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Abstract

A broad goal in natural language processing
(NLP) is to develop a system that has the capac-
ity to process any natural language. Most sys-
tems, however, are developed using data from
just one language such as English. The SIG-
MORPHON 2020 shared task on morpholog-
ical reinflection aims to investigate systems’
ability to generalize across typologically dis-
tinct languages, many of which are low re-
source. Systems were developed using data
from 45 languages and just 5 language fam-
ilies, fine-tuned with data from an additional
45 languages and 10 language families (13 in
total), and evaluated on all 90 languages. A
total of 22 systems (19 neural) from 10 teams
were submitted to the task. All four winning
systems were neural (two monolingual trans-
formers and two massively multilingual RNN-
based models with gated attention). Most
teams demonstrate utility of data hallucination
and augmentation, ensembles, and multilin-
gual training for low-resource languages. Non-
neural learners and manually designed gram-
mars showed competitive and even superior
performance on some languages (such as In-
grian, Tajik, Tagalog, Zarma, Lingala), espe-
cially with very limited data. Some language
families (Afro-Asiatic, Niger-Congo, Turkic)
were relatively easy for most systems and
achieved over 90% mean accuracy while oth-
ers were more challenging.

1 Introduction

Human language is marked by considerable diver-
sity around the world. Though the world’s lan-
guages share many basic attributes (e.g., Swadesh,

1950 and more recently, List et al., 2016), gram-
matical features, and even abstract implications
(proposed in Greenberg, 1963), each language nev-
ertheless has a unique evolutionary trajectory that
is affected by geographic, social, cultural, and
other factors. As a result, the surface form of
languages varies substantially. The morphology
of languages can differ in many ways: Some
exhibit rich grammatical case systems (e.g., 12
in Erzya and 24 in Veps) and mark possessive-
ness, others might have complex verbal morphol-
ogy (e.g., Oto-Manguean languages; Palancar and
Léonard, 2016) or even “decline” nouns for tense
(e.g., Tupi–Guarani languages). Linguistic typol-
ogy is the discipline that studies these variations
by means of a systematic comparison of languages
(Croft, 2002; Comrie, 1989). Typologists have de-
fined several dimensions of morphological varia-
tion to classify and quantify the degree of cross-
linguistic variation. This comparison can be chal-
lenging as the categories are based on studies of
known languages and are progressively refined
with documentation of new languages (Haspel-
math, 2007). Nevertheless, to understand the po-
tential range of morphological variation, we take a
closer look at three dimensions here: fusion, inflec-
tional synthesis, and position of case affixes (Dryer
and Haspelmath, 2013).
Fusion, our first dimension of variation, refers

to the degree to which morphemes bind to one an-
other in a phonological word (Bickel and Nichols,
2013b). Languages range from strictly isolat-
ing (i.e., each morpheme is its own phonolog-
ical word) to concatenative (i.e., morphemes
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bind together within a phonological word); non-
linearities such as ablaut or tonal morphology
can also be present. From a geographic perspec-
tive, isolating languages are found in the Sahel
Belt in West Africa, Southeast Asia and the Pa-
cific. Ablaut–concatenative morphology and tonal
morphology can be found in African languages.
Tonal–concatenative morphology can be found in
Mesoamerican languages (e.g., Oto-Manguean).
Concatenative morphology is the most common
system and can be found around the world. Inflec-
tional synthesis, the second dimension considered,
refers towhether grammatical categories like tense,
voice or agreement are expressed as affixes (syn-
thetic) or individual words (analytic) (Bickel and
Nichols, 2013c). Analytic expressions are com-
mon in Eurasia (except the Pacific Rim, and the Hi-
malaya and Caucasus mountain ranges), whereas
synthetic expressions are used to a high degree in
the Americas. Finally, affixes can variably sur-
face as prefixes, suffixes, infixes, or circumfixes
(Dryer, 2013). Most Eurasian and Australian lan-
guages strongly favor suffixation, and the same
holds true, but to a lesser extent, for South Ameri-
can and New Guinean languages (Dryer, 2013). In
Mesoamerican languages and African languages
spoken below the Sahara, prefixation is dominant
instead.
These are just three dimensions of variation in

morphology, and the cross-linguistic variation is
already considerable. Such cross-lingual variation
makes the development of natural language pro-
cessing (NLP) applications challenging. As Ben-
der (2009, 2016) notes, many current architectures
and training and tuning algorithms still present
language-specific biases. The most commonly
used language for developing NLP applications is
English. Along the above dimensions, English is
productively concatenative, a mixture of analytic
and synthetic, and largely suffixing in its inflec-
tional morphology. With respect to languages that
exhibit inflectional morphology, English is rela-
tively impoverished.1 Importantly, English is just
one morphological system among many. A larger
goal of natural language processing is that the sys-
tem work for any presented language. If an NLP
system is trained on just one language, it could
be missing important flexibility in its ability to ac-
count for cross-linguistic morphological variation.
1Note that many languages exhibit no inflectional morphol-
ogy e.g., Mandarin Chinese, Yoruba, etc.: Bickel and
Nichols (2013a).

In this year’s iteration of the SIGMORPHON
shared task on morphological reinflection, we
specifically focus on typological diversity and aim
to investigate systems’ ability to generalize across
typologically distinct languages many of which
are low-resource. For example, if a neural net-
work architecture works well for a sample of Indo-
European languages, should the same architecture
also work well for Tupi–Guarani languages (where
nouns are “declined” for tense) or Austronesian
languages (where verbal morphology is frequently
prefixing)?

2 Task Description

The 2020 iteration of our task is similar to
CoNLL-SIGMORPHON 2017 (Cotterell et al.,
2017) and 2018 (Cotterell et al., 2018) in that
participants are required to design a model that
learns to generate inflected forms from a lemma
and a set of morphosyntactic features that derive
the desired target form. For each language we
provide a separate training, development, and
test set. More historically, all of these tasks
resemble the classic “wug”-test that Berko (1958)
developed to test child and human knowledge of
English nominal morphology.
Unlike the task from earlier years, this year’s

task proceeds in three phases: a Development
Phase, a Generalization Phase, and an Evaluation
Phase, in which each phase introduces previously
unseen data. The task starts with the Develop-
ment Phase, which was an elongated period of
time (about two months), during which partici-
pants develop a model of morphological inflection.
In this phase, we provide training and develop-
ment splits for 45 languages representing the Aus-
tronesian, Niger-Congo, Oto-Manguean, Uralic
and Indo-European language families. Table 1 pro-
vides details on the languages. The Generaliza-
tion Phase is a short period of time (it started
about a week before the Evaluation Phase) during
which participants fine-tune their models on new
data. At the start of the phase, we provide train-
ing and development splits for 45 new languages
where approximately half are genetically related
(belong to the same family) and half are geneti-
cally unrelated (are isolates or belong to a different
family) to the languages presented in the Develop-
ment Phase. More specifically, we introduce (sur-
prise) languages from Afro-Asiatic, Algic, Dravid-
ian, Indo-European, Niger-Congo, Sino-Tibetan,
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Siouan, Songhay, Southern Daly, Tungusic, Tur-
kic, Uralic, and Uto-Aztecan families. See Table 2
for more details.
Finally, test splits for all 90 languages are re-

leased in theEvaluation Phase. During this phase,
themodels are evaluated on held-out forms. Impor-
tantly, the languages from both previous phases are
evaluated simultaneously. This way, we evaluate
the extent to which models (especially those with
shared parameters) overfit to the development data:
a model based on the morphological patterning of
the Indo-European languages may end up with a
bias towards suffixing and will struggle to learn
prefixing or infixation.

3 Meet our Languages

In the 2020 shared task we cover 15 language fam-
ilies: Afro-Asiatic, Algic, Austronesian, Dravid-
ian, Indo-European, Niger-Congo, Oto-Manguean,
Sino-Tibetan, Siouan, Songhay, Southern Daly,
Tungusic, Turkic, Uralic, and Uto-Aztecan.2 Five
language families were used for the Development
phase while ten were held out for the Generaliza-
tion phase. Tab. 1 and Tab. 2 provide informa-
tion on the languages, their families, and sources
of data. In the following section, we provide an
overview of each language family’s morphological
system.

3.1 Afro-Asiatic

The Afro-Asiatic language family, consisting of
six branches and over 300 languages, is among
the largest language families in the world. It is
mainly spoken in Northern, Western and Central
Africa as well as West Asia and spans large mod-
ern languages such as Arabic, in addition to an-
cient languages like Biblical Hebrew. Similarly,
some of its languages have a long tradition of writ-
ten form, while others have yet to incorporate a
writing system. The six branches differ most no-
tably in typology and syntax, with the Chadic lan-
guage being the main source of differences, which
has sparked discussion of the division of the fam-
ily (Frajzyngier, 2018). For example, in the Egyp-
tian and Semitic branches, the root of a verb may
not contain vowels, while this is allowed in Chadic.
Although only four of the six branches, excluding
Chadic and Omotic, use a prefix and suffix in con-
jugation when adding a subject to a verb, it is con-
2The data splits are available athttps://github.com/
sigmorphon2020/task0-data/

sidered an important characteristic of the family.
In addition, some of the families in the phylum use
tone to encode tense, modality and number among
others. However, all branches use objective and
passive suffixes. Markers of tense are generally
simple, whereas aspect is typically distinguished
with more elaborate systems.

3.2 Algic

The Algic family embraces languages native to
North America—more specifically the United
States and Canada—and contain three branches.
Of these, our sample contains Cree, the language
from the largest genus, Algonquian, from which
most languages are now extinct. The Algonquian
genus is characterized by its concatenative mor-
phology. Cree morphology is also concatenative
and suffixing. It distinguishes between impersonal
and non-impersonal verbs and presents four ap-
parent declension classes among non-impersonal
verbs.

3.3 Austronesian

The Austronesian family of languages is largely
comprised of languages from the Greater Central
Philippine and Oceanic regions. They are charac-
terized by limited morphology, mostly prefixing in
nature. Additionally, tense–aspect affixes are pre-
dominantly seen as prefixes, though some suffixes
are used. In the general case, verbs do not mark
number, person, or gender. In Māori, verbs may be
suffixed with a marker indicating the passive voice.
This marker takes the form of one of twelve end-
ings. These endings are difficult to predict as the
language has undergone a loss of word-final conso-
nants and there is no clear link between a stem and
the passive suffix that it employs (Harlow, 2007).

3.4 Dravidian

The family of Dravidian languages comprises sev-
eral languages which are primarily spoken across
Southern India and Northern Sri Lanka, with over
200 million speakers. The shared task includes
Kannada and Telugu. Dravidian languages primar-
ily use the SOV word order. They are agglutina-
tive, and primarily use suffixes. A Dravidian verb
indicates voice, number, tense, aspect, mood and
person, through the affixation of multiple suffixes.
Nouns indicate number, gender and case.
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Family
Afro−Asiatic
Algic
Austronesian

Dravidian
Indo−European
Niger−Congo

Oto−Manguean
Sino−Tibetan
Siouan

Songhay
Southern Daly
Tungusic

Turkic
Uralic
Uto−Aztecan

Figure 1: Languages in our sample colored by family.

3.5 Indo-European
Languages in the Indo-European family are native
to most of Europe and a large part of Asia—with
our sample including languages from the genera:
Germanic, Indic, Iranian, and Romance. This is
(arguably) the most well studied language family,
containing a few of the highest-resource languages
in the world.

Romance The Romance genus comprises of a
set of fusional languages evolved fromLatin. They
traditionally originated in Southern and Southeast-
ern Europe, though they are presently spoken in
other continents suchAfrica and the Americas. Ro-
mance languages mark tense, person, number and
mood in verbs, and gender and number in nouns.
Inflection is primarily achieved through suffixes,
with some verbal person syncretism and suppletion
for high-frequency verbs. There is some morpho-
logical variation within the genus, such as French,
which exhibits comparatively less inflection, and
Romanian has comparatively more—it still marks
case.

Germanic The Germanic genus comprises sev-
eral languages which originated in Northern and
Northwestern Europe, and today are spoken in
many parts of the world. Verbs in Germanic lan-
guages mark tense and mood, in many languages

person and number are also marked, predomi-
nantly through suffixation. Some Germanic lan-
guages exhibit widespread Indo-European ablaut.
The gendering of nouns differs between Germanic
languages: German nouns can be masculine, femi-
nine or neuter, while English nouns are not marked
for gender. In Danish and Swedish, historically
masculine and feminine nouns have merged to
form one common gender, so nouns are either com-
mon or neuter. Marking of case also differs be-
tween the languages: German nouns have one of
four cases and this case is marked in articles and
adjectives as well as nouns and pronouns, while
English does not mark noun case (althoughOld En-
glish, which also appears in our language sample,
does).

Indo-Iranian The Indo-Iranian genus contains
languages spoken in Iran and across the Indian
subcontinent. Over 1.5 billion people worldwide
speak an Indo-Iranian language. Within the Indo-
European family, Indo-Iranian languages belong
to the Satem group of languages. Verbs in Indo-
Iranian languages indicate tense, aspect, mood,
number and person. In languages such as Hindi
verbs can also express levels of formality. Noun
gender is present in some Indo-Iranian languages,
such as Hindi, but absent in languages such as Per-
sian. Nouns generally are marked for case.
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Development
Family Genus ISO 639-3 Language Source of Data
Austronesian Barito mlg (plt) Malagasy Kasahorow (2015a)

Greater Central Philippine ceb Cebuano Reyes (2015)
Greater Central Philippine hil Hiligaynon Santos (2018)
Greater Central Philippine tgl Tagalog NIU (2017)
Oceanic mao (mri) Māori Moorfield (2019)

Indo-European Germanic ang Old English UniMorph
Germanic dan Danish UniMorph
Germanic deu German UniMorph
Germanic eng English UniMorph
Germanic frr North Frisian UniMorph
Germanic gmh Middle High German UniMorph
Germanic isl Icelandic UniMorph
Germanic nld Dutch UniMorph
Germanic nob Norwegian Bokmål UniMorph
Germanic swe Swedish UniMorph

Niger-Congo Bantoid kon (kng) Kongo Kasahorow (2016)
Bantoid lin Lingala Kasahorow (2014a)
Bantoid lug Luganda Namono (2018)
Bantoid nya Chewa Kasahorow (2019a)
Bantoid sot Sotho Kasahorow (2020)
Bantoid swa (swh) Swahili Kasahorow (2012b)
Bantoid zul Zulu Kasahorow (2015b)
Kwa aka Akan Imbeah (2012)
Kwa gaa Gã Kasahorow (2012a)

Oto-Manguean Amuzgoan azg San Pedro Amuzgos Amuzgo Feist and Palancar (2015)
Chichimec pei Chichimeca-Jonaz Feist and Palancar (2015)
Chinantecan cpa Tlatepuzco Chinantec Feist and Palancar (2015)
Mixtecan xty Yoloxóchitl Mixtec Feist and Palancar (2015)
Otomian ote Mezquital Otomi Feist and Palancar (2015)
Otomian otm Sierra Otomi Feist and Palancar (2015)
Zapotecan cly Eastern Chatino of San Juan Quiahije Cruz et al. (2020)
Zapotecan ctp Eastern Chatino of Yaitepec Feist and Palancar (2015)
Zapotecan czn Zenzontepec Chatino Feist and Palancar (2015)
Zapotecan zpv Chichicapan Zapotec Feist and Palancar (2015)

Uralic Finnic est Estonian UniMorph
Finnic fin Finnish UniMorph
Finnic izh Ingrian UniMorph
Finnic krl Karelian Zaytseva et al. (2017)
Finnic liv Livonian UniMorph
Finnic vep Veps Zaytseva et al. (2017)
Finnic vot Votic UniMorph
Mari mhr Meadow Mari Arkhangelskiy et al. (2012)
Mordvin mdf Moksha Arkhangelskiy et al. (2012)
Mordvin myv Erzya Arkhangelskiy et al. (2012)
Saami sme Northern Sami UniMorph

Table 1: Development languages used in the shared task.

3.6 Niger–Congo

Our language sample includes two genera from
the Niger–Congo family, namely Bantoid and Kwa
languages. These have mostly exclusively con-
catenative fusion, and single exponence in verbal
tense–aspect–mood. The inflectional synthesis of
verbs is moderately high, e.g. with 4-5 classes per
word in Swahili and Zulu. The locus of marking
is inconsistent (it falls on both heads and depen-
dents), and most languages are are predominantly
prefixing. Full and partial reduplication is attested
inmost languages. Verbal person–numbermarkers
tend to be syncretic.
As for nominal classes, Bantoid languages are

characterized by a large amount of grammatical
genders (oftenmore than 5) assigned based on both
semantic and formal rules, whereas someAkan lan-
guages (like Ewe) lack a gender system. Plural
tends to be always expressed by affixes or other
morphological means. Case marking is generally
absent or minimal. As for verbal classes, aspect is
grammaticalized in Akhan (Kwa) and Zulu (Ban-
toid), but not in Luganda and Swahili (Bantoid).
Both past and future tenses are inflectional in Ban-
toid languages. 2-3 degrees of remoteness can
be distinguished in Zulu and Luganda, but not in
Swahili. On the other hand, Akan (Kwa) has no
opposition between past and non-past. There are
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Generalization (Surprise)
Family Genus ISO 639-3 Language Source of Data
Afro-Asiatic Semitic mlt Maltese UniMorph

Lowland East Cushitic orm Oromo Kasahorow (2017)
Semitic syc Syriac UniMorph

Algic Algonquian cre Plains Cree Hunter (1923)

Tungusic Tungusic evn Evenki Klyachko et al. (2020)

Turkic Turkic aze (azb) Azerbaijani UniMorph
Turkic bak Bashkir UniMorph
Turkic crh Crimean Tatar UniMorph
Turkic kaz Kazakh Nabiyev (2015); Turkicum (2019a)
Turkic kir Kyrgyz Aytnatova (2016)
Turkic kjh Khakas UniMorph
Turkic tuk Turkmen Abdulin (2016); US Embassy (2018)
Turkic uig Uyghur Kadeer (2016)
Turkic uzb Uzbek Abdullaev (2016); Turkicum (2019b)

Dravidian Southern Dravidian kan Kannada UniMorph
South-Central Dravidian tel Telugu UniMorph

Indo-European Indic ben Bengali UniMorph
Indic hin Hindi UniMorph
Indic san Sanskrit UniMorph
Indic urd Urdu UniMorph
Iranian fas (pes) Persian UniMorph
Iranian pus (pst) Pashto UniMorph
Iranian tgk Tajik UniMorph
Romance ast Asturian UniMorph
Romance cat Catalan UniMorph
Romance frm Middle French UniMorph
Romance fur Friulian UniMorph
Romance glg Galician UniMorph
Romance lld Ladin UniMorph
Romance vec Venetian UniMorph
Romance xno Anglo-Norman UniMorph
West Germanic gml Middle Low German UniMorph
West Germanic gsw Swiss German Egli-Wildi (2007)
North Germanic nno Norwegian Nynorsk UniMorph

Niger-Congo Bantoid sna Shona Kasahorow (2014b); Nandoro (2018)

Sino-Tibetan Bodic bod Tibetan Di et al. (2019)

Siouan Core Siouan dak Dakota LaFontaine and McKay (2005)

Songhay Songhay dje Zarma Kasahorow (2019b)

Southern Daly Murrinh-Patha mwf Murrinh-Patha Mansfield (2019)

Uralic Permic kpv Komi-Zyrian Arkhangelskiy et al. (2012)
Finnic lud Ludic Zaytseva et al. (2017)
Finnic olo Livvi Zaytseva et al. (2017)
Permic udm Udmurt Arkhangelskiy et al. (2012)
Finnic vro Võro Iva (2007)

Uto-Aztecan Tepiman ood O’odham Zepeda (2003)

Table 2: Surprise languages used in the shared task.

no grammatical evidentials.

3.7 Oto-Manguean

The Oto-Manguean languages are a diverse family
of tonal languages spoken in central and southern
Mexico. Even though all of these languages are
tonal, the tonal systemwithin each language varies
widely. Some have an inventory of two tones (e.g.,

Chichimec and Pame) others have ten tones (e.g.,
the Eastern Chatino languages of the Zapotecan
branch, Palancar and Léonard (2016)).

Oto-Manguean languages are also rich in tonal
morphology. The inflectional system marks
person–number and aspect in verbs and person–
number in adjectives and noun possessions, rely-
ing heavily on tonal contrasts. Other interesting as-
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pects of Oto-Manguean languages include the fact
that pronominal inflections use a system of encli-
tics, and first and second person plural has a dis-
tinction between exclusive and inclusive (Camp-
bell, 2016). Tone marking schemes in the writ-
ing systems also vary greatly. Some writing sys-
tems do not represent tone, others use diacritics,
and others represent tones with numbers. In lan-
guages that use numbers, single digits represent
level tones and double digits represent contour
tones. For example, in San Juan Quiahije of East-
ern Chatino number 1 represents high tone, num-
ber 4 represents low tone, and numbers 14 repre-
sent a descending tone contour and numbers 42 rep-
resent an ascending tone contour Cruz (2014).

3.8 Sino-Tibetan
The Sino-Tibetan family is represented by the
Tibetan language. Tibetan uses an abugida script
and contains complex syllabic components in
which vowel marks can be added above and below
the base consonant. Tibetan verbs are inflected
for tense and mood. Previous studies on Tibetan
morphology (Di et al., 2019) indicate that the
majority of mispredictions produced by neural
models are due to allomorphy. This is followed
by generation of nonce words (impossible combi-
nations of vowel and consonant components).

3.9 Siouan
The Siouan languages are located in North Amer-
ica, predominantly along the Mississippi and Mis-
souri Rivers and in the Ohio Valley. The fam-
ily is represented in our task by Dakota, a criti-
cally endangered language spoken in North and
South Dakota, Minnesota, and Saskatchewan. The
Dakota language is largely agglutinating in its
derivational morphology and fusional in its inflec-
tional morphology with a mixed affixation system
(Rankin et al., 2003). The present task includes
verbs, which are marked for first and second per-
son, number, and duality. All three affixation
types are found: person was generally marked by
an infix, but could also appear as a prefix, and plu-
rality was marked by a suffix. Morphophonologi-
cal processes of fortition and vowel lowering are
also present.

3.10 Songhay
The Songhay family consists of around eleven or
twelve languages spoken in Mali, Niger, Benin,

Burkina Faso and Nigeria. In the shared task we
use Zarma, the most widely spoken Songhay lan-
guage. Most of the Songhay languages are pre-
dominantly SOVwith medium-sized consonant in-
ventories (with implosives), five phonemic vowels,
vowel length distinctions, and word level tones,
which also are used to distinguish nouns, verbs,
and adjectives (Heath, 2014).

3.11 Southern Daly
The Southern Daly is a small language family of
the Northern Territory in Australia that consists of
two distantly related languages. In the current task
we only have one of the languages, Murrinh-patha
(which was initially thought to be a language iso-
late). Murrinh-patha is classified as polysynthetic
with highly complex verbal morphology. Verbal
roots are surrounded by prefixes and suffixes that
indicate tense, mood, object, subject. As Mans-
field (2019) notes, Murrinh-patha verbs have 39
conjugation classes.

3.12 Tungusic
Tungusic languages are spoken principally in Rus-
sia, China and Mongolia. In Russia they are con-
centrated in north and eastern Siberia and in China
in the east, in Manchuria. The largest languages
in the family are Xibe, Evenki and Even; we use
Evenki in the shared task. The languages are of the
agglutinating morphological type with a moderate
number of cases, 7 for Xibe and 13 for Evenki. In
addition to case markers, Evenki marks possession
in nominals (including reflexive possession) and
distinguishes between alienable and inalienable
possession. In terms of morphophonological pro-
cesses, the languages exhibit vowel harmony, con-
sonant alternations and phonological vowel length.

3.13 Turkic
Languages of the Turkic family are primarily spo-
ken in Central Asia. The family is morphologi-
cally concatenative, fusional, and suffixing. Tur-
kic languages generally exhibit back vowel har-
mony, with the notable exception of Uzbek. In ad-
dition to harmony in backness, several languages
also have labial vowel harmony (e.g., Kyrgyz,
Turkmen, among others). In addition, most of the
languages have dorsal consonant allophony that ac-
companies back vowel harmony. Additional mor-
phophonological processes include vowel epenthe-
sis and voicing assimilation. Selection of the in-
flectional allomorph can frequently be determined
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from the infinitivemorpheme (which frequently re-
veals vowel backness and roundedness) and also
the final segment of the stem.

3.14 Uralic

The Uralic languages are spoken in Russia from
the north of Siberia to Scandinavia and Hungary
in Europe. They are agglutinating with some sub-
groups displaying fusional characteristics (e.g., the
Sámi languages). Many of the languages have
vowel harmony. The languages have almost com-
plete suffixal morphology and a medium-sized
case inventory, ranging from 5–6 cases to num-
bers in the high teens. Many of the larger case
paradigms are made up of spatial cases, sometimes
with distinctions for direction and position. Most
of the languages have possessive suffixes, which
can express possession, or agreement in non-finite
clauses. The paradigms are largely regular, with
few, if any, irregular forms. Many exhibit complex
patterns of consonant gradation—consonant muta-
tions that occur in specific morphological forms in
some stems. Which gradation category a stem be-
longs to in often unpredictable. The languages spo-
ken in Russia are typically SOV, while those in Eu-
rope have SVO order.

3.15 Uto-Aztecan

The Uto-Aztecan family is represented by the To-
hono O’odham (Papago–Pima) language spoken
along the US–Mexico border in southern Arizona
and northern Sonora. O’odham is agglutinative
with a mixed prefixing and suffixing system. Nom-
inal and verbal pluralization is frequently realized
by partial reduplication of the initial consonant
and/or vowel, and occasionally by final consonant
deletion or null affixation. Processes targeting
vowel length (shortening or lengthening) are also
present. A small number of verbs exhibit supple-
tion in the past tense.

4 Data Preparation

4.1 Data Format

Similar to previous years, training and develop-
ment sets contain triples consisting of a lemma,
a target form, and morphosyntactic descriptions
(MSDs, or morphological tags).3 Test sets only
contain two fields, i.e., target forms are omitted.
All data follows UTF-8 encoding.
3Each MSD is a set of features separated by semicolons.

4.2 Conversion and Canonicalization

A significant amount of data for this task was
extracted from corresponding (language-specific)
grammars. In order to allow cross-lingual com-
parison, we manually converted their features
(tags) into the UniMorph format (Sylak-Glassman,
2016). We then canonicalized the converted lan-
guage data4 to make sure all tags are consistently
ordered and no category (e.g., “Number”) is as-
signed two tags (e.g., singular and plural).5

4.3 Splitting

We use only noun, verb, and adjective forms to
construct training, development, and evaluation
sets. We de-duplicate annotations such that there
are no multiple examples of exact lemma-form-
tag matches. To create splits, we randomly sam-
ple 70%, 10%, and 20% for train, development,
and test, respectively. We cap the training set size
to 100k examples for each language; where lan-
guages exceed this (e.g., Finnish), we subsample
to this point, balancing lemmas such that all forms
for a given lemma are either included or discarded.
Some languages such as Zarma (dje), Tajik (tgk),
Lingala (lin), Ludian* (lud), Māori (mao), Sotho
(sot), Võro (vro), Anglo-Norman (xno), and Zulu
(zul) contain less than 400 training samples and are
extremely low-resource.6 Tab. 6 and Tab. 7 in the
Appendix provide the number of samples for ev-
ery language in each split, the number of samples
per lemma, and statistics on inconsistencies in the
data.

5 Baseline Systems

The organizers provided two types of pre-trained
baselines. Their use was optional.

5.1 Non-neural

The first baseline was a non-neural system that had
been used as a baseline in earlier shared tasks on
morphological reinflection (Cotterell et al., 2017,
2018). The system first heuristically extracts
lemma-to-form transformations; it assumes that
these transformations are suffix- or prefix-based.
4Using the UniMorph schema canonicalization script
https://github.com/unimorph/um-
canonicalize

5Conversion schemes and canonicalization scripts
are available at https://github.com/
sigmorphon2020/task0-data

6We also note that Ludian contained inconsistencies in data
due to merge of various dialects.
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A simple majority classifier is used to apply the
most frequent suitable transformation to an input
lemma, given the morphological tag, yielding the
output form. See Cotterell et al. (2017) for further
details.

5.2 Neural

Neural baselines were based on a neural transducer
(Wu and Cotterell, 2019), which is essentially a
hard monotonic attention model (mono-*). The
second baseline is a transformer (Vaswani et al.,
2017) adopted for character-level tasks that cur-
rently holds the state-of-the-art on the 2017 SIG-
MORPHON shared task data (Wu et al., 2020,
trm-*). Both models take the lemma and mor-
phological tags as input and output the target in-
flection. The baseline is further expanded to in-
clude the data augmentation technique used by
Anastasopoulos and Neubig (2019, -aug-) (con-
ceptually similar to the one proposed by Silfver-
berg et al. (2017)). Relying on a simple character-
level alignment between lemma and form, this
technique replaces shared substrings of length >

3 with random characters from the language’s al-
phabet, producing hallucinated lemma–tag–form
triples. Both neural baselines were trained in
mono- (*-single) and multilingual (shared pa-
rameters among the same family,*-shared) set-
tings.

6 Competing Systems

As Tab. 3 shows, 10 teams submitted 22 systems
in total, out of which 19 were neural. Some teams
such as ETH Zurich and UIUC built their mod-
els on top of the proposed baselines. In partic-
ular, ETH Zurich enriched each of the (multi-
lingual) neural baseline models with exact decod-
ing strategy that uses Dijkstra’s search algorithm.
UIUC enriched the transformer model with syn-
chronous bidirectional decoding technique (Zhou
et al., 2019) in order to condition the prediction
of an affix character on its environment from both
sides. (The authors demonstrate positive effects
in Oto-Manguean, Turkic, and some Austronesian
languages.)
A few teams further improved models that

were among top performers in previous shared
tasks. IMS and Flexica re-used the hard mono-
tonic attention model from (Aharoni and Goldberg,
2017). IMS developed an ensemble of two models
(with left-to-right and right-to-left generation or-

der) with a genetic algorithm for ensemble search
(Haque et al., 2016) and iteratively provided hal-
lucinated data. Flexica submitted two neural sys-
tems. The first model (flexica-02-1) was
multilingual (family-wise) hard monotonic atten-
tionmodel with improved alignment strategy. This
model is further improved (flexica-03-1)
by introducing a data hallucination technique
which is based on phonotactic modelling of
extremely low-resource languages (Shcherbakov
et al., 2016). LTI focused on their earlier model
(Anastasopoulos and Neubig, 2019), a neural
multi-source encoder–decoder with two-step at-
tention architecture, training it with hallucinated
data, cross-lingual transfer, and romanization of
scripts to improve performance on low-resource
languages. DeepSpin reimplemented gated sparse
two-headed attention model from Peters and Mar-
tins (2019) and trained it on all languages at
once (massively multilingual). The team exper-
imented with two modifications of the softmax
function: sparsemax (Martins and Astudillo, 2016,
deepspin-02-1) and 1.5-entmax (Peters et al.,
2019, deepspin-01-1).
Many teams based their models on the

transformer architecture. NYU-CUBoulder
experimented with a vanilla transformer model
(NYU-CUBoulder-04-0), a pointer-generator
transformer that allows for a copy mechanism
(NYU-CUBoulder-02-0), and ensembles
of three (NYU-CUBoulder-01-0) and five
(NYU-CUBoulder-03-0) pointer-generator
transformers. For languages with less than 1,000
training samples, they also generate hallucinated
data. CULing developed an ensemble of three
(monolingual) transformers with identical ar-
chitecture but different input data format. The
first model was trained on the initial data format
(lemma, target tags, target form). For the other
two models the team used the idea of lexeme’s
principal parts (Finkel and Stump, 2007) and aug-
mented the initial input (that only used the lemma
as a source form) with entries corresponding to
other (non-lemma) slots available for the lexeme.
The CMU Tartan team compared performance of
models with transformer-based and LSTM-based
encoders and decoders. The team also compared
monolingual to multilingual training in which they
used several (related and unrelated) high-resource
languages for low-resource language training.

Although the majority of submitted systems
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Team Description System Model Features
Neural Ensemble Multilingual Hallucination

Baseline Wu and Cotterell (2019)

mono-single
mono-aug-single
mono-shared
mono-aug-shared

Wu et al. (2020)

trm-single
trm-aug-single
trm-shared
trm-aug-shared

CMU Tartan Jayarao et al. (2020)

cmu_tartan_00-0
cmu_tartan_00-1
cmu_tartan_01-0
cmu_tartan_01-1
cmu_tartan_02-1

CU7565 Beemer et al. (2020) CU7565-01-0
CU7565-02-0

CULing Liu and Hulden (2020) CULing-01-0

DeepSpin Peters and Martins (2020) deepspin-01-1
deepspin-02-1

ETH Zurich Forster and Meister (2020) ETHZ00-1
ETHZ02-1

Flexica Scherbakov (2020) flexica-01-0
flexica-02-1
flexica-03-1

IMS Yu et al. (2020) IMS-00-0
LTI Murikinati and Anastasopoulos (2020) LTI-00-1

NYU-CUBoulder Singer and Kann (2020)

NYU-CUBoulder-01-0
NYU-CUBoulder-02-0
NYU-CUBoulder-03-0
NYU-CUBoulder-04-0

UIUC Canby et al. (2020) uiuc-01-0

Table 3: The list of systems submitted to the shared task.

were neural, some teams experimented with non-
neural approaches showing that in certain sce-
narios they might surpass neural systems. A
large group of researchers from CU7565 man-
ually developed finite-state grammars for 25
languages (CU7565-01-0). They addition-
ally developed a non-neural learner for all lan-
guages (CU7565-02-0) that uses hierarchi-
cal paradigm clustering (based on similarity of
string transformation rules between inflectional
slots). Another team, Flexica, proposed a
model (flexica-01-0) conceptually similar
to Hulden et al. (2014), although they did not at-
tempt to reconstruct the paradigm itself and treated
transformation rules independently assigning each
of them a score based on its frequency and speci-
ficity as well as diversity of the characters sur-
rounding the pattern.7

7English plural noun formation rule “* → *s” has high di-
versity whereas past tense rule such as “*a* → *oo*” as in
(understand, understood) has low diversity.

7 Evaluation

This year, we instituted a slightly different evalua-
tion regimen than in previous years, which takes
into account the statistical significance of differ-
ences between systems and allows for an informed
comparison across languages and families better
than a simple macro-average.
The process works as follows:

1. For each language, we rank the systems ac-
cording to their accuracy (or Levenshtein dis-
tance). To do so, we use paired bootstrap
resampling (Koehn, 2004)8 to only take sta-
tistically significant differences into account.
That way, any system which is the same (as
assessed via statistical significance) as the
best performing one is also ranked 1st for that
language.

2. For the set of languageswherewewant collec-
tive results (e.g. languages within a linguistic
genus), we aggregate the systems’ ranks and

8We use 10,000 samples with 50% ratio, and p < 0.005.
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Individual Language Rankings Final Ranking
cly ctp czn zpv avg #1 #3 #4 #6
uiuc (1) CULing (1) deepspin (1) NYU-CUB (1) uiuc 1 4

trm-single (1) uiuc (1) uiuc (1) CULing (1) trm-single 1 4
CULing (3) trm-single (1) IMS (1) deepspin (1) CULing 1.5 3 1

deepspin (3) IMS (4) NYU-CUB (1) uiuc (1) deepspin 2.25 2 1 1
NYU-CUB (3) deepspin (4) CULing (1) trm-single (1) NYU-CUB 2.25 2 1 1

IMS (6) NYU-CUB (4) trm-single (1) IMS (1) IMS 3 2 0 1 1

Table 4: Illustration of our ranking method, over the four Zapotecan languages. Note: The final ranking is based
on the actual counts (#1,#2, etc), not on the system’s average rank.

re-rank them based on the amount of times
they ranked 1st, 2nd, 3rd, etc.

Table 4 illustrates an example of this process us-
ing four Zapotecan languages and six systems.

8 Results

This year we had four winning systems
(i.e., ones that outperform the best base-
line): CULing-01-0, deepspin-02-1,
uiuc-01-0, and deepspin-01-1, all
neural. As Tab. 5 shows, they achieve over
90% accuracy. Although CULing-01-0 and
uiuc-01-0 are both monolingual transformers
that do not use any hallucinated data, they follow
different strategies to improve performance. The
strategy proposed by CULing-01-0 of enrich-
ing the input data with extra entries that included
non-lemma forms and their tags as a source form,
enabled their system to be among top performers
on all language families; uiuc-01-0, on the
other hand, did not modify the data but rather
changed the decoder to be bidirectional and
made family-wise fine-tuning of each (mono-
lingual) model. The system is also among the
top performers on all language families except
Iranian. The third team, DeepSpin, trained and
fine-tuned their models on all language data. Both
models are ranked high (although the sparsemax
model, deepspin-02-1, performs better
overall) on most language groups with exception
of Algic. Sparsemax was also found useful by
CMU-Tartan. The neural ensemble model with
data augmentation from IMS team shows superior
performance on languages with smaller data sizes
(under 10,000 samples). LTI and Flexica teams
also observed positive effects of multilingual
training and data hallucination on low-resource
languages. The latter was also found useful in the
ablation study made by NYU-CUBoulder team.
Several teams aimed to address particular research
questions; we will further summarize their results.

System Rank Acc

uiuc-01-0 2.4 90.5
deepspin-02-1 2.9 90.9

BASE: trm-single 2.8 90.1
CULing-01-0 3.2 91.2
deepspin-01-1 3.8 90.5

BASE: trm-aug-single 3.7 90.3
NYU-CUBoulder-04-0 7.1 88.8
NYU-CUBoulder-03-0 8.9 88.8
NYU-CUBoulder-02-0 8.9 88.7

IMS-00-0 10.6 89.2
NYU-CUBoulder-01-0 9.6 88.6
BASE: trm-shared 10.3 85.9

BASE: mono-aug-single 7.5 88.8
cmu_tartan_00-0 8.7 87.1

BASE: mono-single 7.9 85.8
cmu_tartan_01-1 9.0 87.1

BASE: trm-aug-shared 12.5 86.5
BASE: mono-shared 10.8 86.0
cmu_tartan_00-1 9.4 86.5

LTI-00-1 12.0 86.6
BASE: mono-aug-shared 12.8 86.8

cmu_tartan_02-1 10.6 86.1
cmu_tartan_01-0 10.9 86.6
flexica-03-1 16.7 79.6
ETHZ-00-1 20.1 75.6

*CU7565-01-0 24.1 90.7
flexica-02-1 17.1 78.5

*CU7565-02-0 19.2 83.6
ETHZ-02-1 17.0 80.9
flexica-01-0 24.4 70.8

Oracle (Baselines) 96.1
Oracle (Submissions) 97.7

Oracle (All) 97.9

Table 5: Aggregate results on all languages. Bolded
results are the ones which beat the best baseline. ∗ and
italics denote systems that did not submit outputs in all
languages (their accuracy is a partial average).
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Figure 2: Accuracy by language averaged across all the final submitted systems with their standard deviations.
Language families are demarcated by color, with accuracy on development languages (top), and generalization
languages (bottom).

Is developing morphological grammars manu-
ally worthwhile? This was the main question
asked by CU7565 who manually designed finite-
state grammars for 25 languages. Paradigms of
some languages were relatively easy to describe
but neural networks also performed quite well on
them even with a limited amount of data. For low-
resource languages such as Ingrian and Tagalog the
grammars demonstrate superior performance but
this comes at the expense of a significant amount
of person-hours.

What is the best training strategy for low-
resource languages? Teams that generated
hallucinated data highlighted its utility for low-
resource languages. Augmenting the data with
tuples where lemmas are replaced with non-
lemma forms and their tags is another technique
that was found useful. In addition, multilingual
training and ensembles yield extra gain in terms
of accuracy.

Are the systems complementary? To address
this question, we evaluate oracle scores for
baseline systems, submitted systems, and all of
them together. Typically, as Tables 8–21 in the
Appendix demonstrate, the baselines and the
submissions are complementary - adding them
together increases the oracle score. Furthermore,
while the full systems tend to dominate the partial

systems (that were designed for a subset of
languages, such as CU7565-01-0), there are a
number of cases where the partial systems find the
solution when the full systems don’t - and these
languages often then get even bigger gains when
combined with the baselines. This even happens
when the accuracy of the baseline is very high -
Finnish has baseline oracle of 99.89; full systems
oracle of 99.91; submission oracle of 99.94 and
complete oracle of 99.96, so an ensemble might
be able to improve on the results. The largest
gaps in oracle systems are observed in Algic,
Oto-Manguean, Sino-Tibetan, Southern Daly,
Tungusic, and Uto-Aztecan families.9

Has morphological inflection become a solved
problem in certain scenarios? The results
shown in Fig. 2 suggest that for some of the de-
velopment language families, such as Austrone-
sian and Niger-Congo, the task was relatively
easy, with most systems achieving high accuracy,
whereas the task was more difficult for Uralic and
Oto-Manguean languages, which showed greater
variability in level of performance across sub-
mitted systems. Languages such as Ludic (lud),
Norwegian Nynorsk (nno), Middle Low German
9Please see the results per language here:
https://docs.google.com/spreadsheets/
d/1ODFRnHuwN-mvGtzXA1sNdCi-jNqZjiE-
i9jRxZCK0kg/edit?usp=sharing
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Figure 3: Difficulty of Nouns: Percentage of test samples falling into each category. The total number of test
samples for each language is outlined on the top of the plot.
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Figure 4: Difficulty of Verbs: Percentage of test samples falling into each category. The total number of test
samples for each language is outlined on the top of the plot.

(gml), Evenki (evn), and O’odham (ood) seem to
be the most challenging languages based on simple
accuracy. For a more fine-grained study, we have
classified test examples into four categories: “very
easy”, “easy”, “hard”, and “very hard”. “Very
easy” examples are ones that all submitted systems
got correct, while “very hard” examples are ones
that no submitted system got correct. “Easy” ex-
amples were predicted correctly for 80% of sys-
tems, and “hard” were only correct in 20% of sys-
tems. Fig. 3, Fig. 4, and Fig. 5 represent per-
centage of noun, verb, and adjective samples that

fall into each category and illustrate that most lan-
guage samples are correctly predicted by major-
ity of the systems. For noun declension, Old En-
glish (ang), Middle Low German (gml), Evenki
(evn), O’odham (ood), Võro (vro) are the most dif-
ficult (some of this difficulty comes from language
data inconsistency, as described in the following
section). For adjective declension, Classic Syriac
presents the highest difficulty (likely due to its lim-
ited data).
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Figure 5: Difficulty of Adjectives: Percentage of test samples falling into each category. The total number of test
samples for each language is outlined on the top of the plot.

9 Error Analysis

In our error analysis we follow the error type tax-
onomy proposed in Gorman et al. (2019). First, we
evaluate systematic errors due to inconsistencies in
the data, followed by an analysis of whether having
seen the language or its family improved accuracy.
We then proceed with an overview of accuracy for
each of the language families. For a select number
of families, we provide a more detailed analysis of
the error patterns.
Tab. 6 and Tab. 7 provide the number of samples

in the training, development, and test sets, percent-
age of inconsistent entries (the same lemma–tag
pair has multiple infected forms) in them, percent-
age of contradicting entries (same lemma–tag pair
occurring in train and development or test sets but
assigned to different inflected forms), and percent-
age of entries in the development or test sets con-
taining a lemma observed in the training set. The
train, development and test sets contain 2%, 0.3%,
and 0.6% inconsistent entries, respectively. Azer-
baijani (aze), Old English (ang), Cree (cre), Danish
(dan), Middle Low German (gml), Kannada (kan),
Norwegian Bokmål (nob), Chichimec (pei), and
Veps (vep) had the highest rates of inconsistency.
These languages also exhibit the highest percent-
age of contradicting entries. The inconsistencies
in some Finno-Ugric languages (such as Veps and
Ludic) are due to dialectal variations.
The overall accuracy of system and language

pairings appeared to improve with an increase in

the size of the dataset (Fig. 6; see also Fig. 7
for accuracy trends by language family and Fig. 8
for accuracy trends by system). Overall, the vari-
ance was considerable regardless of whether the
language family or even the language itself had
been observed during the Development Phase. A
linear mixed-effects regression was used to assess
variation in accuracy using fixed effects of lan-
guage category, the size of the training dataset (log
count), and their interactions, as well as random
intercepts for system and language family accu-
racy.10 Language category was sum-coded with
three levels: development language–development
family, surprise language–development family, or
surprise language–surprise family.
A significant effect of dataset size was observed,

such that a one unit increase in log count corre-
sponded to a 2% increase in accuracy (β = 0.019,
p < 0.001). Language category type also signifi-
cantly influenced accuracy: both development lan-
guages and surprise languages from development
families were less accurate on average (βdev−dev =
-0.145, βsur−dev = -0.167, each p < 0.001). These
main effects were, however, significantly modu-
lated by interactions with dataset size: on top of
the main effect of dataset size, accuracy for devel-
opment languages increased an additional ≈ 1.7%
(βdev−dev×size = 0.017, p < 0.001) and accuracy
for surprise languages from development families
10Accuracy should ideally be assessed at the trial level using
a logistic regression as opposed to a linear regression. By-
trial accuracy was however not available at analysis time.
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increased an additional ≈ 2.9% (βsur−dev×size =
0.029, p < 0.001).

Afro-Asiatic: This family was represented by
three languages. Mean accuracy across systems
was above average at 91.7%. Relative to other fam-
ilies, variance in accuracy was low, but neverthe-
less ranged from 41.1% to 99.0%.

Algic: This family was represented by one lan-
guage, Cree. Mean accuracy across systems was
below average at 65.1%. Relative to other fami-
lies, variance in accuracy was low, ranging from
41.5% to 73%. All systems appeared to struggle
with the choice of preverbal auxiliary. Some aux-
iliaries were overloaded: ‘kitta’ could refer to fu-
ture, imperfective, or imperative. The morpho-
logical features for mood and tense were also fre-
quently combined, such as SBJV+OPT (subjunc-
tive plus optative mood). While the paradigms
were very large, there were very few lemmas (28
impersonal verbs and 14 transitive verbs), which
may have contributed to the lower accuracy. Inter-
estingly, the inflections could largely be generated
by rules.11

Austronesian: This family was represented by
five languages. Mean accuracy across systemswas
around average at 80.5%. Relative to other fami-
lies, variance in accuracy was high, with accuracy
ranging from 39.5% to 100%. One may notice a
discrepancy among the difficulty in processing dif-
ferent Austronesian languages. For instance, we
see a difference of over 10% in the baseline perfor-
mance of Cebuano (84%) andHiligaynon (96%).12
This could come from the fact that Cebuano only
has partial reduplication while Hiligaynon has full
reduplication. Furthermore, the prefix choice for
Cebuano is more irregular, making it more diffi-
cult to predict the correct conjugation of the verb.

Dravidian: This family was represented by two
languages: Kannada and Telugu. Mean accu-
racy across systems was around average at 82.2%.
Relative to other families, variance in accuracy
was high: system accuracy ranged from 44.6% to

11Minor issues with the encoding of diacritics were identified,
and will be corrected for release.

12We also note that some Hiligaynon entries contained multi-
ple lemma forms (“bati/batian/pamatian”) for a single entry.
We decided to leave it since we could not find any more
information on which of the lemmas should be selected as
the main. A similar issue was observed in Chichicapan Za-
potec.

96.0%. Accuracy for Telugu was systematically
higher than accuracy for Kannada.

Indo-European: This family was represented
by 29 languages and four main branches. Mean ac-
curacy across systems was slightly above average
at 86.9%. Relative to other families, variance in
accuracy was very high: system accuracy ranged
from 0.02% to 100%. For Indo-Aryan, mean ac-
curacy was high (96.0%) with low variance; for
Germanic, mean accuracy was slightly below aver-
age (79.0%) but with very high variance (ranging
from 0.02% to 99.5%), for Romance, mean accu-
racy was high (93.4%) but also had a high variance
(ranging from 23.5% to 99.8%), and for Iranian,
mean accuracy was high (89.2%), but again with
a high variance (ranging from 25.0% to 100%).
Languages from the Germanic branch of the Indo-
European family were included in the Develop-
ment Phase.

Niger–Congo: This family was represented by
ten languages. Mean accuracy across systems was
very good at 96.4%. Relative to other families,
variance in accuracy was low, with accuracy rang-
ing from 62.8% to 100%. Most languages in this
family are considered low resource, and the re-
sources used for data gathering may have been bi-
ased towards the languages’ regular forms, as such
this high accuracy may not be representative of the
“easiness” of the task in this family. Languages
from the Niger–Congo family was included in the
Development Phase.

Oto-Manguean: This family was represented
by nine languages. Mean accuracy across systems
was slightly below average at 78.5%. Relative
to other families, variance in accuracy was high,
with accuracy ranging from 18.7% to 99.1%. Lan-
guages from the Oto-Manguean family were in-
cluded in the Development Phase.

Sino-Tibetan: This family was represented by
one language, Bodic. Mean accuracy across sys-
tems was average at 82.1%, and variance across
systems was also very low. Accuracy ranged from
67.9% to 85.1%. The results are similar to those
in Di et al. (2019) where majority of errors relate
to allomorphy and impossible combinations of Ti-
betan unit components.

Siouan: This family was represented by one lan-
guage, Dakota. Mean accuracy across systemswas
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Figure 6: Accuracy for each system and language by the log size of the dataset. Points are color-coded according
to language type: development language – development family, surprise language – development family, surprise
language – surprise family.

above average at 89.4%, and variance across sys-
tems was also low, despite the range from 0% to
95.7%. Dakota presented variable prefixing and in-
fixing of person morphemes, along some complex-
ities related to fortition processes. Determining the
factor(s) that governed variation in affix position
was difficult from a linguist’s perspective, though
many systems were largely successful. Success
varied in the choice of the first or second person
singular allomorphs which had increasing degrees
of consonant strengthening (e.g., /wa/, /ma/, /mi/
/bde/, /bdu/ for the first person singular and /ya/,
/na/, /ni/, /de/, or /du/ for the second person singu-
lar). In some cases, these fortition processes were
overapplied, and in some cases, entirely missed.

Songhay: This family was represented by one
language, Zarma. Mean accuracy across systems
was above average at 88.6%, and variance across
systems was relatively high. Accuracy ranged
from 0% to 100%.

Southern Daly: This family was represented by
one language, Murrinh-Patha. Mean accuracy
across systems was below average at 73.2%, and
variance across systems was relatively high. Ac-
curacy ranged from 21.2% to 91.9%.

Tungusic: This family was represented by one
language, Evenki. The overall accuracy was the
lowest across families. Mean accuracy was 53.8%
with very low variance across systems. Accuracy
ranged from 43.5% to 59.0%. The low accuracy
is due to several factors. Firstly and primarily,
the dataset was created from oral speech samples

in various dialects of the language. The Evenki
language is known to have rich dialectal variation.
Moreover, there was little attempt at any standard-
ization in the oral speech transcription. These pe-
culiarities led to a high number of errors. For in-
stance, some of the systems synthesized a wrong
plural form for a noun ending in /-n/. Depending
on the dialect, it can be /-r/ or /-l/, and there is a
trend to have /-hVl/ for borrowed nouns. Deduc-
ing such a rule as well as the fact that the noun is
a loanword is a hard task. Other suffixes may also
have variable forms (such as /-kVllu/ vs /-kVldu/
depending on the dialect for the 2PL imperative.
Some verbs have irregular past tense forms depend-
ing on the dialect and the meaning of the verb (e.
g. /o:-/ ’to make’ and ’to become’). Next, vari-
ous dialects exhibit various vowel and consonant
changes in suffixes. For example, some dialects
(but not all of them) change /w/ to /b/ after /l/, and
the systems sometimes synthesized a wrong form.
The vowel harmony is complex: not all suffixes
obey it, and it is also dialect-dependent. Some
suffixes have variants (e. g., /-sin/ and /-s/ for
SEMEL (semelfactive)), and the choice between
themmight be hard to understand. Finally, some of
themistakes are due to themarkup scheme scarcity.
For example, various past tense forms are all anno-
tated as PST, or there are several comitative suf-
fixes all annotated as COM. Moreover, some fea-
tures are present in the word form but they receive
no annotation at all. It is worth mentioning that
some of the predictions could theoretically be pos-
sible. To sum up, the Evenki case presents the chal-
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lenges of oral non-standardized speech.

Turkic: This family was represented by nine lan-
guages. Mean accuracy across systems was rel-
atively high at 93%, and relative to other fami-
lies, variance across systems was low. Accuracy
ranged from 51.5% to 100%. Accuracy was lower
for Azerbaijani and Turkmen, which after closer
inspection revealed some slight contamination in
the ‘gold’ files. There was very marginal varia-
tion in the accuracy for these languages across sys-
tems. Besides these two, accuracies were predom-
inantly above 98%. A few systems struggled with
the choice and inflection of the postverbal auxil-
iary in various languages (e.g., Kyrgyz, Kazakh,
and Uzbek).

Uralic: This family was represented by 16 lan-
guages. Mean accuracy across systems was aver-
age at 81.5%, but the variance across systems and
languages was very high. Accuracy ranged from
0% to 99.8%. Languages from the Uralic family
were included in the Development Phase.

Uto-Aztecan: This family was represented by
one language, O’odham. Mean accuracy across
systems was slightly below average at 76.4%, but
the variance across systems and languages was
fairly low. Accuracy ranged from 54.8% to 82.5%.
The systems with higher accuracy may have bene-
fited from better recall of suppletive forms relative
to lower accuracy systems.

10 Conclusion

This years’s shared task on morphological rein-
flection focused on building models that could
generalize across an extremely typologically di-
verse set of languages, many from understudied
language families and with limited available text
resources. As in previous years, neural models
performed well, even in relatively low-resource
cases. Submissions were able to make produc-
tive use of multilingual training to take advantage
of commonalities across languages in the dataset.
Data augmentation techniques such as hallucina-
tion helped fill in the gaps and allowed networks
to generalize to unseen inputs. These techniques,
combined with architecture tweaks like sparse-
max, resulted in excellent overall performance on
many languages (over 90% accuracy on average).
However, the task’s focus on typological diver-
sity revealed that some morphology types and lan-
guage families (Tungusic, Oto-Manguean, South-

ern Daly) remain a challenge for even the best sys-
tems. These families are extremely low-resource,
represented in this dataset by few or a single lan-
guage. Thismakes cross-linguistic transfer of simi-
larities bymultilanguage training less viable. They
may also have morphological properties and rules
(e.g., Evenki is agglutinating with many possible
forms for each lemma) that are particularly diffi-
cult for machine learners to induce automatically
from sparse data. For some languages (Ingrian,
Tajik, Tagalog, Zarma, and Lingala), optimal per-
formance was only achieved in this shared task by
hand-encoding linguist knowledge in finite state
grammars. It is up to future research to imbuemod-
els with the right kinds of linguistic inductive bi-
ases to overcome these challenges.
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A Language data statistics

Lang Total Inconsistency (%) Contradiction (%) In Vocabulary (%)

Train Dev Test Train Dev Test Dev Test Dev Test

aka 2793 380 763 0.0 0.0 0.0 0.0 0.0 24.7 12.5
ang 29270 4122 8197 11.8 1.8 3.4 21.6 21.9 35.1 21.3
ast 5096 728 1457 0.0 0.0 0.0 0.0 0.0 23.9 12.4
aze 5602 801 1601 11.9 1.9 4.0 22.3 20.9 31.5 20.2
azg 8482 1188 2396 0.8 0.0 0.0 1.3 1.1 26.9 13.8
bak 8517 1217 2434 0.0 0.0 0.0 0.0 0.0 59.8 40.1
ben 2816 402 805 0.0 0.0 0.0 0.0 0.0 29.9 16.0
bod 3428 466 936 1.0 0.2 0.3 2.4 1.9 80.0 73.4
cat 51944 7421 14842 0.0 0.0 0.0 0.0 0.0 20.8 10.4
ceb 420 58 111 1.0 0.0 0.0 0.0 2.7 72.4 62.2
cly 3301 471 944 0.0 0.0 0.0 0.0 0.0 37.4 19.3
cpa 5298 727 1431 3.4 0.6 0.8 6.6 4.3 60.2 39.8
cre 4571 584 1174 18.5 2.1 4.9 29.8 29.6 5.5 2.7
crh 5215 745 1490 0.0 0.0 0.0 0.0 0.0 77.4 60.7
ctp 2397 313 598 15.9 1.6 3.0 22.0 21.7 52.7 34.1
czn 1088 154 305 0.2 0.0 0.0 1.3 0.0 86.4 74.8
dak 2636 376 750 0.0 0.0 0.0 0.0 0.0 75.5 55.7
dan 17852 2550 5101 16.5 2.5 5.0 34.5 32.9 71.4 51.8
deu 99405 14201 28402 0.0 0.0 0.0 0.0 0.0 55.8 37.8
dje 56 9 16 0.0 0.0 0.0 0.0 0.0 100.0 87.5
eng 80865 11553 23105 1.1 0.2 0.4 2.1 1.9 80.3 66.2
est 26728 3820 7637 2.7 0.4 0.8 6.1 5.1 22.4 11.6
evn 5413 774 1547 9.6 2.8 4.3 8.9 10.0 38.9 32.5
fas 25225 3603 7208 0.0 0.0 0.0 0.0 0.0 7.6 3.8
fin 99403 14201 28401 0.0 0.0 0.0 0.0 0.0 32.6 17.2
frm 24612 3516 7033 0.0 0.0 0.0 0.0 0.0 17.1 8.6
frr 1902 224 477 4.0 0.0 1.7 9.8 6.1 22.8 10.7
fur 5408 772 1546 0.0 0.0 0.0 0.0 0.0 21.6 10.9
gaa 607 79 169 0.0 0.0 0.0 0.0 0.0 74.7 47.3
glg 24087 3441 6882 0.0 0.0 0.0 0.0 0.0 14.1 7.1
gmh 496 71 141 1.2 0.0 0.0 5.6 2.8 38.0 20.6
gml 890 127 255 17.3 3.1 5.5 22.8 27.8 39.4 20.4
gsw 1345 192 385 0.0 0.0 0.0 0.0 0.0 55.7 35.6
hil 859 116 238 0.0 0.0 0.0 0.0 0.0 59.5 36.6
hin 36300 5186 10372 0.0 0.0 0.0 0.0 0.0 5.0 2.5
isl 53841 7690 15384 1.0 0.1 0.3 1.9 2.0 48.8 29.5
izh 763 112 224 0.0 0.0 0.0 0.0 0.0 42.9 22.3
kan 3670 524 1049 13.2 2.7 4.7 18.7 20.7 21.9 14.0
kaz 7852 1063 2113 1.1 0.2 0.4 1.9 1.8 10.6 5.3
kir 3855 547 1089 0.0 0.0 0.0 0.0 0.0 17.9 9.0
kjh 840 120 240 0.0 0.0 0.0 0.0 0.0 50.8 30.4
kon 568 76 156 0.0 0.0 0.0 0.0 0.0 78.9 71.8
kpv 57919 8263 16526 0.0 0.0 0.0 0.0 0.0 48.8 35.0
krl 80216 11225 22290 0.2 0.0 0.0 0.3 0.3 19.7 10.3
lin 159 23 46 0.0 0.0 0.0 0.0 0.0 100.0 73.9
liv 2787 398 802 0.0 0.0 0.0 0.0 0.0 40.7 24.1

Table 6: Number of samples in training, development, test sets, as well as statistics on systematic errors (inconsis-
tency) and percentage of samples with lemmata observed in the training set.
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Lang Total Inconsistency (%) Contradiction (%) In Vocabulary (%)

Train Dev Test Train Dev Test Dev Test Dev Test

lld 5073 725 1450 0.0 0.0 0.0 0.0 0.0 24.3 12.3
lud 294 41 82 7.8 0.0 3.7 9.8 11.0 31.7 20.7
lug 3420 489 977 4.0 0.6 0.8 5.1 7.6 18.2 9.1
mao 145 21 42 0.0 0.0 0.0 0.0 0.0 61.9 81.0
mdf 46362 6633 13255 1.6 0.2 0.5 3.1 3.3 49.0 35.1
mhr 71143 10081 20233 0.3 0.0 0.0 0.4 0.5 48.8 34.3
mlg 447 62 127 0.0 0.0 0.0 0.0 0.0 90.3 74.0
mlt 1233 176 353 0.1 0.0 0.0 0.6 0.0 52.3 30.6
mwf 777 111 222 2.6 0.0 0.9 2.7 4.5 25.2 13.1
myv 74928 10738 21498 1.7 0.3 0.5 3.1 3.1 45.5 32.7
nld 38826 5547 11094 0.0 0.0 0.0 0.0 0.0 58.2 38.4
nno 10101 1443 2887 3.4 0.4 1.0 6.0 6.8 80.0 70.2
nob 13263 1929 3830 10.5 1.8 3.1 18.5 19.7 80.5 70.5
nya 3031 429 853 0.0 0.0 0.0 0.0 0.0 46.4 26.5
olo 43936 6260 12515 1.4 0.3 0.5 3.3 2.9 83.0 70.8
ood 1123 160 314 0.4 0.0 0.0 1.9 1.0 70.0 58.0
orm 1424 203 405 0.2 0.0 0.2 0.5 0.7 41.9 22.7
ote 22962 3231 6437 0.4 0.1 0.1 0.5 0.8 48.4 29.5
otm 21533 3020 5997 0.9 0.1 0.3 1.8 1.7 49.4 29.4
pei 10017 1349 2636 15.8 2.6 4.9 21.5 21.4 9.1 4.7
pus 4861 695 1389 3.9 0.6 1.6 9.9 7.7 34.2 23.0
san 22968 3188 6272 3.1 0.5 0.9 4.5 5.5 26.9 14.6
sme 43877 6273 12527 0.0 0.0 0.0 0.0 0.0 28.2 16.3
sna 1897 246 456 0.0 0.0 0.0 0.0 0.0 31.3 18.0
sot 345 50 99 0.0 0.0 0.0 0.0 0.0 48.0 25.3
swa 3374 469 910 0.0 0.0 0.0 0.0 0.0 20.7 10.5
swe 54888 7840 15683 0.0 0.0 0.0 0.0 0.0 70.6 51.9
syc 1917 275 548 3.5 1.5 0.4 7.6 8.6 47.3 28.1
tel 952 136 273 1.4 0.0 1.1 0.7 2.6 62.5 39.6
tgk 53 8 16 0.0 0.0 0.0 0.0 0.0 0.0 0.0
tgl 1870 236 478 7.6 1.3 1.0 11.9 10.0 74.2 55.6
tuk 20963 2992 5979 9.5 1.5 3.2 16.8 16.0 16.7 8.3
udm 88774 12665 25333 0.0 0.0 0.0 0.0 0.0 38.1 24.8
uig 5372 750 1476 0.3 0.0 0.0 0.3 0.5 12.0 6.1
urd 8486 1213 2425 0.0 0.0 0.0 0.0 0.0 9.4 6.0
uzb 25199 3596 7191 0.0 0.0 0.0 0.0 0.0 11.9 6.0
vec 12203 1743 3487 0.0 0.0 0.0 0.0 0.0 20.8 10.6
vep 94395 13320 26422 10.9 1.8 3.3 19.3 19.8 25.1 12.9
vot 1003 146 281 0.0 0.0 0.0 0.0 0.0 35.6 19.6
vro 357 51 103 1.1 0.0 0.0 2.0 1.0 70.6 50.5
xno 178 26 51 0.0 0.0 0.0 0.0 0.0 19.2 9.8
xty 2110 299 600 0.1 0.3 0.0 0.3 1.3 78.6 65.8
zpv 805 113 228 0.0 0.0 0.4 2.7 0.9 78.8 78.9
zul 322 42 78 1.9 0.0 0.0 2.4 0.0 83.3 66.7

TOTAL 1574004 223649 446580 2.0 0.3 0.6 3.6 3.6 41.1 27.9

Table 7: Number of samples in training, development, test sets, as well as statistics on systematic errors (inconsis-
tency) and percentage of samples with lemmata observed in the training set.
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B Accuracy trends

Turkic Uralic Uto-Aztecan

Siouan Songhay Southern Daly Tungusic

Indo-European Niger-Congo Oto-Manguean Sino-Tibetan

Afro-Asiatic Algic Austronesian Dravidian
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Figure 7: Accuracy for each system and language by the log size of the dataset, grouped by language family.
Points are color-coded according to language family, and shape-coded according to language type: development
language – development family, surprise language – development family, surprise language – surprise family.
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Figure 8: Accuracy for each language by the log size of the dataset, grouped by submitted system. Points are
color- and shape-coded according to language type: development language – development family, surprise language
– development family, surprise language – surprise family.
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Table 8: Results per Language Family: Afro-Asiatic and Algic

System Rank Acc

uiuc-01-0 1.0 96.4
CULing-01-0 1.0 96.3
deepspin-02-1 3.7 95.2

BASE: trm-single 4.0 95.5
BASE: trm-aug-single 4.0 95.0

deepspin-01-1 4.0 94.7
NYU-CUBoulder-01-0 4.0 94.4
NYU-CUBoulder-02-0 4.0 94.4
NYU-CUBoulder-04-0 9.7 94.3
BASE: mono-single 6.3 92.8
cmu_tartan_00-0 6.3 92.7
cmu_tartan_01-0 9.3 89.6
cmu_tartan_01-1 9.3 89.4
cmu_tartan_02-1 10.0 80.9
ETHZ-00-1 6.7 94.7

BASE: trm-shared 6.7 94.2
BASE: trm-aug-shared 6.7 94.0

IMS-00-0 6.7 93.6
BASE: mono-aug-single 6.7 93.5
NYU-CUBoulder-03-0 12.3 93.7

flexica-02-1 9.3 92.9
ETHZ-02-1 9.3 92.3
flexica-03-1 9.3 92.1

BASE: mono-shared 9.3 91.5
*CU7565-01-0 19.3 93.7

BASE: mono-aug-shared 16.0 89.8
CU7565-02-0 15.0 91.6

cmu_tartan_00-1 17.7 91.7
LTI-00-1 17.7 91.3

flexica-01-1 28.3 73.4

Oracle (Baselines) 98.7
Oracle (Submissions) 99.7

Oracle (All) 99.8
(a) Results on the Afro-Asiatic family (3 languages)

System Rank Acc

CULing-01-0 1.0 73.0
flexica-03-1 1.0 70.4
IMS-00-0 1.0 70.3
uiuc-01-0 1.0 70.3
ETHZ-02-1 1.0 69.4

cmu_tartan_02-1 1.0 69.4
flexica-02-1 1.0 69.4

cmu_tartan_00-1 8.0 69.2
BASE: mono-aug-shared 8.0 68.5
BASE: mono-aug-single 8.0 68.5

ETHZ-00-1 8.0 68.4
BASE: trm-aug-shared 8.0 68.0
BASE: trm-aug-single 8.0 68.0
cmu_tartan_01-1 8.0 68.0

NYU-CUBoulder-01-0 8.0 67.9
BASE: trm-shared 8.0 67.7
BASE: trm-single 8.0 67.7
cmu_tartan_00-0 8.0 67.6
cmu_tartan_01-0 8.0 67.6

BASE: mono-shared 8.0 66.8
BASE: mono-single 8.0 66.8

NYU-CUBoulder-02-0 8.0 66.5
deepspin-02-1 8.0 66.5
deepspin-01-1 24.0 65.1

NYU-CUBoulder-03-0 24.0 64.7
NYU-CUBoulder-04-0 26.0 61.8

CU7565-02-0 27.0 55.5
LTI-00-1 28.0 44.9

flexica-01-1 28.0 41.5
*CU7565-01-0 30.0 0.0

Oracle (Baselines) 86.9
Oracle (Submissions) 98.7

Oracle (All) 98.8
(b) Results on the Algic family (1 language)
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Table 9: Results per Language Family: Austronesian and Dravidian

System Rank Acc

CULing-01-0 1.0 84.4
IMS-00-0 1.6 85.1

NYU-CUBoulder-03-0 1.6 83.6
ETHZ-00-1 1.6 83.4

NYU-CUBoulder-01-0 1.6 82.9
NYU-CUBoulder-04-0 1.6 82.9
BASE: trm-shared 1.6 82.8

NYU-CUBoulder-02-0 1.6 82.7
deepspin-02-1 3.2 82.4

BASE: trm-aug-single 3.2 81.6
*CU7565-01-0 6.8 82.7
uiuc-01-0 5.4 82.3

BASE: trm-single 6.0 81.2
BASE: mono-aug-shared 6.0 82.9

LTI-00-1 6.0 82.0
BASE: mono-aug-single 7.8 81.3

deepspin-01-1 7.6 81.0
BASE: trm-aug-shared 7.6 79.8

flexica-03-1 7.6 79.3
cmu_tartan_00-0 8.2 79.1

BASE: mono-shared 10.4 79.2
BASE: mono-single 10.4 77.6
cmu_tartan_00-1 12.8 80.3
cmu_tartan_02-1 12.8 78.9
cmu_tartan_01-0 12.8 78.6
flexica-02-1 12.8 78.3

cmu_tartan_01-1 12.8 78.2
ETHZ-02-1 12.0 77.4

*CU7565-02-0 22.4 73.7
flexica-01-1 21.2 69.7

Oracle (Baselines) 89.1
Oracle (Submissions) 93.5

Oracle (All) 93.7
(a) Results on the Austronesian family (5 languages)

System Rank Acc

IMS-00-0 1.0 87.6
CULing-01-0 1.0 87.0

BASE: trm-aug-shared 1.0 86.8
cmu_tartan_00-0 1.0 86.3
cmu_tartan_01-1 1.0 86.3

BASE: trm-aug-single 1.0 85.9
BASE: trm-shared 1.0 85.8

ETHZ-02-1 1.0 85.5
cmu_tartan_01-0 5.0 85.7
deepspin-02-1 5.0 85.6
cmu_tartan_02-1 5.0 85.5
BASE: trm-single 5.0 85.4

uiuc-01-0 5.0 85.3
deepspin-01-1 5.0 85.2
LTI-00-1 5.0 85.0
ETHZ-00-1 5.0 84.9

BASE: mono-single 5.0 84.8
BASE: mono-aug-single 5.0 84.1
NYU-CUBoulder-02-0 12.0 82.2
NYU-CUBoulder-01-0 12.0 82.2
NYU-CUBoulder-03-0 12.0 82.1
NYU-CUBoulder-04-0 12.0 81.9

CU7565-02-0 14.5 81.4
flexica-02-1 16.5 83.7

BASE: mono-shared 16.5 83.7
flexica-03-1 16.5 83.0

cmu_tartan_00-1 19.0 62.6
BASE: mono-aug-shared 23.5 79.7

flexica-01-1 28.5 56.9
*CU7565-01-0 30.0 0.0

Oracle (Baselines) 95.9
Oracle (Submissions) 98.2

Oracle (All) 98.6
(b) Results on the Dravidian family (2 languages)
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Table 10: Results per Language Family: Indo-European and Niger-Congo

System Rank Acc

deepspin-02-1 2.3 92.9
uiuc-01-0 3.1 91.6

deepspin-01-1 2.9 92.9
BASE: trm-single 2.9 91.7
CULing-01-0 3.9 93.5

BASE: trm-aug-single 3.4 92.9
NYU-CUBoulder-04-0 7.3 90.7
BASE: trm-shared 12.0 86.9
cmu_tartan_00-1 8.1 88.6

BASE: mono-shared 8.9 90.3
NYU-CUBoulder-03-0 10.0 91.2

cmu_tartan_00-0 8.9 88.5
NYU-CUBoulder-02-0 11.4 90.6
BASE: mono-aug-shared 12.9 90.5
NYU-CUBoulder-01-0 12.4 90.4
BASE: mono-single 8.1 88.0

BASE: mono-aug-single 7.9 91.9
cmu_tartan_01-0 10.5 88.6
cmu_tartan_01-1 9.9 88.5

IMS-00-0 15.9 90.4
cmu_tartan_02-1 10.7 88.4

BASE: trm-aug-shared 15.0 88.6
LTI-00-1 15.8 87.5

CU7565-02-0 20.3 86.3
flexica-03-1 19.4 80.7
ETHZ-02-1 18.1 83.8
ETHZ-00-1 23.5 73.7
flexica-02-1 21.8 77.5

*CU7565-01-0 28.8 91.4
flexica-01-1 26.0 76.7

Oracle (Baselines) 98.0
Oracle (Submissions) 98.8

Oracle (All) 99.1
(a) Results on the Indo-European family (28 languages)

System Rank Acc

IMS-00-0 1.0 98.1
uiuc-01-0 1.0 97.9

NYU-CUBoulder-01-0 1.3 98.1
NYU-CUBoulder-02-0 1.3 98.1

deepspin-02-1 1.3 98.0
NYU-CUBoulder-03-0 1.3 98.0
BASE: mono-aug-single 1.3 97.9

deepspin-01-1 1.3 97.9
NYU-CUBoulder-04-0 1.3 97.8

LTI-00-1 1.3 97.7
BASE: trm-shared 1.3 97.7
BASE: trm-single 1.3 97.7
BASE: mono-single 1.3 97.7
BASE: mono-shared 1.3 97.6
BASE: trm-aug-single 1.3 97.5
BASE: trm-aug-shared 1.3 97.4
BASE: mono-aug-shared 1.3 97.2

*CU7565-01-0 3.9 98.0
CULing-01-0 3.4 97.1
flexica-03-1 3.1 96.9
flexica-02-1 3.1 96.9

cmu_tartan_01-1 3.6 96.4
cmu_tartan_00-0 3.6 96.3
cmu_tartan_01-0 3.6 96.3
CU7565-02-0 6.5 95.6

cmu_tartan_00-1 7.8 95.4
flexica-01-1 9.2 94.2

cmu_tartan_02-1 11.2 94.4
ETHZ-02-1 18.9 91.7
ETHZ-00-1 20.3 89.3

Oracle (Baselines) 99.2
Oracle (Submissions) 99.4

Oracle (All) 99.6
(b) Results on the Niger-Congo family (10 languages)
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Table 11: Results per Language Family: Oto-Manguean and Sino-Tibetan

System Rank Acc

uiuc-01-0 1.0 87.5
BASE: trm-single 2.0 86.2
CULing-01-0 3.1 86.7
deepspin-02-1 3.4 85.4
deepspin-01-1 3.4 85.3

NYU-CUBoulder-04-0 6.4 84.2
BASE: mono-single 7.9 82.4

NYU-CUBoulder-03-0 8.4 83.5
BASE: mono-aug-single 6.1 83.5
BASE: mono-shared 8.2 82.9
NYU-CUBoulder-02-0 9.1 83.5

IMS-00-0 10.3 83.3
LTI-00-1 9.4 82.4

NYU-CUBoulder-01-0 9.4 83.6
BASE: mono-aug-shared 9.8 82.0

cmu_tartan_00-0 13.9 78.5
cmu_tartan_01-1 14.9 78.5
cmu_tartan_02-1 15.2 78.2
BASE: trm-shared 14.5 80.2

BASE: trm-aug-shared 20.3 73.8
flexica-01-1 26.3 47.2

BASE: trm-aug-single 7.4 84.3
cmu_tartan_00-1 14.1 79.0
ETHZ-02-1 14.0 81.4
CU7565-02-0 20.9 75.1

cmu_tartan_01-0 18.3 76.5
*CU7565-01-0 27.8 81.0
ETHZ-00-1 25.4 70.5
flexica-02-1 25.6 67.0
flexica-03-1 26.1 64.2

Oracle (Baselines) 94.1
Oracle (Submissions) 96.2

Oracle (All) 96.7
(a) Results on the Oto-Manguean family (10 languages)

System Rank Acc

deepspin-01-1 1.0 85.1
deepspin-02-1 1.0 85.0
LTI-00-1 1.0 84.7
uiuc-01-0 1.0 84.4

BASE: trm-single 1.0 84.4
BASE: trm-shared 1.0 84.4
CULing-01-0 1.0 84.1
ETHZ-02-1 1.0 83.8
flexica-02-1 1.0 83.7

cmu_tartan_01-1 1.0 83.4
BASE: mono-aug-shared 1.0 83.4
BASE: mono-aug-single 1.0 83.4
NYU-CUBoulder-01-0 1.0 83.4

IMS-00-0 1.0 83.3
BASE: trm-aug-single 1.0 83.3
BASE: trm-aug-shared 1.0 83.3
BASE: mono-shared 1.0 83.2
BASE: mono-single 1.0 83.2
cmu_tartan_00-0 1.0 83.1
cmu_tartan_02-1 1.0 83.1
cmu_tartan_00-1 1.0 83.0

NYU-CUBoulder-03-0 22.0 82.8
ETHZ-00-1 22.0 82.8

cmu_tartan_01-0 22.0 82.7
NYU-CUBoulder-02-0 22.0 82.6

flexica-03-1 22.0 82.5
NYU-CUBoulder-04-0 22.0 81.7

flexica-01-1 28.0 70.6
CU7565-02-0 28.0 67.9
*CU7565-01-0 30.0 0.0

Oracle (Baselines) 91.3
Oracle (Submissions) 96.0

Oracle (All) 96.2
(b) Results on the Sino-Tibetan family (1 language)
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Table 12: Results per Language Family: Siouan and Songhay

System Rank Acc

NYU-CUBoulder-01-0 1.0 95.7
BASE: trm-single 1.0 95.6
CULing-01-0 1.0 95.6

BASE: trm-shared 1.0 95.6
ETHZ-00-1 1.0 95.5
uiuc-01-0 1.0 94.9

deepspin-01-1 1.0 94.8
NYU-CUBoulder-02-0 1.0 94.8
NYU-CUBoulder-03-0 1.0 94.7

deepspin-02-1 1.0 94.5
BASE: mono-aug-shared 1.0 94.4
BASE: mono-aug-single 1.0 94.4
NYU-CUBoulder-04-0 1.0 94.3

ETHZ-02-1 14.0 93.3
BASE: mono-single 14.0 92.9
BASE: mono-shared 14.0 92.9
BASE: trm-aug-single 14.0 92.5
BASE: trm-aug-shared 14.0 92.5

flexica-02-1 14.0 91.5
IMS-00-0 14.0 90.9
LTI-00-1 21.0 89.7

flexica-03-1 21.0 89.3
cmu_tartan_01-0 23.0 85.7
cmu_tartan_01-1 23.0 85.7
cmu_tartan_02-1 23.0 85.7
cmu_tartan_00-0 23.0 85.5
cmu_tartan_00-1 23.0 85.5
CU7565-02-0 28.0 80.5
flexica-01-1 29.0 58.4

*CU7565-01-0 30.0 0.0

Oracle (Baselines) 97.3
Oracle (Submissions) 98.1

Oracle (All) 98.1
(a) Results on the Siouan family (1 language)

System Rank Acc

BASE: mono-aug-single 1.0 100.0
BASE: trm-aug-single 1.0 100.0

CU7565-02-0 1.0 100.0
CU7565-01-0 1.0 100.0
uiuc-01-0 1.0 100.0

NYU-CUBoulder-02-0 1.0 100.0
NYU-CUBoulder-03-0 1.0 100.0
BASE: mono-aug-shared 1.0 100.0
NYU-CUBoulder-01-0 1.0 100.0

LTI-00-1 1.0 100.0
IMS-00-0 1.0 100.0
flexica-01-1 1.0 100.0
deepspin-02-1 1.0 100.0
deepspin-01-1 1.0 100.0
CULing-01-0 1.0 100.0

cmu_tartan_01-1 1.0 100.0
NYU-CUBoulder-04-0 1.0 100.0
BASE: trm-aug-shared 1.0 100.0

flexica-03-1 1.0 93.8
ETHZ-00-1 1.0 93.8

cmu_tartan_02-1 1.0 93.8
cmu_tartan_01-0 1.0 93.8
cmu_tartan_00-0 1.0 87.5
cmu_tartan_00-1 1.0 87.5
BASE: trm-shared 1.0 87.5
BASE: trm-single 1.0 87.5

flexica-02-1 27.0 0.0
BASE: mono-shared 27.0 0.0
BASE: mono-single 27.0 0.0

ETHZ-02-1 27.0 0.0

Oracle (Baselines) 100.0
Oracle (Submissions) 100.0

Oracle (All) 100.0
(b) Results on the Songhay family/genus (1 language)
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Table 13: Results per Language Family: Southern Daly and Tungusic

System Rank Acc

CULing-01-0 1.0 91.9
BASE: trm-single 1.0 89.6
BASE: trm-shared 1.0 89.6

ETHZ-00-1 1.0 88.7
uiuc-01-0 1.0 87.8

BASE: trm-aug-single 1.0 86.9
BASE: trm-aug-shared 1.0 86.9

IMS-00-0 1.0 86.0
deepspin-01-1 9.0 83.8
deepspin-02-1 9.0 83.3
cmu_tartan_01-1 9.0 81.1
cmu_tartan_01-0 9.0 81.1
cmu_tartan_00-0 9.0 80.2
cmu_tartan_00-1 9.0 80.2
ETHZ-02-1 15.0 77.9
CU7565-02-0 15.0 77.5
flexica-03-1 15.0 73.4
flexica-02-1 15.0 72.5
LTI-00-1 15.0 70.3

cmu_tartan_02-1 20.0 67.1
BASE: mono-shared 20.0 60.8
BASE: mono-single 20.0 60.8

NYU-CUBoulder-04-0 20.0 59.5
NYU-CUBoulder-03-0 20.0 59.0
NYU-CUBoulder-02-0 20.0 57.7
NYU-CUBoulder-01-0 20.0 57.7
BASE: mono-aug-single 27.0 44.6
BASE: mono-aug-shared 27.0 44.6

flexica-01-1 29.0 21.2
*CU7565-01-0 30.0 0.0

Oracle (Baselines) 91.4
Oracle (Submissions) 96.4

Oracle (All) 96.4
(a) Results on the Southern Daly family (1 language)

System Rank Acc

deepspin-02-1 1.0 59.0
deepspin-01-1 1.0 58.8
uiuc-01-0 1.0 58.3
IMS-00-0 1.0 58.2

CULing-01-0 1.0 58.0
BASE: trm-aug-single 1.0 57.7
BASE: trm-aug-shared 1.0 57.7

ETHZ-00-1 1.0 57.2
BASE: trm-single 1.0 57.1
cmu_tartan_01-0 1.0 57.1
BASE: trm-shared 1.0 57.1
cmu_tartan_00-0 12.0 56.8
cmu_tartan_01-1 12.0 56.5
cmu_tartan_00-1 12.0 55.9

LTI-00-1 12.0 55.0
cmu_tartan_02-1 16.0 54.1

BASE: mono-single 16.0 54.0
BASE: mono-shared 16.0 54.0

ETHZ-02-1 16.0 53.6
BASE: mono-aug-single 16.0 53.5
BASE: mono-aug-shared 16.0 53.5

flexica-02-1 16.0 53.1
flexica-03-1 16.0 52.7

NYU-CUBoulder-01-0 24.0 50.0
NYU-CUBoulder-03-0 24.0 48.8
NYU-CUBoulder-02-0 24.0 48.6
NYU-CUBoulder-04-0 24.0 48.2

flexica-01-1 28.0 46.5
CU7565-02-0 29.0 43.5
*CU7565-01-0 30.0 0.0

Oracle (Baselines) 67.7
Oracle (Submissions) 75.9

Oracle (All) 76.3
(b) Results on the Tungusic family (1 language)
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Table 14: Results per Language Family: Turkic and Uralic

System Rank Acc

BASE: trm-single 1.0 91.8
BASE: trm-aug-single 1.0 91.8

uiuc-01-0 1.8 92.0
CULing-01-0 3.5 91.9
deepspin-02-1 6.7 91.3
deepspin-01-1 6.7 91.1

NYU-CUBoulder-04-0 5.5 90.4
BASE: mono-single 5.1 90.9

NYU-CUBoulder-02-0 6.8 90.6
NYU-CUBoulder-03-0 6.8 90.5

cmu_tartan_01-1 7.2 91.0
cmu_tartan_00-1 6.6 90.8

BASE: mono-aug-single 7.3 90.7
BASE: trm-shared 7.7 91.3
cmu_tartan_02-1 7.4 90.8

NYU-CUBoulder-01-0 8.9 90.5
BASE: trm-aug-shared 9.3 91.1

cmu_tartan_00-0 9.7 90.9
cmu_tartan_01-0 11.8 90.7
ETHZ-00-1 16.6 88.9
IMS-00-0 11.2 91.0

BASE: mono-shared 15.1 88.9
flexica-02-1 13.1 89.7
LTI-00-1 17.1 83.3

flexica-03-1 17.0 88.6
BASE: mono-aug-shared 19.5 86.3

CU7565-02-0 21.6 85.9
ETHZ-02-1 17.5 88.6

*CU7565-01-0 29.1 96.4
flexica-01-1 28.9 72.4

Oracle (Baselines) 95.8
Oracle (Submissions) 97.4

Oracle (All) 97.5
(a) Results on the Turkic family (10 languages)

System Rank Acc

deepspin-02-1 1.8 90.7
deepspin-01-1 3.1 89.7
uiuc-01-0 2.8 88.2

CULing-01-0 3.9 88.9
BASE: trm-single 3.8 88.1

BASE: trm-aug-single 4.3 88.5
NYU-CUBoulder-04-0 10.6 86.8
NYU-CUBoulder-02-0 13.4 86.4
NYU-CUBoulder-03-0 13.4 86.0

IMS-00-0 14.8 86.1
NYU-CUBoulder-01-0 15.4 85.9

cmu_tartan_00-1 7.7 85.8
cmu_tartan_02-1 9.8 84.8

LTI-00-1 12.3 86.7
cmu_tartan_01-1 7.6 86.0
cmu_tartan_00-0 8.7 86.2

BASE: trm-aug-shared 18.8 82.6
*CU7565-02-0 22.2 79.4
*CU7565-01-0 28.2 92.9

BASE: mono-single 10.8 83.0
cmu_tartan_01-0 10.6 84.8

BASE: mono-shared 17.6 81.1
BASE: mono-aug-shared 19.4 81.9

BASE: trm-shared 19.5 76.8
ETHZ-02-1 22.6 67.9

BASE: mono-aug-single 11.4 85.9
flexica-02-1 19.5 70.7
flexica-03-1 20.5 67.8
flexica-01-1 26.8 66.0
ETHZ-00-1 28.3 54.9

Oracle (Baselines) 95.5
Oracle (Submissions) 96.8

Oracle (All) 97.2
(b) Results on the Uralic family (16 languages)
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Table 15: Results per Language Family (Uto-Aztecan) and Semitic Genus (Afro-Asiatic Family)

System Rank Acc

uiuc-01-0 1.0 82.5
NYU-CUBoulder-01-0 1.0 82.2
NYU-CUBoulder-02-0 1.0 81.8
NYU-CUBoulder-03-0 1.0 81.5

IMS-00-0 1.0 81.5
BASE: trm-single 1.0 80.9
CULing-01-0 1.0 80.9

BASE: trm-shared 1.0 80.9
deepspin-02-1 1.0 80.6

NYU-CUBoulder-04-0 1.0 79.6
ETHZ-00-1 1.0 79.3
LTI-00-1 1.0 79.0

deepspin-01-1 1.0 79.0
BASE: trm-aug-single 14.0 78.0
BASE: trm-aug-shared 14.0 78.0

flexica-02-1 14.0 77.7
BASE: mono-aug-single 14.0 77.4
BASE: mono-aug-shared 14.0 77.4

cmu_tartan_00-0 14.0 76.1
cmu_tartan_00-1 14.0 76.1
cmu_tartan_01-0 14.0 75.8
cmu_tartan_01-1 14.0 75.8

BASE: mono-shared 14.0 75.8
BASE: mono-single 14.0 75.8

flexica-03-1 14.0 75.5
ETHZ-02-1 14.0 74.5

cmu_tartan_02-1 14.0 74.2
CU7565-01-0 28.0 71.0
CU7565-02-0 29.0 62.4
flexica-01-1 30.0 54.8

Oracle (Baselines) 87.2
Oracle (Submissions) 92.0

Oracle (All) 92.3
(a) Results on the Uto-Aztecan family (1 language)

System Rank Acc

uiuc-01-0 1.0 95.6
CULing-01-0 1.0 94.9
deepspin-02-1 5.0 93.3

BASE: trm-single 5.5 93.9
BASE: trm-aug-single 5.5 93.1

deepspin-01-1 5.5 92.5
NYU-CUBoulder-01-0 5.5 92.4
NYU-CUBoulder-02-0 5.5 92.3
NYU-CUBoulder-04-0 14.0 92.0
BASE: mono-aug-shared 9.0 91.3
BASE: mono-single 9.0 90.2
cmu_tartan_00-0 9.0 90.0
cmu_tartan_01-1 13.5 85.4
cmu_tartan_01-0 13.5 85.2
cmu_tartan_02-1 14.5 72.3
ETHZ-00-1 9.5 92.5

BASE: trm-aug-shared 9.5 91.8
BASE: trm-shared 9.5 91.7

IMS-00-0 9.5 91.7
BASE: mono-aug-single 9.5 90.9

CU7565-02-0 9.5 90.6
NYU-CUBoulder-03-0 18.0 91.2

LTI-00-1 13.5 90.1
flexica-02-1 13.5 90.1
ETHZ-02-1 13.5 89.5
flexica-03-1 13.5 89.2

cmu_tartan_00-1 13.5 89.0
BASE: mono-shared 13.5 88.5

*CU7565-01-0 28.5 88.3
flexica-01-1 28.0 63.9

Oracle (Baselines) 98.4
Oracle (Submissions) 99.6

Oracle (All) 99.7
(b) Results on the Semitic genus (2 languages)
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Table 16: Results per Language Genus (in Indo-European family)

System Rank Acc

deepspin-02-1 3.4 87.1
deepspin-01-1 4.6 87.0
uiuc-01-0 3.5 87.4

BASE: trm-single 3.1 87.5
CULing-01-0 3.5 88.3

BASE: trm-aug-single 4.9 87.4
IMS-00-0 15.1 83.1

BASE: mono-single 5.3 86.3
BASE: mono-aug-single 6.8 86.3
NYU-CUBoulder-04-0 10.2 85.2
NYU-CUBoulder-02-0 13.1 83.3
NYU-CUBoulder-03-0 12.0 84.4

LTI-00-1 11.1 84.3
cmu_tartan_00-1 9.8 79.5

NYU-CUBoulder-01-0 14.5 83.0
BASE: mono-aug-shared 13.2 84.4

cmu_tartan_01-0 11.1 78.9
cmu_tartan_01-1 11.1 78.8
cmu_tartan_00-0 10.8 79.3
BASE: trm-shared 19.5 77.7

BASE: trm-aug-shared 19.5 79.1
BASE: mono-shared 11.7 83.7
cmu_tartan_02-1 13.2 78.5
CU7565-02-0 19.4 78.6
ETHZ-02-1 18.9 76.4
flexica-01-1 26.2 66.6
flexica-03-1 25.5 66.5
flexica-02-1 25.9 64.2
ETHZ-00-1 27.1 60.1

*CU7565-01-0 30.0 0.0

Oracle (Baselines) 97.0
Oracle (Submissions) 98.4

Oracle (All) 98.9
(a) Results on the Germanic genus (13 languages)

System Rank Acc

uiuc-01-0 1.0 98.2
deepspin-02-1 1.5 98.1
deepspin-01-1 1.5 98.0

BASE: trm-single 1.5 97.9
BASE: trm-aug-single 1.5 97.8
BASE: trm-shared 2.8 97.9
CULing-01-0 7.5 98.0

BASE: mono-single 6.0 97.6
NYU-CUBoulder-04-0 5.0 97.7

cmu_tartan_02-1 7.8 97.4
cmu_tartan_00-1 7.0 97.4

BASE: mono-shared 7.0 97.3
cmu_tartan_01-1 7.8 97.3
cmu_tartan_00-0 8.8 97.1

NYU-CUBoulder-03-0 8.5 97.4
NYU-CUBoulder-02-0 9.2 97.4
NYU-CUBoulder-01-0 9.2 97.3
BASE: trm-aug-shared 11.0 97.7
BASE: mono-aug-single 9.5 97.2

flexica-03-1 9.5 97.1
flexica-02-1 11.0 96.8
ETHZ-02-1 11.5 97.4
ETHZ-00-1 13.8 96.4

BASE: mono-aug-shared 15.8 94.2
cmu_tartan_01-0 17.2 96.9

IMS-00-0 17.0 96.6
CU7565-02-0 19.8 94.8
LTI-00-1 19.8 81.5

*CU7565-01-0 29.0 89.0
flexica-01-1 28.8 88.1

Oracle (Baselines) 99.2
Oracle (Submissions) 99.6

Oracle (All) 99.7
(b) Results on the Indic genus (4 languages)
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Table 17: Results per Language Genus (in Indo-European family)

System Rank Acc

CULing-01-0 1.0 95.3
deepspin-01-1 2.0 94.6
deepspin-02-1 2.0 94.6

BASE: trm-aug-shared 2.0 94.5
BASE: trm-aug-single 2.0 94.5
BASE: trm-shared 2.0 86.2
cmu_tartan_02-1 4.3 94.0

BASE: mono-aug-single 4.3 93.8
BASE: mono-shared 4.3 92.0
NYU-CUBoulder-03-0 4.3 91.8

cmu_tartan_00-1 4.3 91.8
ETHZ-02-1 4.3 91.8

NYU-CUBoulder-04-0 4.3 83.7
uiuc-01-0 9.3 82.5

BASE: trm-single 9.3 82.2
IMS-00-0 9.3 94.3
ETHZ-00-1 10.3 81.7

cmu_tartan_01-0 10.0 94.0
cmu_tartan_01-1 10.0 93.8
cmu_tartan_00-0 13.0 91.9

NYU-CUBoulder-02-0 10.0 91.8
flexica-03-1 11.7 87.2

BASE: mono-single 14.0 62.7
*CU7565-01-0 20.3 93.8

BASE: mono-aug-shared 14.7 93.3
NYU-CUBoulder-01-0 14.7 91.4

CU7565-02-0 17.7 90.9
LTI-00-1 18.3 86.2

flexica-01-1 19.3 77.5
flexica-02-1 20.0 70.6

Oracle (Baselines) 97.3
Oracle (Submissions) 97.5

Oracle (All) 97.7
(a) Results on the Iranian genus (3 languages)

System Rank Acc

deepspin-02-1 1.0 99.3
BASE: trm-single 1.0 99.2
deepspin-01-1 1.0 99.1
uiuc-01-0 1.0 98.7

BASE: trm-aug-single 2.5 98.7
CULing-01-0 3.8 99.1

cmu_tartan_00-0 4.4 98.0
BASE: mono-shared 7.1 97.0
NYU-CUBoulder-04-0 4.9 98.8

cmu_tartan_01-0 6.4 98.2
BASE: trm-shared 8.0 96.6

BASE: mono-aug-shared 10.4 97.6
cmu_tartan_00-1 7.4 97.9
cmu_tartan_01-1 9.0 98.1

NYU-CUBoulder-03-0 9.8 98.9
NYU-CUBoulder-01-0 9.8 98.6
NYU-CUBoulder-02-0 10.2 98.5
BASE: mono-aug-single 10.2 97.5
BASE: mono-single 11.5 95.5
cmu_tartan_02-1 10.5 97.8

BASE: trm-aug-shared 14.5 97.2
flexica-03-1 17.2 93.1
IMS-00-0 19.0 97.6
LTI-00-1 20.4 96.3

CU7565-02-0 23.1 92.9
flexica-02-1 21.2 92.0
flexica-01-1 26.9 87.1
ETHZ-02-1 25.1 86.1
ETHZ-00-1 27.5 81.4

*CU7565-01-0 30.0 0.0

Oracle (Baselines) 99.4
Oracle (Submissions) 99.7

Oracle (All) 99.7
(b) Results on the Romance genus (8 languages)



36

Table 18: Results per Language Genus (in Niger-Congo family)

System Rank Acc

uiuc-01-0 1.0 97.7
IMS-00-0 1.0 97.6

CULing-01-0 1.0 96.9
NYU-CUBoulder-01-0 1.4 97.9
NYU-CUBoulder-02-0 1.4 97.9
NYU-CUBoulder-03-0 1.4 97.9

deepspin-02-1 1.4 97.6
BASE: mono-aug-single 1.4 97.5

BASE: trm-single 1.4 97.4
deepspin-01-1 1.4 97.3

NYU-CUBoulder-04-0 1.4 97.3
LTI-00-1 1.4 97.3

BASE: trm-shared 1.4 97.2
BASE: mono-single 1.4 97.1
BASE: trm-aug-single 1.4 97.0
BASE: mono-shared 1.4 97.0
BASE: trm-aug-shared 1.4 96.7
BASE: mono-aug-shared 1.4 96.6

*CU7565-01-0 4.6 97.4
flexica-02-1 3.6 96.2
flexica-03-1 3.6 96.2
CU7565-02-0 4.2 95.8

cmu_tartan_01-1 4.2 95.6
cmu_tartan_01-0 4.2 95.5
cmu_tartan_00-0 4.2 95.5
cmu_tartan_00-1 6.5 94.9
flexica-01-1 7.9 93.4

cmu_tartan_02-1 13.8 93.3
ETHZ-02-1 16.9 92.0
ETHZ-00-1 18.2 89.6

Oracle (Baselines) 98.9
Oracle (Submissions) 99.3

Oracle (All) 99.5
(a) Results on the Bantoid genus (8 languages)

System Rank Acc

BASE: mono-shared 1.0 100.0
BASE: mono-single 1.0 100.0

CU7565-01-0 1.0 100.0
IMS-00-0 1.0 100.0

deepspin-02-1 1.0 100.0
deepspin-01-1 1.0 100.0
flexica-03-1 1.0 99.9

BASE: trm-shared 1.0 99.9
BASE: mono-aug-single 1.0 99.9

cmu_tartan_00-0 1.0 99.9
BASE: trm-aug-shared 1.0 99.9
BASE: trm-aug-single 1.0 99.7
cmu_tartan_01-1 1.0 99.7

BASE: mono-aug-shared 1.0 99.6
NYU-CUBoulder-04-0 1.0 99.6

LTI-00-1 1.0 99.5
flexica-02-1 1.0 99.3

cmu_tartan_01-0 1.0 99.3
BASE: trm-single 1.0 98.8

NYU-CUBoulder-01-0 1.0 98.8
NYU-CUBoulder-02-0 1.0 98.8
NYU-CUBoulder-03-0 1.0 98.7

cmu_tartan_02-1 1.0 98.7
uiuc-01-0 1.0 98.5

CULing-01-0 13.0 98.0
cmu_tartan_00-1 13.0 97.7
flexica-01-1 14.5 97.4
CU7565-02-0 15.5 94.9
ETHZ-02-1 27.0 90.4
ETHZ-00-1 28.5 87.9

Oracle (Baselines) 100.0
Oracle (Submissions) 100.0

Oracle (All) 100.0
(b) Results on the Kwa genus (2 languages)
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Table 19: Results per Language Genus (in Oto-Manguean Family)

System Rank Acc

CULing-01-0 1.0 93.9
uiuc-01-0 1.0 93.5

BASE: trm-single 1.0 92.8
deepspin-01-1 2.5 93.1

NYU-CUBoulder-04-0 2.5 93.1
deepspin-02-1 2.5 92.6

NYU-CUBoulder-03-0 2.5 92.5
NYU-CUBoulder-02-0 6.0 92.3
BASE: mono-single 6.0 92.1

NYU-CUBoulder-01-0 6.0 92.0
BASE: mono-aug-single 6.0 91.6
BASE: trm-aug-single 6.0 91.4

IMS-00-0 10.5 91.4
BASE: mono-aug-shared 10.5 90.0
BASE: mono-shared 10.5 89.9

LTI-00-1 13.0 89.6
cmu_tartan_00-1 13.0 87.9
ETHZ-02-1 15.5 89.7

BASE: trm-shared 15.5 89.5
cmu_tartan_02-1 18.0 87.3
cmu_tartan_00-0 18.0 87.1
cmu_tartan_01-1 20.5 86.7
cmu_tartan_01-0 18.0 86.3

BASE: trm-aug-shared 21.0 84.2
ETHZ-00-1 22.0 82.7

*CU7565-01-0 28.0 81.7
CU7565-02-0 26.5 76.3
flexica-02-1 26.5 69.2
flexica-03-1 28.0 66.1
flexica-01-1 29.5 40.9

Oracle (Baselines) 96.4
Oracle (Submissions) 97.1

Oracle (All) 97.4
(a) Results on the Amuzgo-Mixtecan genus (2 languages)

System Rank Acc

uiuc-01-0 1.0 81.1
CULing-01-0 1.5 80.3

BASE: trm-single 3.5 78.9
deepspin-02-1 2.2 78.7
deepspin-01-1 2.2 78.3

NYU-CUBoulder-04-0 2.2 77.2
IMS-00-0 3.8 78.0

NYU-CUBoulder-02-0 3.8 77.1
NYU-CUBoulder-03-0 3.8 77.0

LTI-00-1 6.8 73.9
NYU-CUBoulder-01-0 4.8 77.5
BASE: mono-aug-single 8.2 73.8
BASE: mono-aug-shared 9.2 72.9

cmu_tartan_01-1 12.0 69.2
cmu_tartan_00-0 13.0 68.5
cmu_tartan_02-1 13.0 68.5

BASE: trm-aug-shared 15.2 65.9
BASE: mono-shared 11.2 73.5

flexica-01-1 21.8 51.0
BASE: trm-aug-single 9.2 75.7

ETHZ-02-1 15.0 71.7
CU7565-02-0 16.5 68.5

BASE: trm-shared 15.2 71.0
BASE: mono-single 15.2 70.4
cmu_tartan_00-1 16.5 68.9
cmu_tartan_01-0 17.5 66.5
*CU7565-01-0 26.2 75.7
ETHZ-00-1 26.2 60.5
flexica-02-1 27.0 54.3
flexica-03-1 28.2 49.0

Oracle (Baselines) 89.9
Oracle (Submissions) 93.7

Oracle (All) 94.3
(b) Results on the Zapotecan genus (4 languages)
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Table 20: Results per Language Genus (in Oto-Manguean and Uralic Families)

System Rank Acc

BASE: mono-shared 1.0 98.6
uiuc-01-0 1.0 98.6

deepspin-02-1 1.0 98.5
BASE: trm-single 1.0 98.4
BASE: mono-single 1.0 98.4

BASE: mono-aug-single 1.0 98.4
deepspin-01-1 1.0 98.4

BASE: mono-aug-shared 8.0 98.2
BASE: trm-aug-single 8.0 98.1

CULing-01-0 9.5 97.7
LTI-00-1 11.5 97.2

cmu_tartan_01-1 12.0 96.2
cmu_tartan_00-1 12.0 96.8
cmu_tartan_00-0 12.0 96.7

NYU-CUBoulder-04-0 13.5 96.5
cmu_tartan_02-1 14.0 96.3
ETHZ-02-1 15.5 95.9

BASE: trm-shared 16.5 94.2
NYU-CUBoulder-03-0 18.5 94.1
NYU-CUBoulder-02-0 18.5 94.1
NYU-CUBoulder-01-0 20.0 93.7

flexica-03-1 21.0 93.1
flexica-02-1 22.5 93.1

cmu_tartan_01-0 20.5 91.9
CU7565-02-0 25.0 91.1
IMS-00-0 24.5 91.0

*CU7565-01-0 28.5 90.9
BASE: trm-aug-shared 25.5 87.3

ETHZ-00-1 27.5 85.3
flexica-01-1 29.5 64.2

Oracle (Baselines) 99.7
Oracle (Submissions) 99.9

Oracle (All) 99.9
(a) Results on the Otomian genus (2 languages)

System Rank Acc

deepspin-02-1 2.2 87.4
uiuc-01-0 2.6 83.5

deepspin-01-1 3.8 85.8
BASE: trm-aug-single 4.0 84.1
BASE: trm-single 4.3 83.4
CULing-01-0 5.2 84.6

NYU-CUBoulder-04-0 7.0 83.0
NYU-CUBoulder-02-0 10.0 82.8
NYU-CUBoulder-03-0 9.8 82.2

IMS-00-0 12.3 82.2
NYU-CUBoulder-01-0 12.0 82.4

cmu_tartan_00-1 8.3 80.0
cmu_tartan_02-1 8.3 80.2

LTI-00-1 12.3 81.9
cmu_tartan_01-1 8.0 80.3
cmu_tartan_00-0 9.4 80.8

BASE: trm-aug-shared 18.9 76.9
CU7565-02-0 20.3 74.0
*CU7565-01-0 27.1 92.9

BASE: mono-single 12.6 75.5
cmu_tartan_01-0 11.7 78.6

BASE: mono-shared 15.8 74.8
BASE: mono-aug-shared 16.9 77.4

BASE: trm-shared 21.2 67.3
ETHZ-02-1 20.6 61.0

BASE: mono-aug-single 11.2 80.7
flexica-02-1 21.2 57.3
flexica-03-1 23.0 52.5
flexica-01-1 26.6 56.1
ETHZ-00-1 28.2 45.7

Oracle (Baselines) 93.9
Oracle (Submissions) 95.8

Oracle (All) 96.3
(b) Results on the Finnic genus (10 languages)
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Table 21: Results per Language Genus (in Uralic Family)

System Rank Acc

deepspin-01-1 1.0 97.9
deepspin-02-1 1.0 97.9
CULing-01-0 2.0 97.8

BASE: trm-single 3.0 97.7
cmu_tartan_00-1 5.0 97.4

uiuc-01-0 5.0 97.6
BASE: trm-aug-single 5.0 97.6
cmu_tartan_00-0 6.0 97.4
cmu_tartan_01-1 6.0 97.3
cmu_tartan_02-1 12.5 95.6
cmu_tartan_01-0 9.0 97.1

BASE: mono-single 9.5 97.0
BASE: mono-aug-single 11.0 96.7
NYU-CUBoulder-04-0 14.0 95.6

LTI-00-1 13.5 96.7
BASE: trm-shared 14.5 95.7

BASE: trm-aug-shared 17.0 95.6
flexica-02-1 18.5 95.0

NYU-CUBoulder-02-0 18.5 94.8
IMS-00-0 19.0 94.8

NYU-CUBoulder-03-0 18.5 94.8
NYU-CUBoulder-01-0 18.5 94.7

flexica-03-1 19.0 94.6
BASE: mono-shared 21.0 94.5

CU7565-02-0 23.5 93.3
BASE: mono-aug-shared 26.0 91.5

flexica-01-1 27.0 88.7
ETHZ-02-1 28.0 79.4
ETHZ-00-1 29.0 73.4

*CU7565-01-0 30.0 0.0

Oracle (Baselines) 98.6
Oracle (Submissions) 99.0

Oracle (All) 99.2
(a) Results on the Permic genus (2 languages)

System Rank Acc

deepspin-02-1 1.0 94.0
CULing-01-0 1.0 93.9

BASE: trm-single 1.0 93.9
uiuc-01-0 1.0 93.8

BASE: trm-aug-single 3.5 93.7
deepspin-01-1 3.5 93.6
cmu_tartan_02-1 6.5 93.3
cmu_tartan_00-1 6.5 93.2
cmu_tartan_01-1 6.5 93.2
cmu_tartan_01-0 6.5 93.2
cmu_tartan_00-0 6.5 93.2

BASE: mono-single 9.5 93.0
LTI-00-1 9.5 92.8

BASE: trm-shared 13.5 92.0
BASE: mono-aug-single 14.5 92.3
BASE: trm-aug-shared 15.0 91.9

IMS-00-0 17.0 91.5
NYU-CUBoulder-04-0 18.5 90.8

flexica-03-1 18.5 90.5
flexica-02-1 18.5 90.5

NYU-CUBoulder-03-0 19.5 90.2
NYU-CUBoulder-02-0 19.5 90.2
NYU-CUBoulder-01-0 23.5 89.5
BASE: mono-shared 21.5 88.9

BASE: mono-aug-shared 24.5 87.2
CU7565-02-0 25.5 85.2
flexica-01-1 27.0 82.1
ETHZ-02-1 28.0 73.7
ETHZ-00-1 28.5 67.9

*CU7565-01-0 30.0 0.0

Oracle (Baselines) 97.0
Oracle (Submissions) 97.6

Oracle (All) 98.0
(b) Results on the Mordvin genus (2 languages)


