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Abstract

We quantify the linguistic complexity of

different languages’ morphological systems.

We verify that there is a statistically signif-

icant empirical trade-off between paradigm

size and irregularity: a language’s inflec-

tional paradigms may be either large in size

or highly irregular, but never both. We de-

fine a new measure of paradigm irregularity

based on the conditional entropy of the sur-

face realization of a paradigm—how hard

it is to jointly predict all the word forms in

a paradigm from the lemma. We estimate

irregularity by training a predictive model.

Our measurements are taken on large mor-

phological paradigms from 36 typologically

diverse languages.

1 Introduction

What makes an inflectional system “complex”?

Linguists have sometimes considered measuring

this by the size of the inflectional paradigms

(McWhorter, 2001). The number of distinct in-

flected forms of each word indicates the number

of morphosyntactic distinctions that the language

makes on the surface. However, this gives only a

partial picture of complexity (Sagot, 2013). Some

inflectional systems are more irregular: it is harder

to guess how the inflected forms of a word will be

spelled or pronounced, given the base form. Ack-

erman and Malouf (2013) hypothesize that there is

a limit to the irregularity of an inflectional system.

We refine this hypothesis to propose that systems

with many forms per paradigm have an even stricter

limit on irregularity per distinct form. That is, the

two dimensions interact: a system cannot be com-

plex along both axes at once. In short, if a language

demands that its speakers use a lot of distinct forms,

those forms must be relatively predictable.

In this work, we develop information-theoretic

tools to operationalize this hypothesis about the

complexity of inflectional systems. We model

each inflectional system using a tree-shaped

directed graphical model whose factors are neural

networks and whose structure (topology) must

be learned along with the factors. We explain our

approach to quantifying two aspects of inflectional

complexity and, in one case, approximate our

metric using a simple variational bound. This

allows a data-driven approach by which we

can measure the morphological complexity of a

given language in a clean manner that is more

theory-agnostic than previous approaches.

Our study evaluates 36 diverse languages, using

collections of paradigms represented orthograph-

ically. Thus, we are measuring the complexity

of each written language. The corresponding

spoken language would have different complexity,

based on the corresponding phonological forms.

Importantly, our method does not depend upon

a linguistic analysis of words into constituent

morphemes, e.g., hoping 7→ hope+ing. We find

support for the complexity trade-off hypothesis.

Concretely, we show that the more unique forms

an inflectional paradigm has, the more predictable

the forms must be from one another—for example,

forms in a predictable paradigm might all be

related by a simple change of suffix. This intuition

has a long history in the linguistics community, as

field linguists have often noted that languages with

extreme morphological richness, e.g., agglutinative

and polysynthetic languages, have virtually no

exceptions or irregular forms. Our contribution

lies in mathematically formulating this notion

of regularity and providing a means to estimate

it by fitting a probability model. Using these

tools, we provide a quantitative verification of this

conjecture on a large set of typologically diverse

languages, which is significant with p < 0.037.

2 Morphological Complexity

2.1 Word-Based Morphology

We adopt the framework of word-based morphol-

ogy (Aronoff, 1976; Spencer, 1991). An inflected

lexicon in this framework is represented as a set of



word types. Each word type is a triple of

• a lexeme ℓ (an arbitrary integer or string that

indexes the word’s core meaning and part of

speech)

• a slot σ (an arbitrary integer or object that

indicates how the word is inflected)

• a surface form w (a string over a fixed phono-

logical or orthographic alphabet Σ)

A paradigm m is a map from slots to surface

forms.1 We use dot notation to access elements

of this map. For example, m.past denotes the

past-tense surface form in paradigm m.

An inflected lexicon for a language can be re-

garded as defining a map M from lexemes to their

paradigms. Specifically, M(ℓ).σ = w iff the lexi-

con contains the triple (ℓ, σ, w).2 For example, in

the case of the English lexicon, if ℓ is the English

lexeme walkVerb, then M(ℓ).past = walked. In

linguistic terms, we say that in ℓ’s paradigm M(ℓ),
the past-tense slot is filled (or realized) by walked.

Nothing in our method requires a Bloomfieldian

structuralist analysis that decomposes each word

into underlying morphs: rather, this paper is a-

morphous in the sense of Anderson (1992).

More specifically, we will work within the

UniMorph annotation scheme (Sylak-Glassman,

2016). In the simplest case, each slot σ speci-

fies a morphosyntactic bundle of inflectional fea-

tures such as tense, mood, person, number, and

gender. For example, the Spanish surface form

pongas (from the lexeme poner ‘to put’) fills

a slot that indicates that this word has the fea-

tures [TENSE=PRESENT, MOOD=SUBJUNCTIVE,

PERSON=2, NUMBER=SG ]. We postpone a dis-

cussion of the details of UniMorph until §7.1, but it

is mostly compatible with other, similar schemes.

2.2 Defining Complexity

Ackerman and Malouf (2013) distinguish two types

of morphological complexity, which we elaborate

on below. For a more general overview of morpho-

logical complexity, see Baerman et al. (2015).

1See Baerman (2015, Part II) for a tour of alternative views

of inflectional paradigms.
2We assume that the lexicon never contains distinct triples

of the form (ℓ, σ, w) and (ℓ, σ, w′), so that M(ℓ).σ has a

unique value if it is defined at all.

2.2.1 Enumerative Complexity

The first type, enumerative complexity (e-

complexity), measures the number of surface mor-

phosyntactic distinctions that a language makes

within a part of speech.

Given a lexicon, we will measure the e-

complexity of the verb system as the average of

the verb paradigm size |M(ℓ)|, where ℓ ranges

over all verb lexemes in domain(M). Impor-

tantly, we define the size |m| of a paradigm m

to be the number of distinct surface forms in the

paradigm, rather than the number of slots. That is,

|m|
def
= |range(m)| rather than |domain(m)|.

Under our definition, nearly all English verb

paradigms have size 4 or 5, giving the English

verb system an e-complexity between 4 and 5.

If m = M(walkVerb), then |m| = 4, since

range(m) = {walk,walks,walked,walking}. The

manually constructed lexicon may define sepa-

rate slots σ1 = [TENSE=PRESENT, PERSON=1,

NUMBER=SG ] and σ2 = [TENSE=PRESENT,

PERSON=2, NUMBER=SG ], but in this paradigm,

those slots are not distinguished by any morpholog-

ical marking: m.σ1 = m.σ2 = walk. Nor is the

past tense walked distinguished from the past par-

ticiple. This phenomenon is known as syncretism.

Why might the creator of a lexicon bother to

define separate slots σ1 and σ2 for English, rather

than a single merged slot? A very good reason is

the existence of a single English verb, be, that does

distinguish these slots.3 Still, the lexicon creator

might use a merged slot in general and handle be

by adding some special slots that are used only

with be. A second reason is that merged slots may

be inelegant to describe using the feature bundle

notation: for all English verbs other than be, there

is a single form shared by the bare infinitive and

all present tense forms except 3rd-person singular,

but a single slot for this form could not be easily

characterized by a single feature bundle, and so

the lexicon creator might reasonably split it for

convenience. A third reason might be an attempt

at consistency across languages: in principle, an

English lexicon is free to use the same slots as San-

skrit and thus list dual and plural forms for every

English noun, which just happen to be identical in

every case (complete syncretism).

The point is that our e-complexity metric is in-

sensitive to these annotation choices. It focuses

3This verb has a paradigm of size 8:

{be,am,are,is,was,were,been,being}.



on observable surface distinctions., and so does

not care whether syncretic slots are merged or kept

separate. Later, we will construct our i-complexity

metric to have the same property.

The notion of e-complexity has a long history

in linguistics. The idea was explicitly discussed as

early as Sapir (1921). More recently, Sagot (2013)

has referred to this concept as counting complex-

ity, referencing comparison of the complexity of

creoles and non-creoles by McWhorter (2001).

For a given part of speech, e-complexity ap-

pears to vary dramatically over the languages of the

world. While the regular English verb paradigm

has 4–5 slots in our annotation, the Archi verb will

have thousands (Kibrik, 1998). However, does this

make the Archi system more complex, in the sense

of being more difficult to describe or learn? De-

spite the plethora of forms, it is often the case that

one can regularly predict one form from another,

indicating that few forms actually have to be mem-

orized for each lexeme.

2.2.2 Integrative Complexity

The second notion of complexity is integrative

complexity (i-complexity), which measures how

regular an inflectional system is on the surface. Stu-

dents of a foreign language will most certainly have

encountered the concept of an irregular verb. Pin-

ning down a formal and workable cross-linguistic

definition is non-trivial, but the intuition that some

inflected forms are regular and others irregular

dates back at least to Bloomfield (1933, pp. 273–

274), who famously argued that what makes a sur-

face form regular is that it is the output of a deter-

ministic function. For an in-depth dissection of the

subject, see Stolz et al. (2012).

Ackerman and Malouf (2013) build their defini-

tion of i-complexity on the information-theoretic

notion of entropy (Shannon, 1948). Their intuition

is that a morphological system should be consid-

ered irregular to the extent that its forms are unpre-

dictable. They say, for example, that the nomina-

tive singular form is unpredictable in a language

if many verbs express it with suffix -o while many

others use -∅. In §5, we will propose an improve-

ment to their entropy-based measure.

2.3 The Low-Entropy Conjecture

The low-entropy conjecture, as formulated by Ack-

erman and Malouf (2013, p. 436), “is the hypoth-

esis that enumerative morphological complexity

is effectively unrestricted, as long as the average

conditional entropy, a measure of integrative com-

plexity, is low.” Indeed, Ackerman and Malouf

go so far as to say that there need be no upper

bound on e-complexity, but the i-complexity must

remain sufficiently low (as is the case for Archi,

for example). Our hypothesis is subtly different in

that we postulate that morphological systems face

a trade-off between e-complexity and i-complexity:

a system may be complex under either metric, but

not under both. The amount of e-complexity per-

mitted is higher when i-complexity is low.

This line of thinking harks back to the equal

complexity conjecture of Hockett, who stated: “ob-

jective measurement is difficult, but impression-

istically it would seem that the total grammatical

complexity of any language, counting both the mor-

phology and syntax, is about the same as any other”

(Hockett, 1958, pp. 180-181). Similar trade-offs

have been found in other branches of linguistics

(see Oh (2015) for a review). For example, there

is a trade-off between rate of speech and syllable

complexity (Pellegrino et al., 2011): this means

that even though Spanish speakers utter many more

syllables per second than Chinese, the overall in-

formation rate is quite similar as Chinese syllables

carry more information (they contain tone informa-

tion).

Hockett’s equal complexity conjecture is contro-

versial: some languages (such as Riau Indonesian)

do seem low in complexity across morphology and

syntax (Gil, 1994). This is why Ackerman and

Malouf instead posit that a linguistic system has

bounded integrative complexity—it must not be

too high, though it can be low, as indeed it is in

isolating languages like Chinese and Thai.

3 Paradigm Entropy

3.1 Morphology as a Distribution

Following Dreyer and Eisner (2009) and Cotterell

et al. (2015), we identify a language’s inflectional

system with a probability distribution p(M = m)
over possible paradigms.4 Our measure of i-

complexity will be related to the entropy of this

distribution.

4Formally speaking, we assume a discrete sample space

in which each outcome is a possible lexeme ℓ equipped with

a paradigm M(ℓ). Recall that a random variable is tech-

nically defined as a function of the outcome. Thus, M is

a paradigm-valued random variable that returns the whole

paradigm. M .past is a string-valued random expression that

returns the past slot, so π(M .past = ran) is a marginal

probability that marginalizes over the rest of the paradigm.



For instance, knowing the behavior of the En-

glish verb system essentially means knowing a joint

distribution over 5-tuples of surface forms such

as (run, runs, ran, run, running). More precisely,

one knows probabilities such as p(M .pres =
run,M .3s = runs,M .past = ran,M .pastp =
run,M .presp = running).

We do not observe p directly, but each observed

paradigm (5-tuple) can help us estimate it. We as-

sume that the paradigms m in the inflected lexicon

were drawn IID from p. Any novel verb paradigm

in the future would be drawn from p as well. The

distribution p represents the inflectional system be-

cause it describes what regular paradigms and plau-

sible irregular paradigms tend to look like.

The fact that some paradigms are used more

frequently than others (more tokens in a corpus)

does not mean that they have higher probability un-

der the morphological system p(m). Rather, their

higher usage reflects the higher probability of their

lexemes. That is due to unrelated factors—the prob-

ability of a lexeme may be modeled separately by

a stick-breaking process (Dreyer and Eisner, 2011),

or may reflect the semantic meaning associated to

that lexeme. The role of p(m) in the model is only

to serve as the base distribution from which a lex-

eme type ℓ selects the tuple of strings m = M(ℓ)
that will be used thereafter to express ℓ.

We expect the system to place low prob-

ability on implausible paradigms: e.g.,

p(run, snur, nar, run, running) is close to

zero. Moreover, we expect it to assign high

conditional probability to the result of ap-

plying highly regular processes: e.g., for

p(M .presp | M .3s) in English, we have

p(wugging | wugs) ≈ p(running | runs) ≈ 1,

where wug is a novel verb. Nonetheless, our

estimate of p(M .presp = w | M .3s = wugs

will have support over w ∈ Σ∗ × · · · × Σ∗, due

to smoothing. The model is thus capable of

evaluating arbitrary wug-formations (Berko, 1958),

including irregular ones.

3.2 Paradigm Entropy

The distribution p gives rise to the paradigm en-

tropy H(M), also written as H(p). This is the

expected number of bits needed to represent a

paradigm drawn from p, under a code that is opti-

mized for this purpose. Thus, it may be related to

the cost of learning paradigms or the cost of storing

them in memory, and thus relevant to functional

pressures that prevent languages from growing too

complex. (There is no guarantee, of course, that

human learners actually estimate the distribution p,

or that its entropy actually represents the cognitive

cost of learning or storing paradigms.)

Our definition of i-complexity in §5 will

(roughly speaking) divide H(M) by the e-

complexity, so that the i-complexity is measured

in bits per distinct surface form. This approach

is inspired by Ackerman and Malouf (2013); we

discuss the differences in §6.

3.3 A Variational Upper Bound on Entropy

We now review how to estimate H(M) by estimat-

ing p by a model q. We do not actually know the

true distribution p. Furthermore, even if we knew

p, the definition of H(M) involves a sum over the

infinite set of n-tuples (Σ∗)n, which is intractable

for most distributions p. Thus, following Brown

et al. (1992), we will use a probability model to

define a good upper bound for H(M) and held-out

data to estimate that bound.

For any distribution p, the entropy H(p) is upper-

bounded by the cross-entropy H(p, q), where q is

any other distribution over the same space:5

∑

m

p(m)[− log p(m)] ≤
∑

m

p(m)[− log q(m)]

(1)

(Throughout this paper, log denotes log2.) The

gap between the two sides is the Kullback-Leibler

divergence D(p || q), which is 0 iff p = q.

Maximum-likelihood training of a probability

model q ∈ Q is an attempt to minimize this gap

by minimizing the right-hand side. More pre-

cisely, it minimizes the sampling-based estimate
∑

m
p̂train(m)[− log q(m)], where p̂train is the uni-

form distribution over a set of training examples

that are assumed to be drawn IID from p.

Because the trained q may be overfit to the train-

ing examples, we must make our final estimate of

H(p, q) using a separate set of held-out test ex-

amples, as
∑

m
p̂test(m)[− log q(m)]. We then

use this as our (upwardly-biased) estimate of the

paradigm entropy H(p). In our setting, both the

training and the test examples are paradigms from

a given inflected lexicon.

4 A Generative Model of the Paradigm

To fit q given the training set, we need a tractable

family Q of joint distributions over paradigms, with

5The same applies for conditional entropies as used in §5.



ponerpongo

pongas

ponga

pongan

pondrías

pondríaispondrían

pondrías

(a) Lemma paradigm tree

poner

pongo

pondría

pongas

ponga

pongan

pondríais

pondrían

(b) Principal parts paradigm tree

Figure 1: A specific Spanish verb paradigm as it would be generated by two different tree-structured

Bayesian networks. The nodes in each network represent the slots of the paradigm class (not labeled).

The topology in (a) predicts all forms from the lemma. The topology in (b), on the other hand, makes

it easier to predict forms given the others: pongas is predicted from pongo, with which it shares a stem.

Qualitatively, the structure selection algorithm in §4.4 finds trees like (b).

parameters θ. The structure of the model and the

number of parameters θ will be determined auto-

matically from the training set: a language with

more slots or more paradigm classes will require

more parameters. This means that Q is technically

a semi-parametric family.

4.1 Paradigm Classes

We say that two paradigms m,m′ have the

same class if they define the same slots (that is,

domain(m) = domain(m′)) and the same pairs

of slots are syncretic in both paradigms (that is,

m.σ = m.σ′ iff m
′.σ = m

′.σ′). Notice that

paradigms of the same class must have the same

size (but not conversely). Most English verbs fall

into 2 classes: 4-form verbs such as regular sprint

and irregular stand where the past participle is syn-

cretic with the past tense, and irregular 5-form

verbs such as eat where that is not so. There are

also a few other English verb classes: for example,

run has only 4 distinct forms, but in its class, the

past participle is syncretic with the present tense.

The verb be is in a class by itself, with 8 distinct

forms. The extra slots needed for be might be either

missing in other classes, or present but syncretic.

Our model qθ says that the first step in gener-

ating a paradigm is to pick its class c. This uses

a distribution qθ(C = c), which we estimate by

maximum likelihood from the training set. Thus, c
ranges over the set C of classes that appear in the

training set.

4.2 A Tree-Structured Distribution

Next, conditioned on the class c, we follow Cot-

terell et al. (2017b) and generate all the forms

of the paradigm using a tree-structured Bayesian

network—a directed graphical model in which the

form at each slot is generated conditionally on the

form at a single parent slot. Figure 1 illustrates two

possible tree structures for Spanish verbs.

Each class c has its own tree structure. If slot σ
exists in class c, we denote its parent in class c by

pac(σ). Then our model is6

qθ(m | c) =
∏

σ∈c

qθ(m.σ | m.pac(σ), C=c)

(2)

For the slot σ at root of the tree, pac(σ) is defined

to be a special slot empty with an empty feature

bundle, whose form is fixed to be the empty string.

In the product above, σ does not range over empty.

4.3 Neural Sequence-to-Sequence Model

We model all of the conditional probability fac-

tors in (2) using a neural sequence-to-sequence

model with parameters θ. Specifically, we follow

Kann and Schütze (2016) and use an LSTM-based

sequence-to-sequence model (Sutskever et al.,

6Below, we will define the factors so that the generated m

does–usually—fall in class c. We will ensure that if two slots

are syncretic in class c, then their forms are in fact equal in

m. But non-syncretic slots will also have a (tiny) probability

of equal forms, so the model qθ(m | c) is deficient—it sums

to slightly < 1 over the paradigms m in class c.



2014) with attention (Bahdanau et al., 2015).This

is the state of the art in morphological reinflection,

i.e., the conversion of one inflected form to another

(Cotterell et al., 2016).

For example, in German, qθ(M .nompl =
Hände | M .nomsg = Hand, C = 3) is given by

the probability that the seq2seq model assigns to

the output sequence H ä n d e when given the

input sequence

H a n d C=3 IN=NOM IN=SG OUT=NOM OUT=PL

The input sequence indicates the parent slot (nomi-

native singular) and the child slot (nominative plu-

ral), by using special characters to specify their

feature bundles. This tells the seq2seq model what

kind of inflection to do. The input sequence also

indicates the paradigm class c. Thus, we are able to

use only a single seq2seq model, with parameters

θ, to handle all of the conditional distributions in

the entire model. Sharing parameters across condi-

tional distributions is a form of multi-task learning

and may improve generalization to held-out data.

As a special case, if σ and σ′ are syncretic within

class c, then we define qθ(M .σ = w | M .σ′ =
w′, C = c) to be 1 if w = w′ and 0 otherwise.

The seq2seq model is skipped in such cases: it is

only used on non-syncretic parent-child pairs. As

a result, if class c has 5 slots that are all syncretic

with one another, 4 of these slots can be derived

by deterministic copying. As they are completely

predictable, they contribute log 1 = 0 bits to the

paradigm entropy. The method in the next section

will always favor a tree structure that exploits copy-

ing. As a result, the extra 4 slots will not increase

the i-complexity, just as they do not increase the

e-complexity.

We train the parameters θ on all non-syncretic

slot pairs in the training set. Thus, a paradigm with

n distinct forms contributes n2 training examples:

each form in the paradigm is predicted from each

of the n− 1 other forms, and from the empty form.

We use maximum-likelihood training (see §7.2).

4.4 Structure Selection

Given a model qθ, we can decompose its entropy

H(qθ) into a weighted sum of conditional entropies

H(M) = H(C) +
∑

c∈C

p(C=c)H(M | C=c)

(3)where

H(M | C=c) =
∑

σ∈c

H(M .σ | M .pac(σ), C=c)

(4)

The cross-entropy H(p, qθ) has a similar decom-

position. The only difference is that all of the (con-

ditional) entropies are replaced by (conditional)

cross-entropies, meaning that they are estimated

using a held-out sample from p rather than qθ. The

log-probabilities are still taken from qθ.

It follows that given a fixed θ (as trained in the

previous section), we can minimize H(p, qθ) by

choosing the tree for each class c that minimizes

the cross-entropy version of (4).

How? For each class c, we select the minimum-

weight directed spanning tree over the nc slots

used by that class, as computed by the Chu-Liu-

Edmonds algorithm (Edmonds, 1967).7 The weight

of each potential directed edge σ′ → σ is the con-

ditional cross-entropy H(M .σ | M .σ′, C = c)
under the seq2seq model trained in the previous

section, so equation (4) implies that the weight of a

tree is the cross-entropy we would get by selecting

that tree.8 In practice, we estimate the conditional

cross-entropy for the non-syncretic slot pairs using

a held-out development set (not the test set). For

syncretic slot pairs, which are handled by copying,

the conditional cross-entropy is always 0, so edges

between syncretic slots can be selected free of cost.

After selecting the tree, we could retrain the

seq2seq parameters θ to focus on the conditional

distributions we actually use, training on only the

slot pairs in each training paradigm that correspond

to an edge in the paradigm’s class. However, our

present experiments do not do this. In fact, training

on all n2 pairs can be seen as a form of multi-task

regularization that may improve the model.

7Similarly, Chow and Liu (1968) find the best tree-

shaped undirected graphical model by computing the highest-

weighted undirected spanning tree. We require a directed

model instead because §4.3 provides conditional distributions.
8Where the weight of the tree is taken to include the weight

of the special edge empty → σ to the root node σ. Thus, for

each slot σ, the weight of empty → σ is the cost of selecting

σ as the root. It is an estimate of H(M .σ | C = c), the

difficulty of predicting the σ form without any parent.

In the implementation, we actually decrement the weight

of every edge σ′ → σ (including when σ′ = empty) by the

weight of empty → σ. This does not change the optimal

tree, because it does not change the relative weights of the

possible parents of σ. However, it ensures that every σ now

has root cost 0, as required by the Chu-Liu-Edmonds algo-

rithm (which does not consider root costs). Notice that since

H(X)−H(X | Y ) = I(X;Y ), the decremented weight is

actually an estimate of −I(M .σ;M .σ′). Thus, finding the

min-weight tree is equivalent to finding the tree that maxi-

mizes the total mutual information on the edges, just like the

Chow-Liu algorithm (Chow and Liu, 1968).



5 From Paradigm Entropy to

i-Complexity

Having defined a way to approximate paradigm

entropy, H(M), we finally operationalize our mea-

sure of i-complexity for a language.

One Paradigm Class. We start with the simple

case where the language has a single paradigm

class: C = {c}. Our initial idea was to define i-

complexity as bits per form, H(M) / |c|, where

|c| is the enumerative complexity—the number of

distinct forms in the paradigm.

However, H(M) reflects not only the lan-

guage’s morphological complexity, but also its “lex-

ical complexity.” Some of the bits needed to specify

a lexeme’s paradigm m are necessary merely to

specify the stem. A language whose stems are nu-

merous or highly varied will tend to have higher

H(M), but we do not wish to regard it as morpho-

logically complex simply on that basis. We can

decompose H(M) into

H(M) = H(M .σ̌)
︸ ︷︷ ︸

lexical entropy

+ H(M | M .σ̌)
︸ ︷︷ ︸

morphological entropy

(5)

where σ̌ here denotes the most predictable slot,

σ̌
def
= argmin

σ
H(M .σ) (6)

and we estimate H(M .σ) for any σ using the

seq2seq distribution qθ(M .σ = w | M.empty =
ǫ), which can be regarded as a model for generating

forms of slot σ from scratch.

We will refer to σ̌ as the lemma since it gives

in some sense the simplest form of the lexeme,

although it is not necessarily the slot that lexicog-

raphers use as the citation form for the lexeme.

We now define i-complexity as the entropy per

form when predicting the remaining forms of M

from the lemma:

H(M | M .σ̌)

|c| − 1
(7)

where the numerator can be obtained by subtraction

via equation (5). This is a fairer representation of

the morphological irregularity, e.g., the average

difficulty in predicting the inflectional ending that

is added to a given stem. Notice that if |c| = 1 (an

isolating language), the morphological complexity

is appropriately undefined, since no inflectional

endings are ever added to the stem.

If we had allowed the lexical entropy H(M .σ̌)
to remain in the numerator, then a language with

larger e-complexity |c| would have amortized that

term over more forms—meaning that larger e-

complexity would have tended to lead to lower

i-complexity, other things equal. By removing that

term from the numerator, our definition (7) elim-

inates this as a possible reason for the observed

tradeoff between e-complexity and i-complexity.

Multiple Paradigm Classes. Now, we consider

the more general case where multiple paradigm

classes are allowed: |C| ≥ 1. Again we are in-

terested in the entropy per non-lemma form. The

i-complexity is

H(C) +
∑

c p(C=c)H(M | M .σ̌(c), C=c)
∑

c p(C=c)(|c| − 1)
(8)

where

σ̌(c)
def
= argmin

σ
H(M .σ | C=c) (9)

In the case where |c| and σ̌(c) are constant over all

C, this reduces to equation (7). This is because the

numerator is esssentially an expanded formula for

the conditional entropy in (7)—the only wrinkle is

that different parts of it condition on different slots.

To estimate equation (8) using a trained model

q and a held-out test set, we follow §3.3 by esti-

mating all − log p(· · · ) terms in the entropies with

our model surprisals − log q(· · · ), but using the

empirical probabilities on the test set for all other

p(· · · ) terms including p(C = c). Suppose the

test set paradigms are m1, . . . ,mN with classes

c1, . . . , cN respectively. Then taking q = qθ, our

final estimate of the i-complexity (8) works out to

∑N
i=1−





log q(C=ci)
+ log q(M = mi | C=ci)
− log q(M .σ̌(ci) = mi.σ̌(ci) | C=ci)





∑N
i=1 |ci| − 1

(10)

where we have multiplied both the numerator and

denominator by N . In short, the denominator is the

total number of non-lemma forms in the test set,

and the numerator is the total number of bits that

our model needs to predict these forms (including

the paradigm shapes ci) given the lemmas. The

numerator of equation (10) is an upper bound on the

numerator of equation (8) since it uses (conditional)

cross-entropies rather than (conditional) entropies.



SINGULAR PLURAL

CLASS NOM GEN ACC VOC NOM GEN ACC VOC

1 -os -u -on -e -i -on -us -i

2 -s -∅ -∅ -∅ -es -on -es -es

3 -∅ -s -∅ -∅ -es -on -es -es

4 -∅ -s -∅ -∅ -is -on -is -is

5 -o -u -o -o -a -on -a -a

6 -∅ -u -∅ -∅ -a -on -a -a

7 -os -us -os -os -i -on -i -i

8 -∅ -os -∅ -∅ -a -on -a -a

Table 1: Structuralist analysis of Modern Greek

nominal inflection classes. (Ralli, 1994, 2002).

6 A Methodological Comparison to

Ackerman and Malouf (2013)

Our formulation of the low-entropy principle dif-

fers somewhat from Ackerman and Malouf (2013);

the differences are highlighted below.

Heuristic Approximation to p. Ackerman and

Malouf (2013) first construct what we regard as

a heuristic approximation to the joint distribution

p over forms in a paradigm. They first provide

a structuralist decomposition of words into their

constituent morphemes. Then, they consider a dis-

tribution r(m.σ | m.σ′) that builds new forms by

stochastically replacing morphemes. In contrast

to our neural sequence-to-sequence approach, this

distribution unfortunately does not have support

over Σ∗ and, thus, cannot consider changes other

than substitution of morphological exponents.

As a concrete example of r, consider Table 1’s

(Simplified) Modern Greek example from Acker-

man and Malouf (2013). The conditional distribu-

tion r(m.gen;sg | m.acc;pl = . . . -i) over geni-

tive singular forms is peaked since there is exactly

one possible transformation: substituting -us for -i.

Other conditional distributions for Modern Greek

are less peaked: Ackerman and Malouf (2013) es-

timated that r(m.nom;sg | m.acc;pl = . . . -a)
swaps -a for ∅ with probability 2/3 and for -o with

probability 1/3. We reiterate that no other output

has positive probability under their model, e.g.,

swapping -a for -es or ablaut of a stem vowel.

Average Conditional Entropy. The second dif-

ference is their use of the pairwise conditional en-

tropies between cells. They measure the complex-

ity of the entire paradigm by the average condi-

tional entropy:

1

n2 − n

∑

σ

∑

σ′ 6=σ

H(M .σ | M .σ′). (11)

This differs from our tree-based measure, in which

an irregular form only needs to be derived from

its parent—possibly a similar or even syncretic

irregular form—rather than from all other forms in

the paradigm. So it “only needs to pay once” and

it even “shops around for the cheapest deal. Also,

in our measure, the lemma does not “pay” at all.

They measure conditional entropies, which are

simple to compute because their model q is simple.

(Again, it only permits a small number of possible

outputs for each input, based on the finite set of al-

lowed morpheme substitutions that they annotated

by hand.) In contrast, our estimate uses conditional

cross-entropies, asking whether our q can predict

real held-out forms distributed according to p.

6.1 Critique of Ackerman and Malouf (2013)

Now, we offer a critique of Ackerman and Mal-

ouf (2013) on three points: (i) different linguistic

theories dictating how words are subdivided into

morphemes may offer different results, (ii) certain

types of morphological irregularity, particularly

suppletion, aren’t handled, and (iii) average con-

ditional entropy overestimates the i-complexity in

comparison to joint entropy.

Theory-Dependent Complexity. We consider a

classic example from English morphophonology

that demonstrates the effect of the specific analysis

chosen. In regular English plural formation, the

speaker has three choices: [z], [s] and [1z]. Here

are two potential analyses. One could treat this

as a case of pure allomorphy with three potential,

unrelated suffixes. Under such an analysis, the en-

tropy will reflect the empirical frequency of the

three possibilities found in some data set: roughly,
1/4 log 1/4+ 3/8 log 3/8+ 3/8 log 3/8 ≈ 1.56127. On

the other hand, if we assume a different model with

a unique underlying affix /z/, which is attached and

then converted to either [z], [s] or [1z] by an appli-

cation of perfectly regular phonology, this part of

the morphological system of English has entropy

of 0—one choice. See Kenstowicz (1994, p.72)

for a discussion of these alternatives from a the-

oretical standpoint. Note that our goal is not to

advocate for one of these analyses, but merely to

suggest that Ackerman and Malouf (2013)’s quan-

tity is analysis-dependent.9 In contrast, our ap-

proach is theory-agnostic in that we jointly learn

surface-to-surface transformations, reminiscent of

9Other suggested quantifications of morphological com-

plexity have relied on a similar assumption (e.g. Bane, 2008).



a-morphorous morphology (Anderson, 1992), and

thus our estimate of paradigm entropy does not

suffer this drawback. Indeed, our assumptions are

limited—recurrent neural networks are universal

approximators. It has been shown that any com-

putable function can be computed by some finite

RNN (Siegelmann and Sontag, 1991, 1995). Thus,

the only true assumption we make of morphology

is mild: we assume it is Turing-computable. That

behavior is Turing-computable is a rather funda-

mental tenet of cognitive science (McCulloch and

Pitts, 1943; Sobel and Li, 2013).

In our approach, theory dependence is primar-

ily introduced through the selection of slots in our

paradigms, which is a form of bias that would be

present in any human-derived set of morphological

annotations. A key example of this is the way in

which different annotators or annotation standards

may choose to limit or expand syncretism — sit-

uations where the same string-identical form may

fill multiple different paradigm slots. For example,

Finnish has two accusative inflections for nouns

and adjectives, one always coinciding in form with

the nominative and the other coinciding with the

genitive. Many grammars therefore omit these two

slots in the paradigm entirely, while some include

them. Depending on which linguistic choice an-

notators make, the language could appear to have

more or fewer paradigm slots. We have carefully

defined our e-complexity and i-complexity metrics

so that they are not sensitive to these choices.

As a second example of annotation dependence,

different linguistic theories might disagree about

which distinctions constitute productive inflec-

tional morphology, and which are derivational or

even fixed lexical properties. For example, our

dataset for Turkish treats causative verb forms as

derivationally related lexical items. The number of

apparent slots in the Turkish inflectional paradigms

is reduced because these forms were excluded.

Morphological Irregularity. A second problem

with the model in Ackerman and Malouf (2013) is

its inability to treat certain kinds of irregularity, par-

ticularly cases of suppletion. As far as we can tell,

the model is incapable of evaluating cases of mor-

phological suppletion unless they are explicitly en-

coded in the model. Consider, again, the case of the

English suppletive past tense form went— if one’s

analysis of the English base is effectively a distribu-

tion of the choices add [d], add [t] and [1d], one will

assign probability 0 to went as the past tense of go.

We highlight the importance of this point because

suppletive forms are certainly very common in aca-

demic English: the plural of binyan is binyanim

and the plural of lemma is lemmata. It is unlikely

that native English speakers possess even a partial

model of Hebrew and Greek nominal morphology—

a more plausible scenario is simply that these forms

are learned by rote. As speakers and hearers are ca-

pable of producing and understanding these forms,

we should demand the same capacity of our mod-

els. Not doing so also ties into the point in the

previous section about theory-dependence since

it is ultimately the linguist—supported by some

theoretical notion—who decides which forms are

deemed irregular and hence left out of the analy-

sis. We note that these restrictive assumptions are

relatively common in the literature, e.g., Allen and

Becker (2015)’s sublexical learner is likewise inca-

pable of placing probability mass on irregulars.10

Average Conditional Entropy versus Joint En-

tropy. Finally, we take issue with the formula-

tion of paradigm entropy as average conditional

entropy, as exhibited in equation (11). For one,

it does not correspond to the entropy of any ac-

tual joint distribution p(M), and has no obvious

mathematical interpretation. Second, it is Priscian

(Robins, 2013) in its analysis in that any form can

be generated from any other, which, in practice,

will cause it to overestimate the i-complexity of a

morphological system. Consider the German dative

plural Händen (from the German Hand “hand”).

Predicting this form from the nominative singular

Hand is difficult, but predicting it from the nom-

inative plural Hände is trivial: just add the suffix

-n. In Ackerman and Malouf (2013)’s formulation,

r(Händen | Hand) and r(Händen | Hände) both

contribute to the paradigm’s entropy with the for-

mer substantially raising the quantity. Our method

in §4.4 is able to select the second term and regard

Händen as predictable once Hände is in hand.

7 Experiments

Our experimental design is now fairly straightfor-

ward: plot e-complexity versus i-complexity over

as many languages as possible, We then devise a

numerical test of whether the complexity trade-off

conjecture (§1) appears to hold.

10In the computer science literature, it is far more common

to construct distributions with support over Σ∗ (Paz, 2003;

Bouchard-Côté et al., 2007; Dreyer et al., 2008; Cotterell et al.,

2014), which do not have this problem.



7.1 Data and UniMorph Annotation

At the moment, the largest source of annotated

full paradigms is the UniMorph dataset (Sylak-

Glassman et al., 2015; Kirov et al., 2018), which

contains data that have been extracted from Wik-

tionary, as well as other morphological lexica and

analyzers, and then converted into a universal for-

mat. A partial subset of UniMorph has been used in

the running of the SIGMORPHON-CoNLL 2017

and 2018 shared tasks on morphological inflection

generation (Cotterell et al., 2017a, 2018b).

We use verbal paradigms from 33 typologically

diverse languages, and nominal paradigms from 18

typologically diverse languages. We only consid-

ered languages that had at least 700 fully annotated

verbal or nominal paradigms, as the neural methods

we deploy required a large amount of training ex-

ample to achieve high performance.11As the neural

methods require a large set of annotated training ex-

amples to achieve high performance, it is difficult

to use them in a lower-resource scenario.

To estimate a language’s e-complexity (§2.2.1),

we average over all paradigms in the UniMorph

inflected lexicon.

To estimate i-complexity, we first partition those

paradigms into training, development and test sets.

We identify the paradigm classes from the train-

ing set (§4.1). We also use the training set to train

the parameters θ of our conditional distribution

(§4.3), then estimate conditional entropies on the

development set and use Edmonds’s algorithm to

select a global model structure for each class (§4.4).

Now we evaluate i-complexity on the test set (equa-

tion (10)). Using held-out test data gives an unbi-

ased estimate of a model’s predictive ability, which

is why it is standard practice in statistical NLP,

though less common in quantitative linguistics.

7.2 Experimental Details

We experiment separately on nominal and verbal

lexicons. For i-complexity, we hold out at random

50 full paradigms for the development set, and 50

other full paradigms for the test set.

For comparability across languages, we tried to

11Focusing on data-rich languages should also help miti-

gate sample bias caused by variable-sized dictionaries in our

database. In many languages, irregular words are also very

frequent and may be more likely to be included in a dictio-

nary first. If that’s the case, smaller dictionaries might have

lexical statistics skewed toward irregulars more so than larger

dictionaries. In general, larger dictionaries should be more

representative samples of a language’s broader lexicon.

ensure a “standard size” for the training set Dtrain.

We sampled it from the remaining data using two

different designs, to address the fact that different

languages have different-size paradigms.

Equal Number of Paradigms (“purple

scheme”). In the first regime, Dtrain (for

each language) is derived from 600 randomly

chosen non-held-out paradigms m. We trained

the reinflection model in §4.4 on all non-syncretic

pairs within these paradigms, as described in

§4.3. This disadvantages languages with small

paradigms, as they train on fewer pairs.

Equal Number of Pairs (“green scheme”). In

the second regime, we trained the reinflection

model in §4.4 on 60,000 non-syncretic pairs

(m.σ′,m.σ) (where σ′ may be empty) sam-

pled without replacement from the non-held-out

paradigms.12 This matches the amount of training

data, but may disadvantage languages with large

paradigms, since the reinflection model will see

fewer examples of any individual mapping between

paradigm slots. We call this the “green scheme.”

Model and Training Details. We train the

seq2seq-with-attention model using the OpenNMT

toolkit (Klein et al., 2017). We largely follow

the recipe given in Kann and Schütze (2016), the

winning submission on the 2016 SIGMORPHON

shared task for inflectional morphology. Accord-

ingly, we use a character embedding size of 300,

and 100 hidden units in both the encoder and de-

coder. Our gradient-based optimization method

was AdaDelta (Zeiler, 2012) with a minibatch

size of 80. We trained for 20 epochs, which

yielded 20 models via early stopping. We se-

lected the model that achieved the highest aver-

age log p(m.σ | m.σ′) on (σ′, σ) pairs from the

development set.

8 Results and Analysis

Our results are plotted in Figure 2, where each dot

represents a language. We see little difference be-

tween the green and the purple training sets, though

it was not clear a priori that this would be so.

The plots appear to show a clear trade-off be-

tween i-complexity and the e-complexity. We now

provide quantitative support for this impression, by

constructing a statistical significance test. Visually,

12For a few languages, fewer than 60,000 pairs were avail-

able, in which case we used all pairs.
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Figure 2: The x-axis is our measure of e-complexity, the average number of distinct forms in a paradigm.

The y-axis is our estimate of i-complexity, the average bits per distinct non-lemma form. We overlay

purple and green graphs (§7.2): all the purple points are trained on the same number of paradigms, and all

the green points are trained on about the same number of slot pairs. The purple curve is the Pareto curve

for the purple points, and the area under it is shaded in purple; similarly for green.

our low-entropy trade-off conjecture boils down to

the claim that languages cannot exist in the upper

right-hand corner of the graph, i.e., they cannot

have both high e-complexity and high i-complexity.

In other words, the upper-right hand corner of the

graph is “emptier” than it would be by chance.

How can we quantify this? The Pareto curve

for a multi-objective optimization problem shows,

for each x, the maximum value y of the second

objective that can be achieved while keeping the

first objective ≥ x (and vice-versa). This is shown

in Figure 2 as a step curve, showing the maximum

i-complexity y that was actually achieved for each

level x of e-complexity. This curve is the tightest

non-increasing function that upper-bounds all of

the observed points: we have no evidence from our

sample of languages that any language can appear

above the curve.

We say that the upper right-hand corner is

“empty” to the extent that the area under the

Pareto curve is small. To ask whether it is in-

deed emptier than would be expected by chance,

we perform a nonparametric permutation test

that destroys the claimed correlation between

the e-complexity and i-complexity values. From

our observed points {(x1, y1), . . . , (xm, ym)}, we

can stochastically construct a new set of points

{(x1, yσ(1)), . . . , (xm, yσ(m))} where σ is a per-

mutation of 1, 2, . . . ,m selected uniformly at ran-

dom. The resulting scatterplot is what we would

expect under the null hypothesis of no correlation.

Our p-value is the probability that the new scatter-

plot has an even emptier upper right-hand corner—

that is, the probability that the area under the null-

hypothesis Pareto curve is ≤ the area under the ac-

tually observed Pareto curve. We estimate this prob-

ability by constructing 10,000 random scatterplots.

In the purple training scheme, we find that the

upper right-hand corner is significantly empty, with

p < 0.021 and p < 0.037 for the verbal and nomi-

nal paradigms, respectively. In the green training

scheme, we find that the upper right-hand corner is

significantly empty with p < 0.032 and p < 0.024
in the verbal and nominal paradigms, respectively.

9 Future Directions

Frequency. Ackerman and Malouf hypothesized

that i-complexity is bounded, and we have demon-

strated that the bounds are stronger when e-

complexity is high. This suggests further inves-

tigation as to where in the language these bounds

apply. Such bounds are motivated by the notion that

naturally occurring languages must be learnable.

Presumably, languages with large paradigms need

to be regular overall, because in such a language,



the average word type is observed too rarely for a

learner to memorize an irregular surface form for it.

Yet even in such a language, some word types are

frequent, because some lexemes and some slots are

especially useful. Thus, if learnability of the lexi-

con is indeed the driving force,13 then we should

make the finer-grained prediction that irregularity

may survive in the more frequently observed word

types, regardless of paradigm size. Rarer forms

are more likely to be predictable—meaning that

they are either regular, or else irregular in a way

that is predictable from a related frequent irregular

(Cotterell et al., 2018a).

Dynamical models. We could even investigate

directly whether patterns of morphological irregu-

larity can be explained by the evolution of language

through time. Languages may be shaped by natural

selection or, more plausibly, by noisy transmission

from each generation to the next (Hare and Elman,

1995; Smith et al., 2008), in a natural communi-

cation setting where each learner observes some

forms more frequently than others. Are naturally

occurring inflectional systems more learnable (at

least by machine learning algorithms) than would

be expected by chance? Do artificial languages

with unusual properties (for example, unpredictable

rare forms) tend to evolve into languages that are

more typologically natural?

We might also want to study whether children’s

morphological systems increase in i-complexity

as they approach the adult system. Interestingly,

this definition of i-complexity could also explain

certain issues in first language acquisition, where

children often overregularize (Pinker and Prince,

1988): they impose the regular pattern on irregular

verbs, producing forms like runned instead of ran.

Children may initially posit an inflectional system

with lower i-complexity, before converging on the

true system, which has higher i-complexity.

Phonology Plus Orthography. A human learner

of a written language also has access to phono-

logical information that could affect predictability.

One could for example jointly model all the written

and spoken forms within each paradigm, where the

Bayesian network may sometimes predict a spoken

slot from a written slot or vice-versa.

Moving Beyond the Forms. The complexity of

morphological inflection is only a small bit of the

13Rather than, say, description length of the lexicon (Rissa-

nen and Ristad, 1994).

larger question of morphological typology. We

have left many bits unexplored. In this paper,

we have predicted orthographic forms from mor-

phosyntactic feature bundles. Ideally, we would

like to also predict which morphosyntactic bundles

are realized as words within a language, and which

bundles are syncretic. That is, what paradigm

classes are plausible or implausible?

In addition, our current treatment depends upon

a paradigmatic treatment of morphology, which

is why we have focused on inflectional morphol-

ogy. In contrast, derivational morphology is often

viewed as syntagmatic.14 Can we devise quantita-

tive formulation of derivational complexity—for

example, extending to polysynthetic languages?

10 Conclusions

We have provided clean mathematical formulations

of enumerative and integrative complexity of inflec-

tional systems, using tools from generative model-

ing and deep learning. With an empirical study on

noun and verb systems in 36 typologically diverse

languages, we have exhibited a Pareto-style trade-

off between the e-complexity and i-complexity of

morphological systems. In short, a morphological

system can mark a large number of morphosyn-

tactic distinctions, as Finnish, Turkish and other

agglutinative and polysynthetic languages do; or it

may have a high-level of unpredictability (irregu-

larity); or neither.15 But it cannot do both.

The NLP community often focuses on e-

complexity and views a language as morphologi-

cally complex if it has a profusion of unique forms,

even if they are very predictable. The reason is

probably our habit of working at the word-level,

so that all forms not found in the training set are

out-of-vocabulary (OOV). Indeed, NLP practition-

ers often use high OOV rates as a proxy for defin-

ing morphological complexity. However, as NLP

moves to the character-level, we will need other def-

initions of morphological richness. A language like

Hungarian with almost perfectly predictable mor-

phology may be easier to process than a language

like German with an abundance of irregularity.

14For paradigmatic treatments of derivational morphology,

see Cotterell et al. (2017c) for a computational perspective

and the references therein for theoretical perspectives.
15A language is under no obligation to be morphologi-

cally rich—it may have low e-complexity and i-complexity.

Carstairs-McCarthy (2010) has pointed out that languages

need not have morphology at all, though they must have

phonology and syntax.
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