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Fig. 1. Coat rack stress: stress concentrations on coat rack example. Left figure presents how load is applied. Middle figures show stresses on each PLA piece.
Right figures show the optimized coat rack and 3d printed connectors assembled with wooden dowels.

Modern fabrication methods have greatly simplified manufacturing of com-

plex free-form shapes at an affordable cost, and opened up new possibilities

for improving functionality and customization through automatic optimiza-

tion, shape optimization in particular. However, most existing shape opti-

mization methods focus on single parts. In this work, we focus on supporting

shape optimization for assemblies, more specifically, assemblies that are held

together by contact and friction. Examples of which include furniture joints,

construction set assemblies, certain types of prosthetic devices and many

other. To enable this optimization, we present a framework supporting ro-

bust and accurate optimization of a number of important functionals, while

enforcing constraints essential for assembly functionality: weight, stress,

difficulty of putting the assembly together, and how reliably it stays together.

Our framework is based on smoothed formulation of elasticity equations

with contact, analytically derived shape derivatives, and robust remeshing to

enable large changes of shape, and at the same time, maintain accuracy. We

demonstrate the improvements it can achieve for a number of computational

and experimental examples.
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1 INTRODUCTION
Creating shapes optimized for a particular function is one of the

main tasks in computer-aided design. Modern fabrication methods

have greatly simplified the creation of complex free-form shapes at

an affordable cost and opened up new possibilities for improving

functionality and customization through automatic optimization.

Methods for constructing optimal shapes have enjoyed consid-

erable attention in a variety of settings, such as large-scale archi-

tectural forms, engine parts, footwear, medical prosthetic devices

and metamaterial structures. Notably, most of the work focuses on

designing continuous structures, fabricated from one material, or a

set of materials fused or glued together.

In this work, our focus is on supporting shape optimization for as-
semblies, and more specifically for assemblies that are held together

by contact and friction, a setting which has received relatively little

attention. At the same time, assemblies are ubiquitous, as most man-

ufactured objects around us are assembled from separate parts, often

made from different materials. For example, the steel legs of a table

may be inserted into openings of a wooden or MDF top; a phone

may have a snap-on plastic protector or cover; a prosthetic device is

attached to the body with friction. While the specific mechanisms

for holding objects together may vary broadly, they are all based on

combining deformation with contact and, in many cases, friction.

In all these cases, contact plays a major role in the function and

mechanical behavior of the assembled object. Shape optimization

helps to achieve better performance or save on the costs of material

for fabrication (for additive fabrication these two are closely related).
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Some of the important measures of performance of assemblies in-

clude total volume or weight, total deformation energy, maximal

stress and more complex measures such as permeability.

In this paper, we present a formulation and a robust numerical

method for computing optimized shapes in the presence of contact

and friction. Compared to shape optimization tasks not involving

contact, the problem is significantly more difficult to solve, as it

involves complex inequality constraints required for handling colli-

sions and friction. The resulting problem is non-smooth, and often

hard to solve sufficiently accurately. Our overall approach is to use

a smoothed version of the problem [Eck et al. 2005] amenable to

standard optimization techniques on the one hand, and allowing

us to approximate the desired solution as close as possible on the

other hand.

Contributions. In summary, the contributions include

• A shape derivative-based formulation for optimization prob-

lemswith contact and friction, building on [Maury et al. 2017];

• A novel shape-optimization framework based on FEM dis-

cretization of this formulation, capable of handling contact re-

gions between two deformable objects as well as a deformable

and a rigid object. It provides sufficiently accurate elastic de-

formation computations to support, e.g., max stress reduction.

• The frameworks supports conventional functionals (stress-

based and volume) and new, contact-specific functionals (as-

sembly and disassembly, parallel alignment) that ensure that

connection strength is maintained and that at the same time

the parts held together by contact can be assembled. The

framework also supports optimization involving multiple

load scenarios.

• We demonstrate a range of 2D and 3D examples of shape

optimization, and qualitatively evaluate these examples using

laser cutting and 3D printing to fabricate them and demon-

strate the expected behavior.

2 RELATED WORK
There is a broad range of work on shape/topology optimization

and related methods, but relatively few works were trying to solve

problems with contact. We focus on related work on shape opti-

mization with contact, and briefly mention other shape/topology

optimization research that we rely on.

Shape optimization with contact. Some previous works have con-

sidered contact of a soft bodywith rigid surfaces, for example, [Berem-

lijski et al. 2014], [Haslinger et al. 1986] and [Herskovits et al. 2000].

While other some other works have studied the interaction of two or

more bodies in contact, like recent works from [Maury et al. 2017],

[Desmorat 2007] and [Stupkiewicz et al. 2010]. Most papers do

not consider friction, and those which do often consider simplified

(compared to the standard Coulomb) friction models as discussed

in [Maury et al. 2017].

For contact models, there are two families of algorithms, La-

grangian and the penalization methods. The first type of methods

adds Lagrange terms for the model constraints to the objective

function and uses sub-gradient-based optimization to deal with

the fact that the problem is non-smooth. Examples can be found

in [Herskovits et al. 2000] and [Stupkiewicz et al. 2010] , where a

bilevel approach and an augmented Lagrangian method are used.

The second type of methods, penalization methods, use smooth

approximations to the problem, which add terms to the variational

formulation. Our method belongs to this category. For this type

of method, the objective function is smooth, which considerably

simplifies optimization. In our work, we choose to use penaliza-

tion method following the mathematical model presented by Eck

et al. [Eck et al. 2005]. In [Maury et al. 2017], a similar overall ap-

proach with level-set discretization. While level-set modeling has

many advantages (e.g., allowing for easy topology changes) in our

experience, it is not well-suited for handling important types of

problems, in particular, those involving stress reduction, which is

our focus in this work, as stress is harder to resolve precisely.

Stress minimization. Maximal stress minimization was considered

in a number of papers; the formulation closest to ours is [Panetta

et al. 2017], where worst-case optimization for periodic metama-

terial structures is considered; it uses parametric periodic shapes,

which are meshed for shape derivative computation, and does not

consider contact. Earlier work on minimization of maximal stress is

[Allaire et al. 2004], which applies topology optimization to design

lightweight minimal-stress objects built from sequentially laminated

composites. Another similar work is [Allaire and Jouve 2008], which

applies the level-set topology optimization method to minimize the

𝑝-norm of stress. None of these works consider contact, and level-set

methods (with Eulerian discretizations on a fixed grid) require im-

practically fine meshes for accurate optimization of high 𝑝 norms of

stress. Other works considering max stress include [Lian et al. 2017;

Polajnar et al. 2017; Sonmez 2009; Van Miegroet and Duysinx 2007;

Xia et al. 2012]. In the computer graphics community, [Stava et al.

2012] was one of the first works to introduce heuristic shape cor-

rection techniques that effectively result in stress reduction. [Zhao

et al. 2016; Zhou et al. 2016] consider problems involving bounding

von Misses tress.

Contact and friction modeling. The literature on contact is exten-

sive, and we mention only few most closely related works here; for

general theory see e.g., [Stewart 2001]. Typically, contact problems

are viewed as constrained optimization problems, with per-element-

pair constraints. In particular, contacts between deformable objects

that we consider in this paper, are defined as constraints between

surface primitives (triangles, edges and vertices); some examples

include [Belytschko et al. 2000; Bridson et al. 2002; Harmon et al.

2009; Otaduy et al. 2009; Verschoor and Jalba 2019]. Penalty-based

methods for handling these constraints are among the oldest, but

were largely supplanted by constraint formulations and LCP (linear

complemenarity)-based or SQP solution methods. [Harmon et al.

2009] developed amethod for which progressively high penalties are

applied as the distance decreases, growing arbitrarily large as the dis-

tances to the object decreases. A recent work [Geilinger et al. 2020]

provides a differentiable method for solving dynamic problems with

contact and Coulomb friction using a penalty based model combined

with equality constraints for static friction, which can be used with

gradient-based optimization. Also dealing with Coulomb Friction,

[Ding and Schroeder 2020] proposes a penalty based solution that

can be used coupling rigid to deformable bodies and material point
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method (MPM). Another recent method [Li et al. 2020] shares some

aspects with the approach we use, specifically, smoothed version

of constraints is used, in particular for friction. However, we use

finite penalties, rather than infinite barriers for constraints, and add

smoothing both to contact and friction formulations.

It is well-known (see, e.g., [Moreau 1973]) that friction introduces

significant non-smoothness to solutions, and due to their dissipative

nature, solutions of problems with friction cannot be obtained using

energy minimization. A variety of iterative methods for solving

resulting problem were developed [Alart and Curnier 1991; Daviet

et al. 2011; Jean and Moreau 1992]. Nonsmooth solution methods

were applied in recent work with some success [Macklin et al. 2019],

but are very difficult to use in the optimization context. Smoothed

version of friction were proposed both in simulation and optimiza-

tion context in the works we have mentioned.

Contact-based Assemblies. It is also important to mention works

designing contact-based assemblies using geometric techniques and

not necessarily relying on elasticity simulations to achieve their

goal. Works like [Panozzo et al. 2013; Vouga et al. 2012; Wang et al.

2019] consider stability for self-supporting surfaces. Other works

[Sun and Zheng 2015; Ureta et al. 2016; Yao et al. 2017] consider the

design of joints for more general objects, including furniture.

3 PROBLEM FORMULATION

3.1 Overview
We start with a high-level overview of the general problem we are

solving. The input to our algorithm is a collection of 3D meshed

objects, some of whichmay be in contact (themesheswill be updated

in the process of optimization).

We solve the problem of the general form

𝑚𝑖𝑛Ω (𝑝) 𝐽 (𝑢), s.t., 𝐹 (𝑢) = 0, 𝐵(𝑢) ⩽ 𝐵0 (1)

The main components of this formulation include the following.

• The unknowns in the optimization are shape parameters 𝑝 ,

in our case displacements of mesh vertices on the boundary,

defining the domain Ω(𝑝), and displacements 𝑢 of the points

of Ω(𝑝) resulting from elastic deformation with contact. (We

use 𝑢 for the continuous solution of the elasticity problem,

and 𝑢 for the vector of displacements of vertices of a meshed

Ω(𝑝)). Note that while 𝑢 corresponds to the deformations

of the shape Ω(𝑝) in our simulation, displacements 𝑝 (on

𝜕Ω(0)) define how the rest-state object shape is changed by

optimization.

• The PDE constraint 𝐹 (𝑢) = 0 is a FEM-discretized elasticity

equation for 𝑢 on Ω(𝑝)with contact and friction, leading to a

non-linear system of equations in 𝑢.

• The objectives in our optimization are of the one of two forms

below, as we have objectives with computation on the whole

object domain (e.g., stress) or only on its boundary (e.g., dis-

assembly objective)

𝐽 (𝑢) =
∫
Ω𝑢

𝑒 (𝑢, 𝑥)𝑑𝑥, or 𝐸 (𝑢) =
∫
Γ𝑜𝑢

𝑒 (𝑢, 𝑥)𝑑𝑠 (2)

where both the domain of integration and the integrands de-

pend on the unknowns, and 𝑒 represents a pointwise measure

(e.g., stress), computed as a function of FEM solution defined

by the discrete vector 𝑢. Each objective can be either an opti-
mization target to minimize as in (1) or a part of an inequality

constraint (upper bound on an objective) described below.

As optimization targets, we consider 𝐿𝑝 -norms of stress, yield-

ing compliance for 𝑝 = 2 and a close approximation of the

maximum stress for large 𝑝 and volume, of a part or the whole

assembly. Other objectives are used primarily as constraints.

• The inequality constraints, critical for our formulation, are

of the form 𝐵(𝑢) ⩽ 𝐵0, where 𝐵(𝑢) is an integral of the type

(2). 𝐿𝑝 norm of stress (effectively allowing to bound maximal

stress) and volume objectives can also be used as constraints,

e.g., we can impose a bound on the maximum volume allowed.

Other objectives used primarily in constraints are the as-
sembly constraint, ensuring that two parts can be assembled

together; disassembly constraint, ensuring that once assem-

bled, the object does not fall apart; and parallel alignment

constraint, which makes it more difficult to disassemble the

object using any direction other than the disassembly one.

Shape derivatives. The key element of the optimization process

is computing objective and constraint gradients with respect to 𝑢,

required for any first- or second-order optimization algorithm.

There are twomain approaches to this problem: one can discretize

the problem first, fixing the mesh for Ω(𝑝) for all 𝑝 , and a FEM ba-

sis. This converts the problem into a finite-dimensional nonlinear

algebraic problem, and then compute gradients of the objectives

and constraints with respect to 𝑝 , the positions of boundary mesh

vertices. The alternative is the "differentiate-first" approach. Specifi-

cally, for each objective and constraint 𝐽 (𝑢), before it is discretized,
we derive its shape derivative, a continuous analog of the gradient
with respect to 𝑢. The shape derivative is a functional 𝑑 𝐽 [𝑣], where
𝑣 is a velocity field of the deformations of the domain Ω(𝑝) (i.e.,
the displaced position of a point 𝑞 is 𝑞 + 𝑡𝑣). 𝑑 𝐽 [𝑣] yields the rate of
change of 𝐽 as 𝑡 → 0. 𝑑 𝐽 is defined by a function 𝜌 on Ω, which can

be obtained by solving a 𝑃𝐷𝐸, similar in structure to the elasticity

equation (the adjoint equation). The advantage of the latter approach
is that it naturally allows for remeshing and refinement (the adjoint

equation solver is just a standard elasticity solver), which is essential

for large changes in the object shape: any method used to solve

large-deformation elasticity PDEs can be used to compute 𝜌 , without

fixing the discretization in advance.

The cost of each optimization step is approximately equal to

solving two elasticity problems, the nonlinear elasticity problem,

and the linear adjoint problem, to obtain the solution and shape

derivative respectively.

In the rest of the section, we provide more specifics on the compo-

nents of the formulation described above and their discretizations.

The complete derivations are included in the supplementary mate-

rial.

3.2 Notation
We use the following notation, also illustrated in Figure 2

• Ω: optimization domain (may consist of multiple objects)
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Ω 

Ω

ΓD

ΓN

ΓC

ΓS

Fig. 2. Notation for boundary parts for a simple assembly: Γ𝐷 is attached to
the vertical wall (red), Γ𝐶 can slide along the ground (yellow), Γ𝑁 is where
the load is applied, and Γ𝑆 is the contact area of two parts. We view both
parts as a single domain Ω consisting of detached parts.

• Γ𝐷 , Γ𝑁 , Γ𝐶 , Γ𝑆 : parts of the domain boundary where Dirichlet,

Neumann, rigid-deformable (𝐶) and deformable-deformable

(𝑆) contact boundary conditions are applied.

• superscripts +,− denote surface quantities on two sides of a

contact surface between two deformable objects; [·] denotes
the difference of two one-sided quantities.

• 𝑢 (𝑥), 𝑥 ∈ Ω: displacements.

• 𝐷 [𝑓 ] for a function 𝑓 , its material derivative
𝜕𝑓
𝜕𝑡 + 𝑢 · ∇𝑓 ,

where 𝑡 is a deformation parameter.

• 𝜎 , 𝜀 = 𝜀 (𝑢) = 1

2
(∇𝑢 + ∇𝑇𝑢): stress and linearized elasticity

strain.

• 𝐶: elasticity tensor.

• 𝑇 : tractions on Γ𝑁 , i.e., surface force density on the boundary.

• 1/𝛼 : penalty parameter for constraints;

• 𝜌 (𝑥): solution of the adjoint PDE used to compute shape

derivatives.

• 𝜙𝑖 ,𝜓𝑖 : volumetric finite element basis functions at node 𝑖 .

• 𝜆𝑚 : basis functions on the boundary.

• 𝑝: optimization degrees of freedom (boundary vertices of Ω)

3.3 Elastic deformations with contact
In this paper, we only consider static problems, so there is no time

dependence in the equations we use.

The basic form of static equations of linearized elasticity (without

contact or friction yet) is

∇ · 𝜎 = 0 on Ω

𝑢 = 𝑢 on Γ𝐷

𝜎𝑛 = 𝑔 on Γ𝑁
(3)

The variational form of this problem, that we rely on to formulate

the contact constraints in a computationally practical way, as well

as for the finite element discretization, is given by the equation∫
Ω
𝜖 (𝑢) : 𝐶 : 𝜖 (𝑤) 𝑑𝑉 −

∫
Γ𝑁
𝑤 · 𝑔𝑑𝑆 = 0 (4)

satisfied for any𝑤 in an appropriate function space with𝑤 = 0 on

Γ𝐷 , and 𝑢 satisfying the Dirichlet boundary conditions on Γ𝐷 .

Contact constraints. We consider two forms of contact constraints,

rigid-deformable (RD) and deformable-deformable (DD), defined on

the parts of the boundary Γ𝐶 and Γ𝑆 respectively.

The former type of constraints involves a fixed boundary to which

we refer as obstacle, on one side, which can be considered rigid, e.g.,

legs in contact with the floor.

𝑢 · 𝑛 ⩽ 0 on Γ𝐶

𝜎𝑛 · 𝑛 ⩽ 0 on Γ𝐶

(𝜎𝑛 · 𝑛) (𝑢 · 𝑛) = 0 on Γ𝐶

(5)

The first equation on Γ𝐶 says that the displacement should move

the object points away from the obstacle; the second equation says

that the normal force on this boundary should be 0 or point towards

the other object; and finally, the last equation, the complementarity

condition, ensures that if the force is nonzero, the displacement in

the normal direction is zero, i.e., there is contact. The DD contact

constraints are similar, however, because we have deformable ma-

terial on both sides of the boundary, and the differences in stress

need to be considered. Normals 𝑛− and 𝑛+ and displacements 𝑢−

and 𝑢+ correspond to the parts on the opposite sides of contact, and

[𝑢] is the jump 𝑢− − 𝑢+.

[𝑢] · 𝑛− ⩽ 0 on Γ𝑆

[𝜎]𝑛− · 𝑛− ⩽ 0 on Γ𝑆

( [𝜎]𝑛− · 𝑛−) ( [𝑢] · 𝑛−) = 0 on Γ𝑆

(6)

Friction constraints. Similarly, there is a set of equations for fric-

tion:

∥(𝜎𝑛)𝑡 ∥ ⩽ 𝜇 | (𝜎𝑛)𝑛 | on Γ𝐶

∥(𝜎𝑛)𝑡 ∥ < 𝜇 | (𝜎𝑛)𝑛 | =⇒ 𝑢𝑡 = 0 on Γ𝐶

∥(𝜎𝑛)𝑡 ∥ = 𝜇 | (𝜎𝑛)𝑛 | =⇒ 𝑢𝑡 = −𝜆(𝜎𝑛)𝑡
(7)

where 𝜆 > 0, and 𝜇 is the friction coefficient; 𝑡 and 𝑛 refer to tan-

gential and normal components of the force. The first inequality

captures the main aspect of Coulomb static friction model (the force

is bounded by 𝜇 times the normal force). The second equation states

that if the force is below maximal, no displacement happens, and the

third one that the displacement at maximal friction force is parallel

to it and opposite in direction.

A modification (6) (replacing one-sided constraints with differ-

ences), applies to friction (please see the supplementary document),

yielding deformable-deformable contact.

3.4 Variational form and constraint approximation
While the basic elasticity problem (4) is quite straightforward to

solve and well-understood, contact constraints, especially friction

constraints, result in numerous difficulties: (1) the system becomes

highly nonlinear and non-convex; (2) the solutions may be non-

smooth; (3) due to dissipative nature of friction, the problem cannot

be cast as a (constrained) energy minimization problem. This makes

even the direct solution of the problem difficult to make robust, and

presents a particular challenge for shape optimization.

The key mathematical ideas for resolving these difficulties can be

found in [Eck et al. 2005], further developed in [Maury et al. 2017].

(Recent work [Li et al. 2020] also follows a related approach for

dynamic deformable contact).

The main elements of the approach include:

• Use smooth approximations of contact with friction (these

are used to prove solution existence in [Eck et al. 2005], but
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Fig. 3. Smoothing function 𝑁𝜂 , ℎ𝜂 , and 𝑔𝜖

are also valuable computationally). In particular, the norms

in (7), that result in non-smoothness of the constraints are

replaced by a smoothed norm that will be described in detail

in this section.

• Replace the inequality constraints by suitable (also smooth)

penalty functions, added to the variational formulation of the

problem (4); a number of works (see [Maury et al. 2017] for

discussion) show that the results converge to the true solution,

as the penalty weight 1/𝛼 → ∞. Like penalty approaches

commonly used in graphics, using these methods has the ben-

efit of replacing constrained optimization with unconstrained,

and the downside of potential constraint violations which we

discuss below.

We largely follow the smooth formulation of [Eck et al. 2005], which

demonstrates that the solution to the smooth problem exists under

typical assumptions, and with smoothing parameters approaching

zero, converges to a solution of the original problem.

Smoothed contact functional. We introduce a smoothing function

[Eck et al. 2005]

ℎ𝜂 (𝑦) =


0 𝑦 ⩽ −𝜂
1

4𝜂𝑦
2 + 1

2
𝑦 + 𝜂

4
−𝜂 ⩽ 𝑦 ⩽ 𝜂

𝑦 𝑦 ⩾ 𝜂

(8)

approximating𝑚𝑎𝑥 (0, 𝑦) as 𝜂 → 0. This is the same function used

in [Maury et al. 2017].

The contact equations (5) lead to the following objective

𝑗 ′𝑁,𝛼 (𝑢,𝑤) =
1

𝛼

∫
Γ𝐶
ℎ𝜂 (𝑢 · 𝑛) 𝑤 · 𝑛 𝑑𝑆 (9)

As 𝛼 → 0, the solutions obtained with this term added to (4) con-

verge to solutions satisfying the constraint 𝑢 · 𝑛 ⩽ 0. Similarly, we

have

𝑗 ′𝑆,𝛼 (𝑢,𝑤) =
1

𝛼

∫
Γ𝑆
ℎ𝜂 ( [𝑢] · 𝑛−) [𝑤] · 𝑛− 𝑑𝑆 (10)

for DD contact.

Friction functionals. The Coulomb friction constraints (7) and

the analogous constraint for DD friction, are expressed in terms of

norms. For the smoothed functional, we use the following function

to approximate |𝑦 |, as 𝜂𝑛 → 0:

𝑁𝜂 (𝑦) =
{
∥𝑦∥ ∥𝑦∥ ⩾ 𝜂𝑛
− 1

8𝜂3
∥𝑦∥4 + 3

4𝜂 ∥𝑦∥
2 + 3

8
𝜂 ∥𝑦∥ ⩽ 𝜂𝑛

(11)

Then friction constraints are captured by the following objectives

[Eck et al. 2005]:

𝑗 ′𝐶𝐹,𝛼 (𝑢,𝑤) =
𝜇

𝛼

∫
Γ𝐶
ℎ𝜂 (𝑢 · 𝑛) 𝑁 ′𝜂 (𝑢𝑡 ) ·𝑤𝑡 𝑑𝑆

𝑗 ′𝑆𝐹,𝛼 (𝑢,𝑤) =
𝜇

𝛼

∫
Γ𝑆
ℎ𝜂 ( [𝑢] · 𝑛−) 𝑁 ′𝜂 ( [𝑢]𝑡 ) · [𝑤]𝑡 𝑑𝑆

(12)

Smoothed elasticity with contact and friction. Four objectives (9)-
(12) are added to (3) tomodel contact with friction both for deformable-

deformable and deformable-rigid contacts on parts of boundaries.∫
Ω
𝜖 (𝑢) : 𝐶 : 𝜖 (𝑤) 𝑑𝑉 −

∫
Γ𝑁
𝑤 · 𝑔𝑑𝑆

+ 𝑗 ′𝑁,𝛼 (𝑢,𝑤) + 𝑗
′
𝑆,𝛼 (𝑢,𝑤) + 𝑗

′
𝐶𝐹,𝛼 (𝑢,𝑤) + 𝑗

′
𝑆𝐹,𝛼 (𝑢,𝑤) = 0

(13)

for any 𝑤 . The finite element discretization of these equations is

standard and leads to a non-linear system of equations, because of

the nonlinear functions. This system requires computing a Jacobian

of the left-hand-side to solve efficiently. We refer to the supplemen-

tary document for the derivation of the Jacobian.

3.5 Optimization objectives
Next, we describe the optimization problem we solve, specifically,

the set of objectives we use in the functional 𝐽 as optimization

targets or inequality constraints, and how their shape derivatives

are computed.

In our model, we consider only the simplest type of assembly,

namely, moving parts together in a specific direction 𝑦. This can be

generalized to nonlinear trajectory settings (e.g., a screw motion

trajectory) but this will make these constraints substantially more

complex.

𝐿𝑝 stress and volume. These objectives are standard, and expressed
as

𝐽
𝑝
𝜎 (Ω, 𝑢) =

(∫
Ω
(∥𝜎 (𝑢)∥𝐹 )𝑝𝑑𝑉

)
1/𝑝

; 𝐽𝑉 (Ω) =
(∫

Ω
1𝑑𝑉

)
2

(14)

The stress objective for large 𝑝 approximates the non-smooth

maximum-stress functional well. Following [Panetta et al. 2017],

we consider the average stress at each element. Also, we use value

𝑝 = 20 in most cases. We note that von Mises stress can be used just

as easily. In addition, we have options for setting target stress and

target volume, which are expressed as follows:

𝐽 𝑡𝜎 (Ω, 𝑢) =
∫
Ω
𝜑 (∥𝜎 [𝑢] ∥𝐹 − 𝑆𝑡 )𝑑𝑉 ; 𝐽 𝑡𝑉 (Ω) = 𝜑

(∫
Ω
𝑑𝑉 −𝑉𝑡

)
(15)
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where 𝑆𝑡 and 𝑉𝑡 represent the stress and volume targets and 𝜑 is

the following function

𝜑 (𝑧) =
{
0 if 𝑧 ⩽ 0

𝑧2 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(16)

We normalize our objective approximating maximal stress by the

ratio between the load (in our boundary conditions) and the area

of our shape’s surface, which has units of stress. For the volume

objective, we use 1/𝑉 2

𝑡 as a normalization constant.

y
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  no displacement

assembly

disassembly

n

y
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y parallel
alignment

ll

Low objective value: High objective value:

Fig. 4. Assembly, disassembly and parallel alignment objectives. Top: left
shape is easy to assemble in −𝑦 direction, while shape on the right cannot
be assembled without effort (high objective value, due to normals pointing
in the direction opposite to 𝑦). Middle: For the same disassembly direction
𝑦, and user-defined load 𝑙 , the assembly on the right falls apart under the
load; for the shape on the left, the parts cannot move apart in direction 𝑦

under load 𝑙 . Bottom: left shape has a large region parallel to disassembly
direction (marked in blue), making it hard to disassemble in any direction
other than 𝑦, while shape on the right allows for multiple easy disassembly
directions (shown in light red).

Weassume an disassembly direction𝑦 per connection, with assem-

bly happening in opposite direction −𝑦. We define two objectives,

an assembly objective, which ensures that parts can be put together

without much deformation in direction −𝑦, and dissasembly objec-

tive, which penalizes parts moving apart along 𝑦, under the loads

specified by the user.

Assembly objective. A fully physical treatment of assembly would

require simulating the assembly process, leading to a large number

of nonlinear solves for different time steps for a single gradient

evaluation. Instead, we use a geometric heuristic with negligible

cost to allow parts in contact to be assembled without a large defor-

mation while moving a part along an a priori fixed direction in space.

Assembly is ensured if the contact surface is a height field when

we view 𝑦 as a vertical direction. The angle between the direction

of connection/disconnection and surface normal needs to be less

than 𝜋/2. In our experiments, we always start with assemblable

non-optimized parts, in order to facilitate the optimization.

This is not a hard constraint for deformable objects, as it can be

violated by a small amount, to squeeze in a connector. We do not

attempt to bound maximal possible deformation, but empirically it

can be easily controlled by increasing the weight of this objective.

𝐽𝑎 (Ω) = 1

|Γ𝑆 |

∫
Γ𝑆
𝜑 (−𝑛(𝑥) · 𝑦)𝑑𝑠 (17)

where 𝑦 is the disassembly direction vector (and −𝑦 the assembly

direction), 𝑛(𝑥) is the normal at the contact position 𝑥 , and |Γ𝑆 | is
the area 𝐴𝑆 =

∫
Γ𝑆
1𝑑𝑠 .

Disassembly objective. This objective ensures that under user-

defined loads, or for a collection of different user-defined loads,

the parts should not move away from the assembled positions. We

formalize this by requiring that the optimized shape in equilibrium

does not move in the disassembly direction, i.e., the forces holding

contact points together are sufficient.

𝐽𝑑 (Ω, 𝑢) = 1

|Γ𝑆 |

∫
Γ𝑆
𝜑 (𝑢 (𝑥) · 𝑦 − 𝑢𝑡𝑜𝑙 ) 𝑑𝑠 (18)

A tolerance 𝑢𝑡𝑜𝑙 is added, allowing a small displacement in the

assembly direction. While the assembly term is purely geometric,

the disassembly objective relies on actual simulation responses and

it bounds how much optimized parts can move. As long as it is finite,

the assembly does not fall apart.

Although the last two objective terms may work against each

other in the cases when the loads have a significant component along

the disassembly direction, in other situations they work together to

provide structures that are, at the same time, both assemblable and

are not prone to accidental disassembly under user-defined load.

See Figure 33 for an example.

Parallel alignment objective. Finally, this objective is a secondary
heuristic that is not essential for solving the problems but empir-

ically makes the structure more robust with respect to being dis-

assembled by forces close to assembly direction, since it favors

solutions with larger contact zones tangential to the assembly di-

rection. When such zones are present, forces deviating from the

disassembly direction have normal components resulting in defor-

mations and friction keeping the parts from accidental disassembly.

In the bottom of Figure 4, we can see how the shape without parallel

alignment allows for easy disassembly in different directions (shown

in red), without any reaction force (normal or friction), while the

shape on the left allows for a single disassembly direction 𝑦.

This term is defined per continuous contact area Γ𝑆 with respect

to a disassembly direction 𝑦:

𝐽𝑝 (Ω) = 𝜑
(
𝑊𝑡𝑎𝑟𝑔𝑒𝑡 −

1

|Γ𝑆 |

∫
Γ𝑆
𝑔𝜖 (𝑛(𝑥) · 𝑦)𝑑𝑠

)
(19)
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where𝑊target is the target percentage area in the connection which

should be parallel to the disassembly direction, which can help

increasing/decreasing reaction forces avoiding disassembly. The

function 𝑔 is parameterized by 𝜖 , defining the interval for which 𝑔 is

positive and 𝛽 setting the linear decay of the function when 𝑎𝑏𝑠 (𝑧)
is larger than 𝜖 . It has the following form:

𝑔(𝑧) =


𝛽 (𝑧 + 𝜖) if 𝑧 ⩽ −𝜖
−𝑎𝑧3 + 𝑏𝑧2 + 1 if 𝑧 ⩽ 0

𝑎𝑧3 + 𝑏𝑧2 + 1 if 𝑧 ⩽ 𝜖

−𝛽 (𝑧 − 𝜖) otherwise

(20)

where 𝜖 is a smoothing constant and where 𝑎 and 𝑏 are defined as:

𝑎 = −𝛽/𝜖2 + 2/𝜖3 and 𝑏 = −𝑎 𝜖 − 1/𝜖2

Summary. To summarize, our solver solves problems of the form

(1), for which

𝐽 (𝑢) =
∑
𝑖

𝑘𝑖 𝐽𝑖 , (21)

where each of 𝐽𝑖 is one of the objectives, enumerated above, com-

binedwith weights. The equality constraint 𝐹 (𝑢) = 0 is given by (13),

the static elasticity equation with smoothed contact and friction.

The inequality constraints are of the form 𝐽𝑚 < 𝐽𝑏𝑛𝑑𝑚 where 𝐽𝑚
are some of the remaining objectives for which upper bounds are

imposed (e.g., a bound on 𝐿𝑝 norm of stress). These are imposed as

soft constraints by adding

∑
𝑖
1

𝜖𝑖
𝜙 (𝐽𝑏𝑛𝑑𝑚 − 𝐽𝑖 ) to 𝐽 (𝑢).

4 SHAPE DERIVATIVES AND DISCRETIZATION
In this section, we describe our approach to computing the discretiza-

tion of the problem and the gradient of the functional projected to

the constraint space 𝐹 (𝑢) = 0 (i.e., space of displacements satisfying

the elasticity equation with contact and friction).

4.1 Shape derivatives
For each objective, regardless of it is used as an optimization target,

we need to compute the gradient with respect to 𝑝 . As explained in

Section 3.1, we use shape derivatives, which are computed using

the solution of an adjoint equation. More specifically, the solution

is used to construct a form 𝑑 𝐽𝑑 on the surface, which, when applied

to changes 𝛿𝑝 of vertex positions on the boundary, produces the

(linearized) change of the functional 𝐽 :

𝑑 𝐽 [𝛿𝑝] = lim

𝑡→0

𝐽 (Ω(𝑝 + 𝑡𝛿𝑝), 𝑢𝑡 ) − 𝐽 (Ω(𝑝), 𝑢0)
𝑡

(22)

where 𝑢𝑡 is the solution of the elasticity equations obtained on the

domain with deformation 𝑡𝛿𝑝 . The theory of shape derivatives is

well-established, and we refer to [Bonnetier and Dapogny 2020].

Here, we only present a brief summary of the steps for computing

these derivatives. A detailed derivation can be found in the sup-

plementary material. Our formulation follows [Panetta et al. 2017],

in that we consider volume, rather than surface integrals, which

proved to be critical for derivative accuracy, at a moderate additional

cost, compared to the elasticity solves involved.

Adjoint equation. The first step in computing 𝑑 𝐽 is to solve the

adjoint equation, which in our case has the following form:∫
Ω
𝜖 (𝜌) : 𝐶 : 𝜖 (𝜓 ) 𝑑𝑉 =

∫
Ω
𝜏 : 𝜖 (𝜓 ) 𝑑𝑆−(𝑇 ′𝐶+𝑇

′
𝑆+𝑇

′
𝐶𝐹 +𝑇

′
𝑆𝐹 ), (23)

for any 𝜓 , where the terms 𝑇 ′
𝑋
, corresponding to the contact and

friction smoothed penalties are of the form

∫
Γ𝑋
𝐹 [𝑢] ·𝜓𝑑𝑆 , and 𝜌 is

the unknown. We observe that this is a linear elasticity equation

which is relatively inexpensive to solve compared to the primal

nonlinear elasticity equation. The quantity 𝜏 is defined as the sum

of 2𝑒 ′𝜎 : 𝐶 for all objectives of the form (2) where 𝑒 (𝑠 (𝑢), 𝑥) is a
function on a stress measure, as our case. Then, 𝑒 ′ means the partial

derivative of 𝑒 with respect to our stress measure.

Shape derivative. If the boundary deformation is defined by a

set of basis functions 𝜆𝑚 , with the deformation expressed as 𝑣 =∑
𝑚 𝛿𝑝𝑚𝜆𝑚 , where 𝛿𝑝 is the vector of changes of our variables, it is

possible to express the shape derivative as a dot product

𝑑 𝐽

[∑
𝑚

𝛿𝑝𝑚𝜆𝑚

]
= 𝑆 [𝑢, 𝜌] · 𝛿𝑝 (24)

where 𝑆 [𝑢, 𝜌] is a vector of the same length as 𝑝 of vector valued

functions depending on𝑢 and 𝜌 . The expressions for these functions

are included in the appendix, and derived in the supplementary docu-

ment. We emphasize that no discretization, other than discretization

of the deformation of the boundary was performed so far.

The vector 𝑆 [𝑢, 𝜌] computed by numerical integration of FEM

solutions of two elasticity problems for 𝜌 and𝑢 is the gradient of the

functional 𝐽 with respect to 𝑝 ; this is what we use in the optimization

process as discussed in Section 5.

4.2 Discretization
To make our discussion of the formulation complete, we summarize

the discrete form of the problemswe solve. The exact expressions are

straightforward to derive but tedious (please see the supplementary

material). We use quadratic Lagrangian elements on tetrahedras for

discretization of (13) to obtain a system of the form

𝐹 (𝑢) = 𝐾𝑢 − 𝐹𝑁 + 𝑁𝐶 (𝑢) + 𝑁𝑆 (𝑢) + 𝐹𝐶 (𝑢) + 𝐹𝑆𝑢 = 0 (25)

The first two terms come from the standard elasticity equation, and

the rest correspond to the remaining terms in (13). The remaining

terms, while simple, are not linear, so the system after discretization

is a general algebraic system, and requires a non-linear solver. We

also derive expressions for the Jacobians 𝐷𝑁 and 𝐷𝐹 , which are

needed for efficient optimization.

In contrast, the adjoint PDE (23) is linear and has the form

(𝐾 + 𝐷𝑁𝐶 + 𝐷𝑁𝑆 + 𝐷𝐹𝐶 + 𝐷𝐹𝑆 ) 𝜌 = 𝐷 (26)

i.e. involves exactly the Jacobians of the constraint functions. The

right-hand side𝐷 is expressed in terms of 𝜏 . Formulas for the entries

of these matrices are provided in the supplementary document.

Finally, once 𝑢 and 𝜌 are available, the coefficients of the shape

derivative are computed from these values by integration, following

formulas in the appendix, using numerical quadrature described in

Section 5.
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5 METHOD
Input. The input to our algorithm is a collection of tetrahedral

meshes, with some parts of their surfaces in contact, and with bound-

ary conditions applied to other parts of surfaces. Each object can be

designated as deformable or rigid.

Our overall method is conceptually straightforward (Algorithm

1). The functions used in the pseudocode are:

• ElasticitySolve solves the nonlinear elasticity system (3),

to obtain 𝑢;

• AdjointSolve solves the adjoint system (26) to obtain 𝜌 ;

• DiscreteShapeDerivative, given𝑢 and 𝜌 , computes the gra-

dient 𝑆 [𝑢, 𝜌] with respect to vertex positions on the boundary
using (24).

• Converged is the outer iteration stopping criterion discussed

below.

The inner loopworks on a fixed connectivity forΩ(𝑝), and is close
to the standard BFGS algorithm: at each step, a descent direction

is computed, and a line search is performed to determine our step

size. There are three important differences: (1) we check for any

inversions of tetrahedra and choose a step that maintains a bound on

mesh element shape quality; (2) after each update of the boundary

vertices, we call the SLIM smoothing algorithm [Rabinovich et al.

2017] on interior vertex positions 𝑝𝑖𝑛𝑡 with boundary vertices 𝑝

fixed, to move the interior vertices so that the quality of the mesh is

improved; (3) with a valid mesh, we run simulation and if it doesn’t

converge in a maximum number of iterations, we reduce step by

half in the line search.

If the step becomes too small, the inner loop is terminated, and

the domain is remeshed in the outer loop.

A natural stopping criterion for the algorithm consists of three

parts: (1) the objective reduction obtained in a step of (outer) itera-

tion is below a threshold 𝜖𝑟 computed relative to the initial objective

value; (2) the step size of the line search falls below a threshold

(3) the maximal number of iterations𝑚𝑎𝑥_𝑜𝑖 is exceeded. Due to

remeshing, the energy however may oscillate slightly, and for ro-

bust behavior we require that sufficient energy decrease does not

happen over𝑚 steps. While many other options are possible (e.g.,

relative or absolute gradient norm threshold), we consider the rate

of change in the objective to be most appropriate: our goal is to

obtain a reduction in the objective, and a slow rate of reduction

indicates that optimization will not improve the target by much

more in a reasonable number of iterations; this happens either due

to being close to a local minimum value or step size going to zero

for geometric reasons, typically thin regions, resulting in distorted

elements.

We discuss the choices for 𝜖𝑟 and𝑚 in Section 6, as well as exam-

ine convergence for specific test cases.

For remeshing, we use Triangle in 2D, and CGAL and fTetWild

[Hu et al. 2020] for 3D tetrahedral meshing. More information on

meshing is presented in the Appendix E.

Smoothness penalty. In addition to all optimization targets de-

scribed in Section 3, we use a discrete regularization term 𝑆𝑝 (Ω) =

Algorithm 1 contact optimization

function Gradient(𝑝)

𝑢 ← ElasticitySolve(Ω(𝑝))
𝜌 ← AdjointSolve(Ω(𝑝),𝑢)
𝑔← DiscreteShapeDerivative(𝑢,𝜌)

end function

function ShapeOptimization

𝑝 ← non-fixed boundary vertex positions

repeat
repeat

𝑑 ← BFGSdirection(Gradient, 𝑝)

𝜎, 𝑠, 𝑔← LineSearch( Gradient,𝑑)

𝑝 ← 𝑝 + 𝑠𝑑
SLIM(𝑝𝑖𝑛𝑡 )

𝑖𝑖 ← 𝑖𝑖 + 1
until 𝑠 < 𝛿 or 𝑖𝑖 = 𝑜𝑖_𝑚𝑎𝑥_𝑖𝑖
Remesh(Ω(𝑝))
𝑜𝑖 = 𝑜𝑖 + 1

until 𝑜𝑖 =𝑚𝑎𝑥_𝑜𝑖 or not Converged
end function

∑
𝑣∈𝑉 ∥𝑠 (𝑣)∥𝑝 where

𝑠 (𝑣) =
∑
𝑢∈𝑁𝑣

(𝑢 − 𝑣)∑
𝑢∈𝑁𝑣

∥𝑢 − 𝑣 ∥
and 𝑁𝑣 is the neighborhood of 𝑣 . The value of power 𝑝 can be ad-

justed to obtain smoother surfaces at the cost of less optimal shapes;

we use value 2 for most cases, increasing it to 4 for some objects.

This term is scale-invariant and pushes the triangles/tetrahedra of

the mesh toward equilateral.

Elasticity solver. In ElasticitySolve we use the standard New-

ton’smethodwith line search to solve the nonlinear elasticity system

with contact. We consider the simulation solved when residual is

lower than a given tolerance. For 2D, we use 10
−10

for the tolerance,

while the value of 10
−8

is used for our 3D examples. Moreover, for

solving linear systems at each iteration of the Newton’s method, we

use CHOLMOD (for frictionless scenarios) and UMFPACK (when

friction is present) in 2D. In 3D, we use MKL Pardiso library.

Adaptive Quadrature. An extremely important aspect of our im-

plementation is the quadrature used to compute the integrals in the

FEM system discretization, as well as in the shape derivative coef-

ficient formulas. For problems with friction, precise computation

of these integrals proved to be very important. At the same time,

due to functions like ℎ𝜂 , the functions we integrate, while smooth,

have higher derivative discontinuities. We use a combination of

adaptive refinement on triangles and high-order (order equals to

10) Gaussian quadrature to integrate all functions to high precision.

For more information, see Section D in the Appendix.

Convergence behavior. Figure 5 shows the objective as a function
of iteration number for a 2D connector (Figure 9) and a 3D stool

(Figure 24). For both cases, we optimized 𝐿𝑝 norm of stress, while

keeping volume below or equal the initial value. For the connector,
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Fig. 5. Convergence plots for connector (Figure 9) on the left and stool
(Figure 24) on the right side. The charts show stress objective vs iterations.
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Fig. 6. Examples used for validation. The left: box in contact with a rigid
surface. The right: joint in contact with a holder. We use the same notations
for boundary parts as in Fig. 2. Starts from this Figure, all the orange arrows
in the following figures illustrate the direction of load.

during the last 200 iterations, the energy decreased only by 0.87%,

while for the stool, the minimum decreased by 0.27% in the last 30

iterations. We provide additional data in Section 6.

Observe that there are increases in energy at some of our it-

erations, corresponding to the remeshing of the current solution.

However, after that the objective function quickly decreases, which

motivates our formulation of the convergence criterion.

6 EVALUATION
Simulation Validation. As we use approximations to the standard

physical models of contact and friction we evaluate the accuracy of

these models. We use two examples. The first one is box in contact

with a rigid surface. The second one is joint in contact with a holder

as shown in Figure 6.

The results for both cases are largely the same. Thus, we will

only show the results for box in contact with a rigid surface in this

section and leave out the results for joint in contact with holder.

We first change the value of 𝛼 and 𝜂 The reference value we use

for comparison is obtained by simulation with 𝛼 = 𝜂 = 10
−6
. We

set the smallest value of 𝛼 to be 10
−7

and scale it by the power

of 2. The relative value of the difference in relative displacement

|𝑢 − 𝑢𝑟𝑒 𝑓 |/|𝑢𝑟𝑒 𝑓 | is shown in Figure 7.

Then, we test the same scenarios but with friction at contact

regions. First, we consider the dependence of accuracy on 𝜂𝑛 , using

𝜂𝑛 = 10
−4

as the reference value, as for friction we typically need

more smoothing in the constraints. To test how friction coefficient

affects simulation, we add in a small horizontal load that is 10% of

the vertical load for the box example. Test with 𝜇 ranging from 0.1

to 0.16 and increase 𝜇 every time by 0.01 for the two examples. We

compare the tangential displacement of the examples with respect
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Fig. 7. Simulation validation for box in contact with rigid surface. The
left is relative displacement error with changing 𝛼 . The right is relative
displacement error with changing 𝜂
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Fig. 8. Simulation validation for box in contact with rigid surface. The
left is relative displacement error with changing 𝜂𝑛 . The right is relative
displacement with changing 𝜇

to different 𝜇 to the tangential displacement of the examples with

respect to 𝜇 = 0.1 and take the ratio. We get the plots shown in

Figure 8.

Effects of optimization targets and constraints. Weuse a simple two-

dimensional connector example to demonstrate the effects of various

optimization objectives and constraints (Figure 9)We compare stress

distribution and maximal stress in different cases.

For most of the examples related to this scenario, we used a

similar optimization configuration, running a maximum of 1000

iterations and remeshing at least every 100 iterations (𝑚𝑎𝑥_𝑖𝑖 = 100

and𝑚𝑎𝑥_𝑜𝑖 = 10).

The most radical difference is between minimizing the volume

while bounding stress and minimizing maximal stress.

We also compared the scenario of minimizing maximal stress

with and without a bound on volume (equal to the initial volume).

In this comparison, stress results were actually very close to each

other, with a slight advantage to the version with the constraint.

Multiple loads. Our framework allows optimizing for multiple

separate acting forces, meaning that the energy related to stress

will be a combination of the values from each separate scenario. An

example is shown in Figure 10, where forces of the same intensity

are applied to the right and to the left of the top piece. The stress

results of the optimized shape are very close to each other and the

final shapes present considerable symmetry, even though we are

not enforcing any geometry symmetry through constraints.
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22.6 2.18 2.38

22.6

0.0

12.7

original
minimize 

compliance
(p=2)

min. max stress
(p=20)

minimize
max stress

w/ free volume

min volume
w/ bounded 
stress (10.0)

10.0
ΓDstress

baseline

Fig. 9. Optimization results when using different combinations of objectives.
For both baseline (𝑝 = 20) and compliance (𝑝 = 2) scenarios, we use a target
volume equal to the original one.

max
stress 21.2

22.6

0.0

original

22.6 3.2

optimized

3.3

Fig. 10. Optimization considering multiple loads.

max
stress 0.214 0.058 0.043

0.26

0.0

0.257

original optimized original optimized

Fig. 11. Multimaterial optimization. The stiff material has Young’s modulus
equal to 100 and Poisson’s ratio of 0.3, while the flexible one has Young’s
modulus equal to 1.0 and Poisson’s ratio of 0.0.

Differences in material properties. Figure 11 shows how the results

of optimization are affected by combining a highly flexible and a stiff

material on our two different pieces. (In both cases the target is the

baseline case of minimizing stress with no constraints). We observe

that the stress reduction is similar, although shapes required for this

are substantially different.

Role of friction. In the next comparison (see Figure 12), we observe

that in the presence of friction (𝜇 = 1.0), we achieve a similar maxi-

mum stress value with the assembly not needing a more extreme

protrusion to stay together, due to additional forces resulting from

friction. This is demonstrated in Figure 12. The rightmost example

shows the drastic effect of fixing only one part.

no
friction

with friction
coe�cient 1.0

�xing
top piece 

2.2 2.35 10.2
max

stress 22.6

22.6

0.0

original

Fig. 12. Middle shapes: with and without friction; rightmost shape: the
optimization of the top assembly is disabled.

assembly
objective

2.27 2.30 2.43

AO +
parallel 

alignment
30%

AO +
parallel

alignment
50%

max
stress 22.6 2.18

22.6

0.0

original baseline
(AO)

Fig. 13. Optimization results when using assembly and parallel alignment
objectives, with two different strengths. The white arrow demonstrates the
dissemble direction.

Assembly/disassembly and parallel alignment constraints. We show

the effects of our connection-related constraints presented in Sec-

tion 3.5.

Figure 13 shows the baseline optimization (minimizing maximal

stress with a bounded volume) compared to different cases when

our assembly constraint in all cases, and different target parallel

alignments. Observe that, as expected, the contact area aligned with

the disassembly direction increases.

All three examples are possible to assemble in vertical direction

without deformation. Also, the parallel alignment objective guaran-

tees that the desired proportion (30% and 50%) of the contact walls

are parallel to the input direction.

Figure 14 shows the baseline case compared to one using a dis-

assembly constraint with a very small tolerance. Compared to the

the baseline optimization, two pieces do not detach when the disas-

sembly constraint is applied. Another example of the importance of

this constraint is shown in Figure 20.

Assembly/disassembly tradeoff. Finally, we also studied the effect

of choosing different balance of assembly and disassembly objec-

tives, in a setting when these counteract each other. Consider the

case of Figure 15, where a force is pulling the top part of the connec-

tor up and we initially optimize the shapes using the same weight

(100.0) for both terms and weight 1.0 for stress. Then, we reran

our optimization using three lower weights for the assembly term.

Figure 15 shows that, by reducing assembly’s importance, almost

no movement is observed in the last shape where assembly weight

equals 0.1. When the disassembly term is dominant, the optimized

shape has small protrusions on both sides that keep it firmly in
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initial:
sliding contact

baseline:
min max stress

w/ bounded vol.

disassembly 
penalization
(tol. of 0.002)

max
stress 2.2

26.7

0.0

max
displacement

26.7 2.87

0.91 0.082 0.091

0.91

0.0

disassembly 
direction

Fig. 14. Optimization results when using a disassembly energy term with
low tolerance. As before, the white arrow demonstrates the dissemble direc-
tion.

max
displacement

0.91

0.0

 
Assembly weight

100 10 1 0.1

disassembly 
direction

zoomed in
contact 
region

non-assembly regions

Fig. 15. Displacement results when optimizing our connector using varying
assembly weights and a fixed disassembly weight.

place, at the expense of greater effort required for (dis)assembling it

along the (dis)assembly direction.

Table 1 presents a comparison of our main energies in this study.

Note how assembly objective values increase when it’s weight is

reduced, while, at the same time, disassembly and stress values

decrease considerably.

7 EXAMPLES
To validate our framework, we computed optimized shapes for a

number of 2D and 3D realistic scenarios. In all illustrations in this

section, parts of the object boundary with Dirichlet conditions are

shown in red, and contact regions with external supports in yellow.

We use 𝑝 = 20 for stress optimization in all examples. Except for

Table 1. Final state of objective term values when running optimization
with different assembly weights

Assembly weight
Objective 100 10 1 0.1
Assembly 0.02598 0.06968 0.35474 1.34750

Disassembly 0.01302 0.00275 0.00033 0.00003

Stress 2.53228 1.95349 1.35349 0.83647

max
stress8.46

0.0

original:

optimized:

8.46

0.60

ΓC

ΓD

Fig. 16. Lever optimization

Fig. 17. Lever optimization fabrication

specific scenarios, in most of our examples we used the same objec-

tive function weights. A summary of our experiments in presented

in Table 2, where we add information about the simulation, as well

as objective functions used in each example, instance size and initial

and final maximum values of stress.

7.1 2D examples
Lever. In this example shown in Figure 16, one part of the bound-

ary of the black piece of the assembly is clamped to the table and

in simulation assumed to satisfy the Dirichlet boundary condition;

the part touching the vertical wall has an RD contact condition.

Maximal stress is optimized, with no constraints imposed. As seen

in Figure 16, we are able to reduce maximum stress more than 14

times compared to the initial shape. The optimized shape naturally

evolves into an interlocking assembly that can support a far higher

load without large deformation.(see the video in supplementary

material). We fabricated resulting shape (the process is described in

Appendix C, and performed a stress test on it, by loading it with in-

creasing weight. Our setup is shown on Figure 17. The unoptimized

lever breaks with a weight of 400g, whereas the optimized lever can

endure more than 6400g, consistently with simulated results.

Bridge. Our second 2D example is a simple bridge model (Fig-

ure 18), with Dirichlet conditions on fixed rectangular parts, 3 opti-

mizable parts, with boundaries of the supports partially fixed, and

DD contact conditions between parts. Due to symmetry, we run the

optimization on one half of the shape, resulting in 3 times stress

reduction.
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Table 2. Summary of experiments. In constraints column, “/” means that the weight is modified after each remeshing and varies between these values linearly.
Column Relative gradient norm presents the ratio of the final gradient norm and the initial one from the first iteration. The last column (Final 𝐿𝑝 -norm
reduction) shows the reduction in the stress objective due to the last outer iteration, expressed as a percentage of the initial objective value. ∗For both bridge
and coat rack (hooks), running 5 more outer iterations reduces stress to 1.80 and 346.51, relative gradient norm to 2.6e-2 and 2.81e-2, and final 𝐿𝑝 -norm
reduction to 0.95% and 0.00%, respectively. For fabrication, we used optimization results at outer iteration 5 for lever, hook, crane and at iteration 10 for bridge
and coat rack.

Instance
Contact

parameters
𝛼/𝜂/𝜇/𝜂𝑛

Iterations
𝑜𝑖 /𝑚𝑎𝑥_𝑜𝑖 Constraints (= weights)

Post
vol.
min.

BCs Tets Initial
stress

Final
stress

Relative
gradient
norm

Final
Lp-norm
reduction

2D
examples
Connector 10

−5/10−5/0.1/10−3 10/10 𝐽 𝑡
𝑉

= 10
2/103 no Γ𝐷 + DD + Γ𝑁 1250 22.6 2.18 2.38e-3 0.24%

Lever 10
−5/10−5/0.1/10−3 10/10 𝐽 𝑡

𝑉
= 10

2/103 , 𝐽 𝑑 = 10
2/103 no Γ𝐷 + RD + DD + Γ𝑁 1447 8.46 0.49 2.88e-5 0.31%

Bridge∗ 10
−5/10−5/0.1/10−3 10/10 𝐽 𝑡

𝑉
= 200/2000, 𝐽 𝑑 = 10

2/103 no Γ𝐷 + RD + DD + Γ𝑁 2073 7.33 2.21 1.55e-1 4.92%

Hook 10
−4/10−4/0.0/− 9/10 𝐽 𝑡

𝑉
= 10

2/103 no RD + Γ𝑁 1279 16.5 2.97 1.11e-2 0.00%

Hook
(disassembly) 10

−5/10−5/0.0/− 6/10 𝐽 𝑡
𝑉

= 10
2/103 , 𝐽 𝑑 = 10

2/103 no RD + Γ𝑁 1279 16.5 3.82 2.11e-2 0.74%

Crane 10
−5/10−5/0.1/10−3 10/10 𝐽 𝑡

𝑉
= 10

2/103 , 𝐽 𝑑 = 10
2/103 no Γ𝐷 + DD + Γ𝑁 2087 8.47 1.09 7.81e-4 0.40%

3D
multimaterial

Stool 10
−4/10−4/0.4/10−2 10/10 𝐽 𝑡

𝑉
= 10

4/105 no RD + DD + Γ𝑁 58264 2.68 1.12 3.23e-2 0.00%

Bench
Twisted 10

−4/10−4/0.2/10−2 8/10 𝐽 𝑡
𝑉

= 10
4/105 no RD + DD + Γ𝑁 12731 4.38 1.71 5.31e-2 0.00%

Bench
Bended 10

−4/10−4/0.2/10−2 10/10 𝐽 𝑡
𝑉

= 10
4/105 no RD + DD + Γ𝑁 12362 2.82 1.99 1.23e-1 0.00%

Coat rack
(base) 10

−4/10−4/0.4/10−2 10/10 𝐽 𝑡
𝑉

= 10
4/105 no RD + DD + Γ𝑁 15464 47 22.7 2.28e-2 0.17%

Coat rack∗
(hooks) 10

−4/10−4/0.4/10−2 10/10 𝐽 𝑡
𝑉

= 10
4/105 no Γ𝐷 + DD + Γ𝑁 15726 1260 385 7.53e-2 2.16%

3D
pipe-like

Tent
(baseline) 10

−5/10−5/0.4/10−3 50/50 𝐽 𝑡
𝑉

= 10
4/105 , 𝐽 𝑎 = 10 yes RD + DD + Γ𝑁 15325 119 59.3 2.73e-2 0.24%

Tent
(disassembly) 10

−5/10−5/0.4/10−3 50/50

𝐽 𝑡
𝑉

= 10
4/105 , 𝐽 𝑎 = 10

𝐽 𝑑 = 1.0
no RD + DD + Γ𝑁 15325 119 59.1 5.06e-2 0.84%

Tent
(parallel) 10

−5/10−5/0.4/10−3 50/50

𝐽 𝑡
𝑉

= 10
4/105 , 𝐽 𝑎 = 10

𝐽 𝑑 = 1.0, 𝐽 𝑝 = 0.1
no RD + DD + Γ𝑁 15325 119 70.8 2.33e-2 0.08%

Truss 10
−5/10−5/0.4/10−3 50/50

𝐽 𝑡
𝑉

= 10
4/105 , 𝐽 𝑎 = 10

𝐽 𝑑 = 1.0, 𝐽 𝑝 = 0.1
yes Γ𝐷 + DD + Γ𝑁 29882 136 48.7 2.63e-2 0.15%

Dodecahedron 10
−5/10−5/0.4/10−3 50/50

𝐽 𝑡
𝑉

= 10
4/105 , 𝐽 𝑎 = 10

𝐽 𝑑 = 1.0, 𝐽 𝑝 = 1.0
yes DD + Γ𝑁 23121 239 26.1 2.12e-2 0.00%

max
stress7.33 original:

optimized:
7.33

2.21

ΓC
ΓD

0.0 re�ection symmetry

Fig. 18. Initial and optimized bridge model.

The left and right support parts of the bridge were clamped to

the table and weights were attached to the middle of the bridge.

The experiments show that unoptimized bridge breaks at the left or

right assembly with a load of 1500g, whereas the optimized bridge

can hold more than 5800g of weights. See photo of our bridge in

Figure 19.

Hook. Figure 20, where we built an optimized hook that fits on the
top of a door, with a single large contact area Γ𝐶 , and 𝑅𝐷 boundary

conditions on that part. In this scenario, we use multiple separate

loads, one emulating, e.g., a coat hanging from the hook, and the

Fig. 19. Fabricated initial and optimized bridge shapes.

other a force exerted when it is taken off the hook. In addition

to multiple loads, this example also demonstrates the importance

of disassembly energy: we make sure that accidental push from

below does not result in the hook getting detached. The disassembly

direction is shown in Figure 20. We perform stress minimization

with a volume bound equal to the original volume, and compare the

results with and without the disassembly constraint. Note that when

the hook optimized without disassembly constraint is loaded, the

left part lifts up, resulting in detachment from the support (Figure 20,

middle) It remains stable once the disassembly constraint is enabled

(Figure 20, right).

Figure 21 shows the experiments with 3 versions of 3d printed

hook (unoptimized and optimized with and without disassembly
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initial
baseline:

min max stress
w/ bounded vol.

disassembly
penalization

max 
stress 3.05

16.5

0.0

16.5 3.94

0.57

0.0

disassembly 
direction

main load

aux. load

0.57 0.11 0.17
max

displacement

ΓC

Fig. 20. Top: undeformed shapes of different versions of the hook model.
bottom: deformations under load (displacements exaggerated).

Fig. 21. 3D printed Hook loading (Please see supplementary video.)

constraint). The unoptimized hook breaks with 4500g load. The two

optimized hooks can hold weights more than 19000g. Qualitatively,
the behavior of loaded hooks matches the simulation.

Tower Crane. Our last 2D example is the tower shown in Figure 22,

demonstrating an assembly consisting of four pieces with a Dirichlet

condition on the bottom one, and DD contact conditions on the

remaining parts.

In this example we demonstrate how our method can be com-

bined with a simple ESO-like topology optimization technique (e.g.,

[Huang and Xie 2010]). to decrease the weight beyond what is pos-

sible with shape optimization only. We used a filtering technique to

remove triangles with average stress lower than 10% of the maxi-

mum value. The filtered mesh was then again optimized, obtaining

the result shown on the bottom-right. The laser-cut tower model is

shown in Figure 23. In our experiment, the base of the tower was

clamped to the table. Experiments show that the unoptimized tower

breaks with 700g load, whereas the optimized tower can sustain

more than 4600g load.

7.2 3D examples
In the next 3 examples, we apply our algorithm to 3D assemblies

of parts made of different materials: wood (𝐸𝑤𝑜𝑜𝑑 = 10000,𝜈𝑤𝑜𝑜𝑑 =

0.3), MDF (𝐸𝑀𝐷𝐹 = 4000,𝜈𝑀𝐷𝐹 = 0.25) and PLA plastic (𝐸𝑃𝐿𝐴 =

3500,𝜈𝑃𝐿𝐴 = 0.36). Moreover, in these examples, only some pieces

8.47 0.0

8.47 1.12

0.85

max stress

ΓD

topology �ltered

optimized

max stress

original

max stress stress

Fig. 22. Tower crane optimization

Fig. 23. Tower crane fabrication

Fig. 24. Left: the initial stool model; Right: the result after optimizing the
white (PLA) pieces.

of the shape (those made of PLA, which can be 3D printed) were

optimized.

Stool. Our first example was a stool assembly with a fixed MDF

top, fixed wood legs and connectors made of PLA (Figure 24). In

this example, we use volume constraints. The stress concentrations

for optimized and noncan be seen on Figure 25.

The optimization reduces stress 2.5 times without changing the

total volume. If 10% increase in the volume is allowed, the stress

decreases to 0.88, and to 0.85 at 20%.
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2.68

0.0

2.68 1.12
stress

max stress:max stress:

cross section

Fig. 25. Stool stress: stress concentrations on stool example. Top figures
present how load is applied and general stresses (restricted to PLA). Middle
figures show stresses on each PLA piece. Bottom figure shows cross section
of region where stress is more concentrated.

Fig. 26. Bench model with two different types of legs and the initial and
optimized connectors.

Bench. Our second example is a bench with fixed parts (seat,legs)

made of wood and optimizable PLA connectors ( Figure 26). We

consider two different leg shapes and show how connectors are

optimized for each. We observe that, depending on the type of legs,

we obtain a very different level of stress reduction: 30% in one case,

and 2.5x times in the other (see Figure 27).

Coat rack. Our final multimaterial example is a coat rack made of

wood and plastic (Figure 1). Differently from both previous examples,

this object is modular, in the sense that you can always use a longer

cylinder and add identical plastic parts to increase the height and

the amount of hangers in your object. Here, we optimized our two

different plastic parts for separate sets of loads, the leg connector

and the hook.

stress

4.38

0.0

1.71max stress:4.38max stress:

1.99max stress:2.82max stress:

stress

2.82

0.0

Fig. 27. Bench stress for twisted and bended set of legs

stress

47.0

0.0

47.0 22.7max stress:max stress:

cross section

Fig. 28. Coat rack base stress distribution.

The leg connector is optimized with (fixed) legs in contact with

the ground and the load applied at the top (Figure 28).

The hook attachment was optimized with loads applied to hooks.

As shown in Figure 29, our framework was able to lower maximum

stress more than 3 times.

We 3D printed the result using PLA (Figure 30).

For our last set of experiments, we implemented a framework

for generating pipe assemblies from graphs, where each vertex of

our graph becomes a sphere and each edge becomes a pipe. See an

example on Figure 31.
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stress
0

1260.0 385.0max stress:max stress:

1260.0

cross section

Fig. 29. Coat rack hook connector stress distribution.

Fig. 30. Mounted coatrack

We used this tool to generate three different simple instances of

our problem: a tent, a truss-like bridge and a dodecahedron. Below

we detail more about each of these assemblies.

Tent. This object (Figure 31) is composed of 5 ball connectors and

8 pipes. A load is applied on the top of the structure pointing down

and the bottom part of the object is in contact with the ground.

We minimize stress, while keeping the same volume impose the

assembly constraint. We were able to reduce stress by a factor of 2.

We again ran our framework for reducing the volume of the shape,

while keeping the stress bounded by the result of the previous opti-

mization for stress (Figures 31 and 32). Then we add disassembly and

parallel alignment objectives and the results are shown in Figure 33.

Note that we optimize both the bars and connectors.

While the resulting structure can support this particular load

well, it is likely to fall apart if any lateral load is applied, as resulting

connectors are very shallow. Adding disassembly and parallel align-

ment constraints produces more resilient connectors (Figure 33).

When using only disassembly constraint, the final stress (59.1) ob-

tained was similar to the baseline case (59.3), while adding parallel

alignment constraint to make at least 20% of the connection surface

(in each connector) parallel to the disassembly direction increased

stress to 70.8.

Original: Optimized:

Fig. 31. Initial and optimized tent assemblies.

stress

119.0

0.0

60.2max stress:119.0max stress:

Top ball: Bottom ball:

Bottom bar:

Lateral bar:

Fig. 32. Tent stress

Baseline: Disassembly
Energy:

Parallel
Alignment:

Top
connection

Bottom
connections

Fig. 33. Tent connections

Dodecahedron. This example is shown in Figure 34. For this ex-

ample we use symmetric compression loads at the connectors at

dodecahedron vertices. Using reflection symmetry on the three axes

(x,y and z), we were able to run our optimization on an eighth of the
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+ +

+

+

Fig. 34. Dodecahedron

Stress

239

0.0
max stress: 239 max stress: 27

Fig. 35. Dodecahedron stress: simulation and optimization are executed on
an octant of the original shape, using reflection symmetry on all three axes.
A diagonal force to the center of the shape is used.

shape, as presented in Figure 35, where our boundary conditions

are also shown.

We use a similar optimization setup as for tent: first, run stress

minimization with a volume constraint, then minimize volume with

a stress constraint, and including fixed assembly, disassembly and

parallel alignment constraints. Notice in Figure 35 we were able to

reduce stress by almost 10 times, while reducing volume in 12.6%

compared to the initial dodecahedron. The emerging twisted shape

for the bars are optimal for load support.

We also investigated the effect of optimizing only the connectors

(balls) of the dodecahedron example. Again, we first minimize stress

and then, in the second step, minimize the volume. We were able to

reduce stress by around 28% to 172, and reduce the volume by 22%.

The result can be seen in Figure 36.

Truss. The initial shape and the optimized result are shown in

Figure 37. Similar to the dodecahedron, we optimized for strength

(keeping initial volume) and then for volume (keeping stress close to

its minimum level). We were able to reduce stress by more than half

and volume by 20%. Notice that the optimized connectors are smaller

than original ones while keeping deep connections. This result

can be obtained thanks to the disassembly and parallel alignment

energies.

externalinternal

Fig. 36. Connectors optimization: result after optimizing only sphere con-
nectors. We show our two different types of connector (showing two sides
of each) and two different types of pipes, which were not optimized with
exception of their tips.

Fig. 37. Truss

Termination and convergence. To understand the convergence be-

havior of the method, we run our optimization for a fixed number of

iterations which we aimed to set high enough for obtaining maximal

possible improvement. Table 2 lists several indicators of convergence

termination: number of actual iterations performed before stopping,

relative gradient norm, and per-step objective reduction, expressed

as a percentage of the initial objective value.

In the cases when the optimization reached the maximal number

of steps (10 outer iterations for 2D and multi-material examples

and 50 for 3D examples), the result is close to a local minimum,

or the maximal number of iterations is insufficient. In most cases,

relative gradient norm is 5% or significantly less of the original,

indicating that the result is close to local minimum. In one case,

(Bridge) additional iterations also decrease the relative norm below

5%.

In several cases (hook and two bench variations) the optimization

stops for geometric reasons (in some cases, topology changes are

needed to achieve an optimum); in this case, the optimization can-

not reach a local minimum by additional iterations, although the

gradient reduction is also high in most cases.
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Examining how the objective changes with iteration suggests

that values𝑚 = 2 and 𝜖𝑟 = 1% are adequate for all examples (consid-

ering the criterion discussed in Section 5 for our stress objective),

except truss-like structures, where values𝑚 = 5 and 𝜖𝑟 = 0.5% are

more suitable due to higher oscillations in the objective early in the

optimization. We emphasize that many other convergence criteria

can be used; determining an optimal one is not our focus.

8 CONCLUSIONS AND LIMITATIONS
We have described a framework for shape optimization with contact

and friction, using a smoothed, penalty-based model, and applied it

to optimization of assemblies in which parts are held together by

contact and friction forces. We demonstrated that in our framework

a number of functionals can be optimized reliably, producing signif-

icant improvements e.g., in stress concentrations or volume, while

maintaining various types of constraints. We validated the results

with computational experiments in two and three dimensions and

with qualitative experiments using fabricated objects. The experi-

ments confirmed significant improvements in strength. In addition,

since we support nonlinear solves, our model can be easily extended

to a variety of functionals and constraints. The code for this project

will be open-sourced.

Limitations. Our algorithm may (1) not reach a minimum or (2)

find a local minimum that does not improve the objective much.

In the first case, the optimization stalls: no progress is possible for

one of the following reasons: (a) nonlinear solve does not converge

(e.g, if the system has no static equilibrium or bad-quality elements

not allowing to achieve residual tolerance in max number of it-

erations); (b) inversions of elements lead to a severe line search

step restriction, as mesh quality improvement is not guaranteed to

succeed; (c) meshing with tolerance using fTetwild may produce

volumemeshes for pieces with non-manifold surfaces, while surface-

preserving remeshing does not improve quality enough. In case (2),

the algorithm may reach a local minimum without significant de-

crease of the objective value, while other minimal with lower values

exist. Case (1) was the most observed in our experiments, occurring

in our hook and bench examples due to narrowing regions during

optimization; note that we still obtain a significant stress reduction.

In addition, we use linearized elasticity model that does not ac-

count well for large deformations. As the contact and friction terms

in our equations are already non-linear and we use a nonlinear

solver, extension to nonlinear elasticity is likely to be straightfor-

ward. While the functionals we have introduced in this work per-

form quite well for a number of tasks, there are restriction on the

type of connections they can capture. E.g., snap connections are not

handled easily with these constraints only. Expanding the range of

objectives is an important direction for future work. The method

can be considerably sped up but using parameterized geometric

models, or model reduction, as well as more efficient solvers.
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A FORMULAS FOR THE ADJOINT EQUATION TERMS.

𝑇 ′𝐶 =
1

𝛼

∫
Γ𝐶

(
ℎ′𝜂 (𝑢 · 𝑛) (𝐷 [𝑢 ] · 𝑛)

)
𝑤 · 𝑛𝑑𝑆

𝑇 ′𝑆 =
1

𝛼

∫
Γ𝑆

(
ℎ′𝜂 ( [𝑢 ] · 𝑛−) (𝐷 [ [𝑢 ] ] · 𝑛−)

)
𝑤 · 𝑛𝑑𝑆

𝑇 ′𝐶𝐹 =
𝜇

𝛼

∫
Γ𝐶

ℎ′𝜂 (𝑢 · 𝑛) (𝑛 · 𝐷 [𝑢 ]) 𝑁 ′𝜂 (𝑢𝑡 ) · 𝑤 +

+ ℎ𝜂 (𝑢 · 𝑛) 𝑁 ′′𝜂 (𝑢𝑡 )
(
𝐼 − 𝑛𝑛𝑇

)
𝐷 [𝑢 ] · 𝑤 𝑑𝑆

𝑇 ′𝑆𝐹 =
𝜇

𝛼

∫
Γ𝑆

(
ℎ′𝜂 ( [𝑢 ] · 𝑛−) 𝑛 · 𝐷 [𝑢 −𝑢𝑜 ]

) (
𝑁 ′𝜂 ( (𝑢 −𝑢𝑜 )𝑡 ) · 𝑤

)
+ ℎ𝜂 ( [𝑢 ] · 𝑛−) 𝑁 ′′𝜂 ( (𝑢 −𝑢𝑜 )𝑡 )

(
𝐼 − 𝑛𝑛𝑇

)
𝐷 [𝑢 −𝑢𝑜 ] · 𝑤 𝑑𝑆

B FORMULAS FOR THE DISCRETE SHAPE DERIVATIVE
COEFFICIENTS 𝑆𝑚 [𝑢, 𝜌]

𝑆𝑚 [𝑢, 𝜌 ] = 𝑆𝑒𝑚 + 𝑆𝑐𝑚 , where the first term is related to the elasticity equation and the

second to contact and friction terms. In turn, 𝑆𝑐𝑚 = 𝑆𝐶 + 𝑆𝑆 + 𝑆𝐶𝐹 + 𝑆𝑆𝐹 , the sum
of terms for different types of contact forces. For these terms we have the following

expressions, where we consider uniform surface load 𝑔 = 𝐺
|Γ𝑁 |

:

𝑆𝑒𝑚 =

(∫
Ω
[𝑒 − 𝜀 (𝜌) : 𝜎 ]∇𝜆𝑚 + [∇𝜆𝑚 · (𝜎𝜌𝑛 + (𝜀 (𝜌) : 𝐶 − 𝜏)𝑢𝑛) ]∇𝜑𝑛𝑑𝑉

)
+(

− 1

|Γ𝑁 |

(∫
Γ𝑁

𝜌 · 𝑔𝑑Γ𝑁

) (∫
Γ𝑁

∇𝜆𝑚 𝑑Γ𝑁

)
+

(∫
Γ𝑁

(𝜌 · 𝑔) ∇𝜆𝑚 𝑑Γ𝑁

))
(27)

𝑆𝐶 = − 1

𝛼

∫
Γ𝐶

ℎ′𝜂 (𝑢 · 𝑛) (𝜌 · 𝑛) (−(𝑢 · ∇𝜆𝑚) + (𝑢 · 𝑛) (∇𝜆𝑚 · 𝑛))𝑛

+ℎ𝜂 (𝑢 · 𝑛) (−(𝜌 · ∇𝜆𝑚) + (𝜌 · 𝑛) (∇𝜆𝑚 · 𝑛))𝑛
+ℎ𝜂 (𝑢 · 𝑛) (𝜌 · 𝑛) ∇𝜆𝑚 𝑑𝑆

𝑆𝑆 = − 1

𝛼

∫
Γ𝑆

ℎ′𝜂 ( [𝑢 ] · 𝑛−) (𝜌 · 𝑛)
[
− ( [𝑢 ] · ∇𝜆𝑚) + ( [𝑢 ] · 𝑛−) (∇𝜆𝑚 · 𝑛−)

]
𝑛−

+ℎ𝜂 ( [𝑢 ] · 𝑛−) (−(𝜌 · ∇𝜆𝑚) + (𝜌 · 𝑛) (∇𝜆𝑚 · 𝑛))𝑛
+ℎ𝜂 ( [𝑢 ] · 𝑛−) (𝜌 · 𝑛) ∇𝜆𝑚 𝑑𝑆

𝑆𝐶𝐹 =
𝜇

𝛼

∫
Γ𝐶

−ℎ′𝜂 (𝑢 · 𝑛)𝜌 · 𝑁 ′ (𝑢𝑡 ) ( (𝑢 · 𝑛) (∇𝜆𝑚 · 𝑛) −𝑢 · ∇𝜆𝑚)𝑛

+ℎ (𝑢 · 𝑛) (𝑁 ′′ (𝑢𝑡 ) · 𝜌) · (−𝑢 · ∇𝜆𝑚𝑛+
(𝑢 · 𝑛) (∇𝜆𝑚 · 𝑛)𝑛 + (𝑢 · 𝑛) (−∇𝜆𝑚 + (∇𝜆𝑚 · 𝑛)𝑛))𝑛
− ℎ (𝑢 · 𝑛)𝜌 · 𝑁 ′ (𝑢𝑡 ) ∇𝜆𝑚 𝑑𝑆

𝑆𝑆𝐹 =
𝜇

𝛼

∫
Γ𝑆

−ℎ′𝜂 ( [𝑢 ] · 𝑛−)𝜌 · 𝑁 ′ ( [𝑢 ]𝑡 ) ( ( [𝑢 ] · 𝑛−) (∇𝜆𝑚 · 𝑛−) − [𝑢 ] · ∇𝜆𝑚)𝑛−

+ℎ ( [𝑢 ] · 𝑛) (𝑁 ′′ ( [𝑢 ]𝑡 ) · 𝜌) · (−[𝑢 ] · ∇𝜆𝑚𝑛−+
( [𝑢 ] · 𝑛−) (∇𝜆𝑚 · 𝑛−)𝑛− + ( [𝑢 ] · 𝑛−) (−∇𝜆𝑚 + (∇𝜆𝑚 · 𝑛−)𝑛−))𝑛−

− ℎ ( [𝑢 ] · 𝑛−)𝜌 · 𝑁 ′ ( [𝑢 ]𝑡 ) ∇𝜆𝑚 𝑑𝑆

C FABRICATION PROCESSES
We have validated the performance of our system on several simple

assemblies fabricated with 3D printing and laser-cutting. These are

shown in Figures 17-18-20-22. For the lever and hook example as

shown in Figures 17, 21, the fabrications are done with 3D print-

ing (Ultimaker 3), using PLA material. For these experiments, we

used Ultimaker Cura for slicing. We used fine printing setting, with

0.1mm layer height and infill density equal to 100%. The general

print speed was also altered to 40mm/s and reduced to 12𝑚𝑚/𝑠
(18𝑚𝑚/𝑠) when printing the inner (outer) walls of the object, in

order to have a more precise printing of connections. In addition,

to guarantee that objects connect, we offset the polygon shapes by

0.05mm, reducing them to account for the printing thickness.

For the bridge and tower examples (see Figures 18, 23), the exper-

imented objects were obtained through laser-cutting 1/8" (3.175mm)

acrylic boards, using Epilog Mini cutter. Notice that laser-cutting

removes material, so we perturbed the models to account for that,

offsetting the polygonal shapes by 0.05mm.

For our 3D examples, we also 3D printed our coat rack optimized

model, shown in Figure 30. We used the fast setting on Cura soft-

ware, with 0.2mm layer height, and reduced the speed to 50mm/s.
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Even though we assembled with wood dowels, which can carry

imprecision in the measures, the pieces still fit tightly.

D ADAPTIVE QUADRATURE
In different steps of our algorithm, during the simulation and also

shape derivative computation, we need to perform the computation

of integrals. For simpler cases using linear elasticity, this is not a

challenge and we can simply use Gaussian quadrature, for example.

However, when adding penalization due to normal contact and

friction, the choice of how to perform these computations becomes

very important.

As an example,consider the discretized normal contact force. Here,

we assume we are using quadratic FEM elements. Our discretized

contact function per contact element Γ𝑒
𝑆
is:

𝑗 ′𝐷𝑁,𝛼 (𝑢) =
1

𝛼

∫
Γ𝑒
𝑆

𝜑𝐴 (𝑝 (𝑥))𝑛𝑖 ℎ𝜂 ((𝑢 (𝑝 (𝑥)) · 𝑛) 𝑑𝑆

where 𝛼 is a constant,𝑛 is constant for each element, 𝑝 (𝑥) maps each

point 𝑥 into barycentric coordinates of the element, 𝜑 corresponds

to the quadratic baricentric basis and 𝑢, the displacement, is also

quadratic. ℎ𝜂 is the same as previously defined:

ℎ𝜂 (𝑦) =


0 𝑦 ⩽ −𝜂
1

4𝜂𝑦
2 + 1

2
𝑦 + 𝜂

4
−𝜂 ⩽ 𝑦 ⩽ 𝜂

𝑦 𝑦 ⩾ 𝜂

Notice that 𝑢 (𝑝) · 𝑛 defines the region of the piecewise function.

To find the boundary between each of these regions, we would need

to solve𝑢 (𝑝) ·𝑛 = ±𝜂. Notice that this corresponds to a quadratic 2D
equation and the solution corresponds to a conic section: parabola,

hyperbole, ellipse or circle. We have 2 equations, so our original

domain is partitioned by a maximum of 2 conic sections. Since the

two equations differ only by 𝜂, we expect that the regions boundary

are going to have very similar shapes. See an example in Figure 38:

Fig. 38. Example of different regions in piecewise quadrature computation
with 𝜂 = 10

−2. In this case, we have two hyperbolas. So, in total, 5 different
regions. On the right side, an example of how the triangles can be split.

To show the accuracy of the quadrature computation, con-

sider the following example in 3D: 𝑢0 = [0.0, 0.1,−0.05], 𝑢1 =

[0.1, 0.2;−0.03], 𝑢2 = [−0.1, 0.0,−0.02], 𝑢3 = [−0.05, 0.01, 0.02],
𝑢4 = [−0.02,−0.02, 0.01], 𝑢5 = [0.02,−0.03, 0.01], 𝑛 =

[
1√
3

, 1√
3

, 1√
3

]
,

𝛼 = 10
−4
, 𝜂 = 10

−4
and nodes and coordinates 𝐴 = 0 and 𝑖 = 0.

Here, 𝑢 𝑗 corresponds to the discrete displacement at each of our 5

nodes of our triangle element. Using Matlab’s integral2 function

(with absolute tolerance set at 10
−10

), we can compute 𝑗 ′𝐷
𝑁,𝛼

to ob-

tain −0.329516. Using (order 10) Gaussian quadrature, we obtain

−0.438527. These errors can accumulate and generate problems in

convergence for our simulation.

We implemented then an adaptive approach for computing in-

tegrals in our framework. First, we define the scheme to be used

by the regions of our triangle. We evenly sample the triangle using

𝑚 points, identifying the regions where these points are contained.

In our case, we used𝑚 = 10. If not all𝑚 points are from the same

region (easily verified by computing 𝑢 (𝑝) · 𝑛 value), we split the

triangle into 4 pieces of same area and repeat this process recur-

sively, until a maximum depth is reached. See an example on the

right side of Figure 38 In our case, we identified that depth equal

to 5 guarantees good results. Inside each of the final triangles, we

use (order 10) Gaussian quadrature to compute the integral. Using

this method, for the same example as above, we obtained result

−0.329560, which is accurate up to 4th digit after the decimal point

when compared to the numerical result of the integral2 function.

E MESHING
We use triangle meshes in 2D and tetrahedral meshes in 3D for our

shapes.

For 2D, we define shape outlines using Adobe Illustrator, encod-

ing boundary conditions using color; shared boundaries between

parts are represented as single polylines. We then transform the

geometry in the resulting SVG file into the input format for Trian-

gle [Shewchuk 1996], removing the duplicate edges defining the

contact area between different pieces. After obtaining the mesh for

the interior, we split the triangle mesh into part meshes. At the

end of each inner loop in Algorithm 1, we extract the polygonal

boundary of the current solution and remesh it using Triangle again.

In 3D, the input to the meshing process is a collection of surface

meshes of individual parts. We assume that in the contact zone, the

distance between meshes is small, (in our specific examples we use

boolean operations to produce surface for parts, with connectors

obtained, e.g., by adding a cylinder to one part, and subtracting it

for another, which produces close surfaces. After that, we generate

the volumetric mesh using fTetWild [Hu et al. 2020] with surface

meshes from the previous step as input. fTetWild has a threshold 𝜖𝑚
within which close parallel triangles of a surface mesh are merged;

we set it to a sufficiently large value to obtain a single contact

surface. For most cases, we used the default value of 1e-3 for 𝜖𝑚 ,

but increased the value to adjust to different gaps coming from the

surface mesh generation.

As in 2D, we apply remeshing to keep a good mesh quality after a

sequence of optimization steps. In 3D, remeshing is done in different

ways: (a) preserving mesh surface, which is done with CGAL’s

package for tetrahedral remeshing [Tournois et al. 2021]; or (b)

remeshing the boundary as well, by reapplying fTetWild. Choosing

between this two options is also a parameter in our framework.

We used option (a) for most of our scenarios, but for truss and

dodecahedron example, boundary remeshing was used at every 5

remeshing operations. If remeshing the boundary with fTetWild

fails, e.g., due to generation of pieces with non-manifold meshes,

option (a) is used instead.
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