Neural Particle Smoothing
for Sampling from Conditional Sequence Models

Chu-Cheng Lin and Jason Eisner
Center for Language and Speech Processing

Johns Hopkins University, Baltimore MD, 21218
{kitsing, jason}@cs.jhu.edu

Abstract

We introduce neural particle smoothing, a
sequential Monte Carlo method for sampling
annotations of an input string from a given
probability model. In contrast to conventional
particle filtering algorithms, we train a proposal
distribution that looks ahead to the end of
the input string by means of a right-to-left
LSTM. We demonstrate that this innovation can
improve the quality of the sample. To motivate
our formal choices, we explain how our neural
model and neural sampler can be viewed as
low-dimensional but nonlinear approximations
to working with HMMs over very large state
spaces.

1 Introduction

Many structured prediction problems in NLP can
be reduced to labeling a length-7" input string x
with a length-T" sequence y of tags. In some cases,
these tags are annotations such as syntactic parts of
speech. In other cases, they represent actions that
incrementally build an output structure: IOB tags
build a chunking of the input (Ramshaw and Marcus,
1999), shift-reduce actions build a tree (Yamada and
Matsumoto, 2003), and finite-state transducer arcs
build an output string (Pereira and Riley, 1997).
One may wish to score the possible taggings us-
ing a recurrent neural network, which can learn to be
sensitive to complex patterns in the training data. A
globally normalized conditional probability model
is particularly valuable because it quantifies uncer-
tainty and does not suffer from label bias (Lafferty
et al., 2001); also, such models often arise as the
predictive conditional distribution p(y | x) corre-
sponding to some well-designed generative model
p(x,y) for the domain. In the neural case, however,
inference in such models becomes intractable. It is
hard to know what the model actually predicts and
hard to compute gradients to improve its predictions.
In such intractable settings, one generally falls
back on approximate inference or sampling. In the
NLP community, beam search and importance sam-

pling are common. Unfortunately, beam search con-
siders only the approximate-top-k taggings from
an exponential set (Wiseman and Rush, 2016), and
importance sampling requires the construction of a
good proposal distribution (Dyer et al., 2016).

In this paper we exploit the sequential structure
of the tagging problem to do sequential importance
sampling, which resembles beam search in that it
constructs its proposed samples incrementally—one
tag at a time, taking the actual model into account at
every step. This method is known as particle filtering
(Doucet and Johansen, 2009). We extend it here to
take advantage of the fact that the sampler has access
to the entire input string as it constructs its tagging,
which allows it to look ahead or—as we will show—
to use a neural network to approximate the effect
of lookahead. Our resulting method is called neural
particle smoothing.

1.1 What this paper provides

For x = z1 - - -z, let x4 and x;. respectively de-
note the prefix x; - - - z; and the suffix 441 - - - zp.
We develop neural particle smoothing—a se-
quential importance sampling method which, given
a string x, draws a sample of taggings y from
po(y | x). Our method works for any conditional
probability model of the quite general form!

poly | %) X exp Gr (1)

where G is an incremental stateful global scoring
model that recursively defines scores Gy of prefixes
of (x,y) atall times 0 <t < T~

def

Gy = Gt + go(si—1, 1, y1) (With Go = 0) (2)

st = fo(si—1, 20, 40) (with so given) (3)

These quantities implicitly depend on x,y and 6.
Here s; is the model’s state after observing the pair
of length-¢ prefixes (x.¢,y.;). G¢ is the score-so-far

' A model may require for convenience that each input end
with a special end-of-sequence symbol: that is, x7 = EOS.

of this prefix pair, while G — Gy is the score-to-
go. The state s; summarizes the prefix pair in the
sense that the score-to-go depends only on s; and the
length-(T" — t) suffixes (x¢.,y;.). The local scoring
function gg and state update function fy may be
any functions parameterized by 6—perhaps neural
networks. We assume @ is fixed and given.

This model family is expressive enough to capture
any desired p(y | x). Why? Take any distribution
p(x,y) with this desired conditionalization (e.g.,
the true joint distribution) and factor it as

log p(x,y) = S_1—1 log p(we, ye | Xet—1,Y—1)
= ZtT:1 logp(ze, yt | st—1) = Gr (4)

use as gg (S¢—1,Tt,Yt)

by making s; include as much information about
(x.t,¥.) as needed for (4) to hold (possibly s, =
(X.t,y.+)).2 Then by defining gy as shown in (4), we
get p(x,y) = exp Gr and thus (1) holds for each
X.

1.2 Relationship to particle filtering

Our method is spelled out in §4 (one may look now).
It is a variant of the popular particle filtering method
that tracks the state of a physical system in discrete
time (Ristic et al., 2004). Our particular proposal
distribution for y; can be found in equations (5), (6),
(25) and (26). It considers not only past observations
x.; as reflected in s;_1, but also future observations
Xy., as summarized by the state s; of a right-to-left
recurrent neural network f that we will train:

Hy = hy(Sig1, 2041) + Hipn &)

§t = fo(S141,2041) (with st given) (6)

Conditioning the distribution of y; on future obser-
vations x;. means that we are doing “smoothing”
rather than “filtering” (in signal processing terminol-
ogy). Doing so can reduce the bias and variance of
our sampler. It is possible so long as x is provided in
its entirety before the sampler runs—which is often
the case in NLP.

1.3 Applications

Why sample from py at all? Many NLP systems
instead simply search for the Viterbi sequence y that
maximizes G and thus maximizes pyp(y | x). If
the space of states s is small, this can be done effi-
ciently by dynamic programming (Viterbi, 1967); if

2Furthermore, s; could even depend on all of x (if sg does),
allowing direct expression of models such as stacked BiRNNs.

not, then A* may be an option (see §2). More com-
mon is to use an approximate method: beam search,
or perhaps a sequential prediction policy trained
with reinforcement learning. Past work has already
shown how to improve these approximate search
algorithms by conditioning on the future (Bahdanau
et al., 2017; Wiseman and Rush, 2016).

Sampling is essentially a generalization of
maximization: sampling from exp mpg%
approaches maximization as temperature — 0. It
is a fundamental building block for other algorithms,
as it can be used to take expectations over the whole
space of possible y values. For unfamiliar readers,
Appendix E reviews how sampling is crucially used
in minimum-risk decoding, supervised training,
unsupervised training, imputation of missing data,
pipeline decoding, and inference in graphical
models.

2 Exact Sequential Sampling

To develop our method, it is useful to first consider
exact samplers. Exact sampling is tractable for only
some of the models allowed by §1.1. However, the
form and notation of the exact algorithms in §2 will
guide our development of approximations in §3.

An exact sequential sampler draws y; from
po(yt | X,y4_,) foreacht = 1,..., T in sequence.
Then y is exactly distributed as py(y | x).

For each given x,y.,_;, observe that

Po(Ye | X, Y1) 7
x oy | x) =22y, po(y | x) ®)
x>y expGr)
=exp (Gy +log)y exp (Gr — Gy)) (10)

call this Hy

=exp (Gi—1 + go(st—1,z¢,y¢) + Hy) (11)
o exp (go(st—1, ¢, y¢) + Hy) (12)

Thus, we can easily construct the needed distribu-
tion (7) by normalizing (12) over all possible values
of y;. The challenging part of (12) is to compute Hy:
as defined in (10), H; involves a sum over exponen-
tially many futures y,.. (See Figure 1.)

We chose the symbols G and H in homage to
the A* search algorithm (Hart et al., 1968). In that
algorithm (which could be used to find the Viterbi
sequence), g denotes the score-so-far of a partial
solution y.;, and h denotes the optimal score-to-
go. Thus, g + h would be the score of the best
sequence with prefix y.,. Analogously, our G; +

v |
TG T T 1

- t-1 RN ‘ » |

,) \ \:‘ yt+1:“N %’ we N i
Y/{:NPREP” =N & yt—1:“N”\ \ . i

X 3(1;“On" Xo=“Thursday” xt_1=“Eed” xi=“raised’ >it 41= interest” x;, ,="rates” i

Figure 1: Sampling a single particle from a tagging model. y1, ...

,Y+—1 (orange) have already been chosen, with a total

model score of G¢_1, and now the sampler is constructing a proposal distribution ¢ (purple) from which the next tag y; will be
sampled. Each y; is evaluated according to its contribution to GG; (namely gy) and its future score H; (blue). The figure illustrates
quantities used throughout the paper, beginning with exact sampling in equations (7)—(12). Our main idea (§3) is to approximate
the H; computation (a log-sum-exp over exponentially many sequences) when exact computation by dynamic programming is
not an option. The form of our approximation uses a right-to-left recurrent neural network but is inspired by the exact dynamic

programming algorithm.

H, is the log of the total exponentiated scores of
all sequences with prefix y.,. G; and H; might be
called the logprob-so-far and logprob-to-go of y ;.

Just as A* approximates h with a “heuristic” h,
the next section will approximate H; using a neural
estimate ﬁt (equations (5)—(6)). However, the spe-
cific form of our approximation is inspired by cases
where H; can be computed exactly. We consider
those in the remainder of this section.

2.1 Exact sampling from HMMs

A hidden Markov model (HMM) specifies a nor-
malized joint distribution py(x,y) = exp G over
state sequence y and observation sequence x,> Thus
the posterior pg(y | x) is proportional to exp G,
as required by equation (1).

The HMM specifically defines G by equa-
tions (2)—(3) with s; = y; and gp(Si—1, =1, Y1) =
log po(ye | y1—1) +log po(zt | ye).*

In this setting, H; can be computed exactly by
the backward algorithm (Rabiner, 1989). (Details
are given in Appendix A for completeness.)

2.2 Exact sampling from OOHMMSs

For sequence tagging, a weakness of (first-order)
HMMs is that the model state s; = y; may contain
little information: only the most recent tag y; is
remembered, so the number of possible model states
s; is limited by the vocabulary of output tags.

We may generalize so that the data generating
process is in a latent state u; € {1,...,k} at each
time ¢, and the observed y,—along with x;—is gen-
erated from u;. Now k may be arbitrarily large. The

3The HMM actually specifies a distribution over a pair of in-
finite sequences, but here we consider the marginal distribution
over just the length-T" prefixes.

*It takes so = BOS, a beginning-of-sequence symbol, so
po(y1 | BOS) specifies the initial state distribution.

model has the form

po(x,y) = expGr

T
=> TIpoCus [ur)-po(ze,ve | w)

u t=1

This is essentially a pair HMM (Knudsen and
Miyamoto, 2003) without insertions or deletions,
also known as an “e-free” or “same-length” proba-
bilistic finite-state transducer. We refer to it here as
an output-output HUM (OOHMM).>

Is this still an example of the general model ar-
chitecture from §1.1? Yes. Since u; is latent and
evolves stochastically, it cannot be used as the state
s; in equations (2)—(3) or (4). However, we can de-
fine s; to be the model’s belief state after observing
(x:t,¥.+)- The belief state is the posterior probability
distribution over the underlying state wu; of the sys-
tem. That is, s; deterministically keeps track of all
possible states that the OOHMM might be in—just
as the state of a determinized FSA keeps track of
all possible states that the original nondeterministic
FSA might be in.

We may compute the belief state in terms of a
vector of forward probabilities that starts at v,

(13)

e | 1 if uw = BOS (see footnote 4)

(co)u = (14)

0 if v = any other state
and is updated deterministically foreach 0 < ¢t < T

by the forward algorithm (Rabiner, 1989):
k

(ctt)u = Z(atfl)u’ ~po(u | ') po(ae, ye | w)
5)

3This is by analogy with the input-output HMM (IOHMM)
of Bengio and Frasconi (1996), which defines p(y | x) directly
and conditions the transition to u; on ;. The OOHMM instead
defines p(y | x) by conditionalizing (13)—which avoids the
label bias problem (Lafferty et al., 2001) that in the IOHMM,
y¢ is independent of future input x;. (given the past input x.).

u'=1

(axt)q can be interpreted as the logprob-so-far if the
system is in state u after observing (x.;,y.,). We
may express the update rule (15) by o) = atT_ 1P
where the matrix P depends on (zy,y;), namely
Pyry = pg(u | u/) ’ pe(fl?t, Yt ‘ U)

The belief state s, = [oy] € R simply nor-
malizes o, into a probability vector, where [u] =
u/(u'1) denotes the normalization operator. The
state update (15) now takes the form (3) as desired,
with fy a normalized vector-matrix product:

s; = fo(si—1,me,y) S8, 1 P] (16)

As in the HMM case, we define G; as the log of
the generative prefix probability,

Gt d:ef logp@(xlta y:t) = IOg Zu(at)u (17)
which has the form (2) as desired if we put
9o(st-1,2,y:) = Gy — Gy (18)
T
o, P1
= log % =log (s, P1)
Qg

Again, exact sampling is possible. It suffices to
compute (9). For the OOHMM, this is given by

>y, expGr = o) B, (19)
where B © 1 and the backward algorithm
(B)o = po(xe: | ue = w) (20)

=) o, xp, vy | ue = u)

Uiy,

= Zpe | U $t+1 | Ul) '(5t+1)u'

call this P

for 0 < ¢ < T uses dynamic programming to find
the total probability of all ways to generate the fu-
ture observations x;.. Note that oy is defined for
a specific prefix y., (though it sums over all u.),
whereas 3, sums over all suffixes y,. (and over all
u.), to achieve the asymmetric summation in (19).

Define §; = [3,] € R to be a normalized ver-
sion of 3,. The 3, recurrence (20) can clearly be ex-
pressed in the form 8; = [PS;1], much like (16).

2.3 The logprob-to-go for OOHMMs

Let us now work out the definition of H; for
OOHMMs (cf. equation (35) in Appendix A for
HMMs). We will write it in terms of I:It from §1.2.
Let us define fIt symmetrically to G (see (17)):

H, = log Z(:Bt)u (=1log17B,) 21

which has the form (5) as desired if we put

Hiyy = log (17 Psi11)

(22)

he(St41, T441) = =H -

From equations (10), (17), (19) and (21), we see

= log (Zexp GT) — Gy

Y
a;I—IBt
(af 1)(178y)
= log stTét +flt
NI

+ log (1T,3t)

(23)

= log

call this C

where C; € R can be regarded as evaluating the

compatibility of the state distributions s; and s;.
In short, the generic strategy (12) for exact sam-

pling says that for an OOHMM, v, is distributed as

Pe(?/t ! Xay:tfl) X exp (QH(St—laxtvyt) + Ht)

< exp (go(se—1,ze,yt) + Cr + Hy)
depends on x.¢,y.; onx,y.; OnXg
oc exp (go(st—1, 7, yt) + Ct) (24)

This is equivalent to choosing y; in proportion to
(19)—but we now turn to settings where it is infea-
sible to compute (19) exactly. There we will use
the formulation (24) but approximate C;. For com-
pleteness, we will also consider how to approximate
H,, which dropped out of the above distribution
(because it was the same for all choices of 1) but
may be useful for other algorithms (see §4).

3 Neural Modeling as Approximation

3.1 Models with large state spaces

The expressivity of an OOHMM is limited by the
number of states k. The state u; € {1,...,k}isa
bottleneck between the past (x.;,y.;) and the future
(X¢:,y;), in that past and future are conditionally
independent given u;. Thus, the mutual information
between past and future is at most log, k bits.

In many NLP domains, however, the past seems
to carry substantial information about the future.
The first half of a sentence greatly reduces the un-
certainly about the second half, by providing infor-
mation about topics, referents, syntax, semantics,
and discourse. This suggests that an accurate HMM
language model p(x) would require very large k—
as would a generative OOHMM model p(x,y) of
annotated language. The situation is perhaps better
for discriminative models p(y | x), since much of

the information for predicting y,. might be available
in x;.. Still, it is important to let (x.¢, y.;) contribute
enough additional information about y,.: even for
short strings, making % too small (giving < log, k
bits) may harm prediction (Dreyer et al., 2008).

Of course, (4) says that an OOHMM can express
any joint distribution for which the mutual informa-
tion is finite,® by taking k large enough for v;_; to
capture the relevant info from (x.;—1,y.,_1).

So why not just take k to be large—say, k = 239
to allow 30 bits of information? Unfortunately, eval-
uating G then becomes very expensive—both com-
putationally and statistically. As we have seen, if
we define s; to be the belief state [oy;] € R, up-
dating it at each observation (z, y;) (equation (3))
requires multiplication by a £ x k matrix P. This
takes time O(k?), and requires enough data to learn
O(k?) transition probabilities.

3.2 Neural approximation of the model

As a solution, we might hope that for the inputs
x observed in practice, the very high-dimensional
belief states [a;] € R¥ might tend to lie near a d-
dimensional manifold where d < k. Then we could
take s; to be a vector in R that compactly encodes
the approximate coordinates of [ay] relative to the
manifold: s; = v([ay]), where v is the encoder.
In this new, nonlinearly warped coordinate sys-
tem, the functions of s;_; in (2)—(3) are no longer
the simple, essentially linear functions given by (16)
and (18). They become nonlinear functions operat-
ing on the manifold coordinates. (fy in (16) should
now ensure thats, ~ v([(v~'(s;_1)) " P]),and gy
in (18) should now estimate log (v~'(s;_1)) " P1.)
In a sense, this is the reverse of the “kernel trick”
(Boser et al., 1992) that converts a low-dimensional
nonlinear function to a high-dimensional linear one.
Our hope is that s; has enough dimensions d < k
to capture the useful information from the true [o],
and that # has enough dimensions < k? to capture
most of the dynamics of equations (16) and (18).
We thus proceed to fit the neural networks fy, gg
directly to the data, without ever knowing the true k
or the structure of the original operators P € RF*¥,
We regard this as the implicit justification for
various published probabilistic sequence models
pe(y | x) that incorporate neural networks. These
models usually have the form of §1.1. Most simply,
(fo,ge) can be instantiated as one time step in an
RNN (Aharoni and Goldberg, 2017), but it is com-

8This is not true for the language of balanced parentheses.

mon to use enriched versions such as deep LSTMs.
It is also common to have the state s; contain not
only a vector of manifold coordinates in R but also
some unboundedly large representation of (x,y.,)
(cf. equation (4)), so the fy neural network can refer
to this material with an attentional (Bahdanau et al.,
2015) or stack mechanism (Dyer et al., 2015).

A few such papers have used globally normalized
conditional models that can be viewed as approx-
imating some OOHMM, e.g., the parsers of Dyer
et al. (2016) and Andor et al. (2016). That is the
case (§1.1) that particle smoothing aims to support.
Most papers are locally normalized conditional
models (e.g., Kann and Schiitze, 2016; Aharoni and
Goldberg, 2017); these simplify supervised training
and can be viewed as approximating IOHMMs
(footnote 5). For locally normalized models, H; = 0
by construction, in which case particle filtering
(which estimates H; = 0) is just as good as particle
smoothing. Particle filtering is still useful for these
models, but lookahead’s inability to help them is
an expressive limitation (known as label bias) of
locally normalized models. We hope the existence
of particle smoothing (which learns an estimate
H,) will make it easier to adopt, train, and decode
globally normalized models, as discussed in §1.3.

3.3 Neural approximation of logprob-to-go

We can adopt the same neuralization trick to approx-
imate the OOHMM’s logprob-to-go H; = Cy + H,.
We take §; € R on the same theory that it is a low-
dimensional reparameterization of [/,], and define
(f¢, hg) in equations (5)—(6) to be neural networks.
Finally, we must replace the definition of C in (23)
with another neural network cy4 that works on the
low-dimensional approximations:’

def

Ct d;f C¢(St’ gt) (except that CT - 0) (25)

The resulting approximation to (24) (which does not
actually require) will be denoted gg 4:

90,6yt | X, ¥4-1) X exp (go(st—1, e, y) + Ct)
(26)

The neural networks in the present section are all
parameterized by ¢, and are intended to produce an
estimate of the logprob-fo-go H;—a function of x.,
which sums over all possible y,..

By contrast, the OOHMM-inspired neural
networks suggested in §3.2 were used to specify an

"Cr = 0 s correct according to (23). Forcing this ensures
Hr = 0, so our approximation becomes exact as of t = 7T".

actual model of the logprob-so-far Gy—a function
of x.; and y.,—using separate parameters 6.
Arguably ¢ has a harder modeling job than 6
because it must implicitly sum over possible futures
¥+ We now consider how to get corrected samples
from g 4 even if ¢ gives poor estimates of H;, and
then how to train ¢ to improve those estimates.

4 Particle smoothing

In this paper, we assume nothing about the given
model G except that it is given in the form of
equations (1)—(3) (including the parameter vector 8).
Suppose we run the exact sampling strategy but
approximate pg in (7) with a proposal distribution
qp,¢ of the form in (25)—(26). Suppressing the sub-
scripts on p and q for brevity, this means we are
effectively drawing y not from p(y | x) but from

T

Q(y | X) = HQ(yt | X7y:t—1)

t=1

27)

If Cy =~ H;+ const within each y; draw, then ¢ ~ p.

Normalized importance sampling corrects
(mostly) for the approximation by drawing many se-
quences y(1, ... y(™) TID from (27) and assigning
&Py i

a(y(™]x)
ensemble of weighted particles yields a distribution

y(™) a relative weight of w(™

(28)

M m —v(m

ply) & Bty) & ply | %)
that can be used as discussed in §1.3. To com-
pute w™) in practice, we replace the numerator
p(y™) | x) by the unnormalized version exp G,
which gives the same p. Recall that each G is a
sum Zthl go(-).

Sequential importance sampling is an equivalent
implementation that makes ¢ the outer loop and m
the inner loop. It computes a prefix ensemble

v () ey)

for each 0 < ¢t < T in sequence. Initially,

(y:(gl),wém)) = (€,exp Cy) for all m. Then for

0 <t < T, we extend these particles in parallel:
v =y

(m) __ (m) exp (go(st—1,@,yt) + Ct — Ci_1)
Wy ~ =Wy
q(yelx,y 1)

(concatenation) (30)

€1V

where each y,gm) is drawn from (26). Each Y; yields
a distribution p; over prefixes y.;, which estimates

the distribution p;(y ;) X exp (Gt+C}). We return

»E pr ~ pr = p. This gives the same p as in

(28): the final y(Tm) are the same, with the same

final weights w(Tm) = q‘(a;(?ifg\i)

summed up as Cy + Zthl go(-+-)+Cy — Cy1.
That is our basic particle smoothing strategy. If
we use the naive approximation Cy = 0 everywhere,
it reduces to particle filtering. In either case, various
well-studied improvements become available, such
as various resampling schemes (Douc and Cappé,
2005) and the particle cascade (Paige et al., 2014).%
An easy improvement is multinomial resampling.
After computing each py, this replaces Y; with a set
of M new draws from p; (= p;), each of weight
1—which tends to drop low-weight particles and
duplicate high-weight ones.” For this to usefully
focus the ensemble on good prefixes y.;, p: should
be a good approximation to the true marginal
p(y.; | x) o< exp (G + H;) from (10). That is why
we arranged for p;(y.,) o exp (G¢ + C}). Without
C', we would have only p;(y.;) o exp G;—which
is fine for the traditional particle filtering setting,
but in our setting it ignores future information in x.
(which we have assumed is available) and also fa-
vors sequences y that happen to accumulate most of
their global score G early rather than late (which
is possible when the globally normalized model
(1)—(2) is not factored in the generative form (4)).

, where G was now

5 Training the Sampler Heuristic

We now consider training the parameters ¢ of our
sampler. These parameters determine the updates f¢
in (6) and the compatibility function cy in (25). As
a result, they determine the proposal distribution ¢
used in equations (27) and (31), and thus determine
the stochastic choice of p that is returned by the
sampler on a given input x.

In this paper, we simply try to tune ¢ to yield
good proposals. Specifically, we try to ensure that
¢4(y | x) in equation (27) is close to p(y | x) from
equation (1). While this may not be necessary for
the sampler to perform well downstream,'? it does

8The particle cascade would benefit from an estimate of i t
as it (like A™ search) compares particles of different lengths.

*While resampling mitigates the degeneracy problem, it
could also reduce the diversity of particles. In our experiments
in this paper, we only do multinomial resampling when the ef-
fective sample size of p, is lower than % Doucet and Johansen
(2009) give a more thorough discussion on when to resample.

°In principle, one could attempt to train ¢ “end-to-end”
on some downstream objective by using reinforcement learn-
ing or the Gumbel-softmax trick (Jang et al., 2017; Maddison
et al., 2017). For example, we might try to ensure that p closely
matches the model’s distribution p (equation (28))—the “na-

guarantee it (assuming that the model p is correct).
Specifically, we seek to minimize

(1= \)KL(pllgs) + AKL(gs|lp) (with A € [0,1])
(32)
averaged over examples x drawn from a training
set.!! (The training set need not provide true y’s.)
The inclusive KL divergence KL (p||gy) is an ex-
pectation under p. We estimate it by replacing p with
a sample p, which in practice we can obtain with our
sampler under the current ¢. (The danger, then, is
that p will be biased when ¢ is not yet well-trained;
this can be mitigated by increasing the sample size
M when drawing p for training purposes.)
Intuitively, this term tries to encourage g, in fu-
ture to re-propose those y values that turned out to
be “good” and survived into p with high weights.
The exclusive KL divergence KL(gg4||p) is an
expectation under g4. Since we can sample from
qe exactly, we can get an unbiased estimate of
V »KL(ge||p) with the likelihood ratio trick (Glynn,
1990).!2 (The danger is that such “REINFORCE”
methods tend to suffer from very high variance.)
This term is a popular objective for variational
approximation. Here, it tries to discourage ¢, from
re-proposing “bad” y values that turned out to have
low exp G relative to their proposal probability.
Our experiments balance “recall” (inclusive) and
“precision” (exclusive) by taking A = % (which Ap-
pendix F compares to A € {0,1}). Alas, because
of our approximation to the inclusive term, neither
term’s gradient will “find” and directly encourage
good y values that have never been proposed. Ap-
pendix B gives further discussion and formulas.

6 Models for the Experiments

To evaluate our methods, we needed pre-trained
models pg. We experimented on several models. In
each case, we trained a generative model py(x,y),
so that we could try sampling from its posterior dis-
tribution pg(y | x). This is a very common setting
where particle smoothing should be able to help.
Details for replication are given in Appendix C.

tural” goal of sampling. This objective can tolerate inaccurate
local proposal distributions in cases where the algorithm could
recover from them through resampling. Looking even farther
downstream, we might merely want p—which is typically used
to compute expectations—to provide accurate guidance to some
decision or training process (see Appendix E). This might not
require fully matching the model, and might even make it desir-
able to deviate from an inaccurate model.

"'"Training a single approximation g for all x is known as
amortized inference.

"2The normalizing constant of p from (1) can be ignored
because the gradient of a constant is 0.

6.1 Tagging models

We can regard a tagged sentence (x,y) as a string
over the “pair alphabet” X x). We train an RNN
language model over this “pair alphabet”—this is a
neuralized OOHMM as suggested in §3.2:

T

logpo(x,y) = > _logpg(we, ye | s1-1)
t=1

(33)

This model is locally normalized, so that
log pg(x,y) (as well as its gradient) is straightfor-
ward to compute for a given training pair (X,y).
Joint sampling from it would also be easy (§3.2).

However, p(y | x) is globally renormalized (by
an unknown partition function that depends on x,
namely exp Hy). Conditional sampling of y is there-
fore potentially hard. Choosing ¥; optimally re-
quires knowledge of H;, which depends on the fu-
ture xz..

As we noted in §1, many NLP tasks can be seen as
tagging problems. In this paper we experiment with
two such tasks: English stressed syllable tagging,
where the stress of a syllable often depends on the
number of remaining syllables,'? providing good
reason to use the lookahead provided by particle
smoothing; and Chinese NER, which is a familiar
textbook application and reminds the reader that our
formal setup (tagging) provides enough machinery
to treat other tasks (chunking).

English stressed syllable tagging This task tags
a sequence of phonemes x, which form a word,
with their stress markings y. Our training examples
are the stressed words in the CMU pronunciation
dictionary (Weide, 1998). We test the sampler on
held-out unstressed words.

Chinese social media NER This task does
named entity recognition in Chinese, by tagging
the characters of a Chinese sentence in a way that
marks the named entities. We use the dataset from
Peng and Dredze (2015), whose tagging scheme is
a variant of the BIO scheme mentioned in §1. We
test the sampler on held-out sentences.

6.2 String source separation

This is an artificial task that provides a discrete ana-
logue of speech source separation (Zibulevsky and
Pearlmutter, 2001). The generative model is that J
strings (possibly of different lengths) are generated

3English, like many other languages, assigns stress from
right to left (Hayes, 1995).

IID from an RNN language model, and are then
combined into a single string x according to a ran-
dom interleaving string y.'* The posterior p(y | x)
predicts the interleaving string, which suffices to re-
construct the original strings. The interleaving string
is selected from the uniform distribution over all pos-
sible interleavings (given the .J strings’ lengths). For
example, with J = 2, a possible generative story is
that we first sample two strings Foo and Bar from an
RNN language model. We then draw an interleav-
ing string 112122 from the aforementioned uniform
distribution, and interleave the J strings determinis-
tically to get FoBoar.

p(x,y) is proportional to the product of the prob-
abilities of the J strings. The only parameters of
Dg, then, are the parameters of the RNN language
model, which we train on clean (non-interleaved)
samples from a corpus. We test the sampler on ran-
dom interleavings of held-out samples.

The state s (which is provided as an input to ¢y
in (25)) is the concatenation of the .J states of the
language model as it independently generates the J
strings, and gy (s;—1, x¢, y¢) is the log-probability of
generating x; as the next character of the y;" string,
given that string’s language model state within s;_1.
As a special case, x = EOS (see footnote 1), and
go(sT—1,EO0S, EOS) is the total log-probability of
termination in all J language model states.

String source separation has good reason for
lookahead: appending character “0” to a recon-
structed string “_gh” is only advisable if “s” and
“t” are coming up soon to make “ghost.” It also il-
lustrates a powerful application setting—posterior
inference under a generative model. This task conve-
niently allowed us to construct the generative model
from a pre-trained language model. Our constructed
generative model illustrates that the state s and tran-
sition function f can reflect interesting problem-
specific structure.

CMU Pronunciation dictionary The CMU pro-
nunciation dictionary (already used above) provides
sequences of phonemes. Here we use words no
longer than 5 phonemes. We interleave the (un-
stressed) phonemes of J = 5 words.

Penn Treebank The PTB corpus (Marcus et al.,
1993) provides English sentences, from which we
use only the sentences of length < 8. We interleave
the words of J = 2 sentences.

“We formally describe the generative process in Ap-
pendix G.

7 Experiments

In our experiments, we are given a pre-trained scor-
ing model pg, and we train the parameters ¢ of a
particle smoothing algorithm. !

We now show that our proposed neural particle
smoothing sampler does better than the particle filter-
ing sampler. To define “better,” we evaluate samplers
on the offset KL divergence from the true posterior.

7.1 Evaluation metrics

Given x, the “natural” goal of conditional sampling
is for the sample distribution p(y) to approximate
the true distribution py(y | x) = exp G/ exp Hy
from (1). We will therefore report—averaged over
all held-out test examples x—the KL divergence

KL(p||p) = Ey~s [log p(y)] (34)
— (Ey~p [logp(y | x)] —log Z(x))

where p(y | x) denotes the unnormalized distribu-
tion given by exp G in (2), and Z(x) denotes its
normalizing constant, exp Ho = > p(y | x).

As we are unable to compute log Z(x) in practice,
we replace it with an estimate z(x) to obtain an
offset KL divergence. This change of constant does
not change the measured difference between two
samplers, KL(p1||p) — KL(p2||p). Nonetheless, we
try to use a reasonable estimate so that the reported
KL divergence is interpretable in an absolute sense.
Specifically, we take z(x) =log >y, B(y | x) <
log Z, where) is the full set of distinct particles
y that we ever drew for input x, including samples
from the beam search models, while constructing
the experimental results graph.'® Thus, the offset
KL divergence is a “best effort” lower bound on the
true exclusive KL divergence KL(p||p).

7.2 Results

In all experiments we compute the offset KL diver-
gence for both the particle filtering samplers and the
particle smoothing samplers, for varying ensemble
sizes M. We also compare against a beam search
baseline that keeps the highest-scoring M particles
at each step (scored by exp G; with no lookahead).
The results are in Figures 2a—2d.

I5For the details of the training procedures and the specific
neural architectures in our models, see Appendices C and D.

16Thus,) was collected across all samplings, iterations,and
ensemble sizes M, in an attempt to make the summation over
Y as complete as possible. For good measure, we added some
extra particles: whenever we drew M particles via particle
smoothing, we drew an additional 2 particles by particle
filtering and added them to).

225

2.00

175

1.50

125

1.00

0.75

0.50

0.25

- PF
.- PER
— BEAM
— ps N
—&- PSR =

(a) tagging: stressed syllables

(b) tagging: Chinese NER

10! 107 10t 102

(c) source separation: PTB (d) source separation: CMUdict

Figure 2: Offset KL divergences for the tasks in §§ 6.1 and 6.2. The logarithmic z-axis is the size of particles M (8 < M < 128).
The y-axis is the offset KL divergence described in §7.1 (in bits per sequence). The smoothing samplers offer considerable speedup:
for example, in Figure 2a, the non-resampled smoothing sampler achieves comparable offset KL divergences with only 1/4 as many
particles as its filtering counterparts. Abbreviations in the legend: PF=particle filtering. PS=particle smoothing. BEAM=beam
search. “:R’ suffixes indicate resampled variants. For readability, beam search results are omitted from Figure 2d, but appear in

Figure 3 of the appendices.

Given a fixed ensemble size, we see the smooth-
ing sampler consistently performs better than the
filtering counterpart. It often achieves comparable
performance at a fraction of the ensemble size.

Beam search on the other hand falls behind on
three tasks: stress prediction and the two source
separation tasks. It does perform better than the
stochastic methods on the Chinese NER task, but
only at small beam sizes. Varying the beam size
barely affects performance at all, across all tasks.
This suggests that beam search is unable to explore
the hypothesis space well.

We experiment with resampling for both the parti-
cle filtering sampler and our smoothing sampler. In
source separation and stressed syllable prediction,
where the right context contains critical information
about how viable a particle is, resampling helps par-
ticle filtering almost catch up to particle smoothing.
Particle smoothing itself is not further improved by
resampling, presumably because its effective sam-
ple size is high. The goal of resampling is to kill
off low-weight particles (which were overproposed)
and reallocate their resources to higher-weight ones.
But with particle smoothing, there are fewer low-
weight particles, so the benefit of resampling may be
outweighted by its cost (namely, increased variance).

8 Related Work

Much previous work has employed sequential im-
portance sampling for approximate inference of in-
tractable distributions (e.g., Thrun, 2000; Andrews
et al., 2017). Some of this work learns adaptive
proposal distributions in this setting (e.g. Gu et al.,
2015; Paige and Wood, 2016). The key difference
in our work is that we consider future inputs, which
is impossible in online decision settings such as
robotics. Klaas et al. (2006) did do particle smooth-
ing, like us, but they did not learn adaptive proposal
distributions.

Just as we use a right-to-left RNN to guide pos-
terior sampling of a left-to-right generative model,
Krishnan et al. (2017) employed a right-to-left RNN
to guide posterior marginal inference in the same
sort of model. Serdyuk et al. (2018) used a right-to-
left RNN to regularize training of such a model.

9 Conclusion

We have described neural particle smoothing, a se-
quential Monte Carlo method for approximate sam-
pling from the posterior of incremental neural scor-
ing models. Sequential importance sampling has
arguably been underused in the natural language pro-
cessing community. It is quite a plausible strategy
for dealing with rich, globally normalized probabil-
ity models such as neural models—particularly if a
good sequential proposal distribution can be found.
Our contribution is a neural proposal distribution,
which goes beyond particle filtering in that it uses a
right-to-left recurrent neural network to “look ahead”
to future symbols of x when proposing each symbol
y¢. The form of our distribution is well-motivated.

There are many possible extensions to the work in
this paper. For example, we can learn the generative
model and proposal distribution jointly; we can also
infuse them with hand-crafted structure, or use more
deeply stacked architectures; and we can try training
the proposal distribution end-to-end (footnote 10).
Another possible extension would be to allow each
step of g to propose a sequence of actions, effectively
making the tagset size co. This extension relaxes our
ly| = |x| restriction from §1 and would allow us to
do general sequence-to-sequence transduction.

Acknowledgements

This work has been generously supported by a
Google Faculty Research Award and by Grant No.
1718846 from the National Science Foundation.

References

Roee Aharoni and Yoav Goldberg. 2017. Morphological
inflection generation with hard monotonic attention.
In ACL.

Daniel Andor, Chris Alberti, David Weiss, Aliaksei
Severyn, Alessandro Presta, Kuzman Ganchev, Slav
Petrov, and Michael Collins. 2016. Globally normal-
ized transition-based neural networks. In ACL.

Nicholas Andrews, Mark Dredze, Benjamin Van Durme,
and Jason Eisner. 2017. Bayesian modeling of lexical
resources for low-resource settings. In ACL.

Dzmitry Bahdanau, Philemon Brakel, Kelvin Xu,
Anirudh Goyal, Ryan Lowe, Joelle Pineau, Aaron
Courville, and Yoshua Bengio. 2017. An actor-critic
algorithm for sequence prediction. In ICLR.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio.
2015. Neural machine translation by jointly learning
to align and translate. In ICLR.

Yoshua Bengio and Paolo Frasconi. 1996. Input-output
HMMs for sequence processing. IEEE Transactions
on Neural Networks, 7(5):1231-1249.

Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N.
Vapnik. 1992. A training algorithm for optimal margin
classifiers. In COLT.

Alexandre Bouchard-Co6té, Percy Liang, Thomas Grif-
fiths, and Dan Klein. 2007. A probabilistic approach
to diachronic phonology. In EMNLP-CoNLL, pages
887-896.

Kyunghyun Cho, Bart van Merrienboer, Caglar Giilgehre,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio.
2014. Learning phrase representations using RNN
encoder-decoder for statistical machine translation. In
EMNLP.

Ryan Cotterell, John Sylak-Glassman, and Christo Kirov.
2017. Neural graphical models over strings for prin-
cipal parts morphological paradigm completion. In
Proceedings of the 15th Conference of the European
Chapter of the Association for Computational Linguis-
tics: Volume 2, Short Papers, pages 759-765.

Randal Douc and Olivier Cappé. 2005. Comparison of
resampling schemes for particle filtering. In Image
and Signal Processing and Analysis, 2005. ISPA 2005.
Proceedings of the 4th International Symposium on,
pages 64-69. IEEE.

Arnaud Doucet and Adam M. Johansen. 2009. A tutorial
on particle filtering and smoothing: Fifteen years later.
Handbook of Nonlinear Filtering, 12(656-704):3.

Markus Dreyer and Jason Eisner. 2009. Graphical mod-
els over multiple strings. In EMNLP.

Markus Dreyer, Jason R. Smith, and Jason Eisner. 2008.
Latent-variable modeling of string transductions with
finite-state methods. In EMNLP.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
based dependency parsing with stack long short-term
memory. In ACL.

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros, and
Noah A. Smith. 2016. Recurrent neural network gram-
mars. In HLT-NAACL.

Jenny Rose Finkel, Christopher D. Manning, and An-
drew Y. Ng. 2006. Solving the problem of cascading
errors: Approximate Bayesian inference for linguistic
annotation pipelines. In EMNLP.

Peter W. Glynn. 1990. Likelihood ratio gradient estima-
tion for stochastic systems. Communications of the
ACM, 33(10):75-84.

Shixiang Gu, Zoubin Ghahramani, and Richard E. Turner.
2015. Neural adaptive sequential Monte Carlo. In
NIPS.

Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. 1968.
A formal basis for the heuristic determination of mini-
mal cost paths. 4(2):100-107.

Bruce Hayes. 1995. Metrical Stress Theory: Principles
and Case Studies. University of Chicago Press.

Alexander T. Thler and David A. McAllester. 2009. Parti-
cle belief propagation. In AISTATS.

Eric Jang, Shixiang Gu, and Ben Poole. 2017. Cate-
gorical reparameterization with Gumbel-softmax. In
ICLR.

Katharina Kann and Hinrich Schiitze. 2016. Single-
model encoder-decoder with explicit morphological
representation for reinflection. In ACL.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In /CLR.

Mike Klaas, Mark Briers, Nando de Freitas, Arnaud
Doucet, Simon Maskell, and Dustin Lang. 2006. Fast
particle smoothing: If I had a million particles. In
ICML.

Bjarne Knudsen and Michael M. Miyamoto. 2003. Se-
quence alignments and pair hidden Markov models
using evolutionary history. Journal of Molecular Bio-
logy, 333(2):453 — 460.

Rahul G. Krishnan, Uri Shalit, and David Sontag. 2017.
Structured inference networks for nonlinear state space
models. In AAAL

John Lafferty, Andrew McCallum, and Fernando C. N.
Pereira. 2001. Conditional random fields: Probabilis-
tic models for segmenting and labeling sequence data.
In ICML.

Thibaut Lienart, Yee Whye Teh, and Arnaud Doucet.
2015. Expectation particle belief propagation. In
NIPS.

Roderick J. A. Little and Donald B. Rubin. 1987. Sta-
tistical Analysis with Missing Data. J. Wiley & Sons,
New York.

Chris J. Maddison, Andriy Mnih, and Yee Whye Teh.
2017. The concrete distribution: A continuous relax-
ation of discrete random variables. In /CLR.

Mitchell P. Marcus, Mary Ann Marcinkiewicz, and Beat-
rice Santorini. 1993. Building a large annotated cor-
pus of English: The Penn treebank. Computational
Linguistics, 19(2):313-330.

Andrew McCallum, Dayne Freitag, and Fernando Pereira.
2000. Maximum entropy Markov models for informa-
tion extraction and segmentation. In Machine Learn-
ing: Proceedings of the 17th International Conference
(ICML 2000), pages 591-598, Stanford, CA.

Tomas Mikolov, Martin Karafidt, Lukas Burget, Jan Cer-
nocky, and Sanjeev Khudanpur. 2010. Recurrent neu-
ral network based language model. In Interspeech,
volume 2, page 3.

Brooks Paige and Frank D. Wood. 2016. Inference net-
works for sequential Monte Carlo in graphical models.
In ICML.

Brooks Paige, Frank D. Wood, Arnaud Doucet, and
Yee Whye Teh. 2014. Asynchronous anytime sequen-
tial Monte Carlo. In NIPS.

Nanyun Peng and Mark Dredze. 2015. Named en-
tity recognition for Chinese social media with jointly
trained embeddings. In EMNLP.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. GloVe: Global vectors for word rep-
resentation. In EMNLP.

Fernando C. N. Pereira and Michael D. Riley. 1997.
Speech recognition by composition of weighted finite
automata. Finite-State Language Processing, page
431.

Lawrence R. Rabiner. 1989. A tutorial on hidden Markov
models and selected applications in speech recognition.
Proceedings of IEEE, 77(2):257-285.

Lance A. Ramshaw and Mitchell P. Marcus. 1999. Text
chunking using transformation-based learning. In Na-
tural Language Processing Using Very Large Corpora,
pages 157-176. Springer.

Branko Ristic, Sanjeev Arulampalam, and Neil James
Gordon. 2004. Beyond the Kalman Filter: Particle
Filters for Tracking Applications. Artech House.

Herbert Robbins and Sutton Monro. 1951. A stochastic
approximation method. The Annals of Mathematical
Statistics, pages 400-407.

Dmitriy Serdyuk, Nan Rosemary Ke, Alessandro Sordonti,
Adam Trischler, Chris Pal, and Yoshua Bengio. 2018.
Twin networks: Matching the future for sequence ge-
neration. In ICLR.

Andreas Stuhlmiiller, Jacob Taylor, and Noah Goodman.
2013. Learning stochastic inverses. In NIPS.

Sebastian Thrun. 2000. Monte Carlo POMDPs. In NIPS.

Andrew J. Viterbi. 1967. Error bounds for convolutional
codes and an asymptotically optimum decoding al-
gorithm. IEEE Transactions on Information Theory,
IT-13(2):260-269.

Greg C. G. Wei and Martin A. Tanner. 1990. A Monte
Carlo implementation of the EM algorithm and the
poor man’s data augmentation algorithms. Journal
of the American Statistical Association, 85(411):699—
704.

Robert L. Weide. 1998. The CMU pronunciation dictio-
nary, release 0.6.

Ronald J. Williams. 1992. Simple statistical gradient-
following algorithms for connectionist reinforcement
learning. Machine Learning, 8(23).

Sam Wiseman and Alexander M. Rush. 2016. Sequence-
to-sequence learning as beam-search optimization. In
EMNLP.

Hiroyasu Yamada and Yuji Matsumoto. 2003. Statistical
dependency analysis with support vector machines. In
Proceedings of IWPT, volume 3, pages 195-206.

Michael Zibulevsky and Barak A. Pearlmutter. 2001.
Blind source separation by sparse decomposition in
a signal dictionary. Neural Computation, 13(4):863—
882.

A The logprob-to-go for HMMs

As noted in §2.1, the logprob-to-go H; can be com-
puted by the backward algorithm. By the definition
of H; in equation (10),

expH, = > exp (Gr — Gi) (35)
yt:
T
—Zexp > go(sj-1, x5,y (36)
Jj=t+1
=> H po(yj | yj—1) - polz; | y;)
Y. J=t+1

= (B;)y, (backward prob of y; at time t)

where the vector 3, is defined by base case (B7), =
1 and for 0 < ¢ < T by the recurrence

By = po(xe, v |yt =) (37)
Yt:
= o' |v) - poxes1 | V) (Beyr)y
y/

The backward algorithm (20) for OOHMMs in
§2.2 is a variant of this.

B Gradients for Training the Proposal
Distribution

For a given x, both forms of KL divergence achieve
their minimum of 0 when (Vy) ¢4 (y | x) = p(y |
x). However, we are unlikely to be able to find such
a ¢; the two metrics penalize g4 differently for mis-
matches. We simplify the notation below by writing
¢4(y) and p(y), suppressing the conditioning on x.

Inclusive KL Divergence The inclusive KL di-
vergence has that name because it is finite only when
support(gs) 2 support(p), i.e., when g4 is capable
of proposing any string y that has positive proba-
bility under p. This is required for gy to be a valid
proposal distribution for importance sampling.

KL (p|lgg) (38)
=Eyp logp (y)
=Eyp logp (y)]

—Eyp[log gy (v)]

—log qg(y)]

The first term Ey., [log p (y)] is a constant with
regard to ¢. As a result, the gradient of the above is
just the gradient of the second term:

VKL(pl|4g) = Vs Ey~p [~ log gy (y)]

the cross-entropy H (p,qg)

We cannot directly sample from p. However, our
weighted mixture p from equation (28) (obtained by
sequential importance sampling) could be a good
approximation:

(39)

VeKL(pllgs) = VEy~p [~ log gs (y)]

T
=> El-
t=1

Following this approximate gradient downhill has an
intuitive interpretation: if a particular ¥, value ends
up with high relative weight in the final ensemble p,
then we will try to adjust g so that it would have
had a high probability of proposing that ¥, value at
step ¢ in the first place.

V¢ log d¢ (yt | Yit—1, X)]

Exclusive KL Divergence The exclusive diver-
gence has that name because it is finite only when
support(gs) C support(p). It is defined by

Eyn~qs [l0g qs(y) — logp(y)] (40)
= Eynyg, [log qs(y) — log p(y)] +log Z
—Z% [log g4 (y) — log p(y)] + log Z

call this dg (y)

KL(gsllp) =

where p(y) = 2 p(y) for p(y) = exp Gr and Z =
>y DB(y) Wlth some rearrangement, we can write
its gradlent as an expectation that can be estimated
by sampling from g,.!” Observing that Z is constant
with respect to ¢, first write

VsKL(gs||p) D
= Ve (a6(y) ds(y)) (42)
y
:Z Vas(y)) do(y)
+ZQ¢)V logqy(y)
=V444(y)
= (Voas(y)) dy(y)
y
where the last step uses the fact that

>y Vots(y) = Vg yas(y) = Vel = 0.
We can turn this into an expectation with a
second use of Glynn (1990)’s observation that

7This is an extension of the REINFORCE trick (Williams,
1992), which estimates the gradient of Ey.g, [reward(y)]
when the reward is independent of ¢. In our case, the expecta-
tion is over a quantity that does depend on ¢.

Vots(y) = q4(y)Vgloggs(y) (the “likelihood
ratio trick™):

V¢KL(Q¢‘ Ip)
= Z q¢(y)d¢(y)v¢ log (M)(Y)
y

=Eyq, [ds(y)Velogas(y)] (43)
which can, if desired, be further rewritten as

= Eyng, [ds(y) Vo dy(y)]

=By, [Vo (3d6(y)°)] (44)

If we regard dy(y) as a signed error (in the log do-
main) in trying to fit g4 to p, then the above gradient
of KL can be interpreted as the gradient of the mean
squared error (divided by 2).'8

We would get the same gradient for any rescaled
version of the unnormalized distribution p, but the
formula for obtaining that gradient would be dif-
ferent. In particular, if we rewrite the above deriva-
tion but add a constant b to both log p(y) and log Z
throughout (equivalent to adding b to G), we will
get the slightly generalized expectation formulas

Ey~gy [(do(y) = b)Vglog gy (y)] (45)

Byeq, [Vo (3sv) -0%)] o)
in place of equations (43) and (44). By choosing an
appropriate “baseline” b, we can reduce the variance
of the sampling-based estimate of these expectations.
This is similar to the use of a baseline in the REIN-
FORCE algorithm (Williams, 1992). In this work
we choose b using an exponential moving average
of past E [dy(y)] values: at the end of each training
I{linibatch, we update b <— 0.1 -b+ 0.9 - d, where
d is the mean of the estimated Ey g (.x) [d(¥)]
values for all examples x in the minibatch.

C Implementation Details

We implement all RNNs in this paper as GRU net-
works (Cho et al., 2014) with d = 32 hidden units
(state space R3?). Each of our models (§6) always
specifies the logprob-so-far in equations (2) and (3)
using a 1-layer left-to-right GRU,'® while the corre-
sponding proposal distribution (§3.3) always spec-
ifies the state S; in (6) using a 2-layer right-to-left

18We thank Hongyuan Mei, Tim Vieira, and Sanjeev Khu-

danpur for insightful discussions on this derivation.

For the tagging task described in §6.1, go (St—1,Tt,Yt) &

log po(x+, y: | st—1), where the GRU state s¢—1 is used to
define a softmax distribution over possible (z+, y+) pairs in the
same manner as an RNN language model (Mikolov et al., 2010).
Likewise, for the source separation task (§6.2), the source lan-
guage models described in Appendix G are GRU-based RNN
language models.

30

o [—_
-&- PER
04 — BEAM
— ps
—e— PSR

15 1

101

10! 102
Figure 3: Offset KL divergence for the source separation task
on phoneme sequences.

GRU, and specifies the compatibility function C} in
(23) using a 4-layer feedforward ReLU network.?’
For the Chinese social media NER task (§6.1), we
use the Chinese character embeddings provided by
Peng and Dredze (2015), while for the source separa-
tion tasks (§6.2), we use the 50-dimensional GloVe
word embeddings (Pennington et al., 2014). In other
cases, we train embeddings along with the rest of
the network. We optimize with the Adam optimizer
using the default parameters (Kingma and Ba, 2015)
and Lo regularization coefficient of 107°.

D Training Procedures

In all our experiments, we train the incremental scor-
ing models (the tagging and source separation mod-
els described in §6.1 and §6.2, respectively) on the
training dataset 7'. We do early stopping, using per-
plexity on a held-out development set D; to choose
the number of epochs to train (maximum of 3).

Having obtained these model parameters 6, we
train our proposal distributions gg on T', keeping
0 fixed and only tuning ¢. Again we use early stop-
ping, using the KL divergence from §7.1 on a sep-
arate development set Dy to choose the number of
epochs to train (maximum of 20 for the two tag-
ging tasks and source separation on the PTB dataset,
and maximum of 50 for source separation on the
phoneme sequence dataset). We then evaluate gg+ o+
on the test dataset F.

[Appendices E-G appear in the supplementary
material file.]

2 As input to C;, we actually provide not only s;, §; but also
the states fo(s¢+—1, x+,y) (including s;) that could have been
reached for each possible value y of y;. We have to compute
these anyway while constructing the proposal distribution, and
we find that it helps performance to include them.

E Applications of Sampling

In this paper, we evaluate our sampling algorithms
“intrinsically” by how well a sample approximates
the model distribution pg—rather than “extrinsically”
by using the samples in some larger method.

That said, §1.3 did list some larger methods that
make use of sampling. We review them here for the
interested reader.

Minimum-risk decoding seeks the output

arg;niang(y | x) - loss(z | y) 47)
y

In the special case where loss(z | y) simply asks
whether z # y, this simply returns the “Viterbi”
sequence y that maximises pg(y | x). However, it
may give a different answer if the loss function gives
partial credit (when z = y), or if the space of outputs
z is simply coarser than the space of taggings y—
for example, if there are many action sequences y
that could build the same output structure z. In these
cases, the optimal z may win due to the combined
support of many suboptimal y values, and so finding
the optimal y (the Viterbi sequence) is not enough
to determine the optimal z.

The risk objective (47) is a expensive expectation
under the distribution py(y | x). To approximate it,
one can replace pyp(y | x) with an approximation
p(y) that has small support so that the summation
is efficient. Particle smoothing returns such a p—
a non-uniform distribution (28) over M particles.
Since those particles are randomly drawn, p is it-
self stochastic, but E [p(y)] =~ py(y | x), with the
approximation improving with the quality of the pro-
posal distribution (which is the focus of this paper)
and with M.

In supervised training of the model (1) by max-
imizing conditional log-likelihood, the gradient of
log p(y* | x) on a single training example (x,y™)
is Vologpe(y™ | x) = VoG — > po(y | %) -
V¢Gr. The sum is again an expectation that can be
estimated by using p. Since E [p(y)] = po(y | x),
this yields a stochastic estimate of the gradient that
can be used in the stochastic gradient ascent algo-
rithm (Robbins and Monro, 1951).2!

ZI'Notice that the gradient takes this “difficult” form only
because the model is globally normalized. If we were training a
locally normalized conditional model (McCallum et al., 2000),
or a locally normalized joint model like equation (4), then sam-
pling methods would not be needed, because the gradient of
the (conditional or joint) log-likelihood would decompose into
T “easy” summands that each involve an expectation over the
small set of y; values for some ¢, rather than over the exponen-

In unsupervised or semi-supervised training of a
generative model py(x,y), one has some training
examples where y* is unobserved or observed in-
completely (e.g., perhaps only z is observed). The
Monte Carlo EM algorithm for estimating 6 (Wei
and Tanner, 1990) replaces the missing y* with sam-
ples from py(y | x, partial observation) (this is the
Monte Carlo “E step”). This multiple imputation
procedure has other uses as well in statistical analy-
sis with missing data (Little and Rubin, 1987).

Modular architectures provide another use for
sampling. If py(y | x) is just one stage in an NLP
annotation pipeline, Finkel et al. (2006) recommend
passing a diverse sample of y values on to the
next stage, where they can be further annotated and
rescored or rejected. More generally, in a graphi-
cal model that relates multiple strings (Bouchard-
Coté et al., 2007; Dreyer and Eisner, 2009; Cotterell
et al., 2017), inference could be performed by parti-
cle belief propagation (Ihler and McAllester, 2009;
Lienart et al., 2015), or with the help of stochastic-
inverse proposal distributions (Stuhlmiiller et al.,
2013). These methods call conditional sampling as
a subroutine.

tially larger set of strings y. However, this simplification goes
away outside the fully supervised case, as the next paragraph
discusses.

35 1

30 1

25 A

---- PF
—— PS:inclusive KL
—— PS: exclusive KL
—— PS: combined

20 A

15 1

10 A

2 x 10! 3x 10! 4x 10! 6 x 10!

Figure 4: Offset KL divergence on the last char task: a patho-
logical case where a naive particle filtering sampler does really
horribly, and an ill-trained smoothing sampler even worse. The
logarithmic x-axis is the particle size used to train the sampler.
At test time we evaluate with the same particle size (M = 32).

F Effect of different objective functions
on lookahead optimization

§5 discussed inclusive and exclusive KL diver-
gences, and gave our rationale for optimizing an
interpolation of the two. Here we study the effect
of the interpolation weight. We train the lookahead
sampler, and the joint language model, on a toy prob-
lem called “last char,” where y is a deterministic
function of x: either a lowercased version of x, or
an identical copy of x, depending on whether the
last character of x is 0 or 1. Note that this problem
requires lookahead.

We obtain our x sequences by taking the
phoneme sequence data from the stressed syl-
lable tagging task and flipping a fair coin to
decide whether to append 0 or 1 to each se-
quence. Thus, the dataset may include (x,y)
pairs such as (K AU CH 0, k au ch 1)
or (K AU CH 1, K AU CH 1), but not
(K AU CH 1, k au ch 1).

We treat this as a tagging problem, and treat it
with our tagging model in §6.1. Results are in Fig-
ure 4. We see that optimizing for KL(p||q) at a
low particle size gives much worse performance
than other methods. On the other hand, the objec-
tive function KL(q||p) achieves constantly good per-
formance. The middle ground w i
proves when the particle size increases, and achieves
better results than KL(g||p) at larger particle sizes.

1m-

G Generative process for source

separation
Given an alphabet X, J strings
xM x@ . x()) e ¥* are independently
sampled from the respective distributions

pM . p) over T (possibly all the same
distribution p() = = p)). These source
strings are then combined into a single observed
string x, of length K’ =) j K, according to an in-
terleaving string y, also of length K. For example,
y = 1132123 means to take two characters from
X(l), then a character from X(3), then a character
from x(?), etc. Formally speaking, y is an element
of the mix language Yy = MIx(1%1,2k2 ki),
and we construct x by specifying the character
xp € X to be $|(~Z{J:<)k:yi:yk}|‘ We assume that y is
drawn from some distribution over). The source
separation problem is to recover the interleaving
string y from the interleaved string x.

We assume that each source model pt?) (xU)) is
an RNN language model—that is, a locally normal-
ized state machine that successively generates each
character of x() given its left context. Thus, each

source model is in some state s(J)

the prefix x(g). In the remainder of this paragraph,
we suppress the superscript () for simplicity. The
model now stochastically generates character x4y
with probability p(z;4+1 | s¢), and from s; and this
Z¢41 it deterministically computes its new state sy 1.
If 2141 is a special “end-of-sequence” character EOS,
we return X = X..

Given only x of length 7', we see that y could
be any element of {1,2,...,J}7. We can write
the posterior probability of a given y (by Bayes’
Theorem) as

after generating

J
p(y %) o« py) [T (x7) @®)
=1

where (for this given y) x) denotes the subse-
quence of x at indices & such that y; = j. In our
experiments, we assume that y was drawn uniformly
from), so p(y) is constant and can be ignored. In
general, the set of possible interleavings)y is so
large that computing the constant of proportional-
ity (partition function) for a given x becomes pro-
hibitive.

