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While deep learning approaches to survival data have demonstrated em-
pirical success in applications, most of these methods are difficult to interpret
and mathematical understanding of them is lacking. This paper studies the
partially linear Cox model, where the nonlinear component of the model is
implemented using a deep neural network. The proposed approach is flexi-
ble and able to circumvent the curse of dimensionality, yet it facilitates in-
terpretability of the effects of treatment covariates on survival. We establish
asymptotic theories of maximum partial likelihood estimators and show that
our nonparametric deep neural network estimator achieves the minimax opti-
mal rate of convergence (up to a polylogarithmic factor). Moreover, we prove
that the corresponding finite-dimensional estimator for treatment covariate
effects is

√
n-consistent, asymptotically normal and attains semiparametric

efficiency. Extensive simulation studies and analyses of two real survival data
sets show the proposed estimator produces confidence intervals with superior
coverage as well as survival time predictions with superior concordance to
actual survival times.

1. Introduction. Over the past decade, deep learning has begun substantially out-
performing other statistical learning methods in many domains such as image analysis
(Krizhevsky, Sutskever and Hinton (2012), Farabet et al. (2012), Szegedy et al. (2015)),
speech recognition (Hinton et al. (2012), Graves, Mohamed and Hinton (2013)) and natu-
ral language processing (Collobert et al. (2011), Sarikaya, Hinton and Deoras (2014)). More
recently, a new class of deep learning models have been introduced for survival analysis
(Faraggi and Simon (1995), Chapfuwa et al. (2018), Katzman et al. (2018), Ren et al. (2019)),
leading to sizeable performance improvements in this area. To shed light on the success of
these methods, this paper provides theoretical analysis of deep neural networks (DNNs) ap-
plied to right censored data. For an in-depth overview on DNNs and their applications, we
refer the reader to the review paper by LeCun, Bengio and Hinton (2015) and the recent
monograph by Goodfellow, Bengio and Courville (2016).

A neural network is a parameterized composition of simple functions that can accurately
model complex relationships when stacked in multiple layers. Typically, the operation at
each layer is simply a linear transformation followed by a simple elementwise nonlinear
transformation (which is called the activation function and might, e.g., be the rectifier func-
tion: max{x,0}). In the last decades, the neural network has been theoretically established as
a powerful tool for function approximation. For instance, Cybenko (1989), Hornik, Stinch-
combe and White (1989), Leshno et al. (1993) established that shallow neural networks with
single hidden layer can approximate any continuous function to any degree of accuracy. This
is often referred to as universal approximation in the machine learning literature.
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Given a known degree of accuracy, Barron (1993, 1994), Mhaskar (1996), Pinkus (1999)
further investigated the number of parameters required in a shallow neural network to ap-
proximate a certain smoothness class of functions. Compared to shallow networks, deep neu-
ral networks with many layers can achieve similar approximation error using exponentially
fewer number of parameters (Telgarsky (2015), Mhaskar, Liao and Poggio (2017)). In or-
der to approximate certain r-dimensional functions at a specified error level ε, DNNs only
need O(1/ε) parameters while similar shallow networks require at least O(1/εr) parameters.
This underscores one major advantage of deep over shallow neural networks. More extensive
approximation theory for DNNs has been developed to study how certain architectures can
model some specific classes of underlying functions, such as nonsmooth functions (Imaizumi
and Fukumizu (2019)), Sobolev spaces (Yarotsky (2017), Gühring, Kutyniok and Petersen
(2020)) and composite functions (Schmidt-Hieber (2017, 2020), Bauer and Kohler (2019)).
The latter group of papers establish that DNNs are able to learn the parsimony structure of a
composite function.

Extending this function approximation theory (which only quantifies the underlying bias),
Schmidt-Hieber (2017, 2020) and Bauer and Kohler (2019) investigated the asymptotic prop-
erties of deep-learned statistical estimators for nonparametric regression. For n i.i.d. obser-
vations (Xi, Yi) ∈ [0,1]r ×R, they considered the regression model

(1) Yi = g0(Xi) + εi,

where g0 is an unknown function and εi are i.i.d. noise variables. It is well known that at-
tempts to estimate g0 generally suffer from a curse of dimensionality if the dimension r of
Xi is large. Schmidt-Hieber (2017, 2020) and Bauer and Kohler (2019) showed that under
mild smoothness/structure assumptions for g0, DNN estimators cannot only circumvent the
curse of dimensionality, but also achieve optimal minimax rate of convergence (up to some
logarithmic factors). In contrast, estimators based on wavelet series are merely able to ob-
tain suboptimal convergence rates for some classes of g0, which illuminates clear theoretical
advantages of DNN models (Schmidt-Hieber (2017, 2020)).

Although the nonparametric regression model (1) is highly flexible (thanks to the func-
tion approximation property of DNN), it does not facilitate intepretability of the underlying
relationship between X and Y , particularly if we wish to understand the effect of particular
treatment covariates Z ∈ R

p that comprise a subset of the variables in X. Furthermore, it is
nontrivial to fit this model (1) when data have been right censored, which often occurs in sur-
vival analysis when a patient drops out of the study before the event of interest occurs. Here,
right censored data refer to situation when the actual event time U is subject to right censor-
ing by a censoring variable C, so the actual observations are (T ,�), where T = min{U,C}
is the observed event time and � = 1(U ≤ C) is an indicator variable with � = 1 if T equals
to an actual survival time U and � = 0 otherwise.

For example, it is of principal interest to determine whether chemotherapy or hormonal
treatment has an effect on breast cancer survival in the Rotterdam Breast Cancer Study
(Foekens et al. (2000)), where the event time for 57.35% of patients were right censored.
Nonparametric regression models like (1) are not applicable for right censored data, and also
cannot provide interpretation or statistical inference for the effects of particular covariates.
This paper addresses these issues by introducing an interpretable model that can fit right cen-
sored survival data, while still leveraging the powerful representation-learning capabilities of
deep learning.

We consider the use of DNNs to augment the partially linear Cox model (PLCM) first in-
troduced by Sasieni (1992a). In PLCM, the hazard function of the survival time U conditional
on a vector covariate (Z,X) ∈ R

p ×R
r is represented as

(2) λ(u|X,Z) = λ0(u) exp
{
θ�

0 Z + g0(X)
}
.
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Here, λ0 is an unknown baseline hazard function, θ0 ∈ R
p is an unspecified parameter and

g0 : Rr → R is an unknown function. Here, we leverage DNN to represent the function g0
and distinguish our method as the deep partially linear Cox model (DPLCM). This model
is quite flexible: it includes both the popular Cox proportional hazards model [CPH, Cox
(1972, 1975)] in the absence of nontreatment covariates X, as well as the nonparametric Cox
models (Hastie and Tibshirani (1990), Sleeper and Harrington (1990), O’Sullivan (1993),
Kooperberg, Stone and Truong (1995), Chen and Zhou (2007), Chen et al. (2010)) in the
absence of treatments Z. Thus, our model not only inherits the simple interpretation of the
finite-dimensional parameter θ0 in the Cox proportional hazards model, but also models more
complex nonlinear effects of the covariate X, and thus can more accurately capture properties
of real survival data.

Previous work has studied the general DPLCM model in (2) but has difficulties to han-
dle multivariate X. For example, Therneau, Grambsch and Fleming (1990) and Fleming and
Harrington (1991) used martingale residuals to investigate the case of univariate X. Sasieni
(1992a, 1992b) focused on calculating information bounds and asymptotic efficiency of θ0
estimates, and suggested a spline estimate of function g0 without details about its asymp-
totics. Dabrowska (1997) established asymptotic properties of PLCM estimators obtained by
maximizing a smoothed profile likelihood, but the required multivariate numerical integration
will be intractable in practice when there are many auxiliary covariates. With an additional
additive assumption of g0, Huang (1999) showed that the partial likelihood estimates of θ0
achieves the information bound and the estimates of g0 converges to g0 at the standard one-
dimensional nonparametric convergence rate. Later on, Du, Ma and Liang (2010) studied
variable selection of PLCM with high-dimensional covariates Z.

Although deep learning has received increasing attention in survival analysis, to date there
is little theoretical understanding of model (2) when g0 is approximated using a DNN. Merely
considering nontreatment covariates X, Faraggi and Simon (1995) employed an one hidden-
layer neural network to estimate g0(X). However, their model did not produce significant
improvements (Xiang et al. (2000)) in terms of concordance index (Harrell et al. (1982)),
a version of the receiver operating characteristic curve that measures the predictive power
of survival models on censored survival data. Later, with the same replacement, Katzman
et al. (2018) considered multilayer neural network to approach the same model and obtained
remarkable results in applications. Similar variants of the CPH model using more complex
neural network architectures have been developed for particular applications, such as ge-
nomic data (Yousefi et al. (2017), Ching, Zhu and Garmire (2018)), clinical research (Matsuo
et al. (2019)) and medical imaging data (Haarburger et al. (2019), Li et al. (2019)). Additional
deep learning methods to study survival data has also emerged recently including the hier-
archical generative approach (Ranganath et al. (2016)), the generative adversarial network
approach (Chapfuwa et al. (2018)) and the recurrent neural network approach (Giunchiglia,
Nemchenko and Van der Schaar (2018), Ren et al. (2019)). Despite their success in prediction,
the aforementioned neural network approaches are black-box models that lack interpretabil-
ity for treatment effects, since the treatment covariate is lumped with all other covariates in
a nonlinear/nonconvex neural network. It is thus difficult to provide trustworthy estimates of
the treatment effects and uncertainty quantification for estimated effects.

In addition to being ill suited for treatment effect estimation, current approaches to deep
learning for survival analysis elude our current mathematical understanding (Katzman et al.
(2018), Ranganath et al. (2016), Lee et al. (2018), Hao et al. (2019)). In this work, we max-
imize a partial likelihood function to estimate the nonparametric function g0 in (2) using a
deep neural network, and establish theoretical properties of the resulting estimator. Analy-
sis of neural networks for nonlinear function approximation is the subject of a vast literature
(Anthony and Bartlett (1999), Bauer and Kohler (2019), Unser (2019), Dou and Liang (2021),
Farrell, Liang and Misra (2021)).
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One advantage of the deep neural network approach is that it can accommodate a rich
class of g0 to avoid the curse of dimensionality and yields faster convergence rates than
nonparametric smoothing methods. Here, we postulate an intrinsic dimension assumption on
g0 and show that its DNN-estimator is consistent and converges at a rate that depends only on
the intrinsic dimension and smoothness of this function. This intrinsic dimension, introduced
in Section 2, essentially represents the complexity of function g0 and contains a large number
of previously-studied function classes, such as, single (multiple) index functions (Ichimura
(1993), Härdle, Hall and Ichimura (1993)), (generalized) additive functions (Stone (1985),
Horowitz and Mammen (2007)) and (generalized) hierarchical interaction functions (Bauer
and Kohler (2019)).

Under mild regularity conditions, and using a DNN whose complexity grows with the data
(as would be used in practical applications), we establish consistency and convergence rate of
the nonparametric function estimator and asymptotic normality for the parametric component
of the DPLCM model. The convergence rate of the function estimator is minimax optimal (up
to a polylogarithmic factor) and the parametric estimator is semiparametric efficient (Bickel
et al. (1993), van der Vaart (2000), Kosorok (2008)).

To summarize, this paper provides a flexible-yet-interpretable partially linear Cox model
that performs well for multivariate covariates by leveraging a powerful DNN model to repre-
sent nonlinear effects. Optimal asymptotic theory is established for both the parametric (lin-
ear) and nonparametric (DNN) components of our model. To the best of our knowledge, this
is the first paper that contains theoretical support for proportional hazards models that utilize
deep learning. Our work is inspired by the recent theoretical developments in deep learn-
ing for nonparametric regression (Schmidt-Hieber (2017, 2020), Bauer and Kohler (2019)).
However, our analysis contains major differences, in part due to complications from random
censoring in survival data. First, DPLCM is comprised of two nonparametric components
as well as a parametric component, while nonparametric regression models only involve a
single nonparametric component. DPLCM’s parametric component facilitates interpretabil-
ity of treatment effects but its analysis requires different theoretical tools than nonparametric
regression. For instance, to establish semiparametric efficiency, we require martingale the-
ory to derive the efficient score and information bound for θ0. Second, the theory of DNN
nonparametric regression is built on the framework of least squares loss, while our approach
maximizes a log partial likelihood. Third, establishing a minimax lower bound for the non-
parametric target requires restrictions on the error distributions in the nonparametric regres-
sion setting, and Schmidt-Hieber (2017, 2020) restrictively assume errors are normally dis-
tributed. In contrast, our proportional hazards assumption itself allows a minimax bound to
be established without any such additional assumptions.

We present our proposed estimation procedure in Section 2 and the main theoretical prop-
erties of the estimators in Section 3. In Section 4, we apply the proposed method to simulated
and real data and compare it with CPH (Cox (1972)) and the partially linear additive Cox
model (Huang (1999)), two popular methods for estimating treatment effects on survival.
Section 5 concludes the discussion and the proofs are relegated to Section 6. Many auxiliary
results are provided in the Supplementary Material (Zhong, Mueller and Wang (2022)).

2. Methodology.

2.1. Deep neural networks. We briefly review the use of DNNs as function approxima-
tors; for further details; see Goodfellow, Bengio and Courville (2016). Let K be a positive
integer and p = (p0, . . . , pK,pK+1) be some positive integer sequence. A (K + 1)-layer
DNN with layer-width p is a composite function g :Rp0 →R

pK+1 recursively defined as

(3)
g(x) = WKgK(x) + vK,

gK(x) = σ
(
WK−1gK−1(x) + vK−1

)
, . . . , g1(x) = σ(W0x + v0).
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FIG. 1. A 4-layer deep neural network with p = (5,4,3,3,1).

Here, the matrices Wk ∈ R
pk+1×pk and vectors vk ∈ R

pk+1 (for k = 0, . . . ,K) are the param-
eters of this DNN g. Chosen a priori, the activation functions σ are simple nonlinear trans-
formations that operate componentwise, that is, σ((x1, . . . , xpk

)�) = (σ (x1), . . . , σ (xpk
))�,

which thus gives gk = (gk1, . . . , gkpk
)� :Rpk−1 →R

pk for k = 1, . . . ,K . While many choices
of activation function are considered in deep learning, the most popular one is the rectified
linear unit (ReLU) in Nair and Hinton (2010):

σ(x) = max{x,0}.
Throughout this paper, we focus on ReLU activation for its widespread use (LeCun, Bengio
and Hinton (2015), Ramachandran, Zoph and Le (2017)), empirical success (Krizhevsky,
Sutskever and Hinton (2012)) and theoretical support (Liang and Srikant (2016), Yarotsky
(2017), Schmidt-Hieber (2020)). For the DNN in (3), K denotes the depth of the network and
vector p lists the width of each layer (p0 is the dimension of the input variable, p1, . . . , pK

are the dimensions of the K hidden layers, and pK+1 is the dimension of the output layer).
The matrix entries (Wk)i,j are the weight linking the j th neuron in layer k to the ith neuron in
layer k + 1, and the vector entries (vk)i represent a shift term associated with the ith neuron
in layer k + 1. For example, Figure 1 depicts a 4-layer DNN with p = (5,4,3,3,1).

Let N+ be the set of all positive natural numbers. Given K ∈ N+ and p ∈ N
K+2+ , we

consider a class of DNN:

(4)
G(K,p) = {

g : g is a DNN with (K + 1) layers and width vector p such that

max
{‖Wk‖∞,‖vk‖∞

} ≤ 1, for all k = 0, . . . ,K
}
,

where ‖ · ‖∞ denotes the sup-norm of matrix or vector. Empirically the size of the learned
matrices Wk and vectors vk are rarely large when the size of initial matrices and vectors used
to initialize stochastic gradient training are relatively small (as is typically the case). Thus
we just consider the DNNs whose matrices and vectors are bounded by one. In practice, a
deep feedforward network with fully-connected layers contains a huge number of parameters,
which can lead to overfitting. This issue can be mitigated by pruning weights, which reduces
the total number of nonzero parameters such that the network’s layers are only sparsely con-
nected (Han et al. (2015), Srinivas, Subramanya and Venkatesh Babu (2017), Schmidt-Hieber
(2017, 2020)). Following similar methodology, we consider, for s ∈ N+ and D > 0, a class
of sparse neural networks

(5) G(K, s,p,D) :=
{
g ∈ G(K,p) :

K∑
k=1

‖Wk‖0 + ‖vk‖0 ≤ s,‖g‖∞ ≤ D

}
,

where ‖ · ‖0 is the number of nonzero entries of matrix or vector, and ‖g‖∞ is the sup-norm
of function g.
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2.2. Estimation. Consider a survival study with right-censored data, where U and C

denote survival and censored time, respectively, and (Z,X) ∈ R
p × R

r form a (p + r)-
dimensional vector of covariates (Z contains the treatment indicator). Due to censoring, we
only observe n i.i.d. copies (T1,�1,Z1,X1), . . ., (Tn,�n,Zn,Xn) from (T ,�,Z,X), where
T = min{U,C} is the observed event time and � = 1(U ≤ C) is an indicator variable with
� = 1 if T equals to an actual survival time U and � = 0 otherwise. As is standard in sur-
vival analysis (Cox and Oakes (1984), Fleming and Harrington (1991)), we assume that the
survival time U and censored time C are independent conditional on the covariates (Z,X).

In the DPLCM (2), the parameter θ0, nonparametric function g0, and baseline function λ0
are all unknown.

We approximate g0 using a DNN g ∈ G, whose input is the r-dimensional vector X and
output is a scalar-value. Here, we employ the shorthand G = G(K, s,p,∞). More precisely,
we first estimate (θ0, g0) by maximizing the log partial likelihood (Cox (1972, 1975)):

(6) (θ̂ , ĝ) = arg max
(θ,g)∈Rp×G

Ln(θ, g),

where Ln(θ, g) = 1
n

∑n
i=1 �i[θ�Zi + g(Xi) − log

∑
j :Tj≥Ti

exp{θ�Zj + g(Xj )}].

3. Theoretical results. In this section, we study the asymptotic properties of the log
partial likelihood estimators in (6). Some restrictions on the nonparametric function g0 are
needed and we assume that it belongs to a Hölder class of smooth functions, which is fairly
broad and also adopted by Schmidt-Hieber (2017, 2020). Specifically, a Hölder class of
smooth functions with parameters α,M > 0 and domain D ⊂ R

r is

Hα
r (D,M) =

{
g :D →R : ∑

β:|β|<α

∥∥∂βg
∥∥∞ + ∑

β:|β|=�α�
sup

x,y∈D,x 
=y

|∂βg(x) − ∂βg(y)|
‖x − y‖α−�α�∞

≤ M

}
,

where �α� is the largest integer strictly smaller than α, ∂β := ∂β1 . . . ∂βr with β =
(β1, . . . , βr), and |β| = ∑r

k=1 βk . Let q ∈ N, M > 0, α = (α0, . . . , αq) ∈ R
q+1
+ and d =

(d0, . . . , dq+1) ∈N
q+2
+ , d̃ = (d̃0, . . . , d̃q) ∈ N

q+1
+ with d̃j ≤ dj , j = 0, . . . , q , where R+ is the

set of all positive real numbers. We further assume that g0 belongs to a composite smoothness
function class:

(7)
H(q,α,d, d̃,M) := {

g = gq ◦ · · · ◦ g0 : gi = (gi1, . . . , gidi+1)
� and

gij ∈ Hαi

d̃i

([ai, bi]d̃i ,M]), for some |ai |, |bi | ≤ M
}
.

Functions in this class are characterized by two kind of dimensions, d and d̃ , where the latter
represents the intrinsic dimension of the function. For example, if

(8) g(x) = g21
(
g11

(
g01(x1, x2), g02(x3, x4)

)
, g12

(
g03(x5, x6), g04(x7, x8)

))
, x ∈ [0,1]8,

and gij are twice continuously differentiable, then smoothness α = (2,2,2), dimensions d =
(8,4,2,1) and d̃ = (2,2,2).

The composite smoothness class H(q,α,d, d̃,M) subsumes a rich set of classical smooth-
ness classes. For instance, Stone (1985) considered nonparametric regression with general-
ized additive functions

g(x) =
I1∑

i=1

gi

(
r∑

j=1

aij xj

)
,
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where the gi, i = 1, . . . , I1, are univariate Hölder smoothness functions and some I1 ∈ N+.
Horowitz and Mammen (2007) analyzed a more complex nonparametric regression model

g(x) = gi0

(
I1∑

i1=1

gi1

(
I2∑

i2=1

gi1,i2

(
· · ·

Ik∑
ik=1

gi1,...,ik (xi1,...,ik )

)))
,

where gi0, gi1, . . . , gi1,...,ik are univariate Hölder smoothness functions, xi1,...,ik are one-
dimensional elements of a vector x ∈ R

r and I1, . . . , Ik ∈ N+.
Furthermore, we denote α̃i = αi

∏q
k=i+1(αk ∧ 1) and γn = maxi=0,...,q n−α̃i/(2α̃i+d̃i ) with

notation a ∧ b := min{a, b}. Recalling the DNN definition in (3), we first assume the follow-
ing about the structure of the DNN model and the covariate:

(A1) K = O(logn), s = O(nγ 2
n logn) and nγ 2

n � min(pk)k=1,...,K ≤ max(pk)k=1,...,K �
n.

(A2) The covariate (Z,X) takes value in a bounded subset of Rp+r with joint probability
density function bounded away from zero, and there exists a norm bound for the parameter
θ0 ∈ R

p
M := {θ ∈R

p : ‖θ‖ ≤ M}. Without loss of generality, we assume that the domain of X

is taken to be [0,1]r .

Assumption (A1) determines the structure of the neural network family G(K, s,p,D) in
(5). According to Anthony and Bartlett (1999) and Schmidt-Hieber (2017, 2020), more flex-
ible neural networks (with more parameters) can achieve smaller approximation error. The
latter is defined as the distance between true function g0 and g̃, the projection of g0 onto
the space of functions that can be implemented by a neural network from G(K, s,p,∞).
However, a larger neural network often leads to larger estimation error, the distance be-
tween ĝ and g̃. Assumption (A1) thus provides a trade-off between the approximation error
and estimation error, while (A2) is a standard assumption for semi/nonparametric regression
(Horowitz (2009)).

Because of the presence of two nonparametric components, the baseline hazard function λ0
and g0, model (2) is not identifiable. But this can be corrected by a constraint E{g0(X)} = 0
along with additional identifiability assumptions below on the covariate (Z,X).

(B1) The nonparametric function g0 is an element of H0 = {g ∈ H(q,α,d, d̃,M) :
E{g(X)} = 0} and the matrix E{Z −E(Z|X)}⊗2 is nonsingular, where v⊗2 = vv� for a col-
umn vector v.

Our theoretical analysis also adopts the following standard assumptions on Cox model:

(B2) The study ends at time τ and there exits a small constant δ > 0 such that P(� =
1|X,Z) ≥ δ and P(U ≥ τ |X,Z) ≥ δ almost surely with respect to the probability measure of
(X,Z).

(B3) There exist constants 0 < c1 < c2 < ∞ such that the subdensity p(t, x,� = 1) of
(T ,X,� = 1) satisfies c1 < p(t, x,� = 1) < c2 for all (t, x) ∈ [0, τ ] × [0,1]r .

(B4) For some k > 1, the kth partial derivative of the subdensity p(t, x, z,� = 1) of
(T ,X,Z,� = 1) with respect to (t, x) ∈ (0, τ ) × (0,1)r exists and is bounded.

The space H0 in (B1) is a rich class, since for any g ∈ H(q,α,d, d̃,M), g/2 −
E{g(X)/2} ∈ H0. The first part of Assumption (B2), P(� = 1|Z,X) ≥ δ, is a minimal as-
sumption that guarantees a nonnull probability of observing noncensored data. The second
part, P(U ≥ τ |Z,X) ≥ δ, is needed to ensures that the baseline cumulative hazard function

0(t) = ∫ t

0 λ0(s) ds is bounded at the end of the study time τ , and this is often satisfied in
practice when some subjects are still alive at the end of the study. In Assumption (B3), the
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subdensity p(t, x,� = 1) is defined as

p(t, x,� = 1) = ∂2
P(T ≤ t,X ≤ x,� = 1)

∂t∂x
.

Likewise, the subdensity p(t, x, z,� = 1) in Assumption (B4) has a similar definition. As-
sumption (B3) ensures that the information bound for θ exists, and Assumption (B4) is used
to establish the asymptotic normality of θ̂ . These assumptions are not particularly stringent,
especially compared with existing survival analysis theory (Huang (1999), Jiang and Jiang
(2011)). We also provide one simple example that simultaneously satisfies all of these as-
sumptions in the Supplementary Material (Zhong, Mueller and Wang (2022)), noting there
are many more such examples.

THEOREM 3.1. Under assumptions (A1), (A2), (B1) and (B2), there exists an estimator
ĝ in (6) satisfying E{ĝ(X)} = 0, such that

‖ĝ − g0‖L2([0,1]r ) = Op

(
γn log2 n

)
.

It is well known that DPLCM (2) suffers from a severe “curse-of-dimensionality” when
nonparametric smoothing methods (e.g., kernels or splines) are employed to estimate g0.
Under these classical models, accurate estimation is thus challenging even for a covariate
X of moderately high dimensionality. Under our DNN-based DPLCM model, the curse-of-
dimensionality is alleviated by projecting the data onto a much lower-dimensional represen-
tational space (Yarotsky (2017), Schmidt-Hieber (2017, 2020), Bauer and Kohler (2019)),
where the DNN is able to accurately approximate this representational space. This is a key
advantage of utilizing a DNN estimator rather than traditional smoothing methods.

Under the assumption of the representational space H(q,α,d, d̃,M) in (7), Theorem 3.1
reveals that the convergence rates are jointly determined by the smoothness α and intrinsic
dimension d̃ of the function g0, rather than the dimension d . Thus, the proposed DPLCM can
circumvent the curse of dimensionality and enjoys faster convergence rate when the intrinsic
dimension d̃ is relative low. For example, if the true function g0 has a form in (8), then the
traditional smoothing methods lead to slow convergence rate of order n−1/6, in contract, the
proposed method yields convergence rate of order n−1/3 log2 n. Moreover, the convergence
rate of the DPLCM estimator for g0 enjoys the one-dimensional nonparametric convergence
rate, up to a polylogarithmic factor (as the estimator in Huang (1999) when the true model is
PLACM).

Below, we show the minimax lower bound for estimating g0.

THEOREM 3.2. Let �0 = {λ : ∫ τ
0 λ(s) ds < ∞ and λ ≥ 0}. Under assumptions (A2),

(B1) and (B2), there exists a constant 0 < c < ∞, such that

(9) inf
ĝ

sup
(θ0,λ0,g0)∈Rp

M×�0×H0

E
{
ĝ0(X) − g0(X)

}2 ≥ cγ 2
n ,

where the infimum is taken over all possible estimators ĝ based on the observed data.
Therefore, the partial likelihood estimate in Theorem 3.1 is rate optimal because it attains

the minimax lower bound (up to a polylogarithm factor).

Next, we establish the efficient score and information bound for estimating θ0 (Bickel
et al. (1993), van der Vaart (2000), Kosorok (2008)). Let �λ0 be the collection of all sub-
families {logλa : a ∈ (−1,1)} ⊂ {logλ : λ ∈ �0} such that lima→0 ‖a−1(logλa − logλ0) −
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h‖L2([0,τ ]) = 0 where h ∈ L2([0, τ ]), and let

Tλ0 =
{
h ∈ L2([0, τ ]) : lim

a→0

∥∥a−1(logλa − logλ0) − h
∥∥
L2([0,τ ]) = 0 for some subfamily

{
logλa : a ∈ (−1,1)

} ∈ �λ0

}
.

Likewise, let Hg0 denote the collection of all subfamilies {gb ∈ L2([0,1]r ) : b ∈ (−1,1)} ⊂
H0 such that limb→0 ‖b−1(gb − g0) − g‖L2([0,1]r ) → 0, and let

Tg0 =
{
g ∈ L2([0,1]r) : lim

b→0

∥∥b−1(gb − g0) − g
∥∥
L2([0,1]r ) = 0 for some subfamily

{
gb : b ∈ (−1,1)

} ∈ Hg0

}
.

Set Tλ0 and Tg0 be the closed linear span (the closure under linear combinations) of Tλ0 and
Tg0 , respectively.

Let M(t) = �1(T ≤ t) − ∫ t
0 1(T ≥ s) exp{θ�

0 V + g0(X)}λ0(s) ds be the counting process
martingale associated with the model (Andersen and Gill (1982)).

THEOREM 3.3. Under assumptions (A2) and (B1)–(B3), the efficient score for θ0 is

�∗
θ0

(V ,�,T ) =
∫ τ

0

{
Z − h∗(t) − g∗(X)

}
dM(t).

Here, the vector function (h�∗ ,g�∗ )� ∈ (Tλ0)
p × (Tg0)

p is the minimizer of E{�‖Z − h(T )−
g(X)‖2

c}, where the notation ‖v‖2
c = (v2

1, . . . , v2
p)� for vector v = (v1, . . . , vp)� and the min-

imization operates componentwise on the vector.
Moreover, the information bound for θ0 is

I (θ0) = E
{
�∗
θ0

(V ,�,T )
}⊗2 = E

[
�

{
Z − h∗(T ) − g∗(X)

}⊗2]
.

The next theorem establishes the asymptotic normality of θ̂ with
√

n-consistency.

THEOREM 3.4. Under assumptions (A1), (A2) and (B1)–(B4). If the information matrix
I (θ0) is nonsingular and nγ 4

n → 0 as n → ∞. Then we have

√
n(θ̂ − θ0) = n−1/2I (θ0)

−1
n∑

i=1

�∗
θ0

(Vi,�i, Ti) + op(1)
d−→ N(0,�),

where � = I (θ0)
−1.

Although the nonparametric estimator ĝ in Theorem 3.1 converges slower than
√

n, the
maximum partial likelihood estimator for parameter θ0 can still attain

√
n-consistency and

asymptotic normality. Most impressive is that the information bound in Theorem 3.3 is at-
tained by our estimator θ̂ , so it is semiparametrically efficient. We provide an estimate of the
asymptotic variance � in Section 4.1 and additional discussion about it in the Supplementary
Material (Zhong, Mueller and Wang (2022)).

4. Numerical implementation and results.

4.1. Computational details. The maximization of the log partial likelihood function in
(6), was implemented using Pytorch (Paszke et al. (2019)). Since the log partial likelihood
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function is nonconvex with respect to the parameters θ , Wk and vk , it is challenging to com-
pute the estimator (θ̂ , ĝ) via classical optimization techniques. In this work, we employ the
Adam optimizer, which has become extremely popular in deep learning as it is practically
performant and reliable across models/data sets (Kingma and Ba (2014)).

Initialization. We initialize the stochastic optimization algorithm by choosing an initial value
for θ through the solution of the conventional CPH model (Cox (1972, 1975)) when treat-
ing g(X) as a linear predictor. This solution is obtained from the Python package lifelines
(Davidson-Pilon (2019)). As it is less clear how to select good initial values for matrices Wk

and vectors vk of the function g (Glorot and Bengio (2010), Martens (2010), Saxe, McClel-
land and Ganguli (2013)), we simply use Pytorch’s default random initialization.

Choice of hyperparameters. Implementing g0 and θ0 in practice requires the specification
of the number of hidden layers K , number of neurons pk in all K hidden layers, dropout rate
(Srivastava et al. (2014)) and the learning rate (Goodfellow, Bengio and Courville (2016)).
These tuning parameters are referred to as the “hyperparameters” in the deep learning com-
munity. For simplicity, we use the same number of neurons in every hidden layer (i.e.,
pk = pj for 1 ≤ k, j ≤ K). The dropout is the rate of randomly ignored neurons during
training, so it only involves g and not θ .

The learning rate is defined as the step size for the gradient descent in the Adam algo-
rithm (Kingma and Ba (2014)). We treat these decisions as hyperparameters and tune them
via a grid search where the log partial likelihood is evaluated over a held-out validation set
after each training trial. Detailed configurations of these hyperparameters are displayed in
the Supplementary Material (Zhong, Mueller and Wang (2022)) for the simulations and data
analysis. To mitigate overfitting, in each run we hold out 20% of the training set as the valida-
tion set, where training of the neural network is early stopped once the log partial likelihoods
on the validation set stop reliably improving (Goodfellow, Bengio and Courville (2016)).

Calculation of the information bound. To perform inference for the parametric θ0, we need
to estimate the asymptotic covariance matrix � = I (θ0)

−1 in Theorem 3.4. Recall that the
information bound I (θ0) = E[�{Z − h∗(T ) − g∗(X)}⊗2] with minimizer h∗ and g∗ defined
in Theorem 3.3. In practice, we estimate (h∗,g∗) via minimizing empirical objective function

(ĥ∗, ĝ∗) = arg min
(h∗,g∗)

1

n

n∑
i=1

�i

∥∥Zi − h∗(Ti) − g∗(Xi)
∥∥2
c.

However, it is difficult to get the convincing solution by using the classical nonparametric
methods (e.g., kernel regression and spline regression) due to the high dimensionality of
function g∗. Hence, we employ a DNN to approach (ĥ∗, ĝ∗). The inputs and outputs of
this DNN are (T ,X) and h∗(T ) + g∗(X), respectively. The implementation details of these
networks are similar to the network we use to maximize log partial likelihoods (6) described
above. Subsequently, with the resulting estimate (ĥ∗, ĝ∗), we can estimate the information
bound via

Î (θ) = 1

n

n∑
i=1

�i

{
Zi − ĥ∗(Ti) − ĝ∗(Xi)

}⊗2
.

4.2. Simulation study. We carry out simulation studies to illustrate the finite sample per-
formance of the proposed DPLCM method. Here, we also provide numerical comparisons
with the Cox proportional hazards model [CPH, Cox (1972, 1975)] and partially linear addi-
tive Cox model [PLACM, Huang (1999)].
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For all simulations, covariates X with dimension d = 5 are generated from a Gaussian
copula on [0,2] with correlation parameter 0.5. Each coordinate of X is marginally dis-
tributed according to the continuous uniform distribution on [0,2]. The covariate Z is set
to be Bernoulli (p = 0.5) distributed or normally distributed as N(0.5,0.5). The treatment
effect is fixed at θ = 1.0. Given the covariates (Z,X), the survival time U is generated based
on the hazard function:

λ(t) = λ0(t) exp
{
θ0Z + g0(X)

}
,

where the baseline λ0 is chosen to be a linear function 0.1t , under which the event times
follow a Weibull distribution. We consider four different cases for the underlying function
g0(x), where x ∈ [0,2]5 for each case:

Case 1 (Linear): g0(x) = x1 + 2x2 + 3x3 + 4x4 + 5x5 − 15.5,
Case 2 (Additive): g0(x) = x2

1 + 2x2
2 + x3

3 + √
x4 + 1 + log(x5 + 1) − 8.6,

Case 3 (Deep 1): g0(x) = x2
1x3

2 + log(x3 + 1) + √
x4x5 + 1 + exp (x5/2) − 8.2,

Case 4 (Deep 2): g0(x) = {x2
1x3

2 + log(x3 + 1) + √
x4x5 + 1 + exp (x5/2)}2/20 − 6.0.

We add various intercept terms 15.5, 8.6, 8.2 and 6.0 to g0 to ensure all four cases satisfy
E{g0(X)} = 0. The first two cases, where g0 is linear or additive, are designed to evaluate the
performance in simple settings. Note that Case 1 and Case 2 satisfy the settings of the CPH
model and PLACM model, respectively. To study the performance in more complex general
DPLCM settings, we consider: Case 3, which represents a compositional highly-nonlinear
underlying function, and Case 4, which further increases the underlying function’s composi-
tionality by composing the g0 from Case 3 inside of an extra squared function. Specifically,
g0 in Case 3 can be expressed as

(10) g0(x) = h11
(
h01(x1, x2), h02(x3), h03(x4, x5), h04(x5)

)
,

where h01(x, y) = x2y3, h02(x) = log(x+1), h03(x, y) = √
xy + 1, h04(x) = exp (x/2), and

h11(x, y, z,w) = x + y + z + w − 8.2. And g0 in Case 4 is

g0(x) = h21
(
h11

(
h01(x1, x2), h02(x3), h03(x4, x5), h04(x5)

))
,

where h01, h02, h03, h04, h11 are the same as in (10) but h21(x) = (x2 + 16.4x + 8.22)/20 −
6.0. To simulate right censoring, censoring times C are independently generated from an
exponential distribution with parameter μ. We choose μ to control the overall censoring
rate, using two different values in each simulation case, which roughly produce 40% or 60%
censoring (for Case 1: μ = 18 or 2.5, for Case 2: μ = 18 or 5, for Case 3: μ = 28 or 10, for
Case 4: μ = 45 or 18).

In each simulation case, we perform Q = 200 simulation runs with sample sizes n =
500,1000 or 2000. With Ti = min{Ui,Ci} and �i = 1(Ui ≤ Ci), our models are fit to ob-
servations of the form: {(Zi,Xi, Ti,�i) : i = 1, . . . , n}. We use 64% of the simulated data in
each simulation run to compute our estimates under a particular hyperparameter configura-
tion (e.g., number of layers/neurons, dropout and learning rates) and 16% of the simulated
data is reserved as validation data used to tune these hyperparameters. The remaining 20% of
the simulated data are held out as test data to evaluate the resulting estimates.

We evaluate the performance of estimates ĝ using the relative error

(11) RE(ĝ) =
[ 1

n1

∑n1
i {(ĝ(Xi) − ¯̂g) − g0(Xi)}2

1
n1

∑n1
i=1{g0(Xi)}2

]1/2
,

where ĝ and g0 are evaluated on the covariates of the test set {Xi : i = 1, . . . , n1} and ¯̂g =∑n1
i=1 ĝ(Xi)/n1. We subtract the mean of ĝ on the test set, because the solution of maximizing

the log partial likelihood is only unique up to a constant.
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Table 1 reports the biases and standard deviations of the estimated θ̂ over 200 simulation
runs from each case. Results of the proposed DPLCM method under each simulation setting
suggest that θ0 can be estimated almost unbiasedly and the mean square errors decrease
steadily as the sample size increases from 500 to 2000. As expected, low censoring rates lead
to more precise estimates of θ0 for both binary and continuous covariates. DPLCM greatly
outperforms the CPH and PLACM methods in complex settings of Case 3 and Case 4, where
the overly restrictive CPH and PLACM methods result in large biases. Under the simpler
Case 1 (which meets CPH assumptions) or Case 2 (which meets PLACM assumptions), the
DPLCM method remains strongly competitive with little loss of efficiency.

For each simulation run, we also estimated the information bound I (θ0), whose inverse
can be used to calculate the asymptotic variance of θ̂ (Theorem 3.4). We use the estimated
asymptotic variance to build a 95% confidence interval for θ0. Table 2 displays the observed
coverage of these confidence intervals. Generally, the coverage rate is near 95% for our pro-
posed DPLCM method, especially when the sample size n is large. Under Case 3 or Case 4,
the poor coverage of CPH and PLACM confidence intervals indicates the uncertainty quan-
tification produced by these methods may be unreliable in practice.

Table 3 compares the performance of all three methods in estimating the nonparametric
function ĝ. Here, we report the relative error (RE) on the test data from each simulation run.
When the underlying function stems from Case 1 or Case 2, the DPLCM method fares only
slightly worse than the perfectly specified CPH or PLACM model. However, when the under-
lying function belongs to Case 3 or Case 4, DPLCM is substantially more accurate than the
other methods. Note that perfect specification of CPH or PLACM is unlikely for real-world
data. As the sample size n increases, the RE of the DPLCM estimator decreases substantially
as guaranteed by Theorem 3.1. As expected, each method produces better estimates of θ0
and g0 with larger n in correctly specified settings. Between Case 3 and Case 4, all methods
perform worse under the more complicated Case 4 setting, yet the performance gaps between
the two cases become narrower for DPLCM as n increases while this gap remains large for
CPH and PLACM.

In the Supplementary Material (Zhong, Mueller and Wang (2022)), we also evaluate the
predictive performance of all three methods using the concordance index (Harrell et al.
(1982)). We find that DPLCM produces superior concordance between the ranks of the pre-
dicted survival times and the ranks of actual survival times when compared to CPH and
PLACM models. In conclusion, these simulations demonstrate the appealing performance
of our DPLCM method for estimation and prediction with and without model misspecifica-
tion. The empirical results qualitatively agree with our theoretical analysis from the previous
section.

4.3. Rotterdam Breast Cancer Data. To demonstrate our proposed DPLCM method on
real data, we consider the Rotterdam Breast Cancer Data (publicly available at the R pack-
age survival). Foekens et al. (2000) used these data to study potential factors that affect the
survival time of cancer patients, defined as the days from primary surgery to the earlier of dis-
ease recurrence or death. The data consist of 2982 subjects with 57.35% censoring rate and
nine baseline covariates (i.e., age, progesterone receptors, estrogen receptors, number of pos-
itive lymph nodes, menopausal status, tumor size, tumor grade, chemotherapy and hormonal
treatment), among which the first four variables are continuous and the last five are discrete.
Using this data, we investigate the efficacy of chemotherapy or hormonal treatments.

As in Section 4.2, we model the data with three approaches: the proposed deep partially
linear Cox model (DPLCM), Cox proportional hazards (CPH) and the partially linear addi-
tive Cox model (PLACM). We report results from five-fold cross-validation, where in each
fold: we hold out 20% of training data as a validation set to choose hyperparameters and sub-
sequently compute concordance index on a separate set of test data. For this data, we entered
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TABLE 1
The bias and standard deviation (in parentheses) of θ̂ for the DPLCM, CPH and PLACM methods. We report the results over 200 simulated data sets for each of the four cases. In

each simulation run, only 64% of the data were used to obtain the estimates, so the actual sample sizes are 320, 640, 1280 for n = 500,1000,2000

Z ∼ Bernoulli(p = 0.5) Z ∼ N(0.5,0.5)

40% censoring rate 60% censoring rate 40% censoring rate 60% censoring rate

n DPLCM CPH PLACM DPLCM CPH PLACM DPLCM CPH PLACM DPLCM CPH PLACM

Case 1 500 −0.0489 0.0046 0.0226 0.0579 0.0374 −0.0551 0.0621 0.0444 −0.0220 0.0538 0.0378 −0.0494
(0.1626) (0.1592) (0.1617) (0.2182) (0.2036) (0.2137) (0.1747) (0.1691) (0.1716) (0.2210) (0.2080) (0.2081)

1000 0.0238 0.0114 −0.0100 0.0295 0.0132 −0.0122 0.0261 0.0098 −0.0076 0.04528 0.0309 −0.0405
(0.1206) (0.1150) (0.1166) (0.1479) (0.1398) (0.1421) (0.1232) (0.1177) (0.1216) (0.1343) (0.1289) (0.1307)

2000 0.0070 0.0003 −0.0051 0.0172 0.01025 −0.0017 0.0095 −0.0041 −0.0090 0.0197 0.0121 0.0131
(0.0776) (0.0754) (0.0764) (0.1021) (0.0965) (0.0987) (0.0698) (0.0680) (0.0684) (0.0989) (0.0983) (0.0972)

Case 2 500 −0.0595 −0.1938 −0.0575 −0.0158 −0.1616 −0.0726 −0.0602 −0.1862 −0.0581 −0.0703 −0.1760 −0.0639
(0.1931) (0.1724) (0.1863) (0.2218) (0.2074) (0.2141) (0.1807) (0.1483) (0.1602) (0.2032) (0.1850) (0.1953)

1000 0.0229 −0.1927 −0.0215 0.0260 −0.1784 −0.0255 0.0233 −0.2017 −0.0259 0.0228 −0.1768 −0.0345
(0.1150) (0.1089) (0.1020) (0.1372) (0.1347) (0.1278) (0.1188) (0.1132) (0.1161) (0.1288) (0.1223) (0.1219)

2000 0.0134 −0.1968 −0.0127 0.0143 −0.1838 −0.0047 0.0191 −0.1915 −0.0037 0.0174 −0.1753 −0.0137
(0.0749) (0.0759) (0.0753) (0.0954) (0.0935) (0.0953) (0.0816) (0.0777) (0.0816) (0.1023) (0.0935) (0.0933)

Case 3 500 −0.1046 −0.3208 −0.3285 −0.2136 −0.3798 −0.4083 −0.1146 −0.3289 −0.3408 −0.2214 −0.3941 −0.4157
(0.1642) (0.1591) (0.1768) (0.2125) (0.2056) (0.2275) (0.1587) (0.1622) (0.1824) (0.2018) (0.1799) (0.1965)

1000 −0.0402 −0.3293 −0.3340 −0.0756 −0.3645 −0.3677 −0.0517 −0.3411 −0.3476 −0.0624 −0.3796 −0.3952
(0.1194) (0.1188) (0.1397) (0.1441) (0.1394) (0.1432) (0.1253) (0.1150) (0.1240) (0.1382) (0.1300) (0.1368)

2000 −0.0476 −0.3435 −0.3549 −0.0490 −0.3805 −0.3802 −0.0442 −0.3490 −0.3560 −0.0596 −0.3820 −0.3824
(0.0735) (0.0741) (0.0855) (0.0977) (0.0933) (0.1047) (0.0756) (0.0755) (0.0862) (0.0978) (0.0863) (0.0942)

Case 4 500 −0.1397 −0.3121 −0.2995 −0.2831 −0.438596 −0.4404 −0.1420 −0.3244 −0.2965 −0.2707 −0.4332 −0.4168
(0.1638) (0.1737) (0.2018) (0.2059) (0.1932) (0.2335) (0.1788) (0.1828) (0.2051) (0.1915) (0.1803) (0.2136)

1000 −0.0773 −0.3140 −0.2940 −0.1671 −0.4443 −0.4381 −0.0949 −0.3401 −0.3209 −0.1589 −0.4379 −0.4226
(0.1182) (0.1228) (0.1426) (0.1432) (0.1360) (0.1559) (0.1262) (0.1175) (0.1348) (0.1476) (0.1376) (0.1666)

2000 −0.0732 −0.3257 −0.3247 −0.1228 −0.4294 −0.4237 −0.0677 −0.3310 −0.3320 −0.1213 −0.4250 −0.4256
(0.0911) (0.0771) (0.0920) (0.1008) (0.0880) (0.1024) (0.0968) (0.0900) (0.1070) (0.0999) (0.0884) (0.1038)
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TABLE 2
Empirical coverage probability of 95% confidence intervals for θ0 for the DPLCM, CPH and PLACM methods. We report coverage observed over 200 simulated data sets for each

of the four cases. In each simulation run, only 64% of the data were used to fit models, so the actual sample sizes are 320, 640, 1280 for n = 500,1000,2000

Z ∼ Bernoulli(p = 0.5) Z ∼ N(0.5,0.5)

40% censoring rate 60% censoring rate 40% censoring rate 60% censoring rate

n DPLCM CPH PLACM DPLCM CPH PLACM DPLCM CPH PLACM DPLCM CPH PLACM

Case 1 500 0.965 0.955 0.955 0.945 0.935 0.940 0.920 0.930 0.930 0.915 0.945 0.920
1000 0.960 0.950 0.945 0.965 0.960 0.950 0.935 0.940 0.935 0.930 0.950 0.925
2000 0.950 0.950 0.955 0.955 0.945 0.940 0.955 0.950 0.945 0.960 0.950 0.945

Case 2 500 0.935 0.725 0.955 0.940 0.830 0.935 0.930 0.790 0.935 0.945 0.855 0.950
1000 0.935 0.555 0.950 0.955 0.710 0.945 0.935 0.520 0.945 0.955 0.725 0.945
2000 0.950 0.220 0.950 0.960 0.450 0.950 0.955 0.295 0.955 0.965 0.500 0.950

Case 3 500 0.965 0.500 0.905 0.930 0.480 0.885 0.915 0.465 0.885 0.915 0.450 0.890
1000 0.960 0.165 0.815 0.950 0.210 0.835 0.945 0.125 0.770 0.935 0.195 0.735
2000 0.955 0.005 0.545 0.950 0.015 0.630 0.955 0.005 0.425 0.940 0.005 0.505

Case 4 500 0.925 0.465 0.905 0.890 0.385 0.860 0.915 0.445 0.890 0.895 0.395 0.875
1000 0.920 0.225 0.890 0.900 0.085 0.790 0.930 0.150 0.840 0.915 0.090 0.750
2000 0.930 0.010 0.700 0.925 0.000 0.650 0.935 0.035 0.565 0.925 0.010 0.435
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TABLE 3
The relative error and standard deviation (in parentheses) of ĝ for the DPLCM, CPH and PLACM methods. We report results over 200 simulated data sets for each of the four

cases. In each simulation run, only 64% of the data were used to obtain the estimates, so the actual sample sizes are 320, 640, 1280 for n = 500,1000,2000

Z ∼ Bernoulli(p = 0.5) Z ∼ N(0.5,0.5)

40% censoring rate 60% censoring rate 40% censoring rate 60% censoring rate

n DPLCM CPH PLACM DPLCM CPH PLACM DPLCM CPH PLACM DPLCM CPH PLACM

Case 1 500 0.1684 0.0482 0.1063 0.2432 0.0713 0.1561 0.1735 0.0521 0.1082 0.2377 0.0668 0.1552
(0.0737) (0.0277) (0.0431) (0.1072) (0.0463) (0.0610) (0.0794) (0.0338) (0.0477) (0.1140) (0.0422) (0.0626)

1000 0.0995 0.0364 0.0632 0.1402 0.0412 0.0954 0.1009 0.0340 0.0622 0.1403 0.0428 0.0982
(0.0391) (0.0223) (0.0256) (0.0716) (0.0272) (0.0384) (0.0517) (0.0215) (0.0250) (0.0650) (0.0275) (0.0432)

2000 0.0610 0.0247 0.0406 0.0863 0.0303 0.0642 0.0630 0.0249 0.0386 0.0841 0.0295 0.0613
(0.0285) (0.0141) (0.0160) (0.0403) (0.0181) (0.0251) (0.0264) (0.0151) (0.0147) (0.0409) (0.0163) (0.0254)

Case 2 500 0.2085 0.2314 0.1022 0.3302 0.2537 0.1344 0.2092 0.2327 0.1042 0.3222 0.2470 0.1331
(0.0612) (0.0160) (0.0380) (0.1159) (0.0340) (0.0476) (0.0573) (0.0144) (0.0365) (0.1024) (0.0298) (0.0499)

1000 0.1610 0.2292 0.0671 0.3065 0.2426 0.0870 0.1623 0.2298 0.0671 0.2979 0.2404 0.0864
(0.0397) (0.0105) (0.0258) (0.0880) (0.01648) (0.0367) (0.0373) (0.0104) (0.0243) (0.0886) (0.0180) (0.0314)

2000 0.1045 0.2283 0.0436 0.2109 0.2377 0.0568 0.1049 0.2278 0.0436 0.2159 0.2397 0.0577
(0.0229) (0.0070) (0.0144) (0.0609) (0.0114) (0.0235) (0.0255) (0.0072) (0.0161) (0.0667) (0.0128) (0.0223)

Case 3 500 0.2191 0.4773 0.4580 0.2874 0.4503 0.4036 0.2245 0.4795 0.4615 0.2800 0.4434 0.4055
(0.0528) (0.0527) (0.0574) (0.0952) (0.0351) (0.0451) (0.0616) (0.0448) (0.0480) (0.0913) (0.0383) (0.0477)

1000 0.1338 0.4744 0.4458 0.1784 0.4323 0.3798 0.1363 0.4744 0.4448 0.1840 0.4319 0.3890
(0.0250) (0.0345) (0.0386) (0.0438) (0.0234) (0.0329) (0.0265) (0.0377) (0.0402) (0.0467) (0.0192) (0.0311)

2000 0.0945 0.4729 0.4408 0.1169 0.4293 0.3761 0.0947 0.4752 0.4449 0.1203 0.4301 0.3768
(0.0143) (0.0261) (0.0280) (0.0211) (0.0130) (0.0226) (0.0155) (0.0245) (0.0245) (0.0224) (0.0129) (0.0254)

Case 4 500 0.3230 0.5108 0.4815 0.3075 0.4569 0.4322 0.31610 0.5030 0.4738 0.3134 0.4603 0.4369
(0.0764) (0.0773) (0.0760) (0.0769) (0.0709) (0.0752) (0.0747) (0.0804) (0.0792) (0.0748) (0.0724) (0.0757)

1000 0.1705 0.4963 0.4626 0.1604 0.4565 0.4248 0.1683 0.4944 0.4610 0.1649 0.4607 0.4311
(0.0478) 0.0560) (0.0550) (0.0451) (0.0547) (0.0592) (0.0508) (0.0584) (0.0561) (0.0434) (0.0493) (0.0530)

2000 0.1188 0.4937 0.4607 0.1125 0.4544 0.4206 0.1197 0.4927 0.4589 0.1121 0.4567 0.4222
(0.0299) (0.0395) (0.0386) (0.0240) (0.0378) (0.0390) (0.0308) (0.0424) (0.0412) (0.0217) (0.0377) (0.0386)
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FIG. 2. Estimates and 95% confidence intervals of θ1 (chemotherapy) and θ2 (hormonal treatment) for five folds
in Rotterdam data.

the chemotherapy, the hormonal treatment along with the other three discrete covariates as
linear predictor Z and model the remaining four continuous covariates nonparametrically (as
X) for DPLCM and PLACM.

Figures 2(a) and 2(b) display the estimated θ1 and θ2 of the chemotherapy and hormonal
treatment, respectively, as well as corresponding 95% confidence intervals across all five
folds. Note that the intervals derived from DPLCM do not cover zero while all intervals de-
rived from CPH cover zero. This shows that the proposed method is able to identify the effect
of the two treatments consistent with the medical consensus that both chemotherapy and hor-
mone treatments are effective for breast cancer (https://www.cancer.org/cancer/breast-cancer/
treatment). In contrast, CPH did not detect any treatment effects and PLACM produced in-
consistent results on the five-fold cross-validated data sets with three folds resulting in no
treatment effects but the other two folds resulting in significant treatment effects for both
treatments. Such incongruity suggests PLACM estimates are unstable, which does not help
practitioners decide how to guide patient treatment.

In the Supplementary Material (Zhong, Mueller and Wang (2022)), we also evaluate how
well each model is able to predict patients’ survival in terms of concordance index, and we
repeat this comparison on another real-world data set from the Worcester Heart Attack Study
(Hosmer, Lemeshow and May (2008)). On both data sets (and many train/test folds), DPLCM
produces substantially better survival predictions than CPH and PLACM, showing the pro-
posed model better fits real-world data.

5. Discussion. With its ability to flexibly model complex characteristics of real-world
data, deep learning for survival analysis has garnered considerable attention. This paper stud-
ied a DNN approach to DPLCM, which not only provides a powerful tool to remedy the
curse of dimensionality with many covariates, but also allows us to easily interpret treatment
effects while still providing a flexible/accurate model. Estimators of treatment effect coef-
ficients obtained by maximizing the log partial likelihood are shown to achieve asymptotic
efficiency, and our estimator of the unknown nonlinear function g0 is rate optimal.

This paper has only investigated the common setting where covariates X are Euclidean
vectors. Yet there are many other complex data types of interest for future work. For ex-
ample, deep learning has shown great promise for image and text classification (Krizhevsky,
Sutskever and Hinton (2012), Szegedy et al. (2015), Lee and Dernoncourt (2016)), yet a com-
prehensive study for survival data with treatment and image/text covariates still remains to be
conducted. Image (or text) data are often represented by a convolutional (or transformer) neu-
ral networks, which compose convolutional layers with fully connected layers. These neural

https://www.cancer.org/cancer/breast-cancer/treatment
https://www.cancer.org/cancer/breast-cancer/treatment
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architectures are different than simpler fully-connected architectures we studied in (5) and
their theoretical analysis remains an important challenge. Medical images and clinician notes
may provide valuable information for better modeling patient survival.

Another idea for future work is to extend the methodology to high-dimensional Z if one
is interested in identifying a small number of key treatments for clinical decision making.
Our DPLCM methodology could be applied to high-dimensional partially linear Cox mod-
els by appropriately regularizing θ via LASSO-type penalties or smoothly clipped absolute
deviation (Du, Ma and Liang (2010), Liu et al. (2016), Wu et al. (2020)).

6. Proofs of theorems.

6.1. Notation. For any vector v = (v1, . . . , vp)� ∈ Rp , ‖v‖ = (
∑p

i=1 v2
i )

1/2 and ‖v‖∞ =
maxi |vi |, and for any matrix W = (wij ) ∈ R

m×n, ‖W‖∞ = maxi,j |wij |. For any function h,
‖h‖∞ and ‖h‖L2 are the sup-norm and L2-norm of h, respectively, and for any vector function
h = (h1, . . . , hp)�, ‖h‖∞ = maxi ‖hi‖∞. Denote an � bn as an ≤ cbn for some c > 0 and
any n. And an � bn means an � bn and bn � an.

With η = (θ, g) and V = (Z,X), write ξη(V ) = θ�Z + g(X). We denote the true pa-
rameter by η0 = (θ0, g0). For any η1 = (θ1, g1) and η2 = (θ2, g2), define d(η1, η2) =
[E{ξη1(V ) − ξη2(V )}2]1/2. With Y(t) = 1(T ≥ t), define

R0n(t, η) = 1

n

n∑
i=1

Yi(t) exp
{
ξη(Vi)

}
, R0(t, η) = E

[
Y(t) exp

{
ξη(V )

}]
,

and for any vector function h of V = (Z,X),

R1n(t, η,h) = 1

n

n∑
i=1

Yi(t)h(Vi) exp
{
ξη(Vi)

}
, R1(t, η,h) = E

[
Y(t)h(V ) exp

{
ξη(V )

}]
.

Then define

ln(t, V , η) = {
ξη(V ) − logR0n(t, η)

}
1(0 ≤ t ≤ τ),

l0(t,V , η) = {
ξη(V ) − logR0(t, η)

}
1(0 ≤ t ≤ τ).

Since the log partial likelihood Ln(η) in (6) is Ln(η) = 1
n

∑n
i=1{�iln(Ti,Vi, η) − �i logn},

and

arg max
η∈Rp×G

Ln(η) = arg max
η∈Rp×G

1

n

n∑
i=1

�iln(Ti,Vi, η),

with an abuse of notation, we replace below the log partial likelihood Ln(η) by 1
n

∑n
i=1{�i ×

ln(Ti,Vi, η)}.
Furthermore, we denote Pn and P as the empirical and probability measure of (Vi,�i, Ti)

and (V ,�,T ), that is, for any function h of (V ,�,T ),

Pnh(V,�,T ) = 1

n

n∑
i=1

h(Vi,�i, Ti) and Ph(V,�,T ) = Eh(V,�,T ).

Therefore, we have Ln(η) = Pn{�ln(T ,V,η)} and further define L0(η) = P{�l0(T ,V,η)}.
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6.2. Proof of Theorem 3.1. We first only consider the estimator η̂∗ = (θ̂∗, ĝ∗) with
E{ξη̂∗(V )} = E{ξη0(V )} in (6). In fact, for any estimator η̂ = (θ̂ , ĝ) in (6), its transforma-
tion η̂∗ = (θ̂ , ĝ −E{ξη̂(V ) − ξη0(V )} is also an estimator in (6), because Ln(η̂) = Ln(η̄) and
one can check that this transformation satisfies E{ξη̂∗(V )} = E{ξη0(V )}.

We now show that d(η̂∗, η0)
p→ 0 as n → ∞, and

d
(
η̂∗, η0

) = Op

(
γn log2 n

)
.

For some D > 0, let Rp
D = {θ ∈ R

p : ‖θ‖∞ < D} and GD := G(K, s,p,D) set in (5). Define

(12) η̂∗
D = (

θ̂∗
D, ĝ∗

D

) = arg max
η∈Rp

D×GD,

E{ξη(V )}=E{ξη0 (V )}

{
Ln(θ, g)

}
.

Note that P(d(η̂∗, η0) < ∞) = 1. If it is not true, there exist a constant ε1 > 0, such that
P(d(η̂∗, η0) ≥ c) ≥ ε1 for any c > 0. However, this contradicts the fact that the η̂∗ is the
maximizer of Ln(η) and P(Ln(η) → −∞ as d(η, η0) → ∞ with E{ξη(V )} = E{ξη0(V )}) =
1. Thus, it suffices to show that d(η̂∗

D,η0)
p→ 0 as n → ∞ for some large enough D.

Observe that∣∣Ln(η) − L0(η)
∣∣

≤ ∣∣Pn

{
�ln(T ,V,η)

} − Pn

{
�l0(T ,V,η)

}∣∣ + ∣∣Pn

{
�l0(T ,V,η)

} − P
{
�l0(T ,V,η)

}∣∣
≤ Pn

{
�

∣∣logR0n(T , η) − logR0(T , η)
∣∣} + ∣∣(Pn − P)

{
�l0(T ,V,η)

}∣∣
� sup

0≤t≤τ

∣∣R0n(t, η) − R0(t, η)
∣∣ + ∣∣(Pn − P)

{
�l0(T ,V,η)

}∣∣
= sup

0≤t≤τ

∣∣(Pn − P)
{
Y(t)eξη(V )}∣∣ + ∣∣(Pn − P)

{
�l0(T ,V,η)

}∣∣.
By Lemma 1, we know that F1 = {Y(t)eξη(V ) : 0 ≤ t ≤ τ, η ∈ R

p
D × GD} and F2 =

{�l0(T ,V,η) : η ∈ R
p
D × GD} are P-Glivenko–Cantelli, then it follows:

(13) sup
η∈Rp

D×GD

∣∣Ln(η) − L0(η)
∣∣ p→ 0.

Define

g̃1 = arg min
g∈G(K,s,p,D/2)

‖g − g0‖L2 .

By the proof of Theorem 1 in Schmidt-Hieber (2020), we know ‖g̃1 − g0‖L2 = O(γn log2 n).
Let g̃ = g̃1 −E{g̃1(X)}. Then g̃ ∈ GD and

(14)
‖g̃ − g0‖L2 = ∥∥g̃1 − g0 −E

{
g̃1(X) − g0(X)

}∥∥
L2

� ‖g̃1 − g0‖L2 = O
(
γn log2 n

)
.

Then, by (13), Lemma 2 and the law of large numbers, we have∣∣Ln(θ0, g̃) − Ln(θ0, g0)
∣∣ ≤ ∣∣Ln(θ0, g̃) − L0(θ0, g̃)

∣∣ + ∣∣L0(θ0, g̃) − L0(θ0, g0)
∣∣

+ ∣∣L0(θ0, g0) − Ln(θ0, g0)
∣∣

= op(1).

Since η̂∗
D is the maximizer of (12), we have Ln(θ̂

∗
D, ĝ∗

D) ≥ Ln(θ0, g̃) = Ln(θ0, g0)−op(1),
which gives

(15) Ln

(
η̂∗

D

) ≥ Ln(η0) − op(1).
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Moreover, Lemma 2 implies that, for any small ε > 0,

(16) sup
d(η,η0)≥ε,

E{ξη(V )}=E{ξη(V )}
L0(η) < L0(η0).

Therefore, the conditions of Theorem 5.7 in van der Vaart (2000) follows from (13), (15) and
(16), and this implies that d(η̂∗

D,η0) → 0 as n → ∞.
Next, we show the convergence rates d(η̂∗

D,η0) = Op(γn log2 n). Let Aδ = {η = (θ, g) ∈
R

p
D × GD : δ/2 ≤ d(η, η0) ≤ δ}. We first need to show that

(17) E
∗ sup

η∈Aδ

√
n
∣∣(Ln − L0)(η) − (Ln − L0)(η0)

∣∣ � φn(δ),

where E
∗ is the outer measure and φn(δ) = δ

√
s log U

δ
+ s√

n
log U

δ
with U = K

∏K
k=0(pk +

1)
∑K

k=0 pkpk+1. By calculation,

(Ln − L0)(η) − (Ln − L0)(η0) = (Pn − P)
{
�l0(T ,V,η) − �l0(T ,V,η0)

}
+ Pn

{
� log

R0(T , η)

R0(T , η0)
− � log

R0n(T , η)

R0n(T , η0)

}

� I + II.

By Lemma 3, we obtain

(18) sup
η∈Aδ

|I| = O
(
n−1/2φn(δ)

)
.

For the second term II, we have

sup
η∈Aδ

|II| ≤ sup
η∈Aδ,t∈[0,τ ]

∣∣∣∣log
R0(t, η)

R0(t, η0)
− log

R0n(t, η)

R0n(t, η0)

∣∣∣∣
� sup

η∈Aδ,t∈[0,τ ]

∣∣∣∣ R0(t, η)

R0(t, η0)
− R0n(t, η)

R0n(t, η0)

∣∣∣∣
= sup

η∈Aδ,t∈[0,τ ]

∣∣∣∣R0(t, η)R0n(t, η0) − R0(t, η0)R0n(t, η)

R0(t, η0)R0n(t, η0)

∣∣∣∣.
The denominator R0(t, η0)R0n(t, η0) is bounded away from zero with probability tending to
one. And the numerator has

(19)

R0(t, η)R0n(t, η0) − R0(t, η0)R0n(t, η)

= {
R0n(t, η0) − R0(t, η0)

}{
R0(t, η) − R0(t, η0)

}
− R0(t, η0)

{
R0n(t, η) − R0n(t, η0) − R0(t, η) + R0(t, η0)

}
.

For the first term of the right-hand side in (19), it follows from the central limit theorem that
R0n(t, η0) − R0(t, η0) = Op(n−1/2), and∣∣R0(t, η) − R0(t, η0)

∣∣ ≤ E
∣∣eξη(V ) − eξη0 (V )

∣∣
�

[
E

{
ξη(V ) − ξη0(V )

}2]1/2

= d(η, η0).

For the second term, R0(t, η0) = O(1) and

R0n(t, η) − R0n(t, η0) − R0(t, η) + R0(t, η0)

= (Pn − P)
[
Y(t)

{
eξη(V ) − eξη0 (V )}]

� III.
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Lemma 3 implies that

sup
η∈Aδ

|III| = O
(
n−1/2φn(δ)

)
.

Then

(20) sup
η∈Aδ

|II| ≤ O
(
n−1/2δ

) + O
(
n−1/2φn(δ)

) = O
(
n−1/2φn(δ)

)
.

Thus, the result (17) follows from (18) and (20).
Furthermore, Lemma 2 shows that

(21) sup
η∈Aδ

P
{
�l0(T ,V,η) − �l0(T ,V,η0)

}
�−δ2.

Denote τn = γn log2 n. By assumption (A1), it is clear that

τ−2
n ϕn(τn) ≤ √

n.

On the other hand, by analogy to (17) and g̃ in (14), we have∣∣Ln(θ0, g̃) − Ln(θ0, g0)
∣∣ �Op

(
n−1/2φn(τn)

) + ∣∣L0(θ0, g̃) − L0(θ0, g0)
∣∣

�Op

(
n−1/2φn(τn)

) + ‖g̃ − g0‖2
L2

≤ Op

(
τ 2
n

)
.

Thus, by the definition of η̂∗
D = (θ̂∗

D, ĝ∗
D) in (12),

Ln

(
θ̂∗
D, ĝ∗

D

) ≥ Ln(θ0, g̃) ≥ Ln(θ0, g0) − Op

(
τ 2
n

)
.

By Theorem 3.4.1 in van der Vaart and Wellner (1996), we have

d
(
η̂∗

D,η0
) = Op(τn).

This gives d(η̂∗, η0) = Op(τn).
Furthermore, we have

d2(
η̂∗, η0

) = E
[(

θ̂∗ − θ0
)�{

Z −E(Z|X)
} + (

θ̂∗ − θ0
)�

E(Z|X) + {
ĝ∗(X) − g0(X)

}]2

= E
[(

θ̂∗ − θ0
)�{

Z −E(Z|X)
}]2 +E

[{
ĝ∗(X) − g0(X)

} + (
θ̂∗ − θ0

)�
E(Z|X)

]2
.

Thus, by assumptions (A2), (B1) and (B2), it follows ‖θ̂∗ − θ0‖ = Op(τn) and∥∥ĝ∗ − g0
∥∥
L2 = Op(τn).

Let ĝ = ĝ∗ −E{ĝ∗(X)}, then E{ĝ(X)} = 0 and

O
(
τ 2
n

) = E
{
ĝ∗(X) − g0(X)

}2 = E
{
ĝ(X) − g0(X)

}2 + [
E

{
ĝ∗(X)

}]2 ≥ E
{
ĝ(X) − g0(X)

}2
.

This implies the result.

6.3. Proof of Theorem 3.2. Let P(θ0,λ0,g0) be the probability distribution with respect
to the parameter θ0, baseline hazard function λ0 and nonparametric function g0. Denote
P0 = {P(θ0,λ0,g0) : θ0 ∈ R

p
M,λ0 ∈ �0 and g0 ∈ H0} and P1 = {P(θ0,λ0,g0) : θ0 ∈ R

p
M,λ0 ∈

�1 and g0 ∈ H1}, where �1 = {λ : ∫ τ
0 λ(s) ds = 1 and λ ≥ 0} and H1 = H(q,α,d, d̃,M/2).

For any (θ, λ1, g1) ∈ R
p
M × �1 × H1, we know that P(θ,λ1,g1)

d= P(θ,λ1 exp(c),g1−c) and
P(θ,λ1 exp(c),g1−c) ∈ P0, where c = E{g1(X)} and P

d= Q means P and Q have the same prob-
ability measure. That is, P1 is a subset of P0. Furthermore, if ĝ1 is an estimator of g1 ∈ H1
based on the observed data {(Ti,�i,Vi), i = 1, . . . , n} under some model P(θ,λ1,g1) ∈ P1,
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then ĝ0 := ĝ1 −c with c = E{g1(X)} is also an estimator of g0 := g1 −c based on same copies

of the observed data {(Ti,�i,Vi), i = 1, . . . , n} under P(θ,λ1 exp(c),g0) (
d= P(θ,λ1,g1)) ∈ P0. It

is easy to see that ĝ1 − g1 = ĝ0 − g0, hence

(22)

inf
ĝ

sup
(θ0,λ0,g0)∈Rp

M×�0×H0

EP(θ0,λ0,g0)

{
ĝ0(X) − g0(X)

}2

≥ inf
ĝ1

sup
(θ1,λ1,g1)∈Rp

M×�1×H1

EP(θ1,λ1,g1)

{
ĝ1(X) − g1(X)

}2
,

where EP is the expectation under the distribution P and the infimum is taken over all pos-
sible estimators ĝ and ĝ1 based on the observed data under the probabilities in P0 and P1,
respectively.

Next, we find a lower bound for the right-hand side of (22), which is also a lower bound
for the left-hand side of (22).

For (θ0, λ0) ∈ R
p
M × �1 and g(0), g(1) ∈ H1, let P0 and P1 be the joint probability dis-

tribution of the observed data {(Ti,�i,Vi), i = 1, . . . , n} under P(θ0,λ0,g
(0)) and P(θ0,λ0,g

(1)),
respectively. By Lemma 4, there exist a constant c > 0, such that

(23) KL(P1,P0) ≤ cn
∥∥g(1) − g(0)

∥∥2
L2,

where KL(·, ·) is the Kullback–Leibler distance between P1 and P0.
By the proof of Theorem 3 in Schmidt-Hieber (2017), there exist g(0), . . . , g(N) ∈ H1 and

constant c1, c2 > 0, such that

(24)
∥∥g(j) − g(k)

∥∥
L2 ≥ 2c1γn > 0 and

cn

N

N∑
j=1

∥∥g(j) − g(0)
∥∥2
L2 ≤ c2 logN.

Then with (23) and (24), Theorem 2.5 in Tsybakov (2009) implies that

inf
ĝ1

sup
g1∈H1

P
(‖ĝ1 − g1‖L2 ≥ c1γn

) ≥
√

N

1 + √
N

(
1 − 2c2 −

√
2c2

logN

)
.

This shows that

inf
ĝ1

sup
(θ1,λ1,g1)∈Rp

M×�1×H1

EP(θ1,λ1,g1)

{
ĝ1(X) − g1(X)

}2 ≥ c3γ
2
n ,

for some constant 0 < c3 < ∞.
Therefore, the proof is completed.

6.4. Proof of Theorem 3.3. For any θ ∈ R
p , the subfamily {logλs : s ∈ (−1,1)} ∈ �λ0

and the subfamily {gs : s ∈ (−1,1)} ∈ Hg0 , we consider a one-dimensional submodel
{P(θ0+sθ,λs,gs) : s ∈ (−1,1)}. By definition of the subfamilies {logλs : s ∈ (−1,1)} and
{gs : s ∈ (−1,1)}, there exist h ∈ Tλ0 and g ∈ Tg0 , such that

∂ logλs

∂s

∣∣∣∣
s=0

= h and
∂gs

∂s

∣∣∣∣
s=0

= g.

Note that the log likelihood for a single observation (Z,X,�,T ) is

�(θ, λ, g) = �
{
logλ(T ) + Z�θ + g(X)

} − 
(T ) exp
{
Z�θ + g(X)

}
,

where 
(t) = ∫ t
0 λ(u)du. Then taking derivative of the likelihood �(θ0 + sθ, λs, gs) with

respect to s at s = 0, we have

d�(θ0 + sθ, λs, gs)

ds

∣∣∣∣
s=0

= θ��̇θ0 + �̇λ0,h + �̇g0,g,
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where

�̇θ0 = �Z −
∫ ∞

0
ZY(t)λ0(t)e

ξη0 (V ) dt =
∫ ∞

0
Z dM(t),

�̇λ0,h = �h(T ) −
∫ ∞

0
h(t)Y (t)λ0(t)e

ξη0 (V ) dt =
∫ ∞

0
h(t) dM(t),

�̇g0,g = �g(X) −
∫ ∞

0
g(X)Y (t)λ0(t)e

ξη0 (V ) dt =
∫ ∞

0
g(X)dM(t)

are the score vector and functions corresponding to θ0, λ0 and g0, respectively. The efficient
score function [see Chapter 3 of Kosorok (2008)] for θ0 is

�∗
θ0

(V ,�,T ) := �̇θ0 − �λ0,g0(�̇θ0 |Ṗ1 + Ṗ2),

where �λ0,g0(�̇θ0 |Ṗ1 + Ṗ2) is the projection of �̇θ0 onto the sumspace Ṗ1 + Ṗ2 with Ṗ1 :=
{�̇λ0,h : h ∈ Tλ0} and Ṗ2 := {�̇g0,g : g ∈ Tg0}. Finding �λ0,g0(�̇θ0 |Ṗ1 + Ṗ2) is equivalent to
finding the vector function (h�∗ ,g�∗ )� ∈ (Tλ0)

p × (Tg0)
r such that

(25)
E

{
(�̇θ0 − �̇λ0,h∗ − �̇g0,g∗)�̇λ0,h

} = 0 for all h ∈ Tλ0,

E
{
(�̇θ0 − �̇λ0,h∗ − �̇g0,g∗)�̇g0,g

} = 0 for all g ∈ Tg0 .

Then �λ0,g0(�̇θ0 |Ṗ1 + Ṗ2) = �̇λ0,h∗ + �̇g0,g∗ . By Lemma 1 in Sasieni (1992a), (25) is equiva-
lent to

E
{
�(Z − h∗ − g∗)h

} = 0 for all h ∈ Tλ0,

E
{
�(Z − h∗ − g∗)g

} = 0 for all g ∈ Tg0 .

This implies that (h�∗ ,g�∗ )� ∈ (Tλ0)
p × (Tg0)

r minimizes

E
{
�

∥∥Z − h(T ) − g(X)
∥∥2
c

}
.

By assumptions (A2), (B2) and (B3), Lemma 1 in Stone (1985), and Appendix A.4 in Bickel
et al. (1993), we know that the minimizer (h�∗ ,g�∗ )� is well defined. Therefore, the efficient
score is

�∗
θ0

(V ,�,T ) := �̇θ0 − �̇λ0,h∗ − �̇g0,g∗ =
∫ τ

0

{
Z − h∗(t) − g∗(X)

}
dM(t),

and the information matrix is

I (θ0) = E
{
�∗
θ0

(V ,�,T )
}⊗2 = E

{
�

(
Z − h∗(T ) − g∗(X)

)⊗2}
.

6.5. Proof of Theorem 3.4. For vector function h of v = (z, x), define

rn(t, η,h) = h − R1n(t, η,h)

R0n(t, η)
, r(t, η,h) = h − R1(t, η,h)

R0(t, η)
.

Taking the derivative of the partial likelihood (i.e., the partial score functions) with respect to
the parameters, the partial score functions for θ and for g in some direction g1 are

�̇n,θ (θ, g) = Pn

{
�rn(T , η, I )

}
and �̇n,g(θ, g,g1) = Pn

{
�rn(T , η,g1)

}
,

respectively, where I is the identity map of z, that is, I (z) = z. By the definition of (θ̂ , ĝ), we
have �̇n,θ (θ̂ , ĝ) = 0 and �̇n,g(θ̂ , ĝ,g) = 0, for all g ∈ (Tg0)

p . Combining this with Lemma 5
and the definition of g∗ in Theorem 3.3, we have

(26)
√

nP
[
�

{
r(T , η0, I − g∗)

}⊗2]
(θ̂ − θ0) = √

nPn

{
�rn(T , η0, I − g∗)

} + op(1).
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Denote

Mi(t) = �i1(Ti ≤ t) −
∫ t

0
Yi(s) exp

{
ξη0(Vi)

}
λ0(s) ds,

then

√
nPn

{
�rn(T , η0, I − g∗)

} = 1√
n

n∑
i=1

∫ τ

0

{
Zi − g∗(Xi) − R1n(t, η0, I − g∗)

R0n(t, ξη0)

}
dMi(t).

It follows that

√
nPn

{
�rn(T , η0, I − g∗)

} − 1√
n

n∑
i=1

∫ τ

0

{
Zi − g∗(Xi) − R1(t, η0, I − g∗)

R0(t, η0)

}
dMi(t)

= − 1√
n

n∑
i=1

∫ τ

0

{
R1n(t, η0, I − g∗)

R0n(t, η0)
− R1(t, η0, I − g∗)

R0(t, η0)

}
dMi(t).

Lenglart’s inequality (Lenglart (1977)) and

1

n

n∑
i=1

∫ τ

0

{
R1n(t, η0, I − g∗)

R0n(t, η0)
− R1(t, η0, I − g∗)

R0(t, η0)

}2
Yi(t) exp

{
ξη0(Vi)

}
λ0(t) dt

p−→ 0

together imply

√
nPn

{
�rn(T , η0, I − g∗)

} = 1√
n

n∑
i=1

∫ τ

0

{
Zi − g∗(Xi) − R1(t, η0, I − g∗)

R0(t, η0)

}
dMi(t)

+ op(1).

By Lemma 2 in Sasieni (1992b) and the definition of g∗ and h∗ in Theorem 3.3, we obtain
that

R1(t, η0, I − g∗)
R0(t, η0)

= E
{
Z − g∗(X)|T = t,� = 1

} = h∗(t).

Hence, by the definition of the efficient score function �∗
θ0

, we have

√
nPn

{
�r(T ,η0, I − g∗)

} = 1√
n

n∑
i=1

�∗
θ0

(Vi,�i, Ti) + op(1)
d−→ N

(
0, I (θ0)

)
.

This and (26) complete the proof.

APPENDIX: KEY LEMMAS

The following lemmas are used to establish Theorem 3.1–3.4 and their proofs are given in
the Supplementary Material (Zhong, Mueller and Wang (2022)).

LEMMA 1. Define F1 = {Y(t)eξη(V ) : η ∈ R
p
D × G(K, s,p,D), t ∈ [0, τ ]} and F2 =

{�l0(T ,V,η) : η ∈ R
p
D × G(K, s,p,D)}. Then for any D > 0, F1 and F2 are P-Glivenko–

Cantelli.

LEMMA 2. Under assumptions (A2) and (B1)–(B4), we have

L0(η) − L0(η0) � −d2(η, η0),

for all η ∈ {η : d(η, η0) ≤ c,E{ξη(V )} = E{ξη0(V )}} with some small c > 0.
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LEMMA 3. Let Bδ = {η = (θ, g) ∈R
p × G(K, s,p,D) : ‖θ − θ0‖ ≤ δ,‖g − g0‖L2 ≤ δ}.

Define Gn = √
n(Pn − P) and

I = Gn

{
�l0(T ,V,η) − �l0(T ,V,η0)

}
,

II = Gn

[
Y(t) exp

{
ξη(V )

} − Y(t) exp
{
ξη0(V )

}]
,

then

E
∗ sup

η∈Bδ

|I| = O

(
δ

√
s log

U

δ
+ s√

n
log

U

δ

)
,

E
∗ sup

η∈Bδ

|II| = O

(
δ

√
s log

U

δ
+ s√

n
log

U

δ

)
for any t ∈ [0, τ ],

where E∗ is the outer measure and U = K
∏K

k=0(pk + 1)
∑K

k=0 pkpk+1.

LEMMA 4. For fixed baseline hazard function λ0 and parameter θ , let P1 and P2 be the
joint probability distribution of the observed data {(Ti,�i,Vi), i = 1, . . . , n} from nonpara-
metric function g(0) and g(1), respectively. Then under assumptions (A2), (B1) and (B2), we
have

KL(P1,P0) ≤ cn
∥∥g(1) − g(0)

∥∥2
L2,

where KL(P1,P0) := EP1 log P1
P0

is the Kullback–Leibler distance between P1 and P0 and c

is a constant independent to n.

LEMMA 5.

Pn

[
�

{
rn(T , η̂, I − g∗) − rn(T , η0, I − g∗)

}]
= −P

[
�

{
r(T , η0, I − g∗)

}⊗2]
(θ̂ − θ0) + op

(
n−1/2)

.
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