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ABSTRACT
Functional Principal Component Analysis (FPCA) has become a widely used dimension reduction tool for
functional data analysis. When additional covariates are available, existing FPCA models integrate them
either in the mean function or in both the mean function and the covariance function. However, methods
of the first kind are not suitable for data that display second-order variation, while those of the second
kind are time-consuming andmake it difficult to perform subsequent statistical analyses on the dimension-
reduced representations. To tackle these issues,we introduce an eigen-adjusted FPCAmodel that integrates
covariates in the covariance function only through its eigenvalues. In particular, different structures on the
covariate-specific eigenvalues—corresponding to different practical problems—are discussed to illustrate
themodel’s flexibility aswell as utility. To handle functional observations under different sampling schemes,
we employ local linear smoothers to estimate the mean function and the pooled covariance function, and
a weighted least square approach to estimate the covariate-specific eigenvalues. The convergence rates
of the proposed estimators are further investigated under the different sampling schemes. In addition
to simulation studies, the proposed model is applied to functional Magnetic Resonance Imaging scans,
collected within the Human Connectome Project, for functional connectivity investigation. Supplementary
materials for this article are available online.
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1. Introduction

Principal component analysis is a classical dimension reduction
tool in multivariate statistical analysis and its extension to func-
tional data, termed Functional Principal Component Analysis
(FPCA), plays a central role in the analysis of samples that are
curves, functions, or surfaces as shown in the survey article by
Shang (2014). However, most of the existing FPCA approaches
(see, e.g., Rao 1958; Dauxois, Pousse, and Romain 1982; Rice
and Silverman 1991; Cardot 2000; James, Hastie, and Suger
2000; Rice and Wu 2001; Yao, Müller, and Wang 2005; Hall,
Müller, and Wang 2006; Li and Hsing 2010; Chen and Jiang
2017) assume that the observed samples arise from the same
population and do not accommodate information from a set of
additional covariates. In this article, motivated by the analysis of
spatio-temporal brain imaging data, we introduce a novel FPCA
modelwhere additional covariates,modeling for instance spatial
locations, affect both the mean and covariance of the functional
samples describing the temporal component of the data.

So far, relatively little of the literature has covered FPCA
methodology that adapts to the covariate information. Some
of the proposed methods merely integrate the covariate infor-
mation in the systematic part, that is, the mean function (see,
e.g., Chiou, Müller, and Wang 2003; Jiang and Wang 2011;
Zhang, Park, and Wang 2013; Zhang and Wang 2015). In order
to ease the computational burden and alleviate the curse of
dimensionality, in Chiou, Müller, and Wang (2003), Zhang,
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Park, and Wang (2013), and Zhang and Wang (2015) additive
structures for the mean function are considered, while in Jiang
andWang (2011) a single index model for the mean is adopted.
Here, we refer to these approaches as mean-adjusted FPCA.
Alternatively, both the systematic and stochastic parts, that is,
the mean function and the covariance structure, are assumed
to vary with the covariates (see, e.g., Cardot 2006; Jiang and
Wang 2010; Li, Staicu, and Bondell 2015). Specifically, Cardot
(2006) and Jiang and Wang (2010) assume that the covariance
function varies with the covariates via both its eigenfunctions
and eigenvalues. Jiang, Aston, and Wang (2009) extend the
covariate-adjusted FPCA model in Jiang and Wang (2010) to a
multiplicative model for Positron Emission Tomography image
analysis. Moreover, Li, Staicu, and Bondell (2015) propose a
model that accounts for the covariate effect in skewed functional
data. We refer to these methods as fully adjusted FPCA.

In some applications, such as functional brain imaging, the
covariance structure of functional data describing temporal
brain activity is a key element to study brain connectivity.
However, mean-adjusted FPCA models are not designed to
integrate covariate information in the covariance function,
although they are attractive because of their computational
efficiency. On the other hand, fully adjusted FPCA approaches
are time-consuming if the dimension of the covariates is not low
and theymake subsequent statistical analyses on the dimension-
reduced output difficult due to the fact that they return a set of
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covariates-specific eigenvalues and eigenfunctions, which are
not easily comparable across covariate values.

Therefore, in this work, we will extend the PCA model in
Flury (1984, 1986) to functional data and term it eigen-adjusted
FPCA. Specifically, the eigen-adjusted FPCAmodel assumes the
covariance function varies with the covariates via its eigenval-
ues while the corresponding eigenfunctions remain indepen-
dent of the covariates. The advantages of the proposed model
are two-fold. In practical applications, FPCA is generally the
first step of a subsequent statistical analysis. For instance, in
the proposed application to brain imaging data in Section 5,
the ultimate goal is to find a parcellation that clusters brain
locations (modeled as covariates) with distinct functional con-
nectivity patterns (i.e., distinct covariance structures). For this
purpose, the covariate-independent eigenfunctions of the eigen-
adjusted FPCA model offer a common reference frame that
enables comparison and statistical analysis of the associated
covariate-specific eigenvalues. Moreover, eigen-adjusted FPCA
while being more flexible than mean-adjusted FPCA maintains
comparable computational times. This is particularly important
for big data applications, such as the aforementioned brain
imaging studies. By means of simulations, we demonstrate that
eigen-adjusted FPCA can also be useful under a fully adjusted
generative model, where applying fully adjusted FPCA might
not be computationally feasible. Other related work can be
found in Boente, Pires, andRodrigues (2002), Benko andHärdle
(2005), Benko, Härdle, and Kneip (2009), Boente, Rodriguez,
and Sued (2010), and Coffey et al. (2011).

Both functional data and longitudinal data can be modeled
as observations from stochastic processes, but they are dif-
ferent in their sampling schemes. Specifically, functional data
are densely and regularly recorded while longitudinal data are
sparsely and irregularly observed. FPCA has been classically
concerned with the analysis of densely observed functional
samples. More recently, the methodology has been extended to
handle sparsely observed longitudinal data, where only a few
repeated measurements are available for each sample, invali-
dating approaches based on nonparametric reconstructions of
individual functions (see, e.g., Yao,Müller, andWang 2005;Hall,
Müller, and Wang 2006). In this work, we develop a unified
eigen-adjusted FPCA framework for both types of data.

The rest of this article is organized as follows. In Section 2
we introduce the eigen-adjusted FPCA model. The proposed
estimators and their asymptotical properties are provided in
Section 3. Section 4 consists of simulation studies that demon-
strate the finite sample performance of the proposed method.
The eigen-adjusted FPCA model is applied to analyze brain
functional connectivity in Section 5. Conclusions and discus-
sions are provided in Section 6. Moreover, the assumptions are
given in Appendix A, and an alternative estimation approach
for the covariate-specific eigenvalues is provided in Appendix B.
The proofs are provided in the supplementary materials.

2. Covariate-Adjusted FPCA

Traditionally, FPCA handles random trajectories that are func-
tions of time (or space). Ignoring any covariate information for
the moment, let X(t) be a stochastic process in L2 with mean
function μ(t) and covariance function �(s, t) where s, t ∈ T

and T is a finite compact interval in R. FPCA is equivalent
to a spectral decomposition of � and leads to the well-known
Karhunen–Loève decomposition of X,

X(t) = μ(t) +
∞∑
j=1

Ajϕj(t),

where ϕj is the eigenfunction of � associated to the jth largest
eigenvalue, and Aj = 〈X − μ,ϕj〉 is the jth functional principal
component (PC) score. Here 〈·, ·〉 stands for the inner product
in the L2 space, that is, 〈a, b〉 = ∫

T a(t)b(t)dt for a, b ∈ L2(T).
When covariate information is available, X is viewed as a

random function of both time t and covariate z. Specifically,
X(t, z) is a random function with mean μ(t, z) and covariance
function ϒ(s, t, z), where s, t ∈ T and z is in a p-dimensional
compact hypercube Z ⊂ R

p. To accommodate z into the
framework of FPCA, Jiang and Wang (2010) proposed two
models: fully adjusted FPCA (fFPCA) andmean-adjusted FPCA
(mFPCA). The difference between them is how the covariance
structure is handled. In fFPCA, it is assumed that there exists
an orthogonal expansion ofϒ(s, t, z) in terms of eigenfunctions
ψj(t, z) and nonincreasing eigenvalues ηj(z), that is,ϒ(s, t, z) =∑∞

j=1 ηj(z)ψj(s, z)ψj(t, z), and thus one can represent X as

X(t, z) = μ(t, z) +
∞∑
j=1

Aj(z)ψj(t, z),

whereAj = 〈X−μ,ψj〉 is the jth functional PC score withmean
zero and variance ηj(z). In mFPCA, z is treated as a realization
of the random variable Z. Ignoring Z after centering leads to a
pooled covariance

�∗(s, t) = E{ϒ(s, t,Z)} =
∫
Z

ϒ(s, t, z)dGz(z),

where Gz(·) is the distribution function of Z. Assume �∗ is a
smooth function and there exists an orthogonal expansion in
terms of eigenfunctions ψ∗

j (t) and nonincreasing eigenvalues
η∗
j ; that is, �∗(s, t) = ∑∞

j=1 η∗
j ψ

∗
j (s)ψ∗

j (t), and the random
function X can be represented as

X(t, z) = μ(t, z) +
∞∑
j=1

A∗
j ψ

∗
j (t),

where A∗
j = 〈X − μ,ψ∗

j 〉 is the jth functional PC score with
mean zero and variance η∗

j . In mFPCA, �∗ can be estimated
with a lower-dimensional smoother and thus the estimator is
of a faster convergence rate. On the contrary, fFPCA is a more
flexible model as the covariate information is used in estimat-
ing the covariance function as well as the eigenvalues and the
eigenfunctions.

However, FPCA rarely represents the final stage of a statis-
tical analysis as, no matter how complex, an FPCA model will
unlikely represent a faithful description of the underlying gen-
erative model. FPCA is instead commonly used as a dimension
reduction tool, where the subsequent analysis is performed on
the PC scores. So, despite the fFPCAmodel being more flexible,
it introduces complications when using it as a dimension reduc-
tion tool, as the scores Aj(z) do not give a complete description

https://doi.org/10.1080/10618600.2022.2067550
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of the stochastic process at the covariate value z; in fact, the
scores are expressed with respect to a reference frame ψj(t, z)
which is also dependent on z, invalidating comparison across
covariate values.

Therefore, in the following section, we propose a model that
is flexible enough to handle dependencies of the covariance
functions on covariate information, yet representing an effective
and useful dimension reduction tool.

2.1. Eigen-Adjusted FPCA

Assume that the covariance function�(s, t, z) has an orthogonal
expansion in terms of eigenfunctions φk(t) and nonnegative
eigenvalues λk(z). Specifically,

�(s, t, z) =
∞∑
k=1

λk(z)φk(s)φk(t), (2.1)

where λ1(z) > λ2(z) > · · · ≥ 0 and
∑∞

k=1 λk(z) < ∞ for
z ∈ Z and s, t ∈ T. By the Karhunen–Loéve expansion, X(t, z)
can be represented as

X(t, z) = μ(t, z) +
∞∑
k=1

Ak(z)φk(t), (2.2)

where Ak(z) = 〈X − μ,φk〉 is the jth functional PC score with
mean zero and variance λk(z). Compared to mFPCA, Model
(2.2) is more general in that � in (2.1) can vary with z, and
compared to fFPCA, it is computationally more efficient in
estimating the covariance function. The second argument will
be further demonstrated in Section 3.

The model of � in (2.1) allows for different structural
assumptions on λk(z), tailored to specific problems. Roughly
speaking, there are three scenarios. The first scenario is that
λk(z) are grouped and may not vary smoothly with z. This
setting was considered in most related FPCA literature (e.g.,
Benko, Härdle, and Kneip 2009; Boente, Rodriguez, and Sued
2010), where the goal is to test the equality of covariance
functions of different known groups. The second scenario is that
λk(z) are continuous and vary smoothly with z, such as when
z models spatial coordinates and we assume spatially smooth
variation. The third scenario is that λk(z) are piecewise smooth
functions of z, that is, λk(z) are smooth functions within each
group. The latter is a more realistic model for the analysis of
the brain imaging data in our final application. In this article,
we focus on estimating λk(z) under the second scenario as the
third scenario can be handled with by simply exploiting the
group information. When the group structure is not known,
our numerical studies suggest that estimating the eigenvalues
as in the second scenario and applying a clustering approach to
the estimated λk(z) can help retrieve the group information.

3. Estimation

Standard procedures to perform FPCA include (i) estimating
the mean function, (ii) estimating the covariance function, (iii)
estimating the eigenfunctions and eigenvalues, and (iv) predict-
ing the functional PC scores. Under some regularity conditions
on the mean and covariance functions, local linear smoothers

(Fan and Gijbels 1996) can be applied to estimate them. Eigen-
functions and eigenvalues can be estimated via the application of
an eigen-decomposition to the estimated covariance. Standard
numerical approaches and PACE (Yao, Müller, andWang 2005)
can be applied to predict the functional PC scores when data are
dense and sparse, respectively. In step (ii), directly estimating
�(s, t, z) is computational demanding especially when both T
and Z are multidimensional. Exploiting the special structure of
�(s, t, z) in (2.1), to ease computational burden, we circumvent
step (ii). Specifically, we apply an eigen-decomposition to the
pooled covariance �∗ = E(�) to obtain the eigenfunctions, and
propose a Weighted Least Squares (WLS) approach, for both
dense and sparse data, to estimate the eigenvalues that vary with
z. Below we provide the details of the proposed estimators as
well as their asymptotic properties.

3.1. Mean Function

Let zi ∈ Z be the covariate of the ith subject, whose jth
observation made at time tij ∈ T is

Yij = μ(tij, zi) +
∞∑
k=1

Aikφk(tij) + εij, (3.1)

where εij is the independent measurement error with mean
zero and variance σ 2, for j = 1, . . . ,Ni and i = 1, . . . , n.
Theoretically, any (p+1)-dimensional smoother can be applied
to estimate μ. Here, we use a (p + 1)-dimensional local linear
smoother and denote the estimator as μ̂. Specifically,

μ̂(t, z) = b̂0, where

(b̂0, b̂1, b̂2)T = argmin
b

1
n

n∑
i=1

1
Ni

Ni∑
j=1{

Yij − b0 − b1(tij − t) − bT2 (zi − z)
}2

× Kht (tij − t)
( p∏
k=1

Kh(k)
z

(z(k)i − z(k))
)
,

b = (b0, b1, bT2 )T , Kh(·) = K(·/h)/h, K is a kernel function
defined in Assumption A.2 in Appendix A, and ht and hz =
(h(1)

z , . . . , h(p)
z )T are the bandwidths for T and Z, respectively.

For simplicity, we assume that h(k)
z ’s are all of the same order

as hz. Let γnk =
(
n−1 ∑n

i=1 N
−k
i

)−1
for k = 1, 2, and δn =[

{1 + 1/(γn1ht)} log n/(nhpz)
]1/2

; denote h1 ≈ h2 if h1 is of the
same order as h2, and h1 � h2 (resp. h1 � h2) if h1 is of smaller
(resp. larger) order than h2. Below we provide the asymptotical
properties of μ̂.

Theorem 3.1. Assume that Assumptions A.1–A.2 and B.1–B.2
hold. Then,

sup
t∈T,z∈Z

|μ̂(t, z) − μ(t, z)| = O(h2t + h2z + δn) a.s. (3.2)

In (3.2), h2t + h2z and δ2n are the order of bias and that of
variance, respectively, due to smoothing. We further elaborate
on the convergence rates of μ̂ under two different sampling
schemes in the following corollary.
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Corollary 3.1. Assume that Assumptions A.1–A.2 and B.1–B.2
hold.
(a) If max1≤i≤n Ni ≤ M for someM < ∞ and ht ≈ hz ≈ h,

sup
t∈T,z∈Z

|μ̂(t, z) − μ(t, z)| = O
(
h2 + {log n/(nhp+1)}1/2) a.s.

The optimal convergence rate is
(
log n/n

)2/(p+5).
(b) If max1≤i≤n Ni ≥ Mn, where M−1

n ≈ ht � hz ≈
(log n/n)1/(p+4) is bounded away from zero,

sup
t∈T,z∈Z

|μ̂(t, z) − μ(t, z)| = O
(
(log n/n)2/(p+4)) a.s. (3.3)

Remark 3.1. (a) represents the case of longitudinal data where
Ni is finite and so it is reasonable to have ht and hz of the same
order. (b) represents functional data where the observations are
intensely recorded. SinceNi → ∞,ht is of smaller order thanhz.

3.2. Pooled Covariance and Its Eigenfunctions

In practice, the eigenfunctions are estimated by performing an
eigen-decomposition on the discretized covariance function.
However, directly estimating � may be too computation-
ally demanding especially when both T and Z are multi-
dimensional. Thus, we propose to estimate the eigenfunctions
φk by applying an eigen-decomposition to the pooled covariance
function,

�∗(s, t) = E{�(s, t,Z)} =
∞∑
k=1

E{λk(Z)}φk(s)φk(t), (3.4)

where �(s, t,Z), λk(Z), and φk(t) are defined in (2.1). Any two-
dimensional smoother can be applied to estimate�∗ andwepick
a local linear smoother here. Specifically,

�̂∗(s, t) = b̂0, where

(b̂0, b̂1, b̂2)T = argmin
b

1
n

n∑
i=1

1
Ni(Ni − 1)

Ni∑
j�=k{

ÛijÛik − b0 − b1(tij − s) − b2(tik − t)
}2

× Kh�
(tij − s)Kh�

(tik − t),

b = (b0, b1, b2)T , Ûij = Yij − μ̂(tij, zi), K is a kernel func-
tion defined as that for μ̂, and h� is the smoothing band-
width. The diagonal terms {ÛijÛij | 1 ≤ j ≤ Ni, 1 ≤
i ≤ n} are removed while estimating �∗ since cov(Yij,Yik) =
�(tij, tik, zi) + σ 2δ(tij=tik), where δ(tij=tik) = 1 if tij = tik and 0
otherwise. For simplicity, we let

δn1 =
{(

1 + 1
γn1h�

)
log n
n

}1/2
, and

δn2 =
{(

1 + 1
γn1h�

+ 1
γn2h2�

)
log n
n

}1/2
.

Theorem 3.2. Assume that Assumptions A.1–A.2 and B.1–B.4
hold. We can obtain
sup
s,t∈T

|�̂∗(s, t) − �∗(s, t)| = O
(
δn2 + h2� + δn1(h2t + h2z + δn)

+ h4t + h4z + δ2n
)
a.s.,

= O(δn2 + h2� + h4t + h4z + δ2n) a.s.

Remark 3.2. Note that δn1(h2t + h2z + δn) should be of smaller
order than δn2 as ht , hz and δn go to zero as n → ∞. When
p ≤ 3 (in most real examples and in our data), it is reasonable to
believe that δ2n � δn2 and we elaborate the convergence rates in
the following corollary under such a condition. Even so, some
brief discussions on the convergence rates when p ≥ 4 will be
given in Section 3.4.

Corollary 3.2. Assume that Assumptions A.1–A.2 and B.1–B.4
hold.

(a) If max1≤i≤n Ni ≤ M for some M < ∞ and {(log n/n)
h2�}1/(2p+2) � ht , hz � h1/2� ,

sup
s,t∈T

|�̂∗(s, t) − �∗(s, t)| = O
(
h2� + {log n/(nh2�)}1/2) a.s.

(3.5)
The restriction of bandwidths holds automatically when
p = 1, and it leads to h� � (log n/n)1/(p−1) when p ≥ 2.
The optimal convergence rate is (log n/n)1/3.

(b) If max1≤i≤n Ni ≥ Mn, where M−1
n � h� ≈ ht �

(log n/n)1/4 is bounded away from zero,

sup
s,t∈T

|�̂∗(s, t) − �∗(s, t)| = O
(
h4z + δ2n + (log n/n)1/2

)
a.s.

(3.6)
The optimal convergence rate is (log n/n)1/2 given hz �
(log n/n)1/8.

Once �∗ is estimated, φ̂k can be obtained through∫
T

�̂∗(s, t)φ̂k(s)ds = λ̂∗
k φ̂k(t).

Below we provide the asymptotic properties of φ̂k and those of
λ̂∗
k for 1 ≤ k ≤ L.

Theorem 3.3. Assume that Assumptions A.1–A.2 and B.1–B.4
hold, for 1 ≤ j ≤ L:

‖φ̂j − φj‖ = O(h2� + δn1 + h4t + h4z + δ2n) a.s.

|λ̂∗
j − λ∗

j | = O
(
(log n/n)1/2 + h2� + δn1(h2t + h2z + δn)

+ h4t + h4z + δ2n
)
a.s.

Again, we elaborate on the convergence rates of φ̂j in regards
to different sampling schemes.

Corollary 3.3. Assume that Assumptions A.1–A.4 and B.1–B.3
hold.

(a) If max1≤i≤n Ni ≤ M for some fixed M and {(log n/n)
h�}1/(2p+2) � ht , hz � h1/2� ,

‖φ̂j − φj‖ = O
(
h2� + {log n/(nh�)}1/2) a.s. (3.7)

The optimal convergence rate is (log n/n)2/5.
(b) If max1≤i≤n Ni ≥ Mn, where M−1

n � h� ≈ ht �
(log n/n)1/4 is bounded away from zero,

‖φ̂j − φj‖ = O
(
(log n/n)1/2 + h4z + δ2n

)
a.s. (3.8)

The optimal convergence rate is (log n/n)1/2 given hz �
(log n/n)1/8.
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3.3. Covariate-Specific Eigenvalues

Given that E[A2
ik|zi] = λk(zi), λk(z) can be estimated via

applying a p-dimensional smoother to {(A2
ik, zi) | 1 ≤ i ≤ n}.

However, this is only feasible for dense data. When the data are
sparse, such as longitudinal observations, the PC scores cannot
be predicted accurately via numerical approaches for integra-
tion, and instead PACE (Yao, Müller, andWang 2005) is usually
considered. However, applying a p-dimensional smoother to the
squared PC scores predicted by PACE may not be appropriate
as var{E(Aik|yi)} ≤ var[Aik|zi] = λk(zi), where E(Aik|yi) is the
PACE predictor of Aik. To solve this issue, we propose a WLS
procedure to estimate the eigenvalues λk(z) for both sparse and
dense data. An alternative, exclusively for dense data, is provided
in Appendix B and is named as the PC-based approach.

LetXi = {φ
(ti,j)φ
(ti,k)}, where j < k, be a [Ni(Ni−1)/2]×
Ln matrix, Yi = (Ci,12, . . . ,Ci,(Ni−1)(Ni))

T , Ci,jk = UijUik, Uij =
Yij − μ(tij, zi), and λz = (λ1(z), . . . , λLn(z))T . Thus, Yi can be
represented as

Yi = Xiλzi + εi,

where εi is the remainder term. Given that λk’s are smooth
functions of z, it is thus reasonable to estimate λz through

λ̂
W
z = (X̂ TWzX̂ )−1(X̂ TWzŶ), (3.9)

where Ŷ = (ŶT
1 , . . . , ŶT

n )T , X̂ = (X̂ T
1 , . . . , X̂ T

n )T , X̂i =
{φ̂
(ti,j)φ̂
(ti,k)}[Ni(Ni−1)/2]×Ln , Ŷi = (Ĉi,12, . . . , Ĉi,(Ni−1),Ni)

T ,
Ĉi,jk = Ûi,jÛi,k,Wz = diag(wT

1 , . . . ,wT
n ), andwi is a vector with

Ni(Ni − 1)/2 identical elements,
∏p

k=1 Kh(k)
λ

(z(k)i − z(k)).

Remark 3.3. Given that the order of λ̂k(z) is determined by
that of λ̂∗

k , the estimated eigenvalues of the pooled covariance,
the assumption λ1(z) > λ2(z) > · · · ≥ 0 for z ∈ Z in
Model (2.1) implies that the correct order is expected. However,
what really matters is that these estimated covariate-specific
eigenvalues correspond to the same order of estimated eigen-
functions (a common reference frame) allowing the comparison
and statistical analysis of these covariate-specific eigenvalues.
The assumption λ1(z) > λ2(z) > · · · ≥ 0 for z ∈ Z could be
slightly relaxed; specifically, the order of λk(z) could vary with
z as long as there are no tie for λ∗

k to ensure the identifiability
of φk.

Here Ln could be a slowly divergent sequence if the following
condition on λk(z) is satisfied:

λj(z) > λj+1(z) > 0,E[A4
j |z] ≤ cλj(z), and

λj(z) − λj+1(z) > c−1j−(a1+1), (3.10)

for z ∈ Z, a1 > 1, and some c > 0. A similar assumption can
be found in the literature of functional regression (e.g., Hall and
Horowitz 2007; Yao, Lei, and Wu 2015).

Theorem 3.4. Under assumptions A.1–A.2, and B.1–B.7, we
have

sup
z∈Z

|λ̂W
z − λz| = O

(
L−a1
n + Lnh2λ + L2n(h

2
� + h4t + h4z + δn2 + δ2n)

+ h2t + h2z + δn + 1/(nhpλ)
1/2) a.s. (3.11)

Generally, (ht + h�) � (hz + hλ) and we can obtain the
following corollary for sparse data.

Corollary 3.4. Under assumptions A.1–A.2, and B.1–B.7,

sup
z∈Z

|λ̂W
z − λz| = O

(
L−a1
n + Lnh2λ + L2n(h

2
� + δn2)

)
a.s. (3.12)

If further h2� ≈ δn2, that is, h� ≈ (log n/n)1/6, Lnh2λ ≈
L2nh2� , and L2nh2� ≈ L−a1

n , the optimal convergence rate is
(log n/n)a1/3(a1+2).

3.4. When p ≥ 4

Corollaries 3.2–3.4 provide the optimal convergence rates for
p ≤ 3. The optimal convergence rates for a general p might
be of interest to other examples and below we provide some
discussions.

– Extension of Corollary 3.2
The optimal convergence rate of (a) can only be achieved
when p ≤ 7. When p ≥ 8 and h1/2� � ht , hz �
{(log n/n)h2�}1/(2p+2), the optimal convergence rate is
(log n/n)4/(p+5). Under the assumptions of case (b), the
optimal convergence rate is (log n/n)4/(4+p) and hz ≈
(log n/n)1/(4+p) when p ≥ 4.

– Extension of Corollary 3.3
Under the assumptions of case (a), the optimal convergence
rate, (log n/n)2/5, is achieved when p ≤ 5. When p >

5, the optimal convergence rate is (log n/n)4/(p+5) if the
bandwidths satisfy h1/2� � ht , hz � {(log n/n)h�}1/(2p+2).
Under the assumptions of case (b) and hz ≈ (log n/n)1/(4+p),
the optimal convergence rate is (log n/n)4/(4+p) when p ≥ 4.

– Extension of Corollary 3.4
The optimal convergence rate is achieved when p ≤ 7.
When p ≥ 8, the order of (3.12) becomes O(Lnh2λ +
L2n(h4z + δ2n) + L−a1

n + δn). If further h4z ≈ δ2n (i.e.,
hz � (log n/n)1/(p+5)), Lnh2λ ≈ L2nh4z and Lnh4z ≈ L−a1

n
and L2nδ2n � δn, Ln � (n/ log n)3/2(p+5) and the convergence
rate is (log n/n)3a1/2(p+5).

4. Simulations Studies

This section consists of three simulation studies. Simulation
1 compares the two eigenvalue estimators (the PC-based
approach and the proposed WLS approach) under the second
scenario with two sampling schemes. Simulation 2 shows
that when estimating the covariance function ϒ(s, t, z) =∑∞

k=1 τk(z)ψk(s, z)ψk(t, z) is not computationally feasible,
approximating ϒ with the common covariance function
�(s, t, z) = ∑∞

k=1 λk(z)φk(s)φk(t) is a better choice than
doing it with the pooled covariance function �∗(s, t) =∑∞

k=1 λ∗
kφk(s)φk(t). Simulation 3 comprises four settings of

data generation under the third scenario and is aimed to show
that the proposed WLS estimator helps reveal the latent group
information of each function and thus significantly improves
clustering accuracy. In the following numerical studies, we
employed PACE version 2.17 (available at http://www.stat.
ucdavis.edu/PACE/) to estimate the eigenfunctions.

http://www.stat.ucdavis.edu/PACE/
http://www.stat.ucdavis.edu/PACE/
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Table 1. Average ISE of the estimated eigenvalues with standard errors in the parentheses when n = 200 and n = 400.

Complete Sparse

n= 200 n= 400 n= 200 n= 400

Method λ1(z) λ2(z) λ1(z) λ2(z) λ1(z) λ2(z) λ1(z) λ2(z)

PC-based 4.28 (3.45) 0.99 (0.72) 1.99 (1.45) 0.57 (0.38) 5.63 (4.02) 2.01 (1.30) 3.29 (2.29) 1.57 (0.82)
WLS 2.93 (2.39) 0.75 (0.51) 1.49 (1.07) 0.47 (0.29) 4.46 (3.66) 1.79 (1.38) 2.49 (1.83) 0.91 (0.60)

4.1. Simulation 1

For each run we generated n (=200 and 400) curves frommodel
(3.1). For i = 1, . . . , n, we let zi ∼ U(0, 1), μ(t, zi) = 0,
φ1(t) = − cos(π t/10)/

√
5, φ2(t) = sin(π t/10)/

√
5, Aik(zi) ∼

N(0, λk(zi)) for k = 1, 2, where λ1(zi) = 4{1 + 2 sin(0.1 +
πz2i /2)} and λ2(zi) = 2{2 + sin(2ziπ)}, and εij ∼ N(0, 1). For
complete data, the observations were made at 51 equally spaced
time points over [0, 10] per curve. To generate sparse data, we
randomly selected Ni points out of the 51 equally spaced time
points for complete data, whereNi were randomly selected from
{4, 5, . . . , 10} for each curve. Each simulation consists of 100
runs.

For fair comparisons, we let the bandwidth in (3.9) be 0.2 for
both types of data. In the PC-based approach, we first predicted
Aik via the trapezoidal rule and PACE, for functional data and
longitudinal data, respectively; next, we applied a p-dimensional
smoother to {(Â2

i,k, zi), i = 1, . . . , n} to estimate λk(z). The inte-
grated squared error (ISE) of the PC-based approach and that of
the proposedWLS approach were summarized in Table 1, indi-
cating that the proposed WLS approach outperforms the PC-
based approach under both sampling schemes. Interestingly, the
proposed WLS approach outperforms the PC-based approach
even in the complete data setting. Intuitively, this could be
explained by the fact that, in the proposedWLS approach, “more
observations” are employed to directly estimate the eigenvalues,
that is,

∑n
i=1 Ni(Ni − 1)/2 (with Ni = 51) versus n. This effect

will disappear as n gets much larger.
The supplementarymaterials provide an additional variation

of simulation 1, which demonstrates the dependency of the
estimation ISE on p as shown in Section 3.

4.2. Simulation 2

Understanding the covariance structure is essential in some
studies, such as brain functional connectivity analyses, but
directly estimating the covariance ϒ(s, t, z) = ∑∞

k=1 ηk(z)ψk
(s, z)ψk(t, z) may not be computationally feasible. Here,
we demonstrate that approximating ϒ with �(s, t, z) =∑∞

k=1 λk(z)φk(s)φk(t) leads to a more satisfactory output than
doing it with �∗(s, t) = E{ϒ(s, t, z)}. To mimic real data, we
borrowed the phantom function in MATLAB to design a 2D
spatial structure. Specifically, three groups were considered and
shown in Figure 1, and the data were generated from the fFPCA
model,

X(t, z) = μ(t, z) +
2∑

k=1
Ak(z)ψk(t, z),

where μ(t, z) = 0, ψ1(t, z) = √
2 sin(2π‖z‖t)/2, ψ2(t, z) =√

2 cos(2π‖z‖t)/2, Ak(z) ∼ N(0, λk(z)), λk(z) are listed in

Figure 1. Areas of three groups: the gray area corresponds to S1, the white area
corresponds to S2, and the rest (black) area S0 is white noise.

Table 2. The kth eigenvalue of group i, λi,k(z).

cluster 1 2

S2 8 + cos(z(1)2π)/2 4 + sin((0.5 + z(1))2π)/8
S1 3 + cos(z(1)π) sin(0.5 + z(2)) 1.5 + cos(z(1)π) sin(0.5 + z(2))/2
S0 0 0

Table 2, z ∈ [0, 1] × [0, 1] and t ∈ [0, 1]. The observations were
made at 128×128 spatial locations and each location contained
31 observationsmade at equi-spaced time points. The data were
further contaminated with measurement errors generated from
N(0, 0.22). The experiment consists of 100 runs.

To evaluate the performance of approximating ϒ with �

and with �∗, we compared their ISEs, that is,
∫ {ϒ(s, t, z) −

�̂(s, t, z)}2dsdtdz and ∫ {ϒ(s, t, z) − �̂∗(s, t)}2dsdtdz. The aver-
age ISEs (and the standard error) of �̂∗ and �̂ are 0.3600
(0.0002) and 0.1369 (0.0027), respectively. This shows that if
the data are generated from a fFPCA model, approximating the
covariance function with � is overall a better choice given that
it is computationally feasible and has a smaller ISE.

4.3. Simulation 3

To mimic real data, we employed the phantom structure again.
We further assumed that the eigenvalues were group-dependent
(listed in Table 2 and additional simulation). Two cases of the
eigenfunctions were considered: in one, different groups shared
a common set of eigenfunctions while in the other, the eigen-
functions were group-dependent. The goal was to demonstrate
that clustering the WLS eigenvalue estimates outperforms clus-

https://doi.org/10.1080/10618600.2022.2067550
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Table 3. The summarized statistics of Simulation 3, where Recall = TP
TP+FN , and Precision = TP

TP+FP . TP, FP, FN stand for true positive, false positive, and false negative,
respectively.

Method Cluster 3A 3B 3C 3D

Recall Precision Recall Precision Recall Precision Recall Precision

S0 0.983(0.002) 0.970(0.005) 0.973(0.003) 0.987(0.002) 0.985(0.002) 0.968(0.005) 0.998(0.001) 0.974(0.002)
WLS S1 0.919(0.017) 0.954(0.005) 0.893(0.023) 0.962(0.003) 0.943(0.009) 0.963(0.005) 0.915(0.009) 0.987(0.002)

S2 0.859(0.042) 0.763(0.086) 0.890(0.033) 0.926(0.016) 0.884(0.027) 0.939(0.015) 0.889(0.026) 0.987(0.007)
S0 1.000(0.000) 0.667(0.011) 0.992(0.002) 0.941(0.002) 1.000(0.000) 0.663(0.028) 1.000(0.000) 0.942(0.006)

PC2 S1 0.238(0.028) 0.832(0.012) 0.231(0.027) 0.939(0.004) 0.232(0.062) 0.881(0.018) 0.247(0.063) 0.977(0.005)
S2 0.149(0.031) 0.469(0.076) 0.150(0.032) 0.914(0.020) 0.143(0.027) 0.638(0.380) 0.126(0.034) 0.885(0.094)

tering PC2-based eigenvalue estimates, which is closely related
to a mean-adjusted FPCA model, as it is not easy to verify
this argument with real data in functional connectivity study in
general. The k-means approachwas employed for clustering and
the performance was evaluated through the precision rates and
the recall rates (defined in Table 3).

3A
The data were generated from (3.1), where μ(·, ·) = 0, λi,k(z)
were given in Table 2, φk(t) = sin(2πkt) + cos(2πkt) for k = 1
and 2, and εij are iid N(0, 0.4).

3B
The data generation setting was almost identical to that of
3A except that the eigenvalues were further smoothed across
space. Specifically, we smoothed {(λk(zi), zi)|i = 1, . . . , 1282}
in 3A via a Gaussian product kernel and the standard deviation
for Gaussian kernel was 0.03. The purpose was to introduce
smoothness across space. Due to the smoothing procedure,
the correct clustering rate of a single location was modified
accordingly.

3C
The procedure of generating data is similar to that of 3Awith the
difference that the eigenfunctions here are group-dependent.
Specifically, the data were generated from (3.1), where μ(·, ·) =
0, λi,k(z) were given in Table 2, εij were iid from N(0, 0.4), and
the group-dependent eigenfunctions were

φk(t, z) =
⎧⎨
⎩

φ1,k(t) = sin(2πkt) + cos(2πkt), for z ∈ S1,
φ2,k(t) = sin(2πkt) + cos(4πkt), for z ∈ S2,
φ3,k(t) = 0, otherwise.

(4.1)

3D
The procedure of data generation was almost identical to that
of 3C except that the eigenvalues were further smoothed across
space. Specifically, we smoothed {(λk(zi), zi)|i = 1, . . . , 1282} in
3C via a Gaussian product kernel and the standard deviation for
Gaussian kernel was 0.03. The correct clustering rate of a single
location was also modified accordingly.

Table 3 indicates that clustering theWLS estimates performs
significantly better in all three regions in terms of recall rates
and precision rates under these four settings. Figure 2 shows the
averaged predicted class labels of both strategies, and indicates
that the results of clustering based on theWLS estimates are very
consistent and with small variations. As the correct clustering
rate of a single location has been modified for 3B and 3D, it

might not be easy to compare the results between 3B and 3A,
and those between 3D and 3C directly. The intuition, however,
is that around the boundaries the signals become weaker after
smoothing and it is easier to separate the pixels away from
the boundaries to correct groups, and simultaneously around
the boundaries between groups, the cost of mis-classification
becomes lower and thus the precision rates are higher given the
recall remains similar. The phenomenon is observed for both
approaches.

5. Data Analysis: HCP Resting State fMRI Data

Functional Magnetic Resonance Imaging (fMRI) is one of the
mainstays of brain research in that it allows in vivo detection of
Blood Oxygenation Level Dependent (BOLD) signals (Ogawa
et al. 1990) describing cortical activation. The analysis of such
signals has made it possible to determine which anatomical
locations of the brain activate when a specific task is performed.
More recently, it has become of central interest to use BOLD
signals to determine how the different parts of the brain interact,
that is, infer the brain functional network organization. In fact,
brain function is characterized by long-range interactions of
distinct, local, and highly specialized areas (Tononi, Sporns,
and Edelman 1994; Eickhoff, Yeo, and Genon 2018). Functional
imaging data are routinely adopted to infer these interacting
regions, which can help us understand brain organization and
function by characterizing every brain location with its func-
tional properties. Methodologically, it is essential that we take
advantage of these functional properties to estimate long-range
interactionswhile also accommodating the presence of localized
units by incorporating spatial/anatomical information. Such
studies are also referred to as functional connectivity studies. In
this section, we investigate functional connectivity by applying
the eigen-adjusted FPCA framework introduced and we com-
pare its results with a popular approach to connectivity analysis.

Data for this application consist of fMRI scans of 40 unre-
lated healthy subjects, collected within theHumanConnectome
Project (HCP,VanEssen et al. 2012). Theminimal preprocessing
pipeline has been applied to the dataset (Glasser et al. 2013). This
includes artifact removal, motion correction, and registration
to a standard space. The relevant fMRI signals arise from the
cerebral cortex, which is the outermost layer of the brain. Here
we adopt a distortion minimizing 2D planar parameterization
of the cerebral cortex to apply the eigen-adjusted FPCA model,
and visualize the results on the cortical surface. In our analysis,
we consider the first 144 sec of the fMRI signal detected under
resting-state conditions, that is, without requiring the subjects
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Figure 2. The true class labels and the averaged predicted labels in simulation 3.

to perform any specific task. The time samples are acquired at
regular intervals of 0.72 sec. This results in a noisy signalYs(t, z),
for the sth subject, observed at a regularly spaced grid of times
t1, . . . , tN , with N = 200, and locations z1, . . . , zNv ⊂ R

2, with
Nv = 32,000.

We perform eigen-adjusted FPCA on the resting-state fMRI
data as follows. We apply a 3D (2D spatial + 1D temporal)

Nadaraya–Watson smoother, with product kernel, to estimate
the mean function and use 5-fold cross-validation to select
their bandwidths. Cross-validation suggests very large band-
widths for the time smoothing, and specifically, a zero-mean
function. This is not surprising as the location-specific mean,
computed across time, has been removed in the preprocessing
phase.
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Figure 3. Here we show the results of the k-means clustering applied to the WLS
estimates of the eigenvalues, for different choices of k. On the bottom-right panel,
the parcellation obtained in Yeo et al. (2011). For instance, for k = 3, . . . , 8, we can
see that the proposedmodel is able to separate themotor cortex (central part of the
cerebral cortex) from the rest of the cerebral cortex. The visual cortex (bottom right)
is also identified as a separate cluster. For higher numbers of clusters, for example,
k = 8, a sub-cluster isolating the primary visual cortex is also identified.

We then proceed with the estimation of the covariance func-
tions �(s, t, z), from the eigen-adjusted FPCA model in (2.1),
for each spatial location z. Specifically, the pooled covariance
function �∗(s, t) is estimated by applying a 2D local linear
smoother to the associated empirical covariance. The band-
width is chosen by 5-fold cross-validation. We then compute
the eigenfunctions φ̂k(t), shown in Figure 4, by applying eigen-
analysis on a discretized version of the estimated covariance
function �̂∗(s, t). We estimate the eigenvalue maps λ̂j(z), j =
1, . . . , L by means of WLS, as described in (3.9). We keep the
first L = 15 eigenfunctions, which explain more than 90% of
the total variance of the pooled covariance. We manually set
hλ = 10 to reflect the amount of smoothing imposed in the
functional connectivity study in Yeo et al. (2011), which we
use to compare our results. For each location z, the resulting
eigenvalues vector

(λ̂1(z), . . . , λ̂L(z))

represents a multivariate summary of the temporal covariance
structure �(·, ·, z). We finally identify co-activating brain
regions by clustering the location-specific covariance functions
through their associated eigenvalues estimates, and specifically,
by applying k-means clustering on them, for different choices of
k. The results are shown in Figure 3.

Resting-state time-series cannot be aligned to each other in
any sensible way, thus, eigenfunctions that describe localized
(in time) modes of variation should instead be ascribed to
experimental artifacts. The visualization of the estimated eigen-
functions offers a diagnostic tool to assess which are the modes
of variation that for this reason should be removed from the
subsequent analysis. From Figure 4, we can see that the second
and 15th eigenfunctions do indeed capture a localized mode

of variation. However, removing them from the subsequent
analysis did not substantially change the resulting parcellations.

Moreover, note that in this application, the value at each
spatial location in z1, . . . , zNv can be observed for every
subject. Therefore, the spatial location z is not random.
Specifically, the pooled covariance function becomes �∗(s, t) =∑

k λ̄kφk(s)φk(t), where λ̄k = ∑Nv
v=1 λk(zv)/Nv. Therefore, if

none of λ̄k’s are tied, the eigenfunctions can be consistently
estimated.

In Figure 3, we also show the functional parcellation obtained
in Yeo et al. (2011), where instead the following approach is
adopted. A set of 1175 uniformly sampled Regions of Interest
(ROI) vertices on the cerebral cortex is identified. For each sub-
ject, Pearson correlation between the fMRI time series at each
spatial location z and that on the ROI vertices are computed,
so that each spatial location is characterized by its first-order
dependency to the ROIs. Only the top 10% correlation values
for each subject are kept and these are binarized and averaged
across subjects. For each vertex z, this results in a multivariate
descriptor

(ρ(z, ROI1), . . . , ρ(z, ROI1,175)),

where ρ(z1, z2) is the correlation between the time-series at
the two vertices z1, z2. Finally, spatial clustering is applied on
the multivariate descriptors obtained by averaging those across
subjects. In Figure 3, bottom-right panel, we show the resulting
7-networks parcellation.

Both the presented approaches aim at constructing multi-
variate summaries of the connectivity at each vertex, although
in different fashions. To this purpose, the eigen-adjusted FPCA
approach constructs a descriptor based on the temporal covari-
ance structure at each location. Instead, the approach in Yeo
et al. (2011), constructs a correlation descriptor based both
on time and locations. It could be argued that in the latter
approach, given that spatial information is used to construct
both the multivariate descriptors and to perform spatial clus-
tering, you would expect the clustering to be influenced by
the choice of the ROIs. This cannot happen with the eigen-
adjusted FPCA approach, where the multivariate descriptor
exploits exclusively the temporal component, with the exception
of the spatial smoothing effect introduced to contrast the low
signal-to-noise ratio.

Despite the two approaches being different, and thus not
immediately comparable, their results are compatible. Consider,
for instance, the eigen-adjusted FPCA results in Figure 3, for
k = 7. The proposed model is able to separate the motor cortex
(central part of the cerebral cortex) from the prefrontal cortex
(left part of the cerebral cortex). The visual cortex (bottom right)
is also identified as a separate cluster, with a sub-cluster that
seems to isolate the primary visual cortex. This separation of
the brain into distinct clusters determines brain networks in
a completely data-driven way, without the need for a priori
explicit or implicit spatial assumptions.

6. Discussions

We have demonstrated that in a number of situations the eigen-
adjusted FPCA approach is able to provide a computationally
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Figure 4. From left-to-right then top-to-bottom,we show the resulting first L = 15 eigenfunctions φ̂k(t) estimated from the pooled empirical covariance function �̂∗(s, t).

efficient yet flexible alternative to either a simple mean-adjusted
model or a fully adjusted FPCA approach in the presence of
covariates. Consistent estimates can be obtained using a WLS
approach, without the need to estimate the full spatially varying
covariance function but rather by a pooled version. It has been
shown in simulations that the approach is effective in finite
samples, particularly in relation to the kinds of data available in
brain imaging applications. The application to functional con-
nectivity shows that a comparison can bemade based on the full
covariate information across space, without the need to either
reduce the dimension through an a priori spatial downsampling
(such as definitions of ROIs) or via a seed-based approach of
choosing one or two locations to compare the full data set
against.

There are a number of limitations to the approach. First,
should the eigenfunctions themselves directly vary with
the covariates, then the model will only ever provide an
approximation.However, as we have seen in the simulations, the
eigen-adjusted covariance approximation is considerably better
than a more simplistic approach of using a pooled covariance
function in this case. In addition, it is possible that the WLS
estimator could produce negative estimates, in finite samples,
for positive eigenvalues. Should this be an issue, a number of
possible recourses exist, including truncation or nonnegative
least-squares approaches. However, for positive eigenvalues, the
asymptotic properties show that this will only ever be a finite
sample problem.

Overall, the eigen-adjusted FPCA approach provides a set of
tools to investigate functional covariance structures that include
covariate information. It is likely that as more applied questions
become framed in terms of second-order structure, as seen in
functional connectivity, techniques such as these will only be
further needed and used.

Appendix A. Assumptions

The estimators μ̂ and �̂∗ have been constructed by the local lin-
ear smoothing method. Therefore, it is natural to make the stan-
dard smoothness assumptions on the second derivatives of μ and
�∗. Assume that the data (Ti,Zi,Yi), i = 1, . . . , n, have the same
distribution, where Ti = (Ti1, . . . ,TiNi) and Yi = (Yi1, . . . ,YiNi).
Notice that we assume (Tij,Zi) has marginal density g(t, z). Additional
assumptions and conditions are listed below.

A.1 For some constants mT > 0 and MT < ∞, mT ≤ g(t, z) ≤ MT
for all t ∈ T and z ∈ Z. Further, g(·, ·) is differentiable with a
bounded derivative.

A.2 The kernel function K(·) is a symmetric probability density func-
tion on [−1, 1] and is of bounded variation on [−1, 1]. Further, we
denote ν2 = ∫ 1

−1 u
2K(u)du.

The following assumptions are about Y(t) and were also made in Li
andHsing (2010). Suppose the observation of the ith subject at time Tij
isYij = μ(Tij,Zi)+Uij, where cov(Ui(s),Ui(t)) = �(s, t, zi)+σ 2I(s =
t) and �(s, t, zi) = ∑


 λ
(zi)φ
(s)φ
(t). Let hz = (h(1)
z , . . . , h(p)

z )T

and denote |hz| = ∏p
i=1 h

(i)
z . Also, γnk =

(
n−1 ∑n

i=1 N
−k
i

)−1
for

k = 1, and 2.

B.1 μ is twice differentiable and the second derivative is bounded on
T × Z.

B.2 E(|Uij|λμ) < ∞ and E(supt∈T |X(t)|λμ) < ∞ for some λμ ∈
(2,∞); hμ → 0 and (h2μ|hz|+hμ|hz|/γn1)−1(log n/n)1−2/λμ →
0 as n → ∞.

B.3 All second-order partial derivatives of �∗ exist and are bounded
on T × T.

B.4 E(|Uij|2λ� ) < ∞ and E(supt∈T |X(t)|2λ� ) < ∞ for some λ� ∈
(2,∞);h� → 0 and (h4�+h3�/γn1+h2�/γn2)−1(log n/n)1−2/λ� →
0 as n → ∞
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B.5 All second-order partial derivatives of λk(z) exist and are bounded
on Z for 1 ≤ k ≤ L.

B.6 hλ → 0 and (|hλ|)−1(log n/n)1−2/η → 0 as n → ∞ for some
η ∈ (2,∞).

B.7 For z ∈ Z and all j, 0 < λj(z)/λ∗
j < ∞.

The following assumptions are for the lemmas. Let dn =
(d(1)

n , . . . , d(p)
n )T .

C.1 E(|U|λ) < ∞ and E(supt∈T,z∈Z |X(t, z)|λ) < ∞ for some λ ∈
(2,∞).

C.2 Let cn and d(i)
n for i = 1, . . . , p be positive sequences tending to 0,

βn = c2n|dn| + cn|dn|/γn1 and β−1
n (log n/n)1−2/λ = o(1).

C.2’ Let cn be a positive sequence tending to 0, βn = c2n + cn/γn1 and
β−1
n (log n/n)1−2/λ = o(1).

C.3 E(|U|2λ) < ∞ and E(supt∈T,z∈Z |Y(t, z)|2λ) < ∞ for some λ ∈
(2,∞).

C.4 Let cn be a positive sequence tending to 0, βn = c4n + c3n/γn1 +
c2n/γn2 and β−1

n (log n/n)1−2/λ = o(1).

Appendix B. A PC-based Approach for λk(z)
Estimation

Besides theWLS approach, one intuition is to first predict the PC scores
and apply a p-dimensional smoother to the squared PC scores given
that E{A2

k(z)} = λk(z). When the data are dense, the PC scores can
be predicted well via a numerical approach for integration. Here, we
employ the trapezoidal rule for integration. Specifically,

Âik =
Ni−1∑
j=1

[
Ûijφ̂k(ti,j) + Ûi,j+1φ̂k(ti,j+1)

] (ti,j+1 − tij)
2

. (B.1)

Then, a p-dimensional smoother can be applied to {(Â2
ik, zi)|i =

1, . . . , n} to consistently estimate λk(z) given that Â2
ik is a consistent

estimator of λk(zi). Let

Ãik =
∫
T
{Xi(t) − μ(t, zi)}φ̂k(t)dt, and

Â∗
ik =

∫
T
{Yi(t) − μ̂(t, zi)}φ̂k(t)dt.

The asymptotics of Âik can be obtained by employing the inequality,

|Âik − Aik| ≤ |Âik − Â∗
ik| + |Â∗

ik − Ãik| + |Ãik − Aik|.

First, |Ãik −Aik| = O(h2� + δn1 + h4t + h4z + δ2n) a.s. by applying The-
orem 3.3. Second, |Âik − Â∗

ik| = O(1/N4
i ) a.s. since Â

∗
ik is an approxi-

mation by the trapezoidal rule. Last, |Â∗
ik − Ãik| = O((logNi/Ni)1/2 +

δn+h2t +h2z) a.s. by Lemma 5 in Li andHsing (2010) and Theorem 3.1.
Therefore, |Âik−Aik| = O((logNi/Ni)1/2+h2�+δn1+h2t +h2z+δn) a.s.
Since Âik is a consistent estimator, λk(z) can be estimated by applying
a p-dimensional smoother to {(Â2

ik, zi)|i = 1, . . . , n}. In the numerical
studies, a local linear smoother is used. Specifically,

λ̂k(z) = b̂0, where

(b̂0, b̂
T
1 )T = argmin

b

1
n

n∑
i=1

{
Â2
ik − b0 − bT1 (zi − z)

}2

( p∏
k=1

Kh(k)
λ

(z(k)i − z(k))
)
. (B.2)

SupplementaryMaterials

Supplement Assumptions, Lemmas and Proofs and additional simulation
(*.pdf)
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