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Abstract

The performance of neural machine transla-
tion systems is commonly evaluated in terms
of BLEU. However, due to its reliance on
target language properties and generation, the
BLEU metric does not allow an assessment
of which translation directions are more dif-
ficult to model. In this paper, we propose
cross-mutual information (XMI): an asymmet-
ric information-theoretic metric of machine
translation difficulty that exploits the proba-
bilistic nature of most neural machine trans-
lation models. XMI allows us to better eval-
uate the difficulty of translating text into the
target language while controlling for the dif-
ficulty of the target-side generation compo-
nent independent of the translation task. We
then present the first systematic and con-
trolled study of cross-lingual translation dif-
ficulties using modern neural translation sys-
tems. Code for replicating our experiments
is available online at https://github.com/
e-bug/nmt-difficulty.

1 Introduction

Machine translation (MT) is one of the core re-
search areas in natural language processing. Cur-
rent state-of-the-art MT systems are based on neu-
ral networks (Sutskever et al., 2014; Bahdanau
et al., 2015), which generally surpass phrase-based
systems (Koehn, 2009) in a variety of domains
and languages (Bentivogli et al., 2016; Toral and
Séanchez-Cartagena, 2017; Castilho et al., 2017,
Bojar et al., 2018; Barrault et al., 2019). Using
phrase-based MT systems, various controlled stud-
ies to understand where the translation difficulties
lie for different language pairs were conducted
(Birch et al., 2008; Koehn et al., 2009). However,
comparable studies have yet to be performed for
neural machine translation (NMT). As a result, it
is still unclear whether all translation directions are
equally easy (or hard) to model for NMT. This pa-
per hence aims at filling this gap: Ceteris paribus,
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Figure 1: Left: Decomposing the uncertainty of a
sentence as mutual information plus language-inherent
uncertainty: mutual information (MI) corresponds to
just how much easier it becomes to predict 7' when
you are given S. MI is symmetric but the relation be-
tween H(.S) and H(T') can be arbitrary. Right: estimat-
ing cross-entropies using models ¢yt and gr invali-
dates relations between bars, except that H, () > H(-).
XMI, our proposed metric, is no longer purely a sym-
metric measure of language, but now an asymmetric
measure that mostly highlights models’ shortcomings.
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is it easier to translate from English into Finnish
or into Hungarian? And how much easier is it?
Conversely, is it equally hard to translate Finnish
and Hungarian into another language?

Based on BLEU (Papineni et al., 2002) scores,
previous work (Belinkov et al., 2017) suggests that
translating into morphologically rich languages,
such as Hungarian or Finnish, is harder than trans-
lating into morphologically poor ones, such as
English. However, a major obstacle in the cross-
lingual comparison of MT systems is that many
automatic evaluation metrics, including BLEU
and METEOR (Banerjee and Lavie, 2005), are
not cross-lingually comparable. In fact, being a
function of n-gram overlap between candidate and
reference translations, they only allow for a fair
comparison of the performance between models
when translating into the same test set in the same
target language. Indeed, one cannot and should not
draw conclusions about the difficulty of translating
a source language into different target languages
purely based on BLEU (or METEOR) scores.
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In response, we propose cross-mutual informa-
tion (XMI), a new metric towards cross-linguistic
comparability in NMT. In contrast to BLEU, this
information-theoretic quantity no longer explicitly
depends on language, model, and tokenization
choices. It does, however, require that the models
under consideration are probabilistic. As an initial
starting point, we perform a case study with a
controlled experiment on 21 European languages.
Our analysis showcases XMI’s potential for
shedding light on the difficulties of translation
as an effect of the properties of the source or
target language. We also perform a correlation
analysis in an attempt to further explain our
findings. Here, in contrast to the general wisdom,
we find no significant evidence that translating into
a morphologically rich language is harder than
translating into a morphologically impoverished
one. In fact, the only significant correlate of MT
difficulty we find is source-side type—token ratio.

2 Cross-Linguistic Comparability
through Likelihoods, not BLEU

Human evaluation will always be the gold stan-
dard of MT evaluation. However, it is both time-
consuming and expensive to perform. To help re-
searchers and practitioners quickly deploy and eval-
uate new systems, automatic metrics that correlate
fairly well with human evaluations have been pro-
posed over the years (Banerjee and Lavie, 2005;
Snover et al., 2006; Isozaki et al., 2010; Lo, 2019).
BLEU (Papineni et al., 2002), however, has re-
mained the most common metric to report the per-
formance of MT systems. BLEU is a precision-
based metric: a BLEU score is proportional to
the geometric average of the number of n-grams
in the candidate translation that also appear in the
reference translation for 1 < n < 4.1

In the context of our study, we take issue with
two shortcomings of BLEU scores that prevent
a cross-linguistically comparable study. First, it
is not possible to directly compare BLEU scores
across languages because different languages might
express the same meaning with a very different
number of words. For instance, agglutinative lan-
guages like Turkish often use a single word to ex-
press what other languages have periphrastic con-
structions for. To be concrete, the expression “I
will have been programming” is five words in En-

'BLEU also corrects for reference coverage and includes
a length penalty, but we focus on the high-level picture.

glish, but could easily have been one word in a
language with sufficient morphological markings;
this unfairly boosts BLEU scores when translating
into English. The problem is further exacerbated
by tokenization techniques as finer granularities
result in more partial credit and higher n for the
n-gram matches (Post, 2018). In summary, BLEU
only allows us to compare models for a fixed tar-
get language and tokenization scheme, i.e. it only
allows us to draw conclusions about the difficulty
of translating different source languages into a spe-
cific target one (with downstream performance as
a proxy for difficulty). Thus, BLEU scores cannot
provide an answer to which translation direction is
easier between any two source—target pairs.

In this work, we address this particular short-
coming by considering an information-theoretic
evaluation. Formally, let Vs and V1 be source- and
target-language vocabularies, respectively. Let S
and T" be source- and target-sentence-valued ran-
dom variables for languages S and T, respectively;
then S and T respectively range over V¢ and V7.
These random variables S and 7" are distributed
according to some true, unknown probability dis-
tribution p. The cross-entropy between the true
distribution p and a probabilistic neural translation
model gy (t | 8) is defined as:

Hopep (T S) = (1)

_ Z Z p(t,s)logy gur(t | s)

teVy seVs

aMT (

Since we do not know p, we cannot compute eq. (1).
However, given a held-out data set of sentence pairs
{(s@,t@)}N | assumed to be drawn from p, we
can approximate the true cross-entropy as follows:

Hy oo (T | S) ~ )

aMT (

N
1 L
i=1

In the limit as N — oo, eq. (2) converges to eq. (1).

We emphasize that this evaluation does not rely
on language tokenization provided that the model
qut does not (Mielke, 2019). While common in
the evaluation of language models, cross-entropy
evaluation has been eschewed in machine transla-
tion research since (i) not all MT models are proba-
bilistic and (ii) we are often interested in measuring
the quality of the candidate translation our model
actually produces, e.g. under approximate decod-
ing. However, an information-theoretic evaluation
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is much more suitable for measuring the more ab-
stract notion of which language pairs are hardest to
translate to and from, which is our purpose here.

3 Disentangling Translation Difficulty
and Monolingual Complexity

We contend that simply reporting cross-entropies
is not enough. A second issue in performing a con-
trolled, cross-lingual MT comparison is that the
language generation component (without transla-
tion) is not equally difficult across languages (Cot-
terell et al., 2018). We claim that the difficulty of
translation corresponds more closely to the mutual
information MI(.S; T") between the source and tar-
get language, which tells us how much easier it
becomes to predict 7' when S is given (see Fig-
ure 1). But what is the appropriate analogue of
mutual information for cross-entropy? One such
natural generalization is a novel quantity that we
term cross-mutual information, defined as:

XMI(S — T)

= Hg (T) - Hoyir (T18) 3

where Hy, ,(T') denotes the cross-entropy of the
target sentence 7' under the model grr. As in §2,
this can, analogously, be approximated by the cross-
entropy of a separate target-side language model
q1.m over our held-out data set:

XMI(S — T) ~ )
N
- 2l

which, again, becomes exact as N — oo. In prac-
tice, we note that we mix different distributions
qum(t) and gyr(t | s) and, thus, grv(t) is not
necessarily representable as a marginal: there need
not be any distribution ¢(s) such that grm(t) =
Y sevy amr(t | 8) - g(s). While gyrr and grag can,
in general, be any two models, we exploit the char-
acteristics of NMT models to provide a more mean-
ingful, model-specific estimate of XMI. NMT ar-
chitectures typically consist of two components:
an encoder that embeds the input text sequence,
and a decoder that generates translated output text.
The latter acts as a conditional language model,
where the source-language sentence embedded by
the encoder drives the target-language generation.
Hence, we use the decoder of g\ as our g1 to
accurately estimate the difficulty of translation for
a given architecture in a controlled way.

QLM (@)

7s®)

QMT

In summary, by looking at XMI, we can ef-
fectively decouple the language generation com-
ponent, whose difficulties have been investigated
by Cotterell et al. 2018 and Mielke et al. 2019, from
the translation component. This gives us a measure
of how rich and useful the information extracted
from the source language is for the target-language
generation component.

4 Experiments

In order to measure which pairs of languages are
harder to translate to and from, we make use of
the latest release v7 of Europarl (Koehn, 2005): a
corpus of the proceedings of the European Parlia-
ment containing parallel sentences between English
(en) and 20 other European languages: Bulgar-
ian (bg), Czech (cs), Danish (da), German (de),
Greek (el), Spanish (es), Estonian (et), Finnish
(£1), French (fr), Hungarian (hu), Italian (it),
Lithuanian (1t), Latvian (1v), Dutch (nl1), Pol-
ish (pl), Portuguese (pt), Romanian (ro), Slovak
(sk), Slovene (s1) and Swedish (sv).

Pre-processing steps In order to precisely effect
a fully controlled experiment, we enforce a fair
comparison by selecting the set of parallel sen-
tences available across all 21 languages in Europarl.
This fully controls for the semantic content of the
sentences; however, we cannot adequately control
for translationese (Stymne, 2017; Zhang and Toral,
2019). Our subset of Europarl contains 190,733
sentences for training, 1,000 unique, random sen-
tences for validation and 2,000 unique, random
sentences for testing. For each parallel corpus, we
jointly learn byte-pair encodings (BPE; Sennrich
et al., 2016) for the source and target languages,
using 16,000 merge operations. We use the same
vocabularies for the language models.?

Setup In our experiments, we train Transformer
models (Vaswani et al., 2017), which often achieve
state-of-the-art performance on MT for various
language pairs. In particular, we rely on the Py-
Torch (Paszke et al., 2019) re-implementation of
the Transformer model in the fairseq toolkit (Ott
etal., 2019). For language modeling, we use the de-
coder from the same architecture, training it at the
sentence level, as opposed to commonly used fixed-
length chunks. We train our systems using label
smoothing (LS; Szegedy et al., 2016; Meister et al.,

For English, we arbitrarily chose the English portion of
the en-bg vocabulary.
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i—en bg cs da de el es et fi

hu it It Iv nl pl pt ro sk sl sV avg

BLEU 474 424 463 440 500 S50.6 393 382 449 384 408 37.6 40.3 383 39.8 483 50.5 442 453 437 435
XMI(i—en) 1023 970 99.7 965 1053 103.8 92.8 92.1 97.0 92.5 92.1 892 942 86.5 919 1025 1061 99.8 100.1 969 96.9
H,, , (en) 1542 154.2
Hyyp(en |5 518 572 545 577 489 504 614 620 57.2 616 62.1 650 60.0 677 623 517 481 544 541 57.3 573

en — I} bg cs da de el es et fi

hu it It Iv nl pl pt ro sk sl sV avg

BLEU 46.3 347 450 363 455 502
XMl(ento::) 106.2 102.8 103.3 104.0 111.0 108.1

27.7 30.5 45.7
100.2 98.0 99.7

303 379 31.0 346 349
99.1 953 96.0 99.3 90.4

30.5 46.7 442 398 41.5 41.3 3873
98.3 105.2 112.4 105.8 107.9 100.1 102.1

H,ILM(Z'}) 156.5 164.0 152.7 167.6 163.7 159.3 162.5 158.6 154.9 166.6 158.6 159.2 156.4 159.7 163.4 159.3 160.5 157.7 158.2 153.1 159.6
qu\,[T(-‘.f_'-\en) 503 612 494 636 527 513 624 60.6 551 67.5 633 63.1 57.0 693 65.1 54.1 48.1 519 503 53.0 57.5
Table 1: Test scores, from and into English, Europarl, visualized in Figure 2 and Figure 3.
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Figure 2: Some correlations between metrics in Table 1,

2020) as it has been shown to prevent models from
over-confident predictions, which helps to regular-
ize the models. We report cross-entropies (Hg, 1.,
HqLM), XMI, and BLEU scores obtained using
SACREBLEU (Post, 2018). Finally, in a similar
vein to Cotterell et al. (2018), we multiply cross-
entropy values by the number of sub-word units
generated by each model to make our quantities
independent of sentence lengths (and divide them
by the total number of sentences to match our ap-
proximations of the true distributions). See App. A
for experimental details.

S Results and Analysis

We train 40 systems, translating each language into
and from English.* The models’ performance in
terms of BLEU scores, and the cross-mutual infor-
mation (XMI) and cross-entropy values over the
test sets are reported in Table 1 with significant
values marked in App. B.

3Signature: BLEU+c.mixed+#. 1+s.exp+tok.13a+v.1.2.12.

“Due to resource limitations, we chose these tasks be-
cause most of the information available in the web is
in English (https://w3techs.com/technologies/
overview/content_language) and effectively trans-
lating it into any other language would reduce the digital
language divide (http://labs.theguardian.com/
digital-language-divide/). Besides, translating
into English gives most people access to any local information.

and from English. More correlations in Figure 4.

Translating into English When translating into
the same target language (in this case, English),
BLEU scores are, in fact, comparable, and can
be used as a proxy for difficulty. We can then
conclude, for instance, that Lithuanian (1t) is the
hardest language to translate from, while Spanish
(es) is the easiest. In this scenario, given the good
correlation of BLEU scores with human evalua-
tions, it is desirable that XMI correlates well with
BLEU. This behavior is indeed apparent in the

points in the left part of Figure 2, confirm-
ing the efficacy of XMI in evaluating the difficulty
of translation while still being independent of the
target language generation component.

Translating from English Despite the large
gaps between BLEU scores in Table 1, one should
not be tempted to claim that it is easier to translate
into English than from English for these languages
as often hinted at in previous work (e.g., Belinkov
et al., 2017). As we described above, different tar-
get languages are not directly comparable, and we
actually find that XMI is slightly higher, on aver-
age, when translating from English, indicating that
it is actually easier, on average, to transfer informa-
tion correctly in this direction. For instance, trans-
lation from English to Finnish is shown to be easier
than from Finnish to English, despite the large gap
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HqMT ( . . .
the translation is from the left to the right argument.

Metric Pearson Spearman

0.2988 (0.0611) 0.3570 (0.0237)

word number ratio

TTRsre -0.5196 (0.0006) -0.5136 (0.0007)
TTRgt 0.1651 (0.3086) 0.3355 (0.0343)
drTr -0.4427 (0.0042) -0.4660 (0.0024)

word overlap ratio | 0.1383 (0.3949) 0.1731 (0.2853)

Table 2: Correlation coefficients (and p-values) be-
tween XMI and data-related features.

in BLEU scores. This suggests that the former
model is heavily penalized by the target-side lan-
guage model; this is likely because Finnish has
a large number of inflections for nouns and verbs.
Another interesting example is given by Greek (e 1)
and Spanish (es) in Table 1, where, again, the two
tasks achieve very different BLEU scores but sim-
ilar XMI. In light of the correlation with BLEU
when translating into English, this shows us that
Greek is just harder to language-model, corroborat-
ing the findings of Mielke et al. (2019). Moreover,
Figure 2 clearly shows that, as expected, XMI is
not as well correlated with BLEU when translat-
ing from English, given that BLEU scores are not
cross-lingually comparable.

Correlations with linguistic and data features
Last, we conduct a correlation study between the
translation difficulties as measured by XMI and the
linguistic and data-dependent properties of each
translation task, following the approaches of Lin
et al. (2019) and Mielke et al. (2019). Table 2 lists
Pearson’s and Spearman’s correlation coefficients
for data-dependent metrics, where bold values in-
dicate statistically significant results (p < 0.05)
after Bonferroni correction (p < 0.0029). Interest-
ingly, the only features that significantly correlate
with our metric are related to the type-to-token ra-
tio (TTR) for the source language and the distance

T | S), the uncertainty that remains in the target language, all measured in bits. Note that in XMI(S — T))

between source and target TTRs. This implies that
a potential explanation for the differences in trans-
lation difficulty lies in lexical variation. For full
correlation results, refer to App. D.

6 Conclusion

In this work, we propose a novel information-
theoretic approach, XMI, to measure the transla-
tion difficulty of probabilistic MT models. Dif-
ferently from BLEU and other metrics, ours is
language- and tokenization-agnostic, enabling the
first systematic and controlled study of cross-
lingual translation difficulties. Our results show
that XMI correlates well with BLEU scores when
translating into the same language (where they are
comparable), and that higher BLEU scores in dif-
ferent languages do not necessarily imply easier
translations. In future work, we plan to extend this
analysis across more translation pairs, more diverse
languages and multiple domains, as well as inves-
tigating the effect of translationese or source-side
grammatical errors (Anastasopoulos, 2019).
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A Experimental Details

Pre-processing steps To precisely determine the
effect of the different properties of each language
in translation difficulty, we enforce a fair compari-
son by selecting the same set of parallel sentences
across all the languages evaluated in our data set.
The number of parallel sentences available in Eu-
roparl varies considerably, ranging from 387K sen-
tences for Polish-English to 2.3M sentences for
Dutch-English. Therefore, we proceed by taking
the set of English sentences that are shared by all
the language pairs. This leaves us with 197,919
sentences for each language pair, from which we
then extract 1,000 and 2,000 unique, random sen-
tences for validation and test, respectively.

We follow the same pre-processing steps used
by Vaswani et al. (2017) to train the Transformer
model on WMT data: Data sets are first tokenized
using the Moses toolkit (Koehn et al., 2007) and
then filtered by removing sentences longer than 80
tokens in either source or target language. Due to
this cleaning step that is specific to each training
corpus, different sentences are dropped in each data
set. We then only select the set of sentence pairs
that are shared across all languages. This results in
a final number of 190,733 training sentences. For
each parallel corpus, we jointly learn byte-pair en-
codings (BPE; Sennrich et al., 2016) for source and
target languages, using 16,000 merge operations.

Training setup In our experiments, we train a
Transformer model (Vaswani et al., 2017), which
achieves state-of-the-art performance on a multi-
tude of language pairs. In particular, we rely on
the PyTorch re-implementation of the Transformer
model in the Fairseq toolkit (Ott et al., 2019). All
experiments are based on the Base Transformer ar-
chitecture, which we trained for 20,000 steps and
evaluated using the checkpoint corresponding to
the lowest validation loss. We trained our models
on a cluster of 4 machines, each equipped with 4
Nvidia P100 GPUs, resulting in training times of
almost 70 minutes for each system. Sentence pairs
with similar sequence length were batched together,
with each batch containing a total of approximately
32K source tokens and 32K target tokens.

We used the hyper-parameters specified in latest
version (3) of Google’s Tensor2Tensor (Vaswani
et al., 2018) implementation, with the exception of
the dropout rate, as we found 0.3 to be more robust
across all the models trained on Europarl.

Model , Train bootstrap Test bootstrap
en-es 47.6 (0.233) 50.2 (0.026)
en-et 25.6 (0.167) 27.7 (0.026)
It-en 34.5 (0.150) 37.6 (0.027)
ro-en 47.5 (0.232) 50.5 (0.027)

Table 3: Mean test BLEU scores when bootstrapping
train and test sets. Numbers in brackets denote standard
deviation over 5 runs (train bootstrap) and 95% confi-
dence interval over 1,000 samples (test bootstrap).

Models are optimized using Adam (Kingma
and Ba, 2015) and following the learning sched-
ule specified by Vaswani et al. (2017) with 8,000
warm-up steps. We employed label smoothing
€15 = 0.1 (Szegedy et al., 2016) during training
and we used beam search with a beam size of 4 and
length penalty o = 0.6 (Wu et al., 2016).

For language models, we use a Transformer
decoder with the same hyperparameters used in
the translation task to effectively measure the con-
tribution given by a translation. These models
were trained, using label smoothing ¢, = 0.1,
for 10,000 steps on sequences consisting of sepa-
rate sentences in our corpus. Analogously to trans-
lation models, the checkpoints corresponding to the
lowest validation losses were used for evaluation.

B Statistical Significance Tests

Table 3 presents the results when applying boot-
strap re-sampling (Koehn, 2004) on either training
or test sets to the systems achieving the highest and
the lowest BLEU scores in the validation set for
each direction. In our experiments, we observe a
general trend where the performance of different
models varies similarly. For instance, when we
bootstrap test sets, we see that the average BLEU
scores are equal to the ones seen in Table 1, and
that all the models have similar confidence inter-
vals.> When bootstrapping the training data, we
observe a consistent drop in mean performance of
2 — 3 BLEU points across the translation tasks.
The drop in performance is not surprising as the
resulting training sets are more redundant, having
fewer unique sentences than the original sets, but
it is interesting to see that all models are similarly
affected. The standard deviation over 5 runs is also
similar across all models but slightly larger on the
high-performing ones.

>The same results were observed in all of the 40 models.
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Figure 4: More correlations between metrics in Table 1, and from English.
Metric Pearson Spearman
i en en — both i—en en — i both
MCCs,¢ -0.2579 (0.2723) - -0.4302 (0.0056) || -0.2135 (0.3660) - -0.4444 (0.0041)
MCCiy; - -0.1260 (0.5965)| 0.2619 (0.1025) - -0.1263 (0.5957) | 0.3778 (0.0162)
ADLg, . -0.2972 (0.2032) - -0.1166 (0.4737) ||-0.2887 (0.2170) - 0.0166 (0.9188)
ADL; - -0.2254 (0.3393) | -0.2110 (0.1912) - -0.1820 (0.4426) [-0.3798 (0.0156)

HPE-meang,.
HPE—mcantgt

0.2012 (0.3950)

0.0142 (0.9525)

0.4567 (0.0031)
-0.4115 (0.0083)

0.2000 (0.3979)

0.0120 (0.9599)

0.4508 (0.0035)
-0.4103 (0.0085)

genetic
syntactic
featural
phonological
inventory
geographic

0.0433 (0.8563)
-0.3643 (0.1143)
-0.0561 (0.8142)
-0.1442 (0.5441)
0.1125 (0.6369)
0.1983 (0.4019)

0.0777 (0.7446)
-0.2056 (0.3845)
-0.0577 (0.8090)
-0.2222 (0.3465)

0.1048 (0.6601)

0.3388 (0.1440)

0.0544 (0.7387)
-0.2556 (0.1114)
-0.0511 (0.7540)
-0.1647 (0.3097)

0.0976 (0.5492)

0.2416 (0.1332)

-0.1526 (0.5207)
-0.3560 (0.1234)
0.0121 (0.9597)
-0.0435 (0.8556)
0.1231 (0.6052)
0.1336 (0.5745)

-0.1741 (0.4630)
-0.2695 (0.2506)
-0.0093 (0.9690)
-0.0948 (0.6909)
0.1472 (0.5356)
0.2550 (0.2779)

-0.1360 (0.4028)
-0.2688 (0.0935)
-0.0109 (0.9467)
-0.0906 (0.5782)
0.1128 (0.4884)
0.2062 (0.2017)

word number ratio
TTRsc

TTR;g:

drTR

word overlap ratio

0.4559 (0.0434)
-0.4746 (0.0345)
-0.4434 (0.0502)
0.2563 (0.2754)

-0.2953 (0.2063)
-0.2931 (0.2099)
-0.2404 (0.3072)
0.0526 (0.8258)

0.2988 (0.0611)
-0.5196 (0.0006)
0.1651 (0.3086)
-0.4427 (0.0042)
0.1383 (0.3949)

0.4602 (0.0412)
-0.4857 (0.0299)
-0.4857 (0.0299)

0.1474 (0.5352)

-0.3278 (0.1582)
-0.3128 (0.1794)
-0.3128 (0.1794)
0.1474 (0.5352)

0.3570 (0.0237)
-0.5136 (0.0007)
0.3355 (0.0343)
-0.4660 (0.0024)
0.1731 (0.2853)

Table 4: All Pearson’s and Spearman’s correlation coefficients and corresponding p-values (in brackets) between
XMI and various metrics. Values in black are statistically significant at p < 0.05, and bold values are also
statistically significant after Bonferroni correction (p < 0.0029).

C More Correlations between Metrics

Figure 4 shows more correlations between the met-
rics we reported in our experiments (see Table 1).

D Correlation Analysis

Table 4 shows Pearson’s and Spearman’s correla-
tions between XMI and all investigated predictors,
including per-direction results. Following Lin et al.
(2019) and Mielke et al. (2019), we evaluated:
* MCC: Morphological counting complex-
ity (Sagot, 2013), using the values for Eu-
roparl reported by Cotterell et al. (2018).

syntactic, featural, phonological, inventory,

geographic) from the URIEL Typological

Database (Littell et al., 2017). We refer the
reader to Lin et al. (2019) for more details.

* Word number ratio: number of source tokens
over number of target tokens used for training.

* TTR, and TTRyy: type-to-token ratio evalu-
ated on the source and target language training
data, respectively, to measure lexical diversity.

e drrr: distance between the TTRs of the

* ADL: Average dependency length (Futrell
et al., 2015), using the values reported for
Europarl by Mielke et al. (2019).

* HPE-mean: mean over all Europarl tokens
of Head-POS Entropy (Dehouck and Denis,
2018), as reported by Mielke et al. (2019).

drTr =

(1

source and target language corpora, as a rough
indication of their morphological similarity:

_ TTRye )’
TTRyy )

* Word overlap ratio: we measure the similarity

» Six different linguistic distances (genetic,
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between the vocabularies of source and target
languages as the ratio between the number of
shared types and the size of their union.



