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Abstract

We introduce neural finite state transducers

(NFSTs), a family of string transduction models

defining joint and conditional probability distri-

butions over pairs of strings. The probability of

a string pair is obtained by marginalizing over

all its accepting paths in a finite state transducer.

In contrast to ordinary weighted FSTs, however,

each path is scored using an arbitrary function

such as a recurrent neural network, which breaks

the usual conditional independence assumption

(Markov property). NFSTs are more powerful

than previous finite-state models with neural fea-

tures (Rastogi et al., 2016). We present training

and inference algorithms for locally and globally

normalized variants of NFSTs. In experiments

on different transduction tasks, they compete

favorably against seq2seq models while offer-

ing interpretable paths that correspond to hard

monotonic alignments.

1 Introduction

Weighted finite state transducers (WFSTs) have been

used for decades to analyze, align, and transduce

strings in language and speech processing (Roche

and Schabes, 1997; Mohri et al., 2008). They form

a family of efficient, interpretable models with well-

studied theory. A WFST describes a function that

maps each string pair (x,y) to a weight—often a

real number representing p(x,y) or p(y | x). The

WFST is a labeled graph, in which each path a

represents a sequence of operations that describes

how some x and some y could be jointly generated,

or how x could be edited into y. Multiple paths for

the same (x,y) pair correspond to different analyses

(labeled alignments) of that pair.

However, WFSTs can only model certain func-

tions, known as the rational relations (Berstel and

Reutenauer, 1988).The weight of a path is simply

the product of the weights on its arcs. This means
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Figure 1: A marked finite-state transducer T . Each arc in

T is associated with input and output substrings, listed

above the arcs in the figure. The arcs are not labeled with

weights as in WFSTs. Rather, each arc is labeled with

a sequence of marks (shown in brown) that featurize

its qualities. The neural scoring model scores a path by

scoring each mark in the context of all marks on the

entire path. The example shown here is from the G2P

application of §4.1; for space, only a few arcs are shown.

ε represents the empty string.

that in a random path of the form a  b  c,
the two subpaths are conditionally independent

given their common state b: a Markov property.

In this paper, we propose neural finite state trans-

ducers (NFSTs), in which the weight of each path is

instead given by some sort of neural network, such

as an RNN. Thus, the weight of an arc can depend

on the context in which the arc is used. By aban-

doning the Markov property, we lose exact dynamic

programming algorithms, but we gain expressiv-

ity: the neural network can capture dependencies

among the operations along a path. For example,

the RNN might give higher weight to a path if it

is “internally consistent”: it might thus prefer to

transcribe a speaker’s utterance with a path that

maps similar sounds in similar contexts to similar

phonemes, thereby adapting to the speaker’s accent.
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Consider a finite-state transducer T as in Figure 1

(see Appendix A for background). Using the com-

position operator ◦, we can obtain a new FST, x◦T ,

whose accepting paths correspond to the accepting

paths of T that have input string x. Similarly, the

accepting paths of T ◦ y correspond to the accept-

ing paths of T that have output string y. Finally,

x◦T ◦y extracts the paths that have both properties.

We define a joint probability distribution over (x,y)
pairs by marginalizing over those paths:

p(x,y) =
∑

a∈x◦T ◦y

p(a) =
1

Z(T )

∑

a∈x◦T ◦y

p̃(a) (1)

where p̃(a) is the weight of path a and Z(T ) =
∑

a∈T p̃(a) is a normalization constant.

We define p̃(a) , expGθ(a) with Gθ(a) being

some parametric scoring function. In our experi-

ments, we will adopt a fairly simple left-to-right

RNN architecture (§2.2), but one could easily sub-

stitute fancier architectures. We will also consider

defining Gθ by a locally normalized RNN that

ensures Z(T ) = 1.

In short, we use the finite-state transducer T to

compactly define a set of possible paths a. The

number of paths may be exponential in the size of

T , or infinite if T is cyclic. However, in contrast to

WFSTs, we abandon this combinatorial structure in

favor of neural nets when defining the probability

distribution over a. In the resulting marginal distri-

bution p(x,y) given in equation (1), the path a that

aligns x and y is a latent variable. This is also true

of the resulting conditional distribution p(y | x).

We explore training and inference algorithms

for various classes of NFST models (§3). Classical

WFSTs (Mohri et al., 2008) and BiRNN-WFSTs

(Rastogi et al., 2016) use restricted scoring functions

and so admit exact dynamic programming algo-

rithms. For general NFSTs, however, we must resort

to approximate computation of the model’s training

gradient, marginal probabilities, and predictions.

In this paper, we will use sequential importance

sampling methods (Lin and Eisner, 2018), leaving

variational approximation methods to future work.

Defining models using FSTs has several benefits:

Output-sensitive encoding Currently popular

models of p(y | x) used in machine translation

and morphology include seq2seq (Sutskever

et al., 2014), seq2seq with attention (Bahdanau

et al., 2015; Luong et al., 2015), the Trans-

former (Vaswani et al., 2017). These models

first encode x as a vector or sequence of vec-

tors, and then condition the generation of y on

this encoding. The vector is determined from x

only. This is also the case in the BiRNN-WFST

(Rastogi et al., 2016), a previous finite-state

model to which we compare. By contrast, in

our NFST, the state of the RNN as it reads and

transduces the second half of x is influenced

by the first halves of both x and y and their

alignment.

Inductive bias Typically, a FST is constructed

with domain knowledge (possibly by compil-

ing a regular expression), so that its states

reflect interpretable properties such as syllable

boundaries or linguistic features. Indeed, we

will show below how to make these proper-

ties explicit by “marking” the FST arcs. The

NFST’s path scoring function then sees these

marks and can learn to take them into account.

The NFST also inherits any hard constraints

from the FST: if the FST omits all (x,y) paths

for some “illegal” x,y, then p(x,y) = 0 for

any parameter vector θ (a “structural zero”).

Interpretability Like a WFST, an NFST can

“explain” why it mapped x to y in terms of a

latent path a, which specifies a hard monotonic

labeled alignment. The posterior distribution

p(a | x,y) specifies which paths a are the best

explanations (e.g., Table 5).

We conduct experiments on three tasks:

grapheme-to-phoneme, phoneme-to-grapheme, and

action-to-command (Bastings et al., 2018). Our

results on these datasets show that our best models

can improve over neural seq2seq and previously

proposed hard alignment models.

2 Neuralizing Finite-State Transducers

2.1 Neuralized FSTs

An NFST is a pair (T , Gθ), where T is an un-

weighted FST with accepting paths A and Gθ :
A → R is a function that scores these paths. As ex-

plained earlier, we then refer to p̃(a) = expGθ(a)
as the weight of path a ∈ A. A weighted relation

between input and output strings is given by p̃(x,y),
which is defined to be the total weight of all paths

with input string x ∈ Σ∗ and output string y ∈ ∆∗,

where where Σ and ∆ are the input and output

alphabets of T . The real parameter vector θ can be

adjusted to obtain different weighted relations. We
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Model Training Algorithms Long-Term Output-Output Dependency Left-to-Right Factorization

WFSTs Dynamic Programming ✗ ✓

BiRNN-WFSTs Dynamic Programming ✗ ✓

Local NFSTs Importance Sampling ✓ ✓

Global NFSTs Importance Sampling ✓ ✗

Table 1: Comparison between WFSTs, BiRNN-WFSTs (Rastogi et al., 2016), and NFSTs.

can normalize p̃ to get a probability distribution as

shown in equation (1).

2.2 A basic scoring architecture

Weighted FST. A WFST over the (+,×) semir-

ing can be regarded as the special case in which

Gθ(a) ,
∑|a|

t=1 gθ(at). This is a sum of scores

assigned to the arcs in a = a1a2 · · · .

Marked FST. Our innovation is to allow the arcs’

scores to depend on their context in the path. Now

θ no longer associates a fixed score with each

arc. Rather, we assume that each arc a in the FST

comes labeled with a sequence of marks from

a mark alphabet Ω, as illustrated in Figure 1.

The marks reflect the FST constructor’s domain

knowledge about what arc a does (see §4.2 be-

low). We now define Gθ(a) = Gθ(ω(a)), where

ω(a) = ω(a1)ω(a2) · · · ∈ Ω∗ is the concatenated

sequence of marks from the arcs along path a.

It is sometimes helpful to divide marks into dif-

ferent classes. An arc can be regarded as a possible

“edit” that aligns an input substring with an out-

put substring in the context of transitioning from

one FST state to another. The arc’s input marks

describe its input substring, its output marks de-

scribe its output substring, and the remaining marks

may describe other properties of the arc’s aligned

input-output pair or the states that it connects.

Recall that an FST encodes domain knowledge.

Its paths represent alignments between input and

output strings, where each alignment specifies a

segmentation of x and y into substrings labeled

with FST states. Decorating the arcs with marks

furnishes the path scoring model with domain-

specific information about the alignments.

RNN scoring. Ifθ merely associated a fixed score

with each mark, then the marked FST would be no

more powerful than the WFST. To obtain contextual

mark scores as desired, one simple architecture is a

recurrent neural network:

Gθ(ω) ,

|ω|
∑

t=1

gθ(st−1, ωt) (2)

st = fθ(st−1, ωt), with s0 = 0 (3)

where st−1 ∈ R
d is the hidden state vector of the

network after reading ω1 · · ·ωt−1. The gθ function

defines the score of reading ωt in this left context,

and fθ defines how doing so updates the state.

In our experiments, we chose fθ to be the GRU

state update function (Cho et al., 2014). We defined

gθ(s, ωt) , (Ws + b)⊤emb(ωt). The parameter

vector θ specifies the GRU parameters, W,b, and

the mark embeddings emb(ω).

One could easily substitute much fancier archi-

tectures, such as a stacked BiLSTM with attention

(Tilk and Alumäe, 2016), or a Transformer (Vaswani

et al., 2017).

2.3 Partitioned hidden vectors

In hopes of improving the inductive bias of the

learner, we partitioned the hidden state vector into

three sub-vectors: st = [sat ; s
x
t ; s

y
t ]. The mark scor-

ing function fθ(st−1, ωt) was as before, but we

restricted the form of gθ, the state update function.

sat encodes all past marks and depends on the full

hidden state so far: sat = gaθ(st−1, ωt). However,

we make sxt encode only the sequence of past input

marks, ignoring all others. Thus, sxt = gxθ(s
x
t−1, ωt)

if ωt is an input mark, and sxt = sxt−1 otherwise.

Symmetrically, s
y
t encodes only the sequence of

past output marks. This architecture is somewhat

like Dyer et al. (2016), which also uses different

sub-vectors to keep track of different aspects of the

history.

2.4 Local normalization

A difficulty with the general model form in equa-

tion (1) is that the normalizing constant Z(T ) =
∑

a∈T p̃(a) must sum over a large set of paths—in

fact, an infinite set if T is cyclic. This sum may

diverge for some values of the parameter vector θ,

which complicates training of the model (Dreyer,
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2011). Even if the sum is known to converge, it is

in general intractable to compute it exactly. Thus,

estimating the gradient of Z(T ) during training

involves approximate sampling from the typically

high-entropy distribution p(a). The resulting es-

timates are error-prone because the sample size

tends to be too small and the approximate sampler

is biased.

A standard solution in the WFST setting (e.g.

Cotterell et al., 2014) is to use a locally normalized

model, in which Z(T ) is guaranteed to be 1.1 The

big summation over all paths a is replaced by small

summations—which can be computed explicitly—

over just the outgoing edges from a given state.

Formally, we define the unnormalized score of

arc ai in the context of path a in the obvious way, by

summing over the contextual scores of its marks:

g̃θ(ai) ,
k

∑

t=j+1

gθ(st−1, ωt) (4)

where j = |ω(a1) · · ·ω(ai−1)| and k =
|ω(a1) · · ·ω(ai)|. Its normalized score is then

gθ,T (ai) , log
(

exp g̃θ(ai)/
∑

a′
exp g̃θ(a

′)
)

where a′ ranges over all arcs in T (including ai
itself) that emerge from the same state as ai does.

We can now score the paths in T using

Gθ,T (a) =

|a|
∑

i=1

gθ,T (ai) (5)

This gives rise to a proper probability distribution

p(a) , p̃(a) = expGθ,T (a) over the paths of

T . No global normalization constant is necessary.

However, note that the scoring function now requires

T as an extra subscript, because it is necessary when

scoring a to identify the competitors in T of each arc

ai. Thus,when p(x,y) is found as usual by summing

up the probabilities of all paths in x ◦ T ◦ y, each

path is still scored using its arcs’ competitors from

T . This means that each state in x ◦ T ◦ y must

record the state in T from which it was derived.

3 Sampling, Training, and Decoding

3.1 Sampling from conditioned distributions

with amortized inference

Many algorithms for working with probability

distributions—including our training and decoding

1Provided that every state in T is co-accessible, i.e., has a
path to a final state.

algorithms below—rely on conditional sampling.

In general, we would like to sample a path of T
given the knowledge that its input and output strings

fall into sets X and Y respectively.2 If X and Y
are regular languages, this is equivalent to defining

T ′ = X ◦ T ◦ Y and sampling from

p(a | T ′) ,
p̃(a)

∑

a′∈T ′ p̃(a′)
, (6)

Due to the nonlinearity of Gθ, the denominator

of equation (6) is generally intractable. If T ′ is

cyclic, it cannot even be computed by brute-force

enumeration. Thus, we fall back on normalized

importance sampling, directly adopting the ideas

of Lin and Eisner (2018) in our more general FST

setting. We employ a proposal distribution q:

p(a | T ′) = Ea∼q[
p(a | T ′)

q(a)
], (7)

≈
M
∑

m=1

p̃(a(m))

q(a(m)) · Ẑ
· I(a = a(m))

= p̂(a | T ′),

where Ẑ =
∑M

m′=1
p̃(a(m′))

q(a(m′))
, and q is a locally

normalized distribution over paths a ∈ T ′. In this

paper we further parametrize q as

qφ(a; T
′) =

T
∏

t=1

qt(at | a1...t−1;φ, T
′),

(8)

qt(a | a:t−1;φ, T
′) ∝ exp(g(st−1, at;θ, T ) + Cφ),

where Cφ , C(s′t, X, Y,φ) ∈ R, s′t ,

f(st−1,ω(a)) is a compatibility function that is

typically modeled using a neural network. In this

paper, one the following three cases are encountered:

• X = x, is a string, and Y = ∆∗:

in this case T ′ = x ◦ T . We let

Cφ = Cx(s′t,RNNx(x, i,φ);φ), where i
is the length of the input prefix in a1...t.a,

RNNx(x, i,φ) is the hidden state of the i-th
position after reading x (not a nor ω) back-

wards, and Cx(·, ·) is a feed-forward network

that takes the concatenated vector of all argu-

ments, and outputs a real scalar. We describe

the parametrization of Cx in Appendix C.1.

2When X or Y is larger than a single string, it is commonly
all of Σ∗ or ∆∗ respectively, in which case conditioning on it
gives no information.
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• X = Σ∗, and Y = y is a string: in

this case T ′ = T ◦ y. We let Cφ =
Cy(s′t,RNNy(y, j,φ);φ), where j is the

length of the output prefix in a1...t.a, and

RNNy, Cy are similarly defined as in RNNx

and Cx.

• X and Y are both strings — X =
x, Y = y: in this case we let Cφ =
Cxy(s′t,RNNx(x, i,φ),RNNy(y, j,φ);φ).

Given a path prefix a:t−1, qt(a | a:t−1;φ, T
′)

is defined over arcs a such that a:t−1.a is a valid

path prefix in T ′. To optimize φ with regard to

qφ, we follow (Lin and Eisner, 2018) and seek

to find φ∗ = argminφ KL[p̂||qφ], where p̂ is the

approximate distribution defined in equation (7),

which is equivalent to maximizing the log-likelihood

of qφ(a) when a is distributed according to the

approximation p̂.

3.2 Training

In this paper, we consider joint training. The loss

function of our model is defined as the negative log

joint probability of string pair (x,y):

L(x,y) = − log p(x,y) = − log
∑

a∈x◦T ◦y

p(a).

(9)

Since p is an exponential family distribution, the

gradients of L can be written as (Bishop, 2006)

∇L(x,y) = −Ea∼p(·|x◦T ◦y)[∇ log p(a)], (10)

where p(· | x ◦ T ◦ y) is a conditioned distribution

over paths. Computing equation (10) requires sam-

pling from p(· | x ◦ T ◦ y), which, as we discuss in

§3.1, is often impractical. We therefore approximate

it with

∇θL(x,y) = −Ea∼p(·|x◦T ◦y)[∇θ log p(a)]

≈ −Ea∼p̂(·|x◦T ◦y)[∇θ log p(a)]

(11)

= −

M
∑

m=1

w(m)∇θGθ(a
(m)), (12)

where q is a proposal distribution parametrized as

in equation (8) (discussed in §3.1,) a(1) . . . a(M) ∼
q are i.i.d. samples of paths in x ◦ T ◦ y, and

w(m) is the importance weight of the m-th sample

satisfying w(m) ∝ expGθ(a
(m))

q(a(m))
,
∑M

m=1w
(m) = 1.

Pseudocode for calculating equation (12) is listed

in Algorithm 1.

Algorithm 1 Compute approximate gradient for

updating Gθ

Require: Gθ : A → R is an NFST scoring func-

tion, q is a distribution over paths, M ∈ N is

the sample size

1: function Get-Gradient(Gθ, M , q)

2: for m in 1 . . .M do

3: a(m) ∼ q

4: w̃(m) ← expGθ(a
(m))

q(a)
5: end for

6: Ẑ ←
∑M

m=1 w̃
(m)

7: for m in 1 . . .M do

8: w(m) ← w̃(m)

Ẑ
9: end for

10: return −
∑M

m=1w
(m)∇θGθ(a

(m))
11: end function

3.3 Decoding most probable strings

Besides finding good paths in a conditioned dis-

tribution as we discuss in §3.1, we are also often

interested in finding good output strings, which is

conventionally referred to as the decoding problem,

which we define to be finding the best output string

y∗ , argmaxy∈L(Y ) pY(y | T ′), where

pY(y | T ′) ,

∑

a∈T ′◦y p̃(a)
∑

a′∈T ′ p̃(a′)
. (13)

ŷ∗ , argmaxy P̂Y(y | T ′) is a consistent estima-

tor of y∗, which can directly be used to find the

best string. However, making this estimate accu-

rate might be expensive: it requires sampling many

paths in the machine T ′, which is usually cyclic,

and therefore has infinitely many more paths, than

T ′ ◦ yk, which has finitely many paths when A is

acyclic. On the other hand, for the task of finding

the best string among a pool candidates, we do not

need to compute (or approximate) the denominator

in equation (13), since

y∗ = argmax
y∈L(Y )

∑

a∈T ′◦y

p̃(a). (14)

As in the case for paths, the language L(Y ) is

usually infinitely large. However given an output

candidate yk ∈ L′ ⊆ L(Y ), we can approximate

the summation in equation (14) using importance

sampling:

∑

a∈T ′◦yk

p̃(a) = Ea∼q(·|T ′◦yk)
[

p̃(a)

q(a | T ′ ◦ yk)
],

(15)
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Algorithm 2 Training procedure for Gθ. See Appendix C.2 for implementation details.

Require: (T , Gθ) is an NFST, D = {(x1,y1) . . . (x|D|,y|D|)} is the training dataset, LR : N→ R is a

learning rate scheduler, θ0 are the initial parameters of Gθ, M is a given sample size, maxEpoch ∈ N

is the number of epochs to train for

1: procedure Train(T , Gθ, D, LR, θ0, M , maxEpochs)

2: for epoch ∈ [1 . . .maxEpochs] do

3: for (xi,yi) ∈ shuffle(D) do

4: T ′ ← xi ◦ T ◦ yi

5: Construct distribution q(· | T ′) according to equation (8)

6: u← Get-Gradient(Gθ,M, q) (listed in Algorithm 1)

7: θ ← θ − LR(epoch)× u

8: (Optional) update the parameters of q(· | T ′).
9: end for

10: end for

11: end procedure

where q(· | T ′ ◦ yk) is a proposal distribution

over paths in T ′ ◦ yk. In this paper we parametrize

q(· | T ′◦yk) following the definition in equation (8).

When L′ is finitely large, we reduce the decoding

task into a reranking task.

To populate L′, one possibility is to marginalize

over paths in the approximate distribution p̂(a | T ′)
discussed in §3.1 to obtain an estimate p̂Y(y | T ′),
and use its support as L′. Note that it’s possible

to populate the candidate pool in other ways, each

with its advantages and drawbacks: for example,

one can use a top-k path set from a weighted

(Markovian) FST. This approach guarantees exact

computation, and the pool quality would no longer

depend on the qualities of the smoothing distribution

qφ. However it is also a considerably much weaker

model and may yield uninspiring candidates. In

the common case where the conditioned machine

T ′ = X ◦ T ◦ Y has X = x ∈ Σ∗ as the input

string, and Y is the universal acceptor that accepts

∆∗, one can obtain a candidate pool from seq2seq

models: seq2seq models can capture long distance

dependencies between input and output strings,

and are typically fast to train and decode from.

However they are not applicable in the case where

L(Y ) 6= ∆∗. Experimental details of decoding are

further discussed in §4.3.

4 Experiments

Our experiments mainly aim to: (1) show the effec-

tiveness of NFSTs on transduction tasks; (2) illus-

trate that how prior knowledge can be introduced into

NFSTs and improve the performance; (3) demon-

strate the interpretability of our model. Through-

out, we experiment on three tasks: (i) grapheme-

to-phoneme, (ii) phoneme-to-grapheme, and (iii)

actions-to-commands. We compare with compet-

itive string transduction baseline models in these

tasks.

4.1 Tasks and datasets

We carry out experiments on three string transduc-

tion tasks:

Grapheme-to-phoneme and phoneme-to-

grapheme (G2P/P2G) refer to the transduction

between words’ spelling and phonemic transcrip-

tion. English has a highly irregular orthography

(Venezky, 2011), which necessitates the use of

rich models for this task. We use a portion of the

standard CMUDict dataset: the Sphinx-compatible

version of CMUDict (Weide, 2005). As for metrics,

we choose widely used exact match accuracy and

edit distance.

Action-to-command (A2C) refers to the transduc-

tion between an action sequence and imperative

commands. We use NACS (Bastings et al., 2018) in

our experiment. As for metrics, we use exact match

accuracy (EM). Note that the in A2C setting, a

given input can yield different outputs, e.g. I_JUMP

I_WALK I_WALK corresponds to both “jump and

walk twice” and “walk twice after jump”. NACS is

a finite set of action-command pairs; we consider

a predicted command to be correct if it is in the

finite set and its corresponding actions is exactly the

input. We evaluate on the length setting proposed

by Bastings et al. (2018), where we train on shorter

sequences and evaluate on longer sequences.
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4.2 FST designs

NFSTs require an unweighted FST T which defines

a scaffold for the relation it recognizes. In this paper

we experiment with two versions of T : the first is

a simple ‘general’ design T0, which contains only

three states s{0,1,2}, where the only arc between

q0 and q1 consumes the mark <BOS>; and the only

arc between q1 and q2 consumes the mark <EOS>.

T0 has exactly one accepting state, which is q2. To

ensure that T0 defines relation for all possible string

pairs (x,y) ∈ Σ∗×∆∗, we add all arcs of the form

a = (s1, s1,ω, σ, δ), ∀(σ, δ) ∈ Σ×∆ to T .

To recognize transduction rules defined in the

Wikipedia English IPA Help page, we define TIPA,

which has all states and arcs of T0, and additional

states and arcs to handle multi-grapheme and multi-

phoneme transductions defined in the IPA Help:3 for

example, the transduction th→ T is encoded as two

arcs (s1, s3,ω, t, T) and (s3, s1,ω, h, ε). Because

of the lack of good prior knowledge that can be

added to A2C experiments, we only use general

FSTs in those experiments for such experiments.

Nor do we encode special marks that we are going

to introduce below.4

4.2.1 Design of mark sequences

As with regular WFSTs, the arcs can often be hand-

engineered to incorporate prior knowledge. Recall

that as we describe in §2.2,eacharc is associatedwith

a mark sequence. In this paper, we will always derive

the mark sequence on an arc a = (s′, s,ω′, σ, δ)
of the transducer T as ω = [σ,ω′, δ, s], where

ω′ ∈ Ω∗ can be engineered to reflect FST- and

application-specific properties of a path, such as

the IPA Help list we mentioned earlier. One way to

encode such knowledge into mark sequences is to

have special mark symbols in mark sequences for

particular transductions. In this paper we experiment

with two schemes of marks:

• IPA Help (IPA). We define the IPA mark

ωIPA = {C | V}, where the symbol C indicates

that this arc is part of a transduction rule listed

in the consonant section of the Wikipedia

English IPA Help page. Similarly, the mark V

indicates that the transduction rule is listed in

the vowel section.

3https://en.wikipedia.org/wiki/Help:

IPA/English

4The NACS dataset was actually generated from a regular
transducer, which we could in principle use, but doing so would
make the transduction fully deterministic and probably not
interesting/hard enough.

• Phoneme Classes (Phone). We define Phone

marks ωPhone = Φ(δ), where Φ is a lookup

function that returns the phoneme class of δ
defined by the CMUDict dataset.5

In this paper we experiment with the following

three FST and mark configurations for G2P/P2G

experiments:

• -IPA-Phone in which case ω′ = ∅ for all

arcs. T = T0.

• +IPA-Phone in which case ω′ = [ωIPA] when

the transduction rule is found in the IPA Help

list, otherwise ω′ = ∅. T = TIPA.

• +IPA+Phone in which case ω′ =
[ωIPAωPhone] when the transduction rule is

found in the IPA Help list, otherwise ω′ =
[ωPhone]. T = TIPA.

As we said earlier, we only use T = T0 with no

special marks for A2C experiments. Experimental

results on these different configurations are in §5.3.

4.3 Decoding methods

We experimentwith the following methods to decode

the most probable strings:

• Approximate Posterior (AP). We approx-

imate the posterior distribution over out-

put strings p̂Y(y | T ′), and pick ŷ∗ =
argmaxy p̂Y(y | T ′) as the output.

• Reranking AP. As we discuss in §3.3, improv-

ing ŷ∗ by taking more path samples in T ′ may

be expensive. The reranking method uses the

support of p̂Y as a candidate pool L′, and for

each yk ∈ L′ we estimate equation (15) using

path samples in T ′ ◦ yk.

• Reranking External. This decoding method

uses k-best lists from external models. In this

paper, we make use of sequence-to-sequence

baseline models as the candidate pool L′.

• Reranking AP + External. This decoding

method uses the union of the support of p̂Y
and k-best lists from the sequence-to-sequence

baseline models as the candidate pool L′.

In this paper, we take 128 path samples per candidate

for all Reranking methods.

5https://github.com/cmusphinx/cmudict/blob/

master/cmudict.phones
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5 Results

5.1 Baselines

We compare NFSTs against the following baselines:

BiRNN-WFSTs proposed by Rastogi et al.

(2016), were weighted finite-state transducers whose

weights encode input string features by the use of re-

current neural networks. As we note in Table 1, they

can be seen as a special case of NFSTs, where the

Markov property is kept, but where exact inference

is still possible.

Seq2seq models are the standard toolkit for trans-

duction tasks. We make use of the attention mech-

anism proposed by Luong et al. (2015), which

accomplishes ‘soft alignments’ that do not enforce

a monotonic alignment constraint.

Neuralized IBM Model 1 is a character transduc-

tion model recently proposed by Wu et al. (2018),

which marginalizes over non-monotonic hard align-

ments between input and output strings. Like (Luong

et al., 2015), they did not enforce monotonic align-

ment constraints; but unlike them, they did not

make use of the input feeding mechanism,6 where

past alignment information is fed back into the

RNN decoder. This particular omission allows (Wu

et al., 2018) to do exact inference with a dynamic

programming algorithm.

All baseline systems are tuned on the validation

sets. The seq2seq models employ GRUs, with word

and RNN embedding size = 500 and a dropout rate

of 0.3. They are trained with the Adam optimizer

(Kingma and Ba, 2014) over 50 epochs. The Neu-

ralized IBM Model 1 models are tuned as described

in (Wu et al., 2018).

5.2 The effectiveness of NFSTs

5.2.1 Does losing the Markov property help?

Table 2 indicates that BiRNN-WFST models (Ras-

togi et al., 2016) perform worse than other models.

Their Markovian assumption helps enable dynamic

programming, but restricts their expressive power,

which greatly hampers the BiRNN-WFST’s per-

formance on the P2G/G2P task. The NACS task

also relies highly on output-output interactions, and

BiRNN-WFST performs very poorly there.

6We discuss this further in Appendix B.1.

G2P / P2G NACS

EM Accuracy Edit Distance EM Accuracy

Dev Test Dev Test Test

BiRNN-WFST 16.9 15.9 1.532 1.645 5.6

Seq2seq 30.7 28.9 1.373 1.426 9.0

Neuralized IBM Model 1 31.6 30.2 1.366 1.398 —

Local NFSTs 32.7 31.8 1.319 1.332 15.64

Table 2: Average exact match accuracy (%, higher the

better) and edit distance (lower the better) on G2P

and P2G as well as exact match accuracy on NACS.

Comparison between our models with baselines. For

NFST models, we make use of the Reranking AP

decoding method described in §4.2.

5.2.2 Effectiveness of proposed decoding

methods

Table 3 shows results from different decoding

methods on the G2P/P2G tasks, configuration

+IPA+Phone. AP performs significantly worse

than Reranking AP, suggesting that the estimate

ŷ∗ suffers from the variance problem. Interestingly,

of decoding methods that employ external models,

Reranking External performs better than Rerank-

ing AP + External, despite having a smaller candi-

date pool. We think there is some product-of-experts

effect in Reranking External since the external

model may not be biased in the same way as our

model is. But such benefits vanish when candidates

from AP are also in the pool — our learned approxi-

mation learns the bias in the model — and hence the

worse performance in Reranking AP + External.

This suggests an interesting regularization trick

in practice: populating the candidate pool using

external models to hide our model bias. However

when we compare our method against non-NFST

baseline methods we do not make use of such tricks,

to ensure a more fair comparison.

EM Accuracy Edit Distance

Dev Test Dev Test

AP 28.2 28.2 1.513 1.467

Reranking AP 32.7 31.8 1.319 1.332

Reranking External 33.3 32.7 1.297 1.298

Reranking AP + External 32.9 32.0 1.309 1.303

Table 3: Average exact match accuracy (%, higher the

better) and edit distance (lower the better) on G2P and

P2G. The effectiveness of different decoding methods.

5.3 Prior knowledge: does it help?

In Table 4 we see that combining both +IPA and

+Phone improves model generalizability over the

general FST (-IPA -Phone). We also note that using

only the IPA marks leads to degraded performance



280

EM Accuracy Edit Distance

Dev Test Dev Test

-IPA -Phone 31.8 29.3 1.38 1.373

+IPA -Phone 31.3 29.2 1.367 1.431

+IPA +Phone 32.7 31.8 1.319 1.332

Table 4: Average exact match accuracy (%, higher the

better) and edit distance (lower the better) on G2P and

P2G. The effectiveness of different FST designs.

compared to the general FST baseline. This is a

surprising result — one explanation is the IPA

marks are not defined on all paths that transduce

the intended input-output pairs: NFSTs are capable

of recognizing phoneme-grapheme alignments in

different paths,7 but only one such path is marked

by +IPA. But we leave a more thorough analysis to

future work.

6 Related Work

Recently, there has been work relating finite-state

methods and neural architectures. For example,

Schwartz et al. (2018) and Peng et al. (2018) have

shown the equivalence between some neural models

and WFSAs. The most important differences of

our work is that in addition to classifying strings,

NFSTs can also transduce strings. Moreover, NFSTs

also allow free topology of FST design, and breaks

the Markovian assumption. In addition to models

we compare against in §4, we note that (Aharoni

and Goldberg, 2017; Deng et al., 2018) are also

similar to our work; in that they also marginalize

over latent alignments, although they do not enforce

the monotonicity constraint. Work that discusses

globally normalized sequence models are relevant to

our work. In this paper, we discuss a training strategy

that bounds the partition function; other ways to

train a globally normalized model (not necessarily

probabilistic) include (Wiseman and Rush, 2016;

Andor et al., 2016). On the other hand, our locally

normalized FSTs bear resemblance to (Dyer et al.,

2016), which was also locally normalized, and also

employed importance sampling for training.

7 Conclusions and Future Work

Neural finite state transducers (NFSTs) are able

to model string pairs, considering their monotonic

alignment but also enjoying RNNs’ power to handle

non-finite-state phenomena. They compete favor-

7This is discussed further in Appendix B.2.

ably with state-of-the-art neural models on trans-

duction tasks. At the same time, it is easy to inject

domain knowledge into NFSTs for inductive bias,

and they offer interpretable paths.

In this paper, we have used rather simple archi-

tectures for our RNNs; one could experiment with

multiple layers and attention. One could also ex-

periment with associating marks differently with

arcs—the marks are able to convey useful domain

information to the RNNs. For example, in a P2G

or G2P task, all arcs that cross a syllable boundary

might update the RNN state using a syllable

mark. We envision using regular expressions to

build the NFSTs, and embedding marks in the regu-

lar expressions as a way of sending useful features

to the RNNs to help them evaluate paths.

In this paper,we have studied NFSTs as standalone

systems. But as probabilistic models, they can be

readily embedded in a bigger picture: it should be

directly feasible to incorporate a globally/locally

normalized NFST in a larger probabilistic model

(Finkel and Manning, 2009; Chiang et al., 2010).

The path weights of NFSTs could be interpreted

simply as scores, rather than log-probabilities. One

would then decode by seeking the 1-best path with

input x, e.g., via beam search or Monte Carlo Tree

Search. In this setting, one might attempt to train the

NFST using methods similar to the max-violation

structured perceptron or the structured SVM.
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A Finite-state transducers

A.1 Rational Relations

A relation is a set of pairs—in this paper, a subset

of Σ∗ × ∆∗, so it relates strings over an “input”

alphabet Σ to strings over an “output” alphabet ∆.

A weighted relation is a function R that maps

any string pair (x,y) to a weight in R≥0.

We say that the relation R is rational if R can

be defined by some weighted finite-state transducer

(FST) T . As formalized in Appendix A.3, this means

thatR(x,y) is the total weight of all accepting paths

in T that are labeled with (x,y) (which is 0 if there

are no such accepting paths). The weight of each

accepting path in T is given by the product of its

arc weights, which fall in R>0.

The set of pairs support(R) , {(x,y) :
R(x,y) > 0} is then said to be a regular rela-

tion because it is recognized by the unweighted FST

obtained by dropping the weights from T . In this

paper, we are interested in defining non-rational

weighting functions R with this same regular sup-

port set.

A.2 Finite-state transducers

We briefly review finite-state transducers

(FSTs). Formally, an FST is a tuple T0 =
(Σ,∆, Q,A0, I, F ) where

• Σ is a finite input alphabet

• ∆ is a finite output alphabet

• Q is a finite set of states

• A0 ⊆ Q×Q× (Σ ∪ {ǫ})× (∆ ∪ {ǫ}) is the

set of weighted arcs

• I ⊆ Q is the set of initial states (conventionally

|I| = 1)

• F ⊆ Q is the set of final states

Let a = a1 . . . aT (for T ≥ 0) be an accepting path

in T0, that is, each ai = (qi−1, qi, σi, δi) ∈ A0 and

q0 ∈ I, qT ∈ F . We say that the input and output

strings of a are σ1 · · ·σT and δ1 · · · δT .

A.3 Real-valued weighted FSTs

Weighted FSTs (WFSTs) are defined very simi-

larly to FSTs. A WFST is formally defined as

a 6-tuple, just like an (unweighted) FST: T =
(Σ,∆, Q,A, I, F ), with arcs carrying weights: A ⊆
Q×Q× (Σ∪{ǫ})× (∆∪{ǫ})×R. Compared to

FST arcs in Appendix A.2, a WFST arc each ai =
(qi−1, qi, σi, δi, κi) ∈ A has weight κi. We also

define the weight of a to be w(a) ,
⊗T

i=1 κi ∈ R.

The weight of the entire WFST T is defined as

the total weight (under ⊕) of all accepting paths:

T [ ] ,
⊕

a

w(a) ∈ R (16)

More interestingly, the weight T [x,y] of a string

pair x ∈ Σ∗,y ∈ ∆∗ is given by similarly summing

w(a) over just the accepting paths a whose input

string is x and output string is y.

B More analysis on the effectiveness of

NFSTs

B.1 Does feeding alignments into the decoder

help?

In particular,we attribute our models’ outperforming

Neuralized IBM Model 1 to the fact that a complete

history of past alignments is remembered in the

RNN state. (Wu et al., 2018) noted that in charac-

ter transduction tasks, past alignment information

seemed to barely affect decoding decisions made

afterwards. However, we empirically find that there

is performance gain by explicitly modeling past

alignments. This also shows up in our preliminary

experiments with non-input-feeding seq2seq mod-

els, which resulted in about 1% of lowered accuracy

and about 0.1 longer edit distance.

B.2 Interpretability of learned paths

The model is not required to learn transduction

rules that conform to our linguistic knowledge.

However, we expect that a well-performing one

would tend to pick up rules that resemble what we

know. To verify this, we obtain samples (listed in

Table 4) from p̂(a | x,y) using the importance

sampling algorithm described in §3.3. We find that

our NFST model has learned to align phonemes

and graphemes, generating them alternately. It has

no problem picking up obvious pairs in the English

orthography (e.g. (S, c h), and (N, n g)). We also

find evidence that the model has picked up how

context affects alignment: for example, the model

has learned that the bigram ‘gh’ is pronounced

differently in different contexts: in ‘onslaught,’

it is aligned with O in the sequence ‘augh;’ in

‘Willingham,’ it spans over two phonemes N h; and

in ‘ghezzi,’ it is aligned with the phoneme g. We

also find that our NFST has no problem learning

phoneme-grapheme alignments that span over two
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Input / Output Paths P̂ (a | x,y)

/mAôS/
marche

ǫ:m m:A a:ô r:S c:ǫ h:ǫ e:ǫ 96.5%

ǫ:m m:A a:ô r:ǫ ǫ:S c:ǫ h:ǫ e:ǫ 2.5%

ǫ:m m:A a:ǫ ǫ:ô r:S c:ǫ h:ǫ e:ǫ 1.0%

/OnslOt/
onslaught

ǫ:O o:n n:ǫ ǫ:s s:l l:O a:ǫ u:ǫ g:ǫ h:t t:ǫ 76.3%

ǫ:O o:n n:s s:l l:O a:ǫ u:ǫ g:ǫ h:t t:ǫ 21.4%

ǫ:O o:n n:ǫ ǫ:s s:l l:O a:ǫ u:ǫ g:ǫ h:ǫ ǫ:t t:ǫ 1.5%

/wIlINh@m/
Willingham

ǫ:w W:I i:l l:ǫ l:ǫ ǫ:I i:N n:ǫ g:ǫ ǫ:h h:@ a:ǫ ǫ:m m:ǫ 40.1%

ǫ:w W:I i:l l:ǫ l:I i:N n:ǫ g:ǫ ǫ:h h:@ a:ǫ ǫ:m m:ǫ 36.6%

ǫ:w W:I i:l l:ǫ l:I i:N n:ǫ g:h h:@ a:ǫ ǫ:m m:ǫ 7.4%

/gezI/ ghezzi
ǫ:g g:ǫ h:e e:z z:ǫ I:z i:ǫ 98.8%

ǫ:g g:e h:ǫ e:z z:I z:ǫ i:ǫ 1.2%

Table 5: Most probable paths from x ◦ T ◦ y under the approximate posterior distribution.

arcs, which is beyond the capability of of ordinary

WFSTs.

C Implementation Details

C.1 Model parametrization details

As mentioned before, the type of RNN that we

use is GRU. The GRU parameterizing Gθ has

500 hidden states. The embedding sizes of tokens,

including the input symbol, output symbol and states,

and marks are all 500. During inference we make

use of proposal distributions qφ(a | T
′), where

T ′ ∈ {x ◦ T , T ◦ y,x ◦ T ◦ y}. All RNNs used

to parametrize qφ are also GRUs, with 125 hidden

states. qφ makes use of input/output embeddings

independent from Gθ, which also have size 125 in

this paper. The feed-forward networks Cx,y,xy are

parametrized by 3-layer networks, with ReLU as

the activation function of the first two layers. The

output dimension sizes of the first and second layers

are ⌊D/2⌋ and ⌊D/4⌋, where D is the input vector

dimension size.

C.2 Training procedure details

We use stochastic gradient descent (SGD) to train

Gθ. For each example, we compute the gradient

using normalized importance sampling over an

ensemble of 512 particles (paths), the maximum

that we could compute in parallel. By using a

large ensemble, we reduce both the bias (from

normalized importance sampling) and the variance

of the gradient estimate; we found that smaller

ensembles did not work as well. Thus, we used only

one example per minibatch.

We train the ‘clamped’ proposal distribution

qφ(a | x ◦ T ◦ y) differently from the ‘free’ ones

qφ(a | x ◦ T ) and qφ(a | T ◦ y). The clamped

distribution is trained alternately with Gθ, as listed

in Algorithm 2. We evaluate on the development

dataset at the end of each epoch using the Reranking

External method described in §4.3. When the EM

accuracy stops improving, we fix the parameters

of Gθ and start training qφ(x ◦ T ) and qφ(T ◦ y)
on the inclusive KL divergence objective function,

using methods described in (Lin and Eisner, 2018).

We then initialize the free distributions’ RNNs using

those of the clamped distributions. We train the free

proposal distributions for 30 epochs, and evaluate

on the development dataset at the end of each epoch.

Results from the best epochs are reported in this

paper.


