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Abstract

We introduce neural particle smoothing, a

sequential Monte Carlo method for sampling

annotations of an input string from a given

probability model. In contrast to conventional

particle filtering algorithms, we train a proposal

distribution that looks ahead to the end of

the input string by means of a right-to-left

LSTM. We demonstrate that this innovation can

improve the quality of the sample. To motivate

our formal choices, we explain how our neural

model and neural sampler can be viewed as

low-dimensional but nonlinear approximations

to working with HMMs over very large state

spaces.

1 Introduction

Many structured prediction problems in NLP can

be reduced to labeling a length-T input string x

with a length-T sequence y of tags. In some cases,

these tags are annotations such as syntactic parts of

speech. In other cases, they represent actions that

incrementally build an output structure: IOB tags

build a chunking of the input (Ramshaw and Marcus,

1999), shift-reduce actions build a tree (Yamada and

Matsumoto, 2003), and finite-state transducer arcs

build an output string (Pereira and Riley, 1997).

One may wish to score the possible taggings us-

ing a recurrent neural network, which can learn to be

sensitive to complex patterns in the training data. A

globally normalized conditional probability model

is particularly valuable because it quantifies uncer-

tainty and does not suffer from label bias (Lafferty

et al., 2001); also, such models often arise as the

predictive conditional distribution p(y | x) corre-

sponding to some well-designed generative model

p(x,y) for the domain. In the neural case, however,

inference in such models becomes intractable. It is

hard to know what the model actually predicts and

hard to compute gradients to improve its predictions.

In such intractable settings, one generally falls

back on approximate inference or sampling. In the

NLP community, beam search and importance sam-

pling are common. Unfortunately, beam search con-

siders only the approximate-top-k taggings from

an exponential set (Wiseman and Rush, 2016), and

importance sampling requires the construction of a

good proposal distribution (Dyer et al., 2016).

In this paper we exploit the sequential structure

of the tagging problem to do sequential importance

sampling, which resembles beam search in that it

constructs its proposed samples incrementally—one

tag at a time, taking the actual model into account at

every step. This method is known as particle filtering

(Doucet and Johansen, 2009). We extend it here to

take advantage of the fact that the sampler has access

to the entire input string as it constructs its tagging,

which allows it to look ahead or—as we will show—

to use a neural network to approximate the effect

of lookahead. Our resulting method is called neural

particle smoothing.

1.1 What this paper provides

For x = x1 · · ·xT , let x:t and xt: respectively de-

note the prefix x1 · · ·xt and the suffix xt+1 · · ·xT .

We develop neural particle smoothing—a se-

quential importance sampling method which, given

a string x, draws a sample of taggings y from

pθ(y | x). Our method works for any conditional

probability model of the quite general form1

pθ(y | x)
def

∝ expGT (1)

where G is an incremental stateful global scoring

model that recursively defines scores Gt of prefixes

of (x,y) at all times 0 ≤ t ≤ T :

Gt
def
= Gt−1 + gθ(st−1, xt, yt) (with G0

def
= 0) (2)

st
def
= fθ(st−1, xt, yt) (with s0 given) (3)

These quantities implicitly depend on x,y and θ.

Here st is the model’s state after observing the pair

of length-t prefixes (x:t,y:t). Gt is the score-so-far

1A model may require for convenience that each input end
with a special end-of-sequence symbol: that is, xT = EOS.



of this prefix pair, while GT − Gt is the score-to-

go. The state st summarizes the prefix pair in the

sense that the score-to-go depends only on st and the

length-(T − t) suffixes (xt:,yt:). The local scoring

function gθ and state update function fθ may be

any functions parameterized by θ—perhaps neural

networks. We assume θ is fixed and given.

This model family is expressive enough to capture

any desired p(y | x). Why? Take any distribution

p(x,y) with this desired conditionalization (e.g.,

the true joint distribution) and factor it as

log p(x,y)=
∑T

t=1 log p(xt, yt | x:t−1,y:t−1)

=
∑T

t=1 log p(xt, yt | st−1)
︸ ︷︷ ︸

use as gθ(st−1,xt,yt)

= GT (4)

by making st include as much information about

(x:t,y:t) as needed for (4) to hold (possibly st =
(x:t,y:t)).

2 Then by defining gθ as shown in (4), we

get p(x,y) = expGT and thus (1) holds for each

x.

1.2 Relationship to particle filtering

Our method is spelled out in §4 (one may look now).

It is a variant of the popular particle filtering method

that tracks the state of a physical system in discrete

time (Ristic et al., 2004). Our particular proposal

distribution for yt can be found in equations (5), (6),

(25) and (26). It considers not only past observations

x:t as reflected in st−1, but also future observations

xt:, as summarized by the state s̄t of a right-to-left

recurrent neural network f̄ that we will train:

Ĥt
def
= hφ(s̄t+1, xt+1) + Ĥt+1 (5)

s̄t
def
= f̄φ(s̄t+1, xt+1) (with sT given) (6)

Conditioning the distribution of yt on future obser-

vations xt: means that we are doing “smoothing”

rather than “filtering” (in signal processing terminol-

ogy). Doing so can reduce the bias and variance of

our sampler. It is possible so long as x is provided in

its entirety before the sampler runs—which is often

the case in NLP.

1.3 Applications

Why sample from pθ at all? Many NLP systems

instead simply search for the Viterbi sequence y that

maximizes GT and thus maximizes pθ(y | x). If

the space of states s is small, this can be done effi-

ciently by dynamic programming (Viterbi, 1967); if

2Furthermore, st could even depend on all of x (if s0 does),
allowing direct expression of models such as stacked BiRNNs.

not, then A∗ may be an option (see §2). More com-

mon is to use an approximate method: beam search,

or perhaps a sequential prediction policy trained

with reinforcement learning. Past work has already

shown how to improve these approximate search

algorithms by conditioning on the future (Bahdanau

et al., 2017; Wiseman and Rush, 2016).

Sampling is essentially a generalization of

maximization: sampling from exp GT

temperature
approaches maximization as temperature→ 0. It

is a fundamental building block for other algorithms,

as it can be used to take expectations over the whole

space of possible y values. For unfamiliar readers,

Appendix E reviews how sampling is crucially used

in minimum-risk decoding, supervised training,

unsupervised training, imputation of missing data,

pipeline decoding, and inference in graphical

models.

2 Exact Sequential Sampling

To develop our method, it is useful to first consider

exact samplers. Exact sampling is tractable for only

some of the models allowed by §1.1. However, the

form and notation of the exact algorithms in §2 will

guide our development of approximations in §3.

An exact sequential sampler draws yt from

pθ(yt | x,y:t−1) for each t = 1, . . . , T in sequence.

Then y is exactly distributed as pθ(y | x).

For each given x,y:t−1, observe that

pθ(yt | x,y:t−1) (7)

∝ pθ(y:t | x) =
∑

yt:
pθ(y | x) (8)

∝
∑

yt:
expGT (9)

= exp (Gt + log
∑

yt:
exp (GT −Gt)

︸ ︷︷ ︸

call this Ht

) (10)

= exp (Gt−1 + gθ(st−1, xt, yt) +Ht) (11)

∝ exp (gθ(st−1, xt, yt) +Ht) (12)

Thus, we can easily construct the needed distribu-

tion (7) by normalizing (12) over all possible values

of yt. The challenging part of (12) is to compute Ht:

as defined in (10), Ht involves a sum over exponen-

tially many futures yt:. (See Figure 1.)

We chose the symbols G and H in homage to

the A∗ search algorithm (Hart et al., 1968). In that

algorithm (which could be used to find the Viterbi

sequence), g denotes the score-so-far of a partial

solution y:t, and h denotes the optimal score-to-

go. Thus, g + h would be the score of the best

sequence with prefix y:t. Analogously, our Gt +



x1=“On” x2=“Thursday” … xt-1=“Fed” xt=“raised” xt+1=“interest” xt+2=“rates” …

y1=“PREP” y2=“N” … yt-1=“N”

yt=“ADJ”

…

yt=“V”

yt+1=“V”

…

yt+1=“N”

…

yt+2=“N”

yt+2=“N”

Ht

x

y

g
θ
(st-1, xt, yt)

Gt-1

Figure 1: Sampling a single particle from a tagging model. y1, . . . , yt−1 (orange) have already been chosen, with a total
model score of Gt−1, and now the sampler is constructing a proposal distribution q (purple) from which the next tag yt will be
sampled. Each yt is evaluated according to its contribution to Gt (namely gθ) and its future score Ht (blue). The figure illustrates
quantities used throughout the paper, beginning with exact sampling in equations (7)–(12). Our main idea (§3) is to approximate
the Ht computation (a log-sum-exp over exponentially many sequences) when exact computation by dynamic programming is
not an option. The form of our approximation uses a right-to-left recurrent neural network but is inspired by the exact dynamic
programming algorithm.

Ht is the log of the total exponentiated scores of

all sequences with prefix y:t. Gt and Ht might be

called the logprob-so-far and logprob-to-go of y:t.

Just as A∗ approximates h with a “heuristic” ĥ,

the next section will approximate Ht using a neural

estimate Ĥt (equations (5)–(6)). However, the spe-

cific form of our approximation is inspired by cases

where Ht can be computed exactly. We consider

those in the remainder of this section.

2.1 Exact sampling from HMMs

A hidden Markov model (HMM) specifies a nor-

malized joint distribution pθ(x,y) = expGT over

state sequence y and observation sequence x,3 Thus

the posterior pθ(y | x) is proportional to expGT ,

as required by equation (1).

The HMM specifically defines GT by equa-

tions (2)–(3) with st = yt and gθ(st−1, xt, yt) =
log pθ(yt | yt−1) + log pθ(xt | yt).

4

In this setting, Ht can be computed exactly by

the backward algorithm (Rabiner, 1989). (Details

are given in Appendix A for completeness.)

2.2 Exact sampling from OOHMMs

For sequence tagging, a weakness of (first-order)

HMMs is that the model state st = yt may contain

little information: only the most recent tag yt is

remembered, so the number of possible model states

st is limited by the vocabulary of output tags.

We may generalize so that the data generating

process is in a latent state ut ∈ {1, . . . , k} at each

time t, and the observed yt—along with xt—is gen-

erated from ut. Now k may be arbitrarily large. The

3The HMM actually specifies a distribution over a pair of in-
finite sequences, but here we consider the marginal distribution
over just the length-T prefixes.

4It takes s0 = BOS, a beginning-of-sequence symbol, so
pθ(y1 | BOS) specifies the initial state distribution.

model has the form

pθ(x,y) = expGT (13)

=
∑

u

T∏

t=1

pθ(ut | ut−1) · pθ(xt, yt | ut)

This is essentially a pair HMM (Knudsen and

Miyamoto, 2003) without insertions or deletions,

also known as an “ǫ-free” or “same-length” proba-

bilistic finite-state transducer. We refer to it here as

an output-output HMM (OOHMM).5

Is this still an example of the general model ar-

chitecture from §1.1? Yes. Since ut is latent and

evolves stochastically, it cannot be used as the state

st in equations (2)–(3) or (4). However, we can de-

fine st to be the model’s belief state after observing

(x:t,y:t). The belief state is the posterior probability

distribution over the underlying state ut of the sys-

tem. That is, st deterministically keeps track of all

possible states that the OOHMM might be in—just

as the state of a determinized FSA keeps track of

all possible states that the original nondeterministic

FSA might be in.

We may compute the belief state in terms of a

vector of forward probabilities that starts at α0,

(α0)u
def
=

{

1 if u = BOS (see footnote 4)

0 if u = any other state
(14)

and is updated deterministically for each 0 < t ≤ T
by the forward algorithm (Rabiner, 1989):

(αt)u
def
=

k∑

u′=1

(αt−1)u′ · pθ(u | u
′) · pθ(xt, yt | u)

(15)

5This is by analogy with the input-output HMM (IOHMM)
of Bengio and Frasconi (1996), which defines p(y | x) directly
and conditions the transition to ut on xt. The OOHMM instead
defines p(y | x) by conditionalizing (13)—which avoids the
label bias problem (Lafferty et al., 2001) that in the IOHMM,
yt is independent of future input xt: (given the past input x:t).



(αt)u can be interpreted as the logprob-so-far if the

system is in state u after observing (x:t,y:t). We

may express the update rule (15) by α⊤
t = α⊤

t−1P
where the matrix P depends on (xt, yt), namely

Pu′u
def
= pθ(u | u

′) · pθ(xt, yt | u).

The belief state st
def
= JαtK ∈ R

k simply nor-

malizes αt into a probability vector, where JuK
def
=

u/(u⊤1) denotes the normalization operator. The

state update (15) now takes the form (3) as desired,

with fθ a normalized vector-matrix product:

s⊤t = fθ(st−1, xt, yt)
def
= Js⊤t−1P K (16)

As in the HMM case, we define Gt as the log of

the generative prefix probability,

Gt
def
= log pθ(x:t,y:t) = log

∑

u(αt)u (17)

which has the form (2) as desired if we put

gθ(st−1, xt, yt)
def
= Gt −Gt−1 (18)

= log
α⊤

t−1P1

α⊤
t−11

= log (s⊤t−1P1)

Again, exact sampling is possible. It suffices to

compute (9). For the OOHMM, this is given by
∑

yt:
expGT = α⊤

t βt (19)

where βT
def
= 1 and the backward algorithm

(βt)v
def
= pθ(xt: | ut = u) (20)

=
∑

ut:,yt:

pθ(ut:,xt:,yt: | ut = u)

=
∑

u′

pθ(u
′ | u) · p(xt+1 | u

′)
︸ ︷︷ ︸

call this Puu′

·(βt+1)u′

for 0 ≤ t < T uses dynamic programming to find

the total probability of all ways to generate the fu-

ture observations xt:. Note that αt is defined for

a specific prefix y:t (though it sums over all u:t),

whereas βt sums over all suffixes yt: (and over all

ut:), to achieve the asymmetric summation in (19).

Define s̄t
def
= JβtK ∈ R

k to be a normalized ver-

sion of βt. The βt recurrence (20) can clearly be ex-

pressed in the form s̄t = JP s̄t+1K, much like (16).

2.3 The logprob-to-go for OOHMMs

Let us now work out the definition of Ht for

OOHMMs (cf. equation (35) in Appendix A for

HMMs). We will write it in terms of Ĥt from §1.2.

Let us define Ĥt symmetrically to Gt (see (17)):

Ĥt
def
= log

∑

u

(βt)u (= log 1⊤βt) (21)

which has the form (5) as desired if we put

hφ(s̄t+1, xt+1)
def
= Ĥt − Ĥt+1 = log (1⊤P s̄t+1)

(22)

From equations (10), (17), (19) and (21), we see

Ht = log
(∑

yt:

expGT

)
−Gt

= log
α⊤

t βt

(α⊤
t 1)(1

⊤βt)
+ log (1⊤βt)

= log s⊤t s̄t
︸ ︷︷ ︸

call this Ct

+Ĥt (23)

where Ct ∈ R can be regarded as evaluating the

compatibility of the state distributions st and s̄t.

In short, the generic strategy (12) for exact sam-

pling says that for an OOHMM, yt is distributed as

pθ(yt | x,y:t−1) ∝ exp (gθ(st−1, xt, yt) +Ht)

∝ exp ( gθ(st−1, xt, yt)
︸ ︷︷ ︸

depends on x:t,y:t

+ Ct
︸︷︷︸

on x,y:t

+ Ĥt
︸︷︷︸
on xt:

)

∝ exp (gθ(st−1, xt, yt) + Ct) (24)

This is equivalent to choosing yt in proportion to

(19)—but we now turn to settings where it is infea-

sible to compute (19) exactly. There we will use

the formulation (24) but approximate Ct. For com-

pleteness, we will also consider how to approximate

Ĥt, which dropped out of the above distribution

(because it was the same for all choices of yt) but

may be useful for other algorithms (see §4).

3 Neural Modeling as Approximation

3.1 Models with large state spaces

The expressivity of an OOHMM is limited by the

number of states k. The state ut ∈ {1, . . . , k} is a

bottleneck between the past (x:t,y:t) and the future

(xt:,yt:), in that past and future are conditionally

independent given ut. Thus, the mutual information

between past and future is at most log2 k bits.

In many NLP domains, however, the past seems

to carry substantial information about the future.

The first half of a sentence greatly reduces the un-

certainly about the second half, by providing infor-

mation about topics, referents, syntax, semantics,

and discourse. This suggests that an accurate HMM

language model p(x) would require very large k—

as would a generative OOHMM model p(x,y) of

annotated language. The situation is perhaps better

for discriminative models p(y | x), since much of



the information for predicting yt: might be available

in xt:. Still, it is important to let (x:t,y:t) contribute

enough additional information about yt:: even for

short strings, making k too small (giving ≤ log2 k
bits) may harm prediction (Dreyer et al., 2008).

Of course, (4) says that an OOHMM can express

any joint distribution for which the mutual informa-

tion is finite,6 by taking k large enough for vt−1 to

capture the relevant info from (x:t−1,y:t−1).

So why not just take k to be large—say, k = 230

to allow 30 bits of information? Unfortunately, eval-

uating GT then becomes very expensive—both com-

putationally and statistically. As we have seen, if

we define st to be the belief state JαtK ∈ R
k, up-

dating it at each observation (xt, yt) (equation (3))

requires multiplication by a k × k matrix P . This

takes time O(k2), and requires enough data to learn

O(k2) transition probabilities.

3.2 Neural approximation of the model

As a solution, we might hope that for the inputs

x observed in practice, the very high-dimensional

belief states JαtK ∈ R
k might tend to lie near a d-

dimensional manifold where d≪ k. Then we could

take st to be a vector in R
d that compactly encodes

the approximate coordinates of JαtK relative to the

manifold: st = ν(JαtK), where ν is the encoder.

In this new, nonlinearly warped coordinate sys-

tem, the functions of st−1 in (2)–(3) are no longer

the simple, essentially linear functions given by (16)

and (18). They become nonlinear functions operat-

ing on the manifold coordinates. (fθ in (16) should

now ensure that s⊤t ≈ ν(J(ν−1(st−1))
⊤P K), and gθ

in (18) should now estimate log (ν−1(st−1))
⊤P1.)

In a sense, this is the reverse of the “kernel trick”

(Boser et al., 1992) that converts a low-dimensional

nonlinear function to a high-dimensional linear one.

Our hope is that st has enough dimensions d≪ k
to capture the useful information from the true JαtK,

and that θ has enough dimensions≪ k2 to capture

most of the dynamics of equations (16) and (18).

We thus proceed to fit the neural networks fθ, gθ
directly to the data, without ever knowing the true k
or the structure of the original operators P ∈ R

k×k.

We regard this as the implicit justification for

various published probabilistic sequence models

pθ(y | x) that incorporate neural networks. These

models usually have the form of §1.1. Most simply,

(fθ, gθ) can be instantiated as one time step in an

RNN (Aharoni and Goldberg, 2017), but it is com-

6This is not true for the language of balanced parentheses.

mon to use enriched versions such as deep LSTMs.

It is also common to have the state st contain not

only a vector of manifold coordinates in R
d but also

some unboundedly large representation of (x,y:t)
(cf. equation (4)), so the fθ neural network can refer

to this material with an attentional (Bahdanau et al.,

2015) or stack mechanism (Dyer et al., 2015).

A few such papers have used globally normalized

conditional models that can be viewed as approx-

imating some OOHMM, e.g., the parsers of Dyer

et al. (2016) and Andor et al. (2016). That is the

case (§1.1) that particle smoothing aims to support.

Most papers are locally normalized conditional

models (e.g., Kann and Schütze, 2016; Aharoni and

Goldberg, 2017); these simplify supervised training

and can be viewed as approximating IOHMMs

(footnote 5). For locally normalized models, Ht = 0
by construction, in which case particle filtering

(which estimates Ht = 0) is just as good as particle

smoothing. Particle filtering is still useful for these

models, but lookahead’s inability to help them is

an expressive limitation (known as label bias) of

locally normalized models. We hope the existence

of particle smoothing (which learns an estimate

Ht) will make it easier to adopt, train, and decode

globally normalized models, as discussed in §1.3.

3.3 Neural approximation of logprob-to-go

We can adopt the same neuralization trick to approx-

imate the OOHMM’s logprob-to-go Ht = Ct + Ĥt.

We take s̄t ∈ R
d on the same theory that it is a low-

dimensional reparameterization of JβtK, and define

(f̄φ, hφ) in equations (5)–(6) to be neural networks.

Finally, we must replace the definition of Ct in (23)

with another neural network cφ that works on the

low-dimensional approximations:7

Ct
def
= cφ(st, s̄t) (except that CT

def
= 0) (25)

The resulting approximation to (24) (which does not

actually require hφ) will be denoted qθ,φ:

qθ,φ(yt | x,y:t−1)
def

∝ exp (gθ(st−1, xt, yt) + Ct)
(26)

The neural networks in the present section are all

parameterized by φ, and are intended to produce an

estimate of the logprob-to-go Ht—a function of xt:,

which sums over all possible yt:.

By contrast, the OOHMM-inspired neural

networks suggested in §3.2 were used to specify an

7CT = 0 is correct according to (23). Forcing this ensures
HT = 0, so our approximation becomes exact as of t = T .



actual model of the logprob-so-far Gt—a function

of x:t and y:t—using separate parameters θ.

Arguably φ has a harder modeling job than θ
because it must implicitly sum over possible futures

yt:. We now consider how to get corrected samples

from qθ,φ even if φ gives poor estimates of Ht, and

then how to train φ to improve those estimates.

4 Particle smoothing

In this paper, we assume nothing about the given

model GT except that it is given in the form of

equations (1)–(3) (including the parameter vector θ).

Suppose we run the exact sampling strategy but

approximate pθ in (7) with a proposal distribution

qθ,φ of the form in (25)–(26). Suppressing the sub-

scripts on p and q for brevity, this means we are

effectively drawing y not from p(y | x) but from

q(y | x) =

T∏

t=1

q(yt | x,y:t−1) (27)

If Ct ≈ Ht+const within each yt draw, then q ≈ p.

Normalized importance sampling corrects

(mostly) for the approximation by drawing many se-

quences y(1), . . .y(M) IID from (27) and assigning

y(m) a relative weight of w(m) def
= p(y(m)|x)

q(y(m)|x)
. This

ensemble of weighted particles yields a distribution

p̂(y)
def
=

∑M
m=1 w

(m)
I(y=y

(m))
∑M

m=1 w
(m)

≈ p(y | x) (28)

that can be used as discussed in §1.3. To com-

pute w(m) in practice, we replace the numerator

p(y(m) | x) by the unnormalized version expGT ,

which gives the same p̂. Recall that each GT is a

sum
∑T

t=1 gθ(· · · ).
Sequential importance sampling is an equivalent

implementation that makes t the outer loop and m
the inner loop. It computes a prefix ensemble

Yt
def
= {(y

(1)
:t , w

(1)
t ), . . . , (y

(M)
:t , w

(M)
t )} (29)

for each 0 ≤ t ≤ T in sequence. Initially,

(y
(m)
:0 , w

(m)
0 ) = (ǫ, expC0) for all m. Then for

0 < t ≤ T , we extend these particles in parallel:

y
(m)
:t = y

(m)
:t−1y

(m)
t (concatenation) (30)

w
(m)
t = w

(m)
t−1

exp (gθ(st−1,xt,yt)+Ct −Ct−1)
q(yt|x,y:t−1)

(31)

where each y
(m)
t is drawn from (26). Each Yt yields

a distribution p̂t over prefixes y:t, which estimates

the distribution pt(y:t)
def

∝ exp (Gt+Ct). We return

p̂
def
= p̂T ≈ pT = p. This gives the same p̂ as in

(28): the final y
(m)
T are the same, with the same

final weights w
(m)
T = expGT

q(y(m)|x)
, where GT was now

summed up as C0 +
∑T

t=1 gθ(· · · ) + Ct − Ct−1.

That is our basic particle smoothing strategy. If

we use the naive approximation Ct = 0 everywhere,

it reduces to particle filtering. In either case, various

well-studied improvements become available, such

as various resampling schemes (Douc and Cappé,

2005) and the particle cascade (Paige et al., 2014).8

An easy improvement is multinomial resampling.

After computing each p̂t, this replaces Yt with a set

of M new draws from p̂t (≈ pt), each of weight

1—which tends to drop low-weight particles and

duplicate high-weight ones.9 For this to usefully

focus the ensemble on good prefixes y:t, pt should

be a good approximation to the true marginal

p(y:t | x) ∝ exp (Gt+Ht) from (10). That is why

we arranged for pt(y:t) ∝ exp (Gt + Ct). Without

Ct, we would have only pt(y:t) ∝ expGt—which

is fine for the traditional particle filtering setting,

but in our setting it ignores future information in xt:

(which we have assumed is available) and also fa-

vors sequences y that happen to accumulate most of

their global score GT early rather than late (which

is possible when the globally normalized model

(1)–(2) is not factored in the generative form (4)).

5 Training the Sampler Heuristic

We now consider training the parameters φ of our

sampler. These parameters determine the updates f̄φ
in (6) and the compatibility function cφ in (25). As

a result, they determine the proposal distribution q
used in equations (27) and (31), and thus determine

the stochastic choice of p̂ that is returned by the

sampler on a given input x.

In this paper, we simply try to tune φ to yield

good proposals. Specifically, we try to ensure that

qφ(y | x) in equation (27) is close to p(y | x) from

equation (1). While this may not be necessary for

the sampler to perform well downstream,10 it does

8The particle cascade would benefit from an estimate of Ĥt,
as it (like A∗ search) compares particles of different lengths.

9While resampling mitigates the degeneracy problem, it
could also reduce the diversity of particles. In our experiments
in this paper, we only do multinomial resampling when the ef-
fective sample size of p̂t is lower than M

2
. Doucet and Johansen

(2009) give a more thorough discussion on when to resample.
10In principle, one could attempt to train φ “end-to-end”

on some downstream objective by using reinforcement learn-
ing or the Gumbel-softmax trick (Jang et al., 2017; Maddison
et al., 2017). For example, we might try to ensure that p̂ closely
matches the model’s distribution p (equation (28))—the “na-



guarantee it (assuming that the model p is correct).

Specifically, we seek to minimize

(1−λ)KL(p||qφ)+λKL(qφ||p) (with λ ∈ [0, 1])
(32)

averaged over examples x drawn from a training

set.11 (The training set need not provide true y’s.)

The inclusive KL divergence KL (p||qφ) is an ex-

pectation under p. We estimate it by replacing p with

a sample p̂, which in practice we can obtain with our

sampler under the current φ. (The danger, then, is

that p̂ will be biased when φ is not yet well-trained;

this can be mitigated by increasing the sample size

M when drawing p̂ for training purposes.)

Intuitively, this term tries to encourage qφ in fu-

ture to re-propose those y values that turned out to

be “good” and survived into p̂ with high weights.

The exclusive KL divergence KL(qφ||p) is an

expectation under qφ. Since we can sample from

qφ exactly, we can get an unbiased estimate of

∇φKL(qφ||p) with the likelihood ratio trick (Glynn,

1990).12 (The danger is that such “REINFORCE”

methods tend to suffer from very high variance.)

This term is a popular objective for variational

approximation. Here, it tries to discourage qφ from

re-proposing “bad” y values that turned out to have

low expGT relative to their proposal probability.

Our experiments balance “recall” (inclusive) and

“precision” (exclusive) by taking λ = 1
2 (which Ap-

pendix F compares to λ ∈ {0, 1}). Alas, because

of our approximation to the inclusive term, neither

term’s gradient will “find” and directly encourage

good y values that have never been proposed. Ap-

pendix B gives further discussion and formulas.

6 Models for the Experiments

To evaluate our methods, we needed pre-trained

models pθ. We experimented on several models. In

each case, we trained a generative model pθ(x,y),
so that we could try sampling from its posterior dis-

tribution pθ(y | x). This is a very common setting

where particle smoothing should be able to help.

Details for replication are given in Appendix C.

tural” goal of sampling. This objective can tolerate inaccurate
local proposal distributions in cases where the algorithm could
recover from them through resampling. Looking even farther
downstream, we might merely want p̂—which is typically used
to compute expectations—to provide accurate guidance to some
decision or training process (see Appendix E). This might not
require fully matching the model, and might even make it desir-
able to deviate from an inaccurate model.

11Training a single approximation qφ for all x is known as
amortized inference.

12The normalizing constant of p from (1) can be ignored
because the gradient of a constant is 0.

6.1 Tagging models

We can regard a tagged sentence (x,y) as a string

over the “pair alphabet” X × Y . We train an RNN

language model over this “pair alphabet”—this is a

neuralized OOHMM as suggested in §3.2:

log pθ(x,y) =

T∑

t=1

log pθ(xt, yt | st−1) (33)

This model is locally normalized, so that

log pθ(x,y) (as well as its gradient) is straightfor-

ward to compute for a given training pair (x,y).
Joint sampling from it would also be easy (§3.2).

However, p(y | x) is globally renormalized (by

an unknown partition function that depends on x,

namely expH0). Conditional sampling of y is there-

fore potentially hard. Choosing yt optimally re-

quires knowledge of Ht, which depends on the fu-

ture xt:.

As we noted in §1, many NLP tasks can be seen as

tagging problems. In this paper we experiment with

two such tasks: English stressed syllable tagging,

where the stress of a syllable often depends on the

number of remaining syllables,13 providing good

reason to use the lookahead provided by particle

smoothing; and Chinese NER, which is a familiar

textbook application and reminds the reader that our

formal setup (tagging) provides enough machinery

to treat other tasks (chunking).

English stressed syllable tagging This task tags

a sequence of phonemes x, which form a word,

with their stress markings y. Our training examples

are the stressed words in the CMU pronunciation

dictionary (Weide, 1998). We test the sampler on

held-out unstressed words.

Chinese social media NER This task does

named entity recognition in Chinese, by tagging

the characters of a Chinese sentence in a way that

marks the named entities. We use the dataset from

Peng and Dredze (2015), whose tagging scheme is

a variant of the BIO scheme mentioned in §1. We

test the sampler on held-out sentences.

6.2 String source separation

This is an artificial task that provides a discrete ana-

logue of speech source separation (Zibulevsky and

Pearlmutter, 2001). The generative model is that J
strings (possibly of different lengths) are generated

13English, like many other languages, assigns stress from
right to left (Hayes, 1995).



IID from an RNN language model, and are then

combined into a single string x according to a ran-

dom interleaving string y.14 The posterior p(y | x)
predicts the interleaving string, which suffices to re-

construct the original strings. The interleaving string

is selected from the uniform distribution over all pos-

sible interleavings (given the J strings’ lengths). For

example, with J = 2, a possible generative story is

that we first sample two strings Foo and Bar from an

RNN language model. We then draw an interleav-

ing string 112122 from the aforementioned uniform

distribution, and interleave the J strings determinis-

tically to get FoBoar.

p(x,y) is proportional to the product of the prob-

abilities of the J strings. The only parameters of

pθ, then, are the parameters of the RNN language

model, which we train on clean (non-interleaved)

samples from a corpus. We test the sampler on ran-

dom interleavings of held-out samples.

The state s (which is provided as an input to cθ
in (25)) is the concatenation of the J states of the

language model as it independently generates the J
strings, and gθ(st−1, xt, yt) is the log-probability of

generating xt as the next character of the yt
th string,

given that string’s language model state within st−1.

As a special case, xT = EOS (see footnote 1), and

gθ(sT−1, EOS, EOS) is the total log-probability of

termination in all J language model states.

String source separation has good reason for

lookahead: appending character “o” to a recon-

structed string “ gh” is only advisable if “s” and

“t” are coming up soon to make “ghost.” It also il-

lustrates a powerful application setting—posterior

inference under a generative model. This task conve-

niently allowed us to construct the generative model

from a pre-trained language model. Our constructed

generative model illustrates that the state s and tran-

sition function f can reflect interesting problem-

specific structure.

CMU Pronunciation dictionary The CMU pro-

nunciation dictionary (already used above) provides

sequences of phonemes. Here we use words no

longer than 5 phonemes. We interleave the (un-

stressed) phonemes of J = 5 words.

Penn Treebank The PTB corpus (Marcus et al.,

1993) provides English sentences, from which we

use only the sentences of length ≤ 8. We interleave

the words of J = 2 sentences.

14We formally describe the generative process in Ap-
pendix G.

7 Experiments

In our experiments, we are given a pre-trained scor-

ing model pθ, and we train the parameters φ of a

particle smoothing algorithm.15

We now show that our proposed neural particle

smoothing sampler does better than the particle filter-

ing sampler. To define “better,” we evaluate samplers

on the offset KL divergence from the true posterior.

7.1 Evaluation metrics

Given x, the “natural” goal of conditional sampling

is for the sample distribution p̂(y) to approximate

the true distribution pθ(y | x) = expGT / expH0

from (1). We will therefore report—averaged over

all held-out test examples x—the KL divergence

KL(p̂||p) = Ey∼p̂ [log p̂(y)] (34)

− (Ey∼p̂ [log p̃(y | x)]− logZ(x)),

where p̃(y | x) denotes the unnormalized distribu-

tion given by expGT in (2), and Z(x) denotes its

normalizing constant, expH0 =
∑

y
p̃(y | x).

As we are unable to compute logZ(x) in practice,

we replace it with an estimate z(x) to obtain an

offset KL divergence. This change of constant does

not change the measured difference between two

samplers, KL(p̂1||p)−KL(p̂2||p). Nonetheless, we

try to use a reasonable estimate so that the reported

KL divergence is interpretable in an absolute sense.

Specifically, we take z(x) = log
∑

y∈Y p̃(y | x) ≤
logZ, where Y is the full set of distinct particles

y that we ever drew for input x, including samples

from the beam search models, while constructing

the experimental results graph.16 Thus, the offset

KL divergence is a “best effort” lower bound on the

true exclusive KL divergence KL(p̂||p).

7.2 Results

In all experiments we compute the offset KL diver-

gence for both the particle filtering samplers and the

particle smoothing samplers, for varying ensemble

sizes M . We also compare against a beam search

baseline that keeps the highest-scoring M particles

at each step (scored by expGt with no lookahead).

The results are in Figures 2a–2d.

15For the details of the training procedures and the specific
neural architectures in our models, see Appendices C and D.

16Thus, Y was collected across all samplings, iterations,and
ensemble sizes M , in an attempt to make the summation over
Y as complete as possible. For good measure, we added some
extra particles: whenever we drew M particles via particle
smoothing, we drew an additional 2M particles by particle
filtering and added them to Y .
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Figure 2: Offset KL divergences for the tasks in §§ 6.1 and 6.2. The logarithmic x-axis is the size of particles M (8 ≤ M ≤ 128).
The y-axis is the offset KL divergence described in §7.1 (in bits per sequence). The smoothing samplers offer considerable speedup:
for example, in Figure 2a, the non-resampled smoothing sampler achieves comparable offset KL divergences with only 1/4 as many
particles as its filtering counterparts. Abbreviations in the legend: PF=particle filtering. PS=particle smoothing. BEAM=beam
search. ‘:R’ suffixes indicate resampled variants. For readability, beam search results are omitted from Figure 2d, but appear in
Figure 3 of the appendices.

Given a fixed ensemble size, we see the smooth-

ing sampler consistently performs better than the

filtering counterpart. It often achieves comparable

performance at a fraction of the ensemble size.

Beam search on the other hand falls behind on

three tasks: stress prediction and the two source

separation tasks. It does perform better than the

stochastic methods on the Chinese NER task, but

only at small beam sizes. Varying the beam size

barely affects performance at all, across all tasks.

This suggests that beam search is unable to explore

the hypothesis space well.

We experiment with resampling for both the parti-

cle filtering sampler and our smoothing sampler. In

source separation and stressed syllable prediction,

where the right context contains critical information

about how viable a particle is, resampling helps par-

ticle filtering almost catch up to particle smoothing.

Particle smoothing itself is not further improved by

resampling, presumably because its effective sam-

ple size is high. The goal of resampling is to kill

off low-weight particles (which were overproposed)

and reallocate their resources to higher-weight ones.

But with particle smoothing, there are fewer low-

weight particles, so the benefit of resampling may be

outweighted by its cost (namely, increased variance).

8 Related Work

Much previous work has employed sequential im-

portance sampling for approximate inference of in-

tractable distributions (e.g., Thrun, 2000; Andrews

et al., 2017). Some of this work learns adaptive

proposal distributions in this setting (e.g. Gu et al.,

2015; Paige and Wood, 2016). The key difference

in our work is that we consider future inputs, which

is impossible in online decision settings such as

robotics. Klaas et al. (2006) did do particle smooth-

ing, like us, but they did not learn adaptive proposal

distributions.

Just as we use a right-to-left RNN to guide pos-

terior sampling of a left-to-right generative model,

Krishnan et al. (2017) employed a right-to-left RNN

to guide posterior marginal inference in the same

sort of model. Serdyuk et al. (2018) used a right-to-

left RNN to regularize training of such a model.

9 Conclusion

We have described neural particle smoothing, a se-

quential Monte Carlo method for approximate sam-

pling from the posterior of incremental neural scor-

ing models. Sequential importance sampling has

arguably been underused in the natural language pro-

cessing community. It is quite a plausible strategy

for dealing with rich, globally normalized probabil-

ity models such as neural models—particularly if a

good sequential proposal distribution can be found.

Our contribution is a neural proposal distribution,

which goes beyond particle filtering in that it uses a

right-to-left recurrent neural network to “look ahead”

to future symbols of x when proposing each symbol

yt. The form of our distribution is well-motivated.

There are many possible extensions to the work in

this paper. For example, we can learn the generative

model and proposal distribution jointly; we can also

infuse them with hand-crafted structure, or use more

deeply stacked architectures; and we can try training

the proposal distribution end-to-end (footnote 10).

Another possible extension would be to allow each

step of q to propose a sequence of actions, effectively

making the tagset size∞. This extension relaxes our

|y| = |x| restriction from §1 and would allow us to

do general sequence-to-sequence transduction.
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A The logprob-to-go for HMMs

As noted in §2.1, the logprob-to-go Ht can be com-

puted by the backward algorithm. By the definition

of Ht in equation (10),

expHt =
∑

yt:

exp (GT −Gt) (35)

=
∑

yt:

exp
T∑

j=t+1

gθ(sj−1, xj , yj) (36)

=
∑

yt:

T∏

j=t+1

pθ(yj | yj−1) · pθ(xj | yj)

= (βt)yt (backward prob of yt at time t)

where the vectorβt is defined by base case (βT )y =
1 and for 0 ≤ t < T by the recurrence

(βt)y
def
=

∑

yt:

pθ(xt:,yt: | yt = y) (37)

=
∑

y′

pθ(y
′ | y) · pθ(xt+1 | y

′) · (βt+1)y′

The backward algorithm (20) for OOHMMs in

§2.2 is a variant of this.

B Gradients for Training the Proposal

Distribution

For a given x, both forms of KL divergence achieve

their minimum of 0 when (∀y) qφ(y | x) = p(y |
x). However, we are unlikely to be able to find such

a φ; the two metrics penalize qφ differently for mis-

matches. We simplify the notation below by writing

qφ(y) and p(y), suppressing the conditioning on x.

Inclusive KL Divergence The inclusive KL di-

vergence has that name because it is finite only when

support(qφ) ⊇ support(p), i.e., when qφ is capable

of proposing any string y that has positive proba-

bility under p. This is required for qφ to be a valid

proposal distribution for importance sampling.

KL (p||qφ) (38)

= Ey∼p [log p (y)− log qφ(y)]

= Ey∼p [log p (y)]

− Ey∼p [log qφ (y)]

The first term Ey∼p [log p (y)] is a constant with

regard to φ. As a result, the gradient of the above is

just the gradient of the second term:

∇φKL(p||qφ) = ∇φ Ey∼p [− log qφ (y)]
︸ ︷︷ ︸

the cross-entropy H(p,qφ)

We cannot directly sample from p. However, our

weighted mixture p̂ from equation (28) (obtained by

sequential importance sampling) could be a good

approximation:

∇φKL(p||qφ) ≈ ∇φEy∼p̂ [− log qφ (y)] (39)

=
T∑

t=1

Ep̂ [−∇φ log qφ(yt | y:t−1,x)]

Following this approximate gradient downhill has an

intuitive interpretation: if a particular yt value ends

up with high relative weight in the final ensemble p̂,

then we will try to adjust qφ so that it would have

had a high probability of proposing that yt value at

step t in the first place.

Exclusive KL Divergence The exclusive diver-

gence has that name because it is finite only when

support(qφ) ⊆ support(p). It is defined by

KL(qφ||p) = Ey∼qφ [log qφ(y)− log p(y)] (40)

= Ey∼qφ [log qφ(y)− log p̃(y)] + logZ

=
∑

y

qφ(y) [log qφ(y)− log p̃(y)]
︸ ︷︷ ︸

call this dφ(y)

+ logZ

where p(y) = 1
Z
p̃(y) for p̃(y) = expGT and Z =

∑

y
p̃(y). With some rearrangement, we can write

its gradient as an expectation that can be estimated

by sampling from qφ.17 Observing that Z is constant

with respect to φ, first write

∇φKL(qφ||p) (41)

=
∑

y

∇φ (qφ(y) dφ(y)) (42)

=
∑

y

(∇φqφ(y)) dφ(y)

+
∑

y

qφ(y)∇φ log qφ(y)
︸ ︷︷ ︸

=∇φqφ(y)

=
∑

y

(∇φqφ(y)) dφ(y)

where the last step uses the fact that
∑

y
∇φqφ(y) = ∇φ

∑

y
qφ(y) = ∇φ1 = 0.

We can turn this into an expectation with a

second use of Glynn (1990)’s observation that

17This is an extension of the REINFORCE trick (Williams,
1992), which estimates the gradient of Ey∼qφ [reward(y)]
when the reward is independent of φ. In our case, the expecta-
tion is over a quantity that does depend on φ.



∇φqφ(y) = qφ(y)∇φ log qφ(y) (the “likelihood

ratio trick”):

∇φKL(qφ||p)

=
∑

y

qφ(y)dφ(y)∇φ log qφ(y)

= Ey∼qφ [dφ(y)∇φ log qφ(y)] (43)

which can, if desired, be further rewritten as

= Ey∼qφ [dφ(y)∇φ dφ(y)]

= Ey∼qφ

[
∇φ

(
1
2dφ(y)

2
)]

(44)

If we regard dφ(y) as a signed error (in the log do-

main) in trying to fit qφ to p̃, then the above gradient

of KL can be interpreted as the gradient of the mean

squared error (divided by 2).18

We would get the same gradient for any rescaled

version of the unnormalized distribution p̃, but the

formula for obtaining that gradient would be dif-

ferent. In particular, if we rewrite the above deriva-

tion but add a constant b to both log p̃(y) and logZ
throughout (equivalent to adding b to GT ), we will

get the slightly generalized expectation formulas

Ey∼qφ [(dφ(y)− b)∇φ log qφ(y)] (45)

Ey∼qφ

[

∇φ

(
1
2 (dφ(y)− b)2

)]

(46)

in place of equations (43) and (44). By choosing an

appropriate “baseline” b, we can reduce the variance

of the sampling-based estimate of these expectations.

This is similar to the use of a baseline in the REIN-

FORCE algorithm (Williams, 1992). In this work

we choose b using an exponential moving average

of past E [dφ(y)] values: at the end of each training

minibatch, we update b← 0.1 · b+ 0.9 · d̄, where

d̄ is the mean of the estimated Ey∼qφ(·|x) [dφ(y)]
values for all examples x in the minibatch.

C Implementation Details

We implement all RNNs in this paper as GRU net-

works (Cho et al., 2014) with d = 32 hidden units

(state space R
32). Each of our models (§6) always

specifies the logprob-so-far in equations (2) and (3)

using a 1-layer left-to-right GRU,19 while the corre-

sponding proposal distribution (§3.3) always spec-

ifies the state st in (6) using a 2-layer right-to-left

18We thank Hongyuan Mei, Tim Vieira, and Sanjeev Khu-
danpur for insightful discussions on this derivation.

19For the tagging task described in §6.1, gθ(st−1, xt, yt)
def
=

log pθ(xt, yt | st−1), where the GRU state st−1 is used to
define a softmax distribution over possible (xt, yt) pairs in the
same manner as an RNN language model (Mikolov et al., 2010).
Likewise, for the source separation task (§6.2), the source lan-
guage models described in Appendix G are GRU-based RNN
language models.
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Figure 3: Offset KL divergence for the source separation task
on phoneme sequences.

GRU, and specifies the compatibility function Ct in

(23) using a 4-layer feedforward ReLU network.20

For the Chinese social media NER task (§6.1), we

use the Chinese character embeddings provided by

Peng and Dredze (2015), while for the source separa-

tion tasks (§6.2), we use the 50-dimensional GloVe

word embeddings (Pennington et al., 2014). In other

cases, we train embeddings along with the rest of

the network. We optimize with the Adam optimizer

using the default parameters (Kingma and Ba, 2015)

and L2 regularization coefficient of 10−5.

D Training Procedures

In all our experiments, we train the incremental scor-

ing models (the tagging and source separation mod-

els described in §6.1 and §6.2, respectively) on the

training dataset T . We do early stopping, using per-

plexity on a held-out development set D1 to choose

the number of epochs to train (maximum of 3).

Having obtained these model parameters θ, we

train our proposal distributions qθ,φ on T , keeping

θ fixed and only tuning φ. Again we use early stop-

ping, using the KL divergence from §7.1 on a sep-

arate development set D2 to choose the number of

epochs to train (maximum of 20 for the two tag-

ging tasks and source separation on the PTB dataset,

and maximum of 50 for source separation on the

phoneme sequence dataset). We then evaluate qθ∗,φ∗

on the test dataset E.

[Appendices E–G appear in the supplementary

material file.]

20As input to Ct, we actually provide not only st, s̄t but also
the states fθ(st−1, xt, y) (including st) that could have been
reached for each possible value y of yt. We have to compute
these anyway while constructing the proposal distribution, and
we find that it helps performance to include them.



E Applications of Sampling

In this paper, we evaluate our sampling algorithms

“intrinsically” by how well a sample approximates

the model distribution pθ—rather than “extrinsically”

by using the samples in some larger method.

That said, §1.3 did list some larger methods that

make use of sampling. We review them here for the

interested reader.

Minimum-risk decoding seeks the output

argmin
z

∑

y

pθ(y | x) · loss(z | y) (47)

In the special case where loss(z | y) simply asks

whether z 6= y, this simply returns the “Viterbi”

sequence y that maximises pθ(y | x). However, it

may give a different answer if the loss function gives

partial credit (when z ≈ y), or if the space of outputs

z is simply coarser than the space of taggings y—

for example, if there are many action sequences y

that could build the same output structure z. In these

cases, the optimal z may win due to the combined

support of many suboptimal y values, and so finding

the optimal y (the Viterbi sequence) is not enough

to determine the optimal z.

The risk objective (47) is a expensive expectation

under the distribution pθ(y | x). To approximate it,

one can replace pθ(y | x) with an approximation

p̂(y) that has small support so that the summation

is efficient. Particle smoothing returns such a p̂—

a non-uniform distribution (28) over M particles.

Since those particles are randomly drawn, p̂ is it-

self stochastic, but E [p̂(y)] ≈ pθ(y | x), with the

approximation improving with the quality of the pro-

posal distribution (which is the focus of this paper)

and with M .

In supervised training of the model (1) by max-

imizing conditional log-likelihood, the gradient of

log p(y∗ | x) on a single training example (x,y∗)
is ∇θ log pθ(y

∗ | x) = ∇θG
∗
T −

∑

y
pθ(y | x) ·

∇θGT . The sum is again an expectation that can be

estimated by using p̂. Since E [p̂(y)] ≈ pθ(y | x),
this yields a stochastic estimate of the gradient that

can be used in the stochastic gradient ascent algo-

rithm (Robbins and Monro, 1951).21

21Notice that the gradient takes this “difficult” form only
because the model is globally normalized. If we were training a
locally normalized conditional model (McCallum et al., 2000),
or a locally normalized joint model like equation (4), then sam-
pling methods would not be needed, because the gradient of
the (conditional or joint) log-likelihood would decompose into
T “easy” summands that each involve an expectation over the
small set of yt values for some t, rather than over the exponen-

In unsupervised or semi-supervised training of a

generative model pθ(x,y), one has some training

examples where y∗ is unobserved or observed in-

completely (e.g., perhaps only z is observed). The

Monte Carlo EM algorithm for estimating θ (Wei

and Tanner, 1990) replaces the missing y∗ with sam-

ples from pθ(y | x, partial observation) (this is the

Monte Carlo “E step”). This multiple imputation

procedure has other uses as well in statistical analy-

sis with missing data (Little and Rubin, 1987).

Modular architectures provide another use for

sampling. If pθ(y | x) is just one stage in an NLP

annotation pipeline, Finkel et al. (2006) recommend

passing a diverse sample of y values on to the

next stage, where they can be further annotated and

rescored or rejected. More generally, in a graphi-

cal model that relates multiple strings (Bouchard-

Côté et al., 2007; Dreyer and Eisner, 2009; Cotterell

et al., 2017), inference could be performed by parti-

cle belief propagation (Ihler and McAllester, 2009;

Lienart et al., 2015), or with the help of stochastic-

inverse proposal distributions (Stuhlmüller et al.,

2013). These methods call conditional sampling as

a subroutine.

tially larger set of strings y. However, this simplification goes
away outside the fully supervised case, as the next paragraph
discusses.
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Figure 4: Offset KL divergence on the last char task: a patho-
logical case where a naive particle filtering sampler does really
horribly, and an ill-trained smoothing sampler even worse. The
logarithmic x-axis is the particle size used to train the sampler.
At test time we evaluate with the same particle size (M = 32).

F Effect of different objective functions

on lookahead optimization

§5 discussed inclusive and exclusive KL diver-

gences, and gave our rationale for optimizing an

interpolation of the two. Here we study the effect

of the interpolation weight. We train the lookahead

sampler, and the joint language model, on a toy prob-

lem called “last char,” where y is a deterministic

function of x: either a lowercased version of x, or

an identical copy of x, depending on whether the

last character of x is 0 or 1. Note that this problem

requires lookahead.

We obtain our x sequences by taking the

phoneme sequence data from the stressed syl-

lable tagging task and flipping a fair coin to

decide whether to append 0 or 1 to each se-

quence. Thus, the dataset may include (x,y)
pairs such as (K AU CH 0, k au ch 1)
or (K AU CH 1, K AU CH 1), but not

(K AU CH 1, k au ch 1).
We treat this as a tagging problem, and treat it

with our tagging model in §6.1. Results are in Fig-

ure 4. We see that optimizing for KL(p̂||q) at a

low particle size gives much worse performance

than other methods. On the other hand, the objec-

tive function KL(q||p) achieves constantly good per-

formance. The middle ground
KL(p̂||q)+KL(q||p)

2 im-

proves when the particle size increases, and achieves

better results than KL(q||p) at larger particle sizes.

G Generative process for source

separation

Given an alphabet Σ, J strings

x(1),x(2), . . . ,x(J) ∈ Σ∗ are independently

sampled from the respective distributions

p(1), . . . p(J) over Σ∗ (possibly all the same

distribution p(1) = · · · = p(J)). These source

strings are then combined into a single observed

string x, of length K =
∑

j Kj , according to an in-

terleaving string y, also of length K. For example,

y = 1132123 means to take two characters from

x(1), then a character from x(3), then a character

from x(2), etc. Formally speaking, y is an element

of the mix language Yx = MIX(1k1 , 2k2 , . . . , jkj ),
and we construct x by specifying the character

xk ∈ Σ to be x
(yk)
|{i≤k:yi=yk}|

. We assume that y is

drawn from some distribution over Yx. The source

separation problem is to recover the interleaving

string y from the interleaved string x.

We assume that each source model p(j)(x(j)) is

an RNN language model—that is, a locally normal-

ized state machine that successively generates each

character of x(j) given its left context. Thus, each

source model is in some state s
(j)
t after generating

the prefix x
(j)
:t . In the remainder of this paragraph,

we suppress the superscript (j) for simplicity. The

model now stochastically generates character xt+1

with probability p(xt+1 | st), and from st and this

xt+1 it deterministically computes its new state st+1.

If xt+1 is a special “end-of-sequence” character EOS,

we return x = x:t.

Given only x of length T , we see that y could

be any element of {1, 2, . . . , J}T . We can write

the posterior probability of a given y (by Bayes’

Theorem) as

p(y | x) ∝ p(y)
J∏

j=1

p(j)
(

x(j)
)

(48)

where (for this given y) x(j) denotes the subse-

quence of x at indices k such that yk = j. In our

experiments, we assume that y was drawn uniformly

from Yx, so p(y) is constant and can be ignored. In

general, the set of possible interleavings Yx is so

large that computing the constant of proportional-

ity (partition function) for a given x becomes pro-

hibitive.


