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Fig. 1. Coat rack stress: stress concentrations on coat rack example. Left figure presents how load is applied. Middle figures show stresses on each PLA piece.
Right figures show the optimized coat rack and 3d printed connectors assembled with wooden dowels.

Modern fabrication methods have greatly simplified manufacturing of com-
plex free-form shapes at an affordable cost, and opened up new possibilities
for improving functionality and customization through automatic optimiza-
tion, shape optimization in particular. However, most existing shape opti-
mization methods focus on single parts. In this work, we focus on supporting
shape optimization for assemblies, more specifically, assemblies that are held
together by contact and friction. Examples of which include furniture joints,
construction set assemblies, certain types of prosthetic devices and many
other. To enable this optimization, we present a framework supporting ro-
bust and accurate optimization of a number of important functionals, while
enforcing constraints essential for assembly functionality: weight, stress,
difficulty of putting the assembly together, and how reliably it stays together.
Our framework is based on smoothed formulation of elasticity equations
with contact, analytically derived shape derivatives, and robust remeshing to
enable large changes of shape, and at the same time, maintain accuracy. We
demonstrate the improvements it can achieve for a number of computational
and experimental examples.
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1 INTRODUCTION

Creating shapes optimized for a particular function is one of the
main tasks in computer-aided design. Modern fabrication methods
have greatly simplified the creation of complex free-form shapes at
an affordable cost and opened up new possibilities for improving
functionality and customization through automatic optimization.

Methods for constructing optimal shapes have enjoyed consid-
erable attention in a variety of settings, such as large-scale archi-
tectural forms, engine parts, footwear, medical prosthetic devices
and metamaterial structures. Notably, most of the work focuses on
designing continuous structures, fabricated from one material, or a
set of materials fused or glued together.

In this work, our focus is on supporting shape optimization for as-
semblies, and more specifically for assemblies that are held together
by contact and friction, a setting which has received relatively little
attention. At the same time, assemblies are ubiquitous, as most man-
ufactured objects around us are assembled from separate parts, often
made from different materials. For example, the steel legs of a table
may be inserted into openings of a wooden or MDF top; a phone
may have a snap-on plastic protector or cover; a prosthetic device is
attached to the body with friction. While the specific mechanisms
for holding objects together may vary broadly, they are all based on
combining deformation with contact and, in many cases, friction.

In all these cases, contact plays a major role in the function and
mechanical behavior of the assembled object. Shape optimization
helps to achieve better performance or save on the costs of material
for fabrication (for additive fabrication these two are closely related).
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Some of the important measures of performance of assemblies in-
clude total volume or weight, total deformation energy, maximal
stress and more complex measures such as permeability.

In this paper, we present a formulation and a robust numerical
method for computing optimized shapes in the presence of contact
and friction. Compared to shape optimization tasks not involving
contact, the problem is significantly more difficult to solve, as it
involves complex inequality constraints required for handling colli-
sions and friction. The resulting problem is non-smooth, and often
hard to solve sufficiently accurately. Our overall approach is to use
a smoothed version of the problem [Eck et al. 2005] amenable to
standard optimization techniques on the one hand, and allowing
us to approximate the desired solution as close as possible on the
other hand.

Contributions. In summary, the contributions include

o A shape derivative-based formulation for optimization prob-
lems with contact and friction, building on [Maury et al. 2017];

e A novel shape-optimization framework based on FEM dis-
cretization of this formulation, capable of handling contact re-
gions between two deformable objects as well as a deformable
and a rigid object. It provides sufficiently accurate elastic de-
formation computations to support, e.g., max stress reduction.

e The frameworks supports conventional functionals (stress-
based and volume) and new, contact-specific functionals (as-
sembly and disassembly, parallel alignment) that ensure that
connection strength is maintained and that at the same time
the parts held together by contact can be assembled. The
framework also supports optimization involving multiple
load scenarios.

e We demonstrate a range of 2D and 3D examples of shape
optimization, and qualitatively evaluate these examples using
laser cutting and 3D printing to fabricate them and demon-
strate the expected behavior.

2 RELATED WORK

There is a broad range of work on shape/topology optimization
and related methods, but relatively few works were trying to solve
problems with contact. We focus on related work on shape opti-
mization with contact, and briefly mention other shape/topology
optimization research that we rely on.

Shape optimization with contact. Some previous works have con-
sidered contact of a soft body with rigid surfaces, for example, [Berem-
lijski et al. 2014], [Haslinger et al. 1986] and [Herskovits et al. 2000].
While other some other works have studied the interaction of two or
more bodies in contact, like recent works from [Maury et al. 2017],
[Desmorat 2007] and [Stupkiewicz et al. 2010]. Most papers do
not consider friction, and those which do often consider simplified
(compared to the standard Coulomb) friction models as discussed
in [Maury et al. 2017].

For contact models, there are two families of algorithms, La-
grangian and the penalization methods. The first type of methods
adds Lagrange terms for the model constraints to the objective
function and uses sub-gradient-based optimization to deal with
the fact that the problem is non-smooth. Examples can be found
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in [Herskovits et al. 2000] and [Stupkiewicz et al. 2010] , where a
bilevel approach and an augmented Lagrangian method are used.
The second type of methods, penalization methods, use smooth
approximations to the problem, which add terms to the variational
formulation. Our method belongs to this category. For this type
of method, the objective function is smooth, which considerably
simplifies optimization. In our work, we choose to use penaliza-
tion method following the mathematical model presented by Eck
et al. [Eck et al. 2005]. In [Maury et al. 2017], a similar overall ap-
proach with level-set discretization. While level-set modeling has
many advantages (e.g., allowing for easy topology changes) in our
experience, it is not well-suited for handling important types of
problems, in particular, those involving stress reduction, which is
our focus in this work, as stress is harder to resolve precisely.

Stress minimization. Maximal stress minimization was considered
in a number of papers; the formulation closest to ours is [Panetta
et al. 2017], where worst-case optimization for periodic metama-
terial structures is considered; it uses parametric periodic shapes,
which are meshed for shape derivative computation, and does not
consider contact. Earlier work on minimization of maximal stress is
[Allaire et al. 2004], which applies topology optimization to design
lightweight minimal-stress objects built from sequentially laminated
composites. Another similar work is [Allaire and Jouve 2008], which
applies the level-set topology optimization method to minimize the
p-norm of stress. None of these works consider contact, and level-set
methods (with Eulerian discretizations on a fixed grid) require im-
practically fine meshes for accurate optimization of high p norms of
stress. Other works considering max stress include [Lian et al. 2017;
Polajnar et al. 2017; Sonmez 2009; Van Miegroet and Duysinx 2007;
Xia et al. 2012]. In the computer graphics community, [Stava et al.
2012] was one of the first works to introduce heuristic shape cor-
rection techniques that effectively result in stress reduction. [Zhao
et al. 2016; Zhou et al. 2016] consider problems involving bounding
von Misses tress.

Contact and friction modeling. The literature on contact is exten-
sive, and we mention only few most closely related works here; for
general theory see e.g., [Stewart 2001]. Typically, contact problems
are viewed as constrained optimization problems, with per-element-
pair constraints. In particular, contacts between deformable objects
that we consider in this paper, are defined as constraints between
surface primitives (triangles, edges and vertices); some examples
include [Belytschko et al. 2000; Bridson et al. 2002; Harmon et al.
2009; Otaduy et al. 2009; Verschoor and Jalba 2019]. Penalty-based
methods for handling these constraints are among the oldest, but
were largely supplanted by constraint formulations and LCP (linear
complemenarity)-based or SQP solution methods. [Harmon et al.
2009] developed a method for which progressively high penalties are
applied as the distance decreases, growing arbitrarily large as the dis-
tances to the object decreases. A recent work [Geilinger et al. 2020]
provides a differentiable method for solving dynamic problems with
contact and Coulomb friction using a penalty based model combined
with equality constraints for static friction, which can be used with
gradient-based optimization. Also dealing with Coulomb Friction,
[Ding and Schroeder 2020] proposes a penalty based solution that
can be used coupling rigid to deformable bodies and material point



method (MPM). Another recent method [Li et al. 2020] shares some
aspects with the approach we use, specifically, smoothed version
of constraints is used, in particular for friction. However, we use
finite penalties, rather than infinite barriers for constraints, and add
smoothing both to contact and friction formulations.

It is well-known (see, e.g., [Moreau 1973]) that friction introduces
significant non-smoothness to solutions, and due to their dissipative
nature, solutions of problems with friction cannot be obtained using
energy minimization. A variety of iterative methods for solving
resulting problem were developed [Alart and Curnier 1991; Daviet
et al. 2011; Jean and Moreau 1992]. Nonsmooth solution methods
were applied in recent work with some success [Macklin et al. 2019],
but are very difficult to use in the optimization context. Smoothed
version of friction were proposed both in simulation and optimiza-
tion context in the works we have mentioned.

Contact-based Assemblies. It is also important to mention works
designing contact-based assemblies using geometric techniques and
not necessarily relying on elasticity simulations to achieve their
goal. Works like [Panozzo et al. 2013; Vouga et al. 2012; Wang et al.
2019] consider stability for self-supporting surfaces. Other works
[Sun and Zheng 2015; Ureta et al. 2016; Yao et al. 2017] consider the
design of joints for more general objects, including furniture.

3 PROBLEM FORMULATION
3.1 Overview

We start with a high-level overview of the general problem we are
solving. The input to our algorithm is a collection of 3D meshed
objects, some of which may be in contact (the meshes will be updated
in the process of optimization).

We solve the problem of the general form

mingpJ(@), s.t., F(u) =0,B(u) < BO (1)

The main components of this formulation include the following.

e The unknowns in the optimization are shape parameters p,
in our case displacements of mesh vertices on the boundary,
defining the domain Q(p), and displacements u of the points
of Q(p) resulting from elastic deformation with contact. (We
use u for the continuous solution of the elasticity problem,
and # for the vector of displacements of vertices of a meshed
Q(p)). Note that while u corresponds to the deformations
of the shape Q(p) in our simulation, displacements p (on
9Q(0)) define how the rest-state object shape is changed by
optimization.

e The PDE constraint F(i1) = 0 is a FEM-discretized elasticity
equation for @ on Q(p)with contact and friction, leading to a
non-linear system of equations in 4.

o The objectives in our optimization are of the one of two forms
below, as we have objectives with computation on the whole
object domain (e.g., stress) or only on its boundary (e.g., dis-
assembly objective)

J(u) = ‘/Q e(u,x)dx, or E(u) = /r“ e(u,x)ds 2)

where both the domain of integration and the integrands de-
pend on the unknowns, and e represents a pointwise measure
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(e.g., stress), computed as a function of FEM solution defined
by the discrete vector @. Each objective can be either an opti-
mization target to minimize as in (1) or a part of an inequality
constraint (upper bound on an objective) described below.

As optimization targets, we consider L”-norms of stress, yield-
ing compliance for p = 2 and a close approximation of the
maximum stress for large p and volume, of a part or the whole
assembly. Other objectives are used primarily as constraints.
The inequality constraints, critical for our formulation, are
of the form B(#) < B, where B(#) is an integral of the type
(2). LP norm of stress (effectively allowing to bound maximal
stress) and volume objectives can also be used as constraints,
e.g., we can impose a bound on the maximum volume allowed.
Other objectives used primarily in constraints are the as-
sembly constraint, ensuring that two parts can be assembled
together; disassembly constraint, ensuring that once assem-
bled, the object does not fall apart; and parallel alignment
constraint, which makes it more difficult to disassemble the
object using any direction other than the disassembly one.

Shape derivatives. The key element of the optimization process
is computing objective and constraint gradients with respect to a,
required for any first- or second-order optimization algorithm.

There are two main approaches to this problem: one can discretize
the problem first, fixing the mesh for Q(p) for all p, and a FEM ba-
sis. This converts the problem into a finite-dimensional nonlinear
algebraic problem, and then compute gradients of the objectives
and constraints with respect to p, the positions of boundary mesh
vertices. The alternative is the "differentiate-first" approach. Specifi-
cally, for each objective and constraint J(u), before it is discretized,
we derive its shape derivative, a continuous analog of the gradient
with respect to @. The shape derivative is a functional dJ[v], where
v is a velocity field of the deformations of the domain Q(p) (i.e.,
the displaced position of a point q is q + tv). dJ[v] yields the rate of
change of J ast — 0. d]J is defined by a function p on Q, which can
be obtained by solving a PDE, similar in structure to the elasticity
equation (the adjoint equation). The advantage of the latter approach
is that it naturally allows for remeshing and refinement (the adjoint
equation solver is just a standard elasticity solver), which is essential
for large changes in the object shape: any method used to solve
large-deformation elasticity PDEs can be used to compute p, without
fixing the discretization in advance.

The cost of each optimization step is approximately equal to
solving two elasticity problems, the nonlinear elasticity problem,
and the linear adjoint problem, to obtain the solution and shape
derivative respectively.

In the rest of the section, we provide more specifics on the compo-
nents of the formulation described above and their discretizations.
The complete derivations are included in the supplementary mate-
rial.

3.2 Notation

We use the following notation, also illustrated in Figure 2

o Q: optimization domain (may consist of multiple objects)
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Fig. 2. Notation for boundary parts for a simple assembly: I'p is attached to
the vertical wall (red), I'c can slide along the ground (yellow), I'n is where
the load is applied, and I's is the contact area of two parts. We view both
parts as a single domain Q consisting of detached parts.

I'p, Iy, I'c, Ts: parts of the domain boundary where Dirichlet,
Neumann, rigid-deformable (C) and deformable-deformable
(S) contact boundary conditions are applied.

e superscripts +,— denote surface quantities on two sides of a
contact surface between two deformable objects; [-] denotes
the difference of two one-sided quantities.

o u(x), x € Q: displacements.

e D[f] for a function f, its material derivative 3—{ +u-Vf,
where t is a deformation parameter.

e og,¢=2¢(u) = %(Vu + VTu): stress and linearized elasticity

strain.

C: elasticity tensor.

T: tractions on I'y, i.e., surface force density on the boundary.

1/a: penalty parameter for constraints;

p(x): solution of the adjoint PDE used to compute shape

derivatives.

® ¢;, ;: volumetric finite element basis functions at node i.

® A basis functions on the boundary.

e p: optimization degrees of freedom (boundary vertices of Q)

3.3 Elastic deformations with contact
In this paper, we only consider static problems, so there is no time
dependence in the equations we use.
The basic form of static equations of linearized elasticity (without
contact or friction yet) is
V-o=0 onQ
u=u onlp

®)

on=g onlyn

The variational form of this problem, that we rely on to formulate
the contact constraints in a computationally practical way, as well
as for the finite element discretization, is given by the equation

/e(u):C:e(w)dV—/ w-gdS=0 (4)
Q I'n

satisfied for any w in an appropriate function space with w = 0 on
I'p, and u satisfying the Dirichlet boundary conditions on I'p.

Contact constraints. We consider two forms of contact constraints,
rigid-deformable (RD) and deformable-deformable (DD), defined on
the parts of the boundary I'c and I's respectively.
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The former type of constraints involves a fixed boundary to which
we refer as obstacle, on one side, which can be considered rigid, e.g.,
legs in contact with the floor.

u-n<0 onl¢
on-n<0 onl¢ (5)
(on-n)(u-n)=0 onlg¢

The first equation on I'c says that the displacement should move
the object points away from the obstacle; the second equation says
that the normal force on this boundary should be 0 or point towards
the other object; and finally, the last equation, the complementarity
condition, ensures that if the force is nonzero, the displacement in
the normal direction is zero, i.e., there is contact. The DD contact
constraints are similar, however, because we have deformable ma-
terial on both sides of the boundary, and the differences in stress
need to be considered. Normals n~ and n* and displacements u~
and u™ correspond to the parts on the opposite sides of contact, and
[u] is the jump u™ —u™.

[u] - n~ <0 onTg
[c]ln”-n~ <0 onTs (6)
([eln” -n7)(Ju] -n)=0 onTg

Friction constraints. Similarly, there is a set of equations for fric-
tion:
l[(on)ell < pl(on)n| on Te
l(on)ell < ul(on)n| = ur =0onTc ™)
l(on)ell = pl(on)n| = ur = —A(on);

where A > 0, and p is the friction coefficient; ¢t and n refer to tan-
gential and normal components of the force. The first inequality
captures the main aspect of Coulomb static friction model (the force
is bounded by y times the normal force). The second equation states
that if the force is below maximal, no displacement happens, and the
third one that the displacement at maximal friction force is parallel
to it and opposite in direction.

A modification (6) (replacing one-sided constraints with differ-
ences), applies to friction (please see the supplementary document),
yielding deformable-deformable contact.

3.4 Variational form and constraint approximation

While the basic elasticity problem (4) is quite straightforward to
solve and well-understood, contact constraints, especially friction
constraints, result in numerous difficulties: (1) the system becomes
highly nonlinear and non-convex; (2) the solutions may be non-
smooth; (3) due to dissipative nature of friction, the problem cannot
be cast as a (constrained) energy minimization problem. This makes
even the direct solution of the problem difficult to make robust, and
presents a particular challenge for shape optimization.

The key mathematical ideas for resolving these difficulties can be
found in [Eck et al. 2005], further developed in [Maury et al. 2017].
(Recent work [Li et al. 2020] also follows a related approach for
dynamic deformable contact).

The main elements of the approach include:

e Use smooth approximations of contact with friction (these
are used to prove solution existence in [Eck et al. 2005], but
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are also valuable computationally). In particular, the norms
in (7), that result in non-smoothness of the constraints are
replaced by a smoothed norm that will be described in detail
in this section.

e Replace the inequality constraints by suitable (also smooth)
penalty functions, added to the variational formulation of the
problem (4); a number of works (see [Maury et al. 2017] for
discussion) show that the results converge to the true solution,
as the penalty weight 1/a — oo. Like penalty approaches
commonly used in graphics, using these methods has the ben-
efit of replacing constrained optimization with unconstrained,
and the downside of potential constraint violations which we
discuss below.

We largely follow the smooth formulation of [Eck et al. 2005], which
demonstrates that the solution to the smooth problem exists under
typical assumptions, and with smoothing parameters approaching
zero, converges to a solution of the original problem.

Smoothed contact functional. We introduce a smoothing function
[Eck et al. 2005]

0 ys-n
hy(y) = gy’ +qy+q —N<y<n ®)
y y>n

approximating max (0, y) as 7 — 0. This is the same function used
in [Maury et al. 2017].
The contact equations (5) lead to the following objective

jl’\,a(u,w)zl/ hy(u-n) w-ndS 9)
, a Jr.

As a — 0, the solutions obtained with this term added to (4) con-
verge to solutions satisfying the constraint u - n < 0. Similarly, we
have

J§a(ww) = %./r hy([u]l -n7) [w]-n~dS (10)
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for DD contact.

Friction functionals. The Coulomb friction constraints (7) and
the analogous constraint for DD friction, are expressed in terms of
norms. For the smoothed functional, we use the following function
to approximate |y|, as 7, — 0:

Iyl llll
|

> n ( )
11

Ny(y) = {
Then friction constraints are captured by the following objectives
[Eck et al. 2005]:

j,CF,zx(u’ w) = §~/1" hr](u - n) N,;(ut) -wp dS
. (12)
i ) = g/r (- n™) Nj ([l - [wl; dS

Smoothed elasticity with contact and friction. Four objectives (9)-
(12) are added to (3) to model contact with friction both for deformable-
deformable and deformable-rigid contacts on parts of boundaries.

/Qe(u):C:e(w)dV—/er~gdS 13)

+j}'\]’a(u,w) +j§’a(u,w) +jéF!a(u, w) +j§F’a(u, w) =0

for any w. The finite element discretization of these equations is
standard and leads to a non-linear system of equations, because of
the nonlinear functions. This system requires computing a Jacobian
of the left-hand-side to solve efficiently. We refer to the supplemen-
tary document for the derivation of the Jacobian.

3.5 Optimization objectives

Next, we describe the optimization problem we solve, specifically,
the set of objectives we use in the functional J as optimization
targets or inequality constraints, and how their shape derivatives
are computed.

In our model, we consider only the simplest type of assembly,
namely, moving parts together in a specific direction y. This can be
generalized to nonlinear trajectory settings (e.g., a screw motion
trajectory) but this will make these constraints substantially more
complex.

L? stress and volume. These objectives are standard, and expressed
as

1/p 2
P _ P . -
(@) (/Q (lo(wllF) dV) L@ (/Q 1dV) (14)

The stress objective for large p approximates the non-smooth
maximum-stress functional well. Following [Panetta et al. 2017],
we consider the average stress at each element. Also, we use value
p = 20 in most cases. We note that von Mises stress can be used just
as easily. In addition, we have options for setting target stress and
target volume, which are expressed as follows:

]ctr(qu):/g;(P(”O'[u]”F_St)dV§ ]{/(Q)=</J(/Q dV—Vt() )
15
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where S; and V; represent the stress and volume targets and ¢ is
the following function

ifz<0

o(2) = {OZ (16)

z% otherwise

We normalize our objective approximating maximal stress by the
ratio between the load (in our boundary conditions) and the area
of our shape’s surface, which has units of stress. For the volume
objective, we use 1/ Vt2 as a normalization constant.

Low objective value:

I\ assembly

disassembly

High objective value:

no displacement

parallel
y alignment

\_5/1 '

Fig. 4. Assembly, disassembly and parallel alignment objectives. Top: left
shape is easy to assemble in —y direction, while shape on the right cannot
be assembled without effort (high objective value, due to normals pointing
in the direction opposite to y). Middle: For the same disassembly direction
y, and user-defined load , the assembly on the right falls apart under the
load; for the shape on the left, the parts cannot move apart in direction y
under load I. Bottom: left shape has a large region parallel to disassembly
direction (marked in blue), making it hard to disassemble in any direction
other than y, while shape on the right allows for multiple easy disassembly
directions (shown in light red).

We assume an disassembly direction y per connection, with assem-
bly happening in opposite direction —y. We define two objectives,
an assembly objective, which ensures that parts can be put together
without much deformation in direction —y, and dissasembly objec-
tive, which penalizes parts moving apart along y, under the loads
specified by the user.

Assembly objective. A fully physical treatment of assembly would
require simulating the assembly process, leading to a large number
of nonlinear solves for different time steps for a single gradient
evaluation. Instead, we use a geometric heuristic with negligible
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cost to allow parts in contact to be assembled without a large defor-
mation while moving a part along an a priori fixed direction in space.
Assembly is ensured if the contact surface is a height field when
we view y as a vertical direction. The angle between the direction
of connection/disconnection and surface normal needs to be less
than 7/2. In our experiments, we always start with assemblable
non-optimized parts, in order to facilitate the optimization.

This is not a hard constraint for deformable objects, as it can be
violated by a small amount, to squeeze in a connector. We do not
attempt to bound maximal possible deformation, but empirically it
can be easily controlled by increasing the weight of this objective.

Q)= —n(x) -
7@ = g [ otonto - pas (17)

where y is the disassembly direction vector (and —y the assembly
direction), n(x) is the normal at the contact position x, and |Is| is
the area Ag = fl"s 1ds.

Disassembly objective. This objective ensures that under user-
defined loads, or for a collection of different user-defined loads,
the parts should not move away from the assembled positions. We
formalize this by requiring that the optimized shape in equilibrium
does not move in the disassembly direction, i.e., the forces holding
contact points together are sufficient.

J@Quu) = ﬁ /F p(u(x) -y — op) ds (18)

A tolerance u;,; is added, allowing a small displacement in the
assembly direction. While the assembly term is purely geometric,
the disassembly objective relies on actual simulation responses and
it bounds how much optimized parts can move. As long as it is finite,
the assembly does not fall apart.

Although the last two objective terms may work against each
other in the cases when the loads have a significant component along
the disassembly direction, in other situations they work together to
provide structures that are, at the same time, both assemblable and
are not prone to accidental disassembly under user-defined load.
See Figure 33 for an example.

Parallel alignment objective. Finally, this objective is a secondary
heuristic that is not essential for solving the problems but empir-
ically makes the structure more robust with respect to being dis-
assembled by forces close to assembly direction, since it favors
solutions with larger contact zones tangential to the assembly di-
rection. When such zones are present, forces deviating from the
disassembly direction have normal components resulting in defor-
mations and friction keeping the parts from accidental disassembly.
In the bottom of Figure 4, we can see how the shape without parallel
alignment allows for easy disassembly in different directions (shown
in red), without any reaction force (normal or friction), while the
shape on the left allows for a single disassembly direction y.

This term is defined per continuous contact area I's with respect
to a disassembly direction y:

JP(Q) = ‘P(Wtarget - “—‘% A; ge(n(x) 'y)ds) (19)



where Wiarget is the target percentage area in the connection which
should be parallel to the disassembly direction, which can help
increasing/decreasing reaction forces avoiding disassembly. The
function g is parameterized by €, defining the interval for which g is
positive and f setting the linear decay of the function when abs(z)
is larger than e. It has the following form:

B(z+e) ifz< —€
—ad+bz2+1 ifz<0
z) = 20
9() a? +b22+1  ifz<e (20)
—B(z—¢) otherwise

where € is a smoothing constant and where a and b are defined as:
a= —,8/62 +2/e>and b= —ae—1/é

Summary. To summarize, our solver solves problems of the form
(1), for which

Jw) = Z kiJi, (21)

where each of J; is one of the objectives, enumerated above, com-
bined with weights. The equality constraint F(u) = 0is given by (13),
the static elasticity equation with smoothed contact and friction.

The inequality constraints are of the form J,, < ,l,;l"d where J,,
are some of the remaining objectives for which upper bounds are
imposed (e.g., a bound on L? norm of stress). These are imposed as
soft constraints by adding };; é(j)(]b"d —Ji) to J(u).

m

4 SHAPE DERIVATIVES AND DISCRETIZATION

In this section, we describe our approach to computing the discretiza-
tion of the problem and the gradient of the functional projected to
the constraint space F(u) = 0 (i.e., space of displacements satisfying
the elasticity equation with contact and friction).

4.1 Shape derivatives

For each objective, regardless of it is used as an optimization target,
we need to compute the gradient with respect to p. As explained in
Section 3.1, we use shape derivatives, which are computed using
the solution of an adjoint equation. More specifically, the solution
is used to construct a form dJ; on the surface, which, when applied
to changes dp of vertex positions on the boundary, produces the
(linearized) change of the functional J:

d][(;p] = lim ](Q(p + t5p)’ut) —](Q(p),uo)

22
t—0 t ( )

where u; is the solution of the elasticity equations obtained on the
domain with deformation t§p. The theory of shape derivatives is
well-established, and we refer to [Bonnetier and Dapogny 2020].

Here, we only present a brief summary of the steps for computing
these derivatives. A detailed derivation can be found in the sup-
plementary material. Our formulation follows [Panetta et al. 2017],
in that we consider volume, rather than surface integrals, which
proved to be critical for derivative accuracy, at a moderate additional
cost, compared to the elasticity solves involved.
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Adjoint equation. The first step in computing dJ is to solve the
adjoint equation, which in our case has the following form:

/Qe(p) :Cre(y)dV = /Qr e(Y) dS—(TL+T+T p+TER), (23)

for any i, where the terms T}, corresponding to the contact and
friction smoothed penalties are of the form er Flu] - ¥dS, and p is
the unknown. We observe that this is a linear elasticity equation
which is relatively inexpensive to solve compared to the primal
nonlinear elasticity equation. The quantity 7 is defined as the sum
of 2¢’o : C for all objectives of the form (2) where e(s(@), x) is a
function on a stress measure, as our case. Then, e’ means the partial
derivative of e with respect to our stress measure.

Shape derivative. If the boundary deformation is defined by a
set of basis functions A, , with the deformation expressed as v =
2 m OPmAm, where 8p is the vector of changes of our variables, it is
possible to express the shape derivative as a dot product

Z SpmAm

where S[u, p] is a vector of the same length as p of vector valued
functions depending on u and p. The expressions for these functions
are included in the appendix, and derived in the supplementary docu-
ment. We emphasize that no discretization, other than discretization
of the deformation of the boundary was performed so far.

The vector S[u, p] computed by numerical integration of FEM
solutions of two elasticity problems for p and u is the gradient of the
functional J with respect to p; this is what we use in the optimization
process as discussed in Section 5.

dj = S[u.p] - 8p (24)

4.2 Discretization

To make our discussion of the formulation complete, we summarize
the discrete form of the problems we solve. The exact expressions are
straightforward to derive but tedious (please see the supplementary
material). We use quadratic Lagrangian elements on tetrahedras for
discretization of (13) to obtain a system of the form

F(@) = Ka — Fy + Nc (i) + Ng (i) + Fo(a) + Fsi = 0 (25)

The first two terms come from the standard elasticity equation, and
the rest correspond to the remaining terms in (13). The remaining
terms, while simple, are not linear, so the system after discretization
is a general algebraic system, and requires a non-linear solver. We
also derive expressions for the Jacobians DN and DF, which are
needed for efficient optimization.

In contrast, the adjoint PDE (23) is linear and has the form

(K +DN¢ + DNg + DFc + DFs) p =D (26)

i.e. involves exactly the Jacobians of the constraint functions. The
right-hand side D is expressed in terms of 7. Formulas for the entries
of these matrices are provided in the supplementary document.

Finally, once @ and p are available, the coefficients of the shape
derivative are computed from these values by integration, following
formulas in the appendix, using numerical quadrature described in
Section 5.
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5 METHOD

Input. The input to our algorithm is a collection of tetrahedral
meshes, with some parts of their surfaces in contact, and with bound-
ary conditions applied to other parts of surfaces. Each object can be
designated as deformable or rigid.

Our overall method is conceptually straightforward (Algorithm
1). The functions used in the pseudocode are:

e ELASTICITYSOLVE solves the nonlinear elasticity system (3),
to obtain #;

e ADJOINTSOLVE solves the adjoint system (26) to obtain p;

e DISCRETESHAPEDERIVATIVE, given @ and p, computes the gra-
dient S[u, p] with respect to vertex positions on the boundary
using (24).

o CONVERGED is the outer iteration stopping criterion discussed
below.

The inner loop works on a fixed connectivity for Q(p), and is close
to the standard BFGS algorithm: at each step, a descent direction
is computed, and a line search is performed to determine our step
size. There are three important differences: (1) we check for any
inversions of tetrahedra and choose a step that maintains a bound on
mesh element shape quality; (2) after each update of the boundary
vertices, we call the SLIM smoothing algorithm [Rabinovich et al.
2017] on interior vertex positions p'™ with boundary vertices p
fixed, to move the interior vertices so that the quality of the mesh is
improved; (3) with a valid mesh, we run simulation and if it doesn’t
converge in a maximum number of iterations, we reduce step by
half in the line search.

If the step becomes too small, the inner loop is terminated, and
the domain is remeshed in the outer loop.

A natural stopping criterion for the algorithm consists of three
parts: (1) the objective reduction obtained in a step of (outer) itera-
tion is below a threshold €, computed relative to the initial objective
value; (2) the step size of the line search falls below a threshold
(3) the maximal number of iterations max_oi is exceeded. Due to
remeshing, the energy however may oscillate slightly, and for ro-
bust behavior we require that sufficient energy decrease does not
happen over m steps. While many other options are possible (e.g.,
relative or absolute gradient norm threshold), we consider the rate
of change in the objective to be most appropriate: our goal is to
obtain a reduction in the objective, and a slow rate of reduction
indicates that optimization will not improve the target by much
more in a reasonable number of iterations; this happens either due
to being close to a local minimum value or step size going to zero
for geometric reasons, typically thin regions, resulting in distorted
elements.

We discuss the choices for €, and m in Section 6, as well as exam-
ine convergence for specific test cases.

For remeshing, we use Triangle in 2D, and CGAL and fTetWild
[Hu et al. 2020] for 3D tetrahedral meshing. More information on
meshing is presented in the Appendix E.

Smoothness penalty. In addition to all optimization targets de-
scribed in Section 3, we use a discrete regularization term S, (Q) =
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Algorithm 1 contact optimization

function GRADIENT(p)

u < ELASTICITYSOLVE(Q(p))

p < ADJOINTSOLVE(Q(p),u)

g < DISCRETESHAPEDERIVATIVE(u,p)
end function

function SHAPEOPTIMIZATION
p « non-fixed boundary vertex positions
repeat
repeat
d < BFGSDIRECTION(GRADIENT, p)
0,s,g < LINESEARCH( GRADIENT,d)
pe—p+sd
SLIM(p'™)
ii—ii+1
until s < 6 or ii = 0i_max_ii
REMESH(Q(p))
oi=o0i+1
until oi = max_oi or not CONVERGED
end function

Zoev lIs(@)[IP where

2 €N, (u-0)

2ZueN, llu =0l

and Ny is the neighborhood of v. The value of power p can be ad-
justed to obtain smoother surfaces at the cost of less optimal shapes;
we use value 2 for most cases, increasing it to 4 for some objects.

This term is scale-invariant and pushes the triangles/tetrahedra of
the mesh toward equilateral.

s(v) =

Elasticity solver. In ELASTICITYSOLVE we use the standard New-
ton’s method with line search to solve the nonlinear elasticity system
with contact. We consider the simulation solved when residual is
lower than a given tolerance. For 2D, we use 10719 for the tolerance,
while the value of 1078 is used for our 3D examples. Moreover, for
solving linear systems at each iteration of the Newton’s method, we
use CHOLMOD (for frictionless scenarios) and UMFPACK (when
friction is present) in 2D. In 3D, we use MKL Pardiso library.

Adaptive Quadrature. An extremely important aspect of our im-
plementation is the quadrature used to compute the integrals in the
FEM system discretization, as well as in the shape derivative coef-
ficient formulas. For problems with friction, precise computation
of these integrals proved to be very important. At the same time,
due to functions like Ay, the functions we integrate, while smooth,
have higher derivative discontinuities. We use a combination of
adaptive refinement on triangles and high-order (order equals to
10) Gaussian quadrature to integrate all functions to high precision.
For more information, see Section D in the Appendix.

Convergence behavior. Figure 5 shows the objective as a function
of iteration number for a 2D connector (Figure 9) and a 3D stool
(Figure 24). For both cases, we optimized L, norm of stress, while
keeping volume below or equal the initial value. For the connector,
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Fig. 5. Convergence plots for connector (Figure 9) on the left and stool
(Figure 24) on the right side. The charts show stress objective vs iterations.

H

TI'c [

Fig. 6. Examples used for validation. The left: box in contact with a rigid
surface. The right: joint in contact with a holder. We use the same notations
for boundary parts as in Fig. 2. Starts from this Figure, all the orange arrows
in the following figures illustrate the direction of load.

during the last 200 iterations, the energy decreased only by 0.87%,
while for the stool, the minimum decreased by 0.27% in the last 30
iterations. We provide additional data in Section 6.

Observe that there are increases in energy at some of our it-
erations, corresponding to the remeshing of the current solution.
However, after that the objective function quickly decreases, which
motivates our formulation of the convergence criterion.

6 EVALUATION

Simulation Validation. As we use approximations to the standard
physical models of contact and friction we evaluate the accuracy of
these models. We use two examples. The first one is box in contact
with a rigid surface. The second one is joint in contact with a holder
as shown in Figure 6.

The results for both cases are largely the same. Thus, we will
only show the results for box in contact with a rigid surface in this
section and leave out the results for joint in contact with holder.
We first change the value of « and 1 The reference value we use
for comparison is obtained by simulation with @ = 5 = 107°. We
set the smallest value of & to be 1077 and scale it by the power
of 2. The relative value of the difference in relative displacement
[u = trer|/luresl is shown in Figure 7.

Then, we test the same scenarios but with friction at contact
regions. First, we consider the dependence of accuracy on 1, using
nn = 107* as the reference value, as for friction we typically need
more smoothing in the constraints. To test how friction coefficient
affects simulation, we add in a small horizontal load that is 10% of
the vertical load for the box example. Test with p ranging from 0.1
to 0.16 and increase y every time by 0.01 for the two examples. We
compare the tangential displacement of the examples with respect
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Fig. 7. Simulation validation for box in contact with rigid surface. The
left is relative displacement error with changing a. The right is relative
displacement error with changing n

reference displ 1.54634 ref displ: t 1.1983

relative displacement

" 5 05
10° 107 107 10 0.1 0.11 0.12 0.13 0.14 0.15 0.16
Mn N

Fig. 8. Simulation validation for box in contact with rigid surface. The
left is relative displacement error with changing n,,. The right is relative
displacement with changing p

to different p to the tangential displacement of the examples with
respect to ¢ = 0.1 and take the ratio. We get the plots shown in
Figure 8.

Effects of optimization targets and constraints. We use a simple two-
dimensional connector example to demonstrate the effects of various
optimization objectives and constraints (Figure 9) We compare stress
distribution and maximal stress in different cases.

For most of the examples related to this scenario, we used a
similar optimization configuration, running a maximum of 1000
iterations and remeshing at least every 100 iterations (max_ii = 100
and max_oi = 10).

The most radical difference is between minimizing the volume
while bounding stress and minimizing maximal stress.

We also compared the scenario of minimizing maximal stress
with and without a bound on volume (equal to the initial volume).
In this comparison, stress results were actually very close to each
other, with a slight advantage to the version with the constraint.

Multiple loads. Our framework allows optimizing for multiple
separate acting forces, meaning that the energy related to stress
will be a combination of the values from each separate scenario. An
example is shown in Figure 10, where forces of the same intensity
are applied to the right and to the left of the top piece. The stress
results of the optimized shape are very close to each other and the
final shapes present considerable symmetry, even though we are
not enforcing any geometry symmetry through constraints.
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baseline

minimize minimize min volume
original  min. max stress compliance max stress  w/ bounded
226 (p=20) (p=2) w/ free volume stress (10.0)

§10.0
stress

IH&

2.18 12.7 2.38 10.0

Fig. 9. Optimization results when using different combinations of objectives.
For both baseline (p = 20) and compliance (p = 2) scenarios, we use a target
volume equal to the original one.

original

StFESS

optimized

Mo

3.2 3.3

Fig. 10. Optimization considering multiple loads.
original  optimized original

optimized

flexible

max
stress  0.214 0.058 0.257  0.043

Fig. 11. Multimaterial optimization. The stiff material has Young’s modulus
equal to 100 and Poisson’s ratio of 0.3, while the flexible one has Young’s
modulus equal to 1.0 and Poisson’s ratio of 0.0.

Differences in material properties. Figure 11 shows how the results
of optimization are affected by combining a highly flexible and a stiff
material on our two different pieces. (In both cases the target is the
baseline case of minimizing stress with no constraints). We observe
that the stress reduction is similar, although shapes required for this
are substantially different.

Role of friction. In the next comparison (see Figure 12), we observe
that in the presence of friction (¢ = 1.0), we achieve a similar maxi-
mum stress value with the assembly not needing a more extreme
protrusion to stay together, due to additional forces resulting from
friction. This is demonstrated in Figure 12. The rightmost example
shows the drastic effect of fixing only one part.
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| with friction fixing
origina fr|ct|on coefficient 1.0 top plece
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1221

stress 226

|22.6

Fig. 12. Middle shapes: with and without friction; rightmost shape: the
optimization of the top assembly is disabled.

|22.6

10.0
max
stress o5 ¢ 218

assembly AO + AO +
original baseline  objective parallel parallel
(AO) allgnment al|gnment

5%

Fig. 13. Optimization results when using assembly and parallel alignment
objectives, with two different strengths. The white arrow demonstrates the
dissemble direction.

Assembly/disassembly and parallel alignment constraints. We show
the effects of our connection-related constraints presented in Sec-
tion 3.5.

Figure 13 shows the baseline optimization (minimizing maximal
stress with a bounded volume) compared to different cases when
our assembly constraint in all cases, and different target parallel
alignments. Observe that, as expected, the contact area aligned with
the disassembly direction increases.

All three examples are possible to assemble in vertical direction
without deformation. Also, the parallel alignment objective guaran-
tees that the desired proportion (30% and 50%) of the contact walls
are parallel to the input direction.

Figure 14 shows the baseline case compared to one using a dis-
assembly constraint with a very small tolerance. Compared to the
the baseline optimization, two pieces do not detach when the disas-
sembly constraint is applied. Another example of the importance of
this constraint is shown in Figure 20.

Assembly/disassembly tradeoff. Finally, we also studied the effect
of choosing different balance of assembly and disassembly objec-
tives, in a setting when these counteract each other. Consider the
case of Figure 15, where a force is pulling the top part of the connec-
tor up and we initially optimize the shapes using the same weight
(100.0) for both terms and weight 1.0 for stress. Then, we reran
our optimization using three lower weights for the assembly term.
Figure 15 shows that, by reducing assembly’s importance, almost
no movement is observed in the last shape where assembly weight
equals 0.1. When the disassembly term is dominant, the optimized
shape has small protrusions on both sides that keep it firmly in
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Fig. 14. Optimization results when using a disassembly energy term with
low tolerance. As before, the white arrow demonstrates the dissemble direc-
tion.
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Fig. 15. Displacement results when optimizing our connector using varying
assembly weights and a fixed disassembly weight.

place, at the expense of greater effort required for (dis)assembling it
along the (dis)assembly direction.

Table 1 presents a comparison of our main energies in this study.
Note how assembly objective values increase when it’s weight is
reduced, while, at the same time, disassembly and stress values
decrease considerably.

7 EXAMPLES

To validate our framework, we computed optimized shapes for a
number of 2D and 3D realistic scenarios. In all illustrations in this
section, parts of the object boundary with Dirichlet conditions are
shown in red, and contact regions with external supports in yellow.
We use p = 20 for stress optimization in all examples. Except for

Optimizing Contact-based Assemblies « 269:11

Table 1. Final state of objective term values when running optimization
with different assembly weights

Assembly weight

Objective 100 10 1 0.1
Assembly 0.02598 | 0.06968 | 0.35474 | 1.34750
Disassembly | 0.01302 | 0.00275 | 0.00033 | 0.00003
Stress 2.53228 | 1.95349 | 1.35349 | 0.83647
max
8.46 stress
original: 8.46
optimized: 0.60

. 0.0

Fig. 16. Lever optimization

Fig. 17. Lever optimization fabrication

specific scenarios, in most of our examples we used the same objec-
tive function weights. A summary of our experiments in presented
in Table 2, where we add information about the simulation, as well
as objective functions used in each example, instance size and initial
and final maximum values of stress.

7.1 2D examples

Lever. In this example shown in Figure 16, one part of the bound-
ary of the black piece of the assembly is clamped to the table and
in simulation assumed to satisfy the Dirichlet boundary condition;
the part touching the vertical wall has an RD contact condition.
Maximal stress is optimized, with no constraints imposed. As seen
in Figure 16, we are able to reduce maximum stress more than 14
times compared to the initial shape. The optimized shape naturally
evolves into an interlocking assembly that can support a far higher
load without large deformation.(see the video in supplementary
material). We fabricated resulting shape (the process is described in
Appendix C, and performed a stress test on it, by loading it with in-
creasing weight. Our setup is shown on Figure 17. The unoptimized
lever breaks with a weight of 400g, whereas the optimized lever can
endure more than 6400g, consistently with simulated results.

Bridge. Our second 2D example is a simple bridge model (Fig-
ure 18), with Dirichlet conditions on fixed rectangular parts, 3 opti-
mizable parts, with boundaries of the supports partially fixed, and
DD contact conditions between parts. Due to symmetry, we run the
optimization on one half of the shape, resulting in 3 times stress
reduction.
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Table 2. Summary of experiments. In constraints column, “/” means that the weight is modified after each remeshing and varies between these values linearly.
Column Relative gradient norm presents the ratio of the final gradient norm and the initial one from the first iteration. The last column (Final L,-norm
reduction) shows the reduction in the stress objective due to the last outer iteration, expressed as a percentage of the initial objective value. *For both bridge
and coat rack (hooks), running 5 more outer iterations reduces stress to 1.80 and 346.51, relative gradient norm to 2.6e-2 and 2.81e-2, and final L,-norm
reduction to 0.95% and 0.00%, respectively. For fabrication, we used optimization results at outer iteration 5 for lever, hook, crane and at iteration 10 for bridge

and coat rack.

Contact . Post . . Relative Final
Iterations . . Initial | Final .
Instance parameters . . Constraints (= weights) vol. BCs Tets gradient | Lp-norm
o0i/ max_oi . stress stress .
a/n/p/nn min norm reduction
2D
examples
Connector 107°/107°/0.1/1073 10/10 J5 =10%/10° no Ip +DD + Iy 1250 22.6 2.18 2.38e-3 0.24%
Lever 107°/107°/0.1/1073 10/10 JE=102/10%, J4 =10%/10° no | Ip +RD+DD+In | 1447 8.46 0.49 2.88e-5 0.31%
Bridge* 107°/107>/0.1/1073 10/10 Jb = 200/2000, J9 = 102/10° no | Ip+RD+DD+1Ixn | 2073 7.33 2.21 1.55e-1 4.92%
Hook 10°%/107%/0.0/- 9/10 J& =10%/10° no RD + In 1279 16.5 2.97 1.11e-2 0.00%
Hook 5 1105 t _ 1027103 7d — 102 /103
(disassembly) 1073/107°/0.0/ 6/10 JE =102/10%, J4 = 10%/10 no RD + I 1279 16.5 3.82 2.11e-2 0.74%
Crane 107°/107°/0.1/1073 10/10 JE=102/10%, J¢ =10%/10° no Ip + DD + Iy 2087 8.47 1.09 7.81e-4 0.40%
3D
multimaterial
Stool 107%/107%/0.4/1072 10/10 JL =10"/10° no RD + DD + Iy 58264 2.68 1.12 3.23e-2 0.00%
Bench _ _ _
Twisted 1074/107%/0.2/1072 8/10 Jb =10*/10° no RD + DD + I'y 12731 4.38 1.71 5.31e-2 0.00%
Bench _ _ _
Bended 1074/107%/0.2/1072 10/10 Jb =10*/10° no RD + DD + I'y 12362 2.82 1.99 1.23e-1 0.00%
Coat rack _ _ _
(base) 1074/107%/0.4/1072 10/10 Jb =10*/10° no RD + DD + Iy 15464 47 22.7 2.28e-2 0.17%
Coat rack” _ _ _
(hooks) 1074/107%/0.4/1072 10/10 Jb =10*/10° no Ip +DD + Iy 15726 | 1260 385 7.53e-2 2.16%
3D
pipe-like
Tent —5 /10=5 -3 t _ 1047105 74 —
(baseline) 1073/107°/0.4/10 50/50 JL=10*/10%,J4 =10 yes RD + DD + Iy 15325 119 59.3 2.73e-2 0.24%
Tent 55 s JL=107/10°, 7% =10
(disassembly) 1075/107°/0.4/10 50/50 74 =10 no RD + DD + Iy 15325 119 59.1 5.06e-2 0.84%
Tent 55 3 JL=107/10°,J% =10
(parallel) 107°/107°/0.4/10 50/50 14 =10, 7P = 04 no RD + DD + Iy 15325 119 70.8 2.33e-2 0.08%
L =10%/10°, J4 =10
Truss 1075/1075/0.4/1072 50/50 ]V]d B 1/0 ]p{ o1 yes Ip +DD + Iy 29882 136 48.7 2.63e-2 0.15%
T =107 foS, =10
Dodecahedron | 107°/107°/0.4/1073 50/50 ]de B 1/0 ]p]_ Lo yes DD + Iy 23121 239 26.1 2.12e-2 0.00%
max
|7'33 original: ' stress _
)
T 7.33 ‘ - F
optimized: . .
1
@ % 2.21 Fig. 19. Fabricated initial and optimized bridge shapes.
1
10.0 reflection symmetry !

Fig. 18. Initial and optimized bridge model.

The left and right support parts of the bridge were clamped to
the table and weights were attached to the middle of the bridge.
The experiments show that unoptimized bridge breaks at the left or
right assembly with a load of 1500g, whereas the optimized bridge
can hold more than 5800g of weights. See photo of our bridge in
Figure 19.

Hook. Figure 20, where we built an optimized hook that fits on the
top of a door, with a single large contact area I'-, and RD boundary
conditions on that part. In this scenario, we use multiple separate
loads, one emulating, e.g., a coat hanging from the hook, and the
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other a force exerted when it is taken off the hook. In addition
to multiple loads, this example also demonstrates the importance
of disassembly energy: we make sure that accidental push from
below does not result in the hook getting detached. The disassembly
direction is shown in Figure 20. We perform stress minimization
with a volume bound equal to the original volume, and compare the
results with and without the disassembly constraint. Note that when
the hook optimized without disassembly constraint is loaded, the
left part lifts up, resulting in detachment from the support (Figure 20,
middle) It remains stable once the disassembly constraint is enabled
(Figure 20, right).

Figure 21 shows the experiments with 3 versions of 3d printed
hook (unoptimized and optimized with and without disassembly
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Fig. 20. Top: undeformed shapes of different versions of the hook model.
bottom: deformations under load (displacements exaggerated).

Fig. 21. 3D printed Hook loading (Please see supplementary video.)

constraint). The unoptimized hook breaks with 4500g load. The two
optimized hooks can hold weights more than 19000g. Qualitatively,
the behavior of loaded hooks matches the simulation.

Tower Crane. Our last 2D example is the tower shown in Figure 22,
demonstrating an assembly consisting of four pieces with a Dirichlet
condition on the bottom one, and DD contact conditions on the
remaining parts.

In this example we demonstrate how our method can be com-
bined with a simple ESO-like topology optimization technique (e.g.,
[Huang and Xie 2010]). to decrease the weight beyond what is pos-
sible with shape optimization only. We used a filtering technique to
remove triangles with average stress lower than 10% of the maxi-
mum value. The filtered mesh was then again optimized, obtaining
the result shown on the bottom-right. The laser-cut tower model is
shown in Figure 23. In our experiment, the base of the tower was
clamped to the table. Experiments show that the unoptimized tower
breaks with 700g load, whereas the optimized tower can sustain
more than 4600g load.

7.2 3D examples

In the next 3 examples, we apply our algorithm to 3D assemblies
of parts made of different materials: wood (E,,00g = 10000,v,,00d =
0.3), MDF (Epmpr = 4000,vppr = 0.25) and PLA plastic (Eppga =
3500,vpra = 0.36). Moreover, in these examples, only some pieces
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original optimized
max stress max stress
8.47 1.12

topology filtered

8.47 0.0

stress

max stress

0.85

Fig. 22. Tower crane optimization

I

Fig. 23. Tower crane fabrication

;'47 7

J

Fig. 24. Left: the initial stool model; Right: the result after optimizing the
white (PLA) pieces.

of the shape (those made of PLA, which can be 3D printed) were
optimized.

Stool. Our first example was a stool assembly with a fixed MDF
top, fixed wood legs and connectors made of PLA (Figure 24). In
this example, we use volume constraints. The stress concentrations
for optimized and noncan be seen on Figure 25.

The optimization reduces stress 2.5 times without changing the
total volume. If 10% increase in the volume is allowed, the stress
decreases to 0.88, and to 0.85 at 20%.
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Fig. 25. Stool stress: stress concentrations on stool example. Top figures
present how load is applied and general stresses (restricted to PLA). Middle
figures show stresses on each PLA piece. Bottom figure shows cross section
of region where stress is more concentrated.

)

Fig. 26. Bench model with two different types of legs and the initial and
optimized connectors.

Bench. Our second example is a bench with fixed parts (seat,legs)
made of wood and optimizable PLA connectors ( Figure 26). We
consider two different leg shapes and show how connectors are
optimized for each. We observe that, depending on the type of legs,
we obtain a very different level of stress reduction: 30% in one case,
and 2.5x times in the other (see Figure 27).

Coat rack. Our final multimaterial example is a coat rack made of
wood and plastic (Figure 1). Differently from both previous examples,
this object is modular, in the sense that you can always use a longer
cylinder and add identical plastic parts to increase the height and
the amount of hangers in your object. Here, we optimized our two
different plastic parts for separate sets of loads, the leg connector
and the hook.
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Fig. 27. Bench stress for twisted and bended set of legs
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Fig. 28. Coat rack base stress distribution.

The leg connector is optimized with (fixed) legs in contact with
the ground and the load applied at the top (Figure 28).

The hook attachment was optimized with loads applied to hooks.
As shown in Figure 29, our framework was able to lower maximum
stress more than 3 times.

We 3D printed the result using PLA (Figure 30).

For our last set of experiments, we implemented a framework
for generating pipe assemblies from graphs, where each vertex of
our graph becomes a sphere and each edge becomes a pipe. See an
example on Figure 31.



|126040¢ i i | i

lo

stress
max stress: 385.0

max stress: 1260.0

Fig. 30. Mounted coatrack

We used this tool to generate three different simple instances of
our problem: a tent, a truss-like bridge and a dodecahedron. Below
we detail more about each of these assemblies.

Tent. This object (Figure 31) is composed of 5 ball connectors and
8 pipes. A load is applied on the top of the structure pointing down
and the bottom part of the object is in contact with the ground.
We minimize stress, while keeping the same volume impose the
assembly constraint. We were able to reduce stress by a factor of 2.
We again ran our framework for reducing the volume of the shape,
while keeping the stress bounded by the result of the previous opti-
mization for stress (Figures 31 and 32). Then we add disassembly and
parallel alignment objectives and the results are shown in Figure 33.
Note that we optimize both the bars and connectors.

While the resulting structure can support this particular load
well, it is likely to fall apart if any lateral load is applied, as resulting
connectors are very shallow. Adding disassembly and parallel align-
ment constraints produces more resilient connectors (Figure 33).
When using only disassembly constraint, the final stress (59.1) ob-
tained was similar to the baseline case (59.3), while adding parallel
alignment constraint to make at least 20% of the connection surface
(in each connector) parallel to the disassembly direction increased
stress to 70.8.
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Optimized:

Original:

Fig. 31. Initial and optimized tent assemblies.
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max stress: 60.2
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I a \
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Fig. 32. Tent stress

Baseline: Disassembly Parallel
Energy: Alignment:
Top _4
connection /
Bottom

connections

Fig. 33. Tent connections

Dodecahedron. This example is shown in Figure 34. For this ex-
ample we use symmetric compression loads at the connectors at
dodecahedron vertices. Using reflection symmetry on the three axes
(x,y and z), we were able to run our optimization on an eighth of the
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00 __
Stress

max stress:

max stress: 239

Fig. 35. Dodecahedron stress: simulation and optimization are executed on
an octant of the original shape, using reflection symmetry on all three axes.
A diagonal force to the center of the shape is used.

shape, as presented in Figure 35, where our boundary conditions
are also shown.

We use a similar optimization setup as for tent: first, run stress
minimization with a volume constraint, then minimize volume with
a stress constraint, and including fixed assembly, disassembly and
parallel alignment constraints. Notice in Figure 35 we were able to
reduce stress by almost 10 times, while reducing volume in 12.6%
compared to the initial dodecahedron. The emerging twisted shape
for the bars are optimal for load support.

We also investigated the effect of optimizing only the connectors
(balls) of the dodecahedron example. Again, we first minimize stress
and then, in the second step, minimize the volume. We were able to
reduce stress by around 28% to 172, and reduce the volume by 22%.
The result can be seen in Figure 36.

Truss. The initial shape and the optimized result are shown in
Figure 37. Similar to the dodecahedron, we optimized for strength
(keeping initial volume) and then for volume (keeping stress close to
its minimum level). We were able to reduce stress by more than half
and volume by 20%. Notice that the optimized connectors are smaller
than original ones while keeping deep connections. This result
can be obtained thanks to the disassembly and parallel alignment
energies.
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Fig. 36. Connectors optimization: result after optimizing only sphere con-
nectors. We show our two different types of connector (showing two sides
of each) and two different types of pipes, which were not optimized with
exception of their tips.

Fig. 37. Truss

Termination and convergence. To understand the convergence be-
havior of the method, we run our optimization for a fixed number of
iterations which we aimed to set high enough for obtaining maximal
possible improvement. Table 2 lists several indicators of convergence
termination: number of actual iterations performed before stopping,
relative gradient norm, and per-step objective reduction, expressed
as a percentage of the initial objective value.

In the cases when the optimization reached the maximal number
of steps (10 outer iterations for 2D and multi-material examples
and 50 for 3D examples), the result is close to a local minimum,
or the maximal number of iterations is insufficient. In most cases,
relative gradient norm is 5% or significantly less of the original,
indicating that the result is close to local minimum. In one case,
(Bridge) additional iterations also decrease the relative norm below
5%.

In several cases (hook and two bench variations) the optimization
stops for geometric reasons (in some cases, topology changes are
needed to achieve an optimum); in this case, the optimization can-
not reach a local minimum by additional iterations, although the
gradient reduction is also high in most cases.



Examining how the objective changes with iteration suggests
that values m = 2 and ¢, = 1% are adequate for all examples (consid-
ering the criterion discussed in Section 5 for our stress objective),
except truss-like structures, where values m = 5 and €, = 0.5% are
more suitable due to higher oscillations in the objective early in the
optimization. We emphasize that many other convergence criteria
can be used; determining an optimal one is not our focus.

8 CONCLUSIONS AND LIMITATIONS

We have described a framework for shape optimization with contact
and friction, using a smoothed, penalty-based model, and applied it
to optimization of assemblies in which parts are held together by
contact and friction forces. We demonstrated that in our framework
a number of functionals can be optimized reliably, producing signif-
icant improvements e.g., in stress concentrations or volume, while
maintaining various types of constraints. We validated the results
with computational experiments in two and three dimensions and
with qualitative experiments using fabricated objects. The experi-
ments confirmed significant improvements in strength. In addition,
since we support nonlinear solves, our model can be easily extended
to a variety of functionals and constraints. The code for this project
will be open-sourced.

Limitations. Our algorithm may (1) not reach a minimum or (2)
find a local minimum that does not improve the objective much.
In the first case, the optimization stalls: no progress is possible for
one of the following reasons: (a) nonlinear solve does not converge
(e.g, if the system has no static equilibrium or bad-quality elements
not allowing to achieve residual tolerance in max number of it-
erations); (b) inversions of elements lead to a severe line search
step restriction, as mesh quality improvement is not guaranteed to
succeed; (c) meshing with tolerance using fTetwild may produce
volume meshes for pieces with non-manifold surfaces, while surface-
preserving remeshing does not improve quality enough. In case (2),
the algorithm may reach a local minimum without significant de-
crease of the objective value, while other minimal with lower values
exist. Case (1) was the most observed in our experiments, occurring
in our hook and bench examples due to narrowing regions during
optimization; note that we still obtain a significant stress reduction.

In addition, we use linearized elasticity model that does not ac-
count well for large deformations. As the contact and friction terms
in our equations are already non-linear and we use a nonlinear
solver, extension to nonlinear elasticity is likely to be straightfor-
ward. While the functionals we have introduced in this work per-
form quite well for a number of tasks, there are restriction on the
type of connections they can capture. E.g., snap connections are not
handled easily with these constraints only. Expanding the range of
objectives is an important direction for future work. The method
can be considerably sped up but using parameterized geometric
models, or model reduction, as well as more efficient solvers.
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B FORMULAS FOR THE DISCRETE SHAPE DERIVATIVE
COEFFICIENTS Sy, [u, p]

Smlu, p] = S5, +S5,, where the first term is related to the elasticity equation and the
second to contact and friction terms. In turn, S5, = Sc + Ss + ScF + Ssr, the sum
of terms for different types of contact forces. For these terms we have the following
expressions, where we consider uniform surface load g = IFL;;\:
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C FABRICATION PROCESSES

We have validated the performance of our system on several simple
assemblies fabricated with 3D printing and laser-cutting. These are
shown in Figures 17-18-20-22. For the lever and hook example as
shown in Figures 17, 21, the fabrications are done with 3D print-
ing (Ultimaker 3), using PLA material. For these experiments, we
used Ultimaker Cura for slicing. We used fine printing setting, with
0.1mm layer height and infill density equal to 100%. The general
print speed was also altered to 40mm/s and reduced to 12mm/s
(18mm/s) when printing the inner (outer) walls of the object, in
order to have a more precise printing of connections. In addition,
to guarantee that objects connect, we offset the polygon shapes by
0.05mm, reducing them to account for the printing thickness.

For the bridge and tower examples (see Figures 18, 23), the exper-
imented objects were obtained through laser-cutting 1/8" (3.175mm)
acrylic boards, using Epilog Mini cutter. Notice that laser-cutting
removes material, so we perturbed the models to account for that,
offsetting the polygonal shapes by 0.05mm.

For our 3D examples, we also 3D printed our coat rack optimized
model, shown in Figure 30. We used the fast setting on Cura soft-
ware, with 0.2mm layer height, and reduced the speed to 50mm/s.
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Even though we assembled with wood dowels, which can carry
imprecision in the measures, the pieces still fit tightly.

D ADAPTIVE QUADRATURE

In different steps of our algorithm, during the simulation and also
shape derivative computation, we need to perform the computation
of integrals. For simpler cases using linear elasticity, this is not a
challenge and we can simply use Gaussian quadrature, for example.
However, when adding penalization due to normal contact and
friction, the choice of how to perform these computations becomes
very important.

As an example,consider the discretized normal contact force. Here,
we assume we are using quadratic FEM elements. Our discretized
contact function per contact element I'¢ is:

[24

iRaw =% [ o pm by (up(o) - m) ds

where a is a constant, n is constant for each element, p(x) maps each
point x into barycentric coordinates of the element, ¢ corresponds
to the quadratic baricentric basis and u, the displacement, is also
quadratic. hy is the same as previously defined:

0 y<-n
hp(y) = gy’ +qy+q —N<y<n
y y>n

Notice that u(p) - n defines the region of the piecewise function.
To find the boundary between each of these regions, we would need
to solve u(p) -n = +n. Notice that this corresponds to a quadratic 2D
equation and the solution corresponds to a conic section: parabola,
hyperbole, ellipse or circle. We have 2 equations, so our original
domain is partitioned by a maximum of 2 conic sections. Since the
two equations differ only by 1, we expect that the regions boundary
are going to have very similar shapes. See an example in Figure 38:

Fig. 38. Example of different regions in piecewise quadrature computation
with 77 = 1072, In this case, we have two hyperbolas. So, in total, 5 different
regions. On the right side, an example of how the triangles can be split.

To show the accuracy of the quadrature computation, con-
sider the following example in 3D: uy = [0.0,0.1,—0.05], u; =
[0.1,0.2;-0.03], uy = [-0.1,0.0,—0.02], u3 = [~0.05,0.01,0.02],

== — = _ =L L 1
ug = [~0.02,—0.02,0.01], us = [0.02, —0.03,0.01], n [\/g = \B]

a = 1074, n = 10~* and nodes and coordinates A = 0 and i = 0.
Here, u; corresponds to the discrete displacement at each of our 5
nodes of our triangle element. Using Matlab’s integral2 function
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(with absolute tolerance set at 1071°), we can compute j 1,\5')0: to ob-
tain —0.329516. Using (order 10) Gaussian quadrature, we obtain
—0.438527. These errors can accumulate and generate problems in
convergence for our simulation.

We implemented then an adaptive approach for computing in-
tegrals in our framework. First, we define the scheme to be used
by the regions of our triangle. We evenly sample the triangle using
m points, identifying the regions where these points are contained.
In our case, we used m = 10. If not all m points are from the same
region (easily verified by computing u(p) - n value), we split the
triangle into 4 pieces of same area and repeat this process recur-
sively, until a maximum depth is reached. See an example on the
right side of Figure 38 In our case, we identified that depth equal
to 5 guarantees good results. Inside each of the final triangles, we
use (order 10) Gaussian quadrature to compute the integral. Using
this method, for the same example as above, we obtained result
—0.329560, which is accurate up to 4th digit after the decimal point
when compared to the numerical result of the integral2 function.

E MESHING

We use triangle meshes in 2D and tetrahedral meshes in 3D for our
shapes.

For 2D, we define shape outlines using Adobe Illustrator, encod-
ing boundary conditions using color; shared boundaries between
parts are represented as single polylines. We then transform the
geometry in the resulting SVG file into the input format for Trian-
gle [Shewchuk 1996], removing the duplicate edges defining the
contact area between different pieces. After obtaining the mesh for
the interior, we split the triangle mesh into part meshes. At the
end of each inner loop in Algorithm 1, we extract the polygonal
boundary of the current solution and remesh it using Triangle again.

In 3D, the input to the meshing process is a collection of surface
meshes of individual parts. We assume that in the contact zone, the
distance between meshes is small, (in our specific examples we use
boolean operations to produce surface for parts, with connectors
obtained, e.g., by adding a cylinder to one part, and subtracting it
for another, which produces close surfaces. After that, we generate
the volumetric mesh using fTetWild [Hu et al. 2020] with surface
meshes from the previous step as input. f TetWild has a threshold e,
within which close parallel triangles of a surface mesh are merged;
we set it to a sufficiently large value to obtain a single contact
surface. For most cases, we used the default value of 1e-3 for e,
but increased the value to adjust to different gaps coming from the
surface mesh generation.

As in 2D, we apply remeshing to keep a good mesh quality after a
sequence of optimization steps. In 3D, remeshing is done in different
ways: (a) preserving mesh surface, which is done with CGAL’s
package for tetrahedral remeshing [Tournois et al. 2021]; or (b)
remeshing the boundary as well, by reapplying fTetWild. Choosing
between this two options is also a parameter in our framework.
We used option (a) for most of our scenarios, but for truss and
dodecahedron example, boundary remeshing was used at every 5
remeshing operations. If remeshing the boundary with fTetWild
fails, e.g., due to generation of pieces with non-manifold meshes,
option (a) is used instead.
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