
Journal of Computational Physics 442 (2021) 110511
Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

A robust solver for elliptic PDEs in 3D complex geometries

Matthew J. Morse a,∗, Abtin Rahimian b, Denis Zorin a

a Courant Institute of Mathematical Sciences, New York University, New York, NY 10003, United States of America
b Department of Computer Science, University of Colorado - Boulder, Boulder, CO 80309, United States of America

a r t i c l e i n f o a b s t r a c t

Article history:
Available online 11 June 2021

We develop a boundary integral equation solver for elliptic partial differential equations
on complex 3D geometries. Our method is efficient, high-order accurate and robustly
handles complex geometries. A key component is our singular and near-singular layer
potential evaluation scheme, hedgehog: a simple extrapolation of the solution along a
line to the boundary. We present a series of geometry-processing algorithms required for
hedgehog to run efficiently with accuracy guarantees on arbitrary geometries and an
adaptive upsampling scheme based on a iteration-free heuristic for quadrature error. We
validate the accuracy and performance with a series of numerical tests and compare our
approach to a competing local evaluation method.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Linear elliptic homogeneous partial differential equations (PDEs) play an important role in modeling many physical in-
teractions, including electrostatics, elastostatics, acoustic scattering, and viscous fluid flow. Ideas from potential theory allow
us to reformulate the associated boundary value problem (BVP) as an integral equation [31]. The solution to the BVP can
then be expressed as a surface convolution against the PDE’s fundamental solution called a layer potential. Discretizing this
boundary integral equation (BIE) formulation offers several advantages over commonly used PDE discretization methods
such as finite element or finite volume methods.

First, the system of equations uses asymptotically fewer variables because only the boundary of the PDE’s domain
requires discretization. There is no need to directly discretize the domain itself, which is often time-consuming and
error-prone, especially when complex or unbounded domains are involved. This makes the boundary integral formulation
well-suited for electromagnetic problems [47] and indispensable for particulate flow simulations with changing, moving,
or deforming geometries [49]. Second, although the algebraic system resulting from discretization of BIE’s is dense, effi-
cient methods based on the Fast Multipole Method [26] can solve it in O (N) time. A suitable integral formulation can
yield a well-conditioned system that can be solved using an iterative method like GMRES in relatively few iterations. Third,
high-order quadrature rules can be leveraged to dramatically improve the accuracy of a given discretization size.

For elliptic problems with smooth domain boundaries, fast, high-order methods have a significant advantage over stan-
dard methods, drastically reducing the number of degrees of freedom needed to approximate a solution to a given accuracy.
However, achieving this with a BIE discretization presents a significant challenge. In particular, integral equation solvers
require accurate quadrature rules for singular integrals, as the formulation requires the solution of an integral equation in-
volving the singular fundamental solution of the PDE. Moreover, if the solution needs to be evaluated arbitrarily close to the

* Corresponding author.
E-mail addresses: mmorse@cs.nyu.edu (M.J. Morse), arahimian@acm.org (A. Rahimian), dzorin@cs.nyu.edu (D. Zorin).
https://doi.org/10.1016/j.jcp.2021.110511
0021-9991/© 2021 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jcp.2021.110511
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2021.110511&domain=pdf
mailto:mmorse@cs.nyu.edu
mailto:arahimian@acm.org
mailto:dzorin@cs.nyu.edu
https://doi.org/10.1016/j.jcp.2021.110511

M.J. Morse, A. Rahimian and D. Zorin Journal of Computational Physics 442 (2021) 110511
boundary, then one must numerically compute nearly singular integrals with high-order accuracy (e.g., [13,36,75]). Precom-
puting high-order singular/near-singular quadrature weights also presents a considerable problem. Such weights necessarily
depend on the surface geometry, so each sample point requires a unique set of weights. Furthermore, the sampling density
required for accurate singular/near-singular integration is highly dependent on the boundary geometry. For example, two
nearly touching pieces of the boundary require a sampling density proportional to the distance between them. Applying
such a fine discretization globally would be prohibitively expensive, highlighting the need for adaptive refinement.

1.1. Contributions

Our main contribution is a high-order, boundary integral solver for non-oscillatory elliptic PDEs, and experimental eval-
uation of this solver. An earlier parallel version of this method is used in [42] to simulate red blood cell flows through
complex blood vessel with high numerical accuracy. More specifically, the main features of our solver include:

• Singular and near-singular quadrature scheme. We introduce an approximation-based singular/near-singular quadra-
ture scheme for single- and double-layer potentials in 3D: after computing the solution at a set of nearby check points,
placed along a line intersecting the target, we extrapolate the solution to the target point. We have named this scheme
hedgehog, for reasons that are apparent from Fig. 2. In order to ensure accuracy of the scheme for complex geometries,
a key component of our scheme is a set of geometric criteria for surface sampling needed for accurate integration.
Our approach is motivated by the near-singular evaluation scheme of [52,75], which implements a similar scheme that
includes an additional on-surface singular evaluation to allow for interpolation of the solution. We eliminate the need
for explicit on-surface singular evaluation. An important consequence of this includes the use of smooth quadrature rules
only, removing the need for an explicit singular quadrature scheme. This allows for much greater flexibility in the choice
of surface representation (e.g., the representation of [75] was explicitly designed to support singular quadratures).

• Surface representation. Our quadrature scheme enables us to use standard Bézier patches to define the domain bound-
ary, which simplifies the use of the solver on CAD geometry, increases the efficiency of surface evaluation and simplifies
parallelization. It also allows for adaptive quad-trees of patches to approximate complex surfaces with nonuniform cur-
vature distribution efficiently. Our method can be applied to other surface representations with minimal changes.

• Refinement for geometric admissibility and quadrature accuracy. An essential aspect of our method is a set of fast
adaptive geometry refinement algorithms to ensure that the assumptions required for the validity and accuracy of
hedgehog are satisfied. These conditions are similar in spirit to [54] and [68], but adapted to the geometry of our
particular quadrature scheme. To guarantee quadrature accuracy of our method, we detail an adaptive h-refinement
approach for the integral equation discretization points.

We evaluate hedgehog for a variety of problems on complex geometries to demonstrate high-order convergence and
compare to [75].

1.2. Related work

We restrict our discussion to elliptic PDE solvers in 3D using boundary integral formulations. The common schemes
to discretize boundary integral equations are the Galerkin method, the collocation method, and the Nyström method [2].
Galerkin and collocation methods are usually referred as Boundary Element Methods (BEM). BEM has been applied to a
variety of problems in elastodynamics, electromagnetics and acoustics [1,16,17]. There are a variety of BEM implementations
available; one that is most notable is BEM ++, which includes high-order elements [57] with extensions for adaptivity added
in [8,12]. In this paper, we focus on the Nyström discretization, in which the integral in the equation is replaced by its
quadrature approximation. The Nyström method is simple, yet it enables very efficient methods to solve the discretized
integral equation. Compared to BEM methods, Nyström methods tend to be more efficient, especially for changing or moving
surfaces. However, Nyström methods are more difficult to apply to non-smooth surfaces (we do not consider high-order
methods for surfaces with sharp edges and corners in this work).

The key element of Nyström methods for BIE equations is efficient quadrature rules for singular and near-singular inte-
grals. In the BIE literature, such integration schemes fall into one of the several categories: singularity cancellation, asymptotic
correction, singularity subtraction, custom quadratures or approximation-based quadrature schemes.

Singularity cancellation schemes apply a change of variables to remove the singularity in the layer potential, allowing for
the application of standard smooth quadrature rules. The first polar change of variables was detailed in the context of
acoustic scattering [13], which leveraged a partition of unity and a polar quadrature rule to remove the singularity in the
integrand of layer potential. The method was extended to open surfaces in [14]. This methodology was applied to general
elliptic PDEs in [75] and coupled with the kernel-independent fast multipole method [74] and a general C∞ surface repre-
sentation for complex geometries [76]. Its advantages and disadvantages compared to hedgehog are discussed in Section 6.
Recently, [44] demonstrated that the choice of partition of unity function used for the change of variables has a dramatic ef-
fect on overall convergence order. The first singularity cancellation scheme in 3D on general surfaces composed of piecewise
smooth triangles was presented in [10,11]. [25] introduced a change of variables method for acoustic scattering on 3D sur-
faces, parametrized by spherical coordinates by integrating over a rotated coordinate system that cancels out the singularity.
2

M.J. Morse, A. Rahimian and D. Zorin Journal of Computational Physics 442 (2021) 110511
Asymptotic correction methods study the inaccuracies due to the singular PDE kernel with asymptotic analysis and apply
a compensating correction. [9,15,63] compute the integral with a regularized kernel and add corrections for regularization
and discretization for the single and double layer Laplace kernel in 3D, along with the Stokeslet and stresslet in 3D. [18]
computes an asymptotic expansion of the kernel itself, which is used to remove the aliasing error incurred when applying
smooth quadrature rules to near-singular layer potentials. This method is extended to 3D in [19] and a complete asymp-
totic analysis of the double-layer integral is performed in [37]. Singularity subtraction methods [33,34] explicitly subtract the
singular component of the integrand analytically, which produces a smooth bounded integral that can be integrated with
standard quadrature rules. However, the analytic calculations involved in these approaches are often tailored to a particular
PDE and require recalculation for each new PDE of interest.

Custom quadrature rules aim to integrate a particular family of functions to high-order accuracy. This can allow for arbi-
trarily accurate and extremely fast singular integration methods, since the quadrature rules can be precomputed and stored
[5,73].

Our method falls into the final category: approximation-based quadrature schemes. The first use of a local expansion to
approximate a layer potential near the boundary of a 2D boundary was presented in [6]. By using a refined, or upsampled,
global quadrature rule to accurately compute coefficients of a Taylor series, the resulting expansion serves as a reasonable
approximation to the solution near the boundary where quadrature rules for smooth functions are inaccurate. This scheme
was then adapted to evaluate the solution both near and on the boundary, called Quadrature by Expansion (QBX) [21,36].
The first rigorous error analysis of the truncation error of QBX was carried out in [21].

A fast implementation of QBX in 2D, along with a set of geometric constraints required for well-behaved convergence,
was presented in [54]. However, the interaction of the expansions of QBX and the translation operator expansions of the
FMM resulted in a loss of accuracy, which required an artificially high multipole order to compensate for this additional
error. [67] addresses this shortcoming by enforcing a confinement criteria on the location of expansion disks relative to
FMM tree boxes. [3] provided extremely tight error heuristics for various kernels and quadrature rules in 2D using contour
integration and the asymptotic approach of [22]. [4] then leveraged these estimates in a QBX algorithm for Laplace and
Helmholtz problems in 2D that adaptively selects quadrature upsampling and the expansion order for each QBX expansion.
In the spirit of [74], [53] generalizes QBX to any elliptic PDE by using potential theory to form a local, least-squares solution
approximation using only evaluations of the PDE’s fundamental solution.

The first extension of QBX to 3D was [62], where the authors present a local, target-specific QBX method on spheroidal
geometries. In a local QBX scheme, an upsampled accurate quadrature is used as a local correction to the expansion coef-
ficients computed from the coarse quadrature rule over the boundary. This is in contrast with a global scheme, where the
expansion coefficients are computed from the upsampled quadrature with no need for correction. The first local QBX scheme
appears in [6] in 2D, but the notion of local FMM corrections dates back to earlier work such as [5,38]. The expansions in
[62] computed in a target-specific QBX scheme can only be used to evaluate a single target point, but each expansion can
be computed at a lower cost than a regular expansion valid in a disk. The net effect of both these algorithmic variations
are greatly improved constants, which are required for complicated geometries in 3D. [68] extends the QBX-FMM coupling
detailed in [67] to 3D surfaces, along with the geometric criteria and algorithms of [54] that guarantees accurate quadra-
ture. [69] improves upon this by adding target-specific expansions to [68], achieving a 40% speed-up and [70] provides a
thorough error analysis of the interaction between computing QBX expansions and FMM local expansions.

In addition to techniques described above, a singular quadrature scheme of [29], further extended to 2D Stokes flows in
[72] and to near-singular 3D line integrals in [35], does not fit into one of the above categories. While this method performs
exceptionally well in practice, it does not immediately generalize to 3D surfaces in an efficient manner.

Most techniques mentioned above assume smooth domain boundaries or use adaptive refinement to handle non-smooth
features. There has been a great deal of recent work on special quadratures for regions with corners [30,55,58–61]. Although
not yet generalized to 3D, this work has the potential to vastly improve the performance of 3D Nyström boundary integral
methods on regions with corners and edges.

A way to avoid singular quadratures entirely is to use the method of fundamental solutions (MFS), which represents the
solution as a sum of point charges on an equivalent surface outside of the PDE domain. MFS was successfully applied in
2D [7] and in axis-symmetric 3D problems [40]. Recently, [27] has introduced an 2D approach similar in spirit to MFS,
but reformulated as a rational approximation problem. Eliminating the need for singular integration makes these methods
advantageous, but placing the point charges robustly can be challenging in practice and general 3D geometries remain a
challenge.

We also briefly mention the use of isogeometric analysis (IGA) [28] in the context of boundary integral equations. IGA
aims to use the same basis functions for geometry and solution representation, in particular, similar to our work, reducing
the gap between representations used in CAD, and those needed for high-order BEM. IGA has been successfully applied
to singular and hypersingular boundary integral equations with a collocation discretization [65]. A Nyström IGA method
coupled with a regularized quadrature scheme is detailed in [77].

The rest of the paper is organized as follows: In Section 2, we briefly summarize the problem formulation, geometry
representation and discretization. In Section 3, we detail our singular evaluation scheme and with algorithms to enforce ad-
missibility, adaptively upsample the boundary discretization, and query surface geometry to evaluate singular/near-singular
integrals. In Section 4, we provide error estimates for hedgehog. In Section 5, we summarize the complexity of each of the
3

M.J. Morse, A. Rahimian and D. Zorin Journal of Computational Physics 442 (2021) 110511
Fig. 1. Patch Quadrisection. Right: the standard domain I2 of a single surface or quadrature patch. Middle: a collection of subdomains Di of Er , produced
by quadrisection. Each Di corresponds to a map ηi such that Di = ηi(I2); a single Di is highlighted in bold. Left: the image of Er under the patch γr . The
final image of each subdomain is outlined, with the image of Di in bold.

algorithms described in Section 3. In Section 6, we detail convergence tests of our singular evaluation scheme and compare
against other state-of-the-art methods.

2. Formulation

2.1. Problem setup

We restrict our focus to interior Dirichlet boundary value problems of the form

Lu(x) = 0, x ∈ �, (1)

u(x) = f (x), x ∈ ∂� = �, (2)

with multiply- or singly-connected domain � of arbitrary genus. Our approach applies directly to standard integral equation
formulations of exterior Dirichlet and Neumann problems; we include results for an exterior Dirichlet problem in Section 6.4.
Here L is a linear elliptic operator and f is at least Ck . While our method can be applied to any non-oscillatory elliptic PDE,
we use the following equations in our examples:

Lu =

⎧⎪⎨
⎪⎩

�u Laplace

�u − ∇p, ∇ · u = 0 Stokes

�u + 1
1−2ν ∇∇ · u Navier (linear elasticity)

(3)

We follow the approach of [75]. We can express the solution at a point x ∈ � in terms of the double-layer potential

u(x) = D[φ](x) =
∫
�

∂G(x, y)

∂n(y)
φ(y)dy�, (4)

where G(x, y) is the fundamental solution or kernel of Eq. (2), n(y) is the normal at y on � pointing into the exterior of
�, and φ is an unknown function, or density, defined on �. We list the kernels associated with the PDEs in Eq. (3) in [46,
Section 1]. Using the jump relations for the interior and exterior limits of u(x) as x tends towards � [39,45,48,50], we know
that Eq. (4) is a solution to Eq. (2) if φ satisfies

(
1

2
I + D + M

)
[φ](x) = f (x), x ∈ � (5)

with identity operator I . We will refer to φ as the density and u(x) as the potential at x. The double-layer integrals in this
equation are singular, due to the singularity in the integrand of Eq. (4). Additionally, as x approaches �, Eq. (4) becomes a
nearly singular integral.

The operator M completes the rank of 1
2 I + D to ensure invertibility of Eq. (5). If 1

2 I + D is full-rank, M = 0. When
1
2 I + D has a non-trivial null space, M accounts for the additional constraints to complete the rank of the left-hand side
of Eq. (5). For example, for the exterior Laplace problem on
 multiply-connected domains, the null space of 1

2 I + D has
dimension
 [62]. The full set of cases for each kernel is considered in this work and their corresponding values of M have
been detailed in [75].
4

M.J. Morse, A. Rahimian and D. Zorin Journal of Computational Physics 442 (2021) 110511
2.2. Geometry representation

We assume that the smooth domain boundary � is given by a quadrilateral mesh consisting of quadrilateral faces Qr ,
referred to as quads. Each quad is associated with a parametric domain I2 = [−1, 1]2 = Er , along with embeddings γr :
Er → R3 for each quad such that Qr = γr(Er). We assume that the quad mesh is conforming, i.e., two non-disjoint faces
either share a whole edge or a single vertex; examples of this are shown in Figs. 8 and 9. We assume that no two images
γr(Er) intersect, except along the shared edge or vertex. The surface � is the union of patches ∪rγr(Er) = ∪r Q r . We also
assume that � is sufficiently smooth to recover the solution of Eq. (2) up to the boundary [39] and is at least Ck .

To represent the surface geometry, we approximate � with a collection of Bézier patches, given by a linear combination
of tensor-product Bernstein polynomials

P i(s, t) =
n∑

=0

n∑
m=0

a(i)

mBn

(s)B
n
m(t), (6)

where Bn

(t) =

(n

)
tn−
(1 − t)
 for each
 are the n-th degree Bernstein polynomials, i denotes the index of a patch in

the collection and a(i)

m ∈ R3. Each patch P is a vector function from I2 to R3, so s, t ∈ [−1, 1]. We will refer to this

approximation of � as �̂.
The domain Er of each embedding function γr is adaptively refined using quadrisection, i.e., splitting a square domain

into four square subdomains of equal size. Quadrisection induces a quadtree structure on each Er . The root of the quadtree
is the original domain I2 and each node of the tree is related by a single quadrisection of a subdomain of Er . The leaves
of the quadtree form a collection of subdomains Di whose union equals Er , as shown in Fig. 1-middle. Given an indexing
scheme of all Di ’s over all Er ’s, we define the function r(i) that maps the leaf node index i to its root node index r in
the quadtree forest, indicating that Di ⊂ Er . For each r, Er can have a distinct sequence of associated quadrisections and
therefore a distinct quadtree structure. We refer to the process of refinement or refining a patch P as the construction of such
quadtrees for each Er subject to some set of criteria.

On each Di at the quadtree leaves, we define a Bézier patch and reparametrize each patch over I2 by defining the affine
map ηi : I2 → Er(i) such that ηi(I2) = Di ⊆ Er(i) . It follows that the set of subdomains {ηi(I2) | r(i) = κ} form a cover of
Eκ and {γκ(ηi(I2)) | r(i) = κ} likewise covers γκ(Eκ). We summarize this setup in Fig. 1; examples of surfaces of this form
can be seen in Figs. 8, 9, 12 and 13.

2.3. Problem discretization

We use two collections of patches in the form described above: Pcoarse and Pfine. The patches in Pcoarse, called surface
patches, determine �̂ from � and the set of patches Pfine, called quadrature patches, are obtained by further quadrisection
of the surface patches in Pcoarse. The geometry of �̂ is not changed by this additional refinement of Pcoarse , but the total
number of subdomains Er(i) is increased. We will detail the geometric criteria that Pcoarse and Pfine must satisfy in Sec-
tion 3.2. Discretizing �̂ with a quadrature rule based on Pfine results in a denser sampling of �̂ than a similar discretization
of Pcoarse. We will refer to Pcoarse as the coarse discretization of �̂ and Pfine as the upsampled or fine discretization of �̂.

We index the patches in P i ∈ Pcoarse by i = 1, . . .N; we can then rewrite Eq. (4) as a sum of integrals over surface
patches:

u(x) =
N∑

i=1

∫
P i

∂G(x, y)

∂n(y)
φ(y)dyP i

. (7)

We discretize functions defined on �̂, such as Eq. (7), at q-node composite tensor-product Clenshaw-Curtis quadrature
points on I2 of patches in Pcoarse. We refer to these points and weights on a single patch P i as x j and wCC

j respectively,
for j = 1 . . .q2. The quadrature point yi j from P i is defined as yi j = P i(ηi(x j)). We assume that the boundary condition f
is given by a black-box evaluator on R3 that can be used to obtain values at yi j . For clarity, we reindex the surface points
by a global index I = 1, . . . , q2N . We discretize the double layer integral Eq. (7) on Pcoarse to approximate the solution u(x):

u(x,Pcoarse) ≈ û(x,Pcoarse) =
N∑

i=1

q2∑
j=1

∂G(x, yi j)

∂n(yi j)
φi j

√
gijw

CC
j =

q2N∑
I=1

∂G(x, y I)

∂n(y I)
φI ŵ I (8)

with gij being the determinant of the metric tensor of P i at x j and ŵi·q2+ j = √
gijwCC

j . In other words, û(x, Pcoarse) =
D̂[φ](x), where D̂[φ](x) ≈ D[φ](x).

We can also discretize functions with tensor-product Clenshaw-Curtis nodes on the domains of patches in Pfine . The
values of functions on Pfine are interpolated from their values on the quadrature nodes of Pcoarse rather than being computed
directly on Pfine. We call this interpolation from Pcoarse to Pfine upsampling. We denote the quadrature nodes and weights
5

M.J. Morse, A. Rahimian and D. Zorin Journal of Computational Physics 442 (2021) 110511
on Pfine by x̃ j and w̃ j with a similar global index J and refer to them as the upsampled nodes and weights. Identical
formulas are used for computing quadrature on Pfine with the nodes and weights x̃ j , w̃ j on Pfine, denoted u(x, Pfine) and
û(x, Pfine), respectively.

In the next section, we describe the algorithm to compute an accurate approximation to the singular/near-singular
double-layer integral in Eq. (4), using a quadrature rule for smooth functions (Eq. (8)) as a building block. This algorithm al-
lows us to compute the matrix-vector products Aφ, for a vector of values φ defined at the quadrature points y I , where A is
the discrete operator obtained from the left-hand side of Eq. (5) after approximating D[φ](y) with the singular integration
scheme. As a result, we can solve the linear system using GMRES, which only requires a matrix-vector product

Aφ = f , (9)

where f is the boundary condition sampled at the points y I . The evaluation of these integrals is accelerated in a standard
manner using the fast multipole method (FMM) [26,43,74].

3. Algorithms

We now detail a set of algorithms to solve the integral equation in Eq. (5) and evaluate the solution via the double layer
integral in Eq. (4) at a given target point x ∈ �. As described in the previous section, both solving Eq. (5) and evaluating
Eq. (4) require accurate evaluation of singular/near-singular integrals of functions defined on the surface �̂. We first outline
our unified singular/near-singular integration scheme, hedgehog, its relation to existing approximation-based quadrature
methods and geometric problems that can impede accurate solution evaluation. We then describe two geometry prepro-
cessing algorithms, admissibility refinement and adaptive upsampling, that address these issues to obtain the sets of patches
Pcoarse and Pfine used by hedgehog.

3.1. Singular and near-singular evaluation

We begin with an outline of the algorithm. For a point sx ∈ �̂ on a patch P from Pcoarse that is closest to x, we first
upsample the density φ from Pcoarse to Pfine and compute the solution at a set of points cs , s = 1, . . . p called check points,
sampled along the surface normal at sx away from �̂. We use Eq. (8) to approximate the solution at the check points. We
then extrapolate the solution to x.

For a given surface or quadrature patch P : I2 → R3, we define the characteristic length L(P) as the square root of the
surface area of P , i.e., L(P) =

√∫
P dyP . We use L = L(P) or L y for y ∈ P (D) to denote the characteristic length when P

is clear from context. For a point x ∈ �, we assume that there is a single closest point sx ∈ �̂ to x; all points to which the
algorithm is applied will have this property by construction. Note that n(sx), the vector normal to �̂ at sx , is chosen to
point outside of �.

We define three zones in � for which Eq. (4) is evaluated differently in terms of Eq. (8) and the desired solution
accuracy εtarget. The far field �F = {x ∈ � | ‖u(x) − û(x; Pcoarse)‖2 ≤ εtarget}, where the quadrature rule corresponding to
Pcoarse is sufficiently accurate, and the intermediate field �I = {x ∈ � | ‖u(x) − û(x; Pfine)‖2 ≤ εtarget}, where quadrature over
Pfine is sufficiently accurate. The remainder of � is the near field �N = � \ �I .

Non-singular integration. To compute the solution at points x in �F , Eq. (8) is accurate to εtarget, so we can simply compute
û(x, Pcoarse) directly. Similarly for points in �I \ �F , we know by definition that û(x, Pfine) is sufficiently accurate, so it can
also be applied directly.

Singular/near-singular integration algorithm. For the remaining points in �N , we need an alternative means of evaluating the
solution. In the spirit of the near-singular evaluation method of [75], we construct a set of check points c0, . . . , cp in �I along
a line intersecting x to approximate the solution near x. However, instead of interpolating the solution as in [75], we instead
extrapolate the solution from the check points to x. We define two distances relative to sx: R(sx) = bLsx = ‖c0 − sx‖2, the
distance from the first check point c0 to �̂, and r(sx) = aLsx = ‖c i − c i+1‖2, the distance between consecutive check points.
We assume 0 < a, b < 1.

The overall algorithm for the unified singular/near-singular evaluation scheme is as follows. A schematic for hedgehog
is depicted in Fig. 2.

1. Find the closest point sx on �̂ to x.
2. Given values a and b, generate check points C = {c0, . . . , cp}

cs = sx − (R(sx) + sr(sx))n(sx), s = 0, . . . , p (10)

The center of mass of these check points ĉ is called the check center for x. Note that Pfine must satisfy the condition
that cs are in �I for a given choice of a and b.
6

M.J. Morse, A. Rahimian and D. Zorin Journal of Computational Physics 442 (2021) 110511
Fig. 2. Schematic of singular/near-singular evaluation. A small piece of a boundary �̂ is shown, along with the set of patches Pcoarse (patch boundaries
are drawn in black). The target point x, in this case on �̂, is shown in green. The solution is evaluated at the check points cs (gray points off-surface) using
the fine discretization Pfine (small dots on-surface). The distance from the first check point c0 to �̂ is R and the distance between consecutive check points
c i and ci+1 is r. In this example, Pfine is computed from Pcoarse with two levels of uniform quadrisection, producing 16 times more patches. The patch
length L is roughly proportional to the average edge length of the patch.

3. Upsample φ. We interpolate the density values φI at xI on patches in Pcoarse to quadrature points x̃ J on patches in
Pfine with global indices I and J on Pcoarse and Pfine respectively. If a patch P i in Pcoarse is split into mi patches in
Pfine, we are interpolating from q2 points to miq2 points.

4. Evaluate the potential at check points via smooth quadrature with the upsampled density, i.e. evaluate û(cs) =
û(cs, Pfine) for s = 0, . . . , p.

5. Compute a Lagrange interpolant ũ through the check points c0, . . . , cp and values û(c0), . . . , ̂u(cp) and evaluate at the
interpolant at x:

ũ(x) =
p∑

s=0

û(cs)
s(tx), (11)

where
s(x) is the sth Lagrange basis function through the points c0, . . . , cp , and tx ∈ R is such that x = sx − txn(sx)
(see Fig. 6 for a schematic of the check points). Since x lies between c0 and �̂, we are extrapolating when computing
ũ(x).

Ill-conditioning of the discrete integral operator. This evaluation scheme can be used directly to extrapolate all the way to the
surface and obtain the values of the singular integral in Eq. (5). However, in practice, due to a distorted eigenspectrum
of this approximate operator, GMRES tends to stagnate at a level of error corresponding to the accuracy of hedgehog
when it is used to compute the matrix-vector product. This is a well-known phenomenon of approximation-based singular
quadrature schemes; [36, Section 3.5][53, Section 4.2] present a more detailed study. To address this, we average the interior
and exterior limits of the solution at the quadrature nodes, computed via hedgehog, to compute the on-surface potential
and add 1

2 I to produce the interior limit. This shifts the clustering of eigenvalues from around zero to around 1
2 , which

is ideal from the perspective of GMRES. We call this two-sided hedgehog, while the standard version described above is
called one-sided hedgehog. We observe stable and consistent convergence of GMRES when two-sided hedgehog is used
to evaluate the matrix-vector multiply to solve Eq. (9). In light of this, we always use two-sided hedgehog within GMRES
and set the stopping tolerance for GMRES to εGMRES = 10−12, regardless of the geometry, boundary condition or quadrature
order.

3.2. Geometric criteria for accurate quadrature

The accuracy of the method outlined above is controlled by two competing error terms: quadrature error incurred from
approximating the layer potential Eq. (4) with Eq. (8) in Step 4 and extrapolation error due to approximating the singular
integral with an extrapolated value in Step 5. Both errors are determined by the location of check points relative to the
patches in Pcoarse and Pfine (see Heuristic 4.1 and Theorem 4.2).

In Fig. 3, we show three examples of different choices of check point locations to evaluate the potential at a point with
hedgehog. In Fig. 3-left, c0 is placed close to the target point, while in Fig. 3-middle, c0 is far from the target point, but
7

M.J. Morse, A. Rahimian and D. Zorin Journal of Computational Physics 442 (2021) 110511
Fig. 3. Possible check point configurations. A 2D example depicting three choices of a and b in Eq. (10). Shown is the boundary �̂, with black tick marks
denoting patch boundaries of Pcoarse , green tick marks denoting patch boundaries of Pfine, the target point (red dots), its check points (blue dots) along
the normal closest to the target point, and the medial axis of �̂ (gray dotted line). Large (left) and small (middle) values of a and b can cause clustering
of check points near to �̂, which requires large amounts of upsampling to compute the potential accurately. Using the medial axis as a heuristic to for
admissibility (right), we can minimize the amount of adaptive upsampling required.

cp is close to a non-local piece of �̂. Both cases will require excessive refinement of Pcoarse in order to resolve Eq. (8)
accurately with Pfine. On the other hand, in Fig. 3-right, we can either perform one refinement step on Pcoarse or adjust
a and b, which will result in fewer patches in Pfine, and therefore provide a faster integral evaluation, while maintaining
accuracy.

In an attempt to strike this balance between speed and accuracy, we need certain constraints on the geometry of �̂
to ensure the efficient and accurate application of hedgehog, which we impose on the patch sets Pcoarse and Pfine. We
will first outline our constraints on the quadrature patch sets Pcoarse and Pfine which allow for accurate evaluation with
hedgehog.

3.2.1. Admissibility criteria
A set of patches P is admissible if the following statements are satisfied on each quadrature patch in P :

1 The error of a surface patch P i approximating an embedding γr is below some absolute target accuracy εg
2 The interpolation error of the boundary condition f is below some absolute target accuracy εf
3 For each check center ĉ j corresponding to the quadrature point y j on the surface, the closest point on �̂ to ĉ j is y j .

Criterion 1 is required to ensure that �̂ approximates � with sufficient accuracy to solve the integral equation. We
discuss how to choose εg in [46, Section 6]; for the tests in this paper, we simply choose εg < εtarget. Criterion 2 guarantees
that f can be represented at least as accurately as the desired solution accuracy. We therefore similarly choose εf < εtarget.
Criterion 3 balances the competing geometric constraints of cost and accuracy by flexibly placing check points as far as
possible from �̂ without causing too much upsampling on other patches. If a check point c constructed from a surface
patch P is too close to another surface patch P ′ , Criterion 3 will indicate that P is inadmissible. If P is subdivided into
its children, new check points c′ generated from these children of P will be closer to P and further from P ′ . Since check
points are placed at distances proportional to L(P), repeated refinement of P will eventually satisfy Criterion 3.

3.2.2. Upsampling criteria
Once we have a set of admissible surface patches satisfying Criteria 1 to 3, we need to determine the upsampled quadra-

ture patches Pfine that ensure that the check points generated from Pcoarse are in �I , i.e., ‖u(c) − û(c, Pfine)‖ < εtarget. To
achieve this, we need a criterion to determine which patches are “too close” to a given check point for the error to be
below εtarget. We make the following assumption about the accuracy of our smooth quadrature rule: Eq. (8) is accurate to
εtarget at points further than L(P) from P , for εtarget > 10−12. This is motivated by [3,6], which demonstrate the rapid con-
vergence of the layer potential quadrature error with respect to ‖x − sx‖2. For sufficiently high quadrature orders, such as
q = 20, this assumption seems to hold in practice. We say that a point x is near to P if the distance from x to P is less
than L(P); otherwise, x is far from P . We would like all check points required for the singular/near-singular evaluation of
the discretization of Eq. (4) using hedgehog to be far from all patches in Pfine. If this is satisfied, then we know that the
Clenshaw-Curtis quadrature rule will be accurate to 10−12 at each check point.

3.3. Refinement algorithm preliminaries

Computing the distance from a check point to a given patch is a fundamental step in verifying the constraints on Pcoarse
and Pfine from Sections 3.2.1 and 3.2.2. Before detailing our refinement algorithms to enforce these criteria, we introduce
several geometric algorithms and data structures that will be used to compute the closest point on piecewise polynomial
surfaces.
8

M.J. Morse, A. Rahimian and D. Zorin Journal of Computational Physics 442 (2021) 110511
Fig. 4. Relationship between control points and bounding boxes. Left: a patch in the tensor product Bézier basis, with control points (a
m ’s from Eq. (6))
plotted. The convex hull of the control points of a patch is guaranteed to contain the patch. Center: The patch bounding box, computed from the control
points. Right: The near-zone bounding box of the patch from Section 3.5 computed by inflating the bounding box by L(P).

3.3.1. AABB trees
In order to implement our algorithms to enforce admissibility efficiently, we use a fast spatial data structure to find the

patches that are close to a query point x. In [54,68], the quadtree and octree within an FMM is extended to support the
geometric queries needed for a fast QBX algorithm. In this work, we use an axis-aligned bounding box (AABB) tree, which
is a type of bounding volume hierarchy [56], implemented in geogram [41]. An AABB is a tree with nodes corresponding
to bounding boxes and leaves corresponding to bounding boxes containing single objects. A bounding box B0 is a child of
another box B1 if B0 ⊂ B1; the root node is a bounding box of the entire domain of interest. Operations supported by AABB
trees include: (i) finding all bounding boxes containing a query point, (ii) finding all bounding boxes that intersect another
query box, (iii) finding the closest triangle to a query point (because triangles have trivial bounding boxes). By decoupling
geometric queries from fast summation, the individual algorithms can be more thoroughly optimized, in exchange for the
additional memory overhead of maintaining two distinct data structures. The query algorithm presented in [42] likely has
better parallel scalability, but AABB trees are faster for small to medium problem sizes on a single machine due to less
redundant computation.

To define an AABB tree for our patch-based surface �̂, we make use of the following fact: the control points of a Bézier
surface (a
m ’s from Eq. (6)) form a convex hull around the surface that they define [24]. As a result, we can compute a
bounding box of a surface or quadrature patch P directly from the Bézier coefficients simply by computing the maximum
and minimum values of each component of the a
m ’s, as shown in Fig. 4-middle. This bounding box can then be inserted
into the AABB tree as a proxy for a surface or quadrature patch.

3.3.2. Computing the closest point to a patch
To find a candidate closest patch P i0 to x, we construct a fine triangle mesh and bounding boxes of each patch in Pcoarse

and insert them into an AABB tree. We can query the AABB tree for the nearest triangle to x with the AABB tree, which
corresponds to P i0 . We then compute the accurate true distance di0 to P i0 using a constrained Newton method, presented
in detail in [46, Section 2].

However, there may be other patches whose distance to x is less than di0 , as shown in Fig. 5. To handle this case, we
then query the AABB tree for all patches P i1 , . . . , P ik that are distance at most di0 from x. This is achieved by forming
a query box centered at x with edge length 2di0 and querying the AABB tree for all intersection bounding boxes. The
precise distance is then computed for each patch P i1 , . . . , P ik with [46, Section 2] and the smallest distance is chosen. We
summarize this process in Algorithm 1.

Algorithm 1: Compute the closest point to x.
Data: A set of quadrature patches P , a query point x, Newton method tolerance εopt
Result: The closest point sx on P to x

1 Construct an AABB tree TT from a fine triangle mesh of the quadrature patches of P
2 Construct an AABB tree TB from bounding boxes of quadrature patches in P .
3 τ0 = closest triangle to x computed with TT

4 P i0 = patch corresponding to τ0
5 Find the closest point sx,0 on P i0 to x with [46, Section 2].
6 di0 = ‖x− sx,0‖2
7 Bdi0

(x) = a box centered a x with edge length 2di0
8 Find the boxes Bi1 , . . . Bik in TB that intersect Bdi0

(x)

9 for Bi j ∈ Bi1 , . . . Bik do
10 P i j = quadrature patch corresponding to Bi j

11 Find the closest point sx, j on P i j to x with [46, Section 2] to precision εopt .
12 di j = ‖x− sx, j‖2
13 j∗ = argmin j{di j }
14 return sx, j∗
9

M.J. Morse, A. Rahimian and D. Zorin Journal of Computational Physics 442 (2021) 110511
Fig. 5. A 2D schematic of near-patch candidate selection. A visual depiction of the quantities defined in lines 3-7 of Algorithm 1 (shown here in 2D for
simplicity), with notation matching Algorithm 4. The triangle-mesh proxy is drawn in as black lines and patches are drawn as gray curves. We have found
an initial closest triangle τ0 to x corresponding to patch P i0 and computed d(x, P i0) = di0 . We then query the AABB tree for all patches that intersect box
Bdi0

with edge length 2di0 , shown in blue. There is clearly a patch that is closer to x than P i0 that will be returned from the query, which will be distance
dmin from x.

3.4. Admissibility algorithm

Our algorithm to enforce Criteria 1 to 3 proceeds as follows:

• To enforce Criterion 1, we adaptively fit a set of surface patches to the embeddings γr representing �. We construct a
bidegree (n, n) piecewise polynomial least-squares approximation P i in the form of Eq. (6) to γr on I2. If P i ’s domain
Di is obtained by refinement of Er , we fit P i ◦ ηi to γr on I2, using 4n × 4n samples on I2. If the pointwise error of
P i and its partial derivatives is greater than εg, then it is quadrisected and the process is repeated.

• Once the embeddings are resolved, we resolve f on each surface patch produced from the previous step in a similar
fashion to enforce Criterion 2. However, rather than a least-squares approximation in this stage, we use piecewise
polynomial interpolation.

• To enforce Criterion 3, we construct the set of check centers ĉ I which correspond to the check points required to
evaluate the solution at the quadrature nodes y I . For each check center ĉ I , we find the closest point sĉ I ∈ �̂. If ‖sĉ I −
y I‖ ≥ εopt, we split the quadrature patch P containing y I . The tolerance εopt is used in the Newton’s method in [46,
Section 2]; we usually choose εopt = 10−14. Since d(ĉ I , �̂) is proportional to L y I

, the new centers ĉ I for the refined
patches will be closer to the surface. We use Algorithm 1 to compute sĉ I . However, in the case of check points, we can
skip lines 1-6 to compute di0 , since ĉ I is R + r(p + 1)/2 away from y I ∈ P (D) by construction. We can apply lines 7-14
of Algorithm 1 with di0 = R + r(p + 1)/2 to compute sĉ I .

We summarize the algorithm to enforce Criterion 3 in Algorithm 2. At each refinement iteration, the offending patches
are decreased by quadrisection, which reduces the distance from the quadrature point y I to its checkpoints. This eventually
satisfies Criterion 3 and the algorithm terminates.

3.5. Adaptive upsampling algorithm

Before detailing our upsampling algorithm to satisfy the criteria outlined in Section 3.2.2, we must define the notion
of a near-zone bounding box of a quadrature patch P , denoted Bnear(P). The near-zone bounding box of P is computed as
described in Section 3.3.1, but then is inflated by 2L(P), as shown in Fig. 4-right. This inflation guarantees that any point x
that is near P is contained in Bnear(P) and, for an admissible set of quadrature patches Pcoarse , that any x ∈ �N must be
contained in some quadrature patch’s near-zone bounding box. This means that by forming Bnear(P) for each quadrature
patch in Pfine, a check point is in �I if it is not contained in any near-zone bounding boxes.

To compute the upsampled patch set from Pcoarse, we initially set Pfine =Pcoarse, compute the near-zone bounding boxes
of each patch in Pfine and insert them into an AABB tree. We also construct the set of check points C required to evaluate
our discretized layer-potential with hedgehog (Section 3.1). For each check point c ∈ C , we query the AABB tree for all
near-zone bounding boxes that contain c . If there are no such boxes, we know c is far from all quadrature patches and can
continue. If, however, there are near-zone bounding boxes Bi0 , . . . , Bik containing c , we compute the distances dik from c to
P i1 , . . . , P ik using [46, Section 2]. If dik < L(P ik), we replace P ik in Pfine with its four children produced by quadrisection.

To improve the performance of this refinement procedure, we allow for the option to skip the Newton method in
Algorithm 1 and immediately refine all patches P i0 , . . . P ik . This is advantageous in the early iterations of the algorithm,
when most check points are near to patches by design. We allow for a parameter nskip to indicate the number of iterations to
skip the Newton optimization and trigger refinement immediately. We typically set nskip = 2. We summarize our algorithm
in Algorithm 3.
10

M.J. Morse, A. Rahimian and D. Zorin Journal of Computational Physics 442 (2021) 110511
Algorithm 2: Enforce admissibility Criterion 3 on a set of quadrature patches.
Data: A set of quadrature patches P , optimization tolerance εopt
Result: An admissible set of quadrature patches P

1 P = Pcoarse

2 Mark all patches in P as inadmissible.
3 while any patch in P is inadmissible do
4 Construct an AABB tree T as described in Section 3.3.2 from P
5 for P ∈ P do
6 if P is inadmissible then
7 Construct a set of check centers C P for each y J ∈ P (D)

8 for ĉ ∈ C P do
9 di0 = R + r(p + 1)/2

10 Compute sĉ with lines 7-14 of Algorithm 1 with precision εopt and di0 .
11 if ‖sĉ − y J ‖2 < εopt then
12 Mark P as admissible.
13 else
14 Mark P as inadmissible.
15 break // only need one bad check center to mark P for refinement

16 for P ∈ P do
17 if P is inadmissible then
18 Split P into its four child patches, mark each as inadmissible, and replace P with its children in P .

19 return P

Algorithm 3: Adaptively upsample to accurately evaluate Eq. (8) at check points.
Data: An admissible patch set P , number of iterations nskip before using [46, Section 2]
Result: An upsampled set of quadrature patches

1 Compute inflated near-zone bounding boxes B1, . . . , BN of each P ∈ P .
2 Construct an AABB tree T from the near-zone bounding boxes.
3 Construct all check points C required to evaluate the Eq. (5) on P .
4 Pfine = P
5 Mark all check points in C as near.
6 i = 0
7 while any c ∈ C is marked near do
8 for c ∈ C do
9 if c is marked near then

10 Query T for all bounding boxes Bi1 , . . . Bik containing c .
11 P i1 , . . . P ik = patches corresponding to boxes Bi1 , . . . Bik
12 Mark c as far
13 for P ∈ P i1 , . . . P ik do
14 if i > nskip then
15 Find the closest point sc on P to c with Algorithm 1.
16 if ‖sc − c‖2 < L(P) then
17 Split P and replace it in Pfine with its children.
18 Mark c as near
19 else
20 Split P and replace it in Pfine with its children.
21 Mark c as near

22 i = i + 1

3.6. Marking target points for evaluation

Once we have solved Eq. (9) for φ on �̂, we need the ability to evaluate Eq. (4) at an arbitrary set of points in the
domain. For a target point x, in order apply the algorithm in Section 3.1, we need to determine whether or not x ∈ � and,
if so, whether x is in �N , �I or �F . Both of these questions can be answered by computing the closest point sx on �̂ to x.
If n(sx) · (x − sx) < 0, then x ∈ �. As we have seen in Section 3.2.2, the distance ‖x − sx‖ determines whether x ∈ �N , �I

or �F . However, for large numbers of target points, a brute force calculation of closest points on �̂ to all target points is
prohibitively expensive. We present an accelerated algorithm combining Algorithm 1 and an FMM evaluation to require only
constant work per target point.
11

M.J. Morse, A. Rahimian and D. Zorin Journal of Computational Physics 442 (2021) 110511
3.6.1. Marking and culling far points
A severe shortcoming of Algorithm 1 is that its performance deteriorates as the distance from x to �̂ increases. Consider

the case where �̂ is a sphere with radius r with x at its center. The first stage of Algorithm 1 returns a single quadrature
patch that is distance r from x; the next stage will return all quadrature patches. This will take O (N) time to check the
distance to each patch. Even on more typical geometries, we observe poor performance of Algorithm 1 when x is far from
�̂.

To address this, we use an additional FMM-based acceleration step to mark most points far from �̂ before using applying
Algorithm 1. Our approach is based on computing the generalized winding number [32] of �̂ at the evaluation points. For
closed curves in R2, the winding number at a point counts the number of times the curve travels around that point. The
generalized winding number of a surface �̂ at a point x ∈R3 can be written as

ω
�̂
(x) = − 1

4π

∫

�̂

(x − y) · n
‖x− y‖3 dy

�̂
(12)

We recognize this integral as the double-layer potential in Eq. (4) for a Laplace problem with φ = 1. Its values in R3 are
[39]:

ω
�̂
(x) =

⎧⎪⎨
⎪⎩
1 x ∈ � \ �̂

1/2 x ∈ �̂

0 x ∈R3 \ �

(13)

Eq. (12) can be evaluated using the same surface quadrature in Eq. (8) using an FMM in O (N) time. While the quadrature
rule is inaccurate close to the surface, �F is defined precisely as the zone where the quadrature rule is sufficiently accurate.
For this reason, we use

|ω
�̂
(x) − 1| < εtarget (14)

to mark points x ∈ �F ⊂ � and a similar relation

|ω
�̂
(x)| < εtarget (15)

to mark points x /∈ �. This approach is similar in spirit to the spectrally accurate collision detection scheme of [52, Section
3.5]. Unlike [52], however, we do not use singular integration to mark all points. This isn’t possible since at this stage
since we do not yet know which target points require singular integration. We use the FMM evaluation purely as a culling
mechanism before applying the full marking algorithm.

Remark. Since the quadrature rule may be highly inaccurate for points close to the surface, due the near-singular nature of
the integrand, ω

�̂
(x) may happen to be close to one or zero. We highlight that it is possible that points outside �F may be

mismarked, although we have not observed this in practice.

3.6.2. Full marking algorithm
We combine the algorithms of the previous two sections into a single marking pipeline for a general set of target points

in R3, by first applying the algorithm of Section 3.6.1 to mark all points satisfying Eq. (14) then passing the remaining
points to Algorithm 1. The full marking algorithm is summarized as Algorithm 4.

4. Error analysis

As with other approximation-based quadrature methods, hedgehog has two primary sources of error: the quadrature
error eQ incurred as a result of evaluating potential at the check points and the extrapolation error eE due to evaluating
the polynomial approximation of the potential at the target point, assuming Pcoarse is admissible. Let

eQ (x) =
∣∣∣∣∣

p∑
s=0

(u(cs) − û(cs,Pfine))
s(tx)

∣∣∣∣∣ , (16)

eE(x) =
∣∣∣∣∣u(x) −

p∑
s=0

u(cs)
s(tx)

∣∣∣∣∣ , (17)

ehedgehog(x) ≤ eQ (x) + eE(x), (18)

where u(x) and û(x, Pfine) are defined in Eqs. (4) and (8) and
s(t) is the s-th Lagrange polynomial defined on the points
{0, 1, . . . , p}. We define tx such that x = −n(y)(R + txr), so tx = ‖x−y‖−R

r . In this section, we first prove that we achieve
high-order accuracy with our singular/near-singular evaluation scheme in Section 3.1 with respect to extrapolation order p
and quadrature order q. We then detail the impact of surface approximation on overall solution accuracy.
12

M.J. Morse, A. Rahimian and D. Zorin Journal of Computational Physics 442 (2021) 110511
Algorithm 4: Mark points in regions �F , �I and �N .
Data: An admissible set of quadrature patches P, εtarget , target points X
Result: A marked set of target points X

1 φ0 = 1
2 ω

�̂
= Laplace_FMM(P , X , φ0)

3 for x ∈ X do
4 if |ω

�̂
(x) − 1| < εtarget then

5 Mark x as inside �.
6 Mark x as in �F .
7 else if |ω

�̂
(x)| < εtarget then

8 Mark x as outside �.

9 for x ∈ X do
10 if x is unmarked then
11 Compute the closest point sx to x with Algorithm 1
12 dmin = ‖sx − x‖2
13 if dmin ≤ Lsx then
14 Mark x as in �N

15 else
16 Mark x as in �I

17 if n(sx) · (x− sx) < 0 then
18 Mark x as inside �
19 Mark x as outside �

4.1. Quadrature error

We briefly state a tensor-product variation of known Clenshaw-Curtis quadrature error results as applied to smooth
functions in 3D. This estimate is derived based on assumptions detailed in Appendix A that, in general, is difficult to verify
in practice and may not hold for all functions we consider. For this reason, we refer to it as a heuristic.

Heuristic 4.1. Let the boundary �̂ be discretized by quadrature patches over the domains [−h, h] and the boundary condition
f in Eq. (2) be at least Ck . Apply the q-th order Clenshaw-Curtis quadrature rule to the double-layer potential u(x) given in
Eq. (7) and let x be in the interior of �. Then for all sufficiently large q:

eQ(x) � 128hk+1

15πk(2q + 1− k)k
Ṽ , (19)

where

Ṽ = max
i=1,...,N

max
α,β≤k

∥∥∥∥ ∂α+β

∂uα∂vβ

(
∂G(x, P i(s, t))

∂n
φ(P i(s, t))gP i (s, t)

)∥∥∥∥
T
, (20)

gP is the determinant of the metric tensor of a patch P implicit in Eq. (7), � means “approximately less than or equal to,”
and ‖ζ‖T = ‖ζ ′/

√
1− x2‖1.

This heuristic captures the qualitative behavior of the error. We present the derivation of Heuristic 4.1 in Appendix A.
This heuristic is insufficient for direct application to Eq. (7). As x → �̂, the value of k required in Heuristic 4.1 grows rapidly
due to growing higher order derivatives of the integrand. Such large values of q and k imply that smooth quadrature rules
are cost-prohibitive; this is the problem that singular/near-singular quadrature schemes like hedgehog aim to address.
Moreover, this estimate is too loose to determine whether hedgehog or smooth quadrature is required to evaluate the
potential. The assumption in Section 3.2.2 addresses this problem by providing a cheap, reasonably robust criterion for
refinement that is motivated by existing analyses [3,6] instead of relying on Heuristic 4.1.

4.2. Extrapolation error

A reasonable critique of hedgehog is its reliance on an equispaced polynomial interpolant to extrapolate values of u to
the target point. Despite using the first-kind barycentric interpolation formula [71], polynomial interpolation and extrapo-
lation in equispaced points is well-known for an exponentially growing Lebesgue constant and poor stability properties as
the number of points p increases [51,66]. Recently [20] demonstrated stable extrapolation in equispaced p + 1 points using
least-squares polynomials of degree

√
p. However, these results are asymptotic in nature and don’t tell the full story for

small to moderate values of p, as in the hedgehog context.
We begin our discussion with a simple representative experiment in equispaced extrapolation. Fig. 6 depicts a minimal

extrapolation setup in 3D of a simple singular function μ(t) = 1/‖t − q‖ along a line, with q = (ρ, 0, 0) and ρ = −.1. We
13

M.J. Morse, A. Rahimian and D. Zorin Journal of Computational Physics 442 (2021) 110511
Fig. 6. Diagram of extrapolation setup. The toy setup used to study the extrapolation error of a singular function. We choose a simple point singularity
μ(t) = 1

‖t−q‖ where q = (ρ, 0, 0) (black star) with ρ = −.1. We choose samples at the points ti = (R + ir, 0, 0) for i = 0, . . . , p (black dots) and extrapolate
the values μ(t0), . . . , μ(tp) to t = 0 (green dot).

Fig. 7. Empirical extrapolation error behavior. We sweep over a range of R and r values to vary Fig. 6 and plot the log of the relative error in Figs. 7a
to 7e, for values p = 6, 8, 10, 12, 14, in increasing order, from (a) to (e). In these figures, the x-axis is the extrapolation distance R normalized by ρ and
the y-axis is the ratio rp/R . The top of the y-axis corresponds to r = R; rp/R = 1 corresponds to our choice of the parameter a. Assuming that ρ = O (L),
r/R = a/b and R/ρ = b/λ for some constant λ.

extrapolate exact values of μ from p points, located at ti = (R + ir, 0, 0), to the origin. This closely mimics the worse-case
extrapolation error in 1D of a function analytic in a Bernstein ellipse with a real axis intercept of ρ + R + rp/2. We repeat
this for a large range of values of r and R for various values of p. The log of the relative error is plotted in Figs. 7a to 7e as
a function of the relative extrapolation interval size rp/R and the scaled extrapolation distance R/ρ .

As mentioned in [53, Section 3.4], the adaptive refinement of Pcoarse resolves the boundary data f , and therefore u and
φ, on the length scale L of the patch. This means we can reasonably assume that the distance of the nearest singularity is
O (L) from �̂, i.e., ρ = λL for some λ. In the context of hedgehog, we know that R = bL(P) and r = aL(P). Figs. 7a to 7e
are a study of extrapolation error as a function of a/b, b/λ and p.

There are several important observations to make from these plots:

• Extrapolation error decreases as R/ρ decreases, as expected.
14

M.J. Morse, A. Rahimian and D. Zorin Journal of Computational Physics 442 (2021) 110511
• For a fixed value of R/ρ , the extrapolation error decreases rapidly as rp decreases, up to a certain value r∗p. This is
somewhat counterintuitive, since this means placing points closer together and extrapolating a further distance relative
to rp. For a fixed p in exact arithmetic, letting the interpolation interval size tend to zero produces an order p Taylor
expansion of the solution u centered at the interval’s origin, which accounts for this phenomenon.

• Beyond r∗p, the extrapolation error increases. The effects of finite precision eventually pollute the convergence behavior
described above. Moreover, the spacing r∗ appears to be a function of p. For p = 6, r can be reduced to 1/p without
any numerical issues, but by p = 14, only r > 1

2 is a safe choice for extrapolation.

We do not aim to rigorously analyze these phenomena in this work. We highlight them to provide empirical evidence that
equispaced extrapolation is a reasonable, but not optimal, choice for our problem of singular/near-singular integration and
to provide some intuition for our parameter choices.

The following simple result describes the behavior of the extrapolation error in Eq. (17).

Theorem 4.2. Let u(c(t)) be the solution to Eq. (2) given by Eq. (4), restricted to the line c(t) in 3D intersecting x, let c(t) be given by

c(t) = sx − (R + tr)n(sx), (21)

where sx is the closest point on �̂ to x, R = bLsx , r = aLsx , n(sx) is the outward surface normal at sx , and let |u(p)(c(t))| be bounded
above by Cp on the interval [−R, R + pr]. Let P(t) be the p-th order polynomial interpolant of u(c(t)) constructed from the check
points c0, . . . , cp , where ci = c(i). Then the extrapolation error associated with hedgehog behaves according to:

|u(c(tx)) −P(tx)| ≤ Cp

(p + 1)! |R + rp|p = Cp

(p + 1)! |b + ap|p · |L|p, (22)

where tx = ‖x−sx‖−R
r .

Proof. We know that for a smooth function f and points x0, . . . xp in a 1D interval I0, for some ξ ∈ I0, the following relation
holds for all x ∈ I0:

f (x) −P(x) = f (p)(ξ)

(p + 1)!
p∏

i=0

(x− xi). (23)

Let P be the pth order polynomial interpolating the points x0, . . . xp . In the hedgehog setup, since R + rp is the distance of
the furthest check point to y, we know that x − xi < R + rp for each i. Since f (t) = u(c(t)) is harmonic, and therefore C∞ ,
in �, | f (p)(ξ)| can be uniformly bounded on I0 by some constant Cp , Noting that R = bL and r = aL yields our result. �

For fixed values of a and b, as we let L → 0, the extrapolation error is bounded by O (Lp). In practice, however, this
means that we can choose a and b to minimize the constant factor |b +ap|p in Theorem 4.2. Since p > 1, a must be chosen
to balance out the contribution of p, yet our extrapolation study shows that we can’t simply set a = 0. We therefore choose
a ≤ 1/p for p = 6 and 8, motivated by Figs. 7a and 7b. Moreover, since b < 1, we can choose a ≤ b/p, which allows a and b
to decay at the same rate. The advantage of choosing a ≤ b/p is that b is a single parameter that controls the accuracy of
hedgehog. Since we have fixed the quadrature order q = 20 to satisfy the assumption in Section 3.2.2, a smaller value of b
will trigger more upsampling in Algorithm 3, keeping quadrature error fixed while reducing extrapolation error.

It is important to keep in mind that Theorem 4.2 only provides insight for moderate values of p; our conclusions are
largely irrelevant for large p. We use p = 6 and a = b/6, leaving the construction of an optimal extrapolation scheme to
future work.

4.3. Limitations

Our error discussion reveals several limitations of our method. The first and most apparent shortcoming is that extrap-
olation instability fundamentally limits convergence order. However, for reasonable orders of convergence, up to 14, we
have discussed an empirical scheme to choose parameters to maximize the available convergence behavior. Moreover, low-
order surface geometries used in engineering applications will likely limit the convergence rate before it is limited by the
extrapolation order, making this a non-issue in practical scenarios.

Another downside of the chosen extrapolation approach is lack of direct extension of hedgehog to oscillatory problems
like the Helmholtz equation. Due to the limitation on the values of p, we can’t guarantee the ability to resolve high-
frequency oscillations in the solution. A new extrapolation procedure is required to do so robustly without compromising
efficiency.

In [68], the authors demonstrate a relationship between the truncation error of a QBX expansion and the local curvature
of �̂. Our scheme also is susceptible to this form of error and we do not address nor analyze this in this work. This is a
subtle problem that requires a detailed analysis of the surface geometry with respect to the chosen extrapolation scheme.
15

M.J. Morse, A. Rahimian and D. Zorin Journal of Computational Physics 442 (2021) 110511
Another limitation is the lack of an accurate error estimate to serve as an upsampling criteria in place of the criteria in
Section 3.2.2, such as [35]. Extending [35] to 3D surfaces is non-trivial and whether the size of Pfine would be reduced
enough to outweigh the added cost of the additional Newton iterations required by their scheme remains to be seen.

Finally, for certain accuracy targets and geometries, the algorithm above may lead to an impractically high number of
patches in Pcoarse and Pfine. Geometries with nearly-touching non-local regions, as shown in Fig. 12, will see large amounts
of refinement. If the nearly-touching embeddings γr are close enough, i.e., less than 10−10 apart, there is little hope of an
accurate solution with a fixed computational budget. We allow the user to enforce a minimal patch size Lmin, limiting the
time and memory consumption at the expense of not reaching the requested target accuracy.

5. Complexity

In this section, we summarize the complexity of the algorithms required by hedgehog. We present a detailed complex-
ity analysis in [46, Section 3]. The input to our overall algorithm is a domain boundary � with Ninit patches and boundary
condition f . The parameters that directly impact complexity are:

• The number of patches N after admissibility refinement. This is a function of Ninit , the geometry of �, the definition of
f , and the choices of parameters a and b in check point construction.

• Quadrature order q and the degree of smoothness k of � and f . We assume that k is sufficiently high to obtain optimal
error behavior for a given q by letting k = 2q in Eq. (20).

• hedgehog interpolation order p.
• The numbers of evaluation points in different zones Nfar , Ninter, and Nnear, with Ntot =Nfar +Ninter +Nnear.

The complexity is also affected by the geometric characteristics of � as described in [46, Section 3].

• Admissibility. The complexity of this step is O (Ninit logNinit), with constants dependent on α0, β0 and C J . The logarith-
mic factor is due to use of an AABB tree for closest surface point queries.

• Upsampling. The complexity of upsampling is O (m̂N log(N)), where m̂ is the largest upsampling ratio. The logarithmic
factor appears for similar reason to admissibility, with constants that depend on geometric parameters and the boundary
condition through the error estimate of Section 4. We show that the upsampling ratio is independent of N in [46,
Section 3].

• Point marking. Identifying which zone an evaluation point belongs to (�F , �I or �N) depends on N and the total
number of points to be classified Ntot =Nfar +Ninter +Nnear. The complexity is O (Ntot logN) with constants dependent
on geometric parameters, due to the cost of closest surface point queries.

• Far, intermediate and near zone integral evaluation. The complexity of these components depends on N and Nfar, Ninter
and Nnear respectively, with the general form O (s1N + s2N ′), where N ′ is the number of evaluation points in the
corresponding class. For the far field, s1 = s2 = 1. For the intermediate evaluation, s1 = m̂q2 and s2 = 1; finally, for the
near zone, s1 = m̂q2 and s2 = p. If b is chosen appropriately, the intermediate and near zone error is εtarget.

• GMRES solve. Due to the favorable conditioning of the double-layer formulation in Eq. (5), GMRES converges rapidly to
a solution in a constant number of iterations for a given � that is independent of N . This means that the complexity
to solve Eq. (5) is asymptotically equal (up to a constant dependent on �) to the complexity equal to a near-zone
evaluation with Nnear = N(q + 1)2.

• Evaluation on uniform point distribution In many applications, one would like the value of the solution u due to a density
φ at a collection of points uniformly distributed throughout the domain �. When the number of such targets is chosen
to match the resolution of the surface discretization, the overall complexity of solution evaluation is O ((m̂+ m̂q2)q2N +
N3/2).

6. Results

We now demonstrate the accuracy and performance of hedgehog to evaluate singular/near-singular layer potentials on
various complex geometries to solve the integral equation in Eq. (5) and evaluate the solution as defined in Eq. (4).

6.1. Classical convergence with patch refinement

We will first demonstrate the numerical convergence behavior of hedgehog. As discussed in [36, Section 3.1],
approximation-based schemes such as hedgehog do not converge classically but do so up to a controlled precision if r
and R scale with proportional to the patch size. In order to observe classical convergence as we refine Pcoarse, we must al-
low R and r to decrease slower than O (L), such as with rate O (

√
L). In this section, we choose the hedgehog parameters

a and b proportional to 1/
√
L to achieve this and demonstrate numerical convergence with refinement of L.
16

M.J. Morse, A. Rahimian and D. Zorin Journal of Computational Physics 442 (2021) 110511
Fig. 8. Geometry and singularities used for Green’s Identity convergence tests. Shown are polynomial patches defining boundary geometry (black lines)
and point singularities placed on the surface on a sphere of radius one. Singularity strengths are randomly selected values in [0, 1]; shown is the strength
intensity for Laplace problems, which varies from blue to red. We use 96 20th-order polynomial patches for the spheroid (left) and 32 cubic patches for
the torus (right).

Table 1

∞

Relative error in Green’s Identity versus number of patches. The solution to Eq. (2) due to a known function uc , shown in Fig. 8 is computed via
Green’s Identity. We evaluate the single- and double-layer potentials with hedgehog due to the Dirichlet and Neumann boundary data and compare
against the known value of uc on the boundary. Each column is the result of an additional level of uniform quadrisection of the patches in Pcoarse. The
final column (EOC) is the estimated convergence order, computed via least-squares log-log fit of the error as a function of max patch size.
Geometry PDE Relative
∞ error (Number of patches) EOC

Spheroid Laplace 1.06× 10−4 (96) 4.78 × 10−6 (384) 9.14× 10−8 (1536) 4.35 × 10−9 (6144) 4.77
(Fig. 8-left) Elasticity 1.68× 10−3 (96) 6.94 × 10−5 (384) 1.53× 10−6 (1536) 1.33 × 10−8 (6144) 5.74

Stokes 1.92× 10−3 (96) 7.95 × 10−5 (384) 1.74× 10−6 (1536) 1.53 × 10−8 (6144) 5.72

Torus Laplace 2.05× 10−3 (32) 7.52 × 10−5 (128) 3.79× 10−6 (512) 8.48 × 10−8 (2048) 5.45
(Fig. 8-right) Elasticity 4.38× 10−2 (32) 1.17 × 10−3 (128) 5.08× 10−5 (512) 1.42 × 10−6 (2048) 5.09

Stokes 5.03× 10−2 (32) 1.33 × 10−3 (128) 5.81× 10−5 (512) 1.65 × 10−6 (2048) 5.09

In our examples, we use analytic solutions to Eq. (2) obtained as sums of point charge functions of the form

uc(x) =
m∑
i=1

G(x, yi)ψi (24)

where the charge locations yi with strengths ψi are outside of �. To construct specific solutions, we sample a sphere of
radius one with point charges, as shown in Figs. 8 and 9. We choose charge strengths ψi randomly from [0, 1]d , where d = 1
for Laplace problems and d = 3 for Stokes and elasticity problems.

We use the multipole order m = 20 with 5000 points per leaf box for the kernel-independent FMM. This ensures that
the FMM error does not dominate; sufficiently large number of points per leaf box is needed to minimize the additional
error due to tree depth. We choose a high quadrature order q = 20, or 400 quadrature points per patch in Pcoarse, relative
to overall convergence order to satisfy the assumption in Section 3.2.2. We also use two levels of uniform upsampling to
demonstrate convergence.

6.1.1. Green’s identity
We report the accuracy of the hedgehog evaluation scheme in Table 1, where we verify Green’s Identity for a random

known function uc in Eq. (24). We evaluate the Dirichlet and Neumann boundary data due to uc at the discretization
points of �̂ and use one-sided hedgehog to evaluate the corresponding single- and double-layer potentials at the same
discretization points. With each column of Table 1, we subdivide Pcoarse to more accurately resolve the boundary condition.
The error shown in Table 1 is the
∞-relative error in the solution value∥∥∥Ŝ [

∂uc
∂n

]
(x) − D̂ [uc] (x) − uc(x)

∥∥∥∞
‖uc‖∞

, (25)

where Ŝ and D̂ are the single- and double-layer singular integral operators discretized and evaluated with hedgehog.
In these tests, we choose p = 6, r = .004

√
L (a = .004/

√
L) and R = .03

√
L (b = .03/

√
L). We observe roughly 5th order
17

M.J. Morse, A. Rahimian and D. Zorin Journal of Computational Physics 442 (2021) 110511
Table 2
Performance of singular evaluation in Green’s Identity. For each test in Table 1, we report
the number of target points evaluated with one-sided hedgehog per second per core.
Geometry PDE Target points/second/core

Spheroid Laplace 3684 5438 5077 5629
(Fig. 8-left) Elasticity 1325 1731 1687 1790

Stokes 1635 2075 2016 2120

Torus Laplace 2729 3373 4564 5477
(Fig. 8-right) Elasticity 984 1171 1347 1502

Stokes 1134 1331 1609 1727

Fig. 9. Geometry and singularities used for solver convergence tests. Figures are similar to Fig. 8, but displaying geometries for testing the convergence
of hedgehog within a GMRES solver. We use 30 16th-order polynomial patches for the pipe (left) and 50 20th-order patches for the genus two surface
(right). Note the proximity of the singularities to the domain of the genus two surface; the nearest singularity is less than .05L from �̂.

Table 3

∞

Relative error in GMRES solve and solution evaluation versus number of patches. We solve Eq. (2) by discretizing and evaluating the layer potential
in the integral equation in Eq. (5) as described in Section 3.1. We use two-sided hedgehog inside of GMRES to solve for φ , then evaluate Eq. (8) with
one-sided hedgehog at a new set of points on �̂. Each column is the result of an additional level of uniform quadrisection of the patches in Pcoarse. The
final column (EOC) is the estimated convergence order, computed via least-squares log-log fit of the error as a function of max patch size.
Geometry PDE Relative
∞ error (Number of patches) EOC

Spheroid (Fig. 8-left) Laplace 2.70 × 10−6 (96) 1.92 × 10−7 (384) 4.47× 10−9 (1536) 5.13 × 10−11 (6144) 5.35

Pipe Laplace 5.99 × 10−4 (30) 3.03× 10−5 (120) 6.68× 10−7 (480) 2.27 × 10−8 (1920) 5.92
(Fig. 9-left) Elasticity 7.17 × 10−2 (30) 3.57 × 10−3 (120) 8.90 × 10−5 (480) 4.14 × 10−6 (1920) 5.45

Stokes 8.53 × 10−2 (30) 4.12 × 10−3 (120) 1.03× 10−4 (480) 4.73 × 10−6 (1920) 5.43

Genus 2 Laplace 4.00× 10−2 (50) 1.25 × 10−4 (200) 1.54× 10−6 (800) 5.73 × 10−10 (3200) 8.76
(Fig. 9-right) Elasticity 9.20 × 10−2 (50) 1.05× 10−3 (200) 1.00× 10−5 (800) 9.44 × 10−8 (3200) 6.89

Stokes 1.03× 10−1 (50) 1.18 × 10−3 (200) 1.15× 10−5 (800) 1.03× 10−7 (3200) 6.88

convergence on both the spheroid and torus test geometries in Fig. 8 for each of the tested PDE’s. In Table 2, we present
the number of target points evaluated per second per core with one-sided hedgehog. We see that performance is best for
Laplace and worst for elasticity problems, as expected.

6.1.2. Solution via GMRES
We report the accuracy of the hedgehog scheme when used to solve Eq. (2) via the integral equation in Eq. (5). Two-

sided hedgehog is used in the matrix-vector multiply inside GMRES to solve Eq. (5) for the values of the density φ at the
discretization points. Then one-sided hedgehog is used to evaluate Eq. (8) at a slightly coarser discretization. Since GMRES
minimizes the residual at the original discretization of Eq. (5), this final step prevents an artificially accurate solution by
changing discretizations. Table 3 lists the
∞ relative error values for the total solve and evaluation steps using Section 3.1
as we refine Pcoarse by subdivision as in the previous section. In these tests, we choose p = 6, r = .005

√
L (a = .005/

√
L),

and R = .03
√
L (b = .03/

√
L). As for previous examples, we observe at least 5th order convergence on all tested geometries

in Fig. 9 and Fig. 8-left and all PDE’s. We include the spheroid example as an additional demonstration of a high accuracy
solution via GMRES with our approach. We report the number of target points evaluated per second per core with two-
18

M.J. Morse, A. Rahimian and D. Zorin Journal of Computational Physics 442 (2021) 110511
Table 4
Performance of singular evaluation in GMRES matrix-vector multiply. For each test in Ta-
ble 3, we report the number of target points per second per core evaluated with two-sided
hedgehog in a single GMRES matrix-vector multiplication.

Geometry PDE Target points/second/core

Spheroid Laplace 2737 3149 2846 2950

Pipe Laplace 3046 2178 2832 2982
(Fig. 8-left) Elasticity 991 993 1189 1261

Stokes 1048 1140 1335 1422

Genus 2 Laplace 1862 2886 3122 2879
(Fig. 8-right) Elasticity 729 1125 1255 1295

Stokes 929 1304 1450 1504

sided hedgehog in Table 4. The results are similar to Table 2; the slower performance is because evaluation via two-sided
hedgehog is more expensive than one-sided hedgehog.

6.2. Comparison with [75]

In this section, we compare our method to [75], a previously proposed high-order, kernel-independent singular quadra-
ture method in 3D for complex geometries. These characteristics are similar to hedgehog shares these characteristics. [46,
Section 4] presents additional comparisons.

The metric we are interested is cost for a given relative error. Assuming the surface discretization is O (N), we measure
the cost of a method as its total wall time during execution T divided by the total wall time of an FMM evaluation on the
same O (N) discretization, TFMM. By normalizing by the FMM evaluation cost, we minimize the dependence of the cost on
machine- and implementation-dependent machine-dependent parameters.

We run the tests in this section on the spheroid geometry shown in Fig. 8-left. We focus on the singular quadrature
scheme of [75]. The near-singular quadrature of [75] is algorithmically similar to hedgehog, but since an expensive singular
quadrature rule is used as a part of near-singular evaluation, it has a higher total cost. As a result, the accuracy and cost of
near-singular evaluation of [75] is bounded by the accuracy and cost of the singular integration scheme.

To compare the full hedgehog method with [75], we fit polynomial patches to the C∞ surface of [76], denoted �b , to
produce �̂ during the first step of Section 3.4. We apply the remaining geometry preprocessing algorithms of Section 3.4
to �̂ to produce Pcoarse. After producing Pfine with two levels of uniform upsampling, we solve Eq. (5) with two-sided
hedgehog on �̂ and evaluate the solution on the boundary with one-sided hedgehog. We then solve for the solution to
Eq. (5) on �b using [75].

For each of the tests in this section, we choose some initial spacing parameter h0 to discretize the surface of [76], as in
[75], and use the 16× upsampled grid and floating partition of unity radius proportional to O (

√
h), as in the original work.

We apply hedgehog to �̂ and the scheme of [75] to �b with spacing h0/2i , for i = 1, . . .4.
As in the previous section, we choose the parameters r and R of hedgehog to be O (

√
L). For both quadrature methods,

we use a multipole order of 16 for PVFMM with at most 250 points in each leaf box. The results are shown in Fig. 10.
From left to right, each plot details the total cost of each scheme, the cost of each subroutine for hedgehog (denoted HH)
and the singular quadrature scheme of [75] (denoted POU), and the relative error as a function of h and L, respectively, for
all refinement levels. We plot the cost of both schemes the cost of each algorithmic step as a function of their computed
relative error. In each figure, we present results for a Laplace problem (top) and an elasticity problem (bottom).

In Fig. 10, as expected, we observe a higher convergence rate for hedgehog compared to [75]. [75] outperforms hedge-
hog in terms of cost for all tested discretizations. We observe that the FMM evaluation in Fig. 10 accounts for at least 95%
of the hedgehog cost. This means that a local singular quadrature method (based on corrections to an FMM evaluation,
Section 1.2) of worse complexity can beat a global method, simply by virtue of reducing the FMM size. By noting the large
difference between the hedgehog FMM cost and the hedgehog density interpolation, we can reasonably infer that a local
hedgehog scheme should narrow this performance gap and outperform [75] for larger problems, assuming that switching
to a local scheme does not dramatically affect error convergence.

6.3. Requested target precision vs. computed accuracy

In this section, we study the performance of the full algorithm outlined in Section 3. We test hedgehog on the torus
domain shown in Fig. 8-right. We choose a reference solution of the form of Eq. (24) with a single point charge located at
the origin, in the middle of the hole of the torus. We solve the integral equation with two-sided hedgehog and evaluate
the singular integral on a distinct discretization with one-sided hedgehog. We choose q = 20, p = 6 and a = b/6. We
select various values for εtarget using the plot in Fig. 7a to choose b to ensure sufficiently accurate extrapolation. We plot
the results of our tests in Fig. 11.

We see in Fig. 11-left that we are consistently close to the requested target precision. We see a decline in target points
per second per core as accuracy increases in Fig. 11-middle. This is explained by Fig. 11-right, which shows an increase in
19

M.J. Morse, A. Rahimian and D. Zorin Journal of Computational Physics 442 (2021) 110511
Fig. 10. Comparison of HEDGEHOG on polynomial patches (HH) versus [75] on the surface representation of [76] (POU) solving via GMRES for uc . Laplace
(top) and elasticity (bottom) problems solved on the spheroid shown in Fig. 8. From left to right, we plot the total cost of each scheme, the cost of each
subroutine for hedgehog (blue) and the singular quadrature scheme of [75] (red), and the relative error as a function of h. We plot error convergence of
[75] as a function of h and hedgehog as a function of L, due to the distinct discretizations. For hedgehog parameters, we choose r = .013

√
L, R = .075

√
L

for the Laplace problem; for the elasticity problem, we choose r = .013
√
L, R = .08

√
L. We choose p = 6 and q = 15 for both problems. For [75] the spacing

is h0 = .35. Note that in the hedgehog timing breakdown, since the FMM time is dominant, the FMM cost lies directly on top of the total cost.

Fig. 11. Performance of full algorithm. Left: ∞-norm relative error in singular integral vs requested target accuracy (blue). The dotted line is the ideal
behavior y = x. Middle: Performance in terms of target points evaluated per second per core with hedgehog. Right: Number of patches in Pcoarse and
Pfine computed by the preprocessing algorithms.

the size Pfine as Pcoarse remains a fixed size. The initial 128 patches in Pcoarse are enough to resolve the boundary condition
and �, but we need greater quadrature accuracy for lower values of εtarget. Decreasing the number of points in passed to
the FMM, i.e., decreasing the size of Pfine, is the main way to improve performance of our method. This is further indication
that a local version of hedgehog will outperform a global approach.

6.4. Full algorithm on interlocking torii

We now demonstrate the full algorithm pipeline on an exterior Laplace problem, whose boundary is defined by four
interlocking torii shown in Fig. 12. The domain boundary is contained in the box [−3.8, 2.4] × [−1.1, 1.1] × [−1, 1]. The
20

M.J. Morse, A. Rahimian and D. Zorin Journal of Computational Physics 442 (2021) 110511
Fig. 12. Absolute error of GMRES solve via HEDGEHOG on interlocking torii. Left: The admissible set of 1128 patches in Pcoarse used to solve Eq. (5) is
shown (black lines denote patch boundaries). The point charge generated the boundary condition is located within the second torus from the right. Right:
a cross-section of the torii geometry through the xz-plane, showing the second torus from the right and the location of the singularity (green point).

shortest distance between two adjacent torii is less than 10% of a polynomial patch length defining the boundary. We again
use a boundary condition of the form Eq. (24) with a single point charge located at (0, .03, .875), inside the upper half of the
second torus from the right in Fig. 12. This problem is challenging due to the nearly touching geometry of the torii, along
with the singularity placed close to the boundary. We run the admissibility and adaptive upsampling algorithms outlined in
Section 3, solve Eq. (5) using two-sided hedgehog, and evaluate the solution on the boundary using one-sided hedgehog.
The absolute error in the ∞-norm of the singular evaluation is plotted on the boundary surface.

Using a = .1, b = .025, p = 6 and q = 20, we achieve a maximum pointwise error of 1.29 × 10−5. GMRES was able to
reduce the residual by a factor of 10−13 over 109 iterations. There are 288768 quadrature points in the coarse discretiza-
tion, 18235392 quadrature points in the fine discretization, and 3465216 check points used in the two-sided hedgehog
evaluation inside GMRES. We evaluate the solved density at 451200 points on the boundary with one-sided hedgehog to
produce the render in Fig. 12. On a machine with two Intel Xeon E-2690v2 3.0 GHz CPU’s, each with 10 cores, and 100 GB
of RAM, the GMRES solve and interior evaluation required 5.7 hours and can evaluate the singular integral at a rate of 1709
target points per second per core.

6.5. Solution on complex geometry

We have demonstrated in [42] a parallel implementation of Section 3.1, applied to simulating red blood cell flows. The
surface geometry of the blood vessel shown in Fig. 13 is complex, with rapidly varying curvatures and geometric distortions
due to singular vertices in the surface mesh. Since the surface is admissible, we are able to apply parallel hedgehog
directly without geometric preprocessing to solve an interior Dirichlet Stokes problem. We use a = .125, b = .125, p = 6 and
q = 16 as simulation parameters.

Using 32 machines each with twenty 2.6 GHz cores with 100 GB of RAM, we achieve a maximum pointwise error of
3 × 10−6 when solving a Stokes problem with constant density. We then place a random vector point charge two patch
lengths away (relative to the patches in Pcoarse) from the domain boundary (on the left side of Fig. 13, solve Eq. (5) using
two-sided hedgehog, and evaluate the solution on the boundary using one-sided hedgehog. The absolute error in the
∞-norm of the singular evaluation is plotted on the boundary surface. There are 10,485,760 quadrature points in the coarse
discretization, 167,772,160 quadrature points in the fine discretization, and 125,829,120 check points used in the two-sided
hedgehog evaluation inside GMRES. We evaluate the solved density at 209,715,200 points on the boundary with one-sided
hedgehog to produce the render in Fig. 12. We achieve a maximum pointwise error of 1.8 × 10−2 and can evaluate the
singular integral at rate of 3529 target points per second per core.

7. Conclusion

We have presented hedgehog, a fast, high-order, kernel-independent, singular/near-singular quadrature scheme for el-
liptic boundary value problems in 3D on complex geometries defined by piecewise tensor-product polynomial surfaces.
The primary advantage of our approach is algorithmic simplicity: the algorithm can be implemented easily with an exist-
ing smooth quadrature rule, a point FMM and 1D and 2D interpolation schemes. We presented fast geometry processing
algorithms to guarantee accurate singular/near-singular integration, adaptively upsample the discretization and query local
surface patches. We then evaluated hedgehog in various test cases, for Laplace, Stokes, and elasticity problems on various
patch-based geometries and compared our approach with [75].
21

M.J. Morse, A. Rahimian and D. Zorin Journal of Computational Physics 442 (2021) 110511
Fig. 13. Absolute error of GMRES solve via HEDGEHOG on complex blood vessel geometry used in [42]. The blood vessel uses 40,960 8th order polynomial
patches (black edges denote patch boundaries). The geometry is admissible by construction. The point charge is located on left side of the figure (green).

[42] demonstrates a parallel implementation of hedgehog, but the geometric preprocessing and adaptive upsampling
algorithms presented in Section 3 are not parallelized. This is a requirement to solve truly large-scale problems that exist in
engineering applications. Our method can also be easily restructured as a local method. The comparison in Section 6.2 high-
lights an important point: a local singular quadrature method can outperform a global method for moderate accuracies, even
when the local scheme is asymptotically slower. This simple change can also dramatically improve both the serial performance
and the parallel scalability of hedgehog shown in [42], due to the decreased communication of a smaller parallel FMM
evaluation. The most important improvement to be made, however, is the equispaced extrapolation. Constructing a superior
extrapolation procedure, optimized for the boundary integral context, is the main focus of our current investigations.

CRediT authorship contribution statement

Matthew J. Morse: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Project administration,
Resources, Validation, Writing – original draft, Writing – review & editing. Abtin Rahimian: Conceptualization, Funding
acquisition, Methodology, Project administration, Supervision. Denis Zorin: Conceptualization, Funding acquisition, Method-
ology, Project administration, Resources, Supervision, Writing – original draft, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgements

We would like to thank Michael O’Neil, Dhairya Malhotra, Libin Lu, Alex Barnett, Leslie Greengard, Michael Shelley for
insightful conversations, feedback and suggestions regarding this work. We would also like to thank the NYU HPC team,
and Shenglong Wang in particular, for great support throughout the course of this work, and the helpful feedback of the
anonymous reviewers. This work was supported by NSF grant DMS-1821334.

Appendix A. Derivation of Heuristic 4.1

We are interested in computing the error incurred when approximating a 2D surface integral with an interpolatory
quadrature rule. In 1D on the interval [−1, 1], we’re interested in the quantity

Rq[f] = I[f] − Qq[f] (A.1)
22

M.J. Morse, A. Rahimian and D. Zorin Journal of Computational Physics 442 (2021) 110511
where

I[f] =
1∫

−1

f (x)dx (A.2)

Qq[f] =
q∑

i=0

f (xi)wi, (A.3)

for quadrature weights wi for a q-point quadrature rule. For a 2D double integral, we define a similar relationship between
the remainder, the exact integral and the qth order quadrature rule:

R(2)
q [f] = I(2)[f] − Q (2)

q [f] (A.4)

where

I(2)[f] =
1∫

−1

1∫
−1

f (s, t)dsdt (A.5)

Q (2)
q [f] =

q∑
j=0

q∑
i=0

f (si, t j)wiw j. (A.6)

For a function of two variables f (s, t), we will denote Is[f] =
∫ 1
−1 f (s, ·)ds as integration with respect to the s variable

only, which produces a function of t . The same subscript notation applies to Rq,s[f] and Qq,s[f]. We use similar notation
for t: we apply the 1D functional to the variable in the subscript, producing a 1D function in the remaining variable. We
observe that

I(2)[f] =
1∫

−1

⎛
⎝

1∫
−1

f (s, t)ds

⎞
⎠dt =

1∫
−1

Is[f]dt = It[Is[f]] (A.7)

Following the discussion in [3], we substitute into Eq. (A.7) and have

I(2)[f] = It[Rq,s[f] + Qq,s[f]] (A.8)

= Rq,t[Rq,s[f] + Qq,s[f]] + Qq,t[Rq,s[f] + Qq,s[f]] (A.9)

= Rq,t[Rq,s[f]] + Qq,s[Rq,t[f]] + Qq,t[Rq,s[f]] + Qq,t[Qq,s[f]] (A.10)

We assume that the higher-order “remainder of remainder” term contributes negligibly to the error. Although it has been
shown that this term has a non-trivial contribution to a tight error estimate [23], we are able to provide a sufficiently tight
upper bound. For large q, the quadrature rule approaches the value of the integral, i.e., Qq,β ≈ Iβ for β = s, t , we’re left
with:

I(2)[f] ≈ Is[Rq,t[f]] + It[Rq,s[f]] + Q (2)
q [f], (A.11)

and hence:

R(2)
q [f]� Is[Rq,t[f]] + It[Rq,s[f]], (A.12)

where � means “approximately less than or equal to.” From [64, Theorem 5.1], we recall that for a 1D function θ defined
on [−1, 1], if Qq[θ] is computed with Clenshaw-Curtis quadrature, θ is Ck and ‖θ(k)‖T < V on [−1, 1] for real finite V , then
for sufficiently large q, the following inequality holds

Rq[θ] ≤ 32V

15πk(2q + 1 − k)k
, (A.13)

where ‖α(x)‖T = ‖α′/
√
1− x2‖1. We’re interested in integrating a function θ̃ over an interval [−h, h] for various h. If θ̃ is

Ck and ‖θ̃‖T < V ′ on [−h, h] for a real constant V ′ independent of h, then we can define θ(x) = θ̃ (hx) on [−1, 1] and apply
Eq. (A.13):

Rq[θ̃] ≤ 32hk+1V ′
k
. (A.14)
15πk(2q + 1 − k)

23

M.J. Morse, A. Rahimian and D. Zorin Journal of Computational Physics 442 (2021) 110511
This follows directly from the proof of [64, Theorem 4.2] applied to θ by replacing θ with θ̃ (hx) and noting that θ(k)(x) =
hk θ̃ (k)(hx). The change of variables produces the first power of h, while each of the k integration by parts produces an
additional power of h. In the context of hedgehog, the size of h is proportional to the edge length of the subdomain Di
outlined in Section 2.2.

Applying Eq. (A.14) to Eq. (A.12), and again letting f (s, t) = �(hs, ht), gives us

R(2)
q [f]� 32hk+1

15πk(2q + 1− k)k
[
Is[V ′

t(s)] + It[V ′
s(t)]

]
(A.15)

where V ′
t(s) = maxt ‖�(k)(hs, ht)‖T and V ′

s(t) = maxs ‖�(k)(hs, ht)‖T for fixed values of s, t . If we can choose a Ṽ that is
strictly greater than V ′

s(t) and V ′
t(s) for any s, t in I(2) , we are left with

R(2)
q [f]� 128hk+1 Ṽ

15πk(2q + 1− k)k
. (A.16)

Applying this to the integration of double layer potentials, we can simply let Ṽ be the largest variation of the kth partial
derivatives of the integrand of any single patch in Eq. (7). In fact, we know that this value is achieved at the projection of
x on the patch Pi closest to x, i.e., (s∗, t∗) = argminI(2)‖x − Pi(s, t)‖2. We can also choose h = maxi hi to observe standard
high-order convergence as a function of patch domain size, which we summarize in the following theorem. The smoothness
and bounded variation assumptions required to apply Eq. (A.13) to our layer potential follow directly from the smoothness
of u(x) in �. Our heuristic directly follows.

References

[1] Mustafa Abduljabbar, Mohammed Al Farhan, Noha Al-Harthi, Rui Chen, Rio Yokota, Hakan Bagci, David Keyes, Extreme scale FMM-accelerated boundary
integral equation solver for wave scattering, SIAM J. Sci. Comput. 41 (3) (2019) C245–C268.

[2] Kendall Atkinson, Weimin Han, Numerical solution of Fredholm integral equations of the second kind, in: Theoretical Numerical Analysis, Springer,
2009, pp. 473–549.

[3] Ludvig af Klinteberg, Anna-Karin Tornberg, Error estimation for Quadrature by Expansion in layer potential evaluation, Adv. Comput. Math. 43 (1)
(2017) 195–234.

[4] Ludvig af Klinteberg, Anna-Karin Tornberg, Adaptive Quadrature by Expansion for layer potential evaluation in two dimensions, SIAM J. Sci. Comput.
40 (3) (2018) A1225–A1249.

[5] Bradley K. Alpert, Hybrid Gauss-trapezoidal quadrature rules, SIAM J. Sci. Comput. 20 (5) (1999) 1551–1584.
[6] Alex H. Barnett, Evaluation of layer potentials close to the boundary for Laplace and Helmholtz problems on analytic planar domains, SIAM J. Sci.

Comput. 36 (2) (2014) A427–A451.
[7] Alex H. Barnett, Timo Betcke, Stability and convergence of the method of fundamental solutions for Helmholtz problems on analytic domains, J.

Comput. Phys. 227 (14) (2008) 7003–7026.
[8] Alex Bespalov, Timo Betcke, Alexander Haberl, Dirk Praetorius, Adaptive BEM with optimal convergence rates for the Helmholtz equation, Comput.

Methods Appl. Mech. Eng. 346 (2019) 260–287.
[9] J. Thomas Beale, A grid-based boundary integral method for elliptic problems in three dimensions, SIAM J. Numer. Anal. 42 (2) (2004) 599–620.

[10] James Bremer, Zydrunas Gimbutas, A Nyström method for weakly singular integral operators on surfaces, J. Comput. Phys. 231 (14) (2012) 4885–4903.
[11] James Bremer, Zydrunas Gimbutas, On the numerical evaluation of the singular integrals of scattering theory, J. Comput. Phys. 251 (2013) 327–343.
[12] Timo Betcke, Alexander Haberl, Dirk Praetorius, Adaptive boundary element methods for the computation of the electrostatic capacity on complex

polyhedra, preprint, arXiv:1901.08393, 2019.
[13] Oscar P. Bruno, Leonid A. Kunyansky, A fast, high-order algorithm for the solution of surface scattering problems: basic implementation, tests, and

applications, J. Comput. Phys. 169 (1) (2001) 80–110.
[14] Oscar P. Bruno, Stéphane K. Lintner, A high-order integral solver for scalar problems of diffraction by screens and apertures in three-dimensional space,

J. Comput. Phys. 252 (2013) 250–274.
[15] J. Thomas Beale, Wenjun Ying, Jason R. Wilson, A simple method for computing singular or nearly singular integrals on closed surfaces, Commun.

Comput. Phys. 20 (3) (2016) 733–753.
[16] Stéphanie Chaillat, Luca Desiderio, Patrick Ciarlet, Theory and implementation of H-matrix based iterative and direct solvers for Helmholtz and elasto-

dynamic oscillatory kernels, J. Comput. Phys. 351 (2017) 165–186.
[17] Stéphanie Chaillat, Marion Darbas, Frédérique Le Louër, Fast iterative boundary element methods for high-frequency scattering problems in 3D elasto-

dynamics, J. Comput. Phys. 341 (2017) 429–446.
[18] Camille Carvalho, Shilpa Khatri, Arnold D. Kim, Asymptotic analysis for close evaluation of layer potentials, J. Comput. Phys. 355 (2018) 327–341.
[19] Camille Carvalho, Shilpa Khatri, Arnold D. Kim, Asymptotic approximations for the close evaluation of double-layer potentials, preprint, arXiv:1810 .

02483, 2018.
[20] Laurent Demanet, Alex Townsend, Stable extrapolation of analytic functions, preprint, arXiv:1605 .09601, 2016.
[21] Charles L. Epstein, Leslie Greengard, Andreas Klockner, On the convergence of local expansions of layer potentials, SIAM J. Numer. Anal. 51 (5) (2013)

2660–2679.
[22] David Elliott, Barbara M. Johnston, Peter R. Johnston, Clenshaw–Curtis and Gauss–Legendre quadrature for certain boundary element integrals, SIAM J.

Sci. Comput. 31 (1) (2008) 510–530.
[23] David Elliott, Barbara M. Johnston, Peter R. Johnston, A complete error analysis for the evaluation of a two-dimensional nearly singular boundary

element integral, J. Comput. Appl. Math. 279 (2015) 261–276.
[24] Gerald Farin, Curves and Surfaces for Computer Aided Geometric Design: A Practical Guide, Academic Press Professional, Inc., San Diego, CA, USA, 1988.
[25] Mahadevan Ganesh, Ivan G. Graham, A high-order algorithm for obstacle scattering in three dimensions, J. Comput. Phys. 198 (1) (2004) 211–242.
[26] Leslie Greengard, Vladimir Rokhlin, A fast algorithm for particle simulations, J. Comput. Phys. 73 (2) (1987) 325–348.
[27] Abinand Gopal, Lloyd N. Trefethen, Solving Laplace problems with corner singularities via rational functions, preprint, arXiv:1905 .02960, 2019.
[28] Thomas J.R. Hughes, John A. Cottrell, Yuri Bazilevs, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput.

Methods Appl. Mech. Eng. 194 (39–41) (2005) 4135–4195.
24

http://refhub.elsevier.com/S0021-9991(21)00406-X/bib98F66E9AEC36D6A9016217F526C04241s1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bib98F66E9AEC36D6A9016217F526C04241s1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bib7DC9011CA5533B5E190342F96986CE61s1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bib7DC9011CA5533B5E190342F96986CE61s1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bibBA036D28743B8CDE3C4EE18E042CCF0Ds1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bibBA036D28743B8CDE3C4EE18E042CCF0Ds1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bib479D1D9EFA997205DAB816DADC865066s1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bib479D1D9EFA997205DAB816DADC865066s1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bib867E2F440395EF2AC7C0983744EE894Ds1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bibF03FEB60F3695B72BFD0ABE7556E6F98s1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bibF03FEB60F3695B72BFD0ABE7556E6F98s1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bib6A2E893F272D1BFDB4E68E1A5A54BB75s1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bib6A2E893F272D1BFDB4E68E1A5A54BB75s1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bib5EA174F11AE3AD2D8A2146BCEBE3C6E9s1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bib5EA174F11AE3AD2D8A2146BCEBE3C6E9s1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bib95FE17B51064215E6EC3C34B491C608Ds1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bib35412074349712C72DA0F073500F18A2s1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bib99C5D749FE9DB57393670DF9BE6B45AEs1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bib4CCC638EC13E6A99AE5569EC7DB8313Fs1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bib4CCC638EC13E6A99AE5569EC7DB8313Fs1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bib205B796AF93D44038F1E0E395389F9C5s1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bib205B796AF93D44038F1E0E395389F9C5s1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bib416133D27359D0095E3887305AFB4514s1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bib416133D27359D0095E3887305AFB4514s1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bib92437914C0B8FAD24428B9CA91B3CBC4s1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bib92437914C0B8FAD24428B9CA91B3CBC4s1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bib64C97DDEB5437FA51B40D0665B610221s1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bib64C97DDEB5437FA51B40D0665B610221s1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bib527972D2AAC2D785BEBC2608563E7741s1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bib527972D2AAC2D785BEBC2608563E7741s1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bibAFD6C31974D84B61D35EEEF93F84DF67s1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bib6BF945B4F06C6C80CD9B12E1A6E40666s1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bib6BF945B4F06C6C80CD9B12E1A6E40666s1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bib4D63EC1AA4C46738107033714ADF7189s1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bib5ED2179A812B140075258D187EE1A13Fs1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bib5ED2179A812B140075258D187EE1A13Fs1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bibA7FBDCBFBE7F2836A1CDFEDC0952C08Es1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bibA7FBDCBFBE7F2836A1CDFEDC0952C08Es1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bibC3BC42FD126F1361577BC2825A59A844s1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bibC3BC42FD126F1361577BC2825A59A844s1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bib800618943025315F869E4E1F09471012s1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bib0C620CFCC8E2FE93E1F6056751639DC0s1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bib340F0D5E641E8F842BA4A7F8927EF154s1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bib08437BA1CE2F1701DE79128F7873BBBCs1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bib69398DA04DEEA953B609A01D9088288Bs1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bib69398DA04DEEA953B609A01D9088288Bs1

M.J. Morse, A. Rahimian and D. Zorin Journal of Computational Physics 442 (2021) 110511
[29] Johan Helsing, Rikard Ojala, On the evaluation of layer potentials close to their sources, J. Comput. Phys. 227 (5) (2008) 2899–2921.
[30] Jeremy G. Hoskins, Vladimir Rokhlin, Kirill Serkh, On the numerical solution of elliptic partial differential equations on polygonal domains, SIAM J. Sci.

Comput. 41 (4) (2019) A2552–A2578.
[31] George C. Hsiao, Wolfgang L. Wendland, Boundary Integral Equations, Springer, 2008.
[32] Alec Jacobson, Ladislav Kavan, Olga Sorkine-Hornung, Robust inside-outside segmentation using generalized winding numbers, ACM Trans. Graph.

32 (4) (2013) 33.
[33] Seppo Järvenpää, Matti Taskinen, Pasi Ylä-Oijala, Singularity extraction technique for integral equation methods with higher order basis functions on

plane triangles and tetrahedra, Int. J. Numer. Methods Eng. 58 (8) (2003) 1149–1165.
[34] Seppo Jarvenpaa, Matti Taskinen, Pasi Ylä-Oijala, Singularity subtraction technique for high-order polynomial vector basis functions on planar triangles,

IEEE Trans. Antennas Propag. 54 (1) (2006) 42–49.
[35] Ludvig af Klinteberg, Alex H. Barnett, Accurate quadrature of nearly singular line integrals in two and three dimensions by singularity swapping,

preprint, arXiv:1910 .09899, 2019.
[36] Andreas Klöckner, Alexander Barnett, Leslie Greengard, Michael O’Neil, Quadrature by expansion: a new method for the evaluation of layer potentials,

J. Comput. Phys. 252 (2013) 332–349.
[37] Shilpa Khatri, Arnold D. Kim, Ricardo Cortez, Camille Carvalho, Close evaluation of layer potentials in three dimensions, J. Comput. Phys. 423 (2020)

109798.
[38] Sharad Kapur, Vladimir Rokhlin, High-order corrected trapezoidal quadrature rules for singular functions, SIAM J. Numer. Anal. 34 (4) (1997)

1331–1356.
[39] Rainer Kress, Linear Integral Equations, Applied Mathematical Sciences, vol. 82, 1999.
[40] Yuxiang Liu, Alex H. Barnett, Efficient numerical solution of acoustic scattering from doubly-periodic arrays of axisymmetric objects, J. Comput. Phys.

324 (2016) 226–245.
[41] Bruno Lévy, Geogram, 2015.
[42] Libin Lu, Matthew J. Morse, Abtin Rahimian, Georg Stadler, Denis Zorin, Scalable simulation of realistic volume fraction red blood cell flows through

vascular networks, preprint, arXiv:1909 .11085, 2019.
[43] Dhairya Malhotra, George Biros, PVFMM: a parallel kernel independent FMM for particle and volume potentials, Commun. Comput. Phys. 18 (3) (2015)

808–830.
[44] Dhairya Malhotra, Antoine Cerfon, Lise-Marie Imbert-Gérard, Michael O’Neil, Taylor states in stellarators: a fast high-order boundary integral solver,

preprint, arXiv:1902 .01205, 2019.
[45] Solomon Grigorevich Mikhlin, Integral Equations: And Their Applications to Certain Problems in Mechanics, Mathematical Physics and Technology, vol.

4, Elsevier, 2014.
[46] Matthew J. Morse, Abtin Rahimian, Denis Zorin, Supplementary material for: a robust solver for elliptic PDEs in 3D complex geometries, https://

cims .nyu .edu /gcl /papers /2020 -qbkix3d -supplementary.pdf, 2020.
[47] Jean-Claude Nédélec, Acoustic and Electromagnetic Equations, Applied Mathematical Sciences, vol. 144, 2001.
[48] Constantine Pozrikidis, Boundary Integral and Singularity Methods for Linearized Viscous Flow, Cambridge University Press, 1992.
[49] Costas Pozrikidis, Boundary Integral and Singularity Methods for Linearized Viscous Flow, Cambridge University Press, 1992.
[50] Vladimir Zalmanovich Parton, Petr Il’ič Perlin, Integral Equations in Elasticity, Imported Pubn, 1982.
[51] Rodrigo B. Platte, Lloyd N. Trefethen, Arno B.J. Kuijlaars, Impossibility of fast stable approximation of analytic functions from equispaced samples, SIAM

Rev. 53 (2) (2011) 308–318.
[52] Bryan Quaife, George Biros, High-volume fraction simulations of two-dimensional vesicle suspensions, J. Comput. Phys. 274 (2014) 245–267.
[53] Abtin Rahimian, Alex Barnett, Denis Zorin, Ubiquitous evaluation of layer potentials using Quadrature by Kernel-independent Expansion, BIT Numer.

Math. 58 (2) (2018) 423–456.
[54] Manas Rachh, Andreas Klöckner, Michael O’Neil, Fast algorithms for Quadrature by Expansion I: globally valid expansions, J. Comput. Phys. 345 (2017)

706–731.
[55] Manas Rachh, Kirill Serkh, On the solution of Stokes equation on regions with corners, preprint, arXiv:1711.04072, 2017.
[56] Hanan Samet, Foundations of Multidimensional and Metric Data Structures, Morgan Kaufmann, 2006.
[57] Wojciech Śmigaj, Timo Betcke, Simon Arridge, Joel Phillips, Martin Schweiger, Solving boundary integral problems with BEM++, ACM Trans. Math.

Softw. 41 (2) (2015) 6.
[58] Kirill Serkh, On the solution of elliptic partial differential equations on regions with corners II: detailed analysis, Appl. Comput. Harmon. Anal. (2017).
[59] Kirill Serkh, On the solution of elliptic partial differential equations on regions with corners III: curved boundaries, in preparation, 2018.
[60] Kirill Serkh, Vladimir Rokhlin, On the solution of elliptic partial differential equations on regions with corners, J. Comput. Phys. 305 (2016) 150–171.
[61] Kirill Serkh, Vladimir Rokhlin, On the solution of the Helmholtz equation on regions with corners, Proc. Natl. Acad. Sci. USA 113 (33) (2016) 9171–9176.
[62] Michael Siegel, Anna-Karin Tornberg, A local target specific quadrature by expansion method for evaluation of layer potentials in 3D, J. Comput. Phys.

364 (2018) 365–392.
[63] Svetlana Tlupova, J. Thomas Beale, Regularized single and double layer integrals in 3D Stokes flow, J. Comput. Phys. (2019).
[64] Lloyd N. Trefethen, Is Gauss quadrature better than Clenshaw–Curtis?, SIAM Rev. 50 (1) (2008) 67–87.
[65] Matthias Taus, Gregory J. Rodin, Thomas J.R. Hughes, Isogeometric analysis of boundary integral equations: high-order collocation methods for the

singular and hyper-singular equations, Math. Models Methods Appl. Sci. 26 (08) (2016) 1447–1480.
[66] Lloyd N. Trefethen, J.A.C. Weideman, Two results on polynomial interpolation in equally spaced points, J. Approx. Theory 65 (3) (1991) 247–260.
[67] Matt Wala, Andreas Klöckner, A fast algorithm with error bounds for Quadrature by Expansion, J. Comput. Phys. 374 (2018) 135–162.
[68] Matt Wala, Andreas Klöckner, A fast algorithm for Quadrature by Expansion in three dimensions, J. Comput. Phys. 388 (2019) 655–689.
[69] Matt Wala, Andreas Klöckner, Optimization of fast algorithms for global Quadrature by Expansion using target-specific expansions, J. Comput. Phys.

(2019) 108976.
[70] Matt Wala, Andreas Klöckner, On the approximation of local expansions of Laplace potentials by the fast multipole method, preprint, arXiv:2008 .00653,

2020.
[71] Marcus Webb, Lloyd N. Trefethen, Pedro Gonnet, Stability of barycentric interpolation formulas for extrapolation, SIAM J. Sci. Comput. 34 (6) (2012)

A3009–A3015.
[72] Bowei Wu, Hai Zhu, Alex Barnett, Shravan Veerapaneni, Solution of stokes flow in complex nonsmooth 2d geometries via a linear-scaling high-order

adaptive integral equation scheme, J. Comput. Phys. (2020) 109361.
[73] Hong Xiao, Zydrunas Gimbutas, A numerical algorithm for the construction of efficient quadrature rules in two and higher dimensions, Comput. Math.

Appl. 59 (2) (2010) 663–676.
25

http://refhub.elsevier.com/S0021-9991(21)00406-X/bib3969DC7EC85BA96FAA4CC7C446F7401Cs1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bib3242F89B5F9BC490EDFD7AE90C56BB7Ds1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bib3242F89B5F9BC490EDFD7AE90C56BB7Ds1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bib0F617FFBF43788E26161D7E60526C062s1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bib2EE7DB26847D9285B8756F5C7AC9BE1Ds1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bib2EE7DB26847D9285B8756F5C7AC9BE1Ds1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bibEDCA7E5AB9E3099F1E1DD297B70F51F2s1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bibEDCA7E5AB9E3099F1E1DD297B70F51F2s1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bibB7B88048A9BF0111D5D4C232AAF9BBDCs1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bibB7B88048A9BF0111D5D4C232AAF9BBDCs1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bib2D1D794E41AAE54841CF8CCE809AA5B2s1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bib2D1D794E41AAE54841CF8CCE809AA5B2s1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bibA3EF109FAD02D9F988E0859BC05B1DCFs1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bibA3EF109FAD02D9F988E0859BC05B1DCFs1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bib3EE9AB0483020258E6143BACD9E4349Fs1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bib3EE9AB0483020258E6143BACD9E4349Fs1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bib0559AF29F503DB006C6CD57DA84F8E14s1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bib0559AF29F503DB006C6CD57DA84F8E14s1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bibA5F3C6A11B03839D46AF9FB43C97C188s1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bibAD37BF1A2956450D443541BE1CF9AC82s1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bibAD37BF1A2956450D443541BE1CF9AC82s1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bib8C637615CB13B5E9BF9AD6430087CEFFs1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bib42D73AB9384FD1F9AF74256BA0657B4Ds1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bib42D73AB9384FD1F9AF74256BA0657B4Ds1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bib8D8FCC1ABD550C5F25DBFAA57D59CB67s1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bib8D8FCC1ABD550C5F25DBFAA57D59CB67s1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bib5B60300F9804214DB50CBF8B594CB64Fs1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bib5B60300F9804214DB50CBF8B594CB64Fs1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bib22A8E6A1FD9579C7C80DC5B45533CB14s1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bib22A8E6A1FD9579C7C80DC5B45533CB14s1
https://cims.nyu.edu/gcl/papers/2020-qbkix3d-supplementary.pdf
https://cims.nyu.edu/gcl/papers/2020-qbkix3d-supplementary.pdf
http://refhub.elsevier.com/S0021-9991(21)00406-X/bib0EF047503A09484D3765A4AACBED020Ds1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bib887564782262C87A3E0582132EDC7982s1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bib3D06A59A98F9DA9E339E750CDFAE0FBAs1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bib2C3215EECCB220F093B91F0CC673E776s1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bib0CD6096810AD630B7E4DC81590B00C93s1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bib0CD6096810AD630B7E4DC81590B00C93s1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bibA3793A93E33E57F6CDB8B4CC75C70767s1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bib617F22562571C58EB92F351A1E217E2As1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bib617F22562571C58EB92F351A1E217E2As1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bibE9DFDF3714CCFF37B936E7299F7DD7A3s1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bibE9DFDF3714CCFF37B936E7299F7DD7A3s1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bib48C28463432F90772C9F803AAA2C7FECs1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bib36575CD67DA5FECF59765B6DE3229F10s1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bib6883995ECBD47640F81CB172EA43F4FAs1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bib6883995ECBD47640F81CB172EA43F4FAs1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bib5DBC98DCC983A70728BD082D1A47546Es1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bib83312E9D483B811210FD4FE808B49DAAs1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bib8CB2010D27E13509D364436256E972C0s1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bibFD025D0C7D2C0C6969E16E6A272593C8s1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bibEC8E57D71F07E31203035548B79D03C8s1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bibEC8E57D71F07E31203035548B79D03C8s1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bib8203D1B1019FB8EA68D647CDB8CAF106s1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bib6BED920FF18CDA4B2F7BAB9EE2F35BBDs1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bib1658D01737883D8F50ABEF7FF9B60BE5s1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bib1658D01737883D8F50ABEF7FF9B60BE5s1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bib60770CE4365D6C8E039964E43811859Es1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bib2FD059783D4A0441CB5B2BC7D3372E42s1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bib9C77B5E5E156AF0E086ECE7011348031s1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bib8920571E7DDC7655D5B1525602007DEEs1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bib8920571E7DDC7655D5B1525602007DEEs1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bibFED4CEB67776870A6AE4643B7AE91127s1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bibFED4CEB67776870A6AE4643B7AE91127s1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bibA8247BBF796385539950E0B4F9C64AC6s1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bibA8247BBF796385539950E0B4F9C64AC6s1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bib6BE22E36D6575AC5088B0B137C0B5569s1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bib6BE22E36D6575AC5088B0B137C0B5569s1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bib095F846DCCFE0CEAD1060236C080D19Ds1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bib095F846DCCFE0CEAD1060236C080D19Ds1

M.J. Morse, A. Rahimian and D. Zorin Journal of Computational Physics 442 (2021) 110511
[74] Lexing Ying, George Biros, Denis Zorin, A kernel-independent adaptive fast multipole algorithm in two and three dimensions, J. Comput. Phys. 196 (2)
(2004) 591–626.

[75] Lexing Ying, George Biros, Denis Zorin, A high-order 3D boundary integral equation solver for elliptic PDEs in smooth domains, J. Comput. Phys. 219 (1)
(2006) 247–275.

[76] Lexing Ying, Denis Zorin, A simple manifold-based construction of surfaces of arbitrary smoothness, in: ACM Transactions on Graphics (TOG), vol. 23,
ACM, 2004, pp. 271–275.

[77] Jürgen Zechner, Benjamin Marussig, Gernot Beer, Thomas-Peter Fries, The isogeometric Nyström method, Comput. Methods Appl. Mech. Eng. 308 (2016)
212–237.
26

http://refhub.elsevier.com/S0021-9991(21)00406-X/bibE0DF064F78ADBDB3116300286F9AE45Es1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bibE0DF064F78ADBDB3116300286F9AE45Es1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bib4AADF4BDCBE4175E4AF77641EAA3446Cs1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bib4AADF4BDCBE4175E4AF77641EAA3446Cs1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bibBA24EBE59D958D18B32C4D4E3B87C8C8s1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bibBA24EBE59D958D18B32C4D4E3B87C8C8s1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bib195772A2A52057CB64273A7FEAA465E7s1
http://refhub.elsevier.com/S0021-9991(21)00406-X/bib195772A2A52057CB64273A7FEAA465E7s1

	A robust solver for elliptic PDEs in 3D complex geometries
	1 Introduction
	1.1 Contributions
	1.2 Related work

	2 Formulation
	2.1 Problem setup
	2.2 Geometry representation
	2.3 Problem discretization

	3 Algorithms
	3.1 Singular and near-singular evaluation
	3.2 Geometric criteria for accurate quadrature
	3.2.1 Admissibility criteria
	3.2.2 Upsampling criteria

	3.3 Refinement algorithm preliminaries
	3.3.1 AABB trees
	3.3.2 Computing the closest point to a patch

	3.4 Admissibility algorithm
	3.5 Adaptive upsampling algorithm
	3.6 Marking target points for evaluation
	3.6.1 Marking and culling far points
	3.6.2 Full marking algorithm

	4 Error analysis
	4.1 Quadrature error
	4.2 Extrapolation error
	4.3 Limitations

	5 Complexity
	6 Results
	6.1 Classical convergence with patch refinement
	6.1.1 Green’s identity
	6.1.2 Solution via GMRES

	6.2 Comparison with [75]
	6.3 Requested target precision vs. computed accuracy
	6.4 Full algorithm on interlocking torii
	6.5 Solution on complex geometry

	7 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Appendix A Derivation of Heuristic 4.1
	References

