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Abstract

The performance of neural machine transla-

tion systems is commonly evaluated in terms

of BLEU. However, due to its reliance on

target language properties and generation, the

BLEU metric does not allow an assessment

of which translation directions are more dif-

ficult to model. In this paper, we propose

cross-mutual information (XMI): an asymmet-

ric information-theoretic metric of machine

translation difficulty that exploits the proba-

bilistic nature of most neural machine trans-

lation models. XMI allows us to better eval-

uate the difficulty of translating text into the

target language while controlling for the dif-

ficulty of the target-side generation compo-

nent independent of the translation task. We

then present the first systematic and con-

trolled study of cross-lingual translation dif-

ficulties using modern neural translation sys-

tems. Code for replicating our experiments

is available online at https://github.com/

e-bug/nmt-difficulty.

1 Introduction

Machine translation (MT) is one of the core re-

search areas in natural language processing. Cur-

rent state-of-the-art MT systems are based on neu-

ral networks (Sutskever et al., 2014; Bahdanau

et al., 2015), which generally surpass phrase-based

systems (Koehn, 2009) in a variety of domains

and languages (Bentivogli et al., 2016; Toral and

Sánchez-Cartagena, 2017; Castilho et al., 2017;

Bojar et al., 2018; Barrault et al., 2019). Using

phrase-based MT systems, various controlled stud-

ies to understand where the translation difficulties

lie for different language pairs were conducted

(Birch et al., 2008; Koehn et al., 2009). However,

comparable studies have yet to be performed for

neural machine translation (NMT). As a result, it

is still unclear whether all translation directions are

equally easy (or hard) to model for NMT. This pa-

per hence aims at filling this gap: Ceteris paribus,
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Figure 1: Left: Decomposing the uncertainty of a

sentence as mutual information plus language-inherent

uncertainty: mutual information (MI) corresponds to

just how much easier it becomes to predict T when

you are given S. MI is symmetric but the relation be-

tween H(S) and H(T ) can be arbitrary. Right: estimat-

ing cross-entropies using models qMT and qLM invali-

dates relations between bars, except that Hq
·

(·) ≥ H(·).
XMI, our proposed metric, is no longer purely a sym-

metric measure of language, but now an asymmetric

measure that mostly highlights models’ shortcomings.

is it easier to translate from English into Finnish

or into Hungarian? And how much easier is it?

Conversely, is it equally hard to translate Finnish

and Hungarian into another language?

Based on BLEU (Papineni et al., 2002) scores,

previous work (Belinkov et al., 2017) suggests that

translating into morphologically rich languages,

such as Hungarian or Finnish, is harder than trans-

lating into morphologically poor ones, such as

English. However, a major obstacle in the cross-

lingual comparison of MT systems is that many

automatic evaluation metrics, including BLEU

and METEOR (Banerjee and Lavie, 2005), are

not cross-lingually comparable. In fact, being a

function of n-gram overlap between candidate and

reference translations, they only allow for a fair

comparison of the performance between models

when translating into the same test set in the same

target language. Indeed, one cannot and should not

draw conclusions about the difficulty of translating

a source language into different target languages

purely based on BLEU (or METEOR) scores.
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In response, we propose cross-mutual informa-

tion (XMI), a new metric towards cross-linguistic

comparability in NMT. In contrast to BLEU, this

information-theoretic quantity no longer explicitly

depends on language, model, and tokenization

choices. It does, however, require that the models

under consideration are probabilistic. As an initial

starting point, we perform a case study with a

controlled experiment on 21 European languages.

Our analysis showcases XMI’s potential for

shedding light on the difficulties of translation

as an effect of the properties of the source or

target language. We also perform a correlation

analysis in an attempt to further explain our

findings. Here, in contrast to the general wisdom,

we find no significant evidence that translating into

a morphologically rich language is harder than

translating into a morphologically impoverished

one. In fact, the only significant correlate of MT

difficulty we find is source-side type–token ratio.

2 Cross-Linguistic Comparability

through Likelihoods, not BLEU

Human evaluation will always be the gold stan-

dard of MT evaluation. However, it is both time-

consuming and expensive to perform. To help re-

searchers and practitioners quickly deploy and eval-

uate new systems, automatic metrics that correlate

fairly well with human evaluations have been pro-

posed over the years (Banerjee and Lavie, 2005;

Snover et al., 2006; Isozaki et al., 2010; Lo, 2019).

BLEU (Papineni et al., 2002), however, has re-

mained the most common metric to report the per-

formance of MT systems. BLEU is a precision-

based metric: a BLEU score is proportional to

the geometric average of the number of n-grams

in the candidate translation that also appear in the

reference translation for 1 ≤ n ≤ 4.1

In the context of our study, we take issue with

two shortcomings of BLEU scores that prevent

a cross-linguistically comparable study. First, it

is not possible to directly compare BLEU scores

across languages because different languages might

express the same meaning with a very different

number of words. For instance, agglutinative lan-

guages like Turkish often use a single word to ex-

press what other languages have periphrastic con-

structions for. To be concrete, the expression “I

will have been programming” is five words in En-

1BLEU also corrects for reference coverage and includes
a length penalty, but we focus on the high-level picture.

glish, but could easily have been one word in a

language with sufficient morphological markings;

this unfairly boosts BLEU scores when translating

into English. The problem is further exacerbated

by tokenization techniques as finer granularities

result in more partial credit and higher n for the

n-gram matches (Post, 2018). In summary, BLEU

only allows us to compare models for a fixed tar-

get language and tokenization scheme, i.e. it only

allows us to draw conclusions about the difficulty

of translating different source languages into a spe-

cific target one (with downstream performance as

a proxy for difficulty). Thus, BLEU scores cannot

provide an answer to which translation direction is

easier between any two source–target pairs.

In this work, we address this particular short-

coming by considering an information-theoretic

evaluation. Formally, let VS and VT be source- and

target-language vocabularies, respectively. Let S

and T be source- and target-sentence-valued ran-

dom variables for languages S and T, respectively;

then S and T respectively range over V∗
S

and V∗
T

.

These random variables S and T are distributed

according to some true, unknown probability dis-

tribution p. The cross-entropy between the true

distribution p and a probabilistic neural translation

model qMT(t | s) is defined as:

HqMT
(T | S) = (1)

−
∑

t∈V∗

T

∑

s∈V∗

S

p(t, s) log2 qMT(t | s)

Since we do not know p, we cannot compute eq. (1).

However, given a held-out data set of sentence pairs

{(s(i), t(i))}Ni=1 assumed to be drawn from p, we

can approximate the true cross-entropy as follows:

HqMT
(T | S) ≈ (2)

−
1

N

N
∑

i=1

log2 qMT(t
(i) | s(i))

In the limit as N → ∞, eq. (2) converges to eq. (1).

We emphasize that this evaluation does not rely

on language tokenization provided that the model

qMT does not (Mielke, 2019). While common in

the evaluation of language models, cross-entropy

evaluation has been eschewed in machine transla-

tion research since (i) not all MT models are proba-

bilistic and (ii) we are often interested in measuring

the quality of the candidate translation our model

actually produces, e.g. under approximate decod-

ing. However, an information-theoretic evaluation
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is much more suitable for measuring the more ab-

stract notion of which language pairs are hardest to

translate to and from, which is our purpose here.

3 Disentangling Translation Difficulty

and Monolingual Complexity

We contend that simply reporting cross-entropies

is not enough. A second issue in performing a con-

trolled, cross-lingual MT comparison is that the

language generation component (without transla-

tion) is not equally difficult across languages (Cot-

terell et al., 2018). We claim that the difficulty of

translation corresponds more closely to the mutual

information MI(S;T ) between the source and tar-

get language, which tells us how much easier it

becomes to predict T when S is given (see Fig-

ure 1). But what is the appropriate analogue of

mutual information for cross-entropy? One such

natural generalization is a novel quantity that we

term cross-mutual information, defined as:

XMI(S → T ) = HqLM
(T )−HqMT

(T | S) (3)

where HqLM
(T ) denotes the cross-entropy of the

target sentence T under the model qLM. As in §2,

this can, analogously, be approximated by the cross-

entropy of a separate target-side language model

qLM over our held-out data set:

XMI(S → T ) ≈ (4)

−
1

N

N
∑

i=1

log2
qLM(t(i))

qMT(t(i) | s(i))

which, again, becomes exact as N → ∞. In prac-

tice, we note that we mix different distributions

qLM(t) and qMT(t | s) and, thus, qLM(t) is not

necessarily representable as a marginal: there need

not be any distribution q̃(s) such that qLM(t) =
∑

s∈V∗

S

qMT(t | s) · q̃(s). While qMT and qLM can,

in general, be any two models, we exploit the char-

acteristics of NMT models to provide a more mean-

ingful, model-specific estimate of XMI. NMT ar-

chitectures typically consist of two components:

an encoder that embeds the input text sequence,

and a decoder that generates translated output text.

The latter acts as a conditional language model,

where the source-language sentence embedded by

the encoder drives the target-language generation.

Hence, we use the decoder of qMT as our qLM to

accurately estimate the difficulty of translation for

a given architecture in a controlled way.

In summary, by looking at XMI, we can ef-

fectively decouple the language generation com-

ponent, whose difficulties have been investigated

by Cotterell et al. 2018 and Mielke et al. 2019, from

the translation component. This gives us a measure

of how rich and useful the information extracted

from the source language is for the target-language

generation component.

4 Experiments

In order to measure which pairs of languages are

harder to translate to and from, we make use of

the latest release v7 of Europarl (Koehn, 2005): a

corpus of the proceedings of the European Parlia-

ment containing parallel sentences between English

(en) and 20 other European languages: Bulgar-

ian (bg), Czech (cs), Danish (da), German (de),

Greek (el), Spanish (es), Estonian (et), Finnish

(fi), French (fr), Hungarian (hu), Italian (it),

Lithuanian (lt), Latvian (lv), Dutch (nl), Pol-

ish (pl), Portuguese (pt), Romanian (ro), Slovak

(sk), Slovene (sl) and Swedish (sv).

Pre-processing steps In order to precisely effect

a fully controlled experiment, we enforce a fair

comparison by selecting the set of parallel sen-

tences available across all 21 languages in Europarl.

This fully controls for the semantic content of the

sentences; however, we cannot adequately control

for translationese (Stymne, 2017; Zhang and Toral,

2019). Our subset of Europarl contains 190,733
sentences for training, 1,000 unique, random sen-

tences for validation and 2,000 unique, random

sentences for testing. For each parallel corpus, we

jointly learn byte-pair encodings (BPE; Sennrich

et al., 2016) for the source and target languages,

using 16,000 merge operations. We use the same

vocabularies for the language models.2

Setup In our experiments, we train Transformer

models (Vaswani et al., 2017), which often achieve

state-of-the-art performance on MT for various

language pairs. In particular, we rely on the Py-

Torch (Paszke et al., 2019) re-implementation of

the Transformer model in the fairseq toolkit (Ott

et al., 2019). For language modeling, we use the de-

coder from the same architecture, training it at the

sentence level, as opposed to commonly used fixed-

length chunks. We train our systems using label

smoothing (LS; Szegedy et al., 2016; Meister et al.,

2For English, we arbitrarily chose the English portion of
the en-bg vocabulary.
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→ en bg cs da de el es et fi fr hu it lt lv nl pl pt ro sk sl sv avg

BLEU 47.4 42.4 46.3 44.0 50.0 50.6 39.3 38.2 44.9 38.4 40.8 37.6 40.3 38.3 39.8 48.3 50.5 44.2 45.3 43.7 43.5

XMI( →en) 102.3 97.0 99.7 96.5 105.3 103.8 92.8 92.1 97.0 92.5 92.1 89.2 94.2 86.5 91.9 102.5 106.1 99.8 100.1 96.9 96.9

HqLM
(en) 154.2 154.2

HqMT
(en | ) 51.8 57.2 54.5 57.7 48.9 50.4 61.4 62.0 57.2 61.6 62.1 65.0 60.0 67.7 62.3 51.7 48.1 54.4 54.1 57.3 57.3

en → bg cs da de el es et fi fr hu it lt lv nl pl pt ro sk sl sv avg

BLEU 46.3 34.7 45.0 36.3 45.5 50.2 27.7 30.5 45.7 30.3 37.9 31.0 34.6 34.9 30.5 46.7 44.2 39.8 41.5 41.3 38.73

XMI(en to ) 106.2 102.8 103.3 104.0 111.0 108.1 100.2 98.0 99.7 99.1 95.3 96.0 99.3 90.4 98.3 105.2 112.4 105.8 107.9 100.1 102.1

HqLM
( ) 156.5 164.0 152.7 167.6 163.7 159.3 162.5 158.6 154.9 166.6 158.6 159.2 156.4 159.7 163.4 159.3 160.5 157.7 158.2 153.1 159.6

HqMT
( | en) 50.3 61.2 49.4 63.6 52.7 51.3 62.4 60.6 55.1 67.5 63.3 63.1 57.0 69.3 65.1 54.1 48.1 51.9 50.3 53.0 57.5

Table 1: Test scores, from and into English, Europarl, visualized in Figure 2 and Figure 3.
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Figure 2: Some correlations between metrics in Table 1, into and from English. More correlations in Figure 4.

2020) as it has been shown to prevent models from

over-confident predictions, which helps to regular-

ize the models. We report cross-entropies (HqMT
,

HqLM
), XMI, and BLEU scores obtained using

SACREBLEU (Post, 2018).3 Finally, in a similar

vein to Cotterell et al. (2018), we multiply cross-

entropy values by the number of sub-word units

generated by each model to make our quantities

independent of sentence lengths (and divide them

by the total number of sentences to match our ap-

proximations of the true distributions). See App. A

for experimental details.

5 Results and Analysis

We train 40 systems, translating each language into

and from English.4 The models’ performance in

terms of BLEU scores, and the cross-mutual infor-

mation (XMI) and cross-entropy values over the

test sets are reported in Table 1 with significant

values marked in App. B.

3Signature: BLEU+c.mixed+#.1+s.exp+tok.13a+v.1.2.12.
4Due to resource limitations, we chose these tasks be-

cause most of the information available in the web is
in English (https://w3techs.com/technologies/
overview/content_language) and effectively trans-
lating it into any other language would reduce the digital
language divide (http://labs.theguardian.com/
digital-language-divide/). Besides, translating
into English gives most people access to any local information.

Translating into English When translating into

the same target language (in this case, English),

BLEU scores are, in fact, comparable, and can

be used as a proxy for difficulty. We can then

conclude, for instance, that Lithuanian (lt) is the

hardest language to translate from, while Spanish

(es) is the easiest. In this scenario, given the good

correlation of BLEU scores with human evalua-

tions, it is desirable that XMI correlates well with

BLEU. This behavior is indeed apparent in the

blue points in the left part of Figure 2, confirm-

ing the efficacy of XMI in evaluating the difficulty

of translation while still being independent of the

target language generation component.

Translating from English Despite the large

gaps between BLEU scores in Table 1, one should

not be tempted to claim that it is easier to translate

into English than from English for these languages

as often hinted at in previous work (e.g., Belinkov

et al., 2017). As we described above, different tar-

get languages are not directly comparable, and we

actually find that XMI is slightly higher, on aver-

age, when translating from English, indicating that

it is actually easier, on average, to transfer informa-

tion correctly in this direction. For instance, trans-

lation from English to Finnish is shown to be easier

than from Finnish to English, despite the large gap
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A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 32, pages 8024–8035. Curran Asso-
ciates, Inc.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191, Brussels, Belgium. Association for Computa-
tional Linguistics.

Benoı̂t Sagot. 2013. Comparing complexity mea-
sures. In Computational Approaches to Morpholog-
ical Complexity.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words
with subword units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715–
1725, Berlin, Germany. Association for Computa-
tional Linguistics.

Matthew Snover, Bonnie Dorr, Richard Schwartz, Lin-
nea Micciulla, and John Makhoul. 2006. A study of
translation edit rate with targeted human annotation.
In Proceedings of Association for Machine Transla-
tion in the Americas.

Sara Stymne. 2017. The effect of translationese on
tuning for statistical machine translation. In Pro-
ceedings of the 21st Nordic Conference on Com-
putational Linguistics, pages 241–246, Gothenburg,
Sweden. Association for Computational Linguistics.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural networks.
In Z. Ghahramani, M. Welling, C. Cortes, N. D.
Lawrence, and K. Q. Weinberger, editors, Advances
in Neural Information Processing Systems 27, pages
3104–3112. Curran Associates, Inc.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe,
Jon Shlens, and Zbigniew Wojna. 2016. Rethinking
the inception architecture for computer vision. In
Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 2818–2826.

Antonio Toral and Vı́ctor M. Sánchez-Cartagena. 2017.
A multifaceted evaluation of neural versus phrase-
based machine translation for 9 language directions.
In Proceedings of the 15th Conference of the Euro-
pean Chapter of the Association for Computational



1647

Linguistics: Volume 1, Long Papers, pages 1063–
1073, Valencia, Spain. Association for Computa-
tional Linguistics.

Ashish Vaswani, Samy Bengio, Eugene Brevdo, Fran-
cois Chollet, Aidan N. Gomez, Stephan Gouws,
Llion Jones, Łukasz Kaiser, Nal Kalchbrenner, Niki
Parmar, Ryan Sepassi, Noam Shazeer, and Jakob
Uszkoreit. 2018. Tensor2Tensor for neural machine
translation. CoRR, abs/1803.07416.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 30, pages 5998–6008. Curran Asso-
ciates, Inc.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V.
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, Jeff Klingner, Apurva Shah, Melvin John-
son, Xiaobing Liu, Łukasz Kaiser, Stephan Gouws,
Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith
Stevens, George Kurian, Nishant Patil, Wei Wang,
Cliff Young, Jason Smith, Jason Riesa, Alex Rud-
nick, Oriol Vinyals, Greg Corrado, Macduff Hughes,
and Jeffrey Dean. 2016. Google’s neural ma-
chine translation system: Bridging the gap between
human and machine translation. arXiv preprint
arXiv:1609.08144.

Mike Zhang and Antonio Toral. 2019. The effect of
translationese in machine translation test sets. In
Proceedings of the Fourth Conference on Machine
Translation (Volume 1: Research Papers), pages 73–
81, Florence, Italy. Association for Computational
Linguistics.



1648

A Experimental Details

Pre-processing steps To precisely determine the

effect of the different properties of each language

in translation difficulty, we enforce a fair compari-

son by selecting the same set of parallel sentences

across all the languages evaluated in our data set.

The number of parallel sentences available in Eu-

roparl varies considerably, ranging from 387K sen-

tences for Polish-English to 2.3M sentences for

Dutch-English. Therefore, we proceed by taking

the set of English sentences that are shared by all

the language pairs. This leaves us with 197,919
sentences for each language pair, from which we

then extract 1,000 and 2,000 unique, random sen-

tences for validation and test, respectively.

We follow the same pre-processing steps used

by Vaswani et al. (2017) to train the Transformer

model on WMT data: Data sets are first tokenized

using the Moses toolkit (Koehn et al., 2007) and

then filtered by removing sentences longer than 80
tokens in either source or target language. Due to

this cleaning step that is specific to each training

corpus, different sentences are dropped in each data

set. We then only select the set of sentence pairs

that are shared across all languages. This results in

a final number of 190,733 training sentences. For

each parallel corpus, we jointly learn byte-pair en-

codings (BPE; Sennrich et al., 2016) for source and

target languages, using 16,000 merge operations.

Training setup In our experiments, we train a

Transformer model (Vaswani et al., 2017), which

achieves state-of-the-art performance on a multi-

tude of language pairs. In particular, we rely on

the PyTorch re-implementation of the Transformer

model in the Fairseq toolkit (Ott et al., 2019). All

experiments are based on the Base Transformer ar-

chitecture, which we trained for 20,000 steps and

evaluated using the checkpoint corresponding to

the lowest validation loss. We trained our models

on a cluster of 4 machines, each equipped with 4
Nvidia P100 GPUs, resulting in training times of

almost 70 minutes for each system. Sentence pairs

with similar sequence length were batched together,

with each batch containing a total of approximately

32K source tokens and 32K target tokens.

We used the hyper-parameters specified in latest

version (3) of Google’s Tensor2Tensor (Vaswani

et al., 2018) implementation, with the exception of

the dropout rate, as we found 0.3 to be more robust

across all the models trained on Europarl.

Model Train bootstrap Test bootstrap

en-es 47.6 (0.233) 50.2 (0.026)

en-et 25.6 (0.167) 27.7 (0.026)

lt-en 34.5 (0.150) 37.6 (0.027)

ro-en 47.5 (0.232) 50.5 (0.027)

Table 3: Mean test BLEU scores when bootstrapping

train and test sets. Numbers in brackets denote standard

deviation over 5 runs (train bootstrap) and 95% confi-

dence interval over 1, 000 samples (test bootstrap).

Models are optimized using Adam (Kingma

and Ba, 2015) and following the learning sched-

ule specified by Vaswani et al. (2017) with 8,000

warm-up steps. We employed label smoothing

εls = 0.1 (Szegedy et al., 2016) during training

and we used beam search with a beam size of 4 and

length penalty α = 0.6 (Wu et al., 2016).

For language models, we use a Transformer

decoder with the same hyperparameters used in

the translation task to effectively measure the con-

tribution given by a translation. These models

were trained, using label smoothing εls = 0.1,

for 10,000 steps on sequences consisting of sepa-

rate sentences in our corpus. Analogously to trans-

lation models, the checkpoints corresponding to the

lowest validation losses were used for evaluation.

B Statistical Significance Tests

Table 3 presents the results when applying boot-

strap re-sampling (Koehn, 2004) on either training

or test sets to the systems achieving the highest and

the lowest BLEU scores in the validation set for

each direction. In our experiments, we observe a

general trend where the performance of different

models varies similarly. For instance, when we

bootstrap test sets, we see that the average BLEU

scores are equal to the ones seen in Table 1, and

that all the models have similar confidence inter-

vals.5 When bootstrapping the training data, we

observe a consistent drop in mean performance of

2 − 3 BLEU points across the translation tasks.

The drop in performance is not surprising as the

resulting training sets are more redundant, having

fewer unique sentences than the original sets, but

it is interesting to see that all models are similarly

affected. The standard deviation over 5 runs is also

similar across all models but slightly larger on the

high-performing ones.

5The same results were observed in all of the 40 models.
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Figure 4: More correlations between metrics in Table 1, into and from English.

Metric Pearson Spearman

→ en en → both → en en → both

MCCsrc -0.2579 (0.2723) – -0.4302 (0.0056) -0.2135 (0.3660) – -0.4444 (0.0041)

MCCtgt – -0.1260 (0.5965) 0.2619 (0.1025) – -0.1263 (0.5957) 0.3778 (0.0162)

ADLsrc -0.2972 (0.2032) – -0.1166 (0.4737) -0.2887 (0.2170) – 0.0166 (0.9188)

ADLtgt – -0.2254 (0.3393) -0.2110 (0.1912) – -0.1820 (0.4426) -0.3798 (0.0156)

HPE-meansrc 0.2012 (0.3950) – 0.4567 (0.0031) 0.2000 (0.3979) – 0.4508 (0.0035)

HPE-meantgt – 0.0142 (0.9525) -0.4115 (0.0083) – 0.0120 (0.9599) -0.4103 (0.0085)

genetic 0.0433 (0.8563) 0.0777 (0.7446) 0.0544 (0.7387) -0.1526 (0.5207) -0.1741 (0.4630) -0.1360 (0.4028)

syntactic -0.3643 (0.1143) -0.2056 (0.3845) -0.2556 (0.1114) -0.3560 (0.1234) -0.2695 (0.2506) -0.2688 (0.0935)

featural -0.0561 (0.8142) -0.0577 (0.8090) -0.0511 (0.7540) 0.0121 (0.9597) -0.0093 (0.9690) -0.0109 (0.9467)

phonological -0.1442 (0.5441) -0.2222 (0.3465) -0.1647 (0.3097) -0.0435 (0.8556) -0.0948 (0.6909) -0.0906 (0.5782)

inventory 0.1125 (0.6369) 0.1048 (0.6601) 0.0976 (0.5492) 0.1231 (0.6052) 0.1472 (0.5356) 0.1128 (0.4884)

geographic 0.1983 (0.4019) 0.3388 (0.1440) 0.2416 (0.1332) 0.1336 (0.5745) 0.2550 (0.2779) 0.2062 (0.2017)

word number ratio 0.4559 (0.0434) -0.2953 (0.2063) 0.2988 (0.0611) 0.4602 (0.0412) -0.3278 (0.1582) 0.3570 (0.0237)

TTRsrc -0.4746 (0.0345) – -0.5196 (0.0006) -0.4857 (0.0299) – -0.5136 (0.0007)

TTRtgt – -0.2931 (0.2099) 0.1651 (0.3086) – -0.3128 (0.1794) 0.3355 (0.0343)

dTTR -0.4434 (0.0502) -0.2404 (0.3072) -0.4427 (0.0042) -0.4857 (0.0299) -0.3128 (0.1794) -0.4660 (0.0024)

word overlap ratio 0.2563 (0.2754) 0.0526 (0.8258) 0.1383 (0.3949) 0.1474 (0.5352) 0.1474 (0.5352) 0.1731 (0.2853)

Table 4: All Pearson’s and Spearman’s correlation coefficients and corresponding p-values (in brackets) between

XMI and various metrics. Values in black are statistically significant at p < 0.05, and bold values are also

statistically significant after Bonferroni correction (p < 0.0029).

C More Correlations between Metrics

Figure 4 shows more correlations between the met-

rics we reported in our experiments (see Table 1).

D Correlation Analysis

Table 4 shows Pearson’s and Spearman’s correla-

tions between XMI and all investigated predictors,

including per-direction results. Following Lin et al.

(2019) and Mielke et al. (2019), we evaluated:

• MCC: Morphological counting complex-

ity (Sagot, 2013), using the values for Eu-

roparl reported by Cotterell et al. (2018).

• ADL: Average dependency length (Futrell

et al., 2015), using the values reported for

Europarl by Mielke et al. (2019).

• HPE-mean: mean over all Europarl tokens

of Head-POS Entropy (Dehouck and Denis,

2018), as reported by Mielke et al. (2019).

• Six different linguistic distances (genetic,

syntactic, featural, phonological, inventory,

geographic) from the URIEL Typological

Database (Littell et al., 2017). We refer the

reader to Lin et al. (2019) for more details.

• Word number ratio: number of source tokens

over number of target tokens used for training.

• TTRsrc and TTRtgt: type-to-token ratio evalu-

ated on the source and target language training

data, respectively, to measure lexical diversity.

• dTTR: distance between the TTRs of the

source and target language corpora, as a rough

indication of their morphological similarity:

dTTR =

(

1−
TTRsrc

TTRtgt

)2

.

• Word overlap ratio: we measure the similarity

between the vocabularies of source and target

languages as the ratio between the number of

shared types and the size of their union.


