounded on Iy by some constant Cp, Noting that R =bL and r =al yields our result. O

For fixed values of a and b, as we let L — 0, the extrapolation error is bounded by O(LP). In practice, however, this
means that we can choose a and b to minimize the constant factor |b+ap|P in Theorem 4.2. Since p > 1, a must be chosen
to balance out the contribution of p, yet our extrapolation study shows that we can’t simply set a = 0. We therefore choose
a <1/p for p =6 and 8, motivated by Figs. 7a and 7b. Moreover, since b < 1, we can choose a < b/p, which allows a and b
to decay at the same rate. The advantage of choosing a < b/p is that b is a single parameter that controls the accuracy of
hedgehog. Since we have fixed the quadrature order g = 20 to satisfy the assumption in Section 3.2.2, a smaller value of b
will trigger more upsampling in Algorithm 3, keeping quadrature error fixed while reducing extrapolation error.

It is important to keep in mind that Theorem 4.2 only provides insight for moderate values of p; our conclusions are
largely irrelevant for large p. We use p =6 and a = b/6, leaving the construction of an optimal extrapolation scheme to
future work.

4.3. Limitations

Our error discussion reveals several limitations of our method. The first and most apparent shortcoming is that extrap-
olation instability fundamentally limits convergence order. However, for reasonable orders of convergence, up to 14, we
have discussed an empirical scheme to choose parameters to maximize the available convergence behavior. Moreover, low-
order surface geometries used in engineering applications will likely limit the convergence rate before it is limited by the
extrapolation order, making this a non-issue in practical scenarios.

Another downside of the chosen extrapolation approach is lack of direct extension of hedgehog to oscillatory problems
like the Helmholtz equation. Due to the limitation on the values of p, we can’t guarantee the ability to resolve high-
frequency oscillations in the solution. A new extrapolation procedure is required to do so robustly without compromising
efficiency.

In [68], the authors demonstrate a relationship between the truncation error of a QBX expansion and the local curvature
of I". Our scheme also is susceptible to this form of error and we do not address nor analyze this in this work. This is a
subtle problem that requires a detailed analysis of the surface geometry with respect to the chosen extrapolation scheme.
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Another limitation is the lack of an accurate error estimate to serve as an upsampling criteria in place of the criteria in
Section 3.2.2, such as [35]. Extending [35] to 3D surfaces is non-trivial and whether the size of Pg,e would be reduced
enough to outweigh the added cost of the additional Newton iterations required by their scheme remains to be seen.

Finally, for certain accuracy targets and geometries, the algorithm above may lead to an impractically high number of
patches in Peoarse and Prpe. Geometries with nearly-touching non-local regions, as shown in Fig. 12, will see large amounts
of refinement. If the nearly-touching embeddings y; are close enough, i.e., less than 10710 apart, there is little hope of an
accurate solution with a fixed computational budget. We allow the user to enforce a minimal patch size Lpy;,, limiting the
time and memory consumption at the expense of not reaching the requested target accuracy.

5. Complexity

In this section, we summarize the complexity of the algorithms required by hedgehog. We present a detailed complex-
ity analysis in [46, Section 3]. The input to our overall algorithm is a domain boundary I" with Nj,j; patches and boundary
condition f. The parameters that directly impact complexity are:

e The number of patches N after admissibility refinement. This is a function of Njpj;, the geometry of T, the definition of
f, and the choices of parameters a and b in check point construction.

e Quadrature order q and the degree of smoothness k of I and f. We assume that k is sufficiently high to obtain optimal
error behavior for a given g by letting k = 2q in Eq. (20).

e hedgehog interpolation order p.

e The numbers of evaluation points in different zones Nfar, Ninter, and Npear, With Mot = Ngar + Ninter + Nnear-

The complexity is also affected by the geometric characteristics of I' as described in [46, Section 3].

o Admissibility. The complexity of this step is O (Njyit 1og Ninit), with constants dependent on cg, So and C;. The logarith-
mic factor is due to use of an AABB tree for closest surface point queries.

e Upsampling. The complexity of upsampling is O (mN log(N)), where m is the largest upsampling ratio. The logarithmic
factor appears for similar reason to admissibility, with constants that depend on geometric parameters and the boundary
condition through the error estimate of Section 4. We show that the upsampling ratio is independent of N in [46,
Section 3].

e Point marking. Identifying which zone an evaluation point belongs to (Qf, 2 or Qy) depends on N and the total
number of points to be classified Nyt = Nar + Ninter + Naoear. The complexity is O (Mot log N) with constants dependent
on geometric parameters, due to the cost of closest surface point queries.

e Far, intermediate and near zone integral evaluation. The complexity of these components depends on N and ANy, NMinter
and MNpear respectively, with the general form O (sqN + soA’), where A/ is the number of evaluation points in the
corresponding class. For the far field, s; =s; = 1. For the intermediate evaluation, s; =g? and s, = 1; finally, for the
near zone, s; = mq® and s, = p. If b is chosen appropriately, the intermediate and near zone error is €target-

e GMRES solve. Due to the favorable conditioning of the double-layer formulation in Eq. (5), GMRES converges rapidly to
a solution in a constant number of iterations for a given I' that is independent of N. This means that the complexity
to solve Eq. (5) is asymptotically equal (up to a constant dependent on I') to the complexity equal to a near-zone
evaluation with Npear = N(q + 1)2.

e Evaluation on uniform point distribution In many applications, one would like the value of the solution u due to a density
¢ at a collection of points uniformly distributed throughout the domain 2. When the number of such targets is chosen
to match the resolution of the surface discretization, the overall complexity of solution evaluation is O ((fi +mq®)q?N +
N3/2).

6. Results

We now demonstrate the accuracy and performance of hedgehog to evaluate singular/near-singular layer potentials on
various complex geometries to solve the integral equation in Eq. (5) and evaluate the solution as defined in Eq. (4).

6.1. Classical convergence with patch refinement

We will first demonstrate the numerical convergence behavior of hedgehog. As discussed in [36, Section 3.1],
approximation-based schemes such as hedgehog do not converge classically but do so up to a controlled precision if r
and R scale with proportional to the patch size. In order to observe classical convergence as we refine Pcoarse, We must al-
low R and r to decrease slower than O(L), such as with rate O(+/L). In this section, we choose the hedgehog parameters
a and b proportional to 1/+/L to achieve this and demonstrate numerical convergence with refinement of L.

16



M.J. Morse, A. Rahimian and D. Zorin Journal of Computational Physics 442 (2021) 110511

. .
P R T P A B R Y

Ceooooooce? Ceoeooooooe®

Charge Strength
61e04 05  1.0e+00 61604 05  1.0e+00

Charge Strength

Fig. 8. Geometry and singularities used for Green’s Identity convergence tests. Shown are polynomial patches defining boundary geometry (black lines)
and point singularities placed on the surface on a sphere of radius one. Singularity strengths are randomly selected values in [0, 1]; shown is the strength
intensity for Laplace problems, which varies from blue to red. We use 96 20th-order polynomial patches for the spheroid (left) and 32 cubic patches for
the torus (right).

Table 1

£°° RELATIVE ERROR IN GREEN’S IDENTITY VERSUS NUMBER OF PATCHES. The solution to Eq. (2) due to a known function u., shown in Fig. 8 is computed via
Green’s Identity. We evaluate the single- and double-layer potentials with hedgehog due to the Dirichlet and Neumann boundary data and compare
against the known value of u. on the boundary. Each column is the result of an additional level of uniform quadrisection of the patches in Pcoarse. The
final column (EOC) is the estimated convergence order, computed via least-squares log-log fit of the error as a function of max patch size.

Geometry PDE Relative ¢*° error (Number of patches) EOC
Spheroid Laplace 1.06 x 10~ (96) 4.78 x 1076 (384) 9.14 x 1078 (1536) 4.35x 1079 (6144) 477
(Fig. 8-left) Elasticity 1.68 x 1073 (96) 6.94 x 1075 (384) 1.53 x 107° (1536) 1.33 x 1078 (6144) 5.74

Stokes 1.92 x 1073 (96) 7.95 x 107> (384) 1.74 x 1076 (1536) 1.53 x 1078 (6144) 5.72
Torus Laplace 2.05 x 1073 (32) 7.52 x 107 (128) 3.79 x 1076 (512) 8.48 x 1078 (2048) 5.45
(Fig. 8-right) Elasticity 438 x 1072 (32) 1.17 x 1073 (128) 5.08 x 107> (512) 1.42 x 1076 (2048) 5.09

Stokes 5.03 x 1072 (32) 1.33 x 1073 (128) 5.81 x 107> (512) 1.65 x 1076 (2048) 5.09

In our examples, we use analytic solutions to Eq. (2) obtained as sums of point charge functions of the form
m
uc®) =Yy G y)vi (24)

i=1
where the charge locations y; with strengths y; are outside of 2. To construct specific solutions, we sample a sphere of
radius one with point charges, as shown in Figs. 8 and 9. We choose charge strengths ; randomly from [0, 1]¢, where d = 1
for Laplace problems and d = 3 for Stokes and elasticity problems.

We use the multipole order m = 20 with 5000 points per leaf box for the kernel-independent FMM. This ensures that
the FMM error does not dominate; sufficiently large number of points per leaf box is needed to minimize the additional
error due to tree depth. We choose a high quadrature order g = 20, or 400 quadrature points per patch in Pcoarse, relative
to overall convergence order to satisfy the assumption in Section 3.2.2. We also use two levels of uniform upsampling to
demonstrate convergence.

6.1.1. Green’s identity

We report the accuracy of the hedgehog evaluation scheme in Table 1, where we verify Green’s Identity for a random
known function u. in Eq. (24). We evaluate the Dirichlet and Neumann boundary data due to u. at the discretization
points of [ and use one-sided hedgehog to evaluate the corresponding single- and double-layer potentials at the same
discretization points. With each column of Table 1, we subdivide Pcoarse to more accurately resolve the boundary condition.
The error shown in Table 1 is the £°°-relative error in the solution value

H§ [%] ®) — D [uc] (%) — uc(x) HOO

lluelloo

) (25)

where S and D are the single- and double-layer singular integral operators discretized and evaluated with hedgehog.
In these tests, we choose p =6, r =.004v/L (a =.004/+/L) and R = .03v/L (b =.03/+/L). We observe roughly 5th order
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Table 2
PERFORMANCE OF SINGULAR EVALUATION IN GREEN'S IDENTITY. For each test in Table 1, we report
the number of target points evaluated with one-sided hedgehog per second per core.

Geometry PDE Target points/second/core
Spheroid Laplace 3684 5438 5077 5629
(Fig. 8-left) Elasticity 1325 1731 1687 1790
Stokes 1635 2075 2016 2120
Torus Laplace 2729 3373 4564 5477
(Fig. 8-right) Elasticity 984 1171 1347 1502
Stokes 1134 1331 1609 1727
AR 4
* g
L] L ¢
i .
° ® °
.0
L Charge Strength Charge Strength
6.16-04 5 1.0e+00 61604 05 108400
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Fig. 9. Geometry and singularities used for solver convergence tests. Figures are similar to Fig. 8, but displaying geometries for testing the convergence
of hedgehog within a GMRES solver. We use 30 16th-order polynomial patches for the pipe (left) and 50 20th-order patches for the genus two surface
(right). Note the proximity of the singularities to the domain of the genus two surface; the nearest singularity is less than .05L from TI'.

Table 3

£°° RELATIVE ERROR IN GMRES SOLVE AND SOLUTION EVALUATION VERSUS NUMBER OF PATCHES. We solve Eq. (2) by discretizing and evaluating the layer potential
in the integral equation in Eq. (5) as described in Section 3.1. We use two-sided hedgehog inside of GMRES to solve for ¢, then evaluate Eq. (8) with
one-sided hedgehog at a new set of points on I, Each column is the result of an additional level of uniform quadrisection of the patches in Pcoarse. The
final column (EOC) is the estimated convergence order, computed via least-squares log-log fit of the error as a function of max patch size.

Geometry PDE Relative £ error (Number of patches) EOC
Spheroid (Fig. 8-left) Laplace 2.70 x 1076 (96) 1.92 x 1077 (384) 4.47 x 1079 (1536) 5.13 x 10711 (6144) 5.35
Pipe Laplace 5.99 x 1074 (30) 3.03 x 1072 (120) 6.68 x 10~7 (480) 2.27 x 1078 (1920) 5.92
(Fig. 9-left) Elasticity 7.17 x 1072 (30) 3.57 x 1073 (120) 8.90 x 1075 (480) 4.14 x 1075 (1920) 5.45

Stokes 8.53 x 1072 (30) 4.12 x 1073 (120) 1.03 x 10~ (480) 4.73 x 1075 (1920) 5.43
Genus 2 Laplace 4.00 x 1072 (50) 1.25 x 10~ (200) 1.54 x 1076 (800) 5.73 x 10719 (3200) 8.76
(Fig. 9-right) Elasticity 9.20 x 1072 (50) 1.05 x 1073 (200) 1.00 x 1075 (800) 9.44 x 1078 (3200) 6.89

Stokes 1.03 x 10~ (50) 1.18 x 1073 (200) 1.15 x 10~ (800) 1.03 x 10~7 (3200) 6.88

convergence on both the spheroid and torus test geometries in Fig. 8 for each of the tested PDE’s. In Table 2, we present
the number of target points evaluated per second per core with one-sided hedgehog. We see that performance is best for
Laplace and worst for elasticity problems, as expected.

6.1.2. Solution via GMRES

We report the accuracy of the hedgehog scheme when used to solve Eq. (2) via the integral equation in Eq. (5). Two-
sided hedgehog is used in the matrix-vector multiply inside GMRES to solve Eq. (5) for the values of the density ¢ at the
discretization points. Then one-sided hedgehog is used to evaluate Eq. (8) at a slightly coarser discretization. Since GMRES
minimizes the residual at the original discretization of Eq. (5), this final step prevents an artificially accurate solution by
changing discretizations. Table 3 lists the £°° relative error values for the total solve and evaluation steps using Section 3.1
as we refine Peoarse Dy subdivision as in the previous section. In these tests, we choose p =6, r = .005v/L (a = .005/\/Z),
and R = .03vL (b=.03/+/L). As for previous examples, we observe at least 5th order convergence on all tested geometries
in Fig. 9 and Fig. 8-left and all PDE’s. We include the spheroid example as an additional demonstration of a high accuracy
solution via GMRES with our approach. We report the number of target points evaluated per second per core with two-
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Table 4

PERFORMANCE OF SINGULAR EVALUATION IN GMRES MATRIX-VECTOR MULTIPLY. For each test in Ta-
ble 3, we report the number of target points per second per core evaluated with two-sided
hedgehog in a single GMRES matrix-vector multiplication.

Geometry PDE Target points/second/core

Spheroid Laplace 2737 3149 2846 2950

Pipe Laplace 3046 2178 2832 2982

(Fig. 8-left) Elasticity 991 993 1189 1261
Stokes 1048 1140 1335 1422

Genus 2 Laplace 1862 2886 3122 2879

(Fig. 8-right) Elasticity 729 1125 1255 1295
Stokes 929 1304 1450 1504

sided hedgehog in Table 4. The results are similar to Table 2; the slower performance is because evaluation via two-sided
hedgehog is more expensive than one-sided hedgehog.

6.2. Comparison with [75]

In this section, we compare our method to [75], a previously proposed high-order, kernel-independent singular quadra-
ture method in 3D for complex geometries. These characteristics are similar to hedgehog shares these characteristics. [46,
Section 4] presents additional comparisons.

The metric we are interested is cost for a given relative error. Assuming the surface discretization is O(N), we measure
the cost of a method as its total wall time during execution T divided by the total wall time of an FMM evaluation on the
same O (N) discretization, Tgyym. By normalizing by the FMM evaluation cost, we minimize the dependence of the cost on
machine- and implementation-dependent machine-dependent parameters.

We run the tests in this section on the spheroid geometry shown in Fig. 8-left. We focus on the singular quadrature
scheme of [75]. The near-singular quadrature of [75] is algorithmically similar to hedgehog, but since an expensive singular
quadrature rule is used as a part of near-singular evaluation, it has a higher total cost. As a result, the accuracy and cost of
near-singular evaluation of [75] is bounded by the accuracy and cost of the singular integration scheme.

To compare the full hedgehog method with [75], we fit polynomial patches to the C* surface of [76], denoted T}, to
produce f during the first step of Section 3.4. We apply the remaining geometry preprocessing algorithms of Section 3.4
to ' to produce Peoarse. After producing Pape with two levels of uniform upsampling, we solve Eq. (5) with two-sided
hedgehog on [ and evaluate the solution on the boundary with one-sided hedgehog. We then solve for the solution to
Eq. (5) on 'y, using [75].

For each of the tests in this section, we choose some initial spacing parameter hg to discretize the surface of [76], as in
[75], and use the 16x upsampled grid and floating partition of unity radius proportional to O (+/h), as in the original work.
We apply hedgehog to [ and the scheme of [75] to T, with spacing hg/2!, fori=1,...4.

As in the previous section, we choose the parameters r and R of hedgehog to be 0 (+/L). For both quadrature methods,
we use a multipole order of 16 for PVFMM with at most 250 points in each leaf box. The results are shown in Fig. 10.
From left to right, each plot details the total cost of each scheme, the cost of each subroutine for hedgehog (denoted HH)
and the singular quadrature scheme of [75] (denoted POU), and the relative error as a function of h and L, respectively, for
all refinement levels. We plot the cost of both schemes the cost of each algorithmic step as a function of their computed
relative error. In each figure, we present results for a Laplace problem (top) and an elasticity problem (bottom).

In Fig. 10, as expected, we observe a higher convergence rate for hedgehog compared to [75]. [75] outperforms hedge -
hog in terms of cost for all tested discretizations. We observe that the FMM evaluation in Fig. 10 accounts for at least 95%
of the hedgehog cost. This means that a local singular quadrature method (based on corrections to an FMM evaluation,
Section 1.2) of worse complexity can beat a global method, simply by virtue of reducing the FMM size. By noting the large
difference between the hedgehog FMM cost and the hedgehog density interpolation, we can reasonably infer that a local
hedgehog scheme should narrow this performance gap and outperform [75] for larger problems, assuming that switching
to a local scheme does not dramatically affect error convergence.

6.3. Requested target precision vs. computed accuracy

In this section, we study the performance of the full algorithm outlined in Section 3. We test hedgehog on the torus
domain shown in Fig. 8-right. We choose a reference solution of the form of Eq. (24) with a single point charge located at
the origin, in the middle of the hole of the torus. We solve the integral equation with two-sided hedgehog and evaluate
the singular integral on a distinct discretization with one-sided hedgehog. We choose ¢ =20, p =6 and a = b/6. We
select various values for €target using the plot in Fig. 7a to choose b to ensure sufficiently accurate extrapolation. We plot
the results of our tests in Fig. 11.

We see in Fig. 11-left that we are consistently close to the requested target precision. We see a decline in target points
per second per core as accuracy increases in Fig. 11-middle. This is explained by Fig. 11-right, which shows an increase in
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Fig. 10. COMPARISON OF HEDGEHOG ON POLYNOMIAL PATCHES (HH) VERSUS [75] ON THE SURFACE REPRESENTATION OF [76] (POU) SOLVING VIA GMRES for u.. Laplace
(top) and elasticity (bottom) problems solved on the spheroid shown in Fig. 8. From left to right, we plot the total cost of each scheme, the cost of each
subroutine for hedgehog (blue) and the singular quadrature scheme of [75] (red), and the relative error as a function of h. We plot error convergence of
[75] as a function of h and hedgehog as a function of L, due to the distinct discretizations. For hedgehog parameters, we choose r = .013+/L, R = .075+/L
for the Laplace problem; for the elasticity problem, we choose r =.013+/L, R = .08+/L. We choose p =6 and q = 15 for both problems. For [75] the spacing
is hp = .35. Note that in the hedgehog timing breakdown, since the FMM time is dominant, the FMM cost lies directly on top of the total cost.
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Fig. 11. PERFORMANCE OF FULL ALGORITHM. Left: co-norm relative error in singular integral vs requested target accuracy (blue). The dotted line is the ideal
behavior y = x. Middle: Performance in terms of target points evaluated per second per core with hedgehog. Right: Number of patches in Pcoarse and
Prine computed by the preprocessing algorithms.

the size Pgpe as Pcoarse 'emains a fixed size. The initial 128 patches in Pcoarse are enough to resolve the boundary condition
and T', but we need greater quadrature accuracy for lower values of €gget. Decreasing the number of points in passed to
the FMM, i.e., decreasing the size of Pgpe, is the main way to improve performance of our method. This is further indication
that a local version of hedgehog will outperform a global approach.

6.4. Full algorithm on interlocking torii

We now demonstrate the full algorithm pipeline on an exterior Laplace problem, whose boundary is defined by four
interlocking torii shown in Fig. 12. The domain boundary is contained in the box [—3.8,2.4] x [—1.1,1.1] x [—1, 1]. The
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Fig. 12. ABSOLUTE ERROR OF GMRES SOLVE VIA HEDGEHOG ON INTERLOCKING TORIL Left: The admissible set of 1128 patches in Pcoarse used to solve Eq. (5) is
shown (black lines denote patch boundaries). The point charge generated the boundary condition is located within the second torus from the right. Right:
a cross-section of the torii geometry through the xz-plane, showing the second torus from the right and the location of the singularity (green point).

shortest distance between two adjacent torii is less than 10% of a polynomial patch length defining the boundary. We again
use a boundary condition of the form Eq. (24) with a single point charge located at (0, .03, .875), inside the upper half of the
second torus from the right in Fig. 12. This problem is challenging due to the nearly touching geometry of the torii, along
with the singularity placed close to the boundary. We run the admissibility and adaptive upsampling algorithms outlined in
Section 3, solve Eq. (5) using two-sided hedgehog, and evaluate the solution on the boundary using one-sided hedgehog.
The absolute error in the co-norm of the singular evaluation is plotted on the boundary surface.

Using a =.1, b =.025, p =6 and q = 20, we achieve a maximum pointwise error of 1.29 x 10~>. GMRES was able to
reduce the residual by a factor of 1013 over 109 iterations. There are 288768 quadrature points in the coarse discretiza-
tion, 18235392 quadrature points in the fine discretization, and 3465216 check points used in the two-sided hedgehog
evaluation inside GMRES. We evaluate the solved density at 451200 points on the boundary with one-sided hedgehog to
produce the render in Fig. 12. On a machine with two Intel Xeon E-2690v2 3.0 GHz CPU'’s, each with 10 cores, and 100 GB
of RAM, the GMRES solve and interior evaluation required 5.7 hours and can evaluate the singular integral at a rate of 1709
target points per second per core.

6.5. Solution on complex geometry

We have demonstrated in [42] a parallel implementation of Section 3.1, applied to simulating red blood cell flows. The
surface geometry of the blood vessel shown in Fig. 13 is complex, with rapidly varying curvatures and geometric distortions
due to singular vertices in the surface mesh. Since the surface is admissible, we are able to apply parallel hedgehog
directly without geometric preprocessing to solve an interior Dirichlet Stokes problem. We use a =.125, b =.125, p =6 and
q = 16 as simulation parameters.

Using 32 machines each with twenty 2.6 GHz cores with 100 GB of RAM, we achieve a maximum pointwise error of
3 x 10~% when solving a Stokes problem with constant density. We then place a random vector point charge two patch
lengths away (relative to the patches in Pcoarse) from the domain boundary (on the left side of Fig. 13, solve Eq. (5) using
two-sided hedgehog, and evaluate the solution on the boundary using one-sided hedgehog. The absolute error in the
oo-norm of the singular evaluation is plotted on the boundary surface. There are 10,485,760 quadrature points in the coarse
discretization, 167,772,160 quadrature points in the fine discretization, and 125,829,120 check points used in the two-sided
hedgehog evaluation inside GMRES. We evaluate the solved density at 209,715,200 points on the boundary with one-sided
hedgehog to produce the render in Fig. 12. We achieve a maximum pointwise error of 1.8 x 10~2 and can evaluate the
singular integral at rate of 3529 target points per second per core.

7. Conclusion

We have presented hedgehog, a fast, high-order, kernel-independent, singular/near-singular quadrature scheme for el-
liptic boundary value problems in 3D on complex geometries defined by piecewise tensor-product polynomial surfaces.
The primary advantage of our approach is algorithmic simplicity: the algorithm can be implemented easily with an exist-
ing smooth quadrature rule, a point FMM and 1D and 2D interpolation schemes. We presented fast geometry processing
algorithms to guarantee accurate singular/near-singular integration, adaptively upsample the discretization and query local
surface patches. We then evaluated hedgehog in various test cases, for Laplace, Stokes, and elasticity problems on various
patch-based geometries and compared our approach with [75].
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Fig. 13. ABSOLUTE ERROR OF GMRES SOLVE VIA HEDGEHOG ON COMPLEX BLOOD VESSEL GEOMETRY USED IN [42]. The blood vessel uses 40,960 8th order polynomial
patches (black edges denote patch boundaries). The geometry is admissible by construction. The point charge is located on left side of the figure (green).

[42] demonstrates a parallel implementation of hedgehog, but the geometric preprocessing and adaptive upsampling
algorithms presented in Section 3 are not parallelized. This is a requirement to solve truly large-scale problems that exist in
engineering applications. Our method can also be easily restructured as a local method. The comparison in Section 6.2 high-
lights an important point: a local singular quadrature method can outperform a global method for moderate accuracies, even
when the local scheme is asymptotically slower. This simple change can also dramatically improve both the serial performance
and the parallel scalability of hedgehog shown in [42], due to the decreased communication of a smaller parallel FMM
evaluation. The most important improvement to be made, however, is the equispaced extrapolation. Constructing a superior
extrapolation procedure, optimized for the boundary integral context, is the main focus of our current investigations.
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Appendix A. Derivation of Heuristic 4.1

We are interested in computing the error incurred when approximating a 2D surface integral with an interpolatory
quadrature rule. In 1D on the interval [—1, 1], we're interested in the quantity

Relf1=11f1— Qqlf] (A1)
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where
1
un=/fmw (A2)
) q
Qlf1=) flxywi, (A3)
i=0

for quadrature weights w; for a g-point quadrature rule. For a 2D double integral, we define a similar relationship between
the remainder, the exact integral and the gth order quadrature rule:

RE1A1=1P1f1- P11 (A4)
where
?Yf1= f / f(s, t)dsdt (A.5)
—1-1
QPIf1= ZZf(sz,t])w wj. (A6)
j=0i=0

For a function of two variables f(s,t), we will denote I[f] = f_ll f(s,-)ds as integration with respect to the s variable
only, which produces a function of t. The same subscript notation applies to Rq s[f] and Qg s[f]. We use similar notation
for t: we apply the 1D functional to the variable in the subscript, producing a 1D function in the remaining variable. We
observe that

1 1
ﬂ%ﬂ=/ ]ﬂuMsm_/umm_muﬂ] (A7)
41 4

Following the discussion in [3], we substitute into Eq. (A.7) and have

ID[f1=1[Rqs[f1+ Qq.s[f1] (A.8)
= Rg¢[Rqs[f1+ Qqs[fN+ QqelRqs[f1+ Qqs[f1] (A.9)
= Rq.c[Rq.s[f11+ Qqs[Rq.c[f11+ QqelRqs[f11+ Qq.c[Qqs[f1] (A10)

We assume that the higher-order “remainder of remainder” term contributes negligibly to the error. Although it has been
shown that this term has a non-trivial contribution to a tight error estimate [23], we are able to provide a sufficiently tight
upper bound. For large ¢, the quadrature rule approaches the value of the integral, i.e., Qqp ~ Ig for g =s,t, we're left
with:

11~ [Rq e[ f 11+ Ie[RqsLF11 + QP 1, (A11)
and hence:
RPTF1 S Is[Rqe [ FN + Ie[Rq s[f11, (A12)

where < means “approximately less than or equal to.” From [64, Theorem 5.1], we recall that for a 1D function 6 defined
n [—1,1], if Q4[] is computed with Clenshaw-Curtis quadrature, 6 is ck and |6® |1 <V on [—1, 1] for real finite V, then
for sufficiently large g, the following inequality holds
R[0] < 32V
= 150k@g+ 1 — kK

(A13)

where |la(x)||1 = |lo’/+/T — x2||1. We're interested in integrating a function 6 over an interval [—h, h] for various h. If § is
ck and ||8||r < V' on [—h, h] for a real constant V' independent of h, then we can define 6(x) = 6(hx) on [—1, 1] and apply
Eq. (A13):

32hk+l v’
15mk(2q + 1 — k)’

Rql0] < (A14)
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This follows directly from the proof of [64, Theorem 4.2] applied to 6 by replacing 6 with §(hx) and noting that 6% (x) =
h*6® (hx). The change of variables produces the first power of h, while each of the k integration by parts produces an
additional power of h. In the context of hedgehog, the size of h is proportional to the edge length of the subdomain Dj
outlined in Section 2.2.

Applying Eq. (A.14) to Eq. (A.12), and again letting f (s, t) = ©(hs, ht), gives us

32hk+1
15mk(2q + 1 — k)k

2
RPIF1S [ILV{S) + 1 [V{(©)]] (A15)
where V/(s) = max; [|@® (hs, ht)||r and V/(t) = max; |©® (hs, ht)||7 for fixed values of s,t. If we can choose a V that is
strictly greater than V/(t) and V/(s) for any s,t in Z®, we are left with

128hk+1y
RP[f1< . A16
¢ 13 15mk(2q + 1 — k)k (A16)

Applying this to the integration of double layer potentials, we can simply let V be the largest variation of the kth partial
derivatives of the integrand of any single patch in Eq. (7). In fact, we know that this value is achieved at the projection of
x on the patch P; closest to x, i.e., (s*,t*) = argminz [|¥ — P;i(s, t)||2. We can also choose h = max; h; to observe standard
high-order convergence as a function of patch domain size, which we summarize in the following theorem. The smoothness
and bounded variation assumptions required to apply Eq. (A.13) to our layer potential follow directly from the smoothness
of u(x) in Q. Our heuristic directly follows.
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