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Abstract

We consider estimation of mean and covariance functions of functional snippets,
which are short segments of functions possibly observed irregularly on an individual
specific subinterval that is much shorter than the entire study interval. Estimation
of the covariance function for functional snippets is challenging since information for
the far off-diagonal regions of the covariance structure is completely missing. We
address this difficulty by decomposing the covariance function into a variance func-
tion component and a correlation function component. The variance function can be
effectively estimated nonparametrically, while the correlation part is modeled para-
metrically, possibly with an increasing number of parameters, to handle the missing
information in the far off-diagonal regions. Both theoretical analysis and numerical
simulations suggest that this hybrid strategy is effective. In addition, we propose
a new estimator for the variance of measurement errors and analyze its asymptotic
properties. This estimator is required for the estimation of the variance function from
noisy measurements.
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1 Introduction

Functional data are random functions on a common domain, e.g., an interval 7 C R. In
reality they can only be observed on a discrete schedule, possibly intermittently, which leads
to an incomplete data problem. Luckily, by now this problem has largely been resolved
(Rice and Wu, 2001; Yao et al., 2005; Li and Hsing, 2010; Zhang and Wang, 2016) and there
is a large literature on the analysis of functional data. For a more comprehensive treatment
readers are referred to the monographs by Ramsay and Silverman (2005), Ferraty and Vieu
(2006), Hsing and Eubank (2015) and Kokoszka and Reimherr (2017), and a review paper
by Wang et al. (2016).

In this paper, we address a different type of incomplete data, which occurs frequently
in longitudinal studies when subjects enter the study at random time and are followed for
a short period within the domain 7 = [a,b] C R. Specifically, we focus on functional data
with the following property: each function Xj; is only observed on a subject-specific interval

0; = [A;, Bj] C [a,b], and

(S)  there exists an absolute constant ¢ such that 0 < § < 1 and B, — A; < §(b — a) for
alli=1,2,.. ..

As a result, the design of support points (Yao et al., 2005) where one has information about
the covariance function C(s,t) is incomplete in the sense that there are no design points in
the off-diagonal region, 7 = {(s,t) : | s—t |> d(b—a), s,t € [a,b]}. This is mathematically

characterized by

7

<U[Ai, Bf) N7y =0. (1)

Consequently, local smoothing methods, such as PACE (Yao et al., 2005), that are inter-
polation methods fail to produce a consistent estimate of the covariance function in the

off-diagonal region as the problem requires data extrapolation.
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An example is the spinal bone mineral density data collected from 423 subjects ranging
in age from 8.8 to 26.2 years (Bachrach et al., 1999). The design plot for the covariance
function, as shown in Figure 1, indicates that all of the design points fall within a narrow
band around the diagonal area but the domain of interest [8.8,26.2] is much larger than this
band. The cause of this phenomenon is that each individual trajectory is only recorded in
an individual specific subinterval that is much shorter than the span of the study. For the
spinal bone mineral density data, the span (length of interval between the first measurement
and the last one) for each individual is no larger than 4.3 years, while the span for the study
is about 17 years. Data with this characteristic, mathematically described by (S) or (1),
are called functional snippets in this paper, analogous to the longitudinal snippets studied
in Dawson and Miiller (2018). As it turns out, functional snippets are quite common
in longitudinal studies (Raudenbush and Chan, 1992; Galbraith et al., 2017) and require
extrapolation methods to handle. Usually, this is not an issue for parametric approaches,
such as linear mixed-effects models, but requires a thoughtful plan for non- and semi-
parametric approaches.

Functional fragments (Liebl, 2013; Kraus, 2015; Kraus and Stefanucci, 2019; Kneip
and Liebl, 2019+; Liebl and Rameseder, 2019), like functional snippets, are also partially
observed functional data and have been studied broadly in the literature. However, for
data investigated in these works as functional fragments, the span of a single individual
domain [A;, B;] can be nearly as large as the span [a, b] of the study, making them distinc-
tively different from functional snippets. Such data, collectively referred to as “nonsnippet

functional data” in this paper, often satisfy the following condition:

(F)  for any e € (0,1), lim, Pr{B;, — A;, > (1 —¢€)(b—a)} > 0 for a strictly increasing

sequence {i,}°° .

For instance, Kneip and Liebl (2019+) assumed that Pr([A;, B> = [a,b]?) > 0, which
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implies that design points and local information are still available in the off-diagonal region
7. In other words, for non-snippet functional data and for each (s,¢) € [a,b]?, one has
Pr{(s,t) € U ,[A:, Bi]*} > 0 for sufficiently large n, contrasting with (1) for functional
snippets. Other related works by Gellar et al. (2014); Goldberg et al. (2014); Gromenko
et al. (2017); Stefanucci et al. (2018) on partially observed functional data, although do
not explicitly discuss the design, require condition (F) for their proposed methodologies
and theory. All of them can be handled with a proper interpolation method, which is
fundamentally different from the extrapolation methods needed for functional snippets.
The analysis of functional snippets is more challenging than non-snippet functional
data, since information in the far off-diagonal regions of the covariance structure is com-
pletely missing for functional snippets according to (1). Delaigle and Hall (2016) addressed
this challenge by assuming that the underlying functional data are Markov processes, which
is only valid at the discrete level, as pointed out by Descary and Panaretos (2019). Zhang
and Chen (2018) and Descary and Panaretos (2019) used matrix completion methods to
handle functional snippets, but their approaches require modifications to handle longitudi-
nally recorded snippets that are sampled at random design points, and their theory does
not cover random designs. Delaigle et al. (2019) proposed to numerically extrapolate an
estimate, such as PACE (Yao et al., 2005), from the diagonal region to the entire domain
via basis expansion. In this paper, we propose a divide-and-conquer strategy to analyze
(longitudinal) functional snippets with a focus on the mean and covariance estimation.
Once the covariance function has been estimated, functional principal component analysis
can be performed through the spectral decomposition of the covariance operator.
Specifically, we divide the covariance function into two components, the variance func-
tion and the correlation function. The former can be estimated via classic kernel smoothing,

while the latter is modeled parametrically with a potentially diverging number of parame-
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Figure 1: The design of covariance function from spinal bone mineral density data.

ters. The principle behind this idea is to nonparametrically estimate the unknown compo-
nents for which sufficient information is available while parameterizing the component with
missing pieces. Since the correlation structure is usually much more structured than the
covariance surface and it is possible to estimate the correlation structure nonparametrically
within the diagonal band, a parametric correlation model can be selected from candidate
models in existing literature and this usually works quite well to fit the unknown correlation
structure.

Compared to the aforementioned works, our proposal enjoys at least two advantages.
First, it can be applied to all types of designs, either sparsely /densely or regularly /irregularly
observed snippets. Second, our approach is simple thanks to the parametric structure of
the correlation structure, and yet powerful due to the potential to accommodate growing

dimension of parameters and nonparametric variance component. We stress that, our semi-



parametric and divide-and-conquer strategy is fundamentally different from the penalized
basis expansion approach that is adopted in the recent paper by Lin et al. (2019) where the
covariance function is represented by an analytic basis and the basis coefficients are esti-
mated via penalized least squares. Numerical comparison of these two methods is provided
in Section 5.

This divide-and-conquer approach has been explored in Fan et al. (2007) and Fan and
Wu (2008) to model the covariance structure of time-varying random noise in a varying-
coefficient partially linear model. We demonstrate here that a similar strategy can overcome
the challenge of the missing data issue in functional snippets and further allow the dimen-
sion of the correlation function to grow to infinity. In addition, we take into account the
measurement error in the observed data, which is an important component in functional
data analysis but is of less interest in a partially linear model and thus not considered in
Fan et al. (2007) and Fan and Wu (2008). The presence of measurement errors complicates
the estimation of the variance function, as they are entangled together along the diagonal
direction of the covariance surface. Consequently, the estimation procedure for the variance
function in Fan et al. (2007) and Fan and Wu (2008) does not apply. While it is possible
to estimate the error variance using the approach in Yao et al. (2005) and Liu and Miiller
(2009), these methods require a pilot estimate of the covariance function in the diagonal
area, which involves two-dimensional smoothing, and thus are not efficient. A key contri-
bution of this paper is a new estimator for the error variance in Section 3 that is simple and
easy to compute. It improves upon the estimators in Yao et al. (2005) and Liu and Miiller
(2009), as demonstrated through theoretical analysis and numerical studies; see Section 4

and 5 for details.



2 Mean and Covariance Function Estimation

Let X be a second-order random process defined on an interval 7 C R with mean func-
tion p(t) = EX(¢), and covariance function C(s,t) = cov(X(s), X (t)). Without loss of
generality, we assume 7 = [0, 1] in the sequel.

Suppose { X7, ..., X, } is an independent random sample of X, where n is the sample
size. In practice, functional data are rarely fully observed. Instead, they are often noisily
recorded at some discrete points on 7. To accommodate this practice, we assume that each
X, is only measured at m; points T}, . .., T}y, and the observed data are Y;; = X;(T;;) +¢;
for j = 1,...,m;, where ¢;; represents the homoscedastic random noise such that Ee;; =
0 and Eef; = of. This homoscedasticity assumption can be relaxed to accommodate
heteroscedastic noise; see Section 3 for details. To further elaborate the functional snippets
characterized by (S), we assume that the ith subject is only available to be studied between
time O;—0/2 and O;+0/2, where the variable O; € [6/2,1—§/2], called reference time in this
paper, is specific to each subject and is modeled as identically and independently distributed
(i.i.d.) random variables. We then assume that, T}y, ..., Ty, are i.i.d., conditional on O;.
These assumptions reflect the reality of many data collection processes when subjects enter
a study at random time O; — 0/2 and are followed for a fixed period of time. Such a
sampling plan, termed accelerated longitudinal design, has the advantage to expand the
time range of interest in a short period of time as compared to a single cohort longitudinal

design study.

2.1 Mean Function

Even though only functional snippets are observed rather than a full curve, smoothing

approaches such as Yao et al. (2005) can be applied to estimate the mean function g,



since for each ¢, there is positive probability that some design points fall into a small
neighborhood of ¢. Here, we adopt a ridged version of the local linear smoothing method
in Zhang and Wang (2016), as follows.

Let K be a kernel function and h, a bandwidth, and define K, (u) = b, K (u/h,,).
The non-ridged local linear estimate of y is given by fi(t) = by with

(bo,b1)ER2 i=1

(60, 61) = argmin ZU}Z Z K}W(E]‘ — t){)/z] — bg — b1<l_rz — t)}27
7=1

where w; > 0 are weight such that >  m;w; = 1. For the optimal choice of weight,
readers are referred to Zhang and Wang (2018). It can be shown that f(t) = (RpSs —
RlSl)/(SOSg - 512), where

Se= 3w Y K (T = 04Ty — )/,

i=1
Re=Y wid K, (T = ){(Ty = 1)/h} Y.
=1 j=1
Although [i behaves well most of the time, for a finite sample, there is positive probability
that SpSy — S = 0, hence i may become undefined. This minor issue can be addressed by
ridging, a regularization technique used by Fan (1993) with details in Seifert and Gasser
(1996) and Hall and Marron (1997). The basic idea is to add a small positive constant to
the denominator of i when SySy — S? falls below a threshold. More specifically, the ridged

version of fi(t) is given by

. RySy; — RS,
M) = 55— 57 + Al / @
002 i+ Alys,s,—s21<a}
where A is a sufficiently small constant depending on n and mq,...,m,. A convenient

choice here is A = (nm)~2, where m =n=' > m;.



The tuning parameter h, could be selected via the following r-fold cross-validation
procedure. Let k be a positive integer, e.g., K = 5, and {Py,...,P.} be a roughly even
random partition of the set {1,...,n}. For a set H of candidate values for h,, we choose
one from it such that the following cross-validation error

CV(h) = > > ¥y — in-+(Tiy)}* (3)
k=1ieP, j=1

is minimized, where fi5 _j, is the estimator in (2) with h, = h and subjects in P, excluded.

2.2 Covariance Function

Estimation of the covariance function C(s,t) for functional snippets is considerably more
challenging. As we have pointed out in Section 1, local information in the far off-diagonal
region, |s —t| > 4, is completely missing. To tackle this challenge, we first observe that the
covariance function can be decomposed into two parts, a variance function and a correlation
structure, i.e., C(s,t) = ox(s)ox(t)p(s,t), where o%(-) is the variance function of X, or
more precisely, 0% (t) = E{X(t) — u(t)}?, and p(-,-) is the correlation function. Like the
mean function u, the variance function can be well estimated via local linear smoothing
even in the case of functional snippets. The real difficulty stems from the estimation
of the correlation structure, which we propose to model parametrically. At first glance, a
parametric model might be restrictive. However, with a nonparametric variance component
and a large number of parameters, the model will often still be sufficiently flexible to capture
the covariance structure of the data. Indeed, in our simulation studies that are presented
in Section 5, we demonstrate that even with a single parameter, the proposed model often
yields good performance when sample size is limited. As an additional flexibility, our
parametric model does not require the low-rank assumption and hence is able to model

truly infinitely-dimensional functional data. This trade of the low-rank assumption with
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the proposed parametric assumption seems worthwhile, especially because we allow the
dimension of the parameters to increase with the sample size. The increasing dimension of
the parameter essentially puts the methodology in the nonparametric paradigm.

To estimate 0%(-), we first note that the PACE method in Yao et al. (2005) can still be
used to estimate C(s,t) on the band T2 = {(s,t) € T x T : |s — t| < d} that includes the
diagonal, although not on the full domain 7 x 7. Since 0%(t) = C(t,t), the PACE estimate
C for C on the diagonal gives rise to an estimate of 0% (t). However, this method requires
two-dimensional smoothing, which is cumbersome and computationally less efficient. In
addition, it has the convergence rate of a two-dimensional smoother, which is suboptimal
for a target 0% (t) that is a one-dimensional function. Here we propose a simpler approach
that only requires one-dimensional smoothing, based on the observation that the quantity
2(t) = E{Y(t) — u(t)}* = 0%(t) + o2 can be estimated by local linear smoothing on the
observations {Y;; — i(T;;) }*. More specifically, the non-ridged local linear estimate of ¢*(¢),
denoted by ¢2(t), is by with

(bo,by) = argmin Y " w; Y K, (T — )[{Ys; — i(Ti5)}> — by — bi(Ti; — 1)),
j=1

(bo,bl)ERQ i=1

where h, is the bandwidth to be selected by a cross-validation procedure similar to (3). As
with the ridged estimate of the mean function in (2), to circumvent the positive probability
of being undefined for ¢, we adopt the ridged version of ¢2 as the estimate for ¢2, denoted
by ¢2. Then our estimate of 0% (t) is 6% (t) = ¢2(t) — 62, where 62 is a new estimate of o2, to
be defined in the next section, that has a convergence rate of a one-dimensional smoother.
Because ¢%(t) also has a one-dimensional convergence, the resulting estimate of % () has
a one-dimensional convergence rate.

For the correlation function p, we assume that p is indexed by a d,-dimensional vector

of parameters, denoted by 6 € R%. Here, the dimension of parameters is allowed to grow
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with the sample size at a certain rate; see Section 4 for details. Some popular parametric

families for correlation function are listed below.

1. Power exponential:
|s — t|%

901 }, 0<01§2,92>0.
2

po(s,) = exp {—

2. Rational quadratic (Cauchy):

s =)
pg(s,t) =<1+ 02 s 01,02 > 0.
2

3. Matérn:

p9(57t)

e |S — t| |5 — t|
F(91 291 1 < 201 391 \% 201 6)2 ) 81702 > 07 (4)
with By(-) being the modified Bessel function of the second kind of order 6.

Note that if py, ..., p, are correlation functions, then Y »_, vjpy is also a correlation function
if 7 _, vy =1 and vy > 0 for all k. Therefore, a fairly flexible class of correlation functions
can be constructed from several relatively simple classes by this convex combination. We
point out here that, even when one adopts a stationary correlation function, the resulting
covariance can be non-stationary due to a nonparametric and hence often non-stationary
variance component.

Given the estimate 6% (t), the parameter 6 can be effectively estimated using the fol-

lowing least squares criterion, i.e., § = arg min Qn(ﬂ) with
0

@n(9)22+ Y Aox(Ty)ox(Tu)ps(Tiy, Ta) — Cig}?,
m;(m; — 1)

=1 1<jA<m;
where Cy;i = {Y;; — 0(Ti5) }H{Yu — (T) } is the raw covariance of subject i at two different

measurement times, 7;; and Tj.
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3 Estimation of Noise Variance

The estimation of o2 received relatively little attention in the literature. For sparse func-
tional data, the PACE estimator 2|7 |~" [ {<(t) — C(t,t)dt} proposed in Yao et al. (2005)
is a popular option. However, the PACE estimator can be negative in some cases. Liu
and Miiller (2009) refined this PACE estimator by first fitting the observed data using the
PACE estimator and then estimating o by cross-validated residual sum of squares; see
appendix A.1 of Liu and Miiller (2009) for details. These methods require an estimate of
the covariance function, which we do not have here before we obtain an estimate of op.
Moreover, the estimate C (t,t) in both methods is obtained by two-dimensional local linear
smoothing as detailed in Yao et al. (2005), which is computationally costly and leads to a
slower (two-dimensional) convergence rate of these estimators. To resolve this conundrum,
we propose the following new estimator that does not require estimation of the covariance
function or any other parameters such as the mean function.

For a bandwidth hy > 0, define the quantities

AO = E[{C(Th Tl) + ﬂ(Tl)/L(Tl) + 0(2)}1|T1*T2|<h0]7
Ay = E[{C(Th, Th) + p(T0) p(T1) } 7y 1 <o)

and

B - IEl|T17T2|<ho7

where T7 and T5 denote two design points from the same generic subject. From the above
definition, we immediately see that Ay = A; + Bo2. Also, these quantities seem easy to
estimate. For example, Ay and B can be straightforwardly estimated respectively by

n

~ 1 1
Ay = — I Ve 5
' n ; mz(ml - 1) ; v ‘T'LJ Tzl|<h0 ( )
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and

- 1 1
B=-— _ 1. _p ) 6

This motivates us to estimate o2 via estimation of Ay, A; and B.
It remains to estimate A;, which cannot be estimated using information along the
diagonal only, due to the presence of random noise. Instead, we shall explore the smoothness

of the covariance function and observe that if T} is close to Ty, say |11 — Ta| < ho, then

C(Tl,Tl) ~ C(Tl,TQ) and
Ay = Ay = E[{C(T1, T3) + p(Th) p(T2) L imy — 15 <o |-

Indeed, we show in Lemma 5 that A; = Ay + O(h3). Therefore, it is sensible to use A, as
a surrogate of A;. The former can be effectively estimated by

n

A 1 1
AQ - E Z Tn(m——l) Z Y;jY;'ll|Tij*Tz‘l|<ho> (7)
i=1 NV Al
and we set A; = Ay. Finally, the estimate of og is given by

62 = (Ao — Av)/B. (®)

To choose hg, motivated by the convergence rate stated in Theorem 1 of the next

section, we suggest the following empirical rule, hy = 0.29]|¢[|2(nm?)~Y/3, for sparse

functional snippets, where 5 = max;<;<n, MaxXi<;i<m, | 1i;; — Tu| acts as an estimate for
§, m = n~tY "  m; represents the average number of measurements per curve, ¢*(t) is
the estimate of ¢*(t) = 0% (t) + o defined in Section 2, and ||<]|3 = [ ¢*(¢)dt represents
the overall variability of the data. The coefficient 0.29 is determined by a method de-
scribed in the appendix. If this rule yields a value of hy that makes the neighborhood

N(ho) ={(T35,Ta) : |Ti; — Tu| < ho,i=1,...,n,1<j#1<m;} empty or contain too few
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points, then we recommend to choose the minimal value of hy such that N (hg) contains
at least 1071 Y%, m;(m; — 1) points. In this way, we ensure that a substantial fraction of
the observed data are used for estimation of the variance o2. This rule is found to be very
effective in practice; see Section 5 for its numerical performance.

Compared to Yao et al. (2005) and Liu and Miiller (2009), the proposed estimate (8)
is simple and easy to compute. Indeed, it can be computed much faster since it does not
require the costly computation of C. More importantly, the ingredients /10, A, = A, and
B for our estimator are obtained by one-dimensional smoothing, with the term 17, 7,,|<,
in (5)—(7) acting as a local constant smoother. Consequently, as we show in Section 4,
our estimator enjoys an asymptotic convergence rate that is faster than the one from
a two-dimensional local linear smoother. In addition, the proposed estimate is always

nonnegative, in contrast to the one in Yao et al. (2005). This is seen by the following

derivation:
; 1 Y+ Yi
A=~ Z ma(m; —1) Z Yulir,—1y<ho < — Z o Z : 5 L1y~ <ho
s(mi = 1) 52 i il
= Z =T 2 Y ma-Tul<h = Ao (9)
i\ J#l

Remark: The above discussion assumes that the noise is homoscedastic, i.e., its variance
is identical for all t. As an extension, it is possible to modify the above procedure to
account for heteroscedastic noise, as follows. With intuition and rationale similar to the

homoscedastic case, we define

A 1
Ap(t) = - Z =) Z 1|Tij—t\<h01|Til—t|<hov

J?él
1 n
Al(t) - E Z _ 1 Z Zl]'|T1]_t‘<h01|T1l t|<h07
i=1 J#l
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and let

be the estimate of ¢2(¢) which is the variance of the noise at ¢ € T. Like the derivation in

(9), one can also show that this estimator is nonnegative.

4 Theoretical Properties

For clarity of exposition, we assume throughout this section that all the m; have the same
rate m, i.e., m; = m, where the sampling rate m may tend to infinity. We emphasize that
parallel asymptotic results can be derived without this assumption by replacing m with
%Z?:l m;. Note that the theory to be presented below applies to both the case that m is
bounded by a constant, i.e., m < myg for some my < oo, and the case that m diverges to
00 as n — 0.

We assume that the reference time O; is identically and independently distributed (i.i.d.)
sampled from a density fo, and T}y, ..., T}y, are i.i.d., conditional on O;. The i.i.d. assump-
tions can be relaxed to accommodate heterogeneous distributions and weak dependence,
at the cost of much more complicated analysis and heavy technicalities. As such relaxation
does not provide further insight into our problem, we decide not to pursue it in the pa-
per. The following conditions about O; and other quantities are needed for our theoretical

development.

(A1)  The density fo of each O; satisfies fo(u) > 0 for all u € [§/2,1 — §/2], and the
conditional density frjo of Tj; given O satisfies frjo(t|u) = fo(t —u+5/2) > 0 for
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a fixed function fjy and for all w € [§/2,1 —d/2] and t € [u — §/2,u + 6/2]. Also,

the derivative £ fo(t) is Lipschitz continuous on [0, 4.

(A2)  The second derivatives of u and C are continuous and hence bounded on 7 and

T x T, respectively.
(A3) E|X|* < oo and Ee* < oo.

In the above, the condition (A1) characterizes the design points for functional snippets and
can be relaxed, while the regularity conditions (A2) and (A3) are common in the literature,
e.g., in Zhang and Wang (2016). According to Scheuerer (2010), (A2) also implies that the
sample paths of X are continuously differentiable and hence Lipschitz continuous almost
surely. Let Lx be the best Lipschitz constant of X, i.e., Ly = inf{C € R: |X(s)— X (t)| <
Cls — t| for all s,t € T}. We will see shortly that a moment condition on Lx allows us
to derive a rather sharp bound for the convergence rate of 62. For the bandwidth hg, we

require the following condition:
(H1)  hy — 0 and nm?*hy — oo.

The following result gives the asymptotic rate of the estimator 63. The proof is straight-

forward once we have Lemma 5, which is given in the appendix.
Theorem 1. Assume the conditions (A1)-(A3) and (H1) hold.

(a) (62 — 02)? = Op(hi +n~t + n~'m=2hy"). With the optimal choice hy < (nm?)~1/?,

(63— 03)° = Op(n~"om™5/% 1 1),

(b) If in addition EL% < oo, then (62 —02)? = Op(hi +n~tm™L +n~tm=2hy"). With the

optimal choice hg < (nm?)™1/°, (6% — 02)? = Op(n~=*>m=8/> 4+ n=tm=1).
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If we define 62 = (Ag— A;)/(B+A) with A = (nm)~2hy, the ridged version of (8), then
in the above theorem, (62 —02)? can be replaced with E(62 —o2)? and Op(-) can be replaced
with O(+), respectively. For comparison, under conditions stronger than (A1)—(A3), the rate
derived in Yao et al. (2005) for the PACE estimator is at best (62 — 02)? = Op(n=1/?).
This rate was improved by Paul and Peng (2011) to E(62 — 02)? = O(n™! + n~>m=4/> +
n~23m=43). Our estimator clearly enjoys a faster convergence rate, in addition to its
computational efficiency. The rate in part (b) of Theorem 1 has little room for improvement,
since when n is finite but m — oo, the rate is optimal, i.e., E(67 — 02)*> = O(m~'). When
m is finite but n — co in the sparse design, we obtain E(62 — 02)? = O(n~%/%), in contrast

to the rate Op(n~%3) for the PACE estimator according to Paul and Peng (2011).
To study the properties of fi(t) and 6%(¢), we shall assume

(B1)  the kernel K is a symmetric and Lipschitz continuous density function supported

on [—1,1].
Also, the bandwidth A, and h, are assumed to meet the following conditions.
(H2)  h, — 0 and nmh, — .
(H3)  h, — 0 and nmh, — oo.

The choice of these bandwidths depends on the interplay of the sampling rate m and sample

size n. The optimal choice is given in the following condition.

(H4) If m < nY4) then h, < h, =< (nm)~/5 where the notation a, < b, means

lim,, o0 @p /by < 00. Otherwise, max{h,, h,} < n=/*. Also, hg < (nm?)~1/°.

The asymptotic convergence rates for ji and 6% are given in the following theorem, whose

proof can be obtained by adapting the proof of Proposition 1 in Lin and Yao (2020+)
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and hence is omitted. It shows that both /i and 6% have the same rate, which is hardly
surprising since they are both obtained by a one-dimensional local linear smoothing tech-
nique. Note that our results generalize those in Fan et al. (2007) and Fan and Wu (2008)
by taking the measurement errors and the order of the sampling rate m into account in the
theoretical analysis. In addition, our £? convergence rates of these estimators complement

the asymptotic normality results in Fan et al. (2007) and Fan and Wu (2008).
Theorem 2. Suppose the conditions (A1)-(A3) hold.

(a) With additional conditions (B1) and (H2), E||i — pl|* = O(hy, +n~' +n~'m™ ht).
With the choice of bandwidth h,, in (H}), E|i— p|[*> = O ((nm)=4> +n1).

(b) With additional conditions (B1) and (H1)-(H3), E|6% — o%|*> = O(h; + hi, + hg +
nt+n T tmTh Tt m T T tm T2 hy t). With the choice of bandwidth in (H4),
Elj6% — o%[|> = O ((nm)~*/> + n71).

To derive the asymptotic properties of C(s,t) = 6x(s)py(s,)ox(t), we need the conver-

gence rate of 6. Define
Q(Q) = E{UX(TH)UX(TH),O@(TH,T12) - [Yn - M(Tn)][ylz - M(T12)]}2,
and assume the following conditions.

(B2)  pa(s,t) is twice continuously differentiable with respect to s and ¢. Furthermore,
the first three derivatives of py(s,t) with respect to 6 are uniformly bounded for

all 0,s,t,d,.

(B3) A <%QT(;2 |9:90> > cod,,” for some ¢y > 0 and 7 > 0, where 6, denotes the true

value of 6, and Ayin(-) denotes the smallest eigenvalue of a matrix.
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(B4)  Esup, || X(t)||*" < oo for some ¢y > 0 and Ee? < oo.

9%2Q

S5 to decay

Note that in the condition (B3), we allow the smallest eigenvalue of the Hessian
with d,. This, departing from the assumption in Fan and Wu (2008) of fixed dimension
on the parameter 6, enables us to incorporate the case that py is constructed from the
aforementioned convex combination of a diverging number of correlation functions, e.g.,
po(s,t) =d ! Z;.lil po,(s,t), where 7 = 1 if all components py, satisfy (B2) uniformly. The
condition (B4), although it is slightly stronger than (A3), is often required in functional
data analysis, e.g., in Li and Hsing (2010) and Zhang and Wang (2016) for the derivation of

uniform convergence rates for ji. Such uniform rates are required to bound OO /00 sharply

in our development, which is critical to establish the following rate for 9.

Proposition 3. Suppose the conditions (A1)-(A2) and (B1)-(B4) hold. Ifd, = o(n'/4+47)),
then with the choice of bandwidth in (H}), ||0 — 6o||> = Op(d>+ /n).

The above result suggests that the estimation quality of 0 depends on the dimension
of parameters, sample size and singularity of the Hessian matrix at 8 = 6, measured by
the constant 7 in condition (B3). In practice, a few parameters are often sufficient for
an adequate fit. In such cases, the dimension d,, might not grow with sample size, i.e.,
d, = O(1), and we obtain a parametric rate for . Now we are ready to state our main
theorem that establishes the convergence rate for € in the Hilbert-Schmidt norm || - || s,

which follows immediately from the above results.

Theorem 4. Under the same conditions of Proposition 3, we have ||C — C||%g = Op(ht +
hi + h+nt + 07 m eyt 0t Y+ 0T im T2 hyt 4 2T i), With the choice of
bandwidth in (HY), ||C — C|l4g = Op ((nm)~4° + 27 1n~1).

In practice, a fully nonparametric approach like local regression to estimating the cor-

relation structure is inefficient, in particular when data are snippets. On the other hand, a
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parametric method with a fixed number of parameters might be restrictive when the sam-
ple size is large. One way to overcome such a dilemma is to allow the family of parametric
models to grow with the sample size. As a working assumption, one might consider that
the correlation function p falls into F,,, a d,-dimensional family of models for correlation
functions, when the sample size is n. Here, the dimension typically grows with the sample
size. For example, one might consider a d,-Fourier basis family:

1 dn dn
K@(S,t) = W ;93¢J(S)¢J(t), 91, e ,Hdn >0 and ZGJ = 1, (10)

J=1

1/2
where (t) = <Zj;1 @cﬁ?(t)) and ¢, ... are fixed orthonormal Fourier basis functions
defined on 7. The theoretical result in Theorem 4 applies to this setting by explicitly

accounting for the impact of the dimension d,, on the convergence rate.

5 Simulation Studies

To evaluate the numerical performance of the proposed estimators, we generated X (-) from

a Gaussian process. Three different covariance functions were considered, namely,
1. C(s,t) = ox(s)ps(s,t)ox(t) with the variance function 0% (t) = v/te~*=00*/10 41 and

the Matérn correlation function ps—(9.5,1),

IL C(s,t) = 3200, 2k dp(s)de(t) with A = 2 and Fourier basis functions ¢ (t) =
V/2sin(2k7t), and
IIL C(s,t) = D1 <jpes Cinds()Pn(t) with ¢ = e ik /5,

Two different sample sizes n = 50 and n = 200 were considered to illustrate the behavior

of the estimators under a small sample size and a relatively large sample size. We set the

domain 7 = [0, 1] and 6 = 0.25.
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To evaluate the impact of the mean function, we also considered two different mean
functions, u(t) = 2t* cos(2nt) and ps(t) = €'/2. We found that the results are not sensitive
to the mean function, and thus focus only on the case u4(t) in this section; the results for
the case pu(t) = e'/2 are provided in Supplementary Material. In addition, to evaluate the
impact of the design, we considered two design schemes. In the first scheme, that is referred
to as the sparse design, each curve was sparsely sampled at 4 points on average to mimic
the scenario of the data application in Section 6. In the second scheme, that is referred
to as the dense design, each snippet was recorded in a dense (m; = --- = m, = 26) and
regular grid of an individual specific subinterval of length §. As the focus of the paper is
on sparse snippets, we report the results for the sparse design below. The results for dense
snippets are reported in Supplementary Material.

To assess the performance of the estimators for the noise variance o2, we considered
different noise levels o2 = 0,0.1,0.25, 0.5, varying from no noise to large noise. For example,
when o2 = 0.5, the signal-to-noise ratio E||X — pu||?/Var(e) is about 2. The performance of

o2 is assessed by the root mean squared error (RMSE), defined by

N
1 .
RMSE = N ;:1 |62 — o2,

where N is the number of independent simulation replicates, which we set to 100. For
the purpose of comparison, we also computed the PACE estimate of Yao et al. (2005)
and the estimate proposed by Liu and Miiller (2009), denoted by LM, using the fdapace
R package (Chen et al., 2020) that is available in the comprehensive R archive network
(CRAN). The bandwidth h, and h,, as well as those in Yao et al. (2005) and Liu and
Miiller (2009), were selected by five-fold cross-validation. The tuning parameter hy was
selected by the empirical rule hy = 0.299][<]|o(nm?2)~'/> that is described in Section 3. The

simulation results are summarized in Table 1 for the sparse design with mean function
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11, as well as Tables S.1-S.3 for the dense design and mean function ps in Supplementary
Material, where SNPT denotes our method proposed in Section 3. We observe that in
almost all cases, SNPT performs significantly better than the other two methods. The
results also demonstrate the effectiveness of the proposed empirical selection rule for the
tuning parameter hyg.

To evaluate the performance of the estimators for the covariance structure, we con-
sidered two levels of signal-to-noise ratio (SNR), namely, SNR = 2 and SNR = 4. The
performance of estimators for the variance function and the covariance function is evalu-

ated by the root mean integrated squared error (RMISE), defined by

RMISE = Z/| ) — o (t)|2dt

for the variance function and

RMISE = Z/ / IC(s,t) — C(s,t)|2dsdt

for the covariance function. We compared four methods. The first two, denoted by SNPTM

and SNPTF, are our semi-parametric approach with the correlation given in (4) and (10),
respectively. For the SNPTF method, the dimension d,, of (10) is selected via five-fold cross-
validation. It is noted that SNPTM and SNPTF yield the same estimates of the variance
function but different estimates of the correlation structure. The third one, denoted by
PFBE (penalized Fourier basis expansion), is the method proposed by Lin et al. (2019),
and the last one, denoted by PACE;, is the approach invented by Yao et al. (2005).

For the estimation of the variance function o%(t), the results are summarized in Table
2 for the sparse design and mean function p, and also in Tables S.4-S.6 in Supplementary

Material for the dense design and mean function psy. In these tables, the results of SNPTF
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are not reported since they are the same as the results of SNPTM. We observe that, in
all cases, SNPTM and PFBE substantially outperform PACE. For the dense design, the
methods SNPTM and PFBE yield comparable results. The SNPTM method performs
better than PFBE when n = 200 in most cases, except in the setting III which favors
the PFBE method. This suggests that the SNPTM method, which adopts the local linear
smoothing strategy combined with our estimator for the variance of the noise, generally
converges faster as the sample size grows.

For the estimation of the covariance function C, we summarize the results in Table
3 for the sparse design and mean function gy, and in Tables S.7-S.9 in Supplementary
Material for the dense design and mean function us. As expected, in all cases, SNPTM,
SNPTF and PFBE substantially outperform PACE, since PACE is not designed to process
functional snippets. Among the estimators SNPTM, SNPTF and PFBE, in the setting
I, SNPTM outperforms the others since in this case the model is correctly specified for
SNPTM, in the setting II, SNPTF is the best since the model is correctly specified for
SNPTF, and in the setting III, PFBE has a favorable performance. Although there is no
universally best estimator, overall these three estimators have comparable performance.
To select a method in practice, one can first produce a scatter plot of the raw covariance
function. If the function appears to decay monotonically as the point (s,t) moves away
from the diagonal, then SNPT with a monotonic decaying correlation such as SNPTM is
recommended. Otherwise, SNPT with a general correlation structure such as SNPTF or

the PFBE approach might be adopted.
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Table 1: RMSE and their standard errors for 62 under the sparse design and

method

| Cov| n | o SNPT |  PACE | LM
0 |0.012 (0.009) | 0.144 (0.166) | 0.129 (0.203)
0.1 | 0.029 (0.038) | 0.129 (0.146) | 0.186 (0.197)
V17025 [ 0.050 (0.056) | 0.147 (0.185) | 0.117 (0.125)
0.5 | 0.100 (0.135) | 0.181 (0.195) | 0.157 (0.131)
! 0 | 0.009 (0.005) | 0.080 (0.103) | 0.073 (0.077)
200 |1 0.017 (0.019) | 0.091 (0.098) | 0.144 (0.150)
0.25 | 0.032 (0.038) | 0.086 (0.097) | 0.093 (0.127)
0.5 | 0.049 (0.064) | 0.098 (0.118) | 0.165 (0.106)
0 |0.036 (0.030) | 0.252 (0.245) | 0.219 (0.255)
0.1 | 0.047 (0.052) | 0.254 (0.285) | 0.237 (0.255)
V025 [0.087 (0.133) | 0.241 (0.244) | 0.159 (0.151)
0.5 | 0.128 (0.202) | 0.238 (0.260) | 0.126 (0.134)
1 0 |0.024 (0.015) | 0.177 (0.172) | 0.192 (0.200)
0.1 | 0.027 (0.027) | 0.185 (0.179) | 0.176 (0.174)
200 7025 10,042 (0.050) | 0.177 (0.177) | 0.097 (0.097)
0.5 | 0.071 (0.084) | 0.174 (0.182) | 0.124 (0.089)
0 |0.004 (0.004) | 0.099 (0.103) | 0.028 (0.064)
0.1 | 0.024 (0.029) | 0.102 (0.106) | 0.099 (0.127)
V025 [0.049 (0.063) | 0.093 (0.109) | 0.077 (0.080)
- 0.5 | 0.094 (0.130) | 0.113 (0.146) | 0.172 (0.128)
0 | 0.002 (0.002) | 0.065 (0.077) | 0.009 (0.023)
0.1 | 0.010 (0.012) | 0.066 (0.067) | 0.049 (0.075)
200 7025 T0.027 (0.033) | 0.068 (0.071) | 0.069 (0.067)
0.5 | 0.059 (0.071) | 0.067 (0.073) | 0.163 (0.091)
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Table 2: RMISE and their standard errors for 6% (¢) under the sparse design and

method

| Cov | SNR| n SNPTM | PFBE PACE
, |90 | 0535 (0.218) | 0.518 (0.211) | 2.133 (1.536)
200 | 0.339 (0.130) | 0.330 (0.118) | 1.344 (1.126)
! 50 | 0.531 (0.199) | 0.517 (0.229) | 1.845 (1.461)
+ 500 [ 0.313 (0.136) | 0.334 (0.127) | 1.151 (0.952)
, |50 0775 (0.396) | 0.743 (0.214) | 2.602 (1.747)
200 | 0.509 (0.163) | 0.530 (0.141) | 1.699 (1.045)
11 50 | 0.768 (0.303) | 0.734 (0.351) | 2.510 (1.578)
4 00 Toamt (0.162) | 0.507 (0.149) | 1.515 (1.056)
, |50 0633 (0.201) | 0.592 (0.136) | 1.478 (1.052)
200 | 0.376 (0.133) | 0.392 (0.107) | 1.178 (0.700)
i 50 | 0.592 (0.208) | 0.586 (0.158) | 1.428 (1.166)
500 [0.350 (0.139) | 0.385 (0.114) | 0.923 (0.451)
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Table 3: RMISE and their standard errors for C under the sparse design and

method

| Cov | SNR | n SNPTM | SNPTF | PFBE | PACE
50 | 0.339 (0.101) | 0.441 (0.158) | 0.399 (0.156) | 1.470 (0.808)
2 1200 0235 (0.092) | 0.359 (0.089) | 0.295 (0.101) | 1.044 (0.625)
! 50 | 0.315 (0.093) | 0.424 (0.135) | 0.371 (0.143) | 1.348 (0.809)
2000225 (0.084) | 0.341 (0.090) | 0.254 (0.097) | 0.902 (0.513)
50 | 0.556 (0.119) | 0.521 (0.183) | 0.541 (0.160) | 2.061 (1.061)
2 500 [ 0474 (0.068) | 0.436 (0.132) | 0.465 (0.101) | 1.625 (0.632)
11 50 | 0.536 (0.126) | 0.472 (0.148) | 0.517 (0.139) | 2.014 (0.868)
00 (0457 (0.063) | 0.419 (0.133) | 0.431 (0.112) | 1.543 (0.604)
50 | 0.503 (0.090) | 0.511 (0.154) | 0.491 (0.130) | 1.248 (0.650)
2 %00 [0473 (0.041) | 0.439 (0.092) | 0.366 (0.052) | 1.136 (0.439)
i 50 | 0.493 (0.075) | 0.499 (0.120) | 0.487 (0.122) | 1.217 (0.727)
4 1200 [0.469 (0.055) | 0.423 (0.087) | 0.358 (0.063) | 0.997 (0.316)
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6 Application

We applied the proposed method to analyze the longitudinal data that was collected and
detailed in Bachrach et al. (1999). It consists of longitudinal measurements of spinal bone
mineral density for 423 healthy subjects. The measurement for each individual was observed
annually for up to 4 years. Among 423 subjects, we focused on n = 280 subjects ranging in
age from 8.8 to 26.2 years who completed at least 2 measurements. A plot for the design
of the covariance function is given in Figure 1, while a scatter plot for the raw covariance
surface is given in Figure 2. The raw covariance surface seems to decay rapidly to zero as
design points move away from the diagonal. This motivated us to estimate the covariance
structure with a Matérn correlation function. This method is referred to as SNPTM. In
addition, we also used the more flexible d,-Fourier basis family to see whether a better fit
can be achieved, where d,, = 2 was selected by Akaike information criterion (AIC). Such
approach is denoted by SNPTF.

The estimated variance of the measurement error is 1.5 x 1072 by the method proposed
in Section 3, 107% by PACE and 7.8 x 10~7 by LM, respectively. The estimates of the
covariance surface are depicted in Figure 3. We observe that, the estimates produced
by SNPTM and SNPTF are similar in the diagonal region, while visibly differ in the off-
diagonal region. For this dataset, the upward off-diagonal parts of the estimated covariance
surface by SNPTF seem artificial, so we recommend the SNPTM estimate for this data.
For the PACE estimate, due to the missing data in the off-diagonal region and insufficient
observations at two ends of the diagonal region, it suffers from significant boundary effect.

The mean function estimated by SNPTM! shown in the left panel of Figure 4 and found

similar to its counterpart in Lin et al. (2019), suggests that the spinal bone mineral density

ISNPTM, SNPTF and PACE use the same method to estimate the mean function.
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Figure 2: Scatter plot of the raw covariance function of the spinal bone mineral density
data.

increases rapidly from age 9 to age 16, and then slows down afterward. The mineral density
has the largest variation around age 14, indicated by the variance function estimated by
SNPTM? and shown in the middle panel of Figure 4. As a comparison, the PACE estimate,
shown in the right panel of Figure 4, suffers from the boundary effect that is passed from

the PACE estimate of the covariance function, because the PACE method estimates the

variance function by the diagonal of the estimated covariance function.

2SNPTM and SNPTF use the same method to estimate the variance function.
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Figure 3: The estimated covariance functions by SNPTM (left), SNPTF (middle) and
PACE (right). The z-axis is scaled by 1072 for visualization.
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Figure 4: The estimated mean function (left), the estimated variance function by SNPTM
and SNPTF (middle), and the estimated variance function by PACE (right).
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7 Concluding Remarks

In this paper, we consider the mean and covariance estimation for functional snippets. The
estimation of the mean function is still an interpolation problem so previous approaches
based on local smoothing methods still work, except that the theory needs a little ad-
justment to reflect the new design of functional snippets. However, the estimation of the
covariance function is quite different because it is now an extrapolation problem rather an
interpolation problem, so previous approaches based on local smoothing do not work any-
more. We propose a hybrid approach that leverages the available information and structure
of the correlation in the diagonal band to estimate the correlation function parametrically
but the variance function nonparametrically. Because the dimension of the parameters can
grow with the sample size, the approach is very flexible and can be made nearly nonpara-
metric for the final covariance estimate.

An interesting feature of the algorithm is that it reverses the order of estimation for the
variance components, compared to existing approaches for non-snippets functional data, by
first estimating the noise variance o, then estimating the variance function 0% (t), followed
by the fitting of the correlation function. The estimation of the covariance function is
performed at the very end when all other components have been estimated. The proposed
approach differs substantially from traditional approaches, such as PACE (Yao et al., 2005),
which estimate the covariance function first, from there the variance function is obtained
as a byproduct through the diagonal elements of the covariance estimate, while the noise
variance is estimated at the very end. The new procedure to estimate the noise variance is
both simpler and better than the PACE estimates. Thus, even if the data are non-snippet
types, one can use the new method proposed in Section 3 to estimate the noise variance.

We emphasize that, although the proposed method targets functional snippets, it is also
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applicable to functional fragments or functional data in which each curve consists of multi-
ple disjoint snippets. In addition, the theory presented in Section 4 can be slightly modified
to accommodate such data. In contrast, methods designed for nonsnippet functional data
are generally not applicable to functional snippets, due to the reasons discussed in Section
1. In practice, one might distinguish between functional snippets and nonsnippets by the
design plot like Figure 1. If the support points cover the entire region, then the data are
of the nonsnippet type. Otherwise they are functional snippets. However, there might be
some case that it is unclear whether the entire region is fully covered by support points,
especially when data are sparsely observed. In such situation, snippet-based methods, such
as the proposed one, is a safer option.

Reliable estimates of the mean and covariance functions are fundamental to the analysis
of functional data. They are also the building blocks of functional regression methods
and functional hypothesis test procedures. The proposed estimators for the mean and
covariance of functional snippets together provide a stepping stone to future study on

regression and inference that are specific to functional snippets.

Supplementary Material

The online supplementary material contains additional simulation results, as well as infor-

mation for implementation of the proposed method in the R package mcfda?.

3https://github.com/linulysses/mcfda.
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Appendix

Selection of A

The constant 0.29 in the empirical rule hy = 0.298/¢||o(nm?2) /% presented in Section 3
was determined by optimizing S {h — ¢d]|¢[|2(nm?)~/5}2 over ¢ € R, where the summa-
tion is taken over the combinations of various parameters. Specifically, for each tuple
(n,m,d,02,C), we generated a batch of G = 100 independent datasets of n centered Gaus-
sian snippets with the covariance function C. Each snippet was recorded at m random
points from a random subinterval of length § in [0,1]. For each batch of datasets, we
found A to minimize Zf:f[&g,r(ﬁ) —02}?, where 637,,(3) is the estimate of o7 based the rth
dataset in the batch and by using the proposed method with the bandwidth h. We also
obtained the quantities § = G325 4, and [|¢]ls = G~ 2%, |I&:]l2, where 6, and &, are
the estimate of  and ¢ based on the rth dataset in the batch, respectively. In this way, we
obtain a collection 2 of vectors (h,n,m,?,|<||2). Finally, we found ¢ = 0.29 to minimize
S {h — ¢d[¢]|2(nm?)~1/5}2, where the summation is taken over the collection 2.

In the above process, the covariance function C was taken from a collection composed
by 1) covariance functions whose correlation part is the correlation function listed in
Section 2 with various values of the parameters and whose variance functions are ex-
ponential functions, squared sin/cos functions and positive polynomials, 2) covariance
functions C(s,t) = amin{s,t} with various values of a > 0, 3) covariance functions
C(s,t) = Zszl ak A di(s) ¢y (t) with various values of @ > 0, A > 0 and K > 1, where
the functions ¢, are the Fourier basis functions described in Section 5, and 4) covariance

functions C(s,t) = > <1<k ae~=kl with various choices of a > 0, b> 0 and K > 1.
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Technical Lemmas

Lemma 5.

(a) Under conditions (A1)-(A2), one has Ay = Ay + O(h3).

(b) With condition (A1), E(B — B)? = O(n"'m~2hg 4+ n~'m~1h32).

(¢) Under conditions (A1)-(A3), B{(Ay— A1) — (Ag—A1)}2 = O(hS+n""m 2hg+n""h2).
IfELY < oo is also assumed, then E{(Ay — Ay) — (Ag — A1)}2 = O(hS +n~'m~2hg +

n~tm=h3).

Proof. To show Ay = Ay + O(h3) in part (a), we define T, 5 = {(s,t,u) : u € [§/2,1 —
6/2],u—=6/2 < s,t <utd/2,|s—t| < ho}and g(s,t,u) = {C(s,t)+u(s)u(t)} frio(s|u) frio(t|u) fo(u).
Let g5 be the partial derivative of g with respect to s. Then, g, is Lipschitz continuous
given condition (A1) and (A2). With t* denoting a real number satisfying min(s,?) < t* <

max(s, t), one has

Ay = ///T [g(t,t,u) + gs(t,t,u)(s — t) + {gs(t*, t,u) — gs(t, £, u)}(s — t)*}dsdtdu
= A+ /// gs(t, t,u)(s — t)dsdtdu + O(hg) = A, + O(hg),
The,6

where the last equality is obtained by observing that

1-6/2  putsd/2—ho  pi+ho
/// s(t,t,u)(s — t)dsdtdu —/ / / gs(t,t,u)(s — t)dsdtdu
7710 u— 5/2+h0 t—ho

1— 5/2 u— 6/2+h0 min u+5/2 t+h0)
/ / / gs(t, t,u)(s — t)dsdtdu

5/2 max(u—4/2,t—ho)

1-6/2  putd/2 min(u+6/2,t+ho)
/ / / gs(t, t,u)(s — t)dsdtdu

+40/2—ho J max(u—3/2,t—ho)

=0+ O(hy) + O(hy) = O(hy).
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For part (b), it is seen that EB = B and

n

lz _1 Z T —Tul<ho — B

i=1 J#l

1 1

J#l

E(B—B)?=E

2

(11)

Now we first observe that E(1i7,,_1,|<n, | Oi) = B, since

E(Liz,—1y1<ho | Oi) //O lo—tl<ho fr10(s|0i) fri0(t|O;)dsdt

—5/2<5,t<0;46/2

- //O ls—tl<hg Jo(s = O; +6/2) fo(t — O; 4+ 0/2)dsdt

—§/2<8,t<0;+6/2

// t\<ho o(t)dsdt
0<s,t<éd

B = ]E1|Tij*Til|<h0 = EE ( Ty |<ho ‘ O ls— t\<h0 )det

0<s,t<0

and

Therefore, if j,1, p, q are all distinct, then

]E{(l‘Tij*Til‘<h0 - B><1|Tz‘p*Tiq|<ho - B)}
= EE{(1|Tz‘j*Tiz|<ho - B)(1|Tip*Tiq|<ho - B) | Oz}
= E{E(1|Tij_Til|<hO - B | Oi)E(llTip_Tiq|<hO - B | Ol)} = 0.

It is relatively straightforward to show that if j = p but [ # ¢ or j = ¢ but [ # p, then
E{ (L1, ~1l<ho — B)Lj1,,~13y)<ho — B)} = O(h§), and if j = p and [ = q or j = g and | = p,
then E{(17,,—1,1<no — B) (111, ~1g1<ho — B)} = O(ho). Assembling the above results, one
has

2

1
E|—— L. -1, — Bl =0(m2h ~1p2
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which together with (11) implies the conclusion of part (b).
For part (c), with the aid of part (a), it is straightforward to see that

E{(Ay — A1) — (Ao — A1)} = O(h}). (12)

Now we shall calculate the variance of Ao—fll. With definition £y = E(Yij—Y;z)zl\Tij—TuKhoa

one derives

Var(/lo — Al

1 ¢ 1 (Yi; — Ya)?
v (Lt S

1 1 2
= —Var (m >_ (Vi —Ya) 1'T“‘T“'<h°>

J#l

1 1
= (W O E{(Ys — Ya) Umy—1j<no — BoH (Yip = Yig) "L —1iy <o — Eo})

m—1)% 4
J#l p#q
B D AT AN X (13)
J#l p#q

Below we derive bounds for the term V (4,1, p, q).

e Case 1: j, [, pand q are all distinct. In this case, via straightforward computation, one
can show that V(]v l, b, Q) = E{(KJ - }/;l)21|Tij_Til|<h0}{(}/;p _Kq)Ql‘Tip_Tiq|<hO} - E(2) =
O(hd).

e Case 2: j=pbutl+#qorj=qbutl#p. Similar to Case 1, one has V(j,1,p,q) =
O(h}).

e Case 3: j=pandl=qor j=qand [l =p. In this case,
V(5,0,p.q) = E{(Yij — Ya) Lz, —1uj<no } — E§ = O(ho).
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Based on the above bounds, we have Var(Ag — A1) = O(n"'h2 +n~tm 'h2 +n~'m 2hy) =
O(n~th2+n"'m2hg). Together with the bias given in (12), this implies the first statement
of part (c).

For the second statement of part (c), we observe that with condition EL% < oo, the

bound in Case 1 can be sharpened in the following way. First, we see that
Ey = E{XZ(TZJ) - Xi(j—’il)}21|T¢j*Til|<ho + E(Eij - Eil)21|Tz‘j*Tiz|<h0 = Ei + QUSB,
where By = E{X;(T;;) — Xi(ﬂl)}21|Tij,Til|<hO. Then, we decompose V (4,1, p, q) into I; +
[2 + 13 + [4, Where
L = E[{X(Tw) - X(Til)}21|Tij—Til|<h0 - El][{X<T%p) - X(Tiq)}QhTz‘p—Tquho - E1]>
Iy = E{X(T3;) — X(Ta) Y Vm,—m1<ne — Er][(Eip = €i0) L1y —11g <o — 200 B,
]3 = EKEU - 5il)21|Tij*Til|<h0 - 20_33][{X(EP) - X(ﬂq>}21\Tip*Tiq\<ho - El]’
Iy = El(ei; — i) *Lim,—1i<ho — 200 B[(€ip — €iq)* 111, —Tg| <o — 200 B].
For I, one can show that
I = EE ([{X(T3j) — X(Ta)}*Limy—rui<no — Enll(€ip — €ia)* Ly —1iyl<ho — 2058 | O3)
=E (E{X(Tiy) — X(Tu) YLz, -mi<no — B | OiE[(€ip — €i)* L1101 <no — 205 B | O4])
= 07

where the first equality is due to the assumption that T}, ..., T}, are i.i.d. conditional on

O;, and the second one is based on the following observation
El(eip — €ig)*Lmi,~Tiyl<ho — 2008 | Oi] = 200E(L iz, —13,1<ho | O) — 203B = 203 B — 203B = 0,

where we recall that E(1j7,, _1, <, | O;) = B. Similarly, I3 = 0 and I, = 0. For I, one can
show that

|| = [E{X(T3;) — X(Ti) Y1z, —ti<no — EAJ{X (Tip) — X(Tiq) 11,1301 <0 — EA|
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= ‘E[{X(Tw) - X(Til)}QhTij—TuKho{X(Tip) - X(Eq)}21|Tip_Tiq|<h0] - Ef‘
< E<LL)1(|T%J - T%l|2|ﬂp - T;q|21\Tij*Tu\<ho1|Tip*Tiq\<h0) + Ef
< héELZ)l(E]“Tij_Til‘<h01|Tip_Tiq‘<h0 + E%

= O(h§) + EX,

where the first inequality is due to the Lipschitz continuity property of sample paths.
Again, based on such continuity property, one has E; = E{X,(T;;) — Xi(ﬂl)}21|Tij—Til|<ho <
ELX|Ti; — Tul*Limy,—1j<no < hGBELXELr, 1<, = O(h§). Therefore, we conclude that
I = O(h§). Together with I, = I3 = I, = 0, this implies that V(j,1,p,q) = O(h§). It
further indicates that Var(Ay — A;) = O(n~'hS +n~'m~'h2 +n~'m 2hy). Combined with

the bias term in (12), this implies the second statement of part (c). O

Proofs of Main Results

Proof of Proposition 3. For the moment, we assume p = 0. Denote
1< 1 )
Qn(0) == mm =1 > Aox(Tiy)ox(Ta)ps(Tiy, Ta) — Cin}>.

i=1 1<j£I1<m

_ 0, <, /M) , (14)

where a, = (logn){(nm)~*° 4+ n~'}. First, we observe that

Now we show that

0Q, 9Q,

00 00

0Qn  9Qy
— =L+ +1
06 o9 1 Thtis
with
1 & 1
L :EZW Z Q{UX(ﬂj)O-X(EZ)pG(ﬂj7EZ)_C’ijl}x
=1 1<j#I<m
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{6x(T;;)0x(Tu) — ox(Tij)ox(T; )}M

00 ’
1 < 1 5 )
Iz n ZZI m(m — 1) 1§j;§m 2{0x(Tij)ox (Tu) — ox(Tij)ox (Tu) ypo(Tij, Tiu) ¥
(T )or (1) 2L T)
1 < 1 5 )
I3 = 121 mim —1) 1<§<m 2{ox(Tij)ox(Ti) — ox(Tij)ox (Tu) } pe(Tij, Tia) X

9pe(Tij, Tir)

{ox(Tij)ox(Tu) — ox(Tij)ox (Tu)} 50

To derive the rate for I, we define

G=13 LS T oxTm(T ) - Cub = 36

== — Ox(4ij)0x L igs Lat) — Ligig = — i
m(m—1) x\Lij)ox\(Lit)PolLij, Ll gl n &

n < m :
=1 1<j#l<m

It can be verified that EG; = 0, and also EG? < oo given condition (A3) and (B2). We
view each G; as a random linear functional from the space Ag = {f € C*(T) : || [l < 1},

ie.,
1

m(m — 1)

Gi(f) = > 2{ox(Ty)ox(Tu)ps(Tiy, Ta) = Cigh f(Tig, T,

1<jAI<m

where f € Ag. Then we follow the same lines of the argument for Lemma 2 of Severini and
Wong (1992) to establish that \/nG converges to a Gaussian element on the Banach space
C(Ag) of continuous functions on Ay with the sup norm. On the other hand, using the
same technique of Zhang and Wang (2016) for the uniform convergence of the local linear
estimator for the mean function, we can show that sup, |6x(t) — ox(t)| = Op(\/a,), and
hence sup, ,; |6x(s)0x(t) — ox(s)ox(t)] = Op(\/a,). By condition (B2) that dpy(s,t)/00;
is uniformly bounded for all j, we can deduce that, for sufficiently large n, with prob-

ability tending to one, the function (a,logn)~Y2f; with f; : (s,t) — {6x(s)ox(t) —
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ox(s)ox(t)}0pe(s,t)/00; falls into Ay for all j. Therefore,

v (Gt )| = vt s = -

where Op is uniform for all j. Noting that I, = (Gf1,...,Gf4, )", one can deduce from the

dn,a,logn
Z IGIP < Vi, max [[Gf] = O (\/Tg) .

7j=1

above that

[5L] <

When p # 0, an argument similar to the above can also be applied to handle extra terms

induced by the discrepancy between [i and p, so that we still obtain the same rate as the
above. Similar argument applies to I, and we have Iy = Op(v/d,a,logn/y/n). Tt is easy
to see that I3 is dominated by the other terms. Together, we establish (14). It is seen that

|10Q/00 |o=a, || = Op(\/dy/n). Thus, we have
0Qn _ 0Qn
- |9:90
a0 a0

0Qy, Ha@n
—0p <ﬁ+ 1/—d”a”logn) —Op (ﬁ) ,
n n n

99 1=
Straightforward but somewhat tedious calculation can show that

PQn P*Q
002 lo=0 — 002 lo=t0

_|_

|9:90

= Op (% + dn\/@) = Op (d,/ay)

and

sup Z v 8“@0;( ) = Op (d¥||v]?).

|laf=3

Now let 0, = /d*+?7 /n. By Taylor expansion,
D(u) = Qu(bo + 1au) — Qu(f)
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. T . .
0Q, 0*Q,, 0*Q,
=1 (8;% Ioag) w+nPu’ ( 8(?2 |990> utns Y u a? lo=6+

|af=3

/d, 0%Q
=0Op (Un ?) || + 72 Amin (W |9:90) ||| + Op (nidiﬂ) ]|

> Op (dy™n™Y) Jull + cod™ ™ nHull? + op(dFn ) |ul|* > 0

for some constant ¢y > 0 and if ||ul| = ¢ for a sufficiently large absolute constant ¢ > 0.
Thus, ||6 — 6o|| = Op(n,) = Op(n~2d; ). O
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