
Proceedings of the Fourteenth Workshop on Innovative Use of NLP for Building Educational Applications, pages 369–379

Florence, Italy, August 2, 2019. c©2019 Association for Computational Linguistics

369

Simple Construction of Mixed-Language Texts
for Vocabulary Learning

Adithya Renduchintala and Philipp Koehn and Jason Eisner

Center for Language and Speech Processing
Johns Hopkins University

{adi.r,phi}@jhu.edu jason@cs.jhu.edu

Abstract

We present a machine foreign-language

teacher that takes documents written in a

student’s native language and detects situations

where it can replace words with their foreign

glosses such that new foreign vocabulary can

be learned simply through reading the resulting

mixed-language text. We show that it is possi-

ble to design such a machine teacher without

any supervised data from (human) students. We

accomplish this by modifying a cloze language

model to incrementally learn new vocabulary

items, and use this language model as a proxy

for the word guessing and learning ability of

real students. Our machine foreign-language

teacher decides which subset of words to

replace by consulting this language model.

We evaluate three variants of our student

proxy language models through a study on

Amazon Mechanical Turk (MTurk). We find

that MTurk “students” were able to guess

the meanings of foreign words introduced by

the machine teacher with high accuracy for

both function words as well as content words

in two out of the three models. In addition,

we show that students are able to retain their

knowledge about the foreign words after they

finish reading the document.

1 Introduction

Proponents of using extensive reading for language

acquisition, such as Krashen (1989), argue that

much of language acquisition takes place through in-

cidental learning , where a reader infers the meaning

of unfamiliar vocabulary or structures using the sur-

rounding (perhaps more familiar) context. Unfortu-

nately, when it comes to learning a foreign language

(L2), considerable fluency is required before seeing

the benefits of incidental learning. But it may be pos-

sible to use a student’s native language (L1) fluency

to introduce new L2 vocabulary. The student’s L1

fluency can provide sufficient “scaffolding” (Wood

et al., 1976), which we intend to exploit by find-

ing the “zone of proximal development” (Vygotskiı̆,

2012) in which the learner is able to comprehend

the text but only by stretching their L2 capacity.

As an example of such mixed-language incidental

learning, consider a native speaker of English (learn-

ing German) presented with the following sentence:

Der Nile is a Fluss in Africa. With

a little effort, one would hope a student can infer

the meaning of the German words because there

is sufficient contextual information. Perhaps with

repeated exposure, the student may eventually learn

the German words. Our goal is to create a machine

teacher that can detect and exploit situations where

incidental learning can occur in narrative text (sto-

ries, articles etc.). The machine teacher will take a

sentence in the student’s native language (L1) and re-

place certain words with their foreign-language (L2)

translations, resulting in a mixed-language sentence.

We hope that reading mixed-language documents

does not feel like a traditional vocabulary learning

drill even though novel L2 words can be picked

up over time. We envision our method being used

alongside traditional foreign-language instruction.

Typically, a machine teacher would require super-

vised data, meaning data on student behaviors and

capabilities (Renduchintala et al., 2016; Labutov

and Lipson, 2014). This step is expensive, not

only from a data collection point of view, but also

from the point of view of students, as they would

have to give feedback (i.e. generate labeled data)

on the actions of an initially untrained machine

teacher. However, our machine teacher requires

no supervised data from human students. Instead,

it uses a cloze language model trained on corpora

from the student’s native language as a proxy for

a human student. Our machine teacher consults this

proxy to guide its construction of mixed-language

data. Moreover, we create an evaluation dataset that

allows us to determine whether students can actually



370

Sentence The Nile is a river in Africa

Gloss Der Nil ist ein Fluss in Afrika

Mixed-Lang Der Nile ist a river in Africa

Configurations The Nile is a Fluss in Africa

Der Nil ist ein river in Africa

Table 1: An example English (L1) sentence with Ger-

man (L2) glosses. Using the glosses, several possible

mixed-language configurations are possible. Note that

the glosses do not form fluent L2 sentences.

understand our generated texts and learn from them.

We present three variants of our machine teacher,

by varying the underlying language models, and

study the differences in the mixed-language doc-

uments they generate. We evaluate these systems

by asking participants on Amazon Mechanical Turk

(MTurk) to read these documents and guess the

meanings of L2 words as and when they appear (the

participants are expected to use the surrounding

words to make their guesses). Furthermore, we

select the best performing variant and evaluate if

participants can actually learn the L2 words by

letting participants read a mixed-language passage

and give a L2 vocabulary quiz at the end of passage,

where the L2 words are presented in isolation.

2 Approach

Will a student be able to infer the meaning of the L2

tokens I have introduced? This is the fundamental

question that a machine teacher must answer when

deciding on which words in an L1 sentence should

be replaced with L2 glosses. The machine teacher

must decide, for example, if a student would

correctly guess the meanings of Der, ist, ein, or

Flusswhen presented with this mixed-language

configuration: Der Nile ist ein Fluss

in Africa.1 The machine teacher must also ask

the same question of many other possible mixed-

language configurations. Table 1 shows an example

sentence and three mixed-language configurations

from among the exponentially many choices. Our

approach assumes a 1-to-1 correspondence (i.e.

gloss) is available for each L1 token. Clearly,

this is not true in general, so we only focus on

mixed-language configurations when 1-to-1 glosses

are possible. If a particular L1 token does not have

a gloss, we only consider configurations where that

token is always represented in L1.

1By “meaning” we mean the L1 token that was originally
in the sentence before it was replaced by an L2 gloss.

2.1 Student Proxy Model

Before we address the aforementioned question,

we must introduce our student proxy model. Con-

cretely, our student proxy model is a cloze language

model that uses bidirectional LSTMs to predicts

L1 words from their surrounding context (Mousa

and Schuller, 2017; Hochreiter and Schmidhuber,

1997). We refer to it as the cLM (cloze language

model). Given a L1 sentence [x1,x2, ... ,xT ], the

model defines a distribution p(xt | [h
f : hf ]) at

each position in the sentence. Here, hf and hb are

D−dimensional hidden states from forward and

backward LSTMs.

hf
t=LSTMf ([x1,...,xt−1];θ

f ) (1)

hb
t=LSTMb([xt+1,...,xT ];θ

b) (2)

The cLM assumes a fixed L1 vocabulary of size

V , and the vectors xt above are embeddings of

these word types, which correspond to the rows of a

matrix E∈RV×D. The output distribution (over V

word types) is obtained by concatenating the hidden

states from the forward and backward LSTMs and

projecting the resulting 2D-dimensional state down

to D-dimensions using a projection layer h(·;θh).
Finally, a softmax operation is performed:

p(· | [hf :hb])=softmax(E·h([hf :hb];θh)) (3)

Note that the softmax layer also uses the word

embedding matrix E when generating the output

distribution (Press and Wolf, 2017). This cloze

language model encodes left-and-right contextual

dependence rather than the typical sequence depen-

dence of standard (unidirectional) language models.

We train the parameters θ = [θf ; θb; θh; E]
using Adam (Kingma and Ba, 2014) to maximize
∑

xL(x), where the summation is over sentences

x in a large L1 training corpus.

L(x)=
∑

t

logp(xt | [h
f
t :h

b
t]) (4)

We assume that the resulting model represents the

entirety of the student’s L1 knowledge, and that the

L1 parameters θ will not change further.

2.2 Incremental L2 Vocabulary Learning

The model so far can assign probability to an

L1 sentence such as The Nile is a river

in Africa, (using Eq. (4)) but what about a

mixed-language sentence such as Der Nile ist

ein Fluss in Africa? To accommodate the
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new L2 words, we use another word-embedding

matrix, F ∈ R
V ′×D and modify Eq 3 to consider

both the L1 and L2 embeddings:

p(· | [hf :hb])=softmax([E;F]·h([hf :hb];θh))

We also restrict the softmax function above to

produce a distribution not over the full bilingual

vocabulary of size |V | + |V ′|, but only over the

bilingual vocabulary consisting of the V L1 types

together with only the v′⊂V ′ L2 types that actually

appear in the mixed-language sentence x. In the

above example mixed-language sentence, |v′| is 4.

We initialize F by drawing its elements IID from

Uniform[−0.01,0.01]. Thus, all L2 words initially

have random embeddings [−0.01,0.01]1×D.

These modifications lets us compute L(x) for a

mixed-language sentence x. We assume that when

a human student reads a mixed-language sentence

x, they update their L2 parameters F (but not their

L1 parameters θ) to increaseL(x). Specifically, we

assume that F will be updated to maximize

L(x;θf ,θb,θh,E,F)−λ‖F−Fprev‖2 (5)

Maximizing Eq. (5) adjusts the embeddings of each

L2 word in the sentence so that it is more easily pre-

dicted from the other L1/L2 words, and also so that it

is more helpful at predicting the other L1/L2 words.

Since the rest of the model’s parameters do not

change, we expect to find an embedding for Fluss

that is similar to the embedding for river. How-

ever, the regularization term with coefficient λ>0
prevents F from straying too far from from Fprev,

which represents the value of F before this sentence

was read. This limits the degree to which our sim-

ulated student will change their embedding of an

L2 word such as Fluss based on a single example.

As a result, the embedding of Fluss reflects all of

the past sentences that contained Fluss, although

(realistically) with some bias toward the most recent

such sentences. We do not currently model spacing

effects, i.e., forgetting due to the passage of time.

In principle, λ should be set based on human-

subjects experiments, and might differ from human

to human. In practice, in this paper, we simply took

λ=1. We (approximately) maximized the objective

above using 5 steps of gradient ascent, which gave

good convergence in practice.

2.3 Scoring L2 embeddings

The incremental vocabulary learning procedure

(Section 2.2) takes a mixed-language configuration

and generates a new L2 word-embedding matrix

by applying gradient updates to a previous version

of the L2 word-embedding matrix. The new matrix

represents the proxy student’s L2 knowledge after

observing the mixed-language configuration.

Thus, if we can score the new L2 embeddings,

we can, in essence, score the mixed-language

configuration that generated it. The ability to

score configurations affords search (Sections 2.4

and 2.5) for high-scoring configurations. With this

motivation, we design a scoring function to measure

the “goodness” of L2 word-embeddings, F.

The machine teacher evaluates F with reference

to all correct word-gloss pairs from the entire

document. For our example sentence, the word

pairs are {(The, Der), (is,ist), (a,ein),

(river,Fluss)}. But the machine teacher also

has access to, for example, {(water,Wasser),

(stream, Fluss) . . . }, which come from

elsewhere in the document. Thus, ifP is the set of

word pairs,{(x1,f1),...(x|P|,f|P|)}, we compute:

r̃p=R(xp,cs(Ffp ,E)) (6)

rp=

{

r̃p if r̃p<rmax

∞ otherwise

MRR(F,E,rmax)=
1

|P|

∑

p

1

rp
(7)

where cs(Ff ,E) denotes the vector of cosine simi-

larities between the embedding of an L2 word f and

the entire L1 vocabulary. R(x,cs(E,Ff )) queries

the rank of the correct L1 word x that pairs with f .

r can take values from 1 to |V |, but we use a rank

threshold rmax and force pairs with a rank worse

than rmax to∞. Thus, given a word-gloss pairing

P , the current state of the L2 embedding matrix

F, and the L1 embedding matrix E, we obtain the

Mean Reciprocal Rank (MRR) score in (7).

We can think of the scoring function as a

“vocabulary test” in which the proxy student gives

(its best) rmax guesses for each L2 word type and

receives a numerical grade.

2.4 Mixed-Language Configuration Search

So far we have detailed our simulated student

that would learn from a mixed-language sentence,

and a metric to measure how good the learned L2

embeddings would be. Now the machine teacher

only has to search for the best mixed-language

configuration of a sentence. As there are exponen-

tially many possible configurations to consider,
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exhaustive search is infeasible. We use a simple

left-to-right greedy search to approximately find the

highest scoring configuration for a given sentence.

Algorithm 1 shows the pseudo-code for the search

process. The inputs to the search algorithm are

the initial L2 word-embeddings matrix Fprev, the

scoring function MRR(), and the student proxy

model SPM(). The algorithm proceeds left to right,

making a binary decision at each token: Should the

token be replaced with its L2 gloss or left as is? For

the first token, these two decisions result in the two

configurations: (i) Der Nile... and (ii) The

Nile... These configurations are given to the

student proxy model which updates the L2 word

embeddings. The scoring function (section 2.3)

computes a score for each L2 word-embedding

matrix and caches the best configuration (i.e. the

configuration associated with the highest scoring

L2 word-embedding matrix). If two configurations

result in the same MRR score, the number of L2

word types exposed is used to break ties. In Algo-

rithm 1, ρ(c) is the function that counts the number

of L2 word types exposed in a configuration c.

Algorithm 1 Mixed-Lang. Config. Search

Require: x=[x1,x2,...,xT ] ⊲ L1 tokens
Require: f=[f1,f2,...,fT ] ⊲ L2 glosses
Require: E ⊲ L1 emb. matrix
Require: F

prev ⊲ initial L2 emb. matrix
Require: SPM ⊲ Student Proxy Model
Require: MRR,rmax ⊲ Scoring Func., threshold
1: function SEARCH(x,f ,Fprev)
2: c←x ⊲ initial configuration is the L1 sentence
3: F←F

prev

4: s=MRR(E,F,rmax)
5: for i=1;i≤T ;i++ do
6: c

′←c1···ci−1 fixi+1···xT

7: Φ
′=SPM(Fprev,c′)

8: s′=MRR(E,Φ′,rmax)
9: if (s′,−ρ(c′))≥(s,−ρ(c)) then

10: c←c
′,F←F

′,s←s′

11: end if
12: end for
13: return c,F ⊲ Mixed-Lang. Config.
14: end function

2.5 Mixed-Language document creation

Our idea is that a sequence of mixed-language con-

figurations is good if it drives the student proxy

model’s L2 embeddings toward an MRR score close

to 1 (maximum possible). Note that we do not

change the sentence order (we still want a coher-

ent document), just the mixed-language configura-

tion of each sentence. For each sentence in turn, we

greedily search over mixed-language configurations

using Algorithm 1, then choose the configuration

that learns the best F, and proceed to the next sen-

tence with Fprev now set to this learned F.2 This

process is repeated until the end of the document.

The pseudo-code for generating an entire document

of mixed-language content is shown in Algorithm 2.

Algorithm 2 Mixed-Lang. Document Gen.

Require: D=[(x1,f1),...,(xN,fN)] ⊲ Document
Require: E ⊲ L1 emb. matrix
Require: F

0 ⊲ initial L2 emb. matrix
1: function DOCGEN(D,F0)
2: C=[] ⊲ Configuration List
3: for i=1;i≤N ;i++ do
4: xi,fi=D[i]
5: ci,Fi=SEARCH(xi,fi,Fi−1)
6: C←C+[ci]
7: end for
8: return C ⊲ Mixed-Lang. Document
9: end function

In summary, our machine teacher is composed

of (i) a student proxy model which is a contextual

L2 word learning model (Sections 2.1 and 2.2)

and (ii) a configuration sequence search algorithm

(Sections 2.4 and 2.5), which is guided by (iii) an

L2 vocabulary scoring function (Section 2.3). In

the next section, we describe two variations for the

student proxy models.

3 Variations in Student Proxy Models

We developed two variations for the student proxy

model to compare and contrast the mixed-language

documents that can be generated.

3.1 Unidirectional Language Model

This variation restricts the bidirectional model

(from Section 2.1) to be unidirectional (uLM ) and

follows a standard recurrent neural network (RNN)

language model (Mikolov et al., 2010).

logp(x)=
∑

t

logp(xt |h
f
t) (8)

hf
t=LSTMf (x0,...,xt−1;θ

f ) (9)

p(· |hf )=softmax(E·hf ) (10)

Once again, hf ∈ R
D×1 is the hidden state of the

LSTM recurrent network, which is parameterized

by θ
f , but unlike the model in Section 2.1, no

backward LSTM and no projection function is used.

The same procedure from the bidirectional model

is used to update L2 word embeddings (Section 2.2).

While this model does not explicitly encode context

2For the first sentence, we initialize Fprev to have values
randomly between [−0.01,0.01].
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from “future” tokens (i.e. words to the right of xt)

, there is still pressure from right-side tokens xt+t:T

because the new embeddings will be adjusted to

explain the tokens to the right as well. Fixing all

the L1 parameters further strengthens this pressure

on L2 embeddings from words to their right.

3.2 Direct Prediction Model

The previous two models variants adjust L2

embeddings using gradient steps to improve the

pseudo-likelihood of the presented mixed-language

sentences. One drawback of such an approach

is computation speed caused by the bottleneck

introduced by the softmax operation.

We designed an alternate student prediction

model that can “directly” predict the embeddings for

words in a sentence using contextual information.

We refer to this variation as the Direct Prediction

(DP ) model. Like our previous student proxy mod-

els, the DP model also uses bidirectional LSTMs

to encode context and an L1 word embedding ma-

trix E. However, the DP model does not attempt to

produce a distribution over the output vocabulary;

instead it tries to predict a real-valued vector using

a feed-forward highway network (Srivastava et al.,

2015). The DP model’s objective is to minimize the

mean square error (MSE) between a predicted word

embedding and the true embedding. For a time-step

t, the predicted word embedding x̂t, is generated by:

hf
t=LSTMf ([x1,...,xt−1];θ

f ) (11)

hb
t=LSTMb([xt+1,...,xT ];θ

b) (12)

x̂t=FF([xt :h
f
t :h

b
t];θ

w) (13)

L(θf ,θb,θw)=
∑

t

(x̂t−xt)
2 (14)

where FF (.;θw) denotes a feed forward highway

network with parameters θw. Thus, the DP model

training requires that we already have the “true em-

beddings” for all the L1 words in our corpus. We use

pretrained L1 word embeddings from FastText as

“true embeddings” (Bojanowski et al., 2017). This

leaves the LSTM parametersθf ,θb and the highway

feed-forward network parameters θw to be learned.

Equation 14 can be minimized by simply copying

the input xt as the prediction (ignoring all context).

We use masked training to prevent the model itself

from trivially copying (Devlin et al., 2018). We

randomly “mask” 30% of the input embeddings

during training. This masking operation replaces

the original embedding with either (i) 0 vectors,

or (ii) vectors of a random word in vocabulary, or

(iii) vectors of a “neighboring” word from the vo-

cabulary. 3 The loss, however, is always computed

with respect to the correct token embedding.

With the L1 parameters of the DP model

trained, we turn to L2 learning. Once again the L2

vocabulary is encoded in F, which is initialized to

0 (i.e. before any sentence is observed). Consider

the configuration: The Nile is a Fluss

in Africa. The tokens are converted into a

sequence of embeddings: [x0 = Ex0
, ... , xt =

Fft ,...,xT =ExT
]. Note that at time-step t the L2

word-embedding matrix is used (t=4,ft=Fluss

for the example above). A prediction x̂t is generated

by the model using Equations 11-13. Our hope

is that the prediction is a “refined” version of the

embedding for the L2 word. The refinement arises

from considering the context of the L2 word. If

Flusswas not seen before, xt=Fft =0, forcing

the DP model to only use contextual information.

We apply a simple update rule that modifies the L2

embeddings based on the direct predictions:

Fft←(1−η)Fft+ηx̂t (15)

where η controls the interpolation between the old

values of a word embedding and the new values

which have been predicted based on the current

mixed sentence. If there are multiple L2 words in a

configuration, say at positions i and j (where i<j),

we can still follow Eq 11–13. However, to allow the

predictions x̂i and x̂j to jointly influence each other,

we need to execute multiple prediction iterations.

Concretely, let X = [x0,...,Ffi ,...,Ffj ,...,xT ]
be the sequence of word embeddings for a

mixed-language sentence. The DP model generates

predictions X̂= [x̂0,...,x̂i,...,x̂j ,...,x̂T ]. We only

use its predictions at time-steps corresponding to

L2 tokens since the L2 words are those we want to

update (Eq 16).

X1=DP(X0)

Where,X0=[x1,...,Ffi ,...,Ffj ,...,xT ]

X1=[x1,...,x̂
1
i ,...,x̂

1
j ,...,xT ] (16)

Xk=DP(Xk−1) ∀0≤k<K−1 (17)

where X1 contains predictions at i and j and the

original L1 word-embeddings in other positions.

We then pass X1 as input again to the DP model.

This is executed for K iterations (Eq 17). With

3We precompute 20 neighboring words (based on cosine-
similarity) for each word in the vocabulary using FastText
embeddings before training.
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Figure 1: A screenshot of a mixed-language sentence

presented on Mechanical Turk.

Metric Model rmax =1 rmax =4 rmax =8

cLM 0.25 0.31 0.35
Replaced uLM 0.20 0.25 0.25

DP 0.19 0.22 0.21

cLM 86.00(±0.87) 74.00(±1.10) 55.13(±2.54)
Guess
Accuracy

uLM 84.57(±0.56) 73.89(±1.72) 72.83(±1.58)

DP 88.44(±0.73) 81.07(±1.03) 70.85(±1.49)

Table 3: Results from MTurk data. The first section

shows the percentage of tokens that were replaced

with L2 glosses under each condition. The Accuracy

section shows the percentage token accuracy of MTurk

participants’ guesses along with 95% confidence

interval calculated via bootstrap resampling.

each iteration, our hope is that the DP model’s

predictions x̂i and x̂j get refined by influencing

each other and result in embeddings that are

well-suited to the sentence context. A similar style

of imputation has been studied for one dimensional

time-series data by Zhou and Huang (2018). Finally,

after K−1 iterations, we use the predictions of x̂i

and x̂j fromXK to update the L2 word-embeddings

in F corresponding to the L2 tokens fi and fj . η

was set to 0.3 and the number of iterations K=5.

Ffi←(1−η)Ffi+ηx̂K
i

Ffj←(1−η)Ffj+ηx̂K
j (18)

4 Experiments

We first investigate the patterns of word replace-

ment produced by the machine teacher under the

influence of the different student proxy models

and how these replacements affect the guessability

of L2 words. To this end, we used the machine

teacher to generate mixed-language documents

and asked MTurk participants to guess the foreign

words. Figure 1 shows an example screenshot of our

guessing interface. The words in blue are L2 words

whose meaning (in English) is guessed by MTurk

participants. For our study, we created a synthetic

L2 language by randomly replacing characters from

English word types. This step lets us safely assume

that all MTurk participants are “absolute beginners.”

We tried to ensure that the resulting synthetic words

are pronounceable by replacing vowels with vowels,

stop-consonants with other stop-consonants, etc.

We also inserted or deleted one character from some

of the words to prevent the reader from using the

length of the synthetic word as a clue. While our

evaluation required use of a synthetic foreign lan-

guage, we provide as an example mixed-language

documents with real L2 languages in Appendix A.1.

We studied the three student proxy models

(cLM , uLM , and DP ) while keeping the rest of

the machine teacher’s components fixed (i.e. same

scoring function and search algorithms). All three

models were constructed to have roughly the

same number of L1 parameters (≈ 20M ). The

uLM model used 2 unidirectional LSTM layers

instead of a single bidirectional layer. The L1

and L2 word embedding size and the number of

recurrent units D were set to 300 for all three

models (to match the size of FastText’s pretrained

embeddings). We trained the three models on the

Wikipedia-103 corpus (Merity et al., 2016).4 All

models were trained for 8 epochs using the Adam

optimizer (Kingma and Ba, 2014). We limit the L1

vocabulary to the 60k most frequent English types.

4.1 MTurk Setup

We selected 6 documents from Simple Wikipedia to

serve as the input for mixed-language content.5 To

keep our study short enough for MTurk, we selected

documents that contained 20 − 25 sentences. A

participant could complete up to 6 HITs (Human In-

telligence Tasks) corresponding to the 6 documents.

Participants were given 25minutes to complete each

HIT (on average, the participants took 12 minutes

to complete the HITs). To prevent typos, we used a

20k word English dictionary, which includes all the

word types from the 6 Simple Wikipedia documents.

We provided no feedback regarding the correctness

of guesses. We recruited 128 English speaking

MTurk participants and obtained 162 responses,

with each response encompassing a participant’s

guesses over a full document.6 Participants were

compensated $4 per HIT.

4.2 Experiment Conditions

We generated 9 mixed-language versions (3 models

{cLM ,uLM ,DP } in combination with 3 rank

4FastText pretrained embeddings were trained on more data.
5https://dumps.wikimedia.org/simplewiki/20190120/
6Participants self-reported their English proficiency, only

native or fluent speakers were allowed to participate. Our HITs
were only available to participants from the US.
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Model rmax =1 rmax =8

cLM Hu Nile (‘‘an-nīl’’) ev a river um Africa. Up
is hu longest river iñ Earth (about 6,650 km

or 4,132 miles), though other rivers carry

more water...

Many ozvolomb types iv emoner live in or near

hu waters iv hu Nile, including crocodiles,

birds, fish ñb many others. Not only do

animals depend iñ hu Nile for survival, but

also people who live there need up zi everyday

use like washing, as u jopi supply, keeping

crops watered ñb other jobs...

Hu Nile (‘‘an-nīl’’) ev u river um Africa. Up
ev the longest river on Earth (about 6,650 km

or 4,132 miles), though other rivers carry

more water...

Emu ozvolomb types of emoner live um or iul
the waters of hu Uro, including crocodiles,

ultf, yvh and emu others. Ip only do animals

depend iñ the Nile zi survival, but also daudr
who live there need up zi everyday use like

washing, ez a jopi supply, keeping crops

watered ñb other jobs...

uLM The Nile (‘‘an-nīl’’) ev a river um Africa.

It ev hu longest river on Earth (about 6,650

km or 4,132 miles), though other rivers carry

more jopi...
Many different pita of emoner live in or near

hu waters iv hu Nile, including crocodiles,

ultf, fish and many others. Not mru do emoner
depend iñ hu Nile for survival, but also

people who live there need it for everyday

use like washing, as a jopi supply, keeping

crops watered ñb other jobs...

Hu Nile (‘‘an-nīl’’) ev u river um Africa. Up
ev the longest river iñ Earth (about 6,650 km

or 4,132 miles), though other rivers carry

more jopi...
Many different pita of emoner live um or near

hu waters iv hu Nile, including crocodiles,

ultf, fish and many others. Not mru do emoner
depend on the Nile for survival, id also

people who live there need it zi everyday use

like washing, as u water supply, keeping crops

watered ñb other jobs...

DP Hu Nile (‘‘an-nīl’’) ev a river um Africa. Up
ev hu longest river on Earth (about 6,650 km

or 4,132 miles), though other rivers carry

more water...

Many different types iv animals live in

or near hu waters iv hu Nile, including

crocodiles, birds, fish and many others.

Not only do animals depend iñ hu Nile for

survival, but also people who live there

need it for everyday use like washing, as u
water supply, keeping crops watered and other

jobs...

Hu Nile (‘‘an-nīl’’) ev a river um Africa. Up
ev hu longest river on Earth (about 6,650 km

or 4,132 miles), though udho rivers carry more

water...

Many different pita of animals live in or near

hu waters of hu Nile, including crocodiles,

birds, fish and many others. Not mru do

animals depend iñ hu Nile zi survival, id also

people who live there need it zi everyday use

like washing, ez a water supply, keeping crops

watered and udho jobs...

Table 2: Portions of one of our Simple Wikipedia articles. The document has been converted into a mixed-language

document by the machine teacher using the three student proxy models. Our experiments use a synthetic L2

language, see Appendix A.1 for examples with real L2 language (German and Spanish) on two stories. The two

columns show the effect of the rank threshold rmax. Note that this mixed-language document is 25 sentences long;

here, we only show the first 2 sentences and another middle 2 sentences to save space.

thresholds rmax∈{1,4,8}) for each of the 6 Simple

Wikipedia documents. For each HIT, an MTurk

participant was randomly assigned one of the 9
mixed-language versions. Table 2 shows the output

at two settings of rmax for one of the documents. We

see that rmax controls the number of L2 words the

machine teacher deems guessable, which affects

text readability. The increase in L2 words is most

noticeable with the cLM model. We also see that

the DP model differs from the others by favoring

high frequency words almost exclusively. While the

cLM and uLM models similarly replace a number

of high frequency words, they also occasionally

replace lower frequency word classes like nouns

and adjectives (emoner, Emu, etc.). Table 3

summarizes our findings. The first section of 3

shows the percentage of tokens that were deemed

guessable by our machine teacher. The cLM model

replaces more words as rmax is increased to 8, but

we see that MTurkers had a hard time guessing

the meaning of the replaced tokens: their guessing

accuracy drops to 55% at rmax = 8 with the

cLM model. The uLM model, however, displays a

reluctance to replace too many tokens, even as rmax

was increased to 8.

We further analyzed the replacements and MTurk

guesses based on word-class. We tagged the L1

tokens with their part-of-speech and categorized

tokens into open or closed class following Universal

Dependency guidelines (Nivre et al.).7 Table 4

summarizes our analysis of model and human

behavior when the data is separated by word-class.

The pink bars indicate the percentage of tokens

replaced per word-class. The blue bars represent the

percentage of tokens from a particular word-class

that MTurk users guessed correctly. Thus, an

ideal machine teacher should strive for the highest

possible pink bar while ensuring that the blue bar is

as close as possible to the pink. Our findings suggest

that the uLM model at rmax=8 and the cLM model

at rmax = 4 show the desirable properties – high

guessing accuracy and more representation of L2

words (particularly open-class words).

7 https://universaldependencies.org/u/pos/
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Open-Class Closed-Class All
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Table 4: Results of MTurk results split up by word-class. The y-axis is percentage of tokens belonging to a

word-class. The pink bar (right) shows the percentage of tokens (of a particular word-class) that were replaced

with an L2 gloss. The blue bar (left) and indicates the percentage of tokens (of a particular word-class) that were

guessed correctly by MTurk participants. Error bars represent 95% confidence intervals computed with bootstrap

resampling. For example, we see that only 5.0% (pink) of open-class tokens were replaced into L2 by the DP model

at rmax=1 and 4.3% of all open-class tokens were guessed correctly. Thus, even though the guess accuracy forDP at

rmax=1 for open-class is high (86%) we can see that participants were not exposed to many open-class word tokens.

Metric Model Closed Open

Types Repl-

aced

random 59 524

cLM 33 149

Guess Acc-

uracy

random 62.06(±1.54) 39.36(±1.75)
cLM 74.91(±0.94) 61.96(±1.24)

Table 5: Results comparing our student proxy based

approach to a random baseline. The first part shows

the number of L2 word types exposed by each model

for each word-class. The second part shows the

average guess accuracy percentage for each model and

word-class. 95% confidence intervals (in brackets)

were computed using bootstrap resampling.

4.3 Random Baseline

So far we’ve compared different student proxy

models against each other, but is our student proxy

based approach required at all? How much better

(or worse) is this approach compared to a random

baseline? To answer these questions, we compare

the cLM with rmax = 4 model against a randomly

generated mixed-language document. As the name

suggests, word replacements are decided randomly

for the random condition, but we ensure that the

number of tokens replaced in each sentence equals

that from the cLM condition.

We used the 6 Simple Wikipedia documents from

Section 4.1 and recruited 64 new MTurk partipants

who completed a total of 66 HITs (compensation

was $4 per HIT). For each HIT, the participant

was given either the randomly generated or the

cLM based mixed-language document. Once again,

participants were made to enter their guess for each

L2 word that appears in a sentence. The results are

summarized in Table 5.

We find that randomly replacing words with

glosses exposes more L2 word types (59 and 524

closed-class and open-class words respectively)

while the cLM model is more conservative with

replacements (33 and 149). However, the random

mixed-language document is much harder to

comprehend, indicated by significantly lower

average guess accuracies than those with the

cLM model. This is especially true for open-class

words. Note that Table 5 shows the number of word

types replaced across all 6 documents.
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Model Closed Open

random 9.86(±0.94) 4.28(±0.69)
cLM 35.53(±1.03) 27.77(±1.03)

Table 6: Results of our L2 learning experiments

where MTurk subjects simply read a mixed-language

document and answered a vocabulary quiz at the end

of the passage. The table shows the average guess

accuracy percentage along with 95% confidence

intervals computed from bootstrap resampling.

4.4 Learning Evaluation

Our mixed-language based approach relies on

incidental learning, which states that if a novel word

is repeatedly presented to a student with sufficient

context, the student will eventually be able to learn

the novel word. So far our experiments test MTurk

participants on the “guessability” of novel words

in context, but not learning. To study if students

can actually learn the L2 words, we conduct an

MTurk experiment where participants are simply

required to read a mixed-language document (one

sentence at a time). At the end of the document an

L2 vocabulary quiz is given. Participants must enter

the meaning of every L2 word type they have seen

during the reading phase.

Once again, we compare our cLM (rmax = 4)

model against a random baseline using the 6 Simple

Wikipedia documents. 47 HITs were obtained

from 45 MTurk participants for this experiment.

Participants were made aware that there would be

a vocabulary quiz at the end of the document. Our

findings are summarized in Table 6. We find the ac-

curacy of guesses for the vocabulary quiz at the end

of the document is considerably lower than guesses

with context. However, subjects still managed

to retain 35.53% and 27.77% of closed-class and

open-class L2 word types respectively. On the other

hand, when a random mixed-language document

was presented to participants, their guess accuracy

dropped to 9.86% and 4.28% for closed and open

class words respectively. Thus, even though more

word types were exposed by the random baseline,

fewer words were retained.

5 Related Work

Our work does not require any supervised data

collection from students. This departure makes

our work easier to deploy in diverse settings

(i.e. for different document genres, and different

combinations of L1/L2 languages etc). While

there are numerous self-directed language learning

applications such as Duolingo (von Ahn, 2013),

our approach uses a different style of “instruction”.

Furthermore, reading L2 words in L1 contexts is

also gaining popularity in commercial applications

like Swych (2015) and OneThirdStories (2018).

Most recently, Renduchintala et al. (2016)

attempt to model a student’s ability to guess the

meaning of foreign language words (and phrases)

when prompted with a mixed language sentence.

One drawback of this approach is its need for large

amounts of training data, which involves prompting

students (in their case, MTurk users) with mixed lan-

guage sentences created randomly. Such a method is

potentially inefficient, as random configurations pre-

sented to users (to obtain their guesses) would not

reliably match those that a beginner student would

encounter. Labutov and Lipson (2014) also use a

similar supervised approach. The authors required

two sets of annotations, first soliciting guesses of

missing words in a sentences and then obtaining

another set of annotations to judge the guesses.

6 Conclusion

We are encouraged by the ability to generate

mixed-language documents without the need of

expensive data collection from students. Our

MTurk study shows that students can guess the

meaning of foreign words in context with high

accuracy and also retain the foreign words.

For future work, we would like to investigate

ways to smoothly adapt our student proxy models

into personalized models. We also recognize that

our approach may be “low-recall,” i.e., it might

miss out on teaching possibilities. For example, our

machine teacher may not realize that cognates can

be replaced with the L2 and still understood, even if

there are no contextual clues (Afrika can likely be

understood without much context). Incorporating

spelling information into our language models (Kim

et al., 2016) could help the machine teacher identify

more instances for incidental learning. Additionally,

we would like to investigate how our approach

could be extended to enable phrasal learning (which

should consider word-ordering differences between

the L1 and L2). As the cLM and uLM models

showed the most promising results in our experi-

ments, we believe these models could serve as the

baseline for future work.
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Sense y Sensibility

CHAPTER 1
La family de Dashwood llevaba long been

settled en Sussex. Their estate era large,

and their residence was en Norland Park,

en el centre de their propiedad, where,

por many generations, ellos had lived en
so respectable a manner as a engage the

general buena opinion of their surrounding

acquaintance. El late owner de esta estate

was a single man, who lived to una very

advanced age, and who for many años de su life,

had una constant companion y housekeeper in

su sister. But her death, which happened

ten años before su own, produced a great

alteration en his home; for para supply her

loss, he invited y received into his house

the family of his nephew Mr. Henry Dashwood,

the legal inheritor de the Norland estate, y
the person to whom se intended to bequeath

it. En la society of his nephew and niece,

and their children, el old Gentleman’s days

fueron comfortably spent. Su attachment a
them all increased. La constant attention

de Mr. y Mrs. Henry Dashwood a sus wishes,

which proceeded not merely from interest, but

from goodness de heart, dio him every degree

de solid comfort which his age could receive;

y la cheerfulness de los children added un
relish to his existence.

Por a former marriage, Mr. Henry Dashwood

had one hijo: by su present lady, tres
daughters. El son, un steady respectable

young man, tenı́a amply provided for by la
fortune de su mother, which habı́a been large,

y half de which devolved on him on su coming

de age. Por his own marriage, likewise,

which happened soon afterwards, he added a su
wealth. Para him therefore la succession a la
Norland estate era not so really important

como para his sisters; para su fortune,

independent of what might arise a them de su
father’s inheriting that propiedad, could ser
but small. Su madre had nothing, and their

father only seven thousand pounds en su own

disposal; porque the remaining moiety of su
first wife’s fortune era also secured a su
child, y he had only a life-interest en it.

Table 7: Example of mixed-language output for

Jane Austen’s “Sense and Sensibility”. We used the

uLM with rmax=8.

A Appendices

A.1 Mixed-Language Examples

While our experiments necessitated use of synthetic

L2 words, our methods are compatible with real

L2 learning. For a more “real-world” experience

of how our methods could be deployed, we present

the first few paragraphs of mixed-language novels

generated using the uLM model with rmax = 8.

First example is from Jane Austin’s “Sense and

Sensibility” (Table 7), and for the second example,

as we are transforming text from one language into

a “strange hybrid creature” (i.e mixed-language) it

seems appropriate to use Franz Kafka’s “Metamor-

phosis”(Table 8). For these examples, glosses were

obtained from a previous MTurk data collection

process from bilingual speakers. Glosses for

Metamorphosis

I

One morning, when Gregor Samsa woke from

troubled dreams, er found himself transformed

in his bed into einem horrible vermin. Er lay

auf his armour-like back, und if er lifted

seinen head a wenig he could see his brown

belly, slightly domed und divided von arches

into stiff sections. das bedding was hardly

able zu cover it and seemed ready to slide

off any moment. His many legs, pitifully

thin compared mit der size of dem rest of him,

waved about helplessly als he looked.

‘‘What’s happened mit me?’’ er thought.

His room, ein proper human room although a

wenig too small, lay peacefully between seinen
four familiar walls. Eine collection of

textile samples lay spread out on dem table -

Samsa was ein travelling salesman - und above

it there hung ein picture that er had recently

cut out von an illustrated magazine and housed

in a nice, gilded frame. It showed eine lady

fitted out with einem fur hat und fur boa who

sat upright, raising einen heavy fur muff that

covered the whole of her lower arm towards dem
viewer.

Gregor dann turned to look out the window

at the dull weather. Drops of rain could sein
heard hitting the pane, which machte him feel

quite sad. ‘‘How about if I sleep ein little

bit longer and forget all this nonsense,’’

er thought, but that war something er war
unable zu do because he war used zu sleeping

on seiner right, und in seinem present state

couldn’t get into diese position. However

hard he threw himself onto seine right, er
always rolled zurück to where he was. Er must

haben tried it ein hundred times, shut seine
eyes so dass er wouldn’t have to look at die
floundering legs, und only stopped when er
began to feel einen mild, dull pain there that

er had nie felt before.

‘‘Oh, God,’’ er thought, ‘‘what a

strenuous career it ist that I’ve chosen!

Travelling day in und day out. Doing business

like diese takes much mehr effort than doing

your own Geschäft at home, und auf top of that

there’s der curse des travelling, worries

about making train connections, bad and

irregular food, contact with verschiedenen
people all die time so das you kannst never

get to know anyone or become friendly mit
them. es can all gehen to Hell!’’ Er felt

a slight itch up auf seinem belly ; pushed

himself slowly up on seinen back towards the

headboard so dass he konnte lift seinen head

better ; found where das itch was, und saw

dass it was besetzt with lots of little white

spots which er didn’t know what to make of ;

und when er tried to feel die place with one

of his legs er drew es quickly back because as

soon as he touched it er was overcome by einem
cold shudder.

Table 8: Example of mixed-language output for the

English translation (by David Wyllie) of Franz Kafka’s

“Metamorphosis”. We used the uLM with rmax=8.

each English (L1) token was obtained from 3
MTurkers, if a majority of them agree on the gloss it

is considered by our machine teacher as a possible

L2 gloss. If no agreement was obtained we restrict

that token to always remain as L1.


