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We develop a boundary integral equation solver for elliptic partial differential equations 
on complex 3D geometries. Our method is efficient, high-order accurate and robustly 
handles complex geometries. A key component is our singular and near-singular layer 
potential evaluation scheme, hedgehog: a simple extrapolation of the solution along a 
line to the boundary. We present a series of geometry-processing algorithms required for
hedgehog to run efficiently with accuracy guarantees on arbitrary geometries and an 
adaptive upsampling scheme based on a iteration-free heuristic for quadrature error. We 
validate the accuracy and performance with a series of numerical tests and compare our 
approach to a competing local evaluation method.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Linear elliptic homogeneous partial differential equations (PDEs) play an important role in modeling many physical in-
teractions, including electrostatics, elastostatics, acoustic scattering, and viscous fluid flow. Ideas from potential theory allow 
us to reformulate the associated boundary value problem (BVP) as an integral equation [31]. The solution to the BVP can 
then be expressed as a surface convolution against the PDE’s fundamental solution called a layer potential. Discretizing this 
boundary integral equation (BIE) formulation offers several advantages over commonly used PDE discretization methods 
such as finite element or finite volume methods.

First, the system of equations uses asymptotically fewer variables because only the boundary of the PDE’s domain 
requires discretization. There is no need to directly discretize the domain itself, which is often time-consuming and 
error-prone, especially when complex or unbounded domains are involved. This makes the boundary integral formulation 
well-suited for electromagnetic problems [47] and indispensable for particulate flow simulations with changing, moving, 
or deforming geometries [49]. Second, although the algebraic system resulting from discretization of BIE’s is dense, effi-
cient methods based on the Fast Multipole Method [26] can solve it in O (N) time. A suitable integral formulation can 
yield a well-conditioned system that can be solved using an iterative method like GMRES in relatively few iterations. Third, 
high-order quadrature rules can be leveraged to dramatically improve the accuracy of a given discretization size.

For elliptic problems with smooth domain boundaries, fast, high-order methods have a significant advantage over stan-
dard methods, drastically reducing the number of degrees of freedom needed to approximate a solution to a given accuracy. 
However, achieving this with a BIE discretization presents a significant challenge. In particular, integral equation solvers 
require accurate quadrature rules for singular integrals, as the formulation requires the solution of an integral equation in-
volving the singular fundamental solution of the PDE. Moreover, if the solution needs to be evaluated arbitrarily close to the 
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boundary, then one must numerically compute nearly singular integrals with high-order accuracy (e.g., [13,36,75]). Precom-
puting high-order singular/near-singular quadrature weights also presents a considerable problem. Such weights necessarily 
depend on the surface geometry, so each sample point requires a unique set of weights. Furthermore, the sampling density 
required for accurate singular/near-singular integration is highly dependent on the boundary geometry. For example, two 
nearly touching pieces of the boundary require a sampling density proportional to the distance between them. Applying 
such a fine discretization globally would be prohibitively expensive, highlighting the need for adaptive refinement.

1.1. Contributions

Our main contribution is a high-order, boundary integral solver for non-oscillatory elliptic PDEs, and experimental eval-
uation of this solver. An earlier parallel version of this method is used in [42] to simulate red blood cell flows through 
complex blood vessel with high numerical accuracy. More specifically, the main features of our solver include:

• Singular and near-singular quadrature scheme. We introduce an approximation-based singular/near-singular quadra-
ture scheme for single- and double-layer potentials in 3D: after computing the solution at a set of nearby check points, 
placed along a line intersecting the target, we extrapolate the solution to the target point. We have named this scheme
hedgehog, for reasons that are apparent from Fig. 2. In order to ensure accuracy of the scheme for complex geometries, 
a key component of our scheme is a set of geometric criteria for surface sampling needed for accurate integration.
Our approach is motivated by the near-singular evaluation scheme of [52,75], which implements a similar scheme that 
includes an additional on-surface singular evaluation to allow for interpolation of the solution. We eliminate the need 
for explicit on-surface singular evaluation. An important consequence of this includes the use of smooth quadrature rules 
only, removing the need for an explicit singular quadrature scheme. This allows for much greater flexibility in the choice 
of surface representation (e.g., the representation of [75] was explicitly designed to support singular quadratures).

• Surface representation. Our quadrature scheme enables us to use standard Bézier patches to define the domain bound-
ary, which simplifies the use of the solver on CAD geometry, increases the efficiency of surface evaluation and simplifies 
parallelization. It also allows for adaptive quad-trees of patches to approximate complex surfaces with nonuniform cur-
vature distribution efficiently. Our method can be applied to other surface representations with minimal changes.

• Refinement for geometric admissibility and quadrature accuracy. An essential aspect of our method is a set of fast 
adaptive geometry refinement algorithms to ensure that the assumptions required for the validity and accuracy of
hedgehog are satisfied. These conditions are similar in spirit to [54] and [68], but adapted to the geometry of our 
particular quadrature scheme. To guarantee quadrature accuracy of our method, we detail an adaptive h-refinement 
approach for the integral equation discretization points.

We evaluate hedgehog for a variety of problems on complex geometries to demonstrate high-order convergence and 
compare to [75].

1.2. Related work

We restrict our discussion to elliptic PDE solvers in 3D using boundary integral formulations. The common schemes 
to discretize boundary integral equations are the Galerkin method, the collocation method, and the Nyström method [2]. 
Galerkin and collocation methods are usually referred as Boundary Element Methods (BEM). BEM has been applied to a 
variety of problems in elastodynamics, electromagnetics and acoustics [1,16,17]. There are a variety of BEM implementations 
available; one that is most notable is BEM ++, which includes high-order elements [57] with extensions for adaptivity added 
in [8,12]. In this paper, we focus on the Nyström discretization, in which the integral in the equation is replaced by its 
quadrature approximation. The Nyström method is simple, yet it enables very efficient methods to solve the discretized 
integral equation. Compared to BEM methods, Nyström methods tend to be more efficient, especially for changing or moving 
surfaces. However, Nyström methods are more difficult to apply to non-smooth surfaces (we do not consider high-order 
methods for surfaces with sharp edges and corners in this work).

The key element of Nyström methods for BIE equations is efficient quadrature rules for singular and near-singular inte-
grals. In the BIE literature, such integration schemes fall into one of the several categories: singularity cancellation, asymptotic 
correction, singularity subtraction, custom quadratures or approximation-based quadrature schemes.

Singularity cancellation schemes apply a change of variables to remove the singularity in the layer potential, allowing for 
the application of standard smooth quadrature rules. The first polar change of variables was detailed in the context of 
acoustic scattering [13], which leveraged a partition of unity and a polar quadrature rule to remove the singularity in the 
integrand of layer potential. The method was extended to open surfaces in [14]. This methodology was applied to general 
elliptic PDEs in [75] and coupled with the kernel-independent fast multipole method [74] and a general C∞ surface repre-
sentation for complex geometries [76]. Its advantages and disadvantages compared to hedgehog are discussed in Section 6. 
Recently, [44] demonstrated that the choice of partition of unity function used for the change of variables has a dramatic ef-
fect on overall convergence order. The first singularity cancellation scheme in 3D on general surfaces composed of piecewise 
smooth triangles was presented in [10,11]. [25] introduced a change of variables method for acoustic scattering on 3D sur-
faces, parametrized by spherical coordinates by integrating over a rotated coordinate system that cancels out the singularity.
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Asymptotic correction methods study the inaccuracies due to the singular PDE kernel with asymptotic analysis and apply 
a compensating correction. [9,15,63] compute the integral with a regularized kernel and add corrections for regularization 
and discretization for the single and double layer Laplace kernel in 3D, along with the Stokeslet and stresslet in 3D. [18]
computes an asymptotic expansion of the kernel itself, which is used to remove the aliasing error incurred when applying 
smooth quadrature rules to near-singular layer potentials. This method is extended to 3D in [19] and a complete asymp-
totic analysis of the double-layer integral is performed in [37]. Singularity subtraction methods [33,34] explicitly subtract the 
singular component of the integrand analytically, which produces a smooth bounded integral that can be integrated with 
standard quadrature rules. However, the analytic calculations involved in these approaches are often tailored to a particular 
PDE and require recalculation for each new PDE of interest.

Custom quadrature rules aim to integrate a particular family of functions to high-order accuracy. This can allow for arbi-
trarily accurate and extremely fast singular integration methods, since the quadrature rules can be precomputed and stored 
[5,73].

Our method falls into the final category: approximation-based quadrature schemes. The first use of a local expansion to 
approximate a layer potential near the boundary of a 2D boundary was presented in [6]. By using a refined, or upsampled, 
global quadrature rule to accurately compute coefficients of a Taylor series, the resulting expansion serves as a reasonable 
approximation to the solution near the boundary where quadrature rules for smooth functions are inaccurate. This scheme 
was then adapted to evaluate the solution both near and on the boundary, called Quadrature by Expansion (QBX) [21,36]. 
The first rigorous error analysis of the truncation error of QBX was carried out in [21].

A fast implementation of QBX in 2D, along with a set of geometric constraints required for well-behaved convergence, 
was presented in [54]. However, the interaction of the expansions of QBX and the translation operator expansions of the 
FMM resulted in a loss of accuracy, which required an artificially high multipole order to compensate for this additional 
error. [67] addresses this shortcoming by enforcing a confinement criteria on the location of expansion disks relative to 
FMM tree boxes. [3] provided extremely tight error heuristics for various kernels and quadrature rules in 2D using contour 
integration and the asymptotic approach of [22]. [4] then leveraged these estimates in a QBX algorithm for Laplace and 
Helmholtz problems in 2D that adaptively selects quadrature upsampling and the expansion order for each QBX expansion. 
In the spirit of [74], [53] generalizes QBX to any elliptic PDE by using potential theory to form a local, least-squares solution 
approximation using only evaluations of the PDE’s fundamental solution.

The first extension of QBX to 3D was [62], where the authors present a local, target-specific QBX method on spheroidal 
geometries. In a local QBX scheme, an upsampled accurate quadrature is used as a local correction to the expansion coef-
ficients computed from the coarse quadrature rule over the boundary. This is in contrast with a global scheme, where the 
expansion coefficients are computed from the upsampled quadrature with no need for correction. The first local QBX scheme 
appears in [6] in 2D, but the notion of local FMM corrections dates back to earlier work such as [5,38]. The expansions in 
[62] computed in a target-specific QBX scheme can only be used to evaluate a single target point, but each expansion can 
be computed at a lower cost than a regular expansion valid in a disk. The net effect of both these algorithmic variations 
are greatly improved constants, which are required for complicated geometries in 3D. [68] extends the QBX-FMM coupling 
detailed in [67] to 3D surfaces, along with the geometric criteria and algorithms of [54] that guarantees accurate quadra-
ture. [69] improves upon this by adding target-specific expansions to [68], achieving a 40% speed-up and [70] provides a 
thorough error analysis of the interaction between computing QBX expansions and FMM local expansions.

In addition to techniques described above, a singular quadrature scheme of [29], further extended to 2D Stokes flows in 
[72] and to near-singular 3D line integrals in [35], does not fit into one of the above categories. While this method performs 
exceptionally well in practice, it does not immediately generalize to 3D surfaces in an efficient manner.

Most techniques mentioned above assume smooth domain boundaries or use adaptive refinement to handle non-smooth 
features. There has been a great deal of recent work on special quadratures for regions with corners [30,55,58–61]. Although 
not yet generalized to 3D, this work has the potential to vastly improve the performance of 3D Nyström boundary integral 
methods on regions with corners and edges.

A way to avoid singular quadratures entirely is to use the method of fundamental solutions (MFS), which represents the 
solution as a sum of point charges on an equivalent surface outside of the PDE domain. MFS was successfully applied in 
2D [7] and in axis-symmetric 3D problems [40]. Recently, [27] has introduced an 2D approach similar in spirit to MFS, 
but reformulated as a rational approximation problem. Eliminating the need for singular integration makes these methods 
advantageous, but placing the point charges robustly can be challenging in practice and general 3D geometries remain a 
challenge.

We also briefly mention the use of isogeometric analysis (IGA) [28] in the context of boundary integral equations. IGA 
aims to use the same basis functions for geometry and solution representation, in particular, similar to our work, reducing 
the gap between representations used in CAD, and those needed for high-order BEM. IGA has been successfully applied 
to singular and hypersingular boundary integral equations with a collocation discretization [65]. A Nyström IGA method 
coupled with a regularized quadrature scheme is detailed in [77].

The rest of the paper is organized as follows: In Section 2, we briefly summarize the problem formulation, geometry 
representation and discretization. In Section 3, we detail our singular evaluation scheme and with algorithms to enforce ad-
missibility, adaptively upsample the boundary discretization, and query surface geometry to evaluate singular/near-singular 
integrals. In Section 4, we provide error estimates for hedgehog. In Section 5, we summarize the complexity of each of the 
3
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Fig. 1. Patch Quadrisection. Right: the standard domain I2 of a single surface or quadrature patch. Middle: a collection of subdomains Di of Er , produced 
by quadrisection. Each Di corresponds to a map ηi such that Di = ηi(I2); a single Di is highlighted in bold. Left: the image of Er under the patch γr . The 
final image of each subdomain is outlined, with the image of Di in bold.

algorithms described in Section 3. In Section 6, we detail convergence tests of our singular evaluation scheme and compare 
against other state-of-the-art methods.

2. Formulation

2.1. Problem setup

We restrict our focus to interior Dirichlet boundary value problems of the form

Lu(x) = 0, x ∈ �, (1)

u(x) = f (x), x ∈ ∂� = �, (2)

with multiply- or singly-connected domain � of arbitrary genus. Our approach applies directly to standard integral equation 
formulations of exterior Dirichlet and Neumann problems; we include results for an exterior Dirichlet problem in Section 6.4. 
Here L is a linear elliptic operator and f is at least Ck . While our method can be applied to any non-oscillatory elliptic PDE, 
we use the following equations in our examples:

Lu =

⎧⎪⎨
⎪⎩

�u Laplace

�u − ∇p, ∇ · u = 0 Stokes

�u + 1
1−2ν ∇∇ · u Navier (linear elasticity)

(3)

We follow the approach of [75]. We can express the solution at a point x ∈ � in terms of the double-layer potential

u(x) = D[φ](x) =
∫
�

∂G(x, y)

∂n(y)
φ(y)dy�, (4)

where G(x, y) is the fundamental solution or kernel of Eq. (2), n(y) is the normal at y on � pointing into the exterior of 
�, and φ is an unknown function, or density, defined on �. We list the kernels associated with the PDEs in Eq. (3) in [46, 
Section 1]. Using the jump relations for the interior and exterior limits of u(x) as x tends towards � [39,45,48,50], we know 
that Eq. (4) is a solution to Eq. (2) if φ satisfies

(
1

2
I + D + M

)
[φ](x) = f (x), x ∈ � (5)

with identity operator I . We will refer to φ as the density and u(x) as the potential at x. The double-layer integrals in this 
equation are singular, due to the singularity in the integrand of Eq. (4). Additionally, as x approaches �, Eq. (4) becomes a 
nearly singular integral.

The operator M completes the rank of 1
2 I + D to ensure invertibility of Eq. (5). If 1

2 I + D is full-rank, M = 0. When 
1
2 I + D has a non-trivial null space, M accounts for the additional constraints to complete the rank of the left-hand side 
of Eq. (5). For example, for the exterior Laplace problem on 
 multiply-connected domains, the null space of 1

2 I + D has 
dimension 
 [62]. The full set of cases for each kernel is considered in this work and their corresponding values of M have 
been detailed in [75].
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2.2. Geometry representation

We assume that the smooth domain boundary � is given by a quadrilateral mesh consisting of quadrilateral faces Qr , 
referred to as quads. Each quad is associated with a parametric domain I2 = [−1, 1]2 = Er , along with embeddings γr :
Er → R3 for each quad such that Qr = γr(Er). We assume that the quad mesh is conforming, i.e., two non-disjoint faces 
either share a whole edge or a single vertex; examples of this are shown in Figs. 8 and 9. We assume that no two images 
γr(Er) intersect, except along the shared edge or vertex. The surface � is the union of patches ∪rγr(Er) = ∪r Q r . We also 
assume that � is sufficiently smooth to recover the solution of Eq. (2) up to the boundary [39] and is at least Ck .

To represent the surface geometry, we approximate � with a collection of Bézier patches, given by a linear combination 
of tensor-product Bernstein polynomials

P i(s, t) =
n∑


=0

n∑
m=0

a(i)

mBn


(s)B
n
m(t), (6)

where Bn

(t) =

(n



)
tn−
(1 − t)
 for each 
 are the n-th degree Bernstein polynomials, i denotes the index of a patch in 

the collection and a(i)

m ∈ R3. Each patch P is a vector function from I2 to R3, so s, t ∈ [−1, 1]. We will refer to this 

approximation of � as �̂.
The domain Er of each embedding function γr is adaptively refined using quadrisection, i.e., splitting a square domain 

into four square subdomains of equal size. Quadrisection induces a quadtree structure on each Er . The root of the quadtree 
is the original domain I2 and each node of the tree is related by a single quadrisection of a subdomain of Er . The leaves 
of the quadtree form a collection of subdomains Di whose union equals Er , as shown in Fig. 1-middle. Given an indexing 
scheme of all Di ’s over all Er ’s, we define the function r(i) that maps the leaf node index i to its root node index r in 
the quadtree forest, indicating that Di ⊂ Er . For each r, Er can have a distinct sequence of associated quadrisections and 
therefore a distinct quadtree structure. We refer to the process of refinement or refining a patch P as the construction of such 
quadtrees for each Er subject to some set of criteria.

On each Di at the quadtree leaves, we define a Bézier patch and reparametrize each patch over I2 by defining the affine 
map ηi : I2 → Er(i) such that ηi(I2) = Di ⊆ Er(i) . It follows that the set of subdomains {ηi(I2) | r(i) = κ} form a cover of 
Eκ and {γκ(ηi(I2)) | r(i) = κ} likewise covers γκ(Eκ ). We summarize this setup in Fig. 1; examples of surfaces of this form 
can be seen in Figs. 8, 9, 12 and 13.

2.3. Problem discretization

We use two collections of patches in the form described above: Pcoarse and Pfine. The patches in Pcoarse, called surface 
patches, determine �̂ from � and the set of patches Pfine, called quadrature patches, are obtained by further quadrisection 
of the surface patches in Pcoarse. The geometry of �̂ is not changed by this additional refinement of Pcoarse , but the total 
number of subdomains Er(i) is increased. We will detail the geometric criteria that Pcoarse and Pfine must satisfy in Sec-
tion 3.2. Discretizing �̂ with a quadrature rule based on Pfine results in a denser sampling of �̂ than a similar discretization 
of Pcoarse. We will refer to Pcoarse as the coarse discretization of �̂ and Pfine as the upsampled or fine discretization of �̂.

We index the patches in P i ∈ Pcoarse by i = 1, . . .N; we can then rewrite Eq. (4) as a sum of integrals over surface 
patches:

u(x) =
N∑

i=1

∫
P i

∂G(x, y)

∂n(y)
φ(y)dyP i

. (7)

We discretize functions defined on �̂, such as Eq. (7), at q-node composite tensor-product Clenshaw-Curtis quadrature 
points on I2 of patches in Pcoarse. We refer to these points and weights on a single patch P i as x j and wCC

j respectively, 
for j = 1 . . .q2. The quadrature point yi j from P i is defined as yi j = P i(ηi(x j)). We assume that the boundary condition f
is given by a black-box evaluator on R3 that can be used to obtain values at yi j . For clarity, we reindex the surface points 
by a global index I = 1, . . . , q2N . We discretize the double layer integral Eq. (7) on Pcoarse to approximate the solution u(x):

u(x,Pcoarse) ≈ û(x,Pcoarse) =
N∑

i=1

q2∑
j=1

∂G(x, yi j)

∂n(yi j)
φi j

√
gijw

CC
j =

q2N∑
I=1

∂G(x, y I )

∂n(y I )
φI ŵ I (8)

with gij being the determinant of the metric tensor of P i at x j and ŵi·q2+ j = √
gijwCC

j . In other words, û(x, Pcoarse) =
D̂[φ](x), where D̂[φ](x) ≈ D[φ](x).

We can also discretize functions with tensor-product Clenshaw-Curtis nodes on the domains of patches in Pfine . The 
values of functions on Pfine are interpolated from their values on the quadrature nodes of Pcoarse rather than being computed 
directly on Pfine. We call this interpolation from Pcoarse to Pfine upsampling. We denote the quadrature nodes and weights 
5
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on Pfine by x̃ j and w̃ j with a similar global index J and refer to them as the upsampled nodes and weights. Identical 
formulas are used for computing quadrature on Pfine with the nodes and weights x̃ j , w̃ j on Pfine, denoted u(x, Pfine) and 
û(x, Pfine), respectively.

In the next section, we describe the algorithm to compute an accurate approximation to the singular/near-singular 
double-layer integral in Eq. (4), using a quadrature rule for smooth functions (Eq. (8)) as a building block. This algorithm al-
lows us to compute the matrix-vector products Aφ, for a vector of values φ defined at the quadrature points y I , where A is 
the discrete operator obtained from the left-hand side of Eq. (5) after approximating D[φ](y) with the singular integration 
scheme. As a result, we can solve the linear system using GMRES, which only requires a matrix-vector product

Aφ = f , (9)

where f is the boundary condition sampled at the points y I . The evaluation of these integrals is accelerated in a standard 
manner using the fast multipole method (FMM) [26,43,74].

3. Algorithms

We now detail a set of algorithms to solve the integral equation in Eq. (5) and evaluate the solution via the double layer 
integral in Eq. (4) at a given target point x ∈ �. As described in the previous section, both solving Eq. (5) and evaluating 
Eq. (4) require accurate evaluation of singular/near-singular integrals of functions defined on the surface �̂. We first outline 
our unified singular/near-singular integration scheme, hedgehog, its relation to existing approximation-based quadrature 
methods and geometric problems that can impede accurate solution evaluation. We then describe two geometry prepro-
cessing algorithms, admissibility refinement and adaptive upsampling, that address these issues to obtain the sets of patches 
Pcoarse and Pfine used by hedgehog.

3.1. Singular and near-singular evaluation

We begin with an outline of the algorithm. For a point sx ∈ �̂ on a patch P from Pcoarse that is closest to x, we first 
upsample the density φ from Pcoarse to Pfine and compute the solution at a set of points cs , s = 1, . . . p called check points, 
sampled along the surface normal at sx away from �̂. We use Eq. (8) to approximate the solution at the check points. We 
then extrapolate the solution to x.

For a given surface or quadrature patch P : I2 → R3, we define the characteristic length L(P ) as the square root of the 
surface area of P , i.e., L(P ) =

√∫
P dyP . We use L = L(P ) or L y for y ∈ P (D) to denote the characteristic length when P

is clear from context. For a point x ∈ �, we assume that there is a single closest point sx ∈ �̂ to x; all points to which the 
algorithm is applied will have this property by construction. Note that n(sx), the vector normal to �̂ at sx , is chosen to 
point outside of �.

We define three zones in � for which Eq. (4) is evaluated differently in terms of Eq. (8) and the desired solution 
accuracy εtarget. The far field �F = {x ∈ � | ‖u(x) − û(x; Pcoarse)‖2 ≤ εtarget}, where the quadrature rule corresponding to 
Pcoarse is sufficiently accurate, and the intermediate field �I = {x ∈ � | ‖u(x) − û(x; Pfine)‖2 ≤ εtarget}, where quadrature over 
Pfine is sufficiently accurate. The remainder of � is the near field �N = � \ �I .

Non-singular integration. To compute the solution at points x in �F , Eq. (8) is accurate to εtarget, so we can simply compute 
û(x, Pcoarse) directly. Similarly for points in �I \ �F , we know by definition that û(x, Pfine) is sufficiently accurate, so it can 
also be applied directly.

Singular/near-singular integration algorithm. For the remaining points in �N , we need an alternative means of evaluating the 
solution. In the spirit of the near-singular evaluation method of [75], we construct a set of check points c0, . . . , cp in �I along 
a line intersecting x to approximate the solution near x. However, instead of interpolating the solution as in [75], we instead 
extrapolate the solution from the check points to x. We define two distances relative to sx: R(sx) = bLsx = ‖c0 − sx‖2, the 
distance from the first check point c0 to �̂, and r(sx) = aLsx = ‖c i − c i+1‖2, the distance between consecutive check points. 
We assume 0 < a, b < 1.

The overall algorithm for the unified singular/near-singular evaluation scheme is as follows. A schematic for hedgehog
is depicted in Fig. 2.

1. Find the closest point sx on �̂ to x.
2. Given values a and b, generate check points C = {c0, . . . , cp}

cs = sx − (R(sx) + sr(sx))n(sx), s = 0, . . . , p (10)

The center of mass of these check points ĉ is called the check center for x. Note that Pfine must satisfy the condition 
that cs are in �I for a given choice of a and b.
6
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Fig. 2. Schematic of singular/near-singular evaluation. A small piece of a boundary �̂ is shown, along with the set of patches Pcoarse (patch boundaries 
are drawn in black). The target point x, in this case on �̂, is shown in green. The solution is evaluated at the check points cs (gray points off-surface) using 
the fine discretization Pfine (small dots on-surface). The distance from the first check point c0 to �̂ is R and the distance between consecutive check points 
c i and ci+1 is r. In this example, Pfine is computed from Pcoarse with two levels of uniform quadrisection, producing 16 times more patches. The patch 
length L is roughly proportional to the average edge length of the patch.

3. Upsample φ. We interpolate the density values φI at xI on patches in Pcoarse to quadrature points x̃ J on patches in 
Pfine with global indices I and J on Pcoarse and Pfine respectively. If a patch P i in Pcoarse is split into mi patches in 
Pfine, we are interpolating from q2 points to miq2 points.

4. Evaluate the potential at check points via smooth quadrature with the upsampled density, i.e. evaluate û(cs) =
û(cs, Pfine) for s = 0, . . . , p.

5. Compute a Lagrange interpolant ũ through the check points c0, . . . , cp and values û(c0), . . . , ̂u(cp) and evaluate at the 
interpolant at x:

ũ(x) =
p∑

s=0

û(cs)
s(tx), (11)

where 
s(x) is the sth Lagrange basis function through the points c0, . . . , cp , and tx ∈ R is such that x = sx − txn(sx)
(see Fig. 6 for a schematic of the check points). Since x lies between c0 and �̂, we are extrapolating when computing 
ũ(x).

Ill-conditioning of the discrete integral operator. This evaluation scheme can be used directly to extrapolate all the way to the 
surface and obtain the values of the singular integral in Eq. (5). However, in practice, due to a distorted eigenspectrum 
of this approximate operator, GMRES tends to stagnate at a level of error corresponding to the accuracy of hedgehog
when it is used to compute the matrix-vector product. This is a well-known phenomenon of approximation-based singular 
quadrature schemes; [36, Section 3.5][53, Section 4.2] present a more detailed study. To address this, we average the interior 
and exterior limits of the solution at the quadrature nodes, computed via hedgehog, to compute the on-surface potential 
and add 1

2 I to produce the interior limit. This shifts the clustering of eigenvalues from around zero to around 1
2 , which 

is ideal from the perspective of GMRES. We call this two-sided hedgehog, while the standard version described above is 
called one-sided hedgehog. We observe stable and consistent convergence of GMRES when two-sided hedgehog is used 
to evaluate the matrix-vector multiply to solve Eq. (9). In light of this, we always use two-sided hedgehog within GMRES 
and set the stopping tolerance for GMRES to εGMRES = 10−12, regardless of the geometry, boundary condition or quadrature 
order.

3.2. Geometric criteria for accurate quadrature

The accuracy of the method outlined above is controlled by two competing error terms: quadrature error incurred from 
approximating the layer potential Eq. (4) with Eq. (8) in Step 4 and extrapolation error due to approximating the singular 
integral with an extrapolated value in Step 5. Both errors are determined by the location of check points relative to the 
patches in Pcoarse and Pfine (see Heuristic 4.1 and Theorem 4.2).

In Fig. 3, we show three examples of different choices of check point locations to evaluate the potential at a point with
hedgehog. In Fig. 3-left, c0 is placed close to the target point, while in Fig. 3-middle, c0 is far from the target point, but 
7
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Fig. 3. Possible check point configurations. A 2D example depicting three choices of a and b in Eq. (10). Shown is the boundary �̂, with black tick marks 
denoting patch boundaries of Pcoarse , green tick marks denoting patch boundaries of Pfine, the target point (red dots), its check points (blue dots) along 
the normal closest to the target point, and the medial axis of �̂ (gray dotted line). Large (left) and small (middle) values of a and b can cause clustering 
of check points near to �̂, which requires large amounts of upsampling to compute the potential accurately. Using the medial axis as a heuristic to for 
admissibility (right), we can minimize the amount of adaptive upsampling required.

cp is close to a non-local piece of �̂. Both cases will require excessive refinement of Pcoarse in order to resolve Eq. (8)
accurately with Pfine. On the other hand, in Fig. 3-right, we can either perform one refinement step on Pcoarse or adjust 
a and b, which will result in fewer patches in Pfine, and therefore provide a faster integral evaluation, while maintaining 
accuracy.

In an attempt to strike this balance between speed and accuracy, we need certain constraints on the geometry of �̂
to ensure the efficient and accurate application of hedgehog, which we impose on the patch sets Pcoarse and Pfine. We 
will first outline our constraints on the quadrature patch sets Pcoarse and Pfine which allow for accurate evaluation with
hedgehog.

3.2.1. Admissibility criteria
A set of patches P is admissible if the following statements are satisfied on each quadrature patch in P :

1 The error of a surface patch P i approximating an embedding γr is below some absolute target accuracy εg
2 The interpolation error of the boundary condition f is below some absolute target accuracy εf
3 For each check center ĉ j corresponding to the quadrature point y j on the surface, the closest point on �̂ to ĉ j is y j .

Criterion 1 is required to ensure that �̂ approximates � with sufficient accuracy to solve the integral equation. We 
discuss how to choose εg in [46, Section 6]; for the tests in this paper, we simply choose εg < εtarget. Criterion 2 guarantees 
that f can be represented at least as accurately as the desired solution accuracy. We therefore similarly choose εf < εtarget. 
Criterion 3 balances the competing geometric constraints of cost and accuracy by flexibly placing check points as far as 
possible from �̂ without causing too much upsampling on other patches. If a check point c constructed from a surface 
patch P is too close to another surface patch P ′ , Criterion 3 will indicate that P is inadmissible. If P is subdivided into 
its children, new check points c′ generated from these children of P will be closer to P and further from P ′ . Since check 
points are placed at distances proportional to L(P ), repeated refinement of P will eventually satisfy Criterion 3.

3.2.2. Upsampling criteria
Once we have a set of admissible surface patches satisfying Criteria 1 to 3, we need to determine the upsampled quadra-

ture patches Pfine that ensure that the check points generated from Pcoarse are in �I , i.e., ‖u(c) − û(c, Pfine)‖ < εtarget. To 
achieve this, we need a criterion to determine which patches are “too close” to a given check point for the error to be 
below εtarget. We make the following assumption about the accuracy of our smooth quadrature rule: Eq. (8) is accurate to 
εtarget at points further than L(P) from P , for εtarget > 10−12. This is motivated by [3,6], which demonstrate the rapid con-
vergence of the layer potential quadrature error with respect to ‖x − sx‖2. For sufficiently high quadrature orders, such as 
q = 20, this assumption seems to hold in practice. We say that a point x is near to P if the distance from x to P is less 
than L(P ); otherwise, x is far from P . We would like all check points required for the singular/near-singular evaluation of 
the discretization of Eq. (4) using hedgehog to be far from all patches in Pfine. If this is satisfied, then we know that the 
Clenshaw-Curtis quadrature rule will be accurate to 10−12 at each check point.

3.3. Refinement algorithm preliminaries

Computing the distance from a check point to a given patch is a fundamental step in verifying the constraints on Pcoarse
and Pfine from Sections 3.2.1 and 3.2.2. Before detailing our refinement algorithms to enforce these criteria, we introduce 
several geometric algorithms and data structures that will be used to compute the closest point on piecewise polynomial 
surfaces.
8
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Fig. 4. Relationship between control points and bounding boxes. Left: a patch in the tensor product Bézier basis, with control points (a
m ’s from Eq. (6)) 
plotted. The convex hull of the control points of a patch is guaranteed to contain the patch. Center: The patch bounding box, computed from the control 
points. Right: The near-zone bounding box of the patch from Section 3.5 computed by inflating the bounding box by L(P ).

3.3.1. AABB trees
In order to implement our algorithms to enforce admissibility efficiently, we use a fast spatial data structure to find the 

patches that are close to a query point x. In [54,68], the quadtree and octree within an FMM is extended to support the 
geometric queries needed for a fast QBX algorithm. In this work, we use an axis-aligned bounding box (AABB) tree, which 
is a type of bounding volume hierarchy [56], implemented in geogram [41]. An AABB is a tree with nodes corresponding 
to bounding boxes and leaves corresponding to bounding boxes containing single objects. A bounding box B0 is a child of 
another box B1 if B0 ⊂ B1; the root node is a bounding box of the entire domain of interest. Operations supported by AABB 
trees include: (i) finding all bounding boxes containing a query point, (ii) finding all bounding boxes that intersect another 
query box, (iii) finding the closest triangle to a query point (because triangles have trivial bounding boxes). By decoupling 
geometric queries from fast summation, the individual algorithms can be more thoroughly optimized, in exchange for the 
additional memory overhead of maintaining two distinct data structures. The query algorithm presented in [42] likely has 
better parallel scalability, but AABB trees are faster for small to medium problem sizes on a single machine due to less 
redundant computation.

To define an AABB tree for our patch-based surface �̂, we make use of the following fact: the control points of a Bézier 
surface (a
m ’s from Eq. (6)) form a convex hull around the surface that they define [24]. As a result, we can compute a 
bounding box of a surface or quadrature patch P directly from the Bézier coefficients simply by computing the maximum 
and minimum values of each component of the a
m ’s, as shown in Fig. 4-middle. This bounding box can then be inserted 
into the AABB tree as a proxy for a surface or quadrature patch.

3.3.2. Computing the closest point to a patch
To find a candidate closest patch P i0 to x, we construct a fine triangle mesh and bounding boxes of each patch in Pcoarse

and insert them into an AABB tree. We can query the AABB tree for the nearest triangle to x with the AABB tree, which 
corresponds to P i0 . We then compute the accurate true distance di0 to P i0 using a constrained Newton method, presented 
in detail in [46, Section 2].

However, there may be other patches whose distance to x is less than di0 , as shown in Fig. 5. To handle this case, we 
then query the AABB tree for all patches P i1 , . . . , P ik that are distance at most di0 from x. This is achieved by forming 
a query box centered at x with edge length 2di0 and querying the AABB tree for all intersection bounding boxes. The 
precise distance is then computed for each patch P i1 , . . . , P ik with [46, Section 2] and the smallest distance is chosen. We 
summarize this process in Algorithm 1.

Algorithm 1: Compute the closest point to x.
Data: A set of quadrature patches P , a query point x, Newton method tolerance εopt
Result: The closest point sx on P to x

1 Construct an AABB tree TT from a fine triangle mesh of the quadrature patches of P
2 Construct an AABB tree TB from bounding boxes of quadrature patches in P .
3 τ0 = closest triangle to x computed with TT

4 P i0 = patch corresponding to τ0
5 Find the closest point sx,0 on P i0 to x with [46, Section 2].
6 di0 = ‖x− sx,0‖2
7 Bdi0

(x) = a box centered a x with edge length 2di0
8 Find the boxes Bi1 , . . . Bik in TB that intersect Bdi0

(x)

9 for Bi j ∈ Bi1 , . . . Bik do
10 P i j = quadrature patch corresponding to Bi j

11 Find the closest point sx, j on P i j to x with [46, Section 2] to precision εopt .
12 di j = ‖x− sx, j‖2
13 j∗ = argmin j{di j }
14 return sx, j∗
9
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Fig. 5. A 2D schematic of near-patch candidate selection. A visual depiction of the quantities defined in lines 3-7 of Algorithm 1 (shown here in 2D for 
simplicity), with notation matching Algorithm 4. The triangle-mesh proxy is drawn in as black lines and patches are drawn as gray curves. We have found 
an initial closest triangle τ0 to x corresponding to patch P i0 and computed d(x, P i0 ) = di0 . We then query the AABB tree for all patches that intersect box 
Bdi0

with edge length 2di0 , shown in blue. There is clearly a patch that is closer to x than P i0 that will be returned from the query, which will be distance 
dmin from x.

3.4. Admissibility algorithm

Our algorithm to enforce Criteria 1 to 3 proceeds as follows:

• To enforce Criterion 1, we adaptively fit a set of surface patches to the embeddings γr representing �. We construct a 
bidegree (n, n) piecewise polynomial least-squares approximation P i in the form of Eq. (6) to γr on I2. If P i ’s domain 
Di is obtained by refinement of Er , we fit P i ◦ ηi to γr on I2, using 4n × 4n samples on I2. If the pointwise error of 
P i and its partial derivatives is greater than εg, then it is quadrisected and the process is repeated.

• Once the embeddings are resolved, we resolve f on each surface patch produced from the previous step in a similar 
fashion to enforce Criterion 2. However, rather than a least-squares approximation in this stage, we use piecewise 
polynomial interpolation.

• To enforce Criterion 3, we construct the set of check centers ĉ I which correspond to the check points required to 
evaluate the solution at the quadrature nodes y I . For each check center ĉ I , we find the closest point sĉ I ∈ �̂. If ‖sĉ I −
y I‖ ≥ εopt, we split the quadrature patch P containing y I . The tolerance εopt is used in the Newton’s method in [46, 
Section 2]; we usually choose εopt = 10−14. Since d(ĉ I , �̂) is proportional to L y I

, the new centers ĉ I for the refined 
patches will be closer to the surface. We use Algorithm 1 to compute sĉ I . However, in the case of check points, we can 
skip lines 1-6 to compute di0 , since ĉ I is R + r(p + 1)/2 away from y I ∈ P (D) by construction. We can apply lines 7-14 
of Algorithm 1 with di0 = R + r(p + 1)/2 to compute sĉ I .

We summarize the algorithm to enforce Criterion 3 in Algorithm 2. At each refinement iteration, the offending patches 
are decreased by quadrisection, which reduces the distance from the quadrature point y I to its checkpoints. This eventually 
satisfies Criterion 3 and the algorithm terminates.

3.5. Adaptive upsampling algorithm

Before detailing our upsampling algorithm to satisfy the criteria outlined in Section 3.2.2, we must define the notion 
of a near-zone bounding box of a quadrature patch P , denoted Bnear(P ). The near-zone bounding box of P is computed as 
described in Section 3.3.1, but then is inflated by 2L(P ), as shown in Fig. 4-right. This inflation guarantees that any point x
that is near P is contained in Bnear(P ) and, for an admissible set of quadrature patches Pcoarse , that any x ∈ �N must be 
contained in some quadrature patch’s near-zone bounding box. This means that by forming Bnear(P ) for each quadrature 
patch in Pfine, a check point is in �I if it is not contained in any near-zone bounding boxes.

To compute the upsampled patch set from Pcoarse, we initially set Pfine =Pcoarse, compute the near-zone bounding boxes 
of each patch in Pfine and insert them into an AABB tree. We also construct the set of check points C required to evaluate 
our discretized layer-potential with hedgehog (Section 3.1). For each check point c ∈ C , we query the AABB tree for all 
near-zone bounding boxes that contain c . If there are no such boxes, we know c is far from all quadrature patches and can 
continue. If, however, there are near-zone bounding boxes Bi0 , . . . , Bik containing c , we compute the distances dik from c to 
P i1 , . . . , P ik using [46, Section 2]. If dik < L(P ik ), we replace P ik in Pfine with its four children produced by quadrisection.

To improve the performance of this refinement procedure, we allow for the option to skip the Newton method in 
Algorithm 1 and immediately refine all patches P i0 , . . . P ik . This is advantageous in the early iterations of the algorithm, 
when most check points are near to patches by design. We allow for a parameter nskip to indicate the number of iterations to 
skip the Newton optimization and trigger refinement immediately. We typically set nskip = 2. We summarize our algorithm 
in Algorithm 3.
10
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Algorithm 2: Enforce admissibility Criterion 3 on a set of quadrature patches.
Data: A set of quadrature patches P , optimization tolerance εopt
Result: An admissible set of quadrature patches P

1 P = Pcoarse

2 Mark all patches in P as inadmissible.
3 while any patch in P is inadmissible do
4 Construct an AABB tree T as described in Section 3.3.2 from P
5 for P ∈ P do
6 if P is inadmissible then
7 Construct a set of check centers C P for each y J ∈ P (D)

8 for ĉ ∈ C P do
9 di0 = R + r(p + 1)/2

10 Compute sĉ with lines 7-14 of Algorithm 1 with precision εopt and di0 .
11 if ‖sĉ − y J ‖2 < εopt then
12 Mark P as admissible.
13 else
14 Mark P as inadmissible.
15 break // only need one bad check center to mark P for refinement

16 for P ∈ P do
17 if P is inadmissible then
18 Split P into its four child patches, mark each as inadmissible, and replace P with its children in P .

19 return P

Algorithm 3: Adaptively upsample to accurately evaluate Eq. (8) at check points.
Data: An admissible patch set P , number of iterations nskip before using [46, Section 2]
Result: An upsampled set of quadrature patches

1 Compute inflated near-zone bounding boxes B1, . . . , BN of each P ∈ P .
2 Construct an AABB tree T from the near-zone bounding boxes.
3 Construct all check points C required to evaluate the Eq. (5) on P .
4 Pfine = P
5 Mark all check points in C as near.
6 i = 0
7 while any c ∈ C is marked near do
8 for c ∈ C do
9 if c is marked near then

10 Query T for all bounding boxes Bi1 , . . . Bik containing c .
11 P i1 , . . . P ik = patches corresponding to boxes Bi1 , . . . Bik
12 Mark c as far
13 for P ∈ P i1 , . . . P ik do
14 if i > nskip then
15 Find the closest point sc on P to c with Algorithm 1.
16 if ‖sc − c‖2 < L(P ) then
17 Split P and replace it in Pfine with its children.
18 Mark c as near
19 else
20 Split P and replace it in Pfine with its children.
21 Mark c as near

22 i = i + 1

3.6. Marking target points for evaluation

Once we have solved Eq. (9) for φ on �̂, we need the ability to evaluate Eq. (4) at an arbitrary set of points in the 
domain. For a target point x, in order apply the algorithm in Section 3.1, we need to determine whether or not x ∈ � and, 
if so, whether x is in �N , �I or �F . Both of these questions can be answered by computing the closest point sx on �̂ to x. 
If n(sx) · (x − sx) < 0, then x ∈ �. As we have seen in Section 3.2.2, the distance ‖x − sx‖ determines whether x ∈ �N , �I

or �F . However, for large numbers of target points, a brute force calculation of closest points on �̂ to all target points is 
prohibitively expensive. We present an accelerated algorithm combining Algorithm 1 and an FMM evaluation to require only 
constant work per target point.
11
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3.6.1. Marking and culling far points
A severe shortcoming of Algorithm 1 is that its performance deteriorates as the distance from x to �̂ increases. Consider 

the case where �̂ is a sphere with radius r with x at its center. The first stage of Algorithm 1 returns a single quadrature 
patch that is distance r from x; the next stage will return all quadrature patches. This will take O (N) time to check the 
distance to each patch. Even on more typical geometries, we observe poor performance of Algorithm 1 when x is far from 
�̂.

To address this, we use an additional FMM-based acceleration step to mark most points far from �̂ before using applying 
Algorithm 1. Our approach is based on computing the generalized winding number [32] of �̂ at the evaluation points. For 
closed curves in R2, the winding number at a point counts the number of times the curve travels around that point. The 
generalized winding number of a surface �̂ at a point x ∈R3 can be written as

ω
�̂
(x) = − 1

4π

∫

�̂

(x − y) · n
‖x− y‖3 dy

�̂
(12)

We recognize this integral as the double-layer potential in Eq. (4) for a Laplace problem with φ = 1. Its values in R3 are 
[39]:

ω
�̂
(x) =

⎧⎪⎨
⎪⎩
1 x ∈ � \ �̂

1/2 x ∈ �̂

0 x ∈R3 \ �

(13)

Eq. (12) can be evaluated using the same surface quadrature in Eq. (8) using an FMM in O (N) time. While the quadrature 
rule is inaccurate close to the surface, �F is defined precisely as the zone where the quadrature rule is sufficiently accurate. 
For this reason, we use

|ω
�̂
(x) − 1| < εtarget (14)

to mark points x ∈ �F ⊂ � and a similar relation

|ω
�̂
(x)| < εtarget (15)

to mark points x /∈ �. This approach is similar in spirit to the spectrally accurate collision detection scheme of [52, Section 
3.5]. Unlike [52], however, we do not use singular integration to mark all points. This isn’t possible since at this stage 
since we do not yet know which target points require singular integration. We use the FMM evaluation purely as a culling 
mechanism before applying the full marking algorithm.

Remark. Since the quadrature rule may be highly inaccurate for points close to the surface, due the near-singular nature of 
the integrand, ω

�̂
(x) may happen to be close to one or zero. We highlight that it is possible that points outside �F may be 

mismarked, although we have not observed this in practice.

3.6.2. Full marking algorithm
We combine the algorithms of the previous two sections into a single marking pipeline for a general set of target points 

in R3, by first applying the algorithm of Section 3.6.1 to mark all points satisfying Eq. (14) then passing the remaining 
points to Algorithm 1. The full marking algorithm is summarized as Algorithm 4.

4. Error analysis

As with other approximation-based quadrature methods, hedgehog has two primary sources of error: the quadrature 
error eQ incurred as a result of evaluating potential at the check points and the extrapolation error eE due to evaluating 
the polynomial approximation of the potential at the target point, assuming Pcoarse is admissible. Let

eQ (x) =
∣∣∣∣∣

p∑
s=0

(u(cs) − û(cs,Pfine))
s(tx)

∣∣∣∣∣ , (16)

eE(x) =
∣∣∣∣∣u(x) −

p∑
s=0

u(cs)
s(tx)

∣∣∣∣∣ , (17)

ehedgehog(x) ≤ eQ (x) + eE(x), (18)

where u(x) and û(x, Pfine) are defined in Eqs. (4) and (8) and 
s(t) is the s-th Lagrange polynomial defined on the points 
{0, 1, . . . , p}. We define tx such that x = −n(y)(R + txr), so tx = ‖x−y‖−R

r . In this section, we first prove that we achieve 
high-order accuracy with our singular/near-singular evaluation scheme in Section 3.1 with respect to extrapolation order p
and quadrature order q. We then detail the impact of surface approximation on overall solution accuracy.
12
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Algorithm 4: Mark points in regions �F , �I and �N .
Data: An admissible set of quadrature patches P, εtarget , target points X
Result: A marked set of target points X

1 φ0 = 1
2 ω

�̂
= Laplace_FMM(P , X , φ0)

3 for x ∈ X do
4 if |ω

�̂
(x) − 1| < εtarget then

5 Mark x as inside �.
6 Mark x as in �F .
7 else if |ω

�̂
(x)| < εtarget then

8 Mark x as outside �.

9 for x ∈ X do
10 if x is unmarked then
11 Compute the closest point sx to x with Algorithm 1
12 dmin = ‖sx − x‖2
13 if dmin ≤ Lsx then
14 Mark x as in �N

15 else
16 Mark x as in �I

17 if n(sx) · (x− sx) < 0 then
18 Mark x as inside �
19 Mark x as outside �

4.1. Quadrature error

We briefly state a tensor-product variation of known Clenshaw-Curtis quadrature error results as applied to smooth 
functions in 3D. This estimate is derived based on assumptions detailed in Appendix A that, in general, is difficult to verify 
in practice and may not hold for all functions we consider. For this reason, we refer to it as a heuristic.

Heuristic 4.1. Let the boundary �̂ be discretized by quadrature patches over the domains [−h, h] and the boundary condition 
f in Eq. (2) be at least Ck . Apply the q-th order Clenshaw-Curtis quadrature rule to the double-layer potential u(x) given in 
Eq. (7) and let x be in the interior of �. Then for all sufficiently large q:

eQ(x) � 128hk+1

15πk(2q + 1− k)k
Ṽ , (19)

where

Ṽ = max
i=1,...,N

max
α,β≤k

∥∥∥∥ ∂α+β

∂uα∂vβ

(
∂G(x, P i(s, t))

∂n
φ(P i(s, t))gP i (s, t)

)∥∥∥∥
T
, (20)

gP is the determinant of the metric tensor of a patch P implicit in Eq. (7), � means “approximately less than or equal to,” 
and ‖ζ‖T = ‖ζ ′/

√
1− x2‖1.

This heuristic captures the qualitative behavior of the error. We present the derivation of Heuristic 4.1 in Appendix A. 
This heuristic is insufficient for direct application to Eq. (7). As x → �̂, the value of k required in Heuristic 4.1 grows rapidly 
due to growing higher order derivatives of the integrand. Such large values of q and k imply that smooth quadrature rules 
are cost-prohibitive; this is the problem that singular/near-singular quadrature schemes like hedgehog aim to address. 
Moreover, this estimate is too loose to determine whether hedgehog or smooth quadrature is required to evaluate the 
potential. The assumption in Section 3.2.2 addresses this problem by providing a cheap, reasonably robust criterion for 
refinement that is motivated by existing analyses [3,6] instead of relying on Heuristic 4.1.

4.2. Extrapolation error

A reasonable critique of hedgehog is its reliance on an equispaced polynomial interpolant to extrapolate values of u to 
the target point. Despite using the first-kind barycentric interpolation formula [71], polynomial interpolation and extrapo-
lation in equispaced points is well-known for an exponentially growing Lebesgue constant and poor stability properties as 
the number of points p increases [51,66]. Recently [20] demonstrated stable extrapolation in equispaced p + 1 points using 
least-squares polynomials of degree 

√
p. However, these results are asymptotic in nature and don’t tell the full story for 

small to moderate values of p, as in the hedgehog context.
We begin our discussion with a simple representative experiment in equispaced extrapolation. Fig. 6 depicts a minimal 

extrapolation setup in 3D of a simple singular function μ(t) = 1/‖t − q‖ along a line, with q = (ρ, 0, 0) and ρ = −.1. We 
13
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Fig. 6. Diagram of extrapolation setup. The toy setup used to study the extrapolation error of a singular function. We choose a simple point singularity 
μ(t) = 1

‖t−q‖ where q = (ρ, 0, 0) (black star) with ρ = −.1. We choose samples at the points ti = (R + ir, 0, 0) for i = 0, . . . , p (black dots) and extrapolate 
the values μ(t0), . . . , μ(tp) to t = 0 (green dot).

Fig. 7. Empirical extrapolation error behavior. We sweep over a range of R and r values to vary Fig. 6 and plot the log of the relative error in Figs. 7a 
to 7e, for values p = 6, 8, 10, 12, 14, in increasing order, from (a) to (e). In these figures, the x-axis is the extrapolation distance R normalized by ρ and 
the y-axis is the ratio rp/R . The top of the y-axis corresponds to r = R; rp/R = 1 corresponds to our choice of the parameter a. Assuming that ρ = O (L), 
r/R = a/b and R/ρ = b/λ for some constant λ.

extrapolate exact values of μ from p points, located at ti = (R + ir, 0, 0), to the origin. This closely mimics the worse-case 
extrapolation error in 1D of a function analytic in a Bernstein ellipse with a real axis intercept of ρ + R + rp/2. We repeat 
this for a large range of values of r and R for various values of p. The log of the relative error is plotted in Figs. 7a to 7e as 
a function of the relative extrapolation interval size rp/R and the scaled extrapolation distance R/ρ .

As mentioned in [53, Section 3.4], the adaptive refinement of Pcoarse resolves the boundary data f , and therefore u and 
φ, on the length scale L of the patch. This means we can reasonably assume that the distance of the nearest singularity is 
O (L) from �̂, i.e., ρ = λL for some λ. In the context of hedgehog, we know that R = bL(P ) and r = aL(P ). Figs. 7a to 7e
are a study of extrapolation error as a function of a/b, b/λ and p.

There are several important observations to make from these plots:

• Extrapolation error decreases as R/ρ decreases, as expected.
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• For a fixed value of R/ρ , the extrapolation error decreases rapidly as rp decreases, up to a certain value r∗p. This is 
somewhat counterintuitive, since this means placing points closer together and extrapolating a further distance relative 
to rp. For a fixed p in exact arithmetic, letting the interpolation interval size tend to zero produces an order p Taylor 
expansion of the solution u centered at the interval’s origin, which accounts for this phenomenon.

• Beyond r∗p, the extrapolation error increases. The effects of finite precision eventually pollute the convergence behavior 
described above. Moreover, the spacing r∗ appears to be a function of p. For p = 6, r can be reduced to 1/p without 
any numerical issues, but by p = 14, only r > 1

2 is a safe choice for extrapolation.

We do not aim to rigorously analyze these phenomena in this work. We highlight them to provide empirical evidence that 
equispaced extrapolation is a reasonable, but not optimal, choice for our problem of singular/near-singular integration and 
to provide some intuition for our parameter choices.

The following simple result describes the behavior of the extrapolation error in Eq. (17).

Theorem 4.2. Let u(c(t)) be the solution to Eq. (2) given by Eq. (4), restricted to the line c(t) in 3D intersecting x, let c(t) be given by

c(t) = sx − (R + tr)n(sx), (21)

where sx is the closest point on �̂ to x, R = bLsx , r = aLsx , n(sx) is the outward surface normal at sx , and let |u(p)(c(t))| be bounded 
above by Cp on the interval [−R, R + pr]. Let P(t) be the p-th order polynomial interpolant of u(c(t)) constructed from the check 
points c0, . . . , cp , where ci = c(i). Then the extrapolation error associated with hedgehog behaves according to:

|u(c(tx)) −P(tx)| ≤ Cp

(p + 1)! |R + rp|p = Cp

(p + 1)! |b + ap|p · |L|p, (22)

where tx = ‖x−sx‖−R
r .

Proof. We know that for a smooth function f and points x0, . . . xp in a 1D interval I0, for some ξ ∈ I0, the following relation 
holds for all x ∈ I0:

f (x) −P(x) = f (p)(ξ)

(p + 1)!
p∏

i=0

(x− xi). (23)

Let P be the pth order polynomial interpolating the points x0, . . . xp . In the hedgehog setup, since R + rp is the distance of 
the furthest check point to y, we know that x − xi < R + rp for each i. Since f (t) = u(c(t)) is harmonic, and therefore C∞ , 
in �, | f (p)(ξ)| can be uniformly bounded on I0 by some constant Cp , Noting that R = bL and r = aL yields our result. �

For fixed values of a and b, as we let L → 0, the extrapolation error is bounded by O (Lp). In practice, however, this 
means that we can choose a and b to minimize the constant factor |b +ap|p in Theorem 4.2. Since p > 1, a must be chosen 
to balance out the contribution of p, yet our extrapolation study shows that we can’t simply set a = 0. We therefore choose 
a ≤ 1/p for p = 6 and 8, motivated by Figs. 7a and 7b. Moreover, since b < 1, we can choose a ≤ b/p, which allows a and b
to decay at the same rate. The advantage of choosing a ≤ b/p is that b is a single parameter that controls the accuracy of
hedgehog. Since we have fixed the quadrature order q = 20 to satisfy the assumption in Section 3.2.2, a smaller value of b
will trigger more upsampling in Algorithm 3, keeping quadrature error fixed while reducing extrapolation error.

It is important to keep in mind that Theorem 4.2 only provides insight for moderate values of p; our conclusions are 
largely irrelevant for large p. We use p = 6 and a = b/6, leaving the construction of an optimal extrapolation scheme to 
future work.

4.3. Limitations

Our error discussion reveals several limitations of our method. The first and most apparent shortcoming is that extrap-
olation instability fundamentally limits convergence order. However, for reasonable orders of convergence, up to 14, we 
have discussed an empirical scheme to choose parameters to maximize the available convergence behavior. Moreover, low-
order surface geometries used in engineering applications will likely limit the convergence rate before it is limited by the 
extrapolation order, making this a non-issue in practical scenarios.

Another downside of the chosen extrapolation approach is lack of direct extension of hedgehog to oscillatory problems 
like the Helmholtz equation. Due to the limitation on the values of p, we can’t guarantee the ability to resolve high-
frequency oscillations in the solution. A new extrapolation procedure is required to do so robustly without compromising 
efficiency.

In [68], the authors demonstrate a relationship between the truncation error of a QBX expansion and the local curvature 
of �̂. Our scheme also is susceptible to this form of error and we do not address nor analyze this in this work. This is a 
subtle problem that requires a detailed analysis of the surface geometry with respect to the chosen extrapolation scheme. 
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Another limitation is the lack of an accurate error estimate to serve as an upsampling criteria in place of the criteria in 
Section 3.2.2, such as [35]. Extending [35] to 3D surfaces is non-trivial and whether the size of Pfine would be reduced 
enough to outweigh the added cost of the additional Newton iterations required by their scheme remains to be seen.

Finally, for certain accuracy targets and geometries, the algorithm above may lead to an impractically high number of 
patches in Pcoarse and Pfine. Geometries with nearly-touching non-local regions, as shown in Fig. 12, will see large amounts 
of refinement. If the nearly-touching embeddings γr are close enough, i.e., less than 10−10 apart, there is little hope of an 
accurate solution with a fixed computational budget. We allow the user to enforce a minimal patch size Lmin, limiting the 
time and memory consumption at the expense of not reaching the requested target accuracy.

5. Complexity

In this section, we summarize the complexity of the algorithms required by hedgehog. We present a detailed complex-
ity analysis in [46, Section 3]. The input to our overall algorithm is a domain boundary � with Ninit patches and boundary 
condition f . The parameters that directly impact complexity are:

• The number of patches N after admissibility refinement. This is a function of Ninit , the geometry of �, the definition of 
f , and the choices of parameters a and b in check point construction.

• Quadrature order q and the degree of smoothness k of � and f . We assume that k is sufficiently high to obtain optimal 
error behavior for a given q by letting k = 2q in Eq. (20).

• hedgehog interpolation order p.
• The numbers of evaluation points in different zones Nfar , Ninter, and Nnear, with Ntot =Nfar +Ninter +Nnear.

The complexity is also affected by the geometric characteristics of � as described in [46, Section 3].

• Admissibility. The complexity of this step is O (Ninit logNinit), with constants dependent on α0, β0 and C J . The logarith-
mic factor is due to use of an AABB tree for closest surface point queries.

• Upsampling. The complexity of upsampling is O (m̂N log(N)), where m̂ is the largest upsampling ratio. The logarithmic 
factor appears for similar reason to admissibility, with constants that depend on geometric parameters and the boundary 
condition through the error estimate of Section 4. We show that the upsampling ratio is independent of N in [46, 
Section 3].

• Point marking. Identifying which zone an evaluation point belongs to (�F , �I or �N ) depends on N and the total 
number of points to be classified Ntot =Nfar +Ninter +Nnear. The complexity is O (Ntot logN) with constants dependent 
on geometric parameters, due to the cost of closest surface point queries.

• Far, intermediate and near zone integral evaluation. The complexity of these components depends on N and Nfar, Ninter
and Nnear respectively, with the general form O (s1N + s2N ′), where N ′ is the number of evaluation points in the 
corresponding class. For the far field, s1 = s2 = 1. For the intermediate evaluation, s1 = m̂q2 and s2 = 1; finally, for the 
near zone, s1 = m̂q2 and s2 = p. If b is chosen appropriately, the intermediate and near zone error is εtarget.

• GMRES solve. Due to the favorable conditioning of the double-layer formulation in Eq. (5), GMRES converges rapidly to 
a solution in a constant number of iterations for a given � that is independent of N . This means that the complexity 
to solve Eq. (5) is asymptotically equal (up to a constant dependent on �) to the complexity equal to a near-zone 
evaluation with Nnear = N(q + 1)2.

• Evaluation on uniform point distribution In many applications, one would like the value of the solution u due to a density 
φ at a collection of points uniformly distributed throughout the domain �. When the number of such targets is chosen 
to match the resolution of the surface discretization, the overall complexity of solution evaluation is O ((m̂+ m̂q2)q2N +
N3/2).

6. Results

We now demonstrate the accuracy and performance of hedgehog to evaluate singular/near-singular layer potentials on 
various complex geometries to solve the integral equation in Eq. (5) and evaluate the solution as defined in Eq. (4).

6.1. Classical convergence with patch refinement

We will first demonstrate the numerical convergence behavior of hedgehog. As discussed in [36, Section 3.1], 
approximation-based schemes such as hedgehog do not converge classically but do so up to a controlled precision if r
and R scale with proportional to the patch size. In order to observe classical convergence as we refine Pcoarse, we must al-
low R and r to decrease slower than O (L), such as with rate O (

√
L). In this section, we choose the hedgehog parameters 

a and b proportional to 1/
√
L to achieve this and demonstrate numerical convergence with refinement of L.
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Fig. 8. Geometry and singularities used for Green’s Identity convergence tests. Shown are polynomial patches defining boundary geometry (black lines) 
and point singularities placed on the surface on a sphere of radius one. Singularity strengths are randomly selected values in [0, 1]; shown is the strength 
intensity for Laplace problems, which varies from blue to red. We use 96 20th-order polynomial patches for the spheroid (left) and 32 cubic patches for 
the torus (right).

Table 1

∞

Relative error in Green’s Identity versus number of patches. The solution to Eq. (2) due to a known function uc , shown in Fig. 8 is computed via 
Green’s Identity. We evaluate the single- and double-layer potentials with hedgehog due to the Dirichlet and Neumann boundary data and compare 
against the known value of uc on the boundary. Each column is the result of an additional level of uniform quadrisection of the patches in Pcoarse. The 
final column (EOC) is the estimated convergence order, computed via least-squares log-log fit of the error as a function of max patch size.
Geometry PDE Relative 
∞ error (Number of patches) EOC

Spheroid Laplace 1.06× 10−4 (96) 4.78 × 10−6 (384) 9.14× 10−8 (1536) 4.35 × 10−9 (6144) 4.77
(Fig. 8-left) Elasticity 1.68× 10−3 (96) 6.94 × 10−5 (384) 1.53× 10−6 (1536) 1.33 × 10−8 (6144) 5.74

Stokes 1.92× 10−3 (96) 7.95 × 10−5 (384) 1.74× 10−6 (1536) 1.53 × 10−8 (6144) 5.72

Torus Laplace 2.05× 10−3 (32) 7.52 × 10−5 (128) 3.79× 10−6 (512) 8.48 × 10−8 (2048) 5.45
(Fig. 8-right) Elasticity 4.38× 10−2 (32) 1.17 × 10−3 (128) 5.08× 10−5 (512) 1.42 × 10−6 (2048) 5.09

Stokes 5.03× 10−2 (32) 1.33 × 10−3 (128) 5.81× 10−5 (512) 1.65 × 10−6 (2048) 5.09

In our examples, we use analytic solutions to Eq. (2) obtained as sums of point charge functions of the form

uc(x) =
m∑
i=1

G(x, yi)ψi (24)

where the charge locations yi with strengths ψi are outside of �. To construct specific solutions, we sample a sphere of 
radius one with point charges, as shown in Figs. 8 and 9. We choose charge strengths ψi randomly from [0, 1]d , where d = 1
for Laplace problems and d = 3 for Stokes and elasticity problems.

We use the multipole order m = 20 with 5000 points per leaf box for the kernel-independent FMM. This ensures that 
the FMM error does not dominate; sufficiently large number of points per leaf box is needed to minimize the additional 
error due to tree depth. We choose a high quadrature order q = 20, or 400 quadrature points per patch in Pcoarse, relative 
to overall convergence order to satisfy the assumption in Section 3.2.2. We also use two levels of uniform upsampling to 
demonstrate convergence.

6.1.1. Green’s identity
We report the accuracy of the hedgehog evaluation scheme in Table 1, where we verify Green’s Identity for a random 

known function uc in Eq. (24). We evaluate the Dirichlet and Neumann boundary data due to uc at the discretization 
points of �̂ and use one-sided hedgehog to evaluate the corresponding single- and double-layer potentials at the same 
discretization points. With each column of Table 1, we subdivide Pcoarse to more accurately resolve the boundary condition. 
The error shown in Table 1 is the 
∞-relative error in the solution value∥∥∥Ŝ [

∂uc
∂n

]
(x) − D̂ [uc] (x) − uc(x)

∥∥∥∞
‖uc‖∞

, (25)

where Ŝ and D̂ are the single- and double-layer singular integral operators discretized and evaluated with hedgehog. 
In these tests, we choose p = 6, r = .004

√
L (a = .004/

√
L) and R = .03

√
L (b = .03/

√
L). We observe roughly 5th order 
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Table 2
Performance of singular evaluation in Green’s Identity. For each test in Table 1, we report 
the number of target points evaluated with one-sided hedgehog per second per core.
Geometry PDE Target points/second/core

Spheroid Laplace 3684 5438 5077 5629
(Fig. 8-left) Elasticity 1325 1731 1687 1790

Stokes 1635 2075 2016 2120

Torus Laplace 2729 3373 4564 5477
(Fig. 8-right) Elasticity 984 1171 1347 1502

Stokes 1134 1331 1609 1727

Fig. 9. Geometry and singularities used for solver convergence tests. Figures are similar to Fig. 8, but displaying geometries for testing the convergence 
of hedgehog within a GMRES solver. We use 30 16th-order polynomial patches for the pipe (left) and 50 20th-order patches for the genus two surface 
(right). Note the proximity of the singularities to the domain of the genus two surface; the nearest singularity is less than .05L from �̂.

Table 3

∞

Relative error in GMRES solve and solution evaluation versus number of patches. We solve Eq. (2) by discretizing and evaluating the layer potential 
in the integral equation in Eq. (5) as described in Section 3.1. We use two-sided hedgehog inside of GMRES to solve for φ , then evaluate Eq. (8) with 
one-sided hedgehog at a new set of points on �̂. Each column is the result of an additional level of uniform quadrisection of the patches in Pcoarse. The 
final column (EOC) is the estimated convergence order, computed via least-squares log-log fit of the error as a function of max patch size.
Geometry PDE Relative 
∞ error (Number of patches) EOC

Spheroid (Fig. 8-left) Laplace 2.70 × 10−6 (96) 1.92 × 10−7 (384) 4.47× 10−9 (1536) 5.13 × 10−11 (6144) 5.35

Pipe Laplace 5.99 × 10−4 (30) 3.03× 10−5 (120) 6.68× 10−7 (480) 2.27 × 10−8 (1920) 5.92
(Fig. 9-left) Elasticity 7.17 × 10−2 (30) 3.57 × 10−3 (120) 8.90 × 10−5 (480) 4.14 × 10−6 (1920) 5.45

Stokes 8.53 × 10−2 (30) 4.12 × 10−3 (120) 1.03× 10−4 (480) 4.73 × 10−6 (1920) 5.43

Genus 2 Laplace 4.00× 10−2 (50) 1.25 × 10−4 (200) 1.54× 10−6 (800) 5.73 × 10−10 (3200) 8.76
(Fig. 9-right) Elasticity 9.20 × 10−2 (50) 1.05× 10−3 (200) 1.00× 10−5 (800) 9.44 × 10−8 (3200) 6.89

Stokes 1.03× 10−1 (50) 1.18 × 10−3 (200) 1.15× 10−5 (800) 1.03× 10−7 (3200) 6.88

convergence on both the spheroid and torus test geometries in Fig. 8 for each of the tested PDE’s. In Table 2, we present 
the number of target points evaluated per second per core with one-sided hedgehog. We see that performance is best for 
Laplace and worst for elasticity problems, as expected.

6.1.2. Solution via GMRES
We report the accuracy of the hedgehog scheme when used to solve Eq. (2) via the integral equation in Eq. (5). Two-

sided hedgehog is used in the matrix-vector multiply inside GMRES to solve Eq. (5) for the values of the density φ at the 
discretization points. Then one-sided hedgehog is used to evaluate Eq. (8) at a slightly coarser discretization. Since GMRES 
minimizes the residual at the original discretization of Eq. (5), this final step prevents an artificially accurate solution by 
changing discretizations. Table 3 lists the 
∞ relative error values for the total solve and evaluation steps using Section 3.1
as we refine Pcoarse by subdivision as in the previous section. In these tests, we choose p = 6, r = .005

√
L (a = .005/

√
L), 

and R = .03
√
L (b = .03/

√
L). As for previous examples, we observe at least 5th order convergence on all tested geometries 

in Fig. 9 and Fig. 8-left and all PDE’s. We include the spheroid example as an additional demonstration of a high accuracy 
solution via GMRES with our approach. We report the number of target points evaluated per second per core with two-
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Table 4
Performance of singular evaluation in GMRES matrix-vector multiply. For each test in Ta-
ble 3, we report the number of target points per second per core evaluated with two-sided
hedgehog in a single GMRES matrix-vector multiplication.

Geometry PDE Target points/second/core

Spheroid Laplace 2737 3149 2846 2950

Pipe Laplace 3046 2178 2832 2982
(Fig. 8-left) Elasticity 991 993 1189 1261

Stokes 1048 1140 1335 1422

Genus 2 Laplace 1862 2886 3122 2879
(Fig. 8-right) Elasticity 729 1125 1255 1295

Stokes 929 1304 1450 1504

sided hedgehog in Table 4. The results are similar to Table 2; the slower performance is because evaluation via two-sided
hedgehog is more expensive than one-sided hedgehog.

6.2. Comparison with [75]

In this section, we compare our method to [75], a previously proposed high-order, kernel-independent singular quadra-
ture method in 3D for complex geometries. These characteristics are similar to hedgehog shares these characteristics. [46, 
Section 4] presents additional comparisons.

The metric we are interested is cost for a given relative error. Assuming the surface discretization is O (N), we measure 
the cost of a method as its total wall time during execution T divided by the total wall time of an FMM evaluation on the 
same O (N) discretization, TFMM. By normalizing by the FMM evaluation cost, we minimize the dependence of the cost on 
machine- and implementation-dependent machine-dependent parameters.

We run the tests in this section on the spheroid geometry shown in Fig. 8-left. We focus on the singular quadrature 
scheme of [75]. The near-singular quadrature of [75] is algorithmically similar to hedgehog, but since an expensive singular 
quadrature rule is used as a part of near-singular evaluation, it has a higher total cost. As a result, the accuracy and cost of 
near-singular evaluation of [75] is bounded by the accuracy and cost of the singular integration scheme.

To compare the full hedgehog method with [75], we fit polynomial patches to the C∞ surface of [76], denoted �b , to 
produce �̂ during the first step of Section 3.4. We apply the remaining geometry preprocessing algorithms of Section 3.4
to �̂ to produce Pcoarse. After producing Pfine with two levels of uniform upsampling, we solve Eq. (5) with two-sided
hedgehog on �̂ and evaluate the solution on the boundary with one-sided hedgehog. We then solve for the solution to 
Eq. (5) on �b using [75].

For each of the tests in this section, we choose some initial spacing parameter h0 to discretize the surface of [76], as in 
[75], and use the 16× upsampled grid and floating partition of unity radius proportional to O (

√
h), as in the original work. 

We apply hedgehog to �̂ and the scheme of [75] to �b with spacing h0/2i , for i = 1, . . .4.
As in the previous section, we choose the parameters r and R of hedgehog to be O (

√
L). For both quadrature methods, 

we use a multipole order of 16 for PVFMM with at most 250 points in each leaf box. The results are shown in Fig. 10. 
From left to right, each plot details the total cost of each scheme, the cost of each subroutine for hedgehog (denoted HH) 
and the singular quadrature scheme of [75] (denoted POU), and the relative error as a function of h and L, respectively, for 
all refinement levels. We plot the cost of both schemes the cost of each algorithmic step as a function of their computed 
relative error. In each figure, we present results for a Laplace problem (top) and an elasticity problem (bottom).

In Fig. 10, as expected, we observe a higher convergence rate for hedgehog compared to [75]. [75] outperforms hedge-
hog in terms of cost for all tested discretizations. We observe that the FMM evaluation in Fig. 10 accounts for at least 95% 
of the hedgehog cost. This means that a local singular quadrature method (based on corrections to an FMM evaluation, 
Section 1.2) of worse complexity can beat a global method, simply by virtue of reducing the FMM size. By noting the large 
difference between the hedgehog FMM cost and the hedgehog density interpolation, we can reasonably infer that a local
hedgehog scheme should narrow this performance gap and outperform [75] for larger problems, assuming that switching 
to a local scheme does not dramatically affect error convergence.

6.3. Requested target precision vs. computed accuracy

In this section, we study the performance of the full algorithm outlined in Section 3. We test hedgehog on the torus 
domain shown in Fig. 8-right. We choose a reference solution of the form of Eq. (24) with a single point charge located at 
the origin, in the middle of the hole of the torus. We solve the integral equation with two-sided hedgehog and evaluate 
the singular integral on a distinct discretization with one-sided hedgehog. We choose q = 20, p = 6 and a = b/6. We 
select various values for εtarget using the plot in Fig. 7a to choose b to ensure sufficiently accurate extrapolation. We plot 
the results of our tests in Fig. 11.

We see in Fig. 11-left that we are consistently close to the requested target precision. We see a decline in target points 
per second per core as accuracy increases in Fig. 11-middle. This is explained by Fig. 11-right, which shows an increase in 
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Fig. 10. Comparison of HEDGEHOG on polynomial patches (HH) versus [75] on the surface representation of [76] (POU) solving via GMRES for uc . Laplace 
(top) and elasticity (bottom) problems solved on the spheroid shown in Fig. 8. From left to right, we plot the total cost of each scheme, the cost of each 
subroutine for hedgehog (blue) and the singular quadrature scheme of [75] (red), and the relative error as a function of h. We plot error convergence of 
[75] as a function of h and hedgehog as a function of L, due to the distinct discretizations. For hedgehog parameters, we choose r = .013

√
L, R = .075

√
L

for the Laplace problem; for the elasticity problem, we choose r = .013
√
L, R = .08

√
L. We choose p = 6 and q = 15 for both problems. For [75] the spacing 

is h0 = .35. Note that in the hedgehog timing breakdown, since the FMM time is dominant, the FMM cost lies directly on top of the total cost.

Fig. 11. Performance of full algorithm. Left: ∞-norm relative error in singular integral vs requested target accuracy (blue). The dotted line is the ideal 
behavior y = x. Middle: Performance in terms of target points evaluated per second per core with hedgehog. Right: Number of patches in Pcoarse and 
Pfine computed by the preprocessing algorithms.

the size Pfine as Pcoarse remains a fixed size. The initial 128 patches in Pcoarse are enough to resolve the boundary condition 
and �, but we need greater quadrature accuracy for lower values of εtarget. Decreasing the number of points in passed to 
the FMM, i.e., decreasing the size of Pfine, is the main way to improve performance of our method. This is further indication 
that a local version of hedgehog will outperform a global approach.

6.4. Full algorithm on interlocking torii

We now demonstrate the full algorithm pipeline on an exterior Laplace problem, whose boundary is defined by four 
interlocking torii shown in Fig. 12. The domain boundary is contained in the box [−3.8, 2.4] × [−1.1, 1.1] × [−1, 1]. The 
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Fig. 12. Absolute error of GMRES solve via HEDGEHOG on interlocking torii. Left: The admissible set of 1128 patches in Pcoarse used to solve Eq. (5) is 
shown (black lines denote patch boundaries). The point charge generated the boundary condition is located within the second torus from the right. Right: 
a cross-section of the torii geometry through the xz-plane, showing the second torus from the right and the location of the singularity (green point).

shortest distance between two adjacent torii is less than 10% of a polynomial patch length defining the boundary. We again 
use a boundary condition of the form Eq. (24) with a single point charge located at (0, .03, .875), inside the upper half of the 
second torus from the right in Fig. 12. This problem is challenging due to the nearly touching geometry of the torii, along 
with the singularity placed close to the boundary. We run the admissibility and adaptive upsampling algorithms outlined in 
Section 3, solve Eq. (5) using two-sided hedgehog, and evaluate the solution on the boundary using one-sided hedgehog. 
The absolute error in the ∞-norm of the singular evaluation is plotted on the boundary surface.

Using a = .1, b = .025, p = 6 and q = 20, we achieve a maximum pointwise error of 1.29 × 10−5. GMRES was able to 
reduce the residual by a factor of 10−13 over 109 iterations. There are 288768 quadrature points in the coarse discretiza-
tion, 18235392 quadrature points in the fine discretization, and 3465216 check points used in the two-sided hedgehog
evaluation inside GMRES. We evaluate the solved density at 451200 points on the boundary with one-sided hedgehog to 
produce the render in Fig. 12. On a machine with two Intel Xeon E-2690v2 3.0 GHz CPU’s, each with 10 cores, and 100 GB 
of RAM, the GMRES solve and interior evaluation required 5.7 hours and can evaluate the singular integral at a rate of 1709 
target points per second per core.

6.5. Solution on complex geometry

We have demonstrated in [42] a parallel implementation of Section 3.1, applied to simulating red blood cell flows. The 
surface geometry of the blood vessel shown in Fig. 13 is complex, with rapidly varying curvatures and geometric distortions 
due to singular vertices in the surface mesh. Since the surface is admissible, we are able to apply parallel hedgehog
directly without geometric preprocessing to solve an interior Dirichlet Stokes problem. We use a = .125, b = .125, p = 6 and 
q = 16 as simulation parameters.

Using 32 machines each with twenty 2.6 GHz cores with 100 GB of RAM, we achieve a maximum pointwise error of 
3 × 10−6 when solving a Stokes problem with constant density. We then place a random vector point charge two patch 
lengths away (relative to the patches in Pcoarse) from the domain boundary (on the left side of Fig. 13, solve Eq. (5) using 
two-sided hedgehog, and evaluate the solution on the boundary using one-sided hedgehog. The absolute error in the 
∞-norm of the singular evaluation is plotted on the boundary surface. There are 10,485,760 quadrature points in the coarse 
discretization, 167,772,160 quadrature points in the fine discretization, and 125,829,120 check points used in the two-sided
hedgehog evaluation inside GMRES. We evaluate the solved density at 209,715,200 points on the boundary with one-sided
hedgehog to produce the render in Fig. 12. We achieve a maximum pointwise error of 1.8 × 10−2 and can evaluate the 
singular integral at rate of 3529 target points per second per core.

7. Conclusion

We have presented hedgehog, a fast, high-order, kernel-independent, singular/near-singular quadrature scheme for el-
liptic boundary value problems in 3D on complex geometries defined by piecewise tensor-product polynomial surfaces. 
The primary advantage of our approach is algorithmic simplicity: the algorithm can be implemented easily with an exist-
ing smooth quadrature rule, a point FMM and 1D and 2D interpolation schemes. We presented fast geometry processing 
algorithms to guarantee accurate singular/near-singular integration, adaptively upsample the discretization and query local 
surface patches. We then evaluated hedgehog in various test cases, for Laplace, Stokes, and elasticity problems on various 
patch-based geometries and compared our approach with [75].
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Fig. 13. Absolute error of GMRES solve via HEDGEHOG on complex blood vessel geometry used in [42]. The blood vessel uses 40,960 8th order polynomial 
patches (black edges denote patch boundaries). The geometry is admissible by construction. The point charge is located on left side of the figure (green).

[42] demonstrates a parallel implementation of hedgehog, but the geometric preprocessing and adaptive upsampling 
algorithms presented in Section 3 are not parallelized. This is a requirement to solve truly large-scale problems that exist in 
engineering applications. Our method can also be easily restructured as a local method. The comparison in Section 6.2 high-
lights an important point: a local singular quadrature method can outperform a global method for moderate accuracies, even 
when the local scheme is asymptotically slower. This simple change can also dramatically improve both the serial performance 
and the parallel scalability of hedgehog shown in [42], due to the decreased communication of a smaller parallel FMM 
evaluation. The most important improvement to be made, however, is the equispaced extrapolation. Constructing a superior 
extrapolation procedure, optimized for the boundary integral context, is the main focus of our current investigations.
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Appendix A. Derivation of Heuristic 4.1

We are interested in computing the error incurred when approximating a 2D surface integral with an interpolatory 
quadrature rule. In 1D on the interval [−1, 1], we’re interested in the quantity

Rq[ f ] = I[ f ] − Qq[ f ] (A.1)
22
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where

I[ f ] =
1∫

−1

f (x)dx (A.2)

Qq[ f ] =
q∑

i=0

f (xi)wi, (A.3)

for quadrature weights wi for a q-point quadrature rule. For a 2D double integral, we define a similar relationship between 
the remainder, the exact integral and the qth order quadrature rule:

R(2)
q [ f ] = I(2)[ f ] − Q (2)

q [ f ] (A.4)

where

I(2)[ f ] =
1∫

−1

1∫
−1

f (s, t)dsdt (A.5)

Q (2)
q [ f ] =

q∑
j=0

q∑
i=0

f (si, t j)wiw j. (A.6)

For a function of two variables f (s, t), we will denote Is[ f ] =
∫ 1
−1 f (s, ·)ds as integration with respect to the s variable 

only, which produces a function of t . The same subscript notation applies to Rq,s[ f ] and Qq,s[ f ]. We use similar notation 
for t: we apply the 1D functional to the variable in the subscript, producing a 1D function in the remaining variable. We 
observe that

I(2)[ f ] =
1∫

−1

⎛
⎝

1∫
−1

f (s, t)ds

⎞
⎠dt =

1∫
−1

Is[ f ]dt = It[Is[ f ]] (A.7)

Following the discussion in [3], we substitute into Eq. (A.7) and have

I(2)[ f ] = It[Rq,s[ f ] + Qq,s[ f ]] (A.8)

= Rq,t[Rq,s[ f ] + Qq,s[ f ]] + Qq,t[Rq,s[ f ] + Qq,s[ f ]] (A.9)

= Rq,t[Rq,s[ f ]] + Qq,s[Rq,t[ f ]] + Qq,t[Rq,s[ f ]] + Qq,t[Qq,s[ f ]] (A.10)

We assume that the higher-order “remainder of remainder” term contributes negligibly to the error. Although it has been 
shown that this term has a non-trivial contribution to a tight error estimate [23], we are able to provide a sufficiently tight 
upper bound. For large q, the quadrature rule approaches the value of the integral, i.e., Qq,β ≈ Iβ for β = s, t , we’re left 
with:

I(2)[ f ] ≈ Is[Rq,t[ f ]] + It[Rq,s[ f ]] + Q (2)
q [ f ], (A.11)

and hence:

R(2)
q [ f ]� Is[Rq,t[ f ]] + It[Rq,s[ f ]], (A.12)

where � means “approximately less than or equal to.” From [64, Theorem 5.1], we recall that for a 1D function θ defined 
on [−1, 1], if Qq[θ] is computed with Clenshaw-Curtis quadrature, θ is Ck and ‖θ(k)‖T < V on [−1, 1] for real finite V , then 
for sufficiently large q, the following inequality holds

Rq[θ] ≤ 32V

15πk(2q + 1 − k)k
, (A.13)

where ‖α(x)‖T = ‖α′/
√
1− x2‖1. We’re interested in integrating a function θ̃ over an interval [−h, h] for various h. If θ̃ is 

Ck and ‖θ̃‖T < V ′ on [−h, h] for a real constant V ′ independent of h, then we can define θ(x) = θ̃ (hx) on [−1, 1] and apply 
Eq. (A.13):

Rq[θ̃ ] ≤ 32hk+1V ′
k
. (A.14)
15πk(2q + 1 − k)
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This follows directly from the proof of [64, Theorem 4.2] applied to θ by replacing θ with θ̃ (hx) and noting that θ(k)(x) =
hk θ̃ (k)(hx). The change of variables produces the first power of h, while each of the k integration by parts produces an 
additional power of h. In the context of hedgehog, the size of h is proportional to the edge length of the subdomain Di
outlined in Section 2.2.

Applying Eq. (A.14) to Eq. (A.12), and again letting f (s, t) = �(hs, ht), gives us

R(2)
q [ f ]� 32hk+1

15πk(2q + 1− k)k
[
Is[V ′

t(s)] + It[V ′
s(t)]

]
(A.15)

where V ′
t(s) = maxt ‖�(k)(hs, ht)‖T and V ′

s(t) = maxs ‖�(k)(hs, ht)‖T for fixed values of s, t . If we can choose a Ṽ that is 
strictly greater than V ′

s(t) and V ′
t(s) for any s, t in I(2) , we are left with

R(2)
q [ f ]� 128hk+1 Ṽ

15πk(2q + 1− k)k
. (A.16)

Applying this to the integration of double layer potentials, we can simply let Ṽ be the largest variation of the kth partial 
derivatives of the integrand of any single patch in Eq. (7). In fact, we know that this value is achieved at the projection of 
x on the patch Pi closest to x, i.e., (s∗, t∗) = argminI(2)‖x − Pi(s, t)‖2. We can also choose h = maxi hi to observe standard 
high-order convergence as a function of patch domain size, which we summarize in the following theorem. The smoothness 
and bounded variation assumptions required to apply Eq. (A.13) to our layer potential follow directly from the smoothness 
of u(x) in �. Our heuristic directly follows.
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