


the verb’s number and transitivity, and to attach a

preposition token, it may need to know the identity

of the preposition.

We try compressing to both discrete and contin-

uous task-specific representations. Discrete rep-

resentations yield an interpretable clustering of

words. We also extend information bottleneck to

allow us to control the contextual specificity of the

token embeddings, making them more like type

embeddings.

This specialization method is complementary to

the previous fine-tuning approach. Fine-tuning in-

troduces new information into word embeddings by

backpropagating the loss, whereas the VIB method

learns to exploit the existing information found by

the ELMo or BERT language model. VIB also has

less capacity and less danger of overfitting, since it

fits fewer parameters than fine-tuning (which in the

case of BERT has the freedom to adjust the embed-

dings of all words and word pieces, even those that

are rare in the supervised fine-tuning data). VIB is

also very fast to train on a single GPU.

We discover that our syntactically specialized

embeddings are predictive of the gold POS tags

in the setting of few-shot-learning, validating the

intuition that a POS tag summarizes a word token’s

syntactic properties. However, our representations

are tuned explicitly for discriminative parsing, so

they prove to be even more useful for this task than

POS tags, even at the same level of granularity.

They are also more useful than the uncompressed

ELMo representations, when it comes to generaliz-

ing to test data. (The first comparison uses discrete

tags, and the second uses continuous tags.)

2 Background: Information Bottleneck

The information bottleneck (IB) method originated

in information theory and has been adopted by the

machine learning community as a training objective

(Tishby et al., 2000) and a theoretical framework

for analyzing deep neural networks (Tishby and

Zaslavsky, 2015).

Let X represent an “input” random variable such

as a sentence, and Y represent a correlated “out-

put” random variable such as a parse. Suppose we

know the joint distribution p(X,Y ). (In practice, we

will use the empirical distribution over a sample of

(x, y) pairs.) Our goal is to learn a stochastic map

pθ(t | x) from X to some compressed representa-

tion T , which in our setting will be something like

a tag sequence. IB seeks to minimize

LIB = − I(Y ;T) + β · I(X;T) (1)

where I(·; ·) is the mutual information.1 A low

loss means that T does not retain very much in-

formation about X (the second term), while still

retaining enough information to predict Y .2 The

balance between the two MI terms is controlled

by a Lagrange multiplier β. By increasing β, we

increase the pressure to keep I(X;T) small, which

“narrows the bottleneck” by favoring compression

over predictive accuracy I(Y ;T). Regarding β as

a Lagrange multiplier, we see that the goal of IB

is to maximize the predictive power of T subject

to some constraint on the amount of information

about X that T carries. If the map from X to T were

deterministic, then it could lose information only

by being non-injective: the traditional example is

dimensionality reduction, as in the encoder of an

encoder-decoder neural net. But IB works even if

T can take values throughout a high-dimensional

space, because the randomness in pθ(t | x) means

that T is noisy in a way that wipes out information

about X . Using a high-dimensional space is de-

sirable because it permits the amount of effective

dimensionality reduction to vary, with T perhaps

retaining much more information about some x

values than others, as long as the average retained

information I(X;T) is small.

3 Formal Model

In this paper, we extend the original IB objective

(1) and add terms I(Ti; X | X̂i) to control the context-

sensitivity of the extracted tags. Here Ti is the tag

associated with the ith word, Xi is the ELMo token

embedding of the ith word, and X̂i is the same

word’s ELMo type embedding (before context is

incorporated).

LIB = − I(Y ;T)+β I(X;T)+γ
n∑

i=1

I(Ti; X | X̂i) (2)

In this section, we will explain the motivation for

the additional term and how to efficiently estimate

variational bounds on all terms (lower bound for

I(Y ;T) and upper bound for the rest).3

1In our IB notation, larger β means more compression.
Note that there is another version of IB that puts β as the
coefficient in front of I(Y ;T): LIB = −β · I(Y ;T) + I(X;T)
The two versions are equivalent.

2 Since T is a stochastic function of X with no access to Y ,
it obviously cannot convey more information about Y than the
uncompressed input X does. As a result, Y is independent of
T given X , as in the graphical model T → X → Y .

3Traditional Shannon entropy H(·) is defined on discrete
variables. In the case of continuous variables, we interpret H



We instantiate the variational IB (VIB) estima-

tion method (Alemi et al., 2016) on our depen-

dency parsing task, as illustrated in Figure 1. We

compress a sentence’s word embeddings Xi into

continuous vector-valued tags or discrete tags Ti
(“encoding”) such that the tag sequence T retains

maximum ability to predict the dependency parse Y

(“decoding”). Our chosen architecture compresses

each Xi independently using the same stochastic,

information-losing transformation.

The IB method introduces the new random vari-

able T , the tag sequence that compresses X , by

defining the conditional distribution pθ(t | x). In

our setting, pθ is a stochastic tagger, for which

we will adopt a parametric form (§3.1 below). Its

parameters θ are chosen to minimize the IB objec-

tive (2). By IB’s independence assumption,2 the

joint probability can be factored as pθ(x, y, t) =

p(x) · p(y | x) · pθ(t | x).

3.1 I(X;T)— the Token Encoder pθ(t | x)

Under this distribution, I(X;T)
def
=

Ex,t [log
pθ (t |x)

pθ (t)
] = Ex [Et∼pθ (t |x) [log

pθ (t |x)

pθ (t)
]].

Making this term small yields a representation

T that, on average, retains little information

about X . The outer expectation is over the true

distribution of sentences x; we use an empirical

estimate, averaging over the unparsed sentences

in a dependency treebank. To estimate the inner

expectation, we could sample, drawing taggings t

from pθ(t | x).

We must also compute the quantities within the

inner brackets. The pθ(t | x) term is defined by

our parametric form. The troublesome term is

pθ(t) = Ex′ [pθ(t | x ′)], since even estimating it

from a treebank requires an inner loop over tree-

bank sentences x ′. To avoid this, variational IB

replaces pθ(t) with some variational distribution

rψ(t). This can only increase our objective func-

tion, since the difference between the variational

and original versions of this term is a KL diver-

gence and hence non-negative:

upper bound
︷                      ︸︸                      ︷

E
x
[ E
t∼pθ (t |x)
[log

pθ(t |x)

rψ(t)
]] −

I(X;T )
︷                       ︸︸                       ︷

E
x
[ E
t∼pθ (t |x)
[log

pθ(t | x)

pθ(t)
]]

= E
x
[KL(pθ(t) | | rψ(t))] ≥ 0

to instead denote differential entropy (which would be −∞
for discrete variables). Scaling a continuous random variable
affects its differential entropy—but not its mutual information
with another random variable, which is what we use here.

Thus, the variational version (the first term above)

is indeed an upper bound for I(X;T) (the second

term above). We will minimize this upper bound

by adjusting not only θ but also ψ, thus making the

bound as tight as possible given θ. Also we will no

longer need to sample t for the inner expectation

of the upper bound, Et∼pθ (t |x) [log
pθ (t |x)

rψ (t)
], because

this expectation equals KL[pθ(t | x) | | rψ(t)], and

we will define the parametric pθ and rψ so that this

KL divergence can be computed exactly: see §4.

3.2 Two Token Encoder Architectures

We choose to define pθ(t | x) =
∏n

i=1
pθ(ti | xi).

That is, our stochastic encoder will compress each

word xi individually (although xi is itself a rep-

resentation that depends on context): see Fig-

ure 1. We make this choice not for computational

reasons—our method would remain tractable even

without this—but because our goal in this paper is

to find the syntactic information in each individual

ELMo token embedding (a goal we will further

pursue in §3.3 below).

To obtain continuous tags, define pθ(ti | xi) such

that ti ∈ R
d is Gaussian-distributed with mean vec-

tor and diagonal covariance matrix computed from

the ELMo word vector xi via a feedforward neural

network with 2d outputs and no transfer function

at the output layer. To ensure positive semidefinite-

ness of the diagonal covariance matrix, we squared

the latter d outputs to obtain the diagonal entries.4

Alternatively, to obtain discrete tags, define

pθ(ti | xi) such that ti ∈ {1, . . . , k} follows a soft-

max distribution, where the k softmax parameters

are similarly computed by a feedforward network

with k outputs and no transfer function at the output

layer.

We similarly define rψ(t) =
∏n

i=1
rψ(ti), where ψ

directly specifies the 2d or k values corresponding

to the output layer above (since there is no input xi
to condition on).

3.3 I(Ti; X | X̂i)— the Type Encoder sξ (ti | x̂i)

While the IB objective (1) asks each tag ti to be

informative about the parse Y , we were concerned

that it might not be interpretable as a tag of word i

specifically. Given ELMo or any other black-box

conversion of a length-n sentence to a sequence of

contextual vectors x1, . . . , xn, it is possible that xi

4Our restriction to diagonal covariance matrices follows
Alemi et al. (2016). In pilot experiments that dropped this
restriction, we found learning to be numerically unstable, al-
though that generalization is reasonable in principle.



contains not only information about word i but also

information describing word i + 1, say, or the syn-

tactic constructions in the vicinity of word i. Thus,

while pθ(ti | xi) might extract some information

from xi that is very useful for parsing, there is no

guarantee that this information came from word i

and not its neighbors. Although we do want tag ti
to consider context—e.g., to distinguish between

noun and verb uses of word i—we want “most” of

ti’s information to come from word i itself. Specif-

ically, it should come from ELMo’s level-0 em-

bedding of word i, denoted by x̂i—a word type

embedding that does not depend on context.

To penalize Ti for capturing “too much” contex-

tual information, our modified objective (2) adds

a penalty term γ · I(Ti; X | X̂i), which measures the

amount of information about Ti given by the sen-

tence X as a whole, beyond what is given by X̂i:

I(Ti; X | X̂i)
def
= Ex [Eti∼pθ (ti |x) [log

pθ (ti |x)

pθ (ti | x̂i )
]]. Set-

ting γ > 0 will reduce this contextual information.

In practice, we found that I(Ti; X | X̂i) was small

even when γ = 0, on the order of 3.5 nats whereas

I(Ti; X) was 50 nats. In other words, the tags ex-

tracted by the classical method were already fairly

local, so increasing γ above 0 had little qualitative

effect. Still, γ might be important when applying

our method to ELMo’s competitors such as BERT.

We can derive an upper bound on I(Ti; X | X̂i) by

approximating the conditional distribution pθ(ti |

x̂i)with a variational distribution sξ (ti | x̂i), similar

to §3.1.

upper bound
︷                        ︸︸                        ︷

E
x
[ E
ti∼pθ (ti |x)

[log
pθ(ti |x)

sξ (ti | x̂i)
]] −

I(Ti ;X |X̂i )
︷                        ︸︸                        ︷

E
x
[ E
ti∼pθ (ti |x)

[log
pθ(ti |x)

pθ(ti | x̂i)
]]

= E
x
[KL(pθ(ti | x̂i) | | sξ (ti | x̂i))] ≥ 0

We replace it in (2) with this upper bound, which

is equal to Ex [
∑n

i=1
KL[pθ(ti |x) | | sξ (ti | x̂i)]].

The formal presentation above does not assume

the specific factored model that we adopted in §3.2.

When we adopt that model, pθ(ti | x) above re-

duces to pθ(ti | xi)—but our method in this section

still has an effect, because xi still reflects the con-

text of the full sentence whereas x̂i does not.

Type Encoder Architectures Notice that sξ (ti |

x̂i) may be regarded as a type encoder, with param-

eters ξ that are distinct from the parameters θ of our

token encoder pθ(ti | xi). Given a choice of neural

architecture for pθ(ti | xi) (see §3.2), we always

use the same architecture for sξ (ti | x̂i), except that

pθ takes a token vector as input whereas sξ takes a

context-independent type vector. sξ is not used at

test time, but only as part of our training objective.

3.4 I(Y ;T)— the Decoder qφ(y | t)

Finally, I(Y ;T)
def
= Ey,t∼pθ [log

pθ (y |t)

p(y)
]. The p(y)

can be omitted during optimization as it does not

depend on θ. Thus, making I(Y ;T) large tries to

obtain a high log-probability pθ(y | t) for the true

parse y when reconstructing it from t alone.

But how do we compute pθ(y | t)? This quantity

effectively marginalizes over possible sentences x

that could have explained t. Recall that pθ is a joint

distribution over x, y, t: see just above §3.1. So

pθ(y | t)
def
=

∑

x pθ (x,y,t)
∑

x,y′ pθ (x,y
′,t)

. To estimate these sums

accurately, we would have to identify the sentences

x that are most consistent with the tagging t (that is,

p(x) · pθ(t |x) is large): these contribute the largest

summands, but might not appear in any corpus.

To avoid this, we replace pθ(y | t) with a varia-

tional approximation qφ(y | t) in our formula for

I(Y ;T). Here qφ(· | ·) is a tractable conditional

distribution, and may be regarded as a stochastic

parser that runs on a compressed tag sequence t

instead of a word embedding sequence x. This

modified version of I(Y ;T) forms a lower bound

on I(Y ;T), for any value of the variational parame-

ters φ, since the difference between them is a KL

divergence and hence positive:

I(Y ;T )
︷             ︸︸             ︷

E
y,t∼pθ
[log

pθ (y |t)

p(y)
] −

lower bound
︷             ︸︸             ︷

E
y,t∼pθ
[log

qφ (y |t)

p(y)
]

= E
t∼pθ
[KL(pθ(y | t) | | qφ(y | t))] ≥ 0

We will maximize this lower bound of I(Y ;T) with
respect to both θ and φ. For any given θ, the op-

timal φ minimizes the expected KL divergence,

meaning that qφ approximates pθ well.

More precisely, we again drop p(y) as constant

and then maximize a sampling-based estimate of

Ey,t∼pθ [log qφ(y |t)]. To sample y, t from the joint

pθ(x, y, t) we must first sample x, so we rewrite

as Ex,y [Et∼pθ (t |x) [log qφ(y |t)]]. The outer expec-

tation Ex,y is estimated as usual over a training tree-

bank. The expectation Et∼pθ (t |x) recognizes that t

is stochastic, and again we estimate it by sampling.

In short, when t is a stochastic compression of a

treebank sentence x, we would like our variational

parser on average to assign high log-probability

qφ(y | t) to its treebank parse y.



Decoder Architecture We use the deep biaffine

dependency parser (Dozat and Manning, 2016) as

our variational distribution qφ(y | t), which func-

tions as the decoder. This parser uses a Bi-LSTM

to extract features from compressed tags or vec-

tors and assign scores to each tree edge, setting

qφ(y | t) proportional to the exp of the total score

of all edges in y. During IB training, the code5

computes only an approximation to qφ(y |t) for the

gold tree y (although in principle, it could have

computed the exact normalizing constant in poly-

time with Tutte’s matrix-tree theorem (Smith and

Smith, 2007; Koo et al., 2007; McDonald and Satta,

2007)). When we test the parser, the code does ex-

actly find argmaxy qφ(y | t) via the directed span-

ning tree algorithm of Edmonds (1966).

4 Training and Inference

With the approximations in §3, our final minimiza-

tion objective is this upper bound on (2):

E
x,y

[

E
t∼pθ (t |x)
[− log qφ(y |t)] + βKL(pθ(t |x)| |rψ(t))

+ γ
n∑

i=1

KL(pθ(ti | x) | | sξ (ti | x̂i))
]

(3)

We apply stochastic gradient descent to optimize

this objective. To get a stochastic estimate of the

objective, we first sample some (x, y) from the

treebank. We then have many expectations over

t ∼ pθ(t | x), including the KL terms. We could es-

timate these by sampling t from the token encoder

pθ(t | x) and then evaluating all qφ, pθ, rψ, and sξ
probabilities. However, in fact we use the sampled t

only to estimate the first expectation (by computing

the decoder probability qφ(y | t) of the gold tree y);

we can compute the KL terms exactly by exploit-

ing the structure of our distributions. The structure

of pθ and rψ means that the first KL term decom-

poses into
∑n

i=1
KL(pθ(ti |xi)| |rψ(ti)). All KL terms

are now between either two Gaussian distributions

over a continuous tagset6 or two categorical distri-

butions over a small discrete tagset.7

To compute the stochastic gradient, we run back-

propagation on this computation. We must ap-

ply the reparametrization trick to backpropagate

5We use the implementation from AllenNLP library (Gard-
ner et al., 2017).

6KL(N0 | | N1) =
1
2
(tr(Σ−1

1
Σ0)+(µ1−µ0)

T
Σ
−1
1
(µ1−µ0)−

d + log(
det(Σ1)
det(Σ0)

)

7 KL(pθ (ti |xi)| |rψ(ti)) =
∑k

ti=1
pθ (ti | xi) log

pθ (ti |xi )
rψ (ti )

Language Treebank #Tokens H(A | X̂) H(A)

Arabic PADT 282k 0.059 2.059

Chinese GSD 123k 0.162 2.201

English EWT 254k 0.216 2.494

French GSD 400k 0.106 2.335

Hindi HDTB 351k 0.146 2.261

Portuguese Bosque 319k 0.179 2.305

Russian GSD 98k 0.049 2.132

Spanish AnCora 549k 0.108 2.347

Italian ISDT 298K 0.120 2.304

Table 1: Statistics of the datasets used in this paper.

“Treebank” is the treebank identifier in UD, “#Token”

is the number of tokens in the treebank, “H(A)” is the

entropy of a gold POS tag (in nats), and “H(A | X̂)” is

the conditional entropy of a gold POS tag conditioned

on a word type (in nats).

through the step that sampled t. This finds the

gradient of parameters that derive t from a ran-

dom variate z, while holding z itself fixed. For

continuous t, we use the reparametrization trick

for multivariate Gaussians (Rezende et al., 2014).

For discrete t, we use the Gumbel-softmax variant

(Jang et al., 2016; Maddison et al., 2017).

To evaluate our trained model’s ability to parse a

sentence x from compressed tags, we obtain a parse

as argmaxy qφ(y | t), where t ∼ pθ(· | x) is a sin-

gle sample. A better parser would instead estimate

argmaxy Et [qφ(y | t)] where Et averages over

many samples t, but this is computationally hard.

5 Experimental Setup

Data Throughout §§6–7, we will examine our

compressed tags on a subset of Universal Depen-

dencies (Nivre et al., 2018), or UD, a collection of

dependency treebanks across 76 languages using

the same POS tags and dependency labels. We ex-

periment on Arabic, Hindi, English, French, Span-

ish, Portuguese, Russian, Italian, and Chinese (Ta-

ble 1)—languages with different syntactic proper-

ties like word order. We use only the sentences with

length ≤ 30. For each sentence, x is obtained by

running the standard pre-trained ELMo on the UD

token sequence (although UD’s tokenization may

not perfectly match that of ELMo’s training data),

and y is the labeled UD dependency parse without

any part-of-speech (POS) tags. Thus, our tags t are

tuned to predict only the dependency relations in

UD, and not the gold POS tags a also in UD.

Pretrained Word Embeddings For English, we

used the pre-trained English ELMo model from the

AllenNLP library (Gardner et al., 2017). For the









Models Arabic Hindi English French Spanish Portuguese Russian Chinese Italian

Iden 0.751 0.870 0.824 0.784 0.808 0.813 0.783 0.709 0.863
PCA 0.743 0.866 0.823 0.749 0.802 0.808 0.777 0.697 0.857
MLP 0.759 0.871 0.839 0.816 0.835 0.821 0.800 0.734 0.867
VIBc 0.779 0.866 0.851 0.828 0.837 0.836 0.814 0.754 0.867

POS 0.652 0.713 0.712 0.718 0.739 0.743 0.662 0.510 0.779
VIBd 0.672 0.736 0.742 0.723 0.725 0.710 0.651 0.591 0.781

Table 2: Parsing accuracy of 9 languages (LAS). Black rows use continuous tags; gray rows use discrete tags

(which does worse). In each column, the best score for each color is boldfaced, along with all results of that color

that are not significantly worse (paired permutation test, p < 0.05). These results use only ELMo layer 1; results

from all layers are shown in Table 3 in the appendix, for both LAS and UAS metrics.

Analysis. Table 2 shows the test accuracies

of these parsers, using the standard train-

ing/development/test split for each UD language.

In the continuous case, the VIB representation

outperforms all three baselines in 8 of 9 languages,

and is not significantly worse in the 9th language

(Hindi). In short, our VIB joint training generalizes

better to test data. This is because the training ob-

jective (2) includes terms that focus on the parsing

task and also regularize the representations.

In the discrete case, the VIB representation out-

performs gold POS tags (at the same level of gran-

ularity) in 6 of 9 languages, and of the other 3, it is

not significantly worse in 2. This suggests that our

learned discrete tag set could be an improved al-

ternative to gold POS tags (cf. Klein and Manning,

2003) when a discrete tag set is needed for speed.

8 Related Work

Much recent NLP literature examines syntactic in-

formation encoded by deep models (Linzen et al.,

2016) and more specifically, by powerful unsu-

pervised word embeddings. Hewitt and Manning

(2019) learn a linear projection from the embed-

ding space to predict the distance between two

words in a parse tree. Peters et al. (2018b) and

Goldberg (2019) assess the ability of BERT and

ELMo directly on syntactic NLP tasks. Tenney

et al. (2019) extract information from the contex-

tual embeddings by self-attention pooling within a

span of word embeddings.

The IB framework was first used in NLP to clus-

ter distributionally similar words (Pereira et al.,

1993). In cognitive science, it has been used to ar-

gue that color-naming systems across languages are

nearly optimal (Zaslavsky et al., 2018). In machine

learning, IB provides an information-theoretic per-

spective to explain the performance of deep neural

networks (Tishby and Zaslavsky, 2015).

The VIB method makes use of variational upper

and lower bounds on mutual information. An al-

ternative lower bound was proposed by Poole et al.

(2019), who found it to work better empirically.

9 Conclusion and Future Work

In this paper, we have proposed two ways to syn-

tactically compress ELMo word token embeddings,

using variational information bottleneck. We auto-

matically induce stochastic discrete tags that corre-

late with gold POS tags but are as good or better

for parsing. We also induce stochastic continuous

token embeddings (each is a Gaussian distribution

over Rd) that forget non-syntactic information cap-

tured by ELMo. These stochastic vectors yield

improved parsing results, in a way that simpler di-

mensionality reduction methods do not. They also

transfer to the problem of predicting gold POS tags,

which were not used in training.

One could apply the same training method to

compress the ELMo or BERT token sequence x

for other tasks. All that is required is a model-

specific decoder qφ(y | t). For example, in the

case of sentiment analysis, the approach should

preserve only sentiment information, discarding

most of the syntax. One possibility that does not

require supervised data is to create artificial tasks,

such as reproducing the input sentence or predict-

ing missing parts of the input (such as affixes and

function words). In this case, the latent representa-

tions would be essentially generative, as in the vari-

ational autoencoder (Kingma and Welling, 2013).
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Supplementary Material

A Details of Deterministic Annealing

In practice, deterministic annealing (§6.3) is im-

plemented in a way that dynamically increases the

number of clusters k (Friedman et al., 2001), lead-

ing to a hierarchical clustering. First, we initial-

ize with one cluster, and all the word tokens are

mapped to that cluster with probability 1. Sec-

ond, for each cluster i, duplicate the cluster Ci to

form Cia,Cib, and divide the probabilities associ-

ated with Ci approximately evenly (with perturba-

tion) between the two clusters, i.e., set p(cia |x) =
1
2

p(ci |x) + εx and p(cib |x) =
1
2

p(ci |x) − εx . Third,

update β ← β/α, and run optimization until con-

vergence. Fourth, for each former cluster i, if Cia

and Cib have not differentiated from each other, re-

merge them by setting p(ci |x) = p(cia |x)+p(cib |x).

(Optimization will have pulled them together again

for higher β values and pushed them apart for lower

β values.) Our heuristic is to re-merge them if for

all word tokens x, |p(cia |x) − p(cib |x)| ≤ 0.01. Fi-

nally, loop back to the second step, unless the β

value has fallen below a given threshold βmin or

we have reached a desired maximum number of

clusters.

B Additional Tradeoff Curves

Figure 5 supplements the tradeoff curves in Fig-

ure 2 by plotting the relationship between I(Ti; X |

X̂i) vs. I(Y ;T), and I(Ti; X | X̂i) vs. LAS. Mov-

ing leftward on the graphs, each Ti contains less

contextual information about word i (because γ in

equation (2) is larger) as well as less information

overall about word i (because we always set γ = β,

so β is larger as well). The graphs show that the tag

sequence T then becomes less informative about

the parse Y .

C Additional t-SNE plots

Recall that Figure 3 (in §6.2) was a row of t-

SNE visualizations of the continuous token em-

beddings pθ(ti | xi) under no compression, moder-

ate compression, and too much compression. Fig-

ure 6 gives another row visualizing the continuous

type embeddings sξ (ti | x̂i) in the same way. In

both cases, the “moderate compression” condition

shows β = 0.01.

Figure 6 also shows rows for the discrete type

and token embeddings. In both cases, the “moder-

ate compression” condition shows β = 0.001.

In the continuous case, each point given to t-SNE

is the mean of a Gaussian-distributed stochastic em-

bedding, so it is in Rd. In the discrete case, each

point given to t-SNE is a vector of k tag proba-

bilities, so it is in Rk and more specifically in the

(k − 1)-dimensional simplex. The t-SNE visualizer

plots these points in 2 dimensions.

The message of all these graphs is that the tokens

or types with the same gold part of speech (shown

as having the same color) are most nicely grouped

together in the moderate compression condition.

D Syntactic Feature Classification

Figure 7 shows results for the Syntactic Features

paragraph in §6.2, by showing the prediction accu-

racy of subcategorization frame, tense, and number

from ti as a function of the level of compression.

We used an SVM classifier with a radial basis func-

tion kernel.

All results are on the English UD data with the

usual training/test split. To train and test the classi-

fiers, we used the gold UD annotations to identify

the nouns and verbs and their correct syntactic fea-

tures.

E Plot & Table for Stem Prediction

Figures 8–9 supplement the Stem paragraph in

§6.2. Figure 8 plots the error rate of reconstructing

English stems as a function of the level of compres-

sion. Figure 9 shows the reconstruction error rate

for the other 8 languages.

F Additional Table of Parsing

Performance

Table 3 is an extended version of Table 2 in §7. It

includes parsing performance (measured by LAS

and UAS) using ELMo layer 0, 1, and 2.







UAS

Models Layer Arabic Hindi English French Spanish Portuguese Russian Chinese Italian

Iden 0 0.817 0.914 0.793 0.836 0.851 0.844 0.859 0.775 0.904

Iden 1 0.821 0.915 0.868 0.833 0.852 0.842 0.860 0.771 0.903

Iden 2 0.820 0.914 0.843 0.833 0.856 0.841 0.859 0.773 0.901

PCA 0 0.814 0.912 0.787 0.814 0.847 0.857 0.831 0.773 0.897

PCA 1 0.815 0.912 0.865 0.807 0.846 0.855 0.828 0.759 0.899

PCA 2 0.814 0.915 0.832 0.808 0.846 0.858 0.829 0.766 0.902

MLP 0 0.830 0.918 0.742 0.856 0.829 0.869 0.852 0.797 0.910

MLP 1 0.831 0.923 0.823 0.870 0.832 0.867 0.852 0.800 0.908

MLP 2 0.833 0.918 0.787 0.859 0.813 0.871 0.849 0.790 0.914

VIBc 0 0.852 0.915 0.866 0.879 0.881 0.871 0.862 0.800 0.831

VIBc 1 0.860 0.913 0.871 0.877 0.880 0.877 0.865 0.814 0.913

VIBc 2 0.851 0.894 0.880 0.876 0.879 0.877 0.843 0.768 0.878

POS - 0.722 0.819 0.762 0.800 0.802 0.808 0.739 0.570 0.843

VIBd 0 0.783 0.823 0.784 0.821 0.821 0.793 0.777 0.671 0.855

VIBd 1 0.784 0.862 0.825 0.822 0.822 0.805 0.776 0.691 0.857

VIBd 2 0.754 0.861 0.816 0.822 0.812 0.790 0.768 0.672 0.849

LAS

Models layer Arabic Hindi English French Spanish Portuguese Russian Chinese Italian

Iden 0 0.747 0.867 0.745 0.789 0.806 0.812 0.788 0.713 0.864

Iden 1 0.751 0.870 0.824 0.784 0.808 0.813 0.783 0.709 0.863

Iden 2 0.743 0.867 0.798 0.782 0.811 0.813 0.787 0.713 0.861

PCA 0 0.746 0.864 0.742 0.758 0.804 0.811 0.781 0.706 0.856

PCA 1 0.743 0.866 0.823 0.749 0.802 0.808 0.777 0.697 0.857

PCA 2 0.744 0.870 0.787 0.750 0.801 0.811 0.780 0.700 0.865

MLP 0 0.754 0.869 0.801 0.814 0.772 0.817 0.798 0.739 0.871

MLP 1 0.759 0.871 0.839 0.816 0.835 0.821 0.800 0.734 0.867

MLP 2 0.760 0.871 0.834 0.814 0.755 0.822 0.797 0.726 0.869

VIBc 0 0.778 0.865 0.822 0.822 0.839 0.827 0.807 0.739 0.862

VIBc 1 0.779 0.866 0.851 0.828 0.837 0.836 0.814 0.754 0.867

VIBc 2 0.777 0.838 0.840 0.826 0.840 0.829 0.786 0.710 0.818

POS - 0.652 0.713 0.712 0.718 0.739 0.743 0.662 0.510 0.779

VIBd 0 0.671 0.702 0.721 0.723 0.724 0.710 0.648 0.544 0.780

VIBd 1 0.672 0.736 0.742 0.723 0.725 0.710 0.651 0.591 0.781

VIBd 2 0.643 0.735 0.741 0.721 0.719 0.698 0.646 0.566 0.763

Table 3: Parsing accuracy of 9 languages (LAS and UAS); Table 2 is a subset of this table. Black rows use

continuous tags; gray rows use discrete tags (which does worse). The “layer” column indicates the ELMo layer

we use. In each column, the best score for each color is boldfaced, along with all results of that color that are not

significantly worse (paired permutation test, p < 0.05).


