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Abstract

We consider estimation of mean and covariance functions of functional snippets,
which are short segments of functions possibly observed irregularly on an individual
specific subinterval that is much shorter than the entire study interval. Estimation
of the covariance function for functional snippets is challenging since information for
the far off-diagonal regions of the covariance structure is completely missing. We
address this difficulty by decomposing the covariance function into a variance func-
tion component and a correlation function component. The variance function can be
effectively estimated nonparametrically, while the correlation part is modeled para-
metrically, possibly with an increasing number of parameters, to handle the missing
information in the far off-diagonal regions. Both theoretical analysis and numerical
simulations suggest that this hybrid strategy is effective. In addition, we propose
a new estimator for the variance of measurement errors and analyze its asymptotic
properties. This estimator is required for the estimation of the variance function from
noisy measurements.
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1 Introduction

Functional data are random functions on a common domain, e.g., an interval T ⊂ R. In

reality they can only be observed on a discrete schedule, possibly intermittently, which leads

to an incomplete data problem. Luckily, by now this problem has largely been resolved

(Rice and Wu, 2001; Yao et al., 2005; Li and Hsing, 2010; Zhang and Wang, 2016) and there

is a large literature on the analysis of functional data. For a more comprehensive treatment

readers are referred to the monographs by Ramsay and Silverman (2005), Ferraty and Vieu

(2006), Hsing and Eubank (2015) and Kokoszka and Reimherr (2017), and a review paper

by Wang et al. (2016).

In this paper, we address a different type of incomplete data, which occurs frequently

in longitudinal studies when subjects enter the study at random time and are followed for

a short period within the domain T = [a, b] ⊂ R. Specifically, we focus on functional data

with the following property: each function Xi is only observed on a subject-specific interval

Oi = [Ai, Bi] ⊂ [a, b], and

(S) there exists an absolute constant δ such that 0 < δ < 1 and Bi − Ai ≤ δ(b− a) for

all i = 1, 2, . . ..

As a result, the design of support points (Yao et al., 2005) where one has information about

the covariance function C(s, t) is incomplete in the sense that there are no design points in

the off-diagonal region, T cδ = {(s, t) : | s−t |> δ(b−a), s, t ∈ [a, b]}. This is mathematically

characterized by (⋃
i

[Ai, Bi]
2

)
∩ T cδ = ∅. (1)

Consequently, local smoothing methods, such as PACE (Yao et al., 2005), that are inter-

polation methods fail to produce a consistent estimate of the covariance function in the

off-diagonal region as the problem requires data extrapolation.
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An example is the spinal bone mineral density data collected from 423 subjects ranging

in age from 8.8 to 26.2 years (Bachrach et al., 1999). The design plot for the covariance

function, as shown in Figure 1, indicates that all of the design points fall within a narrow

band around the diagonal area but the domain of interest [8.8, 26.2] is much larger than this

band. The cause of this phenomenon is that each individual trajectory is only recorded in

an individual specific subinterval that is much shorter than the span of the study. For the

spinal bone mineral density data, the span (length of interval between the first measurement

and the last one) for each individual is no larger than 4.3 years, while the span for the study

is about 17 years. Data with this characteristic, mathematically described by (S) or (1),

are called functional snippets in this paper, analogous to the longitudinal snippets studied

in Dawson and Müller (2018). As it turns out, functional snippets are quite common

in longitudinal studies (Raudenbush and Chan, 1992; Galbraith et al., 2017) and require

extrapolation methods to handle. Usually, this is not an issue for parametric approaches,

such as linear mixed-effects models, but requires a thoughtful plan for non- and semi-

parametric approaches.

Functional fragments (Liebl, 2013; Kraus, 2015; Kraus and Stefanucci, 2019; Kneip

and Liebl, 2019+; Liebl and Rameseder, 2019), like functional snippets, are also partially

observed functional data and have been studied broadly in the literature. However, for

data investigated in these works as functional fragments, the span of a single individual

domain [Ai, Bi] can be nearly as large as the span [a, b] of the study, making them distinc-

tively different from functional snippets. Such data, collectively referred to as “nonsnippet

functional data” in this paper, often satisfy the following condition:

(F) for any ε ∈ (0, 1), limn Pr{Bin − Ain > (1 − ε)(b − a)} > 0 for a strictly increasing

sequence {in}∞n=1.

For instance, Kneip and Liebl (2019+) assumed that Pr([Ai, Bi]
2 = [a, b]2) > 0, which
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implies that design points and local information are still available in the off-diagonal region

T cδ . In other words, for non-snippet functional data and for each (s, t) ∈ [a, b]2, one has

Pr{(s, t) ∈
⋃n
i=1[Ai, Bi]

2} > 0 for sufficiently large n, contrasting with (1) for functional

snippets. Other related works by Gellar et al. (2014); Goldberg et al. (2014); Gromenko

et al. (2017); Stefanucci et al. (2018) on partially observed functional data, although do

not explicitly discuss the design, require condition (F) for their proposed methodologies

and theory. All of them can be handled with a proper interpolation method, which is

fundamentally different from the extrapolation methods needed for functional snippets.

The analysis of functional snippets is more challenging than non-snippet functional

data, since information in the far off-diagonal regions of the covariance structure is com-

pletely missing for functional snippets according to (1). Delaigle and Hall (2016) addressed

this challenge by assuming that the underlying functional data are Markov processes, which

is only valid at the discrete level, as pointed out by Descary and Panaretos (2019). Zhang

and Chen (2018) and Descary and Panaretos (2019) used matrix completion methods to

handle functional snippets, but their approaches require modifications to handle longitudi-

nally recorded snippets that are sampled at random design points, and their theory does

not cover random designs. Delaigle et al. (2019) proposed to numerically extrapolate an

estimate, such as PACE (Yao et al., 2005), from the diagonal region to the entire domain

via basis expansion. In this paper, we propose a divide-and-conquer strategy to analyze

(longitudinal) functional snippets with a focus on the mean and covariance estimation.

Once the covariance function has been estimated, functional principal component analysis

can be performed through the spectral decomposition of the covariance operator.

Specifically, we divide the covariance function into two components, the variance func-

tion and the correlation function. The former can be estimated via classic kernel smoothing,

while the latter is modeled parametrically with a potentially diverging number of parame-
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Figure 1: The design of covariance function from spinal bone mineral density data.

ters. The principle behind this idea is to nonparametrically estimate the unknown compo-

nents for which sufficient information is available while parameterizing the component with

missing pieces. Since the correlation structure is usually much more structured than the

covariance surface and it is possible to estimate the correlation structure nonparametrically

within the diagonal band, a parametric correlation model can be selected from candidate

models in existing literature and this usually works quite well to fit the unknown correlation

structure.

Compared to the aforementioned works, our proposal enjoys at least two advantages.

First, it can be applied to all types of designs, either sparsely/densely or regularly/irregularly

observed snippets. Second, our approach is simple thanks to the parametric structure of

the correlation structure, and yet powerful due to the potential to accommodate growing

dimension of parameters and nonparametric variance component. We stress that, our semi-
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parametric and divide-and-conquer strategy is fundamentally different from the penalized

basis expansion approach that is adopted in the recent paper by Lin et al. (2019) where the

covariance function is represented by an analytic basis and the basis coefficients are esti-

mated via penalized least squares. Numerical comparison of these two methods is provided

in Section 5.

This divide-and-conquer approach has been explored in Fan et al. (2007) and Fan and

Wu (2008) to model the covariance structure of time-varying random noise in a varying-

coefficient partially linear model. We demonstrate here that a similar strategy can overcome

the challenge of the missing data issue in functional snippets and further allow the dimen-

sion of the correlation function to grow to infinity. In addition, we take into account the

measurement error in the observed data, which is an important component in functional

data analysis but is of less interest in a partially linear model and thus not considered in

Fan et al. (2007) and Fan and Wu (2008). The presence of measurement errors complicates

the estimation of the variance function, as they are entangled together along the diagonal

direction of the covariance surface. Consequently, the estimation procedure for the variance

function in Fan et al. (2007) and Fan and Wu (2008) does not apply. While it is possible

to estimate the error variance using the approach in Yao et al. (2005) and Liu and Müller

(2009), these methods require a pilot estimate of the covariance function in the diagonal

area, which involves two-dimensional smoothing, and thus are not efficient. A key contri-

bution of this paper is a new estimator for the error variance in Section 3 that is simple and

easy to compute. It improves upon the estimators in Yao et al. (2005) and Liu and Müller

(2009), as demonstrated through theoretical analysis and numerical studies; see Section 4

and 5 for details.
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2 Mean and Covariance Function Estimation

Let X be a second-order random process defined on an interval T ⊂ R with mean func-

tion µ(t) = EX(t), and covariance function C(s, t) = cov(X(s), X(t)). Without loss of

generality, we assume T = [0, 1] in the sequel.

Suppose {X1, . . . , Xn} is an independent random sample of X, where n is the sample

size. In practice, functional data are rarely fully observed. Instead, they are often noisily

recorded at some discrete points on T . To accommodate this practice, we assume that each

Xi is only measured at mi points Ti1, . . . , Timi , and the observed data are Yij = Xi(Tij)+εij

for j = 1, . . . ,mi, where εij represents the homoscedastic random noise such that Eεij =

0 and Eε2
ij = σ2

0. This homoscedasticity assumption can be relaxed to accommodate

heteroscedastic noise; see Section 3 for details. To further elaborate the functional snippets

characterized by (S), we assume that the ith subject is only available to be studied between

time Oi−δ/2 and Oi+δ/2, where the variable Oi ∈ [δ/2, 1−δ/2], called reference time in this

paper, is specific to each subject and is modeled as identically and independently distributed

(i.i.d.) random variables. We then assume that, Ti1, . . . , Timi are i.i.d., conditional on Oi.

These assumptions reflect the reality of many data collection processes when subjects enter

a study at random time Oi − δ/2 and are followed for a fixed period of time. Such a

sampling plan, termed accelerated longitudinal design, has the advantage to expand the

time range of interest in a short period of time as compared to a single cohort longitudinal

design study.

2.1 Mean Function

Even though only functional snippets are observed rather than a full curve, smoothing

approaches such as Yao et al. (2005) can be applied to estimate the mean function µ,
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since for each t, there is positive probability that some design points fall into a small

neighborhood of t. Here, we adopt a ridged version of the local linear smoothing method

in Zhang and Wang (2016), as follows.

Let K be a kernel function and hµ a bandwidth, and define Khµ(u) = h−1
µ K(u/hµ).

The non-ridged local linear estimate of µ is given by µ̃(t) = b̂0 with

(b̂0, b̂1) = arg min
(b0,b1)∈R2

n∑
i=1

wi

mi∑
j=1

Khµ(Tij − t){Yij − b0 − b1(Tij − t)}2,

where wi ≥ 0 are weight such that
∑n

i=1 miwi = 1. For the optimal choice of weight,

readers are referred to Zhang and Wang (2018). It can be shown that µ̃(t) = (R0S2 −

R1S1)/(S0S2 − S2
1), where

Sr =
n∑
i=1

wi

mi∑
j=1

Khµ(Tij − t){(Tij − t)/hµ}r,

Rr =
n∑
i=1

wi

mi∑
j=1

Khµ(Tij − t){(Tij − t)/hµ}rYij.

Although µ̃ behaves well most of the time, for a finite sample, there is positive probability

that S0S2−S2
1 = 0, hence µ̃ may become undefined. This minor issue can be addressed by

ridging, a regularization technique used by Fan (1993) with details in Seifert and Gasser

(1996) and Hall and Marron (1997). The basic idea is to add a small positive constant to

the denominator of µ̃ when S0S2−S2
1 falls below a threshold. More specifically, the ridged

version of µ̃(t) is given by

µ̂(t) =
R0S2 −R1S1

S0S2 − S2
1 + ∆1{|S0S2−S2

1 |<∆}
, (2)

where ∆ is a sufficiently small constant depending on n and m1, . . . ,mn. A convenient

choice here is ∆ = (nm)−2, where m = n−1
∑n

i=1 mi.
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The tuning parameter hµ could be selected via the following κ-fold cross-validation

procedure. Let κ be a positive integer, e.g., κ = 5, and {P1, . . . ,Pκ} be a roughly even

random partition of the set {1, . . . , n}. For a set H of candidate values for hµ, we choose

one from it such that the following cross-validation error

CV(h) =
κ∑
k=1

∑
i∈Pk

mi∑
j=1

{Yij − µ̂h,−k(Tij)}2 (3)

is minimized, where µ̂h,−k is the estimator in (2) with hµ = h and subjects in Pk excluded.

2.2 Covariance Function

Estimation of the covariance function C(s, t) for functional snippets is considerably more

challenging. As we have pointed out in Section 1, local information in the far off-diagonal

region, |s− t| > δ, is completely missing. To tackle this challenge, we first observe that the

covariance function can be decomposed into two parts, a variance function and a correlation

structure, i.e., C(s, t) = σX(s)σX(t)ρ(s, t), where σ2
X(·) is the variance function of X, or

more precisely, σ2
X(t) = E{X(t) − µ(t)}2, and ρ(·, ·) is the correlation function. Like the

mean function µ, the variance function can be well estimated via local linear smoothing

even in the case of functional snippets. The real difficulty stems from the estimation

of the correlation structure, which we propose to model parametrically. At first glance, a

parametric model might be restrictive. However, with a nonparametric variance component

and a large number of parameters, the model will often still be sufficiently flexible to capture

the covariance structure of the data. Indeed, in our simulation studies that are presented

in Section 5, we demonstrate that even with a single parameter, the proposed model often

yields good performance when sample size is limited. As an additional flexibility, our

parametric model does not require the low-rank assumption and hence is able to model

truly infinitely-dimensional functional data. This trade of the low-rank assumption with
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the proposed parametric assumption seems worthwhile, especially because we allow the

dimension of the parameters to increase with the sample size. The increasing dimension of

the parameter essentially puts the methodology in the nonparametric paradigm.

To estimate σ2
X(·), we first note that the PACE method in Yao et al. (2005) can still be

used to estimate C(s, t) on the band T 2
δ = {(s, t) ∈ T × T : |s− t| < δ} that includes the

diagonal, although not on the full domain T ×T . Since σ2
X(t) = C(t, t), the PACE estimate

C̃ for C on the diagonal gives rise to an estimate of σ2
X(t). However, this method requires

two-dimensional smoothing, which is cumbersome and computationally less efficient. In

addition, it has the convergence rate of a two-dimensional smoother, which is suboptimal

for a target σ2
X(t) that is a one-dimensional function. Here we propose a simpler approach

that only requires one-dimensional smoothing, based on the observation that the quantity

ς2(t) ≡ E{Y (t) − µ(t)}2 = σ2
X(t) + σ2

0 can be estimated by local linear smoothing on the

observations {Yij− µ̂(Tij)}2. More specifically, the non-ridged local linear estimate of ς2(t),

denoted by ς̃2(t), is b̂0 with

(b̂0, b̂1) = arg min
(b0,b1)∈R2

n∑
i=1

wi

mi∑
j=1

Khσ(Tij − t)[{Yij − µ̂(Tij)}2 − b0 − b1(Tij − t)]2,

where hσ is the bandwidth to be selected by a cross-validation procedure similar to (3). As

with the ridged estimate of the mean function in (2), to circumvent the positive probability

of being undefined for ς̃2, we adopt the ridged version of ς̃2 as the estimate for ς2, denoted

by ς̂2. Then our estimate of σ2
X(t) is σ̂2

X(t) = ς̂2(t)− σ̂2
0, where σ̂2

0 is a new estimate of σ2
0, to

be defined in the next section, that has a convergence rate of a one-dimensional smoother.

Because ς̂2(t) also has a one-dimensional convergence, the resulting estimate of σ̂2
X(t) has

a one-dimensional convergence rate.

For the correlation function ρ, we assume that ρ is indexed by a dn-dimensional vector

of parameters, denoted by θ ∈ Rdn . Here, the dimension of parameters is allowed to grow
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with the sample size at a certain rate; see Section 4 for details. Some popular parametric

families for correlation function are listed below.

1. Power exponential:

ρθ(s, t) = exp

{
−|s− t|

θ1

θθ12

}
, 0 < θ1 ≤ 2, θ2 > 0.

2. Rational quadratic (Cauchy):

ρθ(s, t) =

{
1 +
|s− t|2

θ2
2

}−θ1
, θ1, θ2 > 0.

3. Matérn:

ρθ(s, t) =
1

Γ(θ1)2θ1−1

(√
2θ1
|s− t|
θ2

)θ1
Bθ1

(√
2θ1
|s− t|
θ2

)
, θ1, θ2 > 0, (4)

with Bθ(·) being the modified Bessel function of the second kind of order θ.

Note that if ρ1, . . . , ρp are correlation functions, then
∑p

k=1 vkρk is also a correlation function

if
∑p

k=1 vk = 1 and vk ≥ 0 for all k. Therefore, a fairly flexible class of correlation functions

can be constructed from several relatively simple classes by this convex combination. We

point out here that, even when one adopts a stationary correlation function, the resulting

covariance can be non-stationary due to a nonparametric and hence often non-stationary

variance component.

Given the estimate σ̂2
X(t), the parameter θ can be effectively estimated using the fol-

lowing least squares criterion, i.e., θ̂ = arg min
θ

Q̂n(θ) with

Q̂n(θ) =
n∑
i=1

1

mi(mi − 1)

∑
1≤j 6=l≤mi

{σ̂X(Tij)σ̂X(Til)ρθ(Tij, Til)− Cijl}2,

where Cijl = {Yij − µ̂(Tij)}{Yil − µ̂(Til)} is the raw covariance of subject i at two different

measurement times, Tij and Til.
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3 Estimation of Noise Variance

The estimation of σ2
0 received relatively little attention in the literature. For sparse func-

tional data, the PACE estimator 2|T |−1
∫
T {ς̂(t) − Ĉ(t, t)dt} proposed in Yao et al. (2005)

is a popular option. However, the PACE estimator can be negative in some cases. Liu

and Müller (2009) refined this PACE estimator by first fitting the observed data using the

PACE estimator and then estimating σ2
0 by cross-validated residual sum of squares; see

appendix A.1 of Liu and Müller (2009) for details. These methods require an estimate of

the covariance function, which we do not have here before we obtain an estimate of σ2
0.

Moreover, the estimate Ĉ(t, t) in both methods is obtained by two-dimensional local linear

smoothing as detailed in Yao et al. (2005), which is computationally costly and leads to a

slower (two-dimensional) convergence rate of these estimators. To resolve this conundrum,

we propose the following new estimator that does not require estimation of the covariance

function or any other parameters such as the mean function.

For a bandwidth h0 > 0, define the quantities

A0 = E[{C(T1, T1) + µ(T1)µ(T1) + σ2
0}1|T1−T2|<h0 ],

A1 = E[{C(T1, T1) + µ(T1)µ(T1)}1|T1−T2|<h0 ],

and

B = E1|T1−T2|<h0 ,

where T1 and T2 denote two design points from the same generic subject. From the above

definition, we immediately see that A0 = A1 + Bσ2
0. Also, these quantities seem easy to

estimate. For example, A0 and B can be straightforwardly estimated respectively by

Â0 =
1

n

n∑
i=1

1

mi(mi − 1)

∑
j 6=l

Y 2
ij1|Tij−Til|<h0 (5)
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and

B̂ =
1

n

n∑
i=1

1

mi(mi − 1)

∑
j 6=l

1|Tij−Til|<h0 . (6)

This motivates us to estimate σ2
0 via estimation of A0, A1 and B.

It remains to estimate A1, which cannot be estimated using information along the

diagonal only, due to the presence of random noise. Instead, we shall explore the smoothness

of the covariance function and observe that if T1 is close to T2, say |T1 − T2| < h0, then

C(T1, T1) ≈ C(T1, T2) and

A1 ≈ A2 = E[{C(T1, T2) + µ(T1)µ(T2)}1|T1−T2|<h0 ].

Indeed, we show in Lemma 5 that A1 = A2 + O(h3
0). Therefore, it is sensible to use A2 as

a surrogate of A1. The former can be effectively estimated by

Â2 =
1

n

n∑
i=1

1

mi(mi − 1)

∑
j 6=l

YijYil1|Tij−Til|<h0 , (7)

and we set Â1 = Â2. Finally, the estimate of σ2
0 is given by

σ̂2
0 = (Â0 − Â1)/B̂. (8)

To choose h0, motivated by the convergence rate stated in Theorem 1 of the next

section, we suggest the following empirical rule, h0 = 0.29δ̂‖ς̂‖2(nm2)−1/5, for sparse

functional snippets, where δ̂ = max1≤i≤n max1≤j,l≤mi |Tij − Til| acts as an estimate for

δ, m = n−1
∑n

i=1 mi represents the average number of measurements per curve, ς̂2(t) is

the estimate of ς2(t) = σ2
X(t) + σ2

0 defined in Section 2, and ‖ς̂‖2
2 =

∫
ς̂2(t)dt represents

the overall variability of the data. The coefficient 0.29 is determined by a method de-

scribed in the appendix. If this rule yields a value of h0 that makes the neighborhood

N (h0) = {(Tij, Til) : |Tij−Til| < h0, i = 1, . . . , n, 1 ≤ j 6= l ≤ mi} empty or contain too few
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points, then we recommend to choose the minimal value of h0 such that N (h0) contains

at least 10−1
∑n

i=1 mi(mi − 1) points. In this way, we ensure that a substantial fraction of

the observed data are used for estimation of the variance σ2
0. This rule is found to be very

effective in practice; see Section 5 for its numerical performance.

Compared to Yao et al. (2005) and Liu and Müller (2009), the proposed estimate (8)

is simple and easy to compute. Indeed, it can be computed much faster since it does not

require the costly computation of Ĉ. More importantly, the ingredients Â0, Â1 = Â2 and

B̂ for our estimator are obtained by one-dimensional smoothing, with the term 1|Tij−Til|<h0

in (5)–(7) acting as a local constant smoother. Consequently, as we show in Section 4,

our estimator enjoys an asymptotic convergence rate that is faster than the one from

a two-dimensional local linear smoother. In addition, the proposed estimate is always

nonnegative, in contrast to the one in Yao et al. (2005). This is seen by the following

derivation:

Â1 =
1

n

n∑
i=1

1

mi(mi − 1)

∑
j 6=l

YijYil1|Tij−Til|<h0 ≤
1

n

n∑
i=1

1

mi(mi − 1)

∑
j 6=l

Y 2
ij + Y 2

il

2
1|Tij−Til|<h0

=
1

n

n∑
i=1

1

mi(mi − 1)

∑
j 6=l

Y 2
ij1|Tij−Til|<h0 = Â0. (9)

Remark: The above discussion assumes that the noise is homoscedastic, i.e., its variance

is identical for all t. As an extension, it is possible to modify the above procedure to

account for heteroscedastic noise, as follows. With intuition and rationale similar to the

homoscedastic case, we define

Â0(t) =
1

n

n∑
i=1

1

mi(mi − 1)

∑
j 6=l

Y 2
ij1|Tij−t|<h01|Til−t|<h0 ,

Â1(t) =
1

n

n∑
i=1

1

mi(mi − 1)

∑
j 6=l

YijYil1|Tij−t|<h01|Til−t|<h0 ,
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B̂(t) =
1

n

n∑
i=1

1

mi(mi − 1)

∑
j 6=l

1|Tij−t|<h01|Til−t|<h0 ,

and let

σ̂2
0(t) = {Â0(t)− Â1(t)}/B̂(t)

be the estimate of σ2
0(t) which is the variance of the noise at t ∈ T . Like the derivation in

(9), one can also show that this estimator is nonnegative.

4 Theoretical Properties

For clarity of exposition, we assume throughout this section that all the mi have the same

rate m, i.e., mi = m, where the sampling rate m may tend to infinity. We emphasize that

parallel asymptotic results can be derived without this assumption by replacing m with

1
n

∑n
i=1 mi. Note that the theory to be presented below applies to both the case that m is

bounded by a constant, i.e., m ≤ m0 for some m0 < ∞, and the case that m diverges to

∞ as n→∞.

We assume that the reference time Oi is identically and independently distributed (i.i.d.)

sampled from a density fO, and Ti1, . . . , Timi are i.i.d., conditional on Oi. The i.i.d. assump-

tions can be relaxed to accommodate heterogeneous distributions and weak dependence,

at the cost of much more complicated analysis and heavy technicalities. As such relaxation

does not provide further insight into our problem, we decide not to pursue it in the pa-

per. The following conditions about Oi and other quantities are needed for our theoretical

development.

(A1) The density fO of each Oi satisfies fO(u) > 0 for all u ∈ [δ/2, 1 − δ/2], and the

conditional density fT |O of Tij given Oi satisfies fT |O(t|u) = f0(t−u+ δ/2) > 0 for
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a fixed function f0 and for all u ∈ [δ/2, 1 − δ/2] and t ∈ [u − δ/2, u + δ/2]. Also,

the derivative d
dt
f0(t) is Lipschitz continuous on [0, δ].

(A2) The second derivatives of µ and C are continuous and hence bounded on T and

T × T , respectively.

(A3) E‖X‖4 <∞ and Eε4 <∞.

In the above, the condition (A1) characterizes the design points for functional snippets and

can be relaxed, while the regularity conditions (A2) and (A3) are common in the literature,

e.g., in Zhang and Wang (2016). According to Scheuerer (2010), (A2) also implies that the

sample paths of X are continuously differentiable and hence Lipschitz continuous almost

surely. Let LX be the best Lipschitz constant of X, i.e., LX = inf{C ∈ R : |X(s)−X(t)| ≤

C|s − t| for all s, t ∈ T }. We will see shortly that a moment condition on LX allows us

to derive a rather sharp bound for the convergence rate of σ̂2
0. For the bandwidth h0, we

require the following condition:

(H1) h0 → 0 and nm2h0 →∞.

The following result gives the asymptotic rate of the estimator σ̂2
0. The proof is straight-

forward once we have Lemma 5, which is given in the appendix.

Theorem 1. Assume the conditions (A1)–(A3) and (H1) hold.

(a) (σ̂2
0 − σ2

0)2 = OP (h4
0 + n−1 + n−1m−2h−1

0 ). With the optimal choice h0 � (nm2)−1/5,

(σ̂2
0 − σ2

0)2 = OP (n−4/5m−8/5 + n−1).

(b) If in addition EL4
X <∞, then (σ̂2

0 −σ2
0)2 = OP (h4

0 +n−1m−1 +n−1m−2h−1
0 ). With the

optimal choice h0 � (nm2)−1/5, (σ̂2
0 − σ2

0)2 = OP (n−4/5m−8/5 + n−1m−1).
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If we define σ̂2
0 = (Â0−Â1)/(B̂+∆) with ∆ = (nm)−2h0, the ridged version of (8), then

in the above theorem, (σ̂2
0−σ2

0)2 can be replaced with E(σ̂2
0−σ2

0)2 and OP (·) can be replaced

with O(·), respectively. For comparison, under conditions stronger than (A1)–(A3), the rate

derived in Yao et al. (2005) for the PACE estimator is at best (σ̂2
0 − σ2

0)2 = OP (n−1/2).

This rate was improved by Paul and Peng (2011) to E(σ̂2
0 − σ2

0)2 = O(n−1 + n−4/5m−4/5 +

n−2/3m−4/3). Our estimator clearly enjoys a faster convergence rate, in addition to its

computational efficiency. The rate in part (b) of Theorem 1 has little room for improvement,

since when n is finite but m→∞, the rate is optimal, i.e., E(σ̂2
0 − σ2

0)2 = O(m−1). When

m is finite but n→∞ in the sparse design, we obtain E(σ̂2
0 − σ2

0)2 = O(n−4/5), in contrast

to the rate OP (n−2/3) for the PACE estimator according to Paul and Peng (2011).

To study the properties of µ̂(t) and σ̂2(t), we shall assume

(B1) the kernel K is a symmetric and Lipschitz continuous density function supported

on [−1, 1].

Also, the bandwidth hµ and hσ are assumed to meet the following conditions.

(H2) hµ → 0 and nmhµ →∞.

(H3) hσ → 0 and nmhσ →∞.

The choice of these bandwidths depends on the interplay of the sampling rate m and sample

size n. The optimal choice is given in the following condition.

(H4) If m . n1/4, then hµ � hσ � (nm)−1/5, where the notation an . bn means

limn→∞ an/bn <∞. Otherwise, max{hµ, hσ} � n−1/4. Also, h0 � (nm2)−1/5.

The asymptotic convergence rates for µ̂ and σ̂2
X are given in the following theorem, whose

proof can be obtained by adapting the proof of Proposition 1 in Lin and Yao (2020+)
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and hence is omitted. It shows that both µ̂ and σ̂2
X have the same rate, which is hardly

surprising since they are both obtained by a one-dimensional local linear smoothing tech-

nique. Note that our results generalize those in Fan et al. (2007) and Fan and Wu (2008)

by taking the measurement errors and the order of the sampling rate m into account in the

theoretical analysis. In addition, our L2 convergence rates of these estimators complement

the asymptotic normality results in Fan et al. (2007) and Fan and Wu (2008).

Theorem 2. Suppose the conditions (A1)–(A3) hold.

(a) With additional conditions (B1) and (H2), E‖µ̂ − µ‖2 = O(h4
µ + n−1 + n−1m−1h−1

µ ).

With the choice of bandwidth hµ in (H4), E‖µ̂− µ‖2 = O
(
(nm)−4/5 + n−1

)
.

(b) With additional conditions (B1) and (H1)–(H3), E‖σ̂2
X − σ2

X‖2 = O(h4
σ + h4

µ + h4
0 +

n−1 +n−1m−1h−1
σ +n−1m−1h−1

µ +n−1m−2h−1
0 ). With the choice of bandwidth in (H4),

E‖σ̂2
X − σ2

X‖2 = O
(
(nm)−4/5 + n−1

)
.

To derive the asymptotic properties of Ĉ(s, t) = σ̂X(s)ρθ̂(s, t)σ̂X(t), we need the conver-

gence rate of θ̂. Define

Q(θ) = E{σX(T11)σX(T12)ρθ(T11, T12)− [Y11 − µ(T11)][Y12 − µ(T12)]}2,

and assume the following conditions.

(B2) ρθ(s, t) is twice continuously differentiable with respect to s and t. Furthermore,

the first three derivatives of ρθ(s, t) with respect to θ are uniformly bounded for

all θ, s, t, dn.

(B3) λmin

(
∂2Q
∂θ2
|θ=θ0

)
> c0d

−τ
n for some c0 > 0 and τ ≥ 0, where θ0 denotes the true

value of θ, and λmin(·) denotes the smallest eigenvalue of a matrix.
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(B4) E supt ‖X(t)‖4+ε0 <∞ for some ε0 > 0 and Eε4 <∞.

Note that in the condition (B3), we allow the smallest eigenvalue of the Hessian ∂2Q
∂θ2

to decay

with dn. This, departing from the assumption in Fan and Wu (2008) of fixed dimension

on the parameter θ, enables us to incorporate the case that ρθ is constructed from the

aforementioned convex combination of a diverging number of correlation functions, e.g.,

ρθ(s, t) = d−1
n

∑dn
j=1 ρθj(s, t), where τ = 1 if all components ρθj satisfy (B2) uniformly. The

condition (B4), although it is slightly stronger than (A3), is often required in functional

data analysis, e.g., in Li and Hsing (2010) and Zhang and Wang (2016) for the derivation of

uniform convergence rates for µ̂. Such uniform rates are required to bound ∂Q̂n/∂θ sharply

in our development, which is critical to establish the following rate for θ̂.

Proposition 3. Suppose the conditions (A1)–(A2) and (B1)–(B4) hold. If dn = o(n1/(4+4τ)),

then with the choice of bandwidth in (H4), ‖θ̂ − θ0‖2 = OP (d2τ+1
n /n).

The above result suggests that the estimation quality of θ̂ depends on the dimension

of parameters, sample size and singularity of the Hessian matrix at θ = θ0, measured by

the constant τ in condition (B3). In practice, a few parameters are often sufficient for

an adequate fit. In such cases, the dimension dn might not grow with sample size, i.e.,

dn = O(1), and we obtain a parametric rate for θ̂. Now we are ready to state our main

theorem that establishes the convergence rate for Ĉ in the Hilbert-Schmidt norm ‖ · ‖HS,

which follows immediately from the above results.

Theorem 4. Under the same conditions of Proposition 3, we have ‖Ĉ − C‖2
HS = OP (h4

σ +

h4
µ + h4

0 + n−1 + n−1m−1h−1
σ + n−1m−1h−1

µ + n−1m−2h−1
0 + d2τ+1

n n−1). With the choice of

bandwidth in (H4), ‖Ĉ − C‖2
HS = OP

(
(nm)−4/5 + d2τ+1

n n−1
)
.

In practice, a fully nonparametric approach like local regression to estimating the cor-

relation structure is inefficient, in particular when data are snippets. On the other hand, a
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parametric method with a fixed number of parameters might be restrictive when the sam-

ple size is large. One way to overcome such a dilemma is to allow the family of parametric

models to grow with the sample size. As a working assumption, one might consider that

the correlation function ρ falls into Fn, a dn-dimensional family of models for correlation

functions, when the sample size is n. Here, the dimension typically grows with the sample

size. For example, one might consider a dn-Fourier basis family:

κθ(s, t) =
1

ψ(s)ψ(t)

dn∑
j=1

θjφj(s)φj(t), θ1, . . . , θdn ≥ 0 and
dn∑
j=1

θj = 1, (10)

where ψ(t) =
(∑dn

j=1 θjφ
2
j(t)
)1/2

and φ1, . . . are fixed orthonormal Fourier basis functions

defined on T . The theoretical result in Theorem 4 applies to this setting by explicitly

accounting for the impact of the dimension dn on the convergence rate.

5 Simulation Studies

To evaluate the numerical performance of the proposed estimators, we generated X(·) from

a Gaussian process. Three different covariance functions were considered, namely,

I. C(s, t) = σX(s)ρθ(s, t)σX(t) with the variance function σ2
X(t) =

√
te−(t−0.1)2/10 +1 and

the Matérn correlation function ρθ=(0.5,1),

II. C(s, t) =
∑50

k=1 2k−λφk(s)φk(t) with λ = 2 and Fourier basis functions φk(t) =
√

2 sin(2kπt), and

III. C(s, t) =
∑

1≤j,k≤5 cjkφj(s)φk(t) with cjk = e−|j−k|/5.

Two different sample sizes n = 50 and n = 200 were considered to illustrate the behavior

of the estimators under a small sample size and a relatively large sample size. We set the

domain T = [0, 1] and δ = 0.25.
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To evaluate the impact of the mean function, we also considered two different mean

functions, µ1(t) = 2t2 cos(2πt) and µ2(t) = et/2. We found that the results are not sensitive

to the mean function, and thus focus only on the case µ1(t) in this section; the results for

the case µ(t) = et/2 are provided in Supplementary Material. In addition, to evaluate the

impact of the design, we considered two design schemes. In the first scheme, that is referred

to as the sparse design, each curve was sparsely sampled at 4 points on average to mimic

the scenario of the data application in Section 6. In the second scheme, that is referred

to as the dense design, each snippet was recorded in a dense (m1 = · · · = mn = 26) and

regular grid of an individual specific subinterval of length δ. As the focus of the paper is

on sparse snippets, we report the results for the sparse design below. The results for dense

snippets are reported in Supplementary Material.

To assess the performance of the estimators for the noise variance σ2
0, we considered

different noise levels σ2
0 = 0, 0.1, 0.25, 0.5, varying from no noise to large noise. For example,

when σ2
0 = 0.5, the signal-to-noise ratio E‖X −µ‖2/Var(ε) is about 2. The performance of

σ̂2
0 is assessed by the root mean squared error (RMSE), defined by

RMSE =

√√√√ 1

N

N∑
i=1

|σ̂2
0 − σ2

0|2,

where N is the number of independent simulation replicates, which we set to 100. For

the purpose of comparison, we also computed the PACE estimate of Yao et al. (2005)

and the estimate proposed by Liu and Müller (2009), denoted by LM, using the fdapace

R package (Chen et al., 2020) that is available in the comprehensive R archive network

(CRAN). The bandwidth hµ and hσ, as well as those in Yao et al. (2005) and Liu and

Müller (2009), were selected by five-fold cross-validation. The tuning parameter h0 was

selected by the empirical rule h0 = 0.29δ̂‖ς̂‖2(nm2)−1/5 that is described in Section 3. The

simulation results are summarized in Table 1 for the sparse design with mean function
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µ1, as well as Tables S.1–S.3 for the dense design and mean function µ2 in Supplementary

Material, where SNPT denotes our method proposed in Section 3. We observe that in

almost all cases, SNPT performs significantly better than the other two methods. The

results also demonstrate the effectiveness of the proposed empirical selection rule for the

tuning parameter h0.

To evaluate the performance of the estimators for the covariance structure, we con-

sidered two levels of signal-to-noise ratio (SNR), namely, SNR = 2 and SNR = 4. The

performance of estimators for the variance function and the covariance function is evalu-

ated by the root mean integrated squared error (RMISE), defined by

RMISE =

√√√√ 1

N

N∑
i=1

∫
T
|σ̂2
X(t)− σ2

X(t)|2dt

for the variance function and

RMISE =

√√√√ 1

N

N∑
i=1

∫
T

∫
T
|Ĉ(s, t)− C(s, t)|2dsdt

for the covariance function. We compared four methods. The first two, denoted by SNPTM

and SNPTF, are our semi-parametric approach with the correlation given in (4) and (10),

respectively. For the SNPTF method, the dimension dn of (10) is selected via five-fold cross-

validation. It is noted that SNPTM and SNPTF yield the same estimates of the variance

function but different estimates of the correlation structure. The third one, denoted by

PFBE (penalized Fourier basis expansion), is the method proposed by Lin et al. (2019),

and the last one, denoted by PACE, is the approach invented by Yao et al. (2005).

For the estimation of the variance function σ2
X(t), the results are summarized in Table

2 for the sparse design and mean function µ1, and also in Tables S.4–S.6 in Supplementary

Material for the dense design and mean function µ2. In these tables, the results of SNPTF
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are not reported since they are the same as the results of SNPTM. We observe that, in

all cases, SNPTM and PFBE substantially outperform PACE. For the dense design, the

methods SNPTM and PFBE yield comparable results. The SNPTM method performs

better than PFBE when n = 200 in most cases, except in the setting III which favors

the PFBE method. This suggests that the SNPTM method, which adopts the local linear

smoothing strategy combined with our estimator for the variance of the noise, generally

converges faster as the sample size grows.

For the estimation of the covariance function C, we summarize the results in Table

3 for the sparse design and mean function µ1, and in Tables S.7–S.9 in Supplementary

Material for the dense design and mean function µ2. As expected, in all cases, SNPTM,

SNPTF and PFBE substantially outperform PACE, since PACE is not designed to process

functional snippets. Among the estimators SNPTM, SNPTF and PFBE, in the setting

I, SNPTM outperforms the others since in this case the model is correctly specified for

SNPTM, in the setting II, SNPTF is the best since the model is correctly specified for

SNPTF, and in the setting III, PFBE has a favorable performance. Although there is no

universally best estimator, overall these three estimators have comparable performance.

To select a method in practice, one can first produce a scatter plot of the raw covariance

function. If the function appears to decay monotonically as the point (s, t) moves away

from the diagonal, then SNPT with a monotonic decaying correlation such as SNPTM is

recommended. Otherwise, SNPT with a general correlation structure such as SNPTF or

the PFBE approach might be adopted.
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Table 1: RMSE and their standard errors for σ̂2
0 under the sparse design and µ1

method

Cov n σ2
0 SNPT PACE LM

I

50

0 0.012 (0.009) 0.144 (0.166) 0.129 (0.203)

0.1 0.029 (0.038) 0.129 (0.146) 0.186 (0.197)

0.25 0.050 (0.056) 0.147 (0.185) 0.117 (0.125)

0.5 0.100 (0.135) 0.181 (0.195) 0.157 (0.131)

200

0 0.009 (0.005) 0.080 (0.103) 0.073 (0.077)

0.1 0.017 (0.019) 0.091 (0.098) 0.144 (0.150)

0.25 0.032 (0.038) 0.086 (0.097) 0.093 (0.127)

0.5 0.049 (0.064) 0.098 (0.118) 0.165 (0.106)

II

50

0 0.036 (0.030) 0.252 (0.245) 0.219 (0.255)

0.1 0.047 (0.052) 0.254 (0.285) 0.237 (0.255)

0.25 0.087 (0.133) 0.241 (0.244) 0.159 (0.151)

0.5 0.128 (0.202) 0.238 (0.260) 0.126 (0.134)

200

0 0.024 (0.015) 0.177 (0.172) 0.192 (0.200)

0.1 0.027 (0.027) 0.185 (0.179) 0.176 (0.174)

0.25 0.042 (0.050) 0.177 (0.177) 0.097 (0.097)

0.5 0.071 (0.084) 0.174 (0.182) 0.124 (0.089)

III

50

0 0.004 (0.004) 0.099 (0.103) 0.028 (0.064)

0.1 0.024 (0.029) 0.102 (0.106) 0.099 (0.127)

0.25 0.049 (0.063) 0.093 (0.109) 0.077 (0.080)

0.5 0.094 (0.130) 0.113 (0.146) 0.172 (0.128)

200

0 0.002 (0.002) 0.065 (0.077) 0.009 (0.023)

0.1 0.010 (0.012) 0.066 (0.067) 0.049 (0.075)

0.25 0.027 (0.033) 0.068 (0.071) 0.069 (0.067)

0.5 0.059 (0.071) 0.067 (0.073) 0.163 (0.091)
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Table 2: RMISE and their standard errors for σ̂2
X(t) under the sparse design and µ1

method

Cov SNR n SNPTM PFBE PACE

I

2
50 0.535 (0.218) 0.518 (0.211) 2.133 (1.536)

200 0.339 (0.130) 0.330 (0.118) 1.344 (1.126)

4
50 0.531 (0.199) 0.517 (0.229) 1.845 (1.461)

200 0.313 (0.136) 0.334 (0.127) 1.151 (0.952)

II

2
50 0.775 (0.396) 0.743 (0.214) 2.602 (1.747)

200 0.509 (0.163) 0.530 (0.141) 1.699 (1.045)

4
50 0.768 (0.303) 0.734 (0.351) 2.510 (1.578)

200 0.471 (0.162) 0.507 (0.149) 1.515 (1.056)

III

2
50 0.633 (0.201) 0.592 (0.136) 1.478 (1.052)

200 0.376 (0.133) 0.392 (0.107) 1.178 (0.700)

4
50 0.592 (0.208) 0.586 (0.158) 1.428 (1.166)

200 0.350 (0.139) 0.385 (0.114) 0.923 (0.451)
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Table 3: RMISE and their standard errors for Ĉ under the sparse design and µ1

method

Cov SNR n SNPTM SNPTF PFBE PACE

I

2
50 0.339 (0.101) 0.441 (0.158) 0.399 (0.156) 1.470 (0.808)

200 0.235 (0.092) 0.359 (0.089) 0.295 (0.101) 1.044 (0.625)

4
50 0.315 (0.093) 0.424 (0.135) 0.371 (0.143) 1.348 (0.809)

200 0.225 (0.084) 0.341 (0.090) 0.254 (0.097) 0.902 (0.513)

II

2
50 0.556 (0.119) 0.521 (0.183) 0.541 (0.160) 2.061 (1.061)

200 0.474 (0.068) 0.436 (0.132) 0.465 (0.101) 1.625 (0.632)

4
50 0.536 (0.126) 0.472 (0.148) 0.517 (0.139) 2.014 (0.868)

200 0.457 (0.063) 0.419 (0.133) 0.431 (0.112) 1.543 (0.604)

III

2
50 0.503 (0.090) 0.511 (0.154) 0.491 (0.130) 1.248 (0.650)

200 0.473 (0.041) 0.439 (0.092) 0.366 (0.052) 1.136 (0.439)

4
50 0.493 (0.075) 0.499 (0.120) 0.487 (0.122) 1.217 (0.727)

200 0.469 (0.055) 0.423 (0.087) 0.358 (0.063) 0.997 (0.316)
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6 Application

We applied the proposed method to analyze the longitudinal data that was collected and

detailed in Bachrach et al. (1999). It consists of longitudinal measurements of spinal bone

mineral density for 423 healthy subjects. The measurement for each individual was observed

annually for up to 4 years. Among 423 subjects, we focused on n = 280 subjects ranging in

age from 8.8 to 26.2 years who completed at least 2 measurements. A plot for the design

of the covariance function is given in Figure 1, while a scatter plot for the raw covariance

surface is given in Figure 2. The raw covariance surface seems to decay rapidly to zero as

design points move away from the diagonal. This motivated us to estimate the covariance

structure with a Matérn correlation function. This method is referred to as SNPTM. In

addition, we also used the more flexible dn-Fourier basis family to see whether a better fit

can be achieved, where dn = 2 was selected by Akaike information criterion (AIC). Such

approach is denoted by SNPTF.

The estimated variance of the measurement error is 1.5× 10−3 by the method proposed

in Section 3, 10−6 by PACE and 7.8 × 10−7 by LM, respectively. The estimates of the

covariance surface are depicted in Figure 3. We observe that, the estimates produced

by SNPTM and SNPTF are similar in the diagonal region, while visibly differ in the off-

diagonal region. For this dataset, the upward off-diagonal parts of the estimated covariance

surface by SNPTF seem artificial, so we recommend the SNPTM estimate for this data.

For the PACE estimate, due to the missing data in the off-diagonal region and insufficient

observations at two ends of the diagonal region, it suffers from significant boundary effect.

The mean function estimated by SNPTM1 shown in the left panel of Figure 4 and found

similar to its counterpart in Lin et al. (2019), suggests that the spinal bone mineral density

1SNPTM, SNPTF and PACE use the same method to estimate the mean function.
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Figure 2: Scatter plot of the raw covariance function of the spinal bone mineral density

data.

increases rapidly from age 9 to age 16, and then slows down afterward. The mineral density

has the largest variation around age 14, indicated by the variance function estimated by

SNPTM2 and shown in the middle panel of Figure 4. As a comparison, the PACE estimate,

shown in the right panel of Figure 4, suffers from the boundary effect that is passed from

the PACE estimate of the covariance function, because the PACE method estimates the

variance function by the diagonal of the estimated covariance function.

2SNPTM and SNPTF use the same method to estimate the variance function.
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Figure 3: The estimated covariance functions by SNPTM (left), SNPTF (middle) and

PACE (right). The z-axis is scaled by 10−2 for visualization.

µ • •

Figure 4: The estimated mean function (left), the estimated variance function by SNPTM

and SNPTF (middle), and the estimated variance function by PACE (right).
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7 Concluding Remarks

In this paper, we consider the mean and covariance estimation for functional snippets. The

estimation of the mean function is still an interpolation problem so previous approaches

based on local smoothing methods still work, except that the theory needs a little ad-

justment to reflect the new design of functional snippets. However, the estimation of the

covariance function is quite different because it is now an extrapolation problem rather an

interpolation problem, so previous approaches based on local smoothing do not work any-

more. We propose a hybrid approach that leverages the available information and structure

of the correlation in the diagonal band to estimate the correlation function parametrically

but the variance function nonparametrically. Because the dimension of the parameters can

grow with the sample size, the approach is very flexible and can be made nearly nonpara-

metric for the final covariance estimate.

An interesting feature of the algorithm is that it reverses the order of estimation for the

variance components, compared to existing approaches for non-snippets functional data, by

first estimating the noise variance σ0, then estimating the variance function σ2
X(t), followed

by the fitting of the correlation function. The estimation of the covariance function is

performed at the very end when all other components have been estimated. The proposed

approach differs substantially from traditional approaches, such as PACE (Yao et al., 2005),

which estimate the covariance function first, from there the variance function is obtained

as a byproduct through the diagonal elements of the covariance estimate, while the noise

variance is estimated at the very end. The new procedure to estimate the noise variance is

both simpler and better than the PACE estimates. Thus, even if the data are non-snippet

types, one can use the new method proposed in Section 3 to estimate the noise variance.

We emphasize that, although the proposed method targets functional snippets, it is also
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applicable to functional fragments or functional data in which each curve consists of multi-

ple disjoint snippets. In addition, the theory presented in Section 4 can be slightly modified

to accommodate such data. In contrast, methods designed for nonsnippet functional data

are generally not applicable to functional snippets, due to the reasons discussed in Section

1. In practice, one might distinguish between functional snippets and nonsnippets by the

design plot like Figure 1. If the support points cover the entire region, then the data are

of the nonsnippet type. Otherwise they are functional snippets. However, there might be

some case that it is unclear whether the entire region is fully covered by support points,

especially when data are sparsely observed. In such situation, snippet-based methods, such

as the proposed one, is a safer option.

Reliable estimates of the mean and covariance functions are fundamental to the analysis

of functional data. They are also the building blocks of functional regression methods

and functional hypothesis test procedures. The proposed estimators for the mean and

covariance of functional snippets together provide a stepping stone to future study on

regression and inference that are specific to functional snippets.

Supplementary Material

The online supplementary material contains additional simulation results, as well as infor-

mation for implementation of the proposed method in the R package mcfda3.

3https://github.com/linulysses/mcfda.
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Appendix

Selection of h0

The constant 0.29 in the empirical rule h0 = 0.29δ̂‖ς̂‖2(nm2)−1/5 presented in Section 3

was determined by optimizing
∑
{ĥ − cδ̂‖ς̂‖2(nm2)−1/5}2 over c ∈ R, where the summa-

tion is taken over the combinations of various parameters. Specifically, for each tuple

(n,m, δ, σ2
0, C), we generated a batch of G = 100 independent datasets of n centered Gaus-

sian snippets with the covariance function C. Each snippet was recorded at m random

points from a random subinterval of length δ in [0, 1]. For each batch of datasets, we

found ĥ to minimize
∑G

r=1{σ̂2
0,r(ĥ)−σ2

0}2, where σ̂2
0,r(ĥ) is the estimate of σ2

0 based the rth

dataset in the batch and by using the proposed method with the bandwidth ĥ. We also

obtained the quantities δ̂ = G−1
∑G

r=1 δ̂r and ‖ς̂‖2 = G−1
∑G

r=1 ‖ς̂r‖2, where δ̂r and ς̂r are

the estimate of δ and ς based on the rth dataset in the batch, respectively. In this way, we

obtain a collection H of vectors (ĥ, n,m, δ̂, ‖ς̂‖2). Finally, we found c = 0.29 to minimize∑
{ĥ− cδ̂‖ς̂‖2(nm2)−1/5}2, where the summation is taken over the collection H .

In the above process, the covariance function C was taken from a collection composed

by 1) covariance functions whose correlation part is the correlation function listed in

Section 2 with various values of the parameters and whose variance functions are ex-

ponential functions, squared sin/cos functions and positive polynomials, 2) covariance

functions C(s, t) = amin{s, t} with various values of a > 0, 3) covariance functions

C(s, t) =
∑K

k=1 ak
−λφk(s)φk(t) with various values of a > 0, λ > 0 and K ≥ 1, where

the functions φk are the Fourier basis functions described in Section 5, and 4) covariance

functions C(s, t) =
∑

1≤j,k≤K ae
−b|j−k| with various choices of a > 0, b > 0 and K ≥ 1.
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Technical Lemmas

Lemma 5.

(a) Under conditions (A1)–(A2), one has A2 = A1 +O(h3
0).

(b) With condition (A1), E(B̂ − B)2 = O(n−1m−2h0 + n−1m−1h2
0).

(c) Under conditions (A1)–(A3), E{(Â0−Â1)−(A0−A1)}2 = O(h6
0 +n−1m−2h0 +n−1h2

0).

If EL4
X <∞ is also assumed, then E{(Â0 − Â1)− (A0 −A1)}2 = O(h6

0 + n−1m−2h0 +

n−1m−1h2
0).

Proof. To show A2 = A1 + O(h3
0) in part (a), we define Th0,δ = {(s, t, u) : u ∈ [δ/2, 1 −

δ/2], u−δ/2 ≤ s, t ≤ u+δ/2, |s−t| < h0} and g(s, t, u) = {C(s, t)+µ(s)µ(t)}fT |O(s|u)fT |O(t|u)fO(u).

Let gs be the partial derivative of g with respect to s. Then, gs is Lipschitz continuous

given condition (A1) and (A2). With t∗ denoting a real number satisfying min(s, t) ≤ t∗ ≤

max(s, t), one has

A2 =

∫∫∫
Th0,δ

[g(t, t, u) + gs(t, t, u)(s− t) + {gs(t∗, t, u)− gs(t, t, u)}(s− t)2}]dsdtdu

= A1 +

∫∫∫
Th0,δ

gs(t, t, u)(s− t)dsdtdu+O(h3
0) = A1 +O(h3

0),

where the last equality is obtained by observing that∫∫∫
Th0,δ

gs(t, t, u)(s− t)dsdtdu =

∫ 1−δ/2

δ/2

∫ u+δ/2−h0

u−δ/2+h0

∫ t+h0

t−h0
gs(t, t, u)(s− t)dsdtdu

+

∫ 1−δ/2

δ/2

∫ u−δ/2+h0

u−δ/2

∫ min(u+δ/2,t+h0)

max(u−δ/2,t−h0)

gs(t, t, u)(s− t)dsdtdu

+

∫ 1−δ/2

δ/2

∫ u+δ/2

u+δ/2−h0

∫ min(u+δ/2,t+h0)

max(u−δ/2,t−h0)

gs(t, t, u)(s− t)dsdtdu

=0 +O(h3
0) +O(h3

0) = O(h3
0).

34



For part (b), it is seen that EB̂ = B and

E(B̂ − B)2 = E

[
1

n

n∑
i=1

1

m(m− 1)

∑
j 6=l

1|Tij−Til|<h0 − B

]2

=
1

n
E

[
1

m(m− 1)

∑
j 6=l

1|Tij−Til|<h0 − B

]2

. (11)

Now we first observe that E(1|Tij−Til|<h0 | Oi) = B, since

E(1|Tij−Til|<h0 | Oi) =

∫∫
|s−t|<h0

Oi−δ/2≤s,t≤Oi+δ/2
fT |O(s|Oi)fT |O(t|Oi)dsdt

=

∫∫
|s−t|<h0

Oi−δ/2≤s,t≤Oi+δ/2
f0(s−Oi + δ/2)f0(t−Oi + δ/2)dsdt

=

∫∫
|s−t|<h0
0≤s,t≤δ

f0(s)f0(t)dsdt

and

B = E1|Tij−Til|<h0 = EE(1|Tij−Til|<h0 | Oi) =

∫∫
|s−t|<h0
0≤s,t≤δ

f0(s)f0(t)dsdt.

Therefore, if j, l, p, q are all distinct, then

E{(1|Tij−Til|<h0 − B)(1|Tip−Tiq |<h0 − B)}

= EE{(1|Tij−Til|<h0 − B)(1|Tip−Tiq |<h0 − B) | Oi}

= E{E(1|Tij−Til|<h0 − B | Oi)E(1|Tip−Tiq |<h0 − B | Oi)} = 0.

It is relatively straightforward to show that if j = p but l 6= q or j = q but l 6= p, then

E{(1|Tij−Til|<h0 −B)(1|Tip−Tiq |<h0 −B)} = O(h2
0), and if j = p and l = q or j = q and l = p,

then E{(1|Tij−Til|<h0 − B)(1|Tip−Tiq |<h0 − B)} = O(h0). Assembling the above results, one

has

E

[
1

m(m− 1)

∑
j 6=l

1|Tij−Til|<h0 − B

]2

= O(m−2h0 +m−1h2
0),
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which together with (11) implies the conclusion of part (b).

For part (c), with the aid of part (a), it is straightforward to see that

E{(Â0 − Â1)− (A0 − A1)} = O(h3
0). (12)

Now we shall calculate the variance of Â0−Â1. With definition E0 = E(Yij−Yil)21|Tij−Til|<h0 ,

one derives

Var(Â0 − Â1)

= Var

(
1

n

n∑
i=1

1

m(m− 1)

∑
j 6=l

(Yij − Yil)2

2
1|Tij−Til|<h0

)

=
1

4n
Var

(
1

m(m− 1)

∑
j 6=l

(Yij − Yil)21|Tij−Til|<h0

)

=
1

4n

(
1

m2(m− 1)2

∑
j 6=l

∑
p6=q

E{(Yij − Yil)21|Tij−Til|<h0 − E0}{(Yip − Yiq)21|Tip−Tiq |<h0 − E0}

)

≡ 1

4n

(
1

m2(m− 1)2

∑
j 6=l

∑
p6=q

V (j, l, p, q)

)
. (13)

Below we derive bounds for the term V (j, l, p, q).

• Case 1: j, l, p and q are all distinct. In this case, via straightforward computation, one

can show that V (j, l, p, q) = E{(Yij−Yil)21|Tij−Til|<h0}{(Yip−Yiq)21|Tip−Tiq |<h0}−E2
0 =

O(h2
0).

• Case 2: j = p but l 6= q or j = q but l 6= p. Similar to Case 1, one has V (j, l, p, q) =

O(h2
0).

• Case 3: j = p and l = q or j = q and l = p. In this case,

V (j, l, p, q) = E{(Yij − Yil)41|Tij−Til|<h0} − E
2
0 = O(h0).
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Based on the above bounds, we have Var(Â0− Â1) = O(n−1h2
0 +n−1m−1h2

0 +n−1m−2h0) =

O(n−1h2
0 +n−1m−2h0). Together with the bias given in (12), this implies the first statement

of part (c).

For the second statement of part (c), we observe that with condition EL4
X < ∞, the

bound in Case 1 can be sharpened in the following way. First, we see that

E0 = E{Xi(Tij)−Xi(Til)}21|Tij−Til|<h0 + E(εij − εil)21|Tij−Til|<h0 = E1 + 2σ2
0B,

where E1 = E{Xi(Tij) − Xi(Til)}21|Tij−Til|<h0 . Then, we decompose V (j, l, p, q) into I1 +

I2 + I3 + I4, where

I1 = E[{X(Tij)−X(Til)}21|Tij−Til|<h0 − E1][{X(Tip)−X(Tiq)}21|Tip−Tiq |<h0 − E1],

I2 = E[{X(Tij)−X(Til)}21|Tij−Til|<h0 − E1][(εip − εiq)21|Tip−Tiq |<h0 − 2σ2
0B],

I3 = E[(εij − εil)21|Tij−Til|<h0 − 2σ2
0B][{X(Tip)−X(Tiq)}21|Tip−Tiq |<h0 − E1],

I4 = E[(εij − εil)21|Tij−Til|<h0 − 2σ2
0B][(εip − εiq)21|Tip−Tiq |<h0 − 2σ2

0B].

For I2, one can show that

I2 = EE
(
[{X(Tij)−X(Til)}21|Tij−Til|<h0 − E1][(εip − εiq)21|Tip−Tiq |<h0 − 2σ2

0B] | Oi

)
= E

(
E[{X(Tij)−X(Til)}21|Tij−Til|<h0 − E1 | Oi]E[(εip − εiq)21|Tip−Tiq |<h0 − 2σ2

0B | Oi]
)

= 0,

where the first equality is due to the assumption that Ti1, . . . , Tim are i.i.d. conditional on

Oi, and the second one is based on the following observation

E[(εip − εiq)21|Tip−Tiq |<h0 − 2σ2
0B | Oi] = 2σ2

0E(1|Tip−Tiq |<h0 | Oi)− 2σ2
0B = 2σ2

0B − 2σ2
0B = 0,

where we recall that E(1|Tij−Til|<h0 | Oi) = B. Similarly, I3 = 0 and I4 = 0. For I1, one can

show that

|I1| = |E[{X(Tij)−X(Til)}21|Tij−Til|<h0 − E1][{X(Tip)−X(Tiq)}21|Tip−Tiq |<h0 − E1]|

37



= |E[{X(Tij)−X(Til)}21|Tij−Til|<h0{X(Tip)−X(Tiq)}21|Tip−Tiq |<h0 ]− E2
1 |

≤ E(L4
X |Tij − Til|2|Tip − Tiq|21|Tij−Til|<h01|Tip−Tiq |<h0) + E2

1

≤ h4
0EL4

XE1|Tij−Til|<h01|Tip−Tiq |<h0 + E2
1

= O(h6
0) + E2

1 ,

where the first inequality is due to the Lipschitz continuity property of sample paths.

Again, based on such continuity property, one has E1 = E{Xi(Tij)−Xi(Til)}21|Tij−Til|<h0 ≤

EL2
X |Tij − Til|21|Tij−Til|<h0 ≤ h2

0EL2
XE1|Tij−Til|<h0 = O(h3

0). Therefore, we conclude that

I1 = O(h6
0). Together with I2 = I3 = I4 = 0, this implies that V (j, l, p, q) = O(h6

0). It

further indicates that Var(Â0− Â1) = O(n−1h6
0 + n−1m−1h2

0 + n−1m−2h0). Combined with

the bias term in (12), this implies the second statement of part (c).

Proofs of Main Results

Proof of Proposition 3. For the moment, we assume µ ≡ 0. Denote

Qn(θ) =
1

n

n∑
i=1

1

m(m− 1)

∑
1≤j 6=l≤m

{σX(Tij)σX(Til)ρθ(Tij, Til)− Cijl}2.

Now we show that ∥∥∥∥∥∂Q̂n

∂θ
− ∂Qn

∂θ

∥∥∥∥∥ = OP

(√
dnan log n

n

)
, (14)

where an = (log n){(nm)−4/5 + n−1}. First, we observe that

∂Q̂n

∂θ
− ∂Qn

∂θ
= I1 + I2 + I3

with

I1 =
1

n

n∑
i=1

1

m(m− 1)

∑
1≤j 6=l≤m

2{σX(Tij)σX(Til)ρθ(Tij, Til)− Cijl}×
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{σ̂X(Tij)σ̂X(Til)− σX(Tij)σX(Til)}
∂ρθ(Tij, Til)

∂θ
,

I2 =
1

n

n∑
i=1

1

m(m− 1)

∑
1≤j 6=l≤m

2{σ̂X(Tij)σ̂X(Til)− σX(Tij)σX(Til)}ρθ(Tij, Til)×

σX(Tij)σX(Til)
∂ρθ(Tij, Til)

∂θ
,

I3 =
1

n

n∑
i=1

1

m(m− 1)

∑
1≤j 6=l≤m

2{σ̂X(Tij)σ̂X(Til)− σX(Tij)σX(Til)}ρθ(Tij, Til)×

{σ̂X(Tij)σ̂X(Til)− σX(Tij)σX(Til)}
∂ρθ(Tij, Til)

∂θ
.

To derive the rate for I1, we define

G =
1

n

n∑
i=1

1

m(m− 1)

∑
1≤j 6=l≤m

2{σX(Tij)σX(Til)ρθ(Tij, Til)− Cijl} ≡
1

n

n∑
i=1

Gi.

It can be verified that EGi = 0, and also EG2
i < ∞ given condition (A3) and (B2). We

view each Gi as a random linear functional from the space Λ0 = {f ∈ C2(T ) : ‖f‖∞ ≤ 1},

i.e.,

Gi(f) 7→ 1

m(m− 1)

∑
1≤j 6=l≤m

2{σX(Tij)σX(Til)ρθ(Tij, Til)− Cijl}f(Tij, Til),

where f ∈ Λ0. Then we follow the same lines of the argument for Lemma 2 of Severini and

Wong (1992) to establish that
√
nG converges to a Gaussian element on the Banach space

C(Λ0) of continuous functions on Λ0 with the sup norm. On the other hand, using the

same technique of Zhang and Wang (2016) for the uniform convergence of the local linear

estimator for the mean function, we can show that supt |σ̂X(t) − σX(t)| = OP (
√
an), and

hence sups,t |σ̂X(s)σ̂X(t) − σX(s)σX(t)| = OP (
√
an). By condition (B2) that ∂ρθ(s, t)/∂θj

is uniformly bounded for all j, we can deduce that, for sufficiently large n, with prob-

ability tending to one, the function (an log n)−1/2fj with fj : (s, t) 7→ {σ̂X(s)σ̂X(t) −
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σX(s)σX(t)}∂ρθ(s, t)/∂θj falls into Λ0 for all j. Therefore,∥∥∥∥√nG( fj√
an log n

)∥∥∥∥ ≤ ‖√nG‖ ∥∥∥∥ fj√
an log n

∥∥∥∥ = OP (1),

where OP is uniform for all j. Noting that I1 = (Gf1, . . . , Gfdn)T, one can deduce from the

above that

‖I1‖ ≤

√√√√ dn∑
j=1

‖Gfj‖2 ≤
√
dn max

1≤j≤dn
‖Gfj‖ = OP

(√
dnan log n

n

)
.

When µ 6= 0, an argument similar to the above can also be applied to handle extra terms

induced by the discrepancy between µ̂ and µ, so that we still obtain the same rate as the

above. Similar argument applies to I2, and we have I2 = OP (
√
dnan log n/

√
n). It is easy

to see that I3 is dominated by the other terms. Together, we establish (14). It is seen that

‖∂Qn/∂θ |θ=θ0 ‖ = OP (
√
dn/n). Thus, we have∥∥∥∥∥∂Q̂n

∂θ
|θ=θ0

∥∥∥∥∥ ≤
∥∥∥∥∂Qn

∂θ
|θ=θ0

∥∥∥∥+

∥∥∥∥∥
(
∂Q̂n

∂θ
− ∂Qn

∂θ

)
|θ=θ0

∥∥∥∥∥
= OP

(√
dn
n

+

√
dnan log n

n

)
= OP

(√
dn
n

)
,

Straightforward but somewhat tedious calculation can show that∥∥∥∥∥∂2Q̂n

∂θ2
|θ=θ0 −

∂2Q

∂θ2
|θ=θ0

∥∥∥∥∥ = OP

(
dn√
n

+ dn
√
an

)
= OP (dn

√
an)

and

sup
θ

∣∣∣∣∣∣
∑
|α|=3

vα
∂αQ̂n(θ)

α!

∣∣∣∣∣∣ = OP

(
d3/2
n ‖v‖3

)
.

Now let ηn =
√
d1+2τ
n /n. By Taylor expansion,

D(u) ≡ Q̂n(θ0 + ηnu)− Q̂n(θ0)
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= ηn

(
∂Q̂n

∂θ
|θ=θ0

)T

u+ η2
nu

T

(
∂2Q̂n

∂θ2
|θ=θ0

)
u+ η3

n

∑
|α|=3

uα
∂αQ̂n

α!
|θ=θ∗

= OP

(
ηn

√
dn
n

)
‖u‖+ η2

nλmin

(
∂2Q

∂θ2
|θ=θ0

)
‖u‖2 +OP

(
η3
nd

3/2
n

)
‖u‖3

≥ OP

(
d1+τ
n n−1

)
‖u‖+ c0d

1+τn−1‖u‖2 + oP (d1+τn−1)‖u‖3 > 0

for some constant c0 > 0 and if ‖u‖ = c for a sufficiently large absolute constant c > 0.

Thus, ‖θ̂ − θ0‖ = OP (ηn) = OP (n−1/2d
τ+1/2
n ).
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