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Abstract

A major hurdle in data-driven research on ty-
pology is having sufficient data in many lan-
guages to draw meaningful conclusions. We
present VoxClamantis v1.0, the first large-
scale corpus for phonetic typology, with
aligned segments and estimated phoneme-
level labels in 690 readings spanning 635
languages, along with acoustic-phonetic mea-
sures of vowels and sibilants. Access to
such data can greatly facilitate investigation
of phonetic typology at a large scale and
across many languages. However, it is non-
trivial and computationally intensive to ob-
tain such alignments for hundreds of lan-
guages, many of which have few to no re-
sources presently available. We describe the
methodology to create our corpus, discuss
caveats with current methods and their impact
on the utility of this data, and illustrate pos-
sible research directions through a series of
case studies on the 48 highest-quality read-
ings. Our corpus and scripts are publicly
available for non-commercial use at https://
voxclamantisproject.github.io.

1 Introduction

Understanding the range and limits of cross-
linguistic variation is fundamental to the scientific
study of language. In speech and particularly
phonetic typology, this involves exploring po-
tentially universal tendencies that shape sound
systems and govern phonetic structure. Such
investigation requires access to large amounts of
cross-linguistic data. Previous cross-linguistic
phonetic studies have been limited to a small
number of languages with available data (Disner,
1983; Cho and Ladefoged, 1999), or have relied on
previously reported measures from many studies
(Whalen and Leyvitt, 1995; Becker-Kristal, 2010,
Gordon and Roettger, 2017; Chodroff et al., 2019).

Figure 1: The 635 languages of our corpus geo-located
with mean Mel Cepstral Distortion (MCD) scores.

Existing multilingual speech corpora have similar
restrictions, with data too limited for many tasks
(Engstrand and Cunningham-Andersson, 1988;
Ladefoged and Maddieson, 2007) or approximately
20 to 30 recorded languages (Ardila et al., 2020;
Harper, 2011; Schultz, 2002).

The recently developed CMU Wilderness corpus
(Black, 2019) constitutes an exception to this rule
with over 600 languages. This makes it the largest
and most typologically diverse speech corpus
to date. In addition to its coverage, the CMU
Wilderness corpus is unique in two additional
aspects: cleanly recorded, read speech exists for
all languages in the corpus, and the same content
(modulo translation) exists across all languages.

However, this massively multilingual speech
corpus is challenging to work with directly. Copy-
right, computational restrictions, and sheer size
limit its accessibility. Due to copyright restrictions,
the audio cannot be directly downloaded with the
sentence and phoneme alignments. A researcher
would need to download original audio MP3 and
text through links to bible.1is, then segment these
with speech-to-text sentence alignments distributed
in Black (2019).! For phonetic research, subse-
quently identifying examples of specific phonetic
segments in the audio is also a near-essential

!The stability of the links and recording IDs is also question-
able. Since the release of Black (2019), many of the links
have already changed, along with a few of the IDs. We have
begun identifying these discrepancies, and plan to flag these
in a future release.



step for extracting relevant acoustic-phonetic
measurements. Carrying out this derivative step
has allowed us to release a stable-access collection
of token-level acoustic-phonetic measures to
enable further research.

Obtaining such measurements requires several
processing steps:  estimating pronunciations,
aligning them to the text, evaluating alignment
quality, and finally, extracting phonetic measures.
This work is further complicated by the fact
that, for a sizable number of these languages,
no linguistic resources currently exist (e.g.,
language-specific pronunciation lexicons). We
adapt speech processing methods based on Black
(2019) to accomplish these tasks, though not
without noise: in §3.4, we identify three significant
caveats when attempting to use our extended
corpus for large-scale phonetic studies.

We release a comprehensive set of standoff
markup of over 400 million labeled segments
of continuous speech.”? For each segment, we
provide an estimated phoneme-level label from
the X-SAMPA alphabet, the preceding and
following labels, and the start position and duration
in the audio. Vowels are supplemented with
formant measurements, and sibilants with standard
measures of spectral shape.

We present a series of targeted case studies illus-
trating the utility of our corpus for large-scale pho-
netic typology. These studies are motivated by po-
tentially universal principles posited to govern pho-
netic variation: phonetic dispersion and phonetic
uniformity. Our studies both replicate known re-
sults in the phonetics literature and also present
novel findings. Importantly, these studies investi-
gate current methodology as well as questions of
interest to phonetic typology at a large scale.

2 Original Speech

The CMU Wilderness corpus (Black, 2019) con-
sists of recorded readings of the New Testament
of the Bible in many languages and dialects.
Following the New Testament structure, these data
are broken into 27 books, each with a variable
number of chapters between 1 and 25. Bible chap-
ters contain standardized verses (approximately
sentence-level segments); however, the speech
is originally split only by chapter. Each chapter

?For some languages, we provide multiple versions of the
markup based on different methods of predicting the pronun-
ciation and generating time alignments (§3.1).
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Figure 2: The extraction process for the measurements
released in VoxClamantis v1.0.

has an average of 13 minutes of speech for a total
of =20 hours of speech and text per language.
These recordings are clean, read speech with a
sampling rate of 16 kHz. In most languages, they
are non-dramatic readings with a single speaker;
in some, they are dramatic multi-speaker readings
with additive music.> The release from Black
(2019) includes several resources for processing
the corpus: scripts to download the original
source data from bible.is, ‘lexicons’ created
using grapheme-to-phoneme (G2P) conversion,
and scripts to apply their generated sentence
alignments, which facilitates downstream language
processing tasks, including phoneme alignment.

3 The VoxClamantis vi.0 Corpus

Our VoxClamantis v1.0 corpus is derived from 690
audio readings of the New Testament of the Bible*
in 635 languages.> We mark estimated speech seg-

3Information about the recordings available can be found at
https://www.faithcomesbyhearing.com/mission/recordings

“Nine of the readings from Black (2019) could not be aligned.

>We specify number of distinct languages by the number of
distinct ISO 639-3 codes, which may not distinguish dialects.



ments labeled with phonemic labels, and phonetic
measures for the tokens that are vowels or sibilants.
The extraction process is diagrammed in Figure 2.
In the sections below, we detail our procedures for
extracting labeled audio segments and their pho-
netic measures, in both high- and low-resource lan-
guages. We then outline important caveats to keep
in mind when using this corpus.

3.1 Extracting Phoneme Alignments

We use a multi-pronged forced alignment strategy
to balance broad language coverage (§3.1.1)
with utilization of existing high-quality resources
(§3.1.2). We assess the quality of our approaches
in §3.1.3. We release the stand-off markup for
our final alignments as both text files and Praat
TextGrids (Boersma and Weenink, 2019).6

Using scripts and estimated boundaries from
Black (2019), we first download and convert the
audio MP3s to waveforms, and cut the audio and
text into ‘sentences’ (hereafter called ‘utterances’
as they are not necessarily sentences). This step
creates shorter-length speech samples to facili-
tate forced alignment; utterance boundaries do not
change through our processing.

To extract labeled segments, we first require pro-
nunciations for each utterance. A pronunciation is
predicted from the text alone using some grapheme-
to-phoneme (G2P) method. Each word’s predicted
pronunciation is a sequence of categorical labels,
which are ‘phoneme-level’ in the sense that they
are usually intended to distinguish the words of the
language. We then align this predicted sequence of
‘phonemes’ to the corresponding audio.

3.1.1 All Languages

Most of our languages have neither existing pro-
nunciation lexicons nor G2P resources. To provide
coverage for all languages, we generate pronuncia-
tions using the simple ‘universal’ G2P system Uni-
tran (Qian et al., 2010, as extended by Black, 2019),
which deterministically expands each grapheme to
a fixed sequence of phones in the Extended Speech
Assessment Methods Phonetic Alphabet (X-
SAMPA) (Wells, 1995/2000). This naive process
is error-prone for languages with opaque orthogra-
phies, as we show in §3.1.3 below and discuss
further in §3.4 (Caveat B). Even so, it provides a
starting point for exploring low-resource languages:
after some manual inspection, a linguist may be

8Corresponding audio will need to be downloaded from source
and split by utterance using scripts from Black (2019).

able to correct the labels in a given language by a
combination of manual and automatic methods.
For each reading, to align the pronunciation
strings to the audio, we fit a generative acous-
tic model designed for this purpose: specifically,
eHMM (Prahallad et al., 2006) as implemented in
Festvox (Anumanchipalli et al., 2011) to run full
Baum—Welch from a flat start for 15 to 30 itera-
tions until the mean mel cepstral distortion score
(see §3.1.3) converges. Baum-Welch does not
change the predicted phoneme labels, but obtains
a language-specific, reading-specific, contextual
(triphone) acoustic model for each phoneme type
in the language. We then use Viterbi alignment to
identify an audio segment for each phoneme token.

3.1.2 High-Resource Languages

A subset of the languages in our corpus are sup-
ported by existing pronunciation resources. Two
such resources are Epitran (Mortensen et al., 2018),
a G2P tool based on language-specific rules, avail-
able in both TPA and X-SAMPA, and WikiPron
(Lee et al., 2020), a collection of crowd-sourced
pronunciations scraped from Wiktionary. These are
mapped from IPA to X-SAMPA for label consis-
tency across our corpus. Epitran covers 29 of our
languages (39 readings), while WikiPron’s ‘phone-
mic’ annotations’ provide partial coverage of 13
additional languages (18 readings). We use Epitran
for languages with regular orthographies where it
provides high-quality support, and WikiPron for
other languages covered by WikiPron annotations.
While Unitran and Epitran provide a single pronun-
ciation for a word from the orthography, WikiPron
may include multiple pronunciations. In such
cases, Viterbi alignment (see below) chooses the
pronunciation of each token that best fits the audio.

For most languages covered by WikiPron, most
of our corpus words are out-of-vocabulary, as they
do not yet have user-submitted pronunciations on
Wiktionary. We train G2P models on WikiPron
annotations to provide pronunciations for these
words. Specifically, we use the WFST-based tool
Phonetisaurus (Novak et al., 2016). Model hyperpa-
rameters are tuned on 3 WikiPron languages from
SIGMORPHON 2020 (Gorman et al., 2020) (see
Appendix C for details). In general, for languages
that are not easily supported by Epitran-style G2P
rules, training a G2P model on sufficiently many

"WikiPron annotations are available at both the phonemic and
phonetic level, with a greater number of phonemic annota-
tions, which we use here.



ISO 639-3 tpi ron azj msa ceb tur tgl spa ilo rus hau ind tgk jav kaz
# Types 1398 9746 18490 7612 8531 21545 9124 11779 15063 16523 4938 5814 12502 10690 20502
Unitran PER 184 213 26.9 30.1 30.1 312 344 34.4 35.0 37.4 37.6 388 39.8 49.9 46.8
# Tokens 291k 169k 125k 157k 190k 125k 185k 168k 169k 130k 201k 170k 159k 177k 142k
Weighted PER  20.1 213 26.1 31.1 35.9 285  40.1 32.6 32.7 36.8 36.7 405 38.8 54.1 477
ISO 639-3 swe  kmr som tir pol hae vie tha lao ben tel hin mar tam
# Types 8610 8127 14375 22188 18681 15935 2757 23338 31334 8075 23477 7722 17839 31642
Unitran PER 469 543 54.6 57.8 67.1 673 738 80.3 89.1 90.0 903 957 97.8  100.5
# Tokens 165k 176k 156k 121k 141k 164k 211k 26k 36k 173k 124k 191k 159k 139k
Weighted PER  49.5 539 56.0 574 66.8 64.8  80.6 80.4 89.4 86.2 883 913 97.8  102.1

Table 1: Phoneme Error Rate (PER) for Unitran treating Epitran as ground-truth. ‘Types’ and ‘Tokens’ numbers
reflect the number of unique word types and word tokens in each reading. We report PER calculated using word
types for calibration with other work, as well as frequency-weighted PER reflecting occurrences in our corpus.

high-quality annotations may be more accurate.

We align the speech with the high-quality labels
using a multilingual ASR model (see Wiesner
et al., 2019). The model is trained in Kaldi (Povey
et al., 2011) on 300 hours of data from the IARPA
BABEL corpora (21 languages), a subset of Wall
Street Journal (English), the Hub4 Spanish Broad-
cast news (Spanish), and a subset of the Voxforge
corpus (Russian and French). These languages use
a shared X-SAMPA phoneme label set which has
high coverage of the labels of our corpus.

Our use of a pretrained multilingual model
here contrasts with §3.1.1, where we had to train
reading-specific acoustic models to deal with the
fact that the same Unitran phoneme label may refer
to quite different phonemes in different languages
(see §3.4). We did not fine-tune our multilingual
model to each language, as the cross-lingual ASR
performance in previous work (Wiesner et al.,
2019) suggests that this model is sufficient for
producing phoneme-level alignments.

3.1.3

Automatically generated phoneme-level labels
and alignments inherently have some amount of
noise, and this is particularly true for low-resource
languages. The noise level is difficult to assess
without gold-labeled corpora for either modeling
or assessment. However, for the high-resource
languages, we can evaluate Unitran against
Epitran and WikiPron, pretending that the latter
are ground truth. For example, Table 1 shows
Unitran’s phoneme error rates relative to Epitran.
Appendix B gives several more detailed analyses
with examples of individual phonemes.

Unitran pronunciations may have acceptable
phoneme error rates for languages with transpar-
ent orthographies and one-to-one grapheme-to-
phoneme mappings. Alas, without these conditions
they prove to be highly inaccurate.

Quality Measures

That said, evaluating Unitran labels against
Epitran or WikiPron may be unfair to Unitran,
since some discrepancies are arguably not errors
but mere differences in annotation granularity. For
example, the ‘phonemic’ annotations in WikiPron
are sometimes surprisingly fine-grained: WikiPron
frequently uses /t/ in Cebuano where Unitran only
uses /t/, though these refer to the same phoneme.
These tokens are scored as incorrect. Moreover,
there can be simple systematic errors: Unitran
always maps grapheme <a> to label /a/, but in
Tagalog, all such tokens should be /a/. Such errors
can often be fixed by remapping the Unitran labels,
which in these cases would reduce PER from 30.1
to 6.8 (Cebuano) and from 34.4 to 7.8 (Tagalog).
Such rules are not always this straightforward and
should be created on a language-specific basis; we
encourage rules created for languages outside of
current Epitran support to be contributed back to
the Epitran project.

For those languages where we train a G2P sys-
tem on WikiPron, we compute the PER of the G2P
system on held-out WikiPron entries treated as
ground truth. The results (Appendix C) range from
excellent to mediocre.

We care less about the pronunciations them-
selves than about the segments that we extract by
aligning these pronunciations to the audio. For
high-resource languages, we can again compare the
segments extracted by Unitran to the higher-quality
ones extracted with better pronunciations. For each
Unitran token, we evaluate its label and temporal
boundaries against the high-quality token that is
closest in the audio, as measured by the temporal
distance between their midpoints (Appendix B).

Finally, the segmentation of speech and text into
corresponding utterances is not perfect. We use the
utterance alignments generated by Black (2019),
in which the text and audio versions of a putative



utterance may have only partial overlap. Indeed,
Black (2019) sometimes failed to align the Unitran
pronunciation to the audio at all, and discarded
these utterances. For each remaining utterance,
he assessed the match quality using Mel Cepstral
Distortion (MCD)—which is commonly used to
evaluate synthesized spoken utterances (Kominek
et al., 2008)—between the original audio and a
resynthesized version of the audio based on the
aligned pronunciation. Each segment’s audio was
resynthesized given the segment’s phoneme label
and the preceding and following phonemes, in a
way that preserves its duration, using CLUSTER-
GEN (Black, 2006) with the same reading-specific
eHMM model that we used for alignment. We
distribute Black’s per-utterance MCD scores with
our corpus, and show the average score for each
language in Appendix E. In some readings, the
MCD scores are consistently poor.

3.2 Phonetic measures

Using the phoneme-level alignments described in
§3.1, we automatically extract several standard
acoustic-phonetic measures of vowels and sibilant
fricatives that correlate with aspects of their
articulation and abstract representation.

3.2.1 Vowel measures

Standard phonetic measurements of vowels include
the formant frequencies and duration information.
Formants are concentrations of acoustic energy at
frequencies reflecting resonance points in the vocal
tract during vowel production (Ladefoged and John-
son, 2014). The lowest two formants, F1 and F2,
are considered diagnostic of vowel category iden-
tity and approximate tongue body height (F1) and
backness (F2) during vowel production (Figure 3).
F3 correlates with finer-grained aspects of vowel
production such as rhoticity (/r/-coloring), lip
rounding, and nasality (House and Stevens, 1956;
Lindblom and Sundberg, 1971; Ladefoged et al.,
1978), and F4 with high front vowel distinctions
and speaker voice quality (Eek and Meister, 1994).
Vowel duration can also signal vowel quality, and
denotes lexical differences in many languages.

We extracted formant and duration information
from each vowel using Praat (Boersma and
Weenink, 2019). The first four formants (F1-F4)
were measured at each quartile and decile of the
vowel. Formant estimation was performed with
the Burg algorithm in Praat with pre-emphasis
from 50 Hz, a time window of 25 ms, a time
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Figure 3: Vowel Chart

step of 6.25 ms, a maximum of five formants
permitted, and a formant ceiling of 5000 Hz,
which is the recommended value for a male vocal
tract (Boersma and Weenink, 2019). Note that the
speakers in this corpus are predominantly male.

3.2.2 Sibilant measures

Standard phonetic measurements of sibilant frica-
tives such as /s/, /z/, /[/, and /3/ include measures
of spectral shape, and also segment duration.
Measures of spectral shape frequently distinguish
sibilant place of articulation: higher concentrations
of energy generally reflect more anterior constric-
tion locations (e.g., /s z/ are produced closer to the
teeth than /[ 3/). Segment duration can also signal
contrasts in voicing status (Jongman et al., 2000).

Our release contains the segment duration,
spectral peak, the spectral moments of the
frequency distribution (center of gravity: COG,
variance, skewness, and kurtosis), as well as two
measures of the mid-frequency peak determined by
sibilant quality. These are the mid-frequency peak
between 3000 and 7000 Hz for alveolar sibilants,
and between 2000 and 6000 Hz for post-alveolar
sibilants (Koenig et al., 2013; Shadle et al.,
2016). The spectral information was obtained
via multitaper spectral analysis (Rahim and Burr,
2017), with a time-bandwidth parameter (nw) of
4 and 8 tapers (k) over the middle 50% of the
fricative (Blacklock, 2004). Measurements were
made using the methods described in Forrest et al.
(1988) for spectral moments and Koenig et al.
(2013) for spectral peak varieties.

3.3 Computation times

Generating phoneme-level alignments and extract-
ing subsequent phonetic measures takes significant
time, computational resources, and domain
knowledge. Our release enables the community
to use this data directly without these prerequisites.
Table 2 shows that the time to extract our resources,



Computation Time

Resource Per Language Total Time
Utterance Alignments 30m 14d 13h
Phoneme Alignments 3d3h37m 6y 12d 16h
Vowel Measures 45m 21d 20h
Sibilant Measures 20m 9d 17h

3d5hOm 6y 58d 19h

Table 2: Computation time to generate the full corpus.

once methods have been developed, was more than
6 CPU years, primarily for training eHMM models.

3.4 General caveats

We caution that our labeling and alignment of the
corpus contains errors. In particular, it is difficult
to responsibly draw firm linguistic conclusions
from the Unitran-based segments (§3.1.1). In §5
we suggest future work to address these issues.

A Quality of Utterance Pairs: For some ut-
terances, the speech does not correspond
completely to the text, due to incorrect co-
segmentation. In our phonetic studies, we thresh-
old using reading-level MCD as a heuristic for
overall alignment quality, and further threshold
remaining readings using utterance-level MCD.
We recommend others do so as well.

B Phoneme Label Consistency and Accuracy:
Phoneme-level labels are predicted from text
without the aid of audio using G2P methods.
This may lead to systematic errors. In particular,
Unitran relies on a ‘universal’ table that maps
grapheme <s> (for example) to phoneme /s/
in every context and every language. This is
problematic for languages that use <s> in some
or all contexts to refer to other phonemes such as
/[/ or /s/, or use digraphs that contain <s>, such
as <sh> for /[/. Thus, the predicted label /s/
may not consistently refer to the same phoneme
within a language, nor to phonetically similar
phonemes across languages. Even WikiPron
annotations are user-submitted and may not be
internally consistent (e.g., some words use /d 3/
or /t/ while others use /d/ or /t/), nor comparable
across languages.

‘Phoneme’ inventories for Unitran and WikiPron
have been implicitly chosen by whoever
designed the language’s orthography or its
WikiPron pages; while this may reflect a reason-
able folk phonology, it may not correspond to
the inventory of underlying or surface phonemes
that any linguist would be likely to posit.

C Label and Alignment Assessment: While
alignment quality for languages with Epitran and
WikiPron can be assessed and calibrated beyond
this corpus, it cannot for those languages with
only Unitran alignments; the error rate on lan-
guages without resources to evaluate PER is un-
known to us. The Unitran alignments should be
treated as a first-pass alignment which may still
be useful for a researcher who is willing to per-
form quality control and correction of the align-
ments using automatic or manual procedures.
Our automatically-generated alignment offers an
initial label and placement of the boundaries that
would hopefully facilitate downstream analysis.

D Corpus Representation: It is difficult to draw
conclusions about ‘average behavior’ across
languages. Some language families are better
represented in the corpus than others, with more
languages, more Bible readings per language,
more hours of speech per reading, or more
examples of a given phoneme of interest.® Addi-
tionally, the recordings by language are largely
single-speaker (and predominantly male). This
means that we can often draw conclusions only
about a particular speaker’s idiolect, rather
than the population of speakers of the language.
Metadata giving the exact number of different
speakers per recording do not exist.

4 Phonetic Case Studies

We present two case studies to illustrate the
utility of our resource for exploration of cross-
linguistic typology. Phoneticians have posited
several typological principles that may structure
phonetic systems. Though previous research has
provided some indication as to the direction and
magnitude of expected effects, many instances of
the principles have not yet been explored at scale.
Our case studies investigate how well they account
for cross-linguistic variation and systematicity for
our phonetic measures from vowels and sibilants.
Below we present the data filtering methods for our
case studies, followed by an introduction to and
evaluation of phonetic dispersion and uniformity.

4.1 Data filtering

For quality, we use only the tokens extracted
using high-resource pronunciations (Epitran and
WikiPron) and only in languages with mean

8See our corpus website for exact numbers of utterances and
our phonetic measures per each language.



MCD lower than 8.0.° Furthermore, we only use
those utterances with MCD lower than 6.0. The
vowel analyses focus on F1 and F2 in ERB taken
at the vowel midpoint (Zwicker and Terhardt,
1980; Glasberg and Moore, 1990).'° The sibilant
analyses focus on mid-frequency peak of /s/ and /z/,
also in ERB. Vowel tokens with F1 or F2 measures
beyond two standard deviations from the label-
and reading-specific mean were excluded, as were
tokens for which Praat failed to find a measurable
F1 or F2, or whose duration exceeded 300 ms.
Sibilant tokens with mid-frequency peak or
duration measures beyond two standard deviations
from the label- and reading-specific mean were
also excluded. When comparing realizations of
two labels such as /i/~/u/ or /s/—/z/, we excluded
readings that did not contain at least 50 tokens
of each label. We show data representation with
different filtering methods in Appendix D.

After filtering, the vowel analyses included 48
readings covering 38 languages and 11 language
families. The distribution of language families
was 21 Indo-European, 11 Austronesian, 3 Cre-
ole/Pidgin, 3 Turkic, 2 Afro-Asiatic, 2 Tai-Kadai,
2 Uto-Aztecan, 1 Austro-Asiatic, 1 Dravidian, 1
Hmong-Mien, and 1 Uralic. Approximately 8.2
million vowel tokens remained, with a minimum
of ~31,000 vowel tokens per reading. The sibilant
analysis included 22 readings covering 18 lan-
guages and 6 language families. The distribution
of language families was 10 Indo-European,
6 Austronesian, 3 Turkic, 1 Afro-Asiatic, 1
Austro-Asiatic, and 1 Creole/Pidgin. The decrease
in total number of readings relative to the vowel
analysis primarily reflects the infrequency of /z/
cross-linguistically. Approximately 385,000 /s/
and 83,000 /z/ tokens remained, with a minimum
of ~5,200 tokens per reading.

4.2 Phonetic dispersion

Phonetic dispersion refers to the principle that con-
trasting speech sounds should be distinct from one
another in phonetic space (Martinet, 1955; Jakob-
son, 1968; Flemming, 1995, 2004). Most studies
investigating this principle have focused on its va-

°In the high-MCD languages, even the low-MCD utterances

seem to be untrustworthy.

The Equivalent Rectangular Bandwidth (ERB) scale is a
psychoacoustic scale that better approximates human per-
ception, which may serve as auditory feedback for the pho-
netic realization (Fletcher, 1923; Nearey, 1977; Zwicker and
Terhardt, 1980; Glasberg and Moore, 1990). The precise
equation comes from Glasberg and Moore (1990, Eq. 4).

lidity within vowel systems, as we do here. While
languages tend to have seemingly well-dispersed
vowel inventories such as {/i/, /a/, lu/} (Joos, 1948;
Stevens and Keyser, 2010), the actual phonetic
realization of each vowel can vary substantially
(Lindau and Wood, 1977; Disner, 1983). One pre-
diction of dispersion is that the number of vowel
categories in a language should be inversely related
to the degree of per-category acoustic variation
(Lindblom, 1986). Subsequent findings have cast
doubt on this (Livijn, 2000; Recasens and Espinosa,
2009; Vaux and Samuels, 2015), but these studies
have been limited by the number and diversity of
languages investigated.

To investigate this, we measured the correla-
tion between the number of vowel categories in
a language and the degree of per-category varia-
tion, as measured by the joint entropy of (F1, F2)
conditioned on the vowel category. We model
p(F1,F2 | V) using a bivariate Gaussian for
each vowel type v. We can then compute the
joint conditional entropy under this model as
H(FL,LF2 | V) =% p(v)H(F1,F2 | V =v) =
>, p(v) 2 Indet(2meX,), where 3, is the covari-
ance matrix for the model of vowel v.

Vowel inventory sizes per reading ranged from 4
to 20 vowels, with a median of 8. Both Spearman
and Pearson correlations between entropy estimate
and vowel inventory size across analyzed languages
were small and not significant (Spearman p = 0.11,
p = 0.44; Pearson r = 0.11, p = 0.46), corroborat-
ing previous accounts of the relationship described
in Livijn (2000) and Vaux and Samuels (2015) with
a larger number of languages—a larger vowel in-
ventory does not necessarily imply more precision
in vowel category production.'!

4.3 Phonetic uniformity

Previous work suggests that F1 is fairly uniform
with respect to phonological height. Within a sin-
gle language, the mean F1s of /e/ and /o/—which
share a height—have been found to be correlated
across speakers (Yorkshire English: Watt, 2000;
French: Ménard et al., 2008; Brazilian Portuguese:
Oushiro, 2019; Dutch, English, French, Japanese,
Portuguese, Spanish: Schwartz and Ménard, 2019).
Though it is physically possible for these vowels

'Since differential entropy is sensitive to parameterization,
we also measured this correlation using formants in hertz,
instead of in ERB, as ERB is on a logarithmic scale. This
change did not the influence the pattern of results (Spearman
p=0.12, p = 0.41; Pearson r = 0.13, p = 0.39).
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Figure 4: Correlations of mean F1 (ERB) between /i/ and /u/ and of mean mid-frequency peak (ERB) between
/s/ and /z/. The paired segments share a relevant phonological feature specification that is approximated by the
acoustic-phonetic measurement: vowel height by F1 and sibilant place by mid-frequency peak. Each reading is
represented by an ellipsoid, centered on the paired means and shaped by % of their respective standard deviations.
The solid line reflects the best-fit linear regression line with standard error in gray shading; the dashed line shows
the line of equality. Marginal histograms show the range of variation in the segment-specific means.

to differ in F1 realization, the correlations indicate
a strong tendency for languages and individual
speakers to yoke these two representations together.

Systematicity in the realization of sibilant
place of articulation has also been observed
across speakers of American English and Czech
(Chodroff, 2017). Phonetic correlates of sibilant
place strongly covary between /s/ and /z/, which
share a [+anterior] place of articulation and are
produced the alveolar ridge, and between /[/ and
/3/, which share a [-anterior] place of articulation
and are produced behind the alveolar ridge.

A principle of uniformity may account for these
above findings. Uniformity here refers to a prin-
ciple in which a distinctive phonological feature
should have a consistent phonetic realization,
within a language or speaker, across different seg-
ments with that feature (Keating, 2003; Chodroff
et al., 2019). Similar principles posited in the litera-
ture include Maximal Use of Available Controls, in
which a control refers to an integrated perceptual
and motor phonetic target (Ménard et al., 2008),
as well as a principle of gestural economy (Mad-
dieson, 1995). Phonetic realization refers to the
mapping from the abstract distinctive feature to an
abstract phonetic target. We approximate this pho-
netic target via an acoustic-phonetic measurement,
but we emphasize that the acoustic measurement is
not necessarily a direct reflection of an underlying
phonetic target (which could be an articulatory
gesture, auditory goal, or perceptuo-motor repre-

sentation of the sound). We make the simplifying
assumption that the acoustic-phonetic formants
(F1, F2) directly correspond to phonetic targets
linked to the vowel features of height and backness.
More precisely, uniformity of a phonetic mea-
sure with respect to a phonological feature means
that any two segments sharing that feature will
tend to have approximately equal measurements
in a given language, even when that value varies
across languages. We can observe whether this is
true by plotting the measures of the two segments
against each other by language (e.g., Figure 4).

Vowels. As shown in Figure 4 and Table 3, the
strongest correlations in mean F1 frequently re-
flected uniformity of height (e.g., high vowels /i/—
h/: r=0.79, p < 0.001, mid vowels /e/~/o/: r
=0.62, p < 0.01).'? Nevertheless, some vowel
pairs that differed in height were also moderately
correlated in mean F1 (e.g., /o/~/a/: r = 0.66,
p < 0.001). Correlations of mean F1 were over-
all moderate in strength, regardless of the vowels’
phonological specifications.

Correlations of mean F2 were also strongest
among vowels with a uniform backness spec-
ification (e.g., back vowels /u/~/o/: r = 0.69,
p < 0.001; front vowels /i/~/e/: r = 0.69,
p < 0.05; Table 4). The correlation between front
tense vowels /i/ and /e/ was significant and in the ex-

12)-values are corrected for multiple comparisons using the
Benjamini-Hochberg correction and a false discovery rate
of 0.25 (Benjamini and Hochberg, 1995).



pected direction, but also slightly weaker than the
homologous back vowel pair (r = 0.41, p < 0.05).
Vowels differing in backness frequently had neg-
ative correlations, which could reflect influences of
category crowding or language-/speaker-specific
differences in peripheralization. We leave further
exploration of those relationships to future study.

The moderate to strong F1 correlations among
vowels with a shared height specification are con-
sistent with expectations based on previous studies,
and also with predictions of uniformity. Similarly,
we find an expected correlation of F2 means for
vowels with a shared height specification. The cor-
relations of vowel pairs that were predicted to have
significant correlations, but did not, tended to have
small sample sizes (< 14 readings).

Nevertheless, the correlations are not perfect;
nor are the patterns. For instance, the back vowel
correlations of F2 are stronger than the front vowel
correlations. While speculative, the apparent
peripheralization of /i/ (as revealed in the negative
F2 correlations) could have weakened the expected
uniformity relation of /i/ with other front vowels.
Future research should take into account additional
influences of the vowel inventory composition, as
well as articulatory or auditory factors for a more
complete understanding of the structural forces in
the phonetic realization of vowels.

Sibilants. The mean mid-frequency peak values
for /s/ and /z/ each varied substantially across read-
ings, and were also strongly correlated with one an-
other (r = 0.87, p < 0.001; Figure 4).!3 This find-
ing suggests a further influence of uniformity on
the realization of place for /s/ and /z/, and the mag-
nitude is comparable to previous correlations ob-
served across American English and Czech speak-
ers, in which r was ~0.90 (Chodroff, 2017).

5 Directions for Future Work

We hope our corpus may serve as a touchstone
for further improvements in phonetic typology re-
search and methodology. Here we suggest potential
steps forward for known areas (§3.4) where this
corpus could be improved:

A Sentence alignments were generated using
Unitran, and could be improved with higher-
quality G2P and verse-level text segmentation
to standardize utterances across languages.

3The magnitude of this correlation did not change when using
hertz (r = 0.86, p < 0.001).

B Consistent and comparable phoneme labels
are the ultimate goal. Concurrent work on
universal phone recognition (Li et al., 2020)
addresses this issue through a universal phone
inventory constrained by language-specific
PHOIBLE inventories (Moran and McCloy,
2019). However, free-decoding phones from
speech alone is challenging. One exciting
possibility is to use the orthography and audio
jointly to guide semi-supervised learning of
per-language pronunciation lexicons (Lu et al.,
2013; Zhang et al., 2017).

C Reliable quality assessment for current meth-
ods remains an outstanding research question
for many languages. For covered languages,
using a universal label set to map additional
high quality lexicons (e.g., hand-annotated
lexicons) to the same label space as ours would
enable direct label and alignment assessment
through precision, recall, and PER.

D Curating additional resources beyond this
corpus would improve coverage and balance,
such as contributing additional Epitran modules.
Additional readings exist for many languages
on the original bible.is site and elsewhere.
Annotations with speaker information are not
available, but improved unsupervised speaker
clustering may also support better analysis.

6 Conclusion

VoxClamantis v1.0 is the first large-scale corpus
for phonetic typology, with extracted phonetic
features for 635 typologically diverse languages.
We present two case studies illustrating both the
research potential and limitations of this corpus
for investigation of phonetic typology at a large
scale. We discuss several caveats for the use of
this corpus and areas for substantial improvement.
Nonetheless, we hope that directly releasing our
alignments and token-level features enables greater
research accessibility in this area. We hope this
corpus will motivate and enable further develop-
ments in both phonetic typology and methodology
for working with cross-linguistic speech corpora.
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A Pairwise Correlations between Vowel Formant Measures (§4 Case Studies)

Table 3 and Table 4 respectively show Pearson correlations of mean F1 and mean F2 in ERB between
vowels that appear in at least 10 readings. As formalized in the present analysis, phonetic uniformity
predicts strong correlations of mean F1 among vowels with a shared height specification, and strong
correlations of mean F2 among vowels with a shared backness specification. The respective “Height”
and “Backness” columns in Table 3 and Table 4 indicate whether the vowels in each pair match in their
respective specifications. p-values are corrected for multiple comparisons using the Benjamini-Hochberg
correction and a false discovery rate of 0.25 (Benjamini and Hochberg, 1995). Significance is assessed at
a = 0.05 following the correction for multiple comparisons; rows that appear in gray have correlations
that are not significant according to this threshold.

V1 V2 Height # Readings r D V1 V2 Backness # Readings r D

Al v 12 0.81 0.006 lel  [el v 12 0.77  0.019
led  foy/ v 10 0.81 0.015 /o v 10 0.77  0.037
Al o/ v 40 0.79  0.000 Al v 12 0.70  0.038
el ol v 11 0.68 0.053 /ol v 38 0.69  0.000
/ol [a/ 37 0.66  0.000 Al Iel v 14 0.69 0.031
il Joy 11 0.65 0.070 /ol v 10 0.62 0.130
i v 12 0.64 0.061 hl ol 12 0.60 0.107
el lof v 35 0.62 0.001 /ol v 12 0.52 0.168
fel  h/ 36 0.59 0.001 fil lel v 38 0.41 0.038
lel  lal 34 0.58 0.002 /el [al 12 032 0.519
/ol 12 0.58 0.105 ol [al 37 0.30 0.159
il led 11 0.58 0.118 led  Joi/ 10 0.27 0.666
il fel 38 0.54 0.002 el la/ 34 0.24 0.339
el lal 12 0.54 0.127 lol  Iof 11 021 0.724
/ol 38 0.49  0.007 ol lal v 11 0.16  0.830
el h/ 14 0.49 0.135 il lel v 11 0.11 0911
fil - Jof 39 046 0.011 il Jal 39 0.06 0.911
lel  Iel v 12 0.46 0.204 il e v 11 0.06 0.965
/o el 37 0.42 0.027 el ol 35 0.01 0.965
i el 11 0.42 0288 hl faf 37 0.00 0.985
/- v 10 041 0.334 el ol 11 -0.03  0.965
il v 11 0.33  0.430 il fal 11 -0.04  0.965
il Jaf 11 0.28 0.496 el ol 13 -0.04  0.965
il Jaf 39 0.27 0.173 lel  hf 36 -0.12  0.666
il Iel 14 0.24  0.496 el I/ 14 -0.22  0.666
il fof 13 0.19 0.624 il el 13 -0.23  0.666
il Jef 13 0.10 0.785 il o/ 11 -0.42  0.345
/ol 12 0.09 0.785 il lof 39 -0.48 0.017
/el Jof v 13 -0.09 0.785 i/ ol 13 -0.52  0.149
lel /ol v 10 -0.12  0.785 fil hf 40 -0.55 0.003
fw/ o/ 10 -0.12  0.785 il Il 11 -0.63 0.107
fil ol 11 -0.42 0.288 lel ol 10 -0.65 0.107
lol  Iof v 11 -0.51 0.173 il o/ 11 -0.80 0.019
fol  lal 11 -0.90 0.001 i 12 -0.83  0.009

Table 3: Pearson correlations (r) of mean F1 in Table 4: Pearson correlations () of mean F2 in
ERB between vowel categories. ERB between vowel categories.

B Distributions of Unitran Segment Accuracy (§3.1.3 Quality Measures)

Here we evaluate the quality of the Unitran dataset in more detail. The goal is to explore the variation
in the quality of the labeled Unitran segments across different languages and phoneme labels. This
evaluation includes only readings in high-resource languages, where we have not only the aligned Unitran
pronunciations but also aligned high-resource pronunciations (Epitran or WikiPron) against which to
evaluate them. The per-token statistics used to calculate these plots are included in the corpus release to
enable closer investigation of individual phonemes than is possible here.



B.1 Unitran Pronunciation Accuracy

First, in Figures 5 and 6, we consider whether Unitran’s utterance pronunciations are accurate without
looking at the audio. For each utterance, we compute the unweighted Levenshtein alignment between
the Unitran pronunciation of the utterance and the high-resource pronunciation. For each reading, we
then score the percentage of Unitran ‘phoneme’ tokens that were aligned to high-resource ‘phoneme’
tokens with exactly the same label.!* We can see in Figure 6 that many labels are highly accurate in many
readings while being highly inaccurate in many others. Some labels are noisy in some readings.'’

upe EEN

ouengd) (NG

ursig Yo, NN

rewos NG
(98en3ueronew) Aejey NG

1esuag

ISAWRUPIIA
(aBen3uejoadew) e XK

[UELE1 A

ngnp |,

Ipury

SoreSe], NN
ueiuewoy [N
wofkstio (NS
ssoueaer (NG

asaqeysiepy &

Avg. Precision
s=8zs223
me(q Suowy KK
asandnyaog XXX~
Ppuasy S8
npan XX
oe] N
ysisuy  OOOKK
AseSeen OO~
ysiiog N
pwey,
ey,
ysipomns IS
eAuriSry, (I
ysipany] wrdyjioN [N
ysiueds NS
owoi( wiysey NN
esney [
ysppng, I
sifer I
piezey I
ystuuy]  (OXORORRR0
o3uo], ueuelS [RSRSESESNEN
ueissny (I
efieqrozy yaoN NG
oyor1 IS
uersouopuy I

penyey uedeleddpy-snuy)sy SIS

Languages

Figure 5: Unitran pronunciation accuracy per language, evaluated by Levenshtein alignment to WikiPron pro-
nunciations (hatched bars) or Epitran pronunciations (plain bars). Where a language has multiple readings, error
bars show the min and max across those readings.
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Figure 6: Unitran pronunciation accuracy per language, for selected phonemes. Accuracy is evaluated by
Levenshtein alignment as in Figure 5. Each curve is a kernel density plot with integral 1. For the /z/ curve, the
integral between 80% and 100% (for example) is the estimated probability that in a high-resource language drawn
uniformly at random, the fraction of Unitran /z/ segments that align to high-resource /z/ segments falls in that
range. The ‘all’ curve is the same, but now the uniform draw is from all pairs of (high-resource language, Unitran
phoneme used in that language).

4By contrast, PER in Table 1 aligns at the word level rather than the utterance level, uses the number of symmetric alignment
errors (insertions + deletions + substitutions) rather than the number of correct Unitran phonemes, and normalizes by the length
of the high-resource ‘reference’ pronunciation rather than by the length of the Unitran pronunciation.

"SNote that as §3.1.3 points out, it may be unfair to require exact match of labels, since annotation schemes vary.)



B.2 Unitran Segment Label Accuracy

In Figures 7 and 8, we ask the same question again, but making use of the audio data. The match for
each Unitran segment is now found not by Levenshtein alignment, but more usefully by choosing the
high-resource segment with the closest midpoint. For each reading, we again score the percentage of
Unitran ‘phoneme’ tokens whose aligned high-resource ‘phoneme’ tokens have exactly the same label.
Notice that phonemes that typically had high accuracy in Figure 6, such as /p/ and /b/, now have far more
variable accuracy in Figure 8, suggesting difficulty in aligning the Unitran pronunciations to the correct
parts of the audio.
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Figure 7: Unitran pronunciation accuracy per language, as in Figure 5 but with audio midpoint alignment in
place of Levenshtein alignment.
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Figure 8: Unitran pronunciation accuracy per language, for selected phonemes, as in Figure 6 but with audio
midpoint alignment in place of Levenshtein alignment.



B.3 Unitran Segment Boundary Accuracy

Finally, in Figures 9 and 10, we measure whether Unitran segments with the “correct” label also have the
“correct” time boundaries, where “correctness” is evaluated against the corresponding segments obtained
using Epitran or WikiPron+G2P.
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Figure 9: Mean error per language in the temporal boundaries of Unitran segments.. Each Unitran segment
is evaluated against the WikiPron segment (hatched bars) or Epitran segment (plain bars) with the closest midpoint,
as if the latter were truth. The error of a segment is the absolute offset of the left boundary plus the absolute offset
of the right boundary. Only segments where the Unitran label matches the Epitran/WikiPron label are included in
the average. Where a language has multiple readings, error bars show the min and max across those readings.
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Figure 10: Mean error per language in the temporal boundaries of Unitran segments, for selected phonemes.
Each curve is a kernel density plot with integral 1. For the /z/ curve, the integral between 50ms and 100ms (for
example) is the estimated probability that in a high-resource language drawn uniformly at random, the Unitran /z/
segments whose corresponding Epitran or WikiPron segments are also labeled with /z/ have mean boundary error
in that range. Small bumps toward the right correspond to individual languages where the mean error of /z/ is
unusually high. The ‘all’ curve is the same, but now the uniform draw is from all pairs of (high-resource language,
Unitran phoneme used in that language). The boundary error of a segment is evaluated as in Figure 9.



C WikiPron Grapheme-to-Phoneme (G2P) Accuracy (§3.1.3 Quality Measures)

For each language where we used WikiPron, Table 5 shows the phoneme error rate (PER) of Phonetisaurus
G2P models trained on WikiPron entries, as evaluated on held-out WikiPron entries. This is an estimate
of how accurate our G2P-predicted pronunciations are on out-of-vocabulary words, insofar as those are
distributed similarly to the in-vocabulary words. (It is possible, however, that out-of-vocabulary words
such as Biblical names are systematically easier or harder for the G2P system to pronounce, depending on
how they were transliterated.)

The same G2P configuration was used for all languages, with the hyperparameter settings shown in
Table 6. (seql-max and seq2_max describe how many tokens in the grapheme and phoneme sequences
can align to each other.). These settings were tuned on SIGMORPHON 2020 Task 1 French, Hungarian,
and Korean data (Gorman et al., 2020), using 20 random 80/20 splits.

1SO 639-3 fin lat nhx srn mah por-po mfe mww por-bz eng khm mlg ori ban urd
Train size 41741 34181 126 157 813 9633 203 227 10077 54300 3016 114 211 172 704
PER 0.8 2.4 4.1 4.6 9.6 10.1 10.7 10.8 114 14.5 15.5 15.8 16.1 19.5 26.7

+0.02 +0.04 =+1.02 +0.76 +041 £0.11 =£12 =£129 +£0.16 =£0.06 =+0.38 =+1.44 =£1.13 +1.35 =0.60

Table 5: WikiPron G2P Phone Error Rate (PER) calculated treating WikiPron annotations as ground-truth. We
perform 20 trials with random 80/20 splits per language, and report PER averaged across trials with 95% confidence
intervals for each language.

Phonetisaurus Alignment seql max seq2.max seql_del seq2_del grow max EM iterations
Hyperparameters 1 3 True True True 11
Graphone Language Model | n-gram order LM type discounting gt2min gt3min gtdmin gtSmin
Hyperparameters 5 max-ent Kneser-Ney 2 2 3 4

Table 6: Table of final G2P hyperparameter settings. Alignment parameters not listed here for
phonetisaurus-align use the default values. The language model was trained using SRILM (Stolcke, 2002)
ngram-count using default values except for those listed above.



D Retention Statistics (§4.1 Data Filtering)

Table 7 shows what percentage of tokens would be retained after various methods are applied to filter
out questionable tokens from the readings used in §4.1. In particular, the rightmost column shows the
filtering that was actually used in §4.1. We compute statistics for each reading separately; in each column
we report the minimum, median, mean, and maximum statistics over the readings. The top half of the
table considers vowel tokens (for the vowels in Appendix A); the bottom half considers sibilant tokens (/s/
and /z/).

On the left side of the table, we consider three filtering techniques for Unitran alignments. Midpoint
retains only the segments whose labels are “correct” according to the midpoint-matching methods of
Appendix B. MCD retains only those utterances with MCD < 6. Outlier removes tokens that are outliers
according to the criteria described in §4.1. Finally, AGG. is the aggregate retention rate retention rate
after all three methods are applied in order.

On the right side of the table, we consider the same filtering techniques for the high-resource alignments
that we actually use, with the exception of Midpoint, as here we have no higher-quality annotation to

match against.

High-Resource Alignments

#Tokens Midpoint MCD Outlier AGG. | # Tokens MCD Outlier AGG.

Unitran Alignments

Min 50,132 2% 42% 83% 1% 61,727 42% 84% 37%
2 Median 21,5162 23% 88% 90% 16% 232,059 88% 90% 79%
S  Mean 23,9563 25% 81% 89% 20% 223,815 81% 90% 73%
2 Max 662,813 65%  100% 93% 60% 468,864  100% 93% 93%
# Readings 49 46 48 49 45 49 48 49 48
Min 7,198 10% 42% 89% 13% 7184 44% 91% 43%
£ Median 28,690 70% 87% 97% 59% 27569 87% 97% 85%
= Mean 30,025 63% 80% 95% 56% 27083 81% 96% 79%
§ Max 63,573 89%  100% 98% 79% 45,290  100% 99% 96%
# Readings 36 26 35 36 19 25 22 25 22

Table 7: Summary of quality measure retention statistics for vowels and sibilants over unique readings with
reading-level MCD < 8 for Unitran and high-resource alignments.



E All VoxClamantis v1.0 Languages

All 635 languages from 690 readings are presented here with their language family, ISO 639-3 code, and
mean utterance alignment quality in Mel Cepstral Distortion (MCD) from Black (2019). Languages for
which we release Epitran and/or WikiPron alignments in addition to Unitran alignments are marked with
¢ and v respectively. MCD ranges from purple (low), blue—green (mid), to yellow (high). Lower MCD
typically corresponds to better audio-text utterance alignments and higher quality speech synthesis, but
judgments regarding distinctions between languages may be subjective. ISO 639-3 is not intended to
provide identifiers for dialects or other sub-language variations, which may be present here where there are
multiple readings for one ISO 639-3 code. We report the most up-to-date language names from the ISO 639-
3 schema (Eberhard and Fennig, 2020). Language names and codes in many schema could be pejorative
and outdated, but where language codes cannot be easily updated, language names can and often are.

Ewe ewe Mundani mnf Agutaynen agn Mamasa mqj
Farefare gur Mwan moa Alangan alj Manado Malay xmm =
Farefare gur Mwani wmw LE Alune alp Mapos Buang bzh
Fon fon Miindii muh Ambai amk Maranao mrw 2
Gikyode acd Nafaanra nfr  [2 Amganad Ifugao ifa Marshallese mah
Giryama nyf Nande nnb [ Aralle-Tabulahan atq Matigsalug Manobo mbt
Gitonga toh Nateni ntm &} Arop-Lokep apr Mayoyao Ifugao ifu
Gogo gog Nawdm nmz Arosi aia Mentawai mwv [
Gokana gkn Ndogo ndz Bada (Indonesia) bhz Minangkabau min
Gourmanchéma gux Ngangam gng Balantak blz Misima-Panaeati mpx
Gwere gwr Nigeria Mambila mzk Balinese ban Mongondow mog
Hanga hag Nilamba nim Bambam ptu Muna mnb
Haya hay Ninzo nin Batad Ifugao ifb Napu npy
Ife ife Nkonya nko Batak Dairi btd Ngaju nij
Ivbie North-Okpela-Ar atg Noone nhu Batak Karo btx Nias nia
Izere izr Northern Dagara dgi Batak Simalungun bts Obo Manobo obo
Jola-Fonyi dyo Ntcham bud Besoa bep Owa stn
Jola-Kasa csk Nyabwa nwb Brooke's Point Palawa plw Palauan pau
Jukun Takum jbu Nyakyusa-Ngonde nyy Caribbean Javanese jvn Pamona pmf
Kabiye kbp Nyankole nyn ¢ Cebuano ceb Pampanga pam
Kagulu kki Nyaturu rim Central Bikol bcl Pangasinan pag
Kako kkj Nyole nuj Central Malay pse Paranan prf
Kasem xsm Nyoro nyo Central Mnong cmo Rejang rej
Kasem xsm Nzima nzi Central Sama sml Roviana rug
Kenyang ken Obolo ann Da'a Kaili kzf Sambal xsb
Kim kia OKu oku Duri mvp Sambal xsb
Kim kia Paasaal sig Fataleka far Samoan smo
Koma kmy Plapo Krumen ktj Fijian fij Sangir sxn
Konkomba xon Pokomo pkb Fordata frd Sarangani Blaan bps
Kono (Sierra Leone) kno Pular fuf Gilbertese gil Sasak sas

NIGER-CONGO: 159 Koonzime ozm Rigwe iri Gorontalo gor
Abidji abi Kouya kyf Rundi run |- Hanunoo hnn
Adele ade Kukele kez Saamia Ism Hiligaynon hil
Adioukrou adj Kunda kdn Sango sag Iban iba
Akan aka Kuo xuo Sekpele lip “Tloko ilo
Akebu keu Kusaal kus Selee snw ¢ Indonesian ind
AKkoose bss Kutep kub Sena seh ¢Indonesian ind
Anufo cko Kutu kde g2 Shambala ksb ¢ Indonesian ind
Avatime avn Kuwaataay cwt Sissala sld Ttawit itv
Bafut bfd Kwere cwe Siwu akp ¢ Javanese jav
Bandial bqj Lama (Togo) las Soga xog Kadazan Dusun dtp
Bekwarra bkv Lelemi lef South Fali fal Kagayanen cgc
Bete-Bendi btt Lobi lob Southern Birifor biv Kalagan kqe
Biali beh Lokaa yaz Southern Bobo Madaré bwq Kankanaey kne
Bimoba bim Lukpa dop Southern Dagaare dga Keley-I Kallahan ify
Bokobaru bus Lyélé lee Southern Nuni nnw Khehek tlx
Bomu bmq Machame jmc Southwest Gbaya gso Kilivila kij
Buamu box Mada (Nigeria) mda Supyire Senoufo spp Kinaray-A krj
Buli (Ghana) bwu Makaa mcp Talinga-Bwisi tlj Kisar kje
Bum bmv Makhuwa vinw L% Tampulma tpm Koronadal Blaan bpr
Cameroon Mambila mcu Malawi Lomwe lon Tharaka thk Lampung Api ljp
Central-Eastern Niger fuq Malba Birifor bfo Tikar tik Lauje law
Cerma cme Mamara Senoufo myk Timne tem Ledo Kaili lew
Cerma cme Mampruli maw Toura (Céte d'Ivoire) neb Luang lex
Chopi cce Mankanya knf Tsonga tso Lundayeh Ind
Chumburung ncu Masaaba myx Tumulung Sisaala sil Ma'anyan mhy
Delo ntr Meta' mgo Tuwuli bov Madurese mad
Denya anv Miyobe soy Tyap keg Mag-antsi Ayta sgh
Ditammari thz Moba mfq Vengo bav Makasar mak
Djimini Senoufo dyi Moba mfq Vunjo vun Malagasy mlg
Duruma dug Mochi old West-Central Limba lia Malagasy mlg
Eastern Karaboro xrb Mossi mos ‘Yocoboué Dida gud Malagasy mlg
Ekajuk eka Mossi mos AUSTRONESIAN: 106 Malay (macrolanguage) msa
Ewe ewe Mumuye mzm [ Achinese ace ¢ Malay (macrolanguage) msa




Sudest tgo
Sundanese sun
¢ Tagalog tgl
Tangoa tgp
Termanu twu
Tombonuo txa
Toraja-Sa'dan sda
Tuwali Ifugao ifk
Uma ppk
‘Western Bukidnon Manoe mbb
Western Tawbuid twb

AFRO-ASIATIC: 45

Bana bew
Daasanach dsh
Daba dbq
Dangaléat daa
Dawro dwr
¢ Eastern Oromo hae
Egyptian Arabic arz
Gamo gmv
Gen gej
Gofa gof
Gofa gof
Gude gde
Hamer-Banna amf
¢ Hausa hau
Hdi xed
Iraqw irk
Kabyle kab
Kafa kbr
Kambaata ktb
Kamwe hig
Kera ker
Kimré kqp
Konso kxc
Koorete kqy
Lele (Chad) lin
Male (Ethiopia) mdy
Marba mpg
Mbuke mqgb
Merey meq
Mesopotamian Arabic acm
Mofu-Gudur mif
Muyang muy
Mwaghavul sur
North Mofu mfk
Parkwa pbi
Pévé Ime
Sebat Bet Gurage sgw
¢ Somali som
Standard Arabic arb
Sudanese Arabic apd
Tachelhit shi
Tamasheq taq
¢ Tigrinya tir
Tumak tme
‘Wandala mfi

MAYAN: 42

Achi acr
Aguacateco agu
Chol ctu
Chorti caa
Chuj cac

Chuj cac

Huastec hus
Ixil ixl
Ixil ix]
Txil ixl
K'iche' quc
K'iche' quc
K'iche' quc
K'iche' quc
K'iche' quc
K'iche' quc
Kaqchikel cak
Kagqchikel cak
Kagqchikel cak
Kaqchikel cak
Kagqchikel cak
Kagchikel cak
Kekcehi kek
Kekehi kek
Mam mam
Mam mam
Mam mam
Mam mam
Mopian Maya mop
Popti' jac
Popti' jac
Pogqomchi' poh
Poqomchi' poh
Q'anjob'al kjb
Tektiteko ttc
Tz'utujil tzj
Tzeltal tzh
Tzeltal tzh
Tzotzil tzo
Tzotzil tzo
‘Western Kanjobal knj
Yucateco yua

¢ Romanian ron
¢ Russian rus
Sinte Romani rmo
¢ Spanish spa

¢ Spanish spa

¢ Spanish spa

¢ Spanish spa

¢ Spanish spa

¢ Swedish swe

¢ Swedish swe

¢ Tajik tgk
Urdu urd

Vlax Romani rmy

Yue Chinese yue
Zyphe Chin zyp

QUECHUAN: 22

OTO-MANGUEAN: 27

INDO-EUROPEAN: 40

Albanian sqi
Awadhi awa
¢ Bengali ben
¢ Bengali ben
¢ Bengali ben
Caribbean Hindustani hns
Chhattisgarhi hne
Dari prs
English eng
Fiji Hindi hif
French fra
French fra
¢ Hindi hin
Iranian Persian pes
Latin lat
Magahi mag
Maithili mai
Malvi mup
¢ Marathi mar
¢ Northern Kurdish kmr
Oriya (macrolanguage) ori
Ossetian oss
¢ Polish pol
Portuguese por
Portuguese por
Portuguese por
Portuguese por

Atatldhuca Mixtec mib
Ayutla Mixtec miy
Central Mazahua maz
Chicahuaxtla Triqui trs
Diuxi-Tilantongo Mixt xtd
Jalapa De Diaz Mazate maj
Jamiltepec Mixtec mxt
Lalana Chinantec cnl
Lealao Chinantec cle
Magdalena Peifiasco Mix xtm
Mezquital Otomi ote
Nopala Chatino cya
Ozumacin Chinantec chz
Peiioles Mixtec mil
Pinotepa Nacional Mix mio
San Jerénimo Tecéatl maa
San Jerénimo Tecéatl maa
San Juan Atzingo Popo poe
San Marcos Tlacoyalco pls
San Pedro Amuzgos Amu azg
Santa Maria Zacatepec mza
Sochiapam Chinantec cso
Southern Puebla Mixte mit
Tepetotutla Chinantec cnt
Tezoatlan Mixtec mxb
Usila Chinantec cuc
Yosondiia Mixtec mpm

Ayacucho Quechua quy
Cajamarca Quechua qvc
Caiiar Highland Quichu qxr
Cusco Quechua quz
Huallaga Hudnuco Quec qub
Huamalies-Dos de Mayo qvh
Huaylas Ancash Quechu gwh
Huaylla Wanca Quechua qvw
Inga inb
Lambayeque Quechua quf
Margos-Yarowilca-Laur qvm
Napo Lowland Quechua qvo
North Bolivian Quechu qul
North Junin Quechua qvn
Northern Conchucos An qxn
Northern Pastaza Quic qvz
Panao Hudnuco Quechua qxh
San Martin Quechua qvs
South Bolivian Quechu quh
South Bolivian Quechu quh
Southern Pastaza Quec qup
Tena Lowland Quichua quw

EASTERN SUDANIC: 19

SINO-TIBETAN: 24

Achang acn
AKeu acu
Akha ahk
Bawm Chin bgr
Eastern Tamang taj
Falam Chin cfm
Hakka Chinese hak
Kachin kac
Khumi Chin cnk
Kulung (Nepal) kle
Lahu lhu
Lashi Isi
Lolopo ycl
Mandarin Chinese cmn
Maru mhx
Min Nan Chinese nan
Mro-Khimi Chin cmr
Newari new
Pwo Northern Karen pww
Sherpa xsr
Sunwar suz
Tedim Chin ctd

Acoli ach
Adbhola adh
Alur alz
Bari bfa
Datooga tce
Kakwa keo
Karamojong kdj
Kumam kdi
Kupsabiny kpz
Lango (Uganda) laj
Luwo Iwo
Mabaan mfz
Markweeta enb
Murle mur
Nuer nus
Sabaot spy
Shilluk shk
Southwestern Dinka dik
Teso teo

TURKIC: 18

Bashkir bak
Chuvash chv
Crimean Tatar crh
Gagauz gag
Gagauz gag
Kara-Kalpak kaa
Karachay-Balkar krc
¢ Kazakh kaz
Khakas kjh
Kumyk kum
Nogai nog
¢ North Azerbaijani azj
Southern Altai alt
Tatar tat
¢ Turkish tur
¢ Turkish tur
Tuvinian tyv
Uighur uvig

8.0
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UTO-AZTECAN: 15

Central Huasteca Nahu nch
Eastern Huasteca Nahu nhe
El Nayar Cora crn

Guerrero Nahuatl ngu
Highland Puebla Nahua azz
Isthmus-Mecayapan Nah nhx
Isthmus-Mecayapan Nah nhx
Mayo mfy

Northern Oaxaca Nahua nhy
Northern Puebla Nahua ncj
Santa Teresa Cora cok
Sierra Negra Nahuatl nsu
Southeastern Puebla N npl

Western Huasteca Nahu nhw
Zacatlin-Ah tlin-T nhi

CREOLES AND PIDGINS: 14

Belize Kriol English bzj
Bislama bis
Eastern Maroon Creole djk
Haitian hat
Islander Creole Engli icr
Jamaican Creole Engli jam
Krio kri
Morisyen mfe
Nigerian Pidgin pcm
Pijin pis
Saint Lucian Creole F acf
Saramaccan srm
Sranan Tongo srn

Huli hui
Ipili ipi
Kuman (Papua New Guin kue
Kyaka kyc
Lower Grand Valley Da dni
Lower Grand Valley Da dni
Nalca nic
South Tairora omw

Sharanahua mcd
Shipibo-Conibo shp

TAI-KADALI: 4

¢ Lao lao
Northern Thai nod
Tai Dam blt

¢ Thai tha

TOTONACAN: 4

CHIQUITO: 1

Chiquitano cax

COFAN: 1

Cofan con

DOGON: 1

Toro So Dogon dts

EAST BIRD'S HEAD: 1

TUCANOAN: 11 Coyutla Totonac toc Meyah mej m
Desano des Highland Totonac tos EAST BOUGAINVILLE: 1
Guanano gve Pisaflores Tepehua tpp Naasioi nas
Koreguaje coe Tlachichilco Tepehua tpt
Macuna myy CARIBAN: 3 ESKIMO-ALEUT: 1
Piratapuyo pir AL i0 ake Central Siberian Yupi ess m
Secoya sey Galibi Carib car &) GUAICURUAN: 1
Siona snn Pat: pbe [X] Toba tob
Siriano sri GUAHIBAN: 3 HMONG-MIEN: 1
Tucano tuo Cuiba cui &) Hmong Daw mww
Tucano tuo Guahibo guh A3 HUAVEAN: 1
Tgll:ly:;a ;ue HUI? O'IJ‘ ° ANU iuo & San Mateo Del Mar Hua huv
Aché guq Boraboa BRI KHOE-KWADI: 1
Eastern Bolivian Guar gui Minica Huitoto hto [l Southern Samo sbd
Guajajara gub Murui Huitoto huu [} KOMAN: 1
Guarayu gyr MIXE-ZOQUE: 3 Uduk udu
Kayabi kyz Coatlan Mixe mco /) KORDOFANIAN: 1
Paraguayan Guarani gug Highland Popoluca poi  [:AU Moro mor

Urubui-Kaapor urb
Western Bolivian Guar gnw

Quetzaltepec Mixe pxm [3

URALIC: 3

ARAWAKAN: 7

Finnish fin ¥

LOWER SEPIK-RAMU: 1

Aruamu msy

¢ Tok Pisin tpi Ash4ninka cni Komi-Zyrian kpv [ MACRO-GE: 1
CENTRAL SUDANIC: 13 Garifuna cab Udmurt udm 24 Kayap6 txu
Aringa luc Ignaciano ign WEST PAPUAN: 3 MASCOIAN: 1
Avokaya avu Machiguenga mch Galela gbi Enxet enx
Bedjond bjv Nomatsiguenga not Tabaru thy MATACOAN: 1
Gor gqr Parecis pab Tobelo tIb
Maca mca
Gulay gvl Tereno ter AYMARAN: 2
Jur Modo bex CHIBCHAN: 7 Central Aymara ayr [ MISUMALPAN: 1
Kenga kyq Border Kuna kvn Central Aymara ayr %) Miskito miq
Lugbara lgg Cabécar cjp BARBACOAN: 2 PAEZAN: 1
Ma'di mhi Central Tunebo tuf Awa-Cuaiquer kwi [2] Paez pbb
Mbay myb Cogui kog G i gum (X I PUINAVE: 1
Moru mgd Ngibere gym CHOCO: 2 Puinave pui
Ngambay sha San Blas Kuna cuk Epenasja /&)
N . SULKA: 1
N de lem Teribe tfr Northern Embera emp &)
MANDE: 13 DRAVIDIAN: 5 MONGOLIC: 2 Sulka sua
Bambara bam Kannada kan [ Halh M lian khk [ TARASCAN: 1
Bissa bib Kurukh kru  [£U Kalmyk xal [2J I Purepecha tsz
Boko (Benin) bqc Malayalam mal NAKH-DAGHESTAN.: 2 TICUNA: 1
Busa bqp ¢ Tamil tam m Avaric ava [XU Ticuna tea
Dyula dyu ¢ Telugu tel Chechen che (A1 TOL: 1
Dyula dyu AUSTRO-ASIATIC: 4 TACANAN: 2 Toljic
Kuranko knk Eastern Bru bru X Ese Ejja ese
Loko lok Juang jun U Tacana tna EI TOR-ORYA: 1
Mandinka mnk Khmer khm ALGIC: 1 Orya ury
Mende (Sierra Leone) men ¢ Vietnamese vie m Central Ojibwa ojc m URARINA: 1
Northern Bobo Madaré bbo JIVAROAN: 4 ARAUAN: 1 Urarina ura
Susu sus Achuar-Shiwiar acu Paumari pad m I URU-CHIPAYA: 1
X gaxango kao Aguaruna agr BASQUE: 1 Chipaya cap
TRANS-NEW GUINEA: 12 Huambisa hub Basque eus m YANOMAM: 1
Anjam boj Shuar jiv CACUA-NUKAK: 1 -
Awa (Papua New Guinea awb PANOAN: 4 Cacua cbv I Sanumi xsu
Ese mcq Cashinahua cbs CAHUAPANAN: 1 ZAMUCOAN: 1
Gwabhatike dah Panoan Katukina knt Chayahuita cbt m Chamacoco ceg
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