

[Start](#) | [Grid View](#) | [Author Index](#) | [View Uploaded Presentations](#) | [Meeting Information](#)

GSA Connects 2021 in Portland, Oregon

Paper No. 3-8

Presentation Time: 10:10 AM

AUGMENTED REALITY IN NATURAL HISTORY MUSEUMS: IMPACT ON VISITOR ENGAGEMENT AND SCIENCE LEARNING

LINDSEY, Emily¹, KENNEDY, Alana², HERRICK, Imogen², NYE, Benjamin³, DAVIS, Matt⁴, NELSON, David³, PORTER, Molly⁴, SWARTOUT, William³ and SINATRA, Gale², (1)La Brea Tar Pits and Museum, Natural History Museums of Los Angeles County, 5801 Wilshire Blvd, Los Angeles, CA 90036, (2)Rossier School of Education, University of Southern California, Los Angeles, CA 90089, (3)Institute for Creative Technologies, University of Southern California, Los Angeles, CA 90094, (4)Natural History Museum of Los Angeles County, Los Angeles, CA 90007

Natural History Museums are increasingly leveraging immersive technologies (e.g., virtual reality, augmented reality, projection mapping) to provide visitors with novel experiences and augment scientific content in existing exhibits. However, little data currently exists as to how effective these technologies are at teaching scientific concepts, or even how enthusiastic museum visitors are to interface with these experiences. We designed and field-tested two mobile augmented reality (AR) experiences at La Brea Tar Pits (Rancho La Brea, California, USA) and studied how different degrees of immersion and interactivity impacted visitors' engagement and understanding of science. We also studied how engagement and learning were related to visitors' epistemic emotions about science and AR. Key scientific concepts we sought to teach through these experiences included: 1) the mechanics and frequency of entrapment in Rancho La Brea's asphalt seeps; 2) the range of fossils preserved at Rancho La Brea; 3) what the environment at Rancho La Brea was like during the Pleistocene; and 4) how the scientific process works by revision of hypotheses based on new evidence. We found that participant knowledge of these scientific concepts increased significantly from pre-test to post-test across all conditions, including a baseline condition. In addition, participants expressed greater interest in science than in AR, and curiosity and surprise were strong predictors of knowledge revision, suggesting that exhibits that stimulate these emotions may be particularly successful at countering scientific misconceptions.

Session No. 3

[D40. Recent Advances in Geoscience Education](#)

Sunday, 10 October 2021: 8:00 AM-12:00 PM

B112 (Oregon Convention Center)

Geological Society of America *Abstracts with Programs*. Vol 53, No. 6
doi: 10.1130/abs/2021AM-371425

© Copyright 2021 The Geological Society of America (GSA), all rights reserved. Permission is hereby granted to the author(s) of this abstract to reproduce and distribute it freely, for noncommercial purposes. Permission is hereby granted to any individual scientist to download a single copy of this electronic file and reproduce up to 20 paper copies for noncommercial purposes advancing science and education, including classroom use, providing all reproductions include the complete content shown here, including the author information. All other forms of reproduction and/or transmittal are prohibited without written permission from GSA Copyright Permissions.

[Back to: D40. Recent Advances in Geoscience Education](#)

[<< Previous Abstract](#) | [Next Abstract >>](#)