
Synthetic Data Made to Order: The Case of Parsing

Dingquan Wang and Jason Eisner

Department of Computer Science, Johns Hopkins University
{wdd,jason}@cs.jhu.edu

Abstract

To approximately parse an unfamiliar lan-

guage, it helps to have a treebank of a sim-

ilar language. But what if the closest avail-

able treebank still has the wrong word order?

We show how to (stochastically) permute the

constituents of an existing dependency tree-

bank so that its surface part-of-speech statis-

tics approximately match those of the target

language. The parameters of the permuta-

tion model can be evaluated for quality by dy-

namic programming and tuned by gradient de-

scent (up to a local optimum). This optimiza-

tion procedure yields trees for a new artificial

language that resembles the target language.

We show that delexicalized parsers for the tar-

get language can be successfully trained using

such “made to order” artificial languages.

1 Introduction

Dependency parsing is a core task in natural lan-

guage processing (NLP). Given a sentence, a

dependency parser produces a dependency tree,

which specifies the typed head-modifier relations

between pairs of words. While supervised de-

pendency parsing has been successful (McDonald

and Pereira, 2006; Nivre, 2008; Kiperwasser and

Goldberg, 2016), unsupervised parsing can hardly

produce useful parses (Mareček, 2016). So it is

extremely helpful to have some treebank of super-

vised parses for training purposes.

1.1 Past work: Cross-lingual transfer

Unfortunately, manually constructing a treebank

for a new target language is expensive (Böhmová

et al., 2003). As an alternative, cross-lingual

transfer parsing (McDonald et al., 2011) is some-

times possible, thanks to the recent development

of multi-lingual treebanks (McDonald et al., 2013;

Nivre et al., 2015; Nivre et al., 2017). The idea

is to parse the sentences of the target language

with a supervised parser trained on the treebanks

of one or more source languages. Although the

parser cannot be expected to know the words of

the target language, it can make do with parts of

speech (POS) (McDonald et al., 2011; Täckström

et al., 2013; Zhang and Barzilay, 2015) or cross-

lingual word embeddings (Duong et al., 2015; Guo

et al., 2016; Ammar et al., 2016). A more serious

challenge is that the parser may not know how to

handle the word order of the target language, un-

less the source treebank comes from a closely re-

lated language (e.g., using German to parse Lux-

embourgish). Training the parser on trees from

multiple source languages may mitigate this issue

(McDonald et al., 2011) because the parser is more

likely to have seen target part-of-speech sequences

somewhere in the training data. Some authors

(Rosa and Žabokrtský, 2015a,b; Wang and Eis-

ner, 2016) have shown additional improvements

by preferring source languages that are “close” to

the target language, where the closeness is mea-

sured by distance between POS language models

trained on the source and target corpora.

1.2 This paper: Tailored synthetic data

We will focus on delexicalized dependency pars-

ing, which maps an input POS tag sequence to

a dependency tree. We evaluate single-source

transfer—train a parser on a single source lan-

guage, and evaluate it on the target language. This

is the setup of Zeman and Resnik (2008) and

Søgaard (2011a).

Our novel ingredient is that rather than seek a

close source language that already exists, we cre-

ate one. How? Given a dependency treebank of

a possibly distant source language, we stochasti-

cally permute the children of each node, accord-

ing to some distribution that makes the permuted

language close to the target language.

And how do we find this distribution? We adopt

the tree-permutation model of Wang and Eisner

(2016). We design a dynamic programming algo-

rithm which, for any given distribution p in Wang

and Eisner’s family, can compute the expected

counts of all POS bigrams in the permuted source

treebank. This allows us to evaluate p by com-

puting the divergence between the bigram POS

language model formed by these expected counts,

and the one formed by the observed counts of POS

bigrams in the unparsed target language. In order

to find a p that locally minimizes this divergence,

we adjust the model parameters by stochastic gra-

dient descent (SGD).

1.3 Key limitations in this paper

Better measures of surface closeness between two

languages might be devised. However, even

counting the expected POS N -grams is moder-

ately expensive, taking time exponential in N if

done exactly. So we compute only these local

statistics, and only for N = 2. We certainly need

N > 1 because the 1-gram distribution is not af-

fected by permutation at all. N = 2 captures

useful bigram statistics: for example, to mimic a

verb-final language with prenominal modifiers, we

would seek constituent permutations that result in

matching its relatively high rate of VERB–PUNCT

and ADJ–NOUN bigrams. While N > 2 might

have improved the results, it was too slow for our

large-scale experimental design. §7 discusses how

richer measures could be used in the future.

We caution that throughout this paper, we as-

sume that our corpora are annotated with gold

POS tags, even in the target language (which lacks

any gold training trees). This is an idealized set-

ting that has often been adopted in work on unsu-

pervised and cross-lingual transfer.§7 discusses a

possible avenue for doing without gold tags.

2 Modeling Surface Realization

We begin by motivating the idea of tree permuta-

tion. Let us suppose that the dependency tree for a

sentence starts as a labeled graph—a tree in which

siblings are not yet ordered with respect to their

parent or one another. Each language has some

systematic way to realize its unordered trees as

surface strings:1 it imposes a particular order on

the tree’s word tokens. More precisely, a language

specifies a distribution p(string | unordered tree)
over a tree’s possible realizations.

As an engineering matter, we now make the

strong assumption that the unordered dependency

trees are similar across languages. That is, we sup-

pose that different languages use similar underly-

ing syntactic/semantic graphs, but differ in how

they realize this graph structure on the surface.

1Modeling this process was the topic of the recent Surface
Realization Shared Task (Mille et al., 2018). Most relevant
is work on tree linearization (Filippova and Strube, 2009;
Futrell and Gibson, 2015; Puzikov and Gurevych, 2018).

Thus, given a gold POS corpus u of the un-

known target language, we may hope to explain its

distribution of surface POS bigrams as the result of

applying some target-language surface realization

model to the distribution of cross-linguistically

“typical” unordered trees. To obtain samples of

the latter distribution, we use the treebanks of one

or more other languages. The present paper eval-

uates our method when only a single source tree-

bank is used. In the future, we could try tuning a

mixture of all available source treebanks.

2.1 Realization is systematic

We presume that the target language applies the

same stochastic realization model to all trees. All

that we can optimize is the parameter vector of

this model. Thus, we deny ourselves the free-

dom to realize each individual tree in an ad hoc

way. To see why this is important, suppose the tar-

get language is French, whose corpus u contains

many NOUN–ADJ bigrams. We could achieve

such a bigram from the unordered source tree

DET NOUN VERB PROPN ADJ

the cake made Sue sleepy

det nsubj dobj
xcomp

by ordering

it to yield
DET NOUN ADJ VERB PROPN

the cake sleepy made Sue

det dobjxcomp
nsubj

.

However, that realization is not in fact appropri-

ate for French, so that ordered tree would not be

a useful training tree for French. Our approach

should disprefer this tempting but incorrect real-

ization, because any model with a high probabil-

ity of this realization would, if applied system-

atically over the whole corpus, also yield sen-

tences like He sleepy made Sue, with un-

wanted PRON–ADJ bigrams that would not match

the surface statistics of French. We hope our ap-

proach will instead choose the realization model

that is correct for French, in which the NOUN–ADJ

bigrams arise instead from source trees where the

ADJ is a dependent of the NOUN, yielding (e.g.)

DET NOUN ADJ VERB PROPN

the cake tasty pleased Sue

dobjdet amod
nsubj

. This has

the same POS sequence as the example above (as

it happens), but now assigns the correct tree to it.

2.2 A parametric realization model

As our family of realization distributions, we

adopt the log-linear model used for this purpose by

Wang and Eisner (2016). The model assumes that

the root node a of the unordered dependency tree

selects an ordering π(a) of the na nodes consisting

of a and its na − 1 dependent children. The pro-

cedure is repeated recursively at the child nodes.

This method can produce only projective trees.

Each node a draws its ordering π(a) indepen-

dently according to

pθ(π | a) =
1

Z(a)
exp

∑

1≤i<j≤na

θ · f(π, i, j) (1)

which is a distribution over the na! possible or-

derings. Z(a) is a normalizing constant. f is a

feature vector extracted from the ordered pair of

nodes πi, πj , and θ is the model’s parameter vec-

tor of feature weights. See Appendix A for the fea-

ture templates, which are a subset of those used by

Wang and Eisner (2016). These features are able

to examine the tree’s node labels (POS tags) and

edge labels (dependency relations). Thus, when a
is a verb, the model can assign a positive weight to

“subject precedes verb” or “subject precedes ob-

ject,” thus preferring orderings with these features.

Following Wang and Eisner (2016, §3.1), we

choose new orderings for the noun and verb nodes

only,2 preserving the source treebank’s order at all

other nodes a.

2.3 Generating training data

Given a source treebank B and some parameters

θ, we can use equation (1) to randomly sample re-

alizations of the trees in B. The effect is to reorder

dependent phrases within those trees. The result-

ing permuted treebank B′ can be used to train a

parser for the target language.

2.4 Choosing parameters θ

So how do we choose θ that works for the tar-

get language? Suppose u is a corpus of target-

language POS sequences, using the same set of

POS tags as B. We evaluate parameters θ accord-

ing to whether POS tag sequences in B′ will be

distributed like POS tag sequences in u.

To do this, first we estimate a bigram language

model q̂ from the actual distribution q of POS se-

quences observed in u. Second, let pθ denote

the distribution of POS sequences that we expect

to see in B′, that is, POS sequences obtained by

2Specifically, the 93% of nodes tagged with NOUN,
PROPN, PRON or VERB in Universal Dependencies format.
In retrospect, this restriction was unnecessary in our setting,
but it skipped only 4.4% of nodes on average (from 2% to
11% depending on language). The remaining nodes were
nouns, verbs, or childless.

stochastically realizing observed trees in B ac-

cording to θ. We estimate another bigram model

p̂θ from this distribution pθ.

We then try to set θ, using SGD, to minimize a

divergence D(p̂θ, q̂) that we will define below.

2.4.1 Estimation of bigram models

Estimating q̂ is straightforward: q̂(t | s) =
cq(st)/cq(s), where cq(st) is the count of POS bi-

gram st in the average3 sentence of u and cq(s) =
∑

t′ cq(st
′). We estimate p̂θ in the same way,

where cp(st) denotes the expected count of st in a

random POS sequence y ∼ pθ. This is equivalent

to choosing q̂, p̂θ to minimize the KL-divergences

KL(q || q̂),KL(pθ || p̂θ). It ensures that each

model’s expected bigram counts match those in

the POS sequences.

However, these maximum-likelihood estimates

might overfit on our finite data, u and B. We

therefore smooth both models by first adding λ =
0.1 to all bigram counts cq(st) and cp(st).

4

2.4.2 Divergence of bigram models

We need a metric to evaluate θ. If p and q are

bigram language models over POS sequences y

(sentences), their Kullback-Leibler divergence is

KL(p || q)
def
= Ey∼p[log p(y)− log q(y)] (2)

=
∑

s,t

cp(st) (3)

· (log p(t | s)− log q(t | s))

where y ranges over POS sequences and st ranges

over POS bigrams. These include bigrams where

s = BOS (“beginning of sequence”) or t = EOS

(“end of sequence”), which are boundary tags that

we take to surround y.

All quantities in equation (3) can be determined

directly from the (expected) bigram counts given

by cp and cq. No other model estimation is needed.

A concern about equation (3) is that a single bi-

gram st that is badly underrepresented in q may

contribute an arbitrarily large term log p(t|s)
q(t|s) . To

limit this contribution to at most log 1
α

, for some

small α ∈ (0, 1), we define KLα(p || q) by a vari-

ant of equation (3) in which q(t | s) has been re-

placed by q̃(t | s)
def
= αp(t | s) + (1− α)q(t | s).5

3A more familiar definition of cq would use the total count
in u. Our definition, which yields the same bigram probabil-
ities, is analogous to our definition of cp. This cp is needed
for KL(p || q) in (3), and cq symmetrically for KL(q || p).

4Ideally one should tune λ to minimize the language
model perplexity on held-out data (e.g., by cross-validation).

5This is inspired by the α-skew divergence of Lee (1999,

Our final divergence metric D(p̂θ, q̂) defines D
as a linear combination of exclusive and inclusive

KLα divergences, which respectively emphasize

pθ’s precision and recall at matching q’s bigrams:

D(p, q) = (1−β)·
KLα1(p || q)

Ey∼p[|y|]
+β·

KLα2(q || p)

Ey∼q[|y|]
(4)

where β, α1, α2 are tuned by cross-validation to

maximize the downstream parsing performance.

The division by average sentence length converts

KL from nats per sentence to nats per word,6 so

that the KL values have comparable scale even if

B has much longer or shorter sentences than u.

3 Algorithms

3.1 Efficiently computing expected counts

We now present a polynomial-time algorithm for

computing the expected bigram counts cp under pθ
(or equivalently p̂θ), for use above. This averages

expected counts from each unordered tree x ∈ B.

Algorithm 1 in the supplement gives pseudocode.

The insight is that rather than sampling a single

realization of x (as B′ does), we can use dynamic

programming to sum efficiently over all of its ex-

ponentially many realizations. This gives an exact

answer. It algorithmically resembles tree-to-string

machine translation, which likewise considers the

possible reorderings of a source tree and incorpo-

rates a language model by similarly tracking their

surface N -grams (Chiang, 2007, §5.3.2).

For each node a of the tree x, let the POS string

ya be the realization of the subtree rooted at a. Let

ca(st) be the expected count of bigram st in ya,

whose distribution is governed by equation (1).

We allow s = BOS or t = EOS as defined in §2.4.2.

The ca function can be represented as a sparse

map from POS bigrams to reals. We compute ca
at each node a of x in a bottom-up order. The final

step computes croot, giving the expected bigram

counts in x’s realization y (that is, cp in §2.4).

We find ca as follows. Let n = na and recall

from §2.2 that π(a) is an ordering of a1, . . . , an,

where a1, . . . , an−1 are the child nodes of a, and

an is a dummy node representing a’s head token.

2001). Indeed, we may regard KLα(p || q) as the α-skew di-
vergence between the unigram distributions p(· | s) and q(· |
s), averaged over all s in proportion to cp(s). In principle, we
could have used the α-skew divergence between the distribu-
tions p(·) and q(·) over POS sequences y, but computing that
would have required a sampling-based approximation (§7).

6Recall that the units of negated log-probability are called
bits for log base 2, but nats for log base e.

Also, let a0 and an+1 be dummy nodes that always

appear at the start and end of any ordering.

For all 0 ≤ i ≤ n and 1 ≤ j ≤ n + 1, let

pa(i, j) denote the expected count of the aiaj node

bigram—the probability that π(a) places node ai
immediately before node aj . These node bigram

probabilities can be obtained by enumerating all

possible orderings π, a matter we return to below.

It is now easy to compute ca:

ca(st) = cwithin
a (st) + cbetween

a (st) (5)

cwithin
a (st) =

{

∑n
i=1 cai(st) if s 6= BOS, t 6= EOS

0 otherwise

cacross
a (st) =

n
∑

i=0

n+1
∑

j=1

pa(i, j)cai(s EOS)caj (BOS t)

That is, ca inherits all non-boundary bigrams st
that fall within its child constituents (via cwithin

a). It

also counts bigrams st that cross the boundary be-

tween consecutive nodes (via cacross
a), where nodes

ai and aj are consecutive with probability pa(i, j).
When computing ca via (5), we will have al-

ready computed ca1 , . . . , can−1 bottom-up. As for

the dummy nodes, an is realized by the length-1

string h where h is the head token of node a, while

a0 and an+1 are each realized by the empty string.

Thus, can simply assigns count 1 to the bigrams

BOS h and h EOS, and ca0 and can+1 each assign

expected count 1 to BOS EOS. (Notice that thus,

cacross
a (st) counts ya’s boundary bigrams—the bi-

grams st where s = BOS or t = EOS—when i = 0
or j = n+ 1 respectively.)

3.2 Efficient enumeration over permutations

The main challenge above is computing the node

bigram probabilities pa(i, j). These are marginals

of p(π | a) as defined by (1), which unfortunately

is intractable to marginalize: there is no better way

than enumerating all n! permutations.

That said, there is a particularly efficient way

to enumerate the permutations. The Steinhaus-

Johnson-Trotter (SJT) algorithm (Sedgewick,

1977) does so in O(1) time per permutation, ob-

taining each permutation by applying a single

swap to the previous one. Only the features that

are affected by this swap need to be recomputed.

For our features (Appendix A), this cuts the run-

time per permutation from O(n2) to O(n).
Furthermore, the single swap of adjacent

nodes only changes 3 bigrams (possibly including

boundary bigrams). As a result, it is possible to

obtain the marginal probabilities with O(1) addi-

tional work per permutation. When a node bigram

is destroyed, we increment its marginal probability

by the total probability of permutations encoun-

tered since the node bigram was last created. This

can be found as a difference of partial sums. The

final partial sum is the normalizing constant Z(a),
which can be applied at the end. Pseudocode is

given in supplementary material as Algorithm 2.

When we train the parameters θ (§2.4), we must

back-propagate through the whole computation of

equation (4), which depends on tag bigram counts

ca(st), which depend via (5) on expected node

bigram counts pa(i, j), which depend via Algo-

rithm 2 on the permutation probabilities p(π | a),
which depend via (1) on the feature weights θ.

4 Heuristics

4.1 Pruning high-degree trees

As a further speedup, we only train on trees with

number of words < 40 and maxa na ≤ 5, so

na! ≤ 120.7 We then produce the synthetic tree-

bank B′ (§2.3) by drawing a single realization of

each tree in B for which maxa na ≤ 7. This re-

quires sampling from up to 7! = 5040 candidates

per node, again using SJT.8

That is, in this paper we run exact algorithms

(§3), but only on a subset of B. The subset is

not necessarily representative. An improvement

would use importance sampling, with a proposal

distribution that samples the slower trees less often

during SGD but upweights them to compensate.

§7 suggests a future strategy that would run on

all trees in B via approximate, sampling-based al-

gorithms. The exact methods would remain useful

for calibrating the approximation quality.

4.2 Minibatch estimation of cp

To minimize (4), we use the Adam variant of SGD

(Kingma and Ba, 2014), with learning rate 0.01
chosen by cross-validation (§5.1).

SGD requires a stochastic estimate of the gra-

dient of the training objective. Ordinarily this is

done by replacing an expectation over the entire

training set with an expectation over a minibatch.

7We found that this threshold worked much better than
≤ 4 and about as well as the much slower ≤ 6.

8This pruning heuristic retains 36.1% of the trees (aver-
aging over the 20 development treebanks (§5.1)) for training,
and 66.6% for actual realization. The latter restriction fol-
lows Wang and Eisner (2016, §4.2): they too discarded trees
with nodes having na ≥ 8.

Equation (2) with p = p̂θ is indeed an expecta-

tion over sentences of B. It can be stochastically

estimated as (3) where cp gives the expected bi-

gram counts averaged over only the sentences in a

minibatch of B. These are found using §3’s algo-

rithms with the current θ. Unfortunately, the term

log p(t | s) depends on bigram counts that should

be derived from the entire corpus B in the same

way. Our solution is to simply reuse the minibatch

estimate of cp for the latter counts. We use a large

minibatch of 500 sentences from B so that this

drop-in estimate does not introduce too much bias

into the stochastic gradient: after all, we only need

to estimate bigram statistics on 17 POS types.9

By contrast, the cq values that are used for

the expectation in the second term of (4) and in

log q(t | s) do not change during optimization, so

we simply compute them once from all of u.

4.3 Informed initialization

Unfortunately the objective (4) is not convex, so

the optimizer is sensitive to initialization (see §5.3

below for empirical discussion). Initializing θ =
0 (so that p(π | a) is uniform) gave poor results in

pilot experiments. Instead, we initially choose θ

to be the realization parameters of the source lan-

guage, as estimated from the source treebank B.

This is at least a linguistically realistic θ, although

it may not be close to the target language.10

For this initial estimation, we follow Wang and

Eisner (2016) and perform supervised training

on B of the log-linear realization model (1), by

maximizing the conditional log-likelihood of B,

namely
∑

(x,t)∈B log pθ(t | x), where (x, t) are

an unordered tree and its observed ordering in B.

This initial objective is convex.11

5 Experiments

We performed a large-scale experiment requiring

hundreds of thousands of CPU-hours. To our

knowledge, this is the largest study of parsing

transfer yet attempted.

9We also used the minibatch to estimate the average sen-
tence length Ey∼p[|y|] in (4), although here we could have
simply used all of B since this value does not change.

10As an improvement, one could also try initial realization
parameters for B that are estimated from treebanks of other
languages. Concretely, the optimizer could start by selecting
a “galactic” treebank from Wang and Eisner (2016) that is
already close to the target language, according to (4), and try
to make it even closer. We leave this to future work.

11Unfortunately, we did not regularize it, which probably
resulted in initializing some parameters too close to ±∞ for
the optimizer to change them meaningfully.

5.1 Data and setup

As our main dataset, we use Universal Dependen-

cies version 1.2 (Nivre et al., 2015)—a set of 37

dependency treebanks for 33 languages, with a

unified POS-tag set and relation label set.

Our evaluation metric was unnormalized attach-

ment score (UAS) when parsing a target treebank

with a parser trained on a (possibly permuted)

source treebank. For both evaluation and training,

we used only the training portion of each treebank.

Our parser was Yara (Rasooli and Tetreault,

2015), a fast and accurate transition-based depen-

dency parser that can be rapidly retrained. We

modified Yara to ignore the input words and use

only the input gold POS tags (see §1.3). To train

the Yara parser on a (possibly permuted) source

treebank, we first train on 80% of the trees and use

the remaining 20% to tune Yara’s hyperparame-

ters. We then retrain Yara on 100% of the source

trees and evaluate it on the target treebank.

Similar to Wang and Eisner (2017), we use

20 treebanks (18 distinct languages) as develop-

ment data, and hold out the remaining 17 tree-

banks for the final evaluation. We chose the hy-

perparameters (α1, α2, β) of (4) to maximize the

target-language UAS, averaged over all 376 trans-

fer experiments where the source and target tree-

banks were development treebanks of different

languages.12 (See Appendix C for details.)

The next few sections perform some ex-

ploratory analysis on these 376 experiments.

Then, for the final test in §5.4, we will evaluate

UAS on all 337 transfer experiments where the

source is a development treebank and the target is

a test treebank of a different language.13

5.2 Exploratory analysis

We have assumed that a smaller divergence be-

tween source and target treebanks results in bet-

ter transfer parsing accuracy. Figure 1 shows that

these quantities are indeed correlated, both for the

original source treebanks and for their “made to

order” permuted versions.

12We have 19*20=380 pairs in total, minus the four ex-
cluded pairs (grc, grc proiel), (grc proiel, grc), (la proiel,
la itt) and (la itt, la proiel). Unlike Wang and Eisner (2017),
we exclude duplicated languages in development and testing.

13Specifically, there are 3 duplicated sets: {grc,
grc proiel}, {la, la proiel, la itt}, and {fi, fi ftb}. When-
ever one treebank is used as the target language, we exclude
the other treebanks in the same set.

15According to the family (and sub-family) information at
http://universaldependencies.org.

0.0 0.1 0.2 0.3 0.4 0.5
Divergence

10

20

30

40

50

60

70

80

U
AS

ar
bg
cs
da
de
en
es
et
fi
fr

got
grc
grc_proiel
hi
it
la_itt
la_proiel
nl
no
pt

0.0 0.1 0.2 0.3 0.4 0.5
Divergence

20

30

40

50

60

70

80

U
AS

ar
bg
cs
da
de
en
es
et
fi
fr

got
grc
grc_proiel
hi
it
la_itt
la_proiel
nl
no
pt

Figure 1: UAS is higher when divergence is lower.

Each point represents a pair of source and target lan-

guages, whose shape and color identify the treebank of

the target language (see legend). The marker is solid if

the source and target languages belong to the same lan-

guage family.15 The left graph uses the original source

treebank (Kendall’s τ = −0.41), while the right graph

uses its permuted version (τ = −0.39).

Thus, we hope that the optimizer will find a sys-

tematic permutation that reduces the divergence.

Does it? Yes: Figures 5 and 6 in the supplemen-

tary material show that the optimizer almost al-

ways manages to reduce the objective on training

data, as expected.

One concern is that our divergence metric might

misguide us into producing dysfunctional lan-

guages whose trees cannot be easily recovered

from their surface strings, i.e., they have no good

parser. In such a language, the word order might

be extremely free (e.g., θ = 0), or common con-

structions might be syntactically ambiguous. For-

tunately, Appendix D shows that our synthetic lan-

guages appear natural with respect to their their

parsability.

The above findings are promising. So does per-

muting the source language in fact result in better

transfer parsing of the target language? We exper-

iment on the 376 development pairs.

The solid lines in Figure 2 show our improve-

ments on the dev data, with a simpler scatterplot

given by in Figure 7 in the supplementary mate-

rial. The upshot is that the synthetic source tree-

banks yield a transfer UAS of 52.92 on average.

This is not yet a result on held-out test data: recall

that 52.92 was the best transfer UAS achieved by

any hyperparameter setting. That said, it is 1.00

points better than transferring from the original

source treebanks, a significant difference (paired

permutation test by language pair, p < 0.01).

Figure 2 shows that this average improvement

is mainly due to the many cases where the source

and target languages come from different families.

Permutation tends to improve source languages

that were doing badly to start with. However, it

tends to hurt a source language that is already in

the target language family.

A hypothetical experiment shows that permut-

ing the source does have good potential to help (or

at least not hurt) in both cases. The dashed lines

in Figure 2—and the scatterplot in Figure 8—

show the potential of the method, by showing

the improvement we would get from permuting

each source treebank using an “oracle” realization

policy—the supervised realization parameters θ

that are estimated from the actual target treebank.

The usefulness of this oracle-permuted source

varies depending on the source language, but it

is usually much better than the automatically-

permuted version of the same source.

This shows that large improvements would be

possible if we could only find the best permutation

policy allowed by our model family. The ques-

tion for future work is whether such gains can be

achieved by a more sensitive permutation model

than (1), a better divergence objective than (4), or

a better search algorithm than §4.2. Identifying the

best available source treebank, or the best mixture

of all source treebanks, would also help greatly.

5.3 Sensitivity to initializer

Figure 2 makes clear that performance of the syn-

thetic source treebanks is strongly correlated with

that of their original versions. Most points in Fig-

ure 7 lie near the diagonal (Kendall’s τ = 0.85).

Even with oracle permutation in Figure 8, the cor-

relation remains strong (τ = 0.59), suggesting

that the choice of source treebank is important

even beyond its effect on search initialization.

We suspected that when “made to order” source

treebanks (more than the oracle versions) have

performance close to their original versions, this

is in part because the optimizer can get stuck near

the initializer (§4.3). To examine this, we experi-

mented with random restarts, as follows. In addi-

tion to informed initialization (§4.3), we optimized

from 5 other starting points θ ∼ N (0, I). From

these 6 runs, we selected the final parameters that

achieved the best divergence (4). As shown by

Figure 9 in the supplement, greater gains appear

to be possible with more aggressive search meth-

ods of this sort, which we leave to future work.

We could also try non-random restarts based on

the realization parameters of other languages, as

suggested in footnote 10.

5.4 Final evaluation on the test languages

For our final evaluation (§5.1), we use the same

hyperparameters (Appendix C) and report on

single-source transfer to the 17 held-out treebanks.

The development results hold up in Figure 3.

Using the synthetic languages yields 50.36 UAS

on average—1.75 points over the baseline, which

is significant (paired permutation test, p < 0.01).

In the supplementary material (Appendix E),

we include some auxiliary experiments on multi-

source transfer.

6 Related Work

6.1 Unsupervised parsing

Unsupervised parsing has remained challenging

for decades (Mareček, 2016). Classical gram-

mar induction approaches (Lari and Young, 1990;

Carroll and Charniak, 1992; Klein and Manning,

2004; Headden III et al., 2009; Naseem et al.,

2010) estimate a generative grammar to explain

the sentences, for example by the Expectation-

Maximization (EM) algorithm, and then use it to

parse. Some such approaches try to improve the

grammar model. For example, Klein and Man-

ning (2004)’s dependency model with valence was

the first to beat a trivial baseline; later improve-

ments considered higher-order effects and punctu-

ation (Headden III et al., 2009; Spitkovsky et al.,

2012). Other approaches try to avoid search error,

using strategies like convexified objectives (Wang

et al., 2008; Gimpel and Smith, 2012), informed

initialization (Klein and Manning, 2004; Mareček

and Straka, 2013), search bias (Smith and Eis-

ner, 2005, 2006; Naseem et al., 2010; Gillenwa-

ter et al., 2010), branch-and-bound search (Gorm-

ley and Eisner, 2013), and switching objectives

(Spitkovsky et al., 2013).

The alternative of cross-lingual transfer has re-

cently flourished thanks to the development of

consistent cross-lingual datasets of POS-tagged

(Petrov et al., 2012) and dependency-parsed (Mc-

Donald et al., 2013) sentences. McDonald et al.

(2011) showed a significant improvement over

grammar induction by simply using the delexical-

ized parser trained on other language(s). Subse-

quent improvements have come from re-weighting

source languages (Søgaard, 2011b; Rosa and

Žabokrtský, 2015a,b; Wang and Eisner, 2016),

adapting the model to the target language us-

ing WALS (Dryer and Haspelmath, 2013) fea-

tures (Naseem et al., 2012; Täckström et al., 2013;

All (376) in-family (46) cross-family (330)
Original 51.92 63.90 50.24
Synthetic 52.92 62.85 51.53

Oracle 59.45 66.14 58.51

Figure 2: Unlabeled attachment scores (UAS) from 376 pairs of development treebanks. Each column represents a

target treebank, and each polyline within that column shows transfer from variants of a different source treebank.

The three points on the polyline (from left to right) represent the target UAS for parsers trained on three sources:

the original source treebank, the “made to order” permutation that attempts to match surface statistics of the

target treebank, and an oracle permutation that uses a realization model trained on the target language. We use

solid markers and purple lines if the transfer is within-family (source and target treebank from the same language

family), and hollow and olive for cross-family transfer. The black polyline in each column is the mean of the

others. The table in the lower left gives summary results; the number in each column header gives the number

of points summarized. For each column, we boldface the better result between the “Synthetic” and “Original”, or

both if they are not significantly different (paired permutation test, p < 0.01). We also show the oracle permutation

result in row “Oracle”.

10 20 30 40 50 60 70 80 90
Original Treebank: 48.61

10

20

30

40

50

60

70

80

90

Sy
nt

he
tic

 T
re

eb
an

k:
 5

0.
36

cu
el
eu
fa
fi_ftb
ga

he
hr
hu
id
ja_ktc
la

pl
ro
sl
sv
ta

Figure 3: UAS on 337 language pairs from the training

languages to the test languages.

Zhang and Barzilay, 2015; Ammar et al., 2016),

and improving the lexical representations via mul-

tilingual word embeddings (Duong et al., 2015;

Guo et al., 2016; Ammar et al., 2016) and syn-

thetic data generation (§6.2).

6.2 Synthetic data generation

Our novel proposal ties into the recent interest in

data augmentation in supervised machine learn-

ing. In unsupervised parsing, the most widely

adopted synthetic data method has been annota-

tion projection, which generates synthetic anal-

yses of target-language sentences by “project-

ing” the analysis from a source-language trans-

lation. Of course, this requires bilingual cor-

pora as an additional resource. Annotation pro-

jection was proposed by Yarowsky et al. (2001),

gained promising results on sequence labelling

tasks, and was later developed for unsupervised

parsing (Hwa et al., 2005; Ganchev et al., 2009;

Smith and Eisner, 2009; Tiedemann, 2014; Ma

and Xia, 2014; Tiedemann et al., 2014). Recent

work in this vein has mainly focused on improv-

ing the synthetic data, including reweighting the

training trees (Agić et al., 2016) or pruning those

that cannot be aligned well (Rasooli and Collins,

2015, 2017; Lacroix et al., 2016).

On the other hand, Wang and Eisner (2016) pro-

posed to permute source language treebanks us-

ing word order realization models trained on other

source languages. They generated on the order of

50,000 synthetic languages by “mixing and match-

ing” a few dozen source languages. Their idea was

that with a large set of synthetic languages, they

could use them as supervised examples to train

an unsupervised structure discovery system that

could analyze any new language. Systems built

with this dataset were competitive in single-source

parser transfer (Wang and Eisner, 2016), typology

prediction (Wang and Eisner, 2017), and parsing

unknown languages (Wang and Eisner, 2018).

Our work in this paper differs in that our syn-

thetic treebanks are “made to order.” Rather than

combine aspects of different treebanks and hope to

get at least one combination that is close to the tar-

get language, we “combine” the source treebank

with a POS corpus of the target language, which

guides our customized permutation of the source.

Beyond unsupervised parsing, synthetic data

has been used for several other tasks. In NLP, it

has been used for complex tasks such as question-

answering (QA) (Serban et al., 2016) and machine

reading comprehension (Weston et al., 2016; Her-

mann et al., 2015; Rajpurkar et al., 2016), where

highly expressive neural models are used and not

enough real data is available to train them. In the

playground of supervised parsing, Gulordava and

Merlo (2016) conduct a controlled study on the

parsibility of languages by generating treebanks

with short dependency length and low variability

of word order.

7 Conclusion & Future Work

We have shown how cross-lingual transfer pars-

ing can be improved by permuting the source tree-

bank to better resemble the target language on the

surface (in its distribution of gold POS bigrams).

The code is available at https://github.

com/wddabc/ordersynthetic. Our work

is grounded in the notion that by trying to ex-

plain the POS bigram counts in a target corpus,

we can discover a stochastic realization policy for

the target language, which correctly “translates”

the source trees into appropriate target trees.

We formulated an objective for evaluating such

a policy, based on KL-divergence between bigram

models. We showed that the objective could be

computed efficiently by dynamic programming,

thanks to the limitation to bigram statistics.

Experimenting on the Universal Dependencies

treebanks v1.2, we showed that the synthetic tree-

banks were—on average—modestly but signifi-

cantly better than the corresponding real treebanks

for single-source transfer (and in Appendix E, on

multi-source transfer).

On the downside, Figure 7 shows that with our

current method, permuting the source language to

be more like the target language is helpful (on av-

erage) only when the source language is from a

different language family. This contrast would be

even more striking if we had a better optimizer:

Figure 9 shows that SGD’s initialization bias lim-

its permutation’s benefit for cross-family training,

as well as its harm for within-family training.

Several opportunities for future work have al-

ready been mentioned throughout the paper. We

are also interested in experimenting with richer

families of permutation distributions, as well as

“conservative” distributions that tend to prefer the

original source order. We could use entropy reg-

ularization (Grandvalet and Bengio, 2005) to en-

courage more “deterministic” patterns of realiza-

tion in the synthetic languages.

We would also like to consider more sensi-

tive divergence measures that go beyond bigrams,

for example using recurrent neural network lan-

guage models (RNNLMs) for q̂ and p̂θ. This

means abandoning our exact dynamic program-

ming methods; we would also like to abandon ex-

act exhaustive enumeration in order to drop §4.1’s

bounds on n. Fortunately, there exist powerful

MCMC methods (Eisner and Tromble, 2006) that

can sample from interesting distributions over the

space of n! permutations, even for large n. Thus,

we could approximately sample from pθ by draw-

ing permuted versions of each tree in B.

Given this change, a very interesting direction

would be to graduate from POS language models

to word language models, using cross-lingual un-

supervised word embeddings (Ruder et al., 2017).

This would eliminate the need for the gold POS

tags that we unrealistically assumed in this paper

(which are typically unavailable for a low-resource

target language). Furthermore, it would enable us

to harness richer lexical information beyond the 17

UD POS tags. After all, even a (gold) POS corpus

might not be sufficient to determine the word or-

der of the target language: “NOUN VERB NOUN”

could be either subject-verb-object or object-verb-

subject. However, “water drink boy” is pre-

sumably object-verb-subject. Thus, using cross-

lingual embeddings, we would try to realize the

unordered source trees so that their word strings,

with few edits, can achieve high probability under

a neural language model of the target.

Acknowledgements

This work was supported by National Science Foundation
Grants 1423276 & 1718846. We are grateful to the state of
Maryland for the Maryland Advanced Research Computing
Center, a crucial resource. We thank Shijie Wu and Adithya
Renduchintala for early discussion, Argo lab members for
further discussion, and the 3 reviewers for quality comments.

References

Željko Agić, Anders Johannsen, Barbara Plank, Héctor
Martı́nez Alonso, Natalie Schluter, and Anders
Søgaard. 2016. Multilingual projection for parsing
truly low-resource languages. Transactions of the
Association for Computational Linguistics, 4:301–
312.

Waleed Ammar, George Mulcaire, Miguel Ballesteros,
Chris Dyer, and Noah Smith. 2016. Many lan-
guages, one parser. Transactions of the Association
of Computational Linguistics, 4:431–444.

Alena Böhmová, Jan Hajič, Eva Hajičová, and Barbora
Hladká. 2003. The Prague dependency treebank. In
Treebanks, pages 103–127. Springer.

Glenn Carroll and Eugene Charniak. 1992. Two exper-
iments on learning probabilistic dependency gram-
mars from corpora. In Statistically-Based Natural
Language Processing Techniques: Papers from the
Workshop, pages 1–13, Menlo Park: AAAI Press.
AAAI. Technical Report WS-92-01.

David Chiang. 2007. Hierarchical phrase-based trans-
lation. Computational Linguistics, 33(2):201–228.

Matthew S. Dryer and Martin Haspelmath, editors.
2013. The World Atlas of Language Structures On-
line. Max Planck Institute for Evolutionary Anthro-
pology, Leipzig. http://wals.info/.

Long Duong, Trevor Cohn, Steven Bird, and Paul
Cook. 2015. Cross-lingual transfer for unsupervised
dependency parsing without parallel data. In Pro-
ceedings of the Nineteenth Conference on Computa-
tional Natural Language Learning, pages 113–122.

Jason Eisner and Roy W. Tromble. 2006. Local search
with very large-scale neighborhoods for optimal per-
mutations in machine translation. In Proceedings
of the HLT-NAACL Workshop on Computationally
Hard Problems and Joint Inference in Speech and
Language Processing, pages 57–75.

Katja Filippova and Michael Strube. 2009. Tree lin-
earization in English: Improving language model
based approaches. In Proceedings of Human Lan-
guage Technologies: The 2009 Annual Conference
of the North American Chapter of the Association
for Computational Linguistics, Companion Volume:
Short Papers, pages 225–228.

Richard Futrell and Edward Gibson. 2015. Experi-
ments with generative models for dependency tree
linearization. In Proceedings of the 2015 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 1978–1983.

Kuzman Ganchev, Jennifer Gillenwater, and Ben
Taskar. 2009. Dependency grammar induction via
bitext projection constraints. In Proceedings of the
Joint Conference of the 47th Annual Meeting of the
ACL and the 4th International Joint Conference on
Natural Language Processing of the AFNLP, pages
369–377.

Jennifer Gillenwater, Kuzman Ganchev, Joo Graa, Fer-
nando Pereira, and Ben Taskar. 2010. Sparsity in
dependency grammar induction. In Proceedings of
the ACL 2010 Conference Short Papers, pages 194–
199.

Kevin Gimpel and Noah A. Smith. 2012. Concav-
ity and initialization for unsupervised dependency
parsing. In Proceedings of the 2012 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 577–581.

Matthew Gormley and Jason Eisner. 2013. Nonconvex
global optimization for latent-variable models. In
Proceedings of the 51st Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL), pages
444–454.

Yves Grandvalet and Yoshua Bengio. 2005. Semi-
supervised learning by entropy minimization. In
L. K. Saul, Y. Weiss, and L. Bottou, editors, Ad-
vances in Neural Information Processing Systems
17, pages 529–536. MIT Press.

Kristina Gulordava and Paola Merlo. 2016. Multi-
lingual dependency parsing evaluation: A large-
scale analysis of word order properties using artifi-
cial data. Transactions of the Association for Com-
putational Linguistics, 4:343–356.

Jiang Guo, Wanxiang Che, David Yarowsky, Haifeng
Wang, and Ting Liu. 2016. A representation learn-
ing framework for multi-source transfer parsing. In
AAAI, pages 2734–2740.

William P. Headden III, Mark Johnson, and David
McClosky. 2009. Improving unsupervised depen-
dency parsing with richer contexts and smoothing.
In Proceedings of Human Language Technologies:
The 2009 Annual Conference of the North American
Chapter of the Association for Computational Lin-
guistics, pages 101–109.

Karl Moritz Hermann, Tomas Kocisky, Edward
Grefenstette, Lasse Espeholt, Will Kay, Mustafa Su-
leyman, and Phil Blunsom. 2015. Teaching ma-
chines to read and comprehend. In Advances in Neu-
ral Information Processing Systems, pages 1684–
1692.

Rebecca Hwa, Philip Resnik, Amy Weinberg, Clara
Cabezas, and Okan Kolak. 2005. Bootstrapping
parsers via syntactic projection across parallel texts.
Natural Language Engineering, 11(3):311–325.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. In Proceedings
of the International Conference on Learning Repre-
sentations (ICLR).

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Sim-
ple and accurate dependency parsing using bidi-
rectional LSTM feature representations. Transac-
tions of the Association of Computational Linguis-
tics, 4:313–327.

Dan Klein and Christopher Manning. 2004. Corpus-
based induction of syntactic structure: Models of
dependency and constituency. In Proceedings of the
42nd Annual Meeting of the Association for Compu-
tational Linguistics, pages 478–485.

Ophélie Lacroix, Lauriane Aufrant, Guillaume Wis-
niewski, and François Yvon. 2016. Frustratingly
easy cross-lingual transfer for transition-based de-
pendency parsing. In Proceedings of the 2016 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 1058–1063.

Karim Lari and Steve J. Young. 1990. The estima-
tion of stochastic context-free grammars using the
inside-outside algorithm. Computer Speech and
Language, 4(1):35–56.

Lillian Lee. 1999. Measures of distributional simi-
larity. In Proceedings of the 37th Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 25–32.

Lillian Lee. 2001. On the effectiveness of the skew
divergence for statistical language analysis. In Pro-
ceedings of AISTATS.

Xuezhe Ma and Fei Xia. 2014. Unsupervised depen-
dency parsing with transferring distribution via par-
allel guidance and entropy regularization. In Pro-
ceedings of the 52nd Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 1337–1348.

David Mareček and Milan Straka. 2013. Stop-
probability estimates computed on a large corpus
improve unsupervised dependency parsing. In Pro-
ceedings of the 51st Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 281–290.

David Mareček. 2016. Twelve years of unsupervised
dependency parsing. In Proceedings of the 16th
ITAT Conference on Information Technologies—
Applications and Theory, pages 56–62.

Ryan McDonald, Joakim Nivre, Yvonne Quirmbach-
Brundage, Yoav Goldberg, Dipanjan Das, Kuz-
man Ganchev, Keith Hall, Slav Petrov, Hao
Zhang, Oscar Täckström, Claudia Bedini, Núria
Bertomeu Castelló, and Jungmee Lee. 2013. Uni-
versal dependency annotation for multilingual pars-
ing. In Proceedings of the 51st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 2: Short Papers), pages 92–97.

Ryan McDonald and Fernando Pereira. 2006. Discrim-
inative Learning and Spanning Tree Algorithms for
Dependency Parsing. Ph.D. thesis, University of
Pennsylvania.

Ryan McDonald, Slav Petrov, and Keith Hall. 2011.
Multi-source transfer of delexicalized dependency
parsers. In Proceedings of the 2011 Conference on
Empirical Methods in Natural Language Process-
ing, pages 62–72.

Simon Mille, Anja Belz, Bernd Bohnet, Yvette Gra-
ham, Emily Pitler, and Leo Wanner. 2018. The first
multilingual surface realisation shared task (SR’18):
Overview and evaluation results. In Proceedings of
the 1st Workshop on Multilingual Surface Realiza-
tion (MSR), 56th Annual Meeting of the Association
for Computational Linguistics (ACL), pages 1–12.

Tahira Naseem, Regina Barzilay, and Amir Globerson.
2012. Selective sharing for multilingual dependency
parsing. In Proceedings of the 50th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 629–637.

Tahira Naseem, Harr Chen, Regina Barzilay, and Mark
Johnson. 2010. Using universal linguistic knowl-
edge to guide grammar induction. In Proceedings of
the 2010 Conference on Empirical Methods in Nat-
ural Language Processing, pages 1234–1244.

Joakim Nivre. 2008. Algorithms for deterministic in-
cremental dependency parsing. Computational Lin-
guistics, 34(4):513–553.

Joakim Nivre, Željko Agić, Lars Ahrenberg, Maria Je-
sus Aranzabe, Masayuki Asahara, Aitziber Atutxa,
Miguel Ballesteros, John Bauer, Kepa Ben-
goetxea, Riyaz Ahmad Bhat, Eckhard Bick, Cristina
Bosco, Gosse Bouma, Sam Bowman, Marie Can-
dito, Gülşen Cebiroğlu Eryiğit, Giuseppe G. A.
Celano, Fabricio Chalub, Jinho Choi, Çağrı
Çöltekin, Miriam Connor, Elizabeth Davidson,
Marie-Catherine de Marneffe, Valeria de Paiva,
Arantza Diaz de Ilarraza, Kaja Dobrovoljc, Tim-
othy Dozat, Kira Droganova, Puneet Dwivedi,
Marhaba Eli, Tomaž Erjavec, Richárd Farkas, Jen-
nifer Foster, Cláudia Freitas, Katarı́na Gajdošová,
Daniel Galbraith, Marcos Garcia, Filip Ginter, Iakes
Goenaga, Koldo Gojenola, Memduh Gökırmak,
Yoav Goldberg, Xavier Gómez Guinovart, Berta
Gonzáles Saavedra, Matias Grioni, Normunds
Grūzı̄tis, Bruno Guillaume, Nizar Habash, Jan
Hajič, Linh Hà Mỹ, Dag Haug, Barbora Hladká,
Petter Hohle, Radu Ion, Elena Irimia, Anders Jo-
hannsen, Fredrik Jørgensen, Hüner Kaşıkara, Hi-
roshi Kanayama, Jenna Kanerva, Natalia Kot-
syba, Simon Krek, Veronika Laippala, Phng
Lê H`ông, Alessandro Lenci, Nikola Ljubešić, Olga
Lyashevskaya, Teresa Lynn, Aibek Makazhanov,
Christopher Manning, Cătălina Mărănduc, David
Mareček, Héctor Martı́nez Alonso, André Mar-
tins, Jan Mašek, Yuji Matsumoto, Ryan McDon-
ald, Anna Missilä, Verginica Mititelu, Yusuke
Miyao, Simonetta Montemagni, Amir More, Shun-
suke Mori, Bohdan Moskalevskyi, Kadri Muis-
chnek, Nina Mustafina, Kaili Müürisep, Lng
Nguy˜ên Thi., Huy`ên Nguy˜ên Thi. Minh, Vitaly
Nikolaev, Hanna Nurmi, Stina Ojala, Petya Osen-
ova, Lilja Øvrelid, Elena Pascual, Marco Passarotti,
Cenel-Augusto Perez, Guy Perrier, Slav Petrov,
Jussi Piitulainen, Barbara Plank, Martin Popel,
Lauma Pretkalniņa, Prokopis Prokopidis, Tiina Puo-
lakainen, Sampo Pyysalo, Alexandre Rademaker,
Loganathan Ramasamy, Livy Real, Laura Rituma,

Rudolf Rosa, Shadi Saleh, Manuela Sanguinetti,
Baiba Saulı̄te, Sebastian Schuster, Djamé Seddah,
Wolfgang Seeker, Mojgan Seraji, Lena Shakurova,
Mo Shen, Dmitry Sichinava, Natalia Silveira, Maria
Simi, Radu Simionescu, Katalin Simkó, Mária
Šimková, Kiril Simov, Aaron Smith, Alane Suhr,
Umut Sulubacak, Zsolt Szántó, Dima Taji, Takaaki
Tanaka, Reut Tsarfaty, Francis Tyers, Sumire Ue-
matsu, Larraitz Uria, Gertjan van Noord, Viktor
Varga, Veronika Vincze, Jonathan North Washing-

ton, Zdeněk Žabokrtský, Amir Zeldes, Daniel Ze-
man, and Hanzhi Zhu. 2017. Universal dependen-
cies 2.0. LINDAT/CLARIN digital library at the In-

stitute of Formal and Applied Linguistics (ÚFAL),
Faculty of Mathematics and Physics, Charles Uni-
versity.

Joakim Nivre et al. 2015. Universal dependencies
1.2. LINDAT/CLARIN digital library at the In-
stitute of Formal and Applied Linguistics, Charles
University in Prague. Data available at http://
universaldependencies.org.

Slav Petrov, Dipanjan Das, and Ryan McDonald. 2012.
A universal part-of-speech tagset. In Proceedings
of the Eighth International Conference on Language
Resources and Evaluation (LREC-2012). European
Language Resources Association (ELRA).

Yevgeniy Puzikov and Iryna Gurevych. 2018. BinLin:
A simple method of dependency tree linearization.
In Proceedings of the First Workshop on Multilin-
gual Surface Realisation, pages 13–28.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Nat-
ural Language Processing, pages 2383–2392.

Mohammad Sadegh Rasooli and Michael Collins.
2015. Density-driven cross-lingual transfer of de-
pendency parsers. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language
Processing, pages 328–338.

Mohammad Sadegh Rasooli and Michael Collins.
2017. Cross-lingual syntactic transfer with limited
resources. Transactions of the Association for Com-
putational Linguistics, 5:279–293.

Mohammad Sadegh Rasooli and Joel R. Tetreault.
2015. Yara parser: A fast and accurate depen-
dency parser. Computing Research Repository,
arXiv:1503.06733 (version 2).

Rudolf Rosa and Zdeněk Žabokrtský. 2015a. KLcpos3
— a language similarity measure for delexicalized
parser transfer. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference
on Natural Language Processing (Volume 2: Short
Papers), pages 243–249.

Rudolf Rosa and Zdeněk Žabokrtský. 2015b. MST-
Parser model interpolation for multi-source delexi-
calized transfer. In Proceedings of the 14th Inter-
national Conference on Parsing Technologies, pages
71–75.

Sebastian Ruder, Ivan Vulić, and Anders Søgaard.
2017. A survey of cross-lingual word embed-
ding models. Computing Research Repository,
arXiv:1706.04902.

Robert Sedgewick. 1977. Permutation generation
methods. ACM Computing Surveys, 9(2):137–164.

Iulian Vlad Serban, Alberto Garcı́a-Durán, Caglar
Gulcehre, Sungjin Ahn, Sarath Chandar, Aaron
Courville, and Yoshua Bengio. 2016. Generating
factoid questions with recurrent neural networks:
The 30M factoid question-answer corpus. In Pro-
ceedings of the 54th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 588–598.

David A. Smith and Jason Eisner. 2009. Parser adap-
tation and projection with quasi-synchronous gram-
mar features. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 822–831.

Noah A. Smith and Jason Eisner. 2005. Guiding unsu-
pervised grammar induction using contrastive esti-
mation. In International Joint Conference on Artifi-
cial Intelligence (IJCAI) Workshop on Grammatical
Inference Applications, pages 73–82.

Noah A. Smith and Jason Eisner. 2006. Annealing
structural bias in multilingual weighted grammar in-
duction. In Proceedings of the International Confer-
ence on Computational Linguistics and the Associa-
tion for Computational Linguistics (COLING-ACL),
pages 569–576.

Anders Søgaard. 2011a. Data point selection for cross-
language adaptation of dependency parsers. In Pro-
ceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 682–686. Association for
Computational Linguistics.

Anders Søgaard. 2011b. Data point selection for cross-
language adaptation of dependency parsers. In Pro-
ceedings of the 49th Annual Meeting of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, pages 682–686.

Valentin I Spitkovsky, Hiyan Alshawi, and Daniel
Jurafsky. 2012. Three dependency-and-boundary
models for grammar induction. In Proceedings of
the 2012 Joint Conference on Empirical Methods
in Natural Language Processing and Computational
Natural Language Learning, pages 688–698. Asso-
ciation for Computational Linguistics.

Valentin I. Spitkovsky, Hiyan Alshawi, and Daniel Ju-
rafsky. 2013. Breaking out of local optima with
count transforms and model recombination: A study

in grammar induction. In Proceedings of the 2013
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP 2013).

Oscar Täckström, Ryan McDonald, and Joakim Nivre.
2013. Target language adaptation of discriminative
transfer parsers. In Proceedings of the 2013 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 1061–1071.

Jörg Tiedemann. 2014. Rediscovering annotation
projection for cross-lingual parser induction. In
Proceedings of the 25th International Conference
on Computational Linguistics (COLING): Technical
Papers, pages 1854–1864. Dublin City University
and Association for Computational Linguistics.

Jörg Tiedemann, Željko Agić, and Joakim Nivre. 2014.
Treebank translation for cross-lingual parser induc-
tion. In Proceedings of the Eighteenth Confer-
ence on Computational Natural Language Learning,
pages 130–140.

Dingquan Wang and Jason Eisner. 2016. The Galac-
tic Dependencies treebanks: Getting more data by
synthesizing new languages. Transactions of the
Association of Computational Linguistics, 4:491–
505. Data available at https://github.com/
gdtreebank/gdtreebank.

Dingquan Wang and Jason Eisner. 2017. Fine-grained
prediction of syntactic typology: Discovering la-
tent structure with supervised learning. Transac-
tions of the Association for Computational Linguis-
tics (TACL), 5.

Dingquan Wang and Jason Eisner. 2018. Surface statis-
tics of an unknown language indicate how to parse it.
Transactions of the Association for Computational
Linguistics (TACL). To appear.

Qin Iris Wang, Dale Schuurmans, and Dekang Lin.
2008. Semi-supervised convex training for depen-
dency parsing. In Proceedings of ACL-HLT, pages
532–540.

Jason Weston, Antoine Bordes, Sumit Chopra, and
Tomas Mikolov. 2016. Towards AI-complete ques-
tion answering: A set of prerequisite toy tasks.
In Proceedings of the International Conference on
Learning Representations.

David Yarowsky, Grace Ngai, and Richard Wicen-
towski. 2001. Inducing multilingual text analysis
tools via robust projection across aligned corpora.
In Proceedings of the First International Conference
on Human Language Technology Research.

Daniel Zeman and Philip Resnik. 2008. Cross-
language parser adaptation between related lan-
guages. In Proceedings of the IJCNLP-08 Workshop
on NLP for Less Privileged Languages.

Yuan Zhang and Regina Barzilay. 2015. Hierarchical
low-rank tensors for multilingual transfer parsing.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1857–1867.

A Feature templates for realization

§2.2 assigns a probability distribution to each or-

dering π of node a and its child nodes. πi rep-

resents the ith node in this ordering. Recall that

equation (1) scores each pair (πi, πj) for which

i < j, using a feature vector f(π, i, j).
To construct the feature vector f(π, i, j), we use

the following subset of the feature templates of

Wang and Eisner (2016). Borrowing their nota-

tion, we write ti for the POS tag of πi, and we

write ri for the dependency relation of πi to its par-

ent, or ri = head in the special case of πi = a.

• L.ti.ri, provided that rj = head. For ex-

ample, L.ADJ.amod will fire on each ad-

jectival modifier with POS ADJ to the left of

the head.

• L.ti.ri.tj.rj , provided that ri 6= head

and rj 6= head. This feature detects the rel-

ative order of two siblings.

• d.ti.ri.tj .rj , where d is l (left), m (middle),

or r (right) according to whether the head po-

sition h satisfies i < j < h, i < h < j, or

h < i < j. For example, l.nsubj.dobj

will fire on SOV clauses. This is a special-

ization of the previous feature (in that it also

takes the head position into account), and is

similarly skipped if i = h or j = h.

• A.ti.ri.tj.rj , provided that j = i + 1.

These bigram features detect two adjacent

nodes. For this feature, we extend the sum-

mation in equation (1) to allow 0 ≤ i < j ≤
na+1, taking t0 = r0 = BOS (“beginning of

sequence”) and tn+1 = rn+1 = EOS (“end of

sequence”), as in §2.4.2.

These templates are instantiated with all tags

and relations that appear in the source treebank. In

contrast to Wang and Eisner (2016), the ordering

model that we tune on the source treebank is never

applied to any other treebank. Thus, there is no

need to include tags or relations that do not appear

in the source treebank, nor do we need the back-

off features of Wang and Eisner (2016). Also, for

speed, we exclude the “high-order” features from

that paper.

B Pseudocode

Algorithm 1 is the algorithm from §3.1 for com-

puting expected POS bigram counts. It calls Al-

gorithm 2.

50 60 70 80 90 100ar bgcs dadeen es etfi frgotgrc_proielgrc hi itla_ittla_proiel nl nopt

Original
Synthetic

Figure 4: Parsability of 20 real treebanks vs. their

many synthetic re-realizations (cf. Wang and Eisner,

2016, Figure 2).

Algorithm 2 is the algorithm from §3.2 for

efficiently computing the expected node bigram

counts pa(i, j). The key is that UPDATE is called

when a bigram is about to be destroyed; it incre-

ments the bigram’s unnormalized probability by

the cumulative change to the running total Z(a)
since that bigram was last created. Each enumer-

ated permutation swaps two adjacent nodes in the

previous permutation. This destroys 3 bigrams, so

it first calls UPDATE on those (lines 15–17).

C Hyperparameter setting

For tuning hyperparameters in §5.1, we performed

a grid search that evaluated all (α1, α2, β) triples

in {0.0, 0.2, . . . , 1}3. The optimal setting was

(α1, α2, β) = (0.2, 1, 0.2).

For multi-source transfer (Appendix E), we

reused the same synthetic treebanks B′ that we

generated for single-source transfer, and tuned

only the augmentation ratio g. the optimal setting

was 0.2 for all 3 approaches.

D Parsability

For reasons explained in §5.2, we evaluated the

parsability of our “made to order” synthetic lan-

guages, when the parser was given only POS se-

quences as input. For each synthetic treebank B′,

we trained the Yara parser on a training portion

and evaluated its UAS on a development portion.

In fact, the synthetic treebanks were slightly more

parsable than the originals (mean UAS of 74.96 vs.

73.61), though the improvement was far from sig-

nificant under an unpaired permutation test (p =
0.48). By contrast, Wang and Eisner (2016) pro-

duced synthetic treebanks that were significantly

less parsable. We observed some regression to the

mean: highly parsable treebanks usually became

less parsable when permuted, and vice-versa.

Algorithm 1 A recursive routine (§3.1) for computing the expected bigram counts ca from pθ. croot is

the cp function needed by §2.4.

Input: A node a in the dependency tree; current model parameters θ
Output: Sparse map ca where ca[st] gives the expected count ca(st) for each POS bigram st
1: procedure ECOUNTNODE(a,θ)
2: a0 = BOS; (a1, . . . , an−1) = children(a); an = head(a); an+1 = EOS ⊲ ~a is the node sequence defined in §3.1
3: ca ← {} ⊲ map we’re constructing, initialized to empty; undefined count ca[st] can be interpreted as 0
4: for i = 1 to n− 1 do
5: cai

← ECOUNTNODE(ai) ⊲ recursively compute expected counts for any subtrees rooted at children(a)

6: can ← {BOS h 7→ 1, h EOS 7→ 1} where h = POS(head(a)) ⊲ serves as the base case of the recursive routine
7: ca0 ← {BOS EOS 7→ 1} ⊲ dummy boundary nodes
8: can+1 ← {BOS EOS 7→ 1}
9: pa ← LAZYCOMPUTE(~a,θ) ⊲ call Algorithm 2 for node bigram probs pa (as defined above equation (5))

10: for i = 1 to n do
11: for st ∈ keys(cai

) such that s 6= BOS, t 6= EOS do

12: ca[st] += cai
[st] ⊲ increase ca[st] by cwithin

a [st] using equation (5)

13: for i = 0 to n do
14: for j = 1 to n+ 1 such that j 6= i do
15: for s, t such that s EOS ∈ keys(cai

) and BOS t ∈ keys(caj
) do

16: ca[st] += pa[i, j] · cai
[s EOS] · caj

[BOS t] ⊲ increase ca[st] by cacross
a [st] using equation (5)

17: return ca

Algorithm 2 Computing Node Bigram Probabilities

Input: Sequence of nodes ~a = (a1, . . . , an); current model parameters θ
Output: Array p where p[i, j] = marginal probability of node bigram aiaj for all 0 ≤ i < n+ 1, 0 < j ≤ n+ 1 with j 6= i
1: procedure LAZYCOMPUTE(~a,θ)
2: p ← 0 ⊲ initialize all marginal bigram probabilities to zero
3: t ← 0 ⊲ number of permutations considered so far

4: Z(t) ← 0 ⊲ Z(t) is always total unnormalized probability of first t permutations
5: oi ← t for 0 ≤ i < n+ 1 ⊲ oi is the latest permutation at which bigram (πi, πi+1) was not yet adjacent
6: π ← (1, 2, . . . , n) ⊲ initialize π to be identity permutation, (∀i)πi = i
7: procedure UPDATE(i)
8: ⊲ This procedure updates the unnormalized marginal probability of the bigram (πi, πi+1), which is about to change

9: p[πi, πi+1] += Z(t) − Z(oi) ⊲ total partial sum of Z(a) since (πi, πi+1) acquired its current value
10: oi ← t ⊲ current time is last time at which (πi, πi+1) will have its current value (until later)

11: w ← θ ·
∑

1≤i<j≤n
f(π, i, j) ⊲ unnormalized log-probability of π from equation (1)

12: t← t+ 1;Z(t) ← Z(t−1) + expw ⊲ add the first permutation’s unnormalized prob into Z
13: ⊲ SJT iterates over a sequence of n!− 1 swaps, to get the remaining permutations
14: for k in SJT(n) do ⊲ here 1 ≤ k < n, meaning to swap (πk, πk+1)
15: UPDATE(k − 1) ⊲ increment prob of current bigram (πk−1, πk) before that bigram goes away
16: UPDATE(k) ⊲ similarly for (πk, πk+1)
17: UPDATE(k + 1) ⊲ similarly for (πk+1, πk+2)
18: SWAP(πk, πk+1)
19: ⊲ Update w from line 11 using only the difference of feature vectors, which is sparse and computable in O(n) time
20: w ← w + θ ·

∑
1≤i<j≤n

(f(π, i, j)− f(πold, i, j)) ⊲ where πold is the pre-swap θ and is similar to θ

21: t← t+ 1;Z(t) ← Z(t−1) + expw ⊲ add the new permutation’s unnormalized prob into Z (same as line 12)

22: for i = 1 to n do ⊲ count all bigrams in final permutation as we move on from it
23: UPDATE(i)

24: for i = 0 to n do
25: for j = 1 to n+ 1 such that j 6= i do

26: p[i, j]← p[i,j]

Z(t) ⊲ normalize the probabilities

27: return the array p

ar bg cs da de en es et fi fr got grc

grc_
proi

el hi it
la_it

t
la_p

roie
l nl no pt

Target Treebanks

0.0

0.1

0.2

0.3

0.4

0.5
D

iv
er

ge
nc

e
ar bg cs da de en es et fi fr got grc grc_proiel hi it la_itt la_proiel nl no pt

Figure 5: Divergences between 376 pairs of development treebanks. This is a different presentation of Figure 6

in which the source-target pairs are grouped into columns. Each column represents a target treebank, and each

line segment within that column shows the divergence equation (4) from variants of a different source treebank.

The two points on that segment (from left to right) represent the original source treebank and its “made ot order”

permutation. We use solid markers and purple lines if the transfer is within-family (source and target treebank from

the same language family), and hollow and olive for cross-family transfer. The black segment in each column is

the mean of the others.

E Multi-source transfer

While the main paper considers single-source

transfer parsers, we are also interested in whether

multi-source transfer parsers can be improved by

augmenting the source treebanks with synthetic

(permuted) versions.

In each of these experiments, we trained the

delexicalized parser by sampling 50000 sentences

with replacement from one or more source tree-

banks, and then tested it on the target treebank. We

considered the following methods for sampling a

sentence:

Single-source selection (Rosa and Žabokrtský,

2015a; Wang and Eisner, 2016): Sample

all sentences uniformly from a single source

treebank, namely the one whose trigram POS

language model has the highest likelihood on

the unparsed corpus of the target language.

This method considers multiple sources only

to select one.

Equal mixture : Select one of the source tree-

banks uniformly at random, then sample a

sentence uniformly from that treebank. To

succeed on this mixture of source treebanks,

this source parser must, in effect, analyze the

17For speed, we restricted the experiment of Figure 9 to
choose 48 of the 376 pairs. The source treebanks were en,
no, de, es, fr, pt, hi, it, ar. The target treebanks were fr, hi,
de, ar, pt, en. This covers both in-family transfer and cross-
family transfer. By excluding the cases where source = target,
we got 9 ∗ 6− 6 = 48 pairs.

input POS sequence to determine what sort of

parse tree is called for in the input language,

and we hope that this will also work on the

target language.18

Unequal mixture : As above, but the selection

probability of each source treebank is pro-

portional to its KL−4
cpos3

similarity to the tar-

get corpus Rosa and Žabokrtský (2015a),19

which is again determined from the POS tri-

grams of the two corpora.

In any of these three methods, we can use either

the collection of original source treebanks (g = 0),

or the collection of permuted versions that have

been permuted to resemble our target language

(g = 1). These two collections are the same size.

For each sentence that we sample, we use a coin

with weight g ∈ [0, 1] to decide which collection

to use. See Appendix C for the value of the hy-

perparameter g. Notice that the single-source se-

lection method now really becomes double-source

selection—we separately select one real and one

18This is inspired by McDonald et al. (2011)’s method of
concatenating the source treebanks. However, our version
does not give more weight to treebanks with more sentences
(although it does effectively give more weight to treebanks
whose sentences are longer).

19In contrast, (Rosa and Žabokrtský, 2015b) used these
probabilities to interpolate among separately trained source
parsers (specifically, interpolating the linear scoring functions
of trained instances of MSTParser). We use them to mix
treebanks before training a single parser (an instance of Yara
parser).

0.0 0.1 0.2 0.3 0.4 0.5

Original Treebank: 0.22

0.0

0.1

0.2

0.3

0.4

0.5
Sy

nt
he

tic
 T

re
eb

an
k:

 0
.1

8
ar
bg
cs
da

de
en
es
et

fi
fr
got
grc

grc_proiel
hi
it
la_itt

la_proiel
nl
no
pt

Figure 6: This graph plots the x-axes from the two

graphs in Figure 1 against each other. We see that for

almost every source-target pair (330/376 = 96.01% of

the pairs), the SGD optimizer succeeded in construct-

ing a permuted source treebank B′ with lower diver-

gence to the target than the original source treebank B.

The diagonal line y = x is also shown for readability.

The number on each axis is the mean value.

Selection Mix= Mix6=
Original 64.37 62.31 64.77

+Synthetic 64.55 62.77 65.00

Table 1: Cross-validation results on UAS using multi-

source transfer. “Original” uses the original treebanks

from UD (g = 0), and “+Synthetic” augments with

synthetic languages (allowing g > 0). Within each col-

umn, we highlight the better result, as well as the other

if it is not significantly worse (paired permutation test

by language, p < 0.05).

synthetic treebank. Similarly, in the unequal mix-

ture method, we have two sets of mixture weights,

one for each treebank collection.

The data split is shown in Table 2. In this

setting, we tuned the hyperparameters a bit dif-

ferently than in §5.1, using 5-fold cross valida-

tion with the 5-fold split shown in Table 2. That

is, to evaluate a given hyperparameter setting, we

evaluated the unlabeled attachment score (UAS)

on each group of 4 treebanks when transferring

parsers from the other 16.

Both during hyperparameter tuning and during

testing, we excluded any additional treebanks of

the target language from the collection of sources,

just as in footnotes 12–13.

All (376) in-family (46) cross-family (330)
Original 51.92 63.90 50.24
Synthetic 52.92 62.85 51.53

Figure 7: Unlabeled attachment scores (UAS) on 376

language pairs within the training languages. Each

marker represents one pair, whose x-axis is the UAS

on the target language using the original treebank of

the source language, and the y-axis is the UAS using

the synthetic treebank permuted from the original tree-

bank. The table in the upper left gives summary results;

the number in each column header gives the number of

points summarized. For each column, we boldface the

better result, as well as the other if it is not significantly

worse (paired permutation test, p < 0.01).

Train Test
bg
es
grc proiel
ar

en
la proiel
la itt
fi

de
fr
it
got

pt
no
et
nl

hi
cs
grc
da

la, hr, ga, he, hu,
fa, ta, cu, el, ro,
sl, ja ktc, sv,
fi ftb, id, eu, pl

Table 2: Data split of the 37 treebanks (33 languages)

from Wang and Eisner (2016, 2017). The dashed lines

in “Train” separate the 5 folds.

As shown in Table 1, the improvement from

adding the synthetic treebanks (g > 0 compared

to g = 0) varies for different methods. Specifi-

cally, the synthetic treebanks do not significantly

aid single-source selection, which is reasonable

because the selection criteria is more likely to pick

a source treebank that belongs to the same lan-

guage family as the target language,20 and as we

have seen, these cases are not effectively improved

by permutation (§5.2). They do significantly im-

prove the mixing methods, because source tree-

banks from other families contribute to the parsing

model, and these are improved by our approach.

20In the g = 0 experiment, 12/20 target languages selected
their single source from the same family.

All (376) in-family (46) cross-family (330)
Original 51.92 63.90 50.24
Synthetic 59.45 66.14 58.51

Figure 8: UAS on 376 language pairs within the train-

ing languages. The design is similar to Figure 7, but the

synthetic treebanks are generated using an oracle—the

actual realization model of the target language.

F Full result tables

We show breakdown results for multi-source

transfer in Table 3 and for single-source transfer

in Table 4.

All (48) in-family (10) cross-family (38)
Original 49.39 71.00 43.71

Synthetic (informed) 50.72 69.94 45.66
Synthetic (random) 52.72 62.36 50.18

Synthetic (all) 54.49 67.19 51.15

Figure 9: UAS on 48 of the language pairs within the

development languages.17 The design is similar to Fig-

ure 7, but we optimize divergence more aggressively by

selecting the best of 6 optimization runs for each pair

(informed initialization plus 5 random restarts). In 36

of 48 cases, the best run used a random restart. The av-

erage x and y values are given in the first and last rows

of the table, with the intermediate rows showing the re-

sults if we had used only informed initialization or only

random restarts. Each column boldfaces the best re-

sult as well as all others that are not significantly worse

(paired permutation test, p < 0.01).

Selection Mix= Mix6=
Target orig. +syn. orig. +syn. orig. +syn.

ar 48.08 51.83 47.5 48.08 51.69 51.62
bg 80.66 80.25 76.97 77.77 82.06 81.87
cs 70.67 69.52 67.33 67.39 66.59 67.28
da 69.86 69.94 70.08 69.83 70.47 70.87
de 64.27 63.65 64.97 65.44 65.66 65.51
en 64.00 63.91 62.57 63.13 63.30 63.57
es 77.74 77.85 75.58 75.26 79.14 79.16
et 76.00 75.77 67.11 69.26 75.94 76.11
fi 50.38 50.47 51.19 51.21 51.56 51.56
fr 80.51 80.57 77.89 77.96 80.66 80.83
got 68.20 67.58 62.18 62.75 68.23 67.93
grc 42.49 42.56 48.94 49.19 44.07 44.22
grc proiel 61.28 61.52 56.99 57.19 61.60 61.4
hi 41.39 41.60 28.59 31.42 35.06 37.62
it 82.01 81.88 79.62 79.62 81.9 81.94
la itt 48.61 50.00 50.84 51.07 51.89 52.06
la proiel 54.02 54.62 52.14 52.51 55.13 55.23
nl 59.27 59.08 59.94 60.81 61.16 61.46
no 70.33 70.38 69.37 69.39 71.54 71.53
pt 77.69 78.07 76.34 76.22 77.68 78.19

Table 3: Breakdown results from Table 1. For each

language and method, we boldface the better result, as

well as the other if it is not significantly worse (paired

permutation test by sentence, p < 0.05). Notice that

for the Mix= method, augmenting with synthetic per-

muted languages always yields a boldfaced result.

bg es grc proiel ar en la proiel la itt fi de fr it got pt no et nl hi cs grc da

bg - 69.66 60.85 45.34 71.65 63.05 58.83 68.48 68.34 70.04 75.11 66.13 70.18 73.65 62.50 69.67 36.11 75.81 64.64 75.33

es 70.99 - 60.32 51.54 67.74 58.18 55.05 56.21 63.34 76.42 76.64 61.23 70.49 70.50 45.07 67.23 31.25 69.76 50.81 68.55

grc proiel 54.02 49.28 - 39.27 50.23 50.42 43.89 45.23 49.77 47.06 48.93 59.58 49.44 51.04 43.81 51.20 37.80 53.44 - 51.50

ar 46.58 44.78 45.63 - 34.00 48.46 49.82 32.08 42.81 46.48 45.83 48.75 45.25 39.50 39.78 44.04 14.68 50.18 49.26 44.33

en 57.78 57.40 48.69 34.49 - 47.34 49.97 53.42 60.52 59.00 56.41 48.26 48.56 61.62 48.68 51.42 39.77 58.11 50.25 58.15
la proiel 50.87 45.14 51.26 34.09 44.34 - - 44.88 43.80 41.99 43.58 52.84 44.78 45.50 43.01 44.51 33.37 49.65 47.15 44.59

la itt 45.57 46.18 44.19 36.78 43.20 - - 44.08 43.44 43.55 44.78 45.21 45.62 45.34 39.95 42.71 29.03 48.37 46.54 42.10

fi 47.00 46.78 45.02 27.75 49.15 42.86 35.62 - 45.70 44.38 45.01 45.32 39.30 53.44 46.12 45.18 40.81 48.38 47.07 49.99

de 61.44 61.05 55.77 38.72 64.51 47.66 49.20 50.03 - 58.11 59.12 51.00 56.68 59.71 47.79 61.03 45.75 63.13 49.22 58.45

fr 73.57 78.51 62.09 54.09 69.71 57.54 56.97 57.46 67.28 - 76.56 62.37 70.34 73.00 41.96 69.62 33.36 72.12 53.56 72.35

it 75.65 79.97 62.53 56.19 71.14 61.09 62.34 55.53 66.24 78.03 - 61.98 71.74 75.48 45.91 70.45 34.09 73.70 53.53 73.57

got 61.33 53.35 65.16 41.92 53.42 62.67 47.83 52.03 51.71 47.94 50.89 - 52.85 55.20 52.51 52.85 35.80 57.17 56.76 54.74

pt 71.02 76.34 61.99 53.17 69.09 58.92 56.57 52.20 64.89 74.74 76.55 61.82 - 70.26 37.72 69.62 34.31 71.19 52.10 71.04

no 66.77 62.74 55.85 39.53 65.99 50.82 54.71 60.67 59.33 62.97 65.91 54.97 55.14 - 47.73 55.86 35.14 64.72 53.79 67.88
et 66.02 60.89 67.57 41.48 59.79 62.84 55.50 74.84 55.22 46.78 57.47 69.03 53.22 67.69 - 55.84 55.14 64.18 69.80 70.47

nl 52.60 56.46 50.44 38.91 55.29 47.57 47.93 45.24 59.38 52.89 55.09 49.42 54.53 50.52 38.41 - 40.81 53.30 44.96 57.79

hi 27.02 24.45 37.04 18.89 30.81 37.88 34.96 48.18 40.39 22.38 25.31 38.82 28.07 27.31 48.42 29.74 - 27.74 38.60 24.50

cs 64.33 64.21 53.48 36.69 53.65 55.41 54.00 58.09 58.78 60.03 65.64 55.42 60.58 60.11 50.16 57.66 33.99 - 55.16 60.16

grc 49.11 43.06 - 31.46 42.81 45.70 40.05 43.53 44.07 41.10 43.31 48.92 44.63 46.76 45.07 46.96 36.00 44.27 - 47.14

da 65.72 64.69 54.42 39.46 62.99 51.93 53.39 57.54 59.87 64.33 65.58 53.74 56.70 68.43 49.03 59.39 34.39 64.65 51.76 -

cu 64.84 55.15 64.42 45.55 56.87 65.82 49.97 54.62 52.16 50.95 54.11 68.34 55.78 59.22 54.91 54.12 33.59 60.19 60.35 58.69

el 62.69 56.82 58.68 45.80 59.49 50.34 57.11 48.52 61.31 58.95 57.99 57.61 59.92 60.82 41.97 56.08 39.93 64.70 58.24 57.97

eu 48.68 40.02 45.31 32.79 44.84 46.14 43.73 41.29 43.24 34.01 44.53 42.07 43.28 43.29 48.12 47.11 48.03 47.60 43.22 46.83

fa 50.33 48.78 42.43 45.96 38.08 48.37 49.03 39.40 45.34 48.73 48.11 50.91 47.47 40.97 38.37 43.30 28.86 54.08 49.82 44.22

fi ftb 49.76 47.07 51.10 31.12 50.56 46.65 37.79 - 51.57 42.72 49.08 48.42 47.99 54.20 48.06 48.54 46.93 50.03 48.29 46.35
ga 55.21 52.82 53.29 55.77 51.58 49.57 51.01 46.43 52.90 55.08 55.33 53.00 53.96 56.35 43.84 50.51 29.18 61.18 50.65 58.77

he 59.80 57.91 61.15 55.17 52.93 53.43 56.49 50.67 53.00 52.12 56.90 61.75 57.22 56.07 42.57 53.60 28.62 62.36 55.46 53.86

hr 64.23 62.44 52.19 37.70 55.99 55.34 54.35 58.48 57.13 57.74 64.86 55.13 57.31 53.39 48.44 55.28 33.35 69.26 48.08 60.81

hu 56.65 50.57 53.06 28.23 54.81 47.40 43.08 53.83 57.33 49.67 50.87 48.79 51.16 56.98 50.03 56.10 53.50 53.15 54.38 54.74

id 62.73 58.01 49.84 48.08 37.91 52.21 43.00 49.40 41.87 53.28 62.00 52.95 56.84 50.61 36.96 47.48 22.80 62.00 44.87 53.85

ja ktc 20.87 18.85 35.94 14.36 28.50 37.55 28.39 50.45 31.34 17.89 17.86 30.82 20.52 29.15 44.33 16.67 62.09 25.05 37.95 28.65

la 46.83 39.91 43.68 30.04 40.52 - - 43.91 38.81 36.32 38.62 46.01 41.86 42.55 42.06 40.97 35.62 43.28 45.64 43.49

pl 65.75 64.74 53.20 53.27 57.12 57.79 58.31 57.59 58.78 60.78 64.39 54.91 63.64 61.70 60.45 56.73 37.49 69.97 64.60 63.49

ro 67.44 64.81 55.10 51.82 59.18 53.32 56.65 54.98 57.10 62.13 65.79 54.93 57.00 60.97 46.47 55.91 28.52 65.48 55.33 64.64

sl 70.37 69.47 56.33 39.64 63.15 56.11 57.49 63.81 67.06 68.35 69.23 57.37 57.92 66.13 54.58 60.26 38.36 76.41 60.16 66.34

sv 68.72 66.99 58.19 39.60 69.88 55.46 57.12 64.25 65.37 65.67 69.35 58.62 61.06 75.33 53.59 64.17 39.60 68.41 59.44 73.22
ta 40.48 27.35 39.34 17.37 42.11 40.89 37.11 42.32 39.48 28.80 30.86 32.91 30.47 39.92 44.93 31.90 57.59 33.10 33.79 31.21

Table 4: UAS scores on single-source transfer results using the synthetic languages, where the columns represent

source treebanks and the rows represent target treebanks. The upper half of the table is the 5-fold cross-validation

result used for generating the y-axis of Figure 7. The lower half is the final test result used for the y-axis of

Figure 3. For each pair, we boldface the results that are not significantly worse (paired permutation test by sentence,

p < 0.05) than using the original treebanks.

