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Abstract
This paper describes the Dakshina dataset, a new resource consisting of text in both the Latin and native scripts for 12 South Asian
languages. The dataset includes, for each language: 1) native script Wikipedia text; 2) a romanization lexicon; and 3) full sentence
parallel data in both a native script of the language and the basic Latin alphabet. We document the methods used for preparation and
selection of the Wikipedia text in each language; collection of attested romanizations for sampled lexicons; and manual romanization
of held-out sentences from the native script collections. We additionally provide baseline results on several tasks made possible by the
dataset, including single word transliteration, full sentence transliteration, and language modeling of native script and romanized text.
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1. Introduction

Languages in South Asia — a region covering India, Pak-
istan, Bangladesh and neighboring countries — are generally
written with Brahmic or Perso-Arabic scripts, but are also
often written in the Latin script, most notably for informal
communication such as within SMS messages, WhatsApp,
or social media. While the use of the Latin script as the
means for inputting text (romanization) is relatively com-
mon for other languages, South Asian languages lack com-
mon standard romanization systems (such as pinyin for Chi-
nese). In other words, when individuals use the Latin script
to write in South Asian languages, they do not adhere to
a system, i.e., there is no commonly used standard Latin
script orthography in these languages. Rather, individuals
generally use the Latin script to provide a rough phonetic
transcription of the intended word, which can vary from in-
dividual to individual due to any number of factors, includ-
ing regional or dialectal differences in pronunciations, dif-
fering conventions of transcription, or simple idiosyncrasy.
For example, Wolf-Sonkin et al. (2019) present an example
from the comment thread to a blog entry, which includes
Hindi comments in both the native script Devanagari and in
the Latin script, where the word ¥¥TN is romanized var-
iously as bhrastachar, bhrashtachar, barashtachaar and
bharastachar, among others.

The prevalence of the Latin script for writing these lan-
guages has led to, among other things, work on text-entry
systems for those languages in the Latin script, including
systems that transliterate from Latin script input to the na-
tive script of the language (Hellsten et al., 2017), as well
as systems that produce text in the Latin script but provide
model-based features such as auto-correction (Wolf-Sonkin
et al., 2019). Note, however, that this sort of script vari-
ance, beyond just complicating systems for text entry, is
also a challenge for common natural language processing
(NLP) applications such as information retrieval and extrac-
tion, machine translation, and written dialogue interactions.
Many important component NLP tasks — such as language
identification — are also impacted by such text. Further, for
historical reasons and due to the role of English as a regional

lingua franca, the prevalence of loanwords and code switch-
ing (largely but not exclusively with English) is high.
Unlike translations, human generated parallel versions of
text in the native scripts of these languages and romanized
versions do not spontaneously occur in any meaningful vol-
ume. Further, given the generally informal nature of Latin
script text in South Asian languages, much of the content
is interpersonal communication, hence not generally avail-
able to serve as training data for approaches dealing with
this phenomenon. While data can be found on the internet,
such scrapings are of mixed provenance and are unlikely to
have straightforward data licensing. Further, finding such
data likely would rely on language identification algorithms
that themselves require training.

For these reasons, we are releasing the Dakshina dataset!,
consisting of native script text, a romanization lexicon and
some romanized full sentences,” all derived from Wikipedia
data in 12 South Asian languages. This data can be used for
validation on a range of real-world use scenarios, including
single-word or full-sentence transliteration from the Latin
script back to the native script, or language modeling in ei-
ther the native script or Latin script. In this paper, we pro-
vide a number of baselines for these tasks, including both
neural and finite-state approaches, in addition to full docu-
mentation of the dataset creation.

2. Background
2.1. Scripts in South Asian languages

Brahmic scripts are widely used throughout South Asia.
They are abugida (also known as alphasyllabary) scripts
where consonant characters come with an inherent (or de-
fault) vowel. For example, the character ¥ in the Devana-
gari script (used by both Hindi and Marathi in our dataset)
represents the aksara (or orthographic syllable) ‘sa’. If an-
other vowel, or no vowel, is needed for the consonant, then

"https://github.com/google-research-datasets/
dakshina

2We use the term ‘sentence’ here to contrast to isolated words,
even though some multi-word strings may not be full sentences.
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either a pure consonantal form or a ligature with the vowel
sign is used. Thus, ¥ uses the virama diacritic to repre-
sent the consonant ‘s’ with no vowel, and ¥ represents a
nasalized vowel, i.e., ‘san’. These glyphs are represented
as strings of Unicode characters that are then rendered into
the glyph, e.g., 9 is a pair of Unicode characters: |
When multiple consonants are used in sequence, they are
combined into a single ligature, e.g., ‘skri’ from the word
‘Hﬁp_d (Sanskrit) is written ¥. This ligature is actually rep-
resented by a string of four Unicode characters: ¥ < & 3.
Native script keyboards in these scripts are less common
than Latin script input methods — similar to Chinese. Un-
like methods such as pinyin in Chinese, however, there are
generally no standard romanization systems in common use
for the languages using Brahmic scripts. Rather, as pointed
out in Wolf-Sonkin et al. (2019), individuals use the basic
Latin script to provide a rough phonetic transcription of the
words in these languages. Interestingly, languages from the
region using the Perso-Arabic script — such as Sindhi and
Urdu in this collection — also widely use romanization for
text input, despite the relative ease of representing this con-
sonantal writing system in a native keyboard.

That the romanizations are largely driven by spoken pro-
nunciation rather than the written forms is evidenced by the
fact that the same native script character may be roman-
ized differently depending on coarticulation effects, e.g., in
Hindi ¥ is typically romanized as ‘sam’ when the following
aksara begins with labial closure (Fitlc?i ‘sampurn’) versus
not (ﬂ'?%, ‘sanskrit’). Also of note is that those roman-
izing South Asian languages from Perso-Arabic scripts ro-
manize with vowels, despite not typically being included in
the native writing system.

2.2. Transliteration & Romanized text
processing

Early NLP work on automatic transliteration between writ-
ing systems was driven by the needs of machine transla-
tion or information retrieval systems, and hence was gen-
erally focused on proper names and/or loanwords (Knight
and Graehl, 1998; Chen et al., 1998; Virga and Khudan-
pur, 2003; Li et al., 2004). Pronunciation modeling did
play a role in early approaches (Knight and Graehl, 1998),
though directly modeling script-to-script correspondences
was eventually shown to be effective (Li et al., 2004). Ad-
vances have been made in transliteration modeling in a
range of scenarios — see Wolf-Sonkin et al. (2019) for
further citations — including the use of transliteration in
increasingly challenging settings, such as information re-
trieval with mixed scripts (Gupta et al., 2014) or for text
entry on mobile devices (Hellsten et al., 2017).

As SMS messaging and social media have become more and
more ubiquitous, Latin script input method editors (IMEs)
have become increasingly common for languages with other
native scripts, leading to increasing amounts of roman-
ized text in these languages (Ahmed et al.,, 2011). The
spelling variation that arises from the above-mentioned lack
of standard orthography in the Latin script in South Asian
languages is similar to issues found in the writing of di-
alects of Arabic (Habash et al., 2012), and in the processing
(e.g., optical character recognition) of historical documents

from prior to spelling normalization (Garrette and Alpert-
Abrams, 2016). In fact, dialectal Arabic is also frequently
romanized, compounding the problem by lacking a standard
orthography on either side of transliteration (Al-Badrashiny
et al., 2014). Automatic processing of romanized text for
languages using Perso-Arabic scripts is relatively common
in the NLP literature, including, of course, Arabic —e.g., the
above citations and Chalabi and Gerges (2012) — but also
Persian (Maleki and Ahrenberg, 2008) and Urdu (Irvine et
al., 2012; Bogel, 2012; Rafae et al., 2015).

Romanization can make language identification particu-
larly difficult, as multiple languages may share similari-
ties in their romanized strings. In fact, Bogel (2012) used
rule-based XFST-encoded transliteration between roman-
ized Urdu and its native Perso-Arabic script in both direc-
tions, to allow the romanized text to be used as an interme-
diate representation between Hindi and Urdu. In addition,
code switching is common, e.g., between Japanese and En-
glish in language learners (Nagata et al., 2008), between di-
alectal and modern standard Arabic (Eskander et al., 2014),
or between dialectal Arabic, French and English (Voss etal.,
2014). Adouane et al. (2016) looked at a language identifi-
cation scenario that included both romanized dialectal Ara-
bic and romanized Berber. Zhang et al. (2018) looked at
large-scale language identification that included some eval-
uation of Hindi written in the Latin script.

While most research looks at transforming romanized text
into a native script, some has looked at automatic romaniza-
tion, as the means of, for example, normalizing SMS mes-
sages or other texts into some formal romanization standard,
such as those used for glossing of linguistic texts (Aroon-
manakun, 2004; Kim and Shin, 2013). Others have simply
tried to perform text normalization directly, e.g., based on
clustering (Rafae et al., 2015).

Language modeling of romanized text for these languages,
with their lack of orthography, has been relatively under-
explored. There are important use scenarios for such mod-
els, including the potential for language identification of ro-
manized text — a task that has been studied though with-
out the benefit of advanced language modeling methods
— but also for models used in mobile keyboards for auto-
correction, gesture-based text entry and/or word prediction
and completion (Wolf-Sonkin et al., 2019).

The lack of standard orthography in the Latin script in these
South Asian languages, coupled with the fact that large
repositories of parallel text in these scripts do not arise spon-
taneously, makes modeling (and validating models) chal-
lenging. The Dakshina dataset is intended to provide pub-
licly available data for training and validating models in a
diversity of regional languages.

3. Data

The data in the Dakshina dataset is all based on Wikipedia
text, extracted in March, 2019, in 12 South Asian languages.
The collected languages, and statistics about the quantity
of data per language are shown in Table 1. Four of the 12
languages are Dravidian languages (kn, ml, ta, te), while
the rest are Indo-Aryan languages. The text in two of the
languages (sd, ur) is written in Perso-Arabic scripts; the rest
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BCP Native script Wikipedia Romanization Lexicon Romanized Wikipedia

Language | 47 |Script sentences (x1000) | words per | types (native script)| entries | sentences |native words

tag training | validation | sentence train | dev/test|per type | romanized | per sentence
Bengali bn |Bengali 895.1 26.7 12.2 25,000 | 5,000 3.8 10,000 12.1
Gujarati gu | Gujarati 146.1 24.8 15.3 25,000 | 5,000 4.2 10,000 15.4
Hindi hi |Devanagari | 1065.0 | 24.9 17.3 25,000 | 5,000 1.8 10,000 17.7
Kannada kn |Kannada 678.9 23.6 11.0 25,000 5,000 2.0 10,000 11.1
Malayalam| ml |Malayalam | 747.5 25.8 8.7 25,000 | 5,000 23 10,000 8.6
Marathi mr |Devanagari | 361.3 25.8 10.1 25,000 | 5,000 23 10,000 9.8
Punjabi pa | Gurmukhi 2423 26.1 17.5 25,000 | 5,000 2.8 10,000 17.8
Sindhi sd |Perso-Arabic| 77.9 28.0 19.0 15,000 | 5,000 2.6 9,999 18.5
Sinhala si |Sinhala 200.6 28.6 14.2 25,000 | 5,000 1.7 10,000 14.3
Tamil ta |Tamil 1144.4 26.2 9.6 25,000 | 5,000 2.7 10,000 9.5
Telugu te | Telugu 874.4 24.7 9.9 25,000 | 5,000 23 10,000 9.4
Urdu ur |Perso-Arabic| 507.3 25.7 17.2 25,000 5,000 4.2 9,759 17.4

Table 1: Data quantity by language.

are written in Brahmic scripts.

For each language, there are three types of data. First, there
is native script Wikipedia text in the language, which is split
into training and validation partitions. Information about
pre-processing of the text, and what raw data is included
in the collection is provided in §3.1.. Second, there is a
romanization lexicon in each language, akin to a pronunci-
ation lexicon such as Weide (1998), whereby words in the
native script are accompanied by some number of attested
romanizations. § 3.2. will detail the process by which these
annotations were derived. Finally, 10,000 sentences from
the validation partition of the native script text detailed in
§ 3.1. were manually romanized by annotators — see § 3.3.
for details on the collection of these romanizations. In addi-
tion, the README at the Dakshina dataset URL provided
in footnote 1 contains some additional details on the dataset
beyond what is covered here.

3.1.

Our intent in collecting native script text from Wikipedia
was to provide a useful extraction (and partitioning into
training and validation sets) of non-boilerplate full sen-
tences that fall primarily in the Unicode block of the native
script. We collected the text in a way that allows for rel-
atively easy tracking of each sentence back to the specific
Wikipedia page where it occurred. This provides some de-
gree of future flexibility, e.g., taking into account consider-
ations that we are not currently tracking, such as topic; or
perhaps using some other kind of sentence segmentation.
We perform minimal pre-processing (detailed below) and
provide intermediate data where useful. Finally, the data is
partitioned into training and validation by Wikipedia page,
so that sentences in the validation sets never come from the
same Wikipedia page as any sentences in the training set.

The first task of extraction was to ensure that we were
extracting non-boilerplate sentences primarily in the
Unicode block of a native script of the language. We were
not interested in, for example, extracting tabular data, lists
of references, or boilerplate factoids about locales, all of

Native script text

3The Wikipedia pages that we accessed for Punjabi were in the
Brahmic Gurmukhi script not the Perso-Arabic Shahmukhi script.

which occur with some frequency in Wikipedia. Through
some amount of trial-and-error, we determined a set of
high-level criteria for excluding Wikipedia pages that
consist largely of such material from our collection. We
chose to pursue such a strategy, rather than, say, relying on
some kind of modeling solution (e.g., language models) to
avoid biasing the data with assumptions implicit in such
models. We are explicit about the criteria that were used
to exclude pages, and the identities of omitted pages are
included with the corpus. We omitted pages:

o that redirect to other pages.

e containing infoboxes about settlements or jurisdictions.

e containing templates with a parameter named state
valued either collapsed, expanded or autocollapse.

e referring to censusindia or en.wikipedia.org.

o with wikitable or lists containing more than 7 items.

From pages that were not excluded from the collection by
the above criteria, we then aggregated statistics by section
heading, to determine sections that generally consist of a
significant amount of text outside of the block of the native
script. For example, reference sections tend to have a very
high percentage of Latin script relative to other sections in
the Wikipedia pages of these South Asian languages.
Determining the amount of text in collected sentences to
allow from outside of the native script Unicode block can be
tricky, because such characters can occur naturally in fluent
text, e.g., Basic Latin block punctuation and numerals, or
parentheticals giving the Latin script realization of a proper
name. For this reason, for each native script, we defined
two sets of characters: special non-letter characters A/, and
characters within the native script Unicode block B. The
special non-letter characters A/ come from across Unicode,
including non-letter (i.e., not a-z or A-Z) Basic Latin block
characters; Arabic full stop (U+06D4); Devanagari Danda
(U+0964); any character in the General Punctuation block;
and any digits in B. Note that the intersection N (B is
generally non-empty.

For individual sentences or whole sections of text, we can
aggregate statistics about how many characters fall within
N and B, as well as how many fall within their intersection.
Our exclusion criteria are based on three values:
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1. The fraction of characters ¢ from a string or section
such that ¢ € N and ¢ € B. (Should be low.)

2. The fraction of characters ¢ from a string or section
such that ¢ € B. (Should be high.)

3. The fraction of whitespace-delimited words from a
string or section with at least one character ¢ such that
c € Band ¢ € N. (Should be high.)

We first aggregate statistics about sections with a specific
title across all pages, and if the percentage of characters ¢
from all sections with that title such that ¢ & B and ¢ ¢ N
is above 20%, then sections with that title are omitted. For
example, the section title T=<Y in the Hindi collection has
over 50% of its characters falling outside of 3 (Devanagari
in this case) and not in A, which is perhaps not surprising
for a section title that translates as ‘references’.

After filtering sections identified as above, we then segment
sections into individual sentences. We do not train segmen-
tation models, rather rely on simple deterministic methods,
to avoid biasing the collection. First, we use any newline
segmentation present in the Wikipedia data to segment sec-
tions. Next we use the ICU* sentence segmenter, initialized
with the locale for the language being processed. Addition-
ally, we perform NFC normalization on all sentences in the
collection. This leaves us with segmented sentences, which
are then also filtered based on our three values enumerated
above. In particular, we include only sentences that have:
(1) at most 10% characters ¢ such that ¢ ¢ B and ¢ € N;
(2) at least 85% characters ¢ such that ¢ € 5; and (3) at
least 85% of whitespace-delimited words have at least one
character c such that c € Band c € NV.

As with earlier filtering stages, we include details in the
dataset of the sections and sentences that are omitted from
the collection, along with the origin page information for
all sentences, to allow for other methods of filtering or pre-
processing by those making use of the dataset.

As can be seen from Table 1, the number of sentences and
the words per sentence does vary, from less than 100 thou-
sand sentences in Sindhi to over a million in Hindi and
Tamil; and from less than 10 words per sentence in Dravid-
ian languages Malayalam, Tamil and Telugu; to between 17
and 19 words for Hindi, Punjabi, Sindhi and Urdu.

3.2. Romanization lexicons

For each of the languages in the dataset, we additionally
provide a romanization lexicon, consisting of entries pair-
ing native script words with romanizations attested by na-
tive speaker annotators. We also give the number of times
each romanization was attested during data collection. Note
that this is not a frequency of usage, but is rather the num-
ber of times the romanization was elicited from an annotator
for the given native form. The romanizations were elicited
through an initial request and a follow up elicitation. For
each native script word, first, they were asked, “How would
you write this word in the Latin script?” After providing
their romanization of the word, they were asked, “Can you
think of any other ways that the word is written in the Latin
script?” The third column of the each lexicon is the num-
ber of attestations. Thus, for example, entries for the Tamil

*http://icu-project.org

word 21&8la6T (refugees) in the training lexicon are:

SisSleer  agathigal 2

S&dser  akathigal 1
indicating that the first romanization is attested twice, while
the second one was attested just once.
It should be noted that a substantial number of words in
many of the lexicons are English loanwords, which present
something of a special case, to the extent that the standard
English orthography is typically the most commonly at-
tested romanization of the word. This may be accompanied
by romanizations that diverge from English orthography,
particularly since English spellings are relatively opaque to
pronunciation. For example, in the Tamil training lexicon:

QLiblér tempil 1

QLT  temple 3
the English word “temple” receives 3 attestations of the
correct spelling alongside one attestation of a phonetically
spelled romanization. Different annotators may choose to
attest more alternatives than others, and for some languages
we end up with many alternatives for certain exemplars, as
evidenced by the “entries per type” column in Table 1.
The lexicon in each language consists of a sampling of na-
tive script words that have frequency greater than one in the
training section of the Wikipedia text for that language, as
described in § 3.1.. We have 30,000 entries for all languages
except Sindi, where we have 20,000. For convenience, we
have partitioned the data, with 5,000 being considered vali-
dation examples (split evenly between development and test
sections), and the rest in a training section.
To improve the training/validation separation, we ensured
that no validation set word shares a lemma with any training
set word. To obtain lemmata (of which there may be mul-
tiple) for each word, we used Morfessor FlatCat (Gronroos
et al., 2014) to train a model for each language on the first
77853 lines® of its shuffled Wikipedia text. Using standard
hyperparameters yields slightly over-segmented (and thus
more conservatively separated) lemmata for each word in
training and validation sets.

3.3. Romanized Wikipedia

Finally, we provide romanizations of full Wikipedia sen-
tences, randomly selected from the validation set of the na-
tive script Wikipedia collections described in §3.1.. For
each language in the dataset, we had 10,000 sentences
romanized by native speakers. We split long sentences
(greater than 30 whitespace delimited tokens) into shorter
strings for ease of annotation, recursively partitioning each
string at the halfway point until strings below the length
threshold were obtained. After annotation, these segmented
strings were rejoined, and the resulting pairs of native script
and romanized sentence pairs are provided in the dataset in
both their split and rejoined versions.

Annotators were instructed to write the given sentences as
they would if they were writing them in the Latin script.
Strings and characters already in the Latin script, or out-
side of the native script Unicode block, were to be passed
through to the romanized sentence unchanged. Beyond this,
we provided no specific guidance on romanization strategy.

5This is the most text available in all languages, allowing com-
parability when manually inspecting segmentation granularity.
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In Urdu and Sindhi, a small number of sentences (just over
200 in Urdu and just one in Sindhi) ended up being from an-
other language written in the Perso-Arabic script, and these
sentences were omitted from the set, as can be seen from the
number of sentences in Table 1. Again, there was no filter-
ing or biasing of the data based on existing language iden-
tification models; rather filtering was based on script and
page or section characteristics, leading to this small num-
ber of examples from outside the language.

We treat these 10,000 sentences as a validation set, and split
each language in half into dev and test sets. For example,
from the tab delimited Hindi dev set:

Safs ag M A HAEI Jabki yah Jainon se km hai.

A single romanization was elicited for each sentence. These
resulting romanizations were then put through a validation
phase, where they were sent to annotators who were asked
to transcribe them in the native script of the language. This
round-trip validation cannot achieve perfect accuracy, due
to a few considerations. First, some sentences have a cer-
tain amount of content outside of the native script Unicode
block, as described in §3.1.. Second, there is some vari-
ability when it comes to writing: things like punctuation or
digits can come from the native block — e.g., Danda for full
stop as in the example above, or basic Latin block period
(.); or the Devanagari digit 4 and the Latin script digit 5,
which represent the same value. We see the representation
ofyears, for example, in both the native and Latin script dig-
its in the native script Wikipedia,® something that cannot be
determined when just given the romanized version. Addi-
tionally, there is some variability of spelling in the native
scripts, e.g., of proper names or English loanwords.
The results of this validation phase are also released in the
dataset, along with an assessment of the match between
each original native script string and the string produced
during validation. To perform this assessment, we put both
the original strings and validation output through extensive
additional visual normalization beyond NFC normalization,
whereby visually identical strings were mapped to the same
string of Unicode characters. While this visual normaliza-
tion does not capture all equivalences, it does reduce spuri-
ous mismatches to some degree. Mean character error rate
over the set between the original and validation strings after
normalization was 0.054 (standard deviation 0.012), with a
high of 0.084 (Sindhi) and low of 0.04 (Tamil).

4. Experimental Baselines

The three sections of our collection offer several interest-
ing tasks to investigate, and we provide initial baselines
for three of them: single word transliteration, full sentence
transliteration, and language modeling. These baselines are
intended to give some sense of how to approach model vali-
dation with this dataset, not necessarily to squeeze every last
bit of accuracy on the tasks. Much of the hyper-parameter
tuning, for example, model dimensions, number of word-
pieces, etc., was performed for each task on some subset of
the languages on a separate held aside set, and then used

®Note that the Wikipedia frontend (as in Hindi) may have a
setting to coerce digits into one or another Unicode block, further
obscuring original author intent.

for all languages, rather then performing such tuning on
a language-by-language basis — although training stopping
criteria were, of course, applied for each task independently.

4.1. Evaluation metrics

For two of the three tasks, we evaluate transliteration, which
can be evaluated in terms of error rates compared to the ref-
erence string. Error rates are the number of substitutions,
deletions or insertions within a minimum-error rate align-
ment of the system output with the reference, per token in
the reference. Tokens can be taken as individual Unicode
characters (what we call character-error rate, CER) or as
whitespace delimited substrings (what we call word-error
rate, WER). For single word transliteration, we report both
CER and WER; for full sentence transliteration, we report
just WER. We present all error rates as percentages and pro-
vide mean and standard deviation over 5 trials.

For language modeling results, we are evaluating open-
vocabulary models (as motivated in §4.4.), hence we re-
port bits-per-character (BPC). This is a standard measure
(related to perplexity) typically applied to character-level
language models. Per sample, it is calculated as the total
negative log base 2 probability of the correct output char-
acter sequence, divided by the number of characters in the
output string. Additionally, since within each language we
have parallel native script and romanized corpora that we
are training and evaluating on, we can follow Cotterell et
al. (2018) and Mielke et al. (2019) in comparing language
modeling results across parallel data samples by normal-
izing with a common factor. We call this bits-per-native-
character (BPNC): total negative log base 2 probability di-
vided by the number of characters in the native script strings
(rather than the romanized strings).

4.2. Single word transliteration

For single word transliteration, we train on the training sec-
tion of the romanization lexicon for each language and val-
idate on the dev section of that language’s lexicon. The test
section remains in reserve. For each romanization in the
dev set (ignoring the number of attestations), we take the
Latin script string as input and evaluate the accuracy of the
1-best output of our models. The training data consists of
all attested pairs from the training partition of the lexicon,
each pair repeated as many times as it was attested.

4.2.1. Methods

Pair n-gram Models. Pair n-gram models, also known
as joint multi-gram models (Bisani and Ney, 2008) are a
widely used non-neural modeling method for tasks such as
grapheme-to-phoneme conversion, as well as for transliter-
ation (Hellsten et al., 2017). The basic idea is to take a word
and its transliteration, such as the Tamil version of the En-
glish word “temple” presented earlier (GL_tbi9eT temple)
and use expectation-maximization to derive a character-by-
character alignment, such as the following:

Lt Qe wim <3 wp o0 eml dhee

Each symbol consists of an input side and an output side,
separated by a colon, where the underscore character ()
represents the empty string. For the above sequence, each
character on the input side is from the Tamil script (or )
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Character (CER) and word (WER) error rate percentage mean (std)
pair 6g transformer LST™M
Lang CER WER CER WER CER WER
bn 14.2 (.02) 54.0(.10) | 13.2 (.07) 50.6 (.12) | 13.9 (.15) 54.7 (.45)
gu 12.9 (.04) 53.5(.17) | 11.9(.15) 50.5(.53) | 12.6 (.06) 53.3(.22)
hi 14.7 (.04) 53.1(.06) | 13.4 (.21) 50.0(.63) | 13.9(.10) 53.0 (.46)
kn 72(.04) 36.6(.14) | 63(.12) 33.8(47) | 6.8(04) 37.5(22)
ml 10.0 (.07) 44.7(22) | 9.0 (.04) 41.7(.15) | 9.2(.03) 43.7(.25)
mr | 12.4(.03) 51.8(12) | 11.6 (.10) 50.3 (.45) | 12.5(.08) 54.6 (.47)
pa 17.9 (.07) 60.6 (.12) | 17.4 (.33) 59.1(.95) | 17.5(.04) 59.6 (.28)
sd | 20.5(.06) 629 (.17) | 22.0(.32) 66.8(.67) | 20.6 (.11) 63.5(.43)
si 9.1(.01) 432(.08) | 9.2(10) 453(.16) | 93(.04) 452(.14)
ta 9.3 (.08) 36.8(.26) | 9.4(52) 343(78) | 8.4(12) 34.7(67)
te 6.9 (.02) 34.4(11) | 6.2(.11) 324(46) | 6.8(08) 34.9(37)
ur | 20.0(.07) 64.3(.16) | 19.5(.10) 63.3(.24) | 19.4 (.08) 63.4(.25)

Table 2: Single word transliteration (Latin to native script) performance in character-error rate (CER) and word-error rate
(WER) for three systems, averaged over 5 trials. Best CER for each language is bolded for ease of reference.

and each character on the output side is from the Latin script
(or ). Note that diacritics such as virama (:3 ) are separate
characters in this string, and can align to the empty string or
to silent characters in the English orthography.

Given such a string of “pair” symbols, we can train an n-
gram language model, which provides a joint distribution
over input/output string relations. Converted into a finite-
state transducer, this can be used to find the most likely
transliterations for a given input string in either direction
(native to Latin or vice versa). See Hellsten et al. (2017) for
more details on such approaches. For these experiments, we
trained 6-gram models with Witten-Bell (1991) smoothing.

LSTM Sequence-to-sequence. This baseline treats
transliteration as a standard sequence-to-sequence prob-
lem, and applies an encoder-decoder architecture to it,
similar to the type used for machine translation in Bah-
danau et al. (2014). The architecture consists of a deep
bidirectional encoder network’, itself made up of layers
containing a forward LSTM and a backward LSTM,
connected to a forward decoder LSTM by an attention
mechanism.

Character input was embedded at each input timestep with
an embedding size of 512. The encoder consisted of 2 lay-
ers. The first was a bidirectional layer, where both forward
and backward LSTMs contained 256 hidden units. The sec-
ond layer was unidirectional, and consisted of a forward
LSTM with 256 hidden units. The decoder consisted of a
3-layer LSTM with 128 hidden units. The encoder was con-
nected to the decoder by a Luong-style attention mechanism
(Luong et al., 2015). Training was performed via the Adam
optimizer (Kingma and Ba, 2014) with a batch size of 1024
and a base learning rate of 0.01. Gradients were clipped at
5.0. Maximum output length was capped at 50 characters.
During training, for the encoder dropout between LSTM
layers was 0.7, while recurrent connections had dropout set
to 0.4; and for the decoder dropout between LSTM layers
was 0.25, while recurrent connections had dropout set to
0.6.

"As  described in
training/models/

http://opennmt.net/0penNMT/

Transformer Sequence-to-Sequence. This baseline is
similar to the LSTM sequence-to-sequence baseline, but
swaps out the the LSTM encoders and decoders for a more-
powerful Transformer architecture (Vaswani et al., 2017).
The goal is to see if the additional model complexity results
in worthwhile performance gains.

Following common usage in machine translation, we use
sub-word tokens when training our transformer models,
here and in §4.3.. For single word transliteration, where
a word is the string to be processed, we simply use single
characters as our sub-word tokens. We use the architec-
ture from Chen et al. (2018, Appendix A.2), with model
dimension of 128, hidden dimension of 1024, 4 attention
heads and 4 transformer layers for both encoder and de-
coder. Dropout was set uniformly to 0.36 and we use the
Adam optimizer. Otherwise, the settings are the same as in
Chen et al. (2018).

4.2.2. Results

Table 2 presents CER and WER performance of our three
transliteration models across all 12 languages, averaged
over 5 trials (reporting means and standard deviations) with
the lowest CER result for each language bolded for ease of
reference. In fact, all three systems fell within 2% absolute
CER performance on all of the languages, with the trans-
former providing the best performance on 8 of the 12 lan-
guages, and the LSTM and pair 6g model best on just 2 of
the languages each. Note that one of the languages where
the non-neural model performed best was the language with
the sparsest training data (sd). Overall, we can observe that
the Perso-Arabic scripts proved most difficult, and that the
Dravidian languages were among the easiest.

4.3. Full sentence transliteration

Full sentence transliteration differs from single word
transliteration in that the context of the rest of the sentence
can help to resolve ambiguities when determining the in-
tended words. Note that we are validating on manual ref-
erence annotations (i.e., the dev set from the romanized
sentence collection outlined in § 3.3.), but are not training
on any given parallel data. Instead, we have native script
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original: Q9 clear FNICOT HILTH 1‘3%11?1’/2&3@ AIFT 9 (GHT T (T2 & refl 3|
manually romanized:  Arpor clear commender madhome terminal/scriena thaka sob texts ba lekha muche fela hobe.
(a) reference: QI FHICSI WIS DINAICE T AT 7 (GO T @7 Y7 &l 3
system output: QI I FNICHT WA BIFICET Wi 16T 5 (GHO T (@4 JOZ Felt 7@
WER: 1 insertion, 13 reference words = 7.7
(b) reference: QI clear FNICDHI NI Wﬁ/ﬁcﬁﬁ IFT 3 (GHG T (o747 IR (el 3«

system output:
WER:

QI PRI FHICST WIS BIffFICe /i At 19 (GO T T 17 el (A,
2 substitutions, 13 reference words = 15.4

Table 3: The original native script sentence and manual romanization, alongside the reference native script string, hypothet-
ical system output and WER for (a) whitespace and (b) pass-through methods for evaluating full-sentence transliteration.

full sentence text (the training section of the native script
text collection outlined in §3.1.) along with a romaniza-
tion lexicon for single words (the training section of the
lexicons outlined in § 3.2.). This represents a very com-
mon use scenario, as stated earlier, since large-scale paral-
lel data is not generally available. We approach this task
in two ways: first, with a noisy channel model; and second,
with a sequence-to-sequence model trained on simulated ro-
manizations. We additionally provide single word translit-
eration baselines, which do not make use of any sentence
context, but rather transliterate each word independently.

4.3.1. Full sentence evaluation

Note that the romanization lexicons are exclusively between
native script words and possible Latin script romanizations
of those words, hence they do not cover any characters
falling outside of the Latin alphabet on one side (i.e., a-z)
or a subset of the native script Unicode block on the other
side, which does not cover things like punctuation or dig-
its. As stated in § 3.3., annotators were instructed to realize
the sentence in the Latin script, and to pass any substrings
not in the native script through to the resulting romanized
sentence. Punctuation and digits in the Latin script are left
in the Latin script, and those in the native script (or, e.g.,
Danda) are typically converted to the Latin script equiva-
lents. Further, some amount of Latin script content does
appear in the native script sentences. For example, from
the Bengali collection, we have the sentence shown in Ta-
ble 3, which is discussing the use of the “clear” command
in a shell script.

From this example we can see several things. First, the
Latin script word “clear” appears in the romanized string
with no indication that it was also in the Latin script in
the source sentence. (Other English words such as “ter-
minal” and “texts” were written in the native script in the
source.) The Latin script slash (/) is left as-is in the roman-
ized version, and the end-of-sentence Danda character (1) is
‘transliterated’ to a period.

Given that we are not relying on given parallel training data,
there are several ways we can evaluate transliteration with
these sentences. First, we can elide characters on the roman-
ized side that fall outside of the covered Latin alphabet char-
acters (a-z), after de-casing. We can then transliterate these
strings. To evaluate the output, we will distinguish two ap-
proaches, which we will call whitespace, and pass-through.
Let B C B be the native script characters included in the
romanization lexicon. In a whitespace evaluation, we will
treat any reference character ¢ ¢ Bas whitespace, and eval-

uate word-error rate versus those strings. In pass-through
evaluation, we can reintroduce the out-of-vocabulary (not
a-z) characters from the romanized side into the final native
script system output, and evaluate word-error rate versus the
original reference strings.

To illustrate the difference between these two approaches,
let’s assume that we achieve perfect transliteration of all
the words in the input manually romanized sentence in Ta-
ble 3. Table 3 presents the reference, system output and re-
sulting WER for both of these evaluation approaches. The
inclusion of the Latin script word “clear” in the reference
increases the number of reference tokens in pass-through
evaluation (b) by one, but the inclusion of slash simultane-
ously reduces the number of reference tokens by one, hence
the final number of reference words is the same for this ex-
ample in both approaches. In both approaches, the second
word is an error — an insertion in (a) or a substitution in (b).
However, the final token in the sentence has a mismatch in
(b) but not in (a), hence its error rate is double.

Using the pass-through approach to evaluate full sentence
transliteration, however, also allows comparison with a full
sequence-to-sequence approach, that is trained as follows:
For each sentence in the native script training data, auto-
matically romanize substrings that are covered in the ro-
manization lexicon and pass other tokens (e.g., any Latin
script strings or punctuation) unchanged to the romanized
sentence.” A sequence-to-sequence model trained on such
pairs can be directly evaluated on the kinds of full sentences
that we have in the collection, corresponding to evaluation
using the pass-through approach.

In our results, we differentiate between transformer models
trained with the tokenization approach taken in whitespace
evaluation (‘whitespace’ transformer) and those with full
sequence-to-sequence training (‘full string’ transformer).
See § 4.3.2. for details on these variants. For pass-through
evaluation of the output of the ‘whitespace’ transformer, as
with the single word baselines and noisy channel output,
we reintroduce out-of-vocabulary characters into the output
string, whereas the output of the ‘full string’ transformer
can be directly compared with the reference strings without
modification.

Finally, a note about how casing in the input Latin script is
handled in these experiments. Since the romanization lexi-

8For illustration, we will assume that the word “clear” is
transliterated by the system as [ERUER

For deterministically romanizable characters such as Danda,
Arabic full stop or native script digits, we convert to the Latin
script equivalents in this romanization.
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Whitespace evaluation WER% mean (std)

single word noisy | whitespace

Lang | pair 6g |transformer| channel |transformer
bn | 35.0 (.11) | 32.5(0.71) | 18.6 (.02) | 19.7 (0.12)
gu |34.4(.07)|28.1(1.37)|16.2(.03) | 21.8 (1.36)
hi |24.6(.14) | 25.0(1.70) | 11.0 (.01) | 15.8 (0.24)
kn |23.4(21)|21.0(0.27) | 17.1 (.03) | 18.3 (0.44)
ml |39.4(.69)|37.3(0.31) | 23.5(.04) | 21.4 (0.27)
mr |29.2(.03) | 28.4 (0.62) | 13.8 (.03) | 13.8 (0.07)
pa | 38.2(.35)|36.1(1.14) | 16.4 (.02) | 19.3 (0.04)
sd | 55.3(.13)|63.5(1.38) | 26.1 (.07) | 37.3 (1.20)
si | 37.0(.03) | 35.9(0.96) | 20.3 (.02) | 23.0 (0.77)
ta | 30.7(.25) | 31.9(0.95) | 19.3 (.04) | 18.9 (0.08)
te | 27.6(.06) | 26.4 (0.22) | 17.0 (.02) | 18.9 (0.10)
ur | 33.8(.08) | 44.5 (3.25) | 12.5(.08) | 19.3 (0.47)

Pass-through evaluation WER% mean (std)

single word noisy | whitespace || full string

pair 6g |transformer| channel |transformer || transformer
39.7 (.09) | 37.6 (0.66) | 25.8 (.01) | 27.5 (0.07) || 33.0 (0.14)
34.9 (.08) | 28.5 (1.37) | 17.0 (.02) | 24.5 (1.38) || 25.4 (1.44)
28.0 (.10) | 28.6 (1.68) | 15.3 (.01) | 21.2 (0.13) || 25.7 (0.32)
24.0 (.20) | 21.6 (0.28) | 18.3 (.02) | 20.9 (0.41) || 21.9 (1.02)
39.1 (.68) | 37.0 (0.31) | 23.7 (.04) | 22.2 (0.19) || 22.9 (0.14)
30.8 (.03) | 30.1 (0.60) | 16.3 (.03) | 16.8 (0.07) || 16.0 (0.20)
40.0 (.36) | 39.2 (1.08) | 21.1 (.02) | 25.1 (0.06) || 29.3 (0.46)
55.9(.10) | 63.6 (1.17) | 29.6 (.06) | 41.3 (0.84) || 43.1 (1.21)
37.5(.02) | 36.4 (0.93) | 21.2 (.02) | 24.7 (0.71) || 26.0 (1.12)
30.7 (:24) | 31.9 (0.93) | 19.9 (.04) | 20.1 (0.09) || 19.6 (0.05)
28.0 (.06) | 26.7 (0.20) | 17.9 (.02) | 21.1 (0.06) || 21.2 (0.18)
38.7 (.08) | 48.2 (3.15) | 18.9 (.08) | 26.2 (0.33) || 29.4 (0.18)

Table 4: Full sentence transliteration (Latin to native script) word-error rate (WER) percent performance, averaged over 5
trials, using both the whitespace and pass-through evaluation methods presented in §4.3.1..

cons in the dataset are all de-cased, upper-case Latin char-
acters will only appear in the simulated training data when
they occur in the output (native script) strings and are passed
through to the input string unchanged, as described above.
For this reason, in all trials, Latin characters in the input
strings are converted to lower-case prior to input to any of
the transliteration systems.

4.3.2. Methods

Single word baselines. For these results, we use the pair
6g and transformer models presented in the § 4.2. to translit-
erate each word independently.

Noisy channel. We combined the pair 6g transliteration
model used for the single word transliteration in § 4.2. with
an unpruned Katz-smoothed trigram language model over
output (native script) sentences, trained on the training por-
tions of the native script Wikipedia collection presented in
§3.1.. We sped up decoding by first extracting the k-best
transliterations from each word, then combining with the
language model.

Full sentence transformer. To derive the parallel train-
ing data needed for a sequence-to-sequence model, we first
trained a single word transformer transliteration model in
the opposite direction, from native to Latin script. Then, for
each native script substring in the full sentence Wikipedia
collection, we used that model to automatically create a ro-
manized version of each instance by sampling from the 8-
best romanizations for that substring. We then produced
full romanized sentences in two ways, as detailed earlier:
by a) treating substrings outside of the basic Latin alphabet
(a-z) as part of whitespace; or b) re-introducing substrings
outside of a-z in the native script sentence into the roman-
ized sentence, unaltered apart from a deterministic mapping
of native script punctuation and digits to their Latin script
equivalents.

From this simulated parallel data, sequence-to-sequence
transformer models were trained. As stated earlier, we call
the transformer trained on data produced by method (a)
‘whitespace’ transformers; and that from method (b) ‘full
string’ transformers. For training either model, we follow

the same approach for transformer model training outlined
in §4.2., with a few changes to the hyperparameters. In-
stead of single character sub-word tokens, we make use of
a dictionary of 32k “word pieces” (over both input and out-
put vocabularies), using the approach outlined in Schuster
and Nakajima (2012). We increased the model dimension
to 512, the hidden dimension to 2048, the number of heads
to 8, number of layers to 6, and reduced the dropout to 0.1.
Otherwise we train as detailed in §4.2..

4.3.3. Results

The four leftmost columns in Table 4 present mean WER
(and standard deviation) over five trials for each language
for each of our four methods using whitespace evaluation
as detailed in §4.3.1.. Including sentence context in the
model — either through noisy channel or transformer mod-
eling — provides a large reduction in error rate versus sin-
gle word transliteration. Interestingly, the noisy channel
approach provides better performance for 9 of the 12 lan-
guages, sometimes substantially better. It seems that the
closed vocabulary was not overly constraining for most lan-
guages, though the highly inflected Dravidian languages
of Malayalam and Tamil were both better modeled by the
transformer.

The five rightmost columns in Table 4 present results using
the pass-through evaluation method outlined in §4.3.1. —
the same four approaches from the whitespace evaluation
columns plus the full string transformer models. The results
show similar patterns to the whitespace evaluation, with the
same 9 languages performing better with the noisy channel
approach than either of the transformers. The full string
transformer is better than the whitespace transformer in 2 of
the remaining 3 languages, but is (sometimes substantially)
worse than the whitespace transformer on the 9 languages
where the noisy channel model performs best.

4.4. Language modeling

Language modeling of romanized text is also something that
can be evaluated with this collection. Note, however, that
we do not provide a large repository of full sentence roman-
ized text for training. This is a realistic starting point for de-
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native romanized
Lang script Viterbi best Sampled 1x Sampled 10x
BPC BPC BPNC BPC BPNC BPC BPNC
bn 1.64 2.58 2.80 2.19 2.37 2.15 2.34
gu 2.05 3.18 3.90 2.24 2.75 2.15 2.64
hi 1.70 2.25 2.48 2.15 2.38 2.14 2.36
kn 1.77 2.00 2.32 1.88 2.19 1.85 2.15
ml 1.54 2.10 2.28 1.84 2.00 1.79 1.95
mr 1.82 2.22 2.44 2.13 2.34 2.03 2.23
pa 1.93 2.76 3.16 2.34 2.68 2.25 2.57
sd 2.15 3.62 4.45 2.98 3.67 2.92 3.59
si 1.95 2.44 291 2.11 2.52 2.00 2.39
ta 1.46 2.24 2.44 1.90 2.07 1.88 2.04
te 1.79 2.18 2.53 1.99 2.30 1.95 2.27
ur 1.74 2.93 3.50 2.27 2.71 2.20 2.63

Table 5: Language modeling results, presenting bits-per-character (BPC) and bits-per-native-character (BPNC) for each
language across four conditions: native script; Viterbi sampled; and k-best sampled over 1 or 10 copies of the corpus.

veloping useful language models, since discovery of roman-
ized text in a language on-line will require an initial model
for language identification. To get around this limitation,
we can take the kind of simulated romanizations used for the
full sentence transliteration training data in § 4.3., and use
it to train a language model, while evaluating on our human
romanized sentences.'” We look at several methods of sim-
ulation and compare the language modeling performance
with modeling of the original native script strings, using
bits-per-native-character (BPNC, described in § 4.1.) as the
means for comparing across training and validation corpora
that encode the same information in different scripts.

4.4.1. Methods

LSTM character-based language models. For all trials,
we train a simple LSTM character-based language model
(Sundermeyer et al., 2012) with a character embedding size
of 200 and a single hidden layer with 1500 units. We use
an SGD optimizer with momentum, batch size of 50 and
dropout of 0.2.

Simulating romanized strings. For comparison, we use
two methods to simulate romanized strings. First, for each
word in the native script Wikipedia training data, we use
the 6g pair transliteration model'! described in §4.2.1. to
produce the Viterbi best romanization for that word. Then
every instance of that native script word in the corpus is re-
placed with the romanization. Characters falling outside the
coverage of the romanization lexicon are left unchanged in
the romanized sentence. Alternatively, instead of taking the
Viterbi best romanization at each instance of the word, we
sample from the 8-best romanizations, according to the dis-
tribution placed by the model over that list after applying

10As noted when training full string transliteration models in
§4.3.1., our simulation methods result in only lower-case Latin
script strings, other than where Latin script characters occur in
the original strings. For that reason, for the romanized trials in
this section, we evaluate language models on de-cased reference
strings. We leave for future work incorporation of casing informa-
tion into the simulation to enable evaluation on cased strings.

" These joint models can transliterate in either direction, i.e.,
from native to Latin script or the reverse.

softmax. Further, we can create a single romanized ver-
sion of the training corpus, or continue our sampling proce-
dure over multiple copies of the native script training cor-
pus. Here we evaluate 1 copy (1x) and 10 copies (10x).
Finally, Unicode characters that occur less than twice in the
training corpus for a particular language and condition (na-
tive script or romanized) are replaced with the Unicode re-
placement character (U+FFFD) in both training and evalu-
ation.

4.4.2. Results

Table 5 presents BPC for each language, both for native
script text and romanized text, the latter when trained on
Viterbi best or sampled romanizations (1x or 10x) of the
training corpus. Sampling is clearly far superior to using
Viterbi best, and sampling the corpora 10 times provides a
modest improvement over a single copy. Comparing the
native script and romanized results via BPNC demonstrates
that, unsurprisingly, modeling of the text in the Latin script
in these languages is a much harder task than modeling in
the native script.

5. Conclusion

We have presented the Dakshina dataset, a new Wikipedia-
derived resource with data relevant to various use cases in-
volving natural language processing of Latin script data in
South Asian languages, including transliteration and lan-
guage modeling of both native script and romanized sen-
tences. Baseline results using a range of different modeling
methods indicate that the various tasks explored are chal-
lenging and require further research. It is our hope that this
data will spur others in the community to investigate new
methods for effectively processing South Asian languages
written in the Latin script.
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